1
|
Singh R, Vigelahn L, Schütt C, Burmeier H, Chakma S, Birke V. Defining quality assurance guidance for effective selection of technical grade zero-valent iron production batch for groundwater remediation using permeable reactive barrier. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:121945. [PMID: 39142097 DOI: 10.1016/j.jenvman.2024.121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
Zero-valent iron (ZVI) applied to the remediation of contaminated groundwater (GW) in situ, especially using engineered permeable reactive barriers (PRBs), has been proven to be an effective reactive material. However, many of ZVI brands do not represent tailored reagents specifically regarding destroying pollutants in GW. Thus, their reactivity towards certain contaminants in GW may vary significantly in a wide range even with different production batches of the same ZVI brand. This issue has rarely been known and consequently not addressed to a higher extend so far. Therefore, this study implemented extensive, long-term column experiments followed by short-term batch experiments for chlorinated volatile organic compounds (cVOCs) degradation for developing a semi-empirical test methodology to thoroughly resolve this pivotal issue by achieving an improved quality assurance guidance regarding proper field-scale emplacement of different ZVI brands and their production batches. The results showed that during column experiments perchloroethylene (PCE) led to a significant degradation up to a certain period but sulfate-reducing microorganisms enhanced the dehalogenation and led approximately to 100 % PCE removal. However, the efficacy varied for different ZVI brands, i.e., Gotthart Maier (GM) and Sponge Iron (Responge®). Furthermore, it could be shown that it might even vary among different production batches of the same ZVI brand. It was also observed that evolution of sulfate-reducing microorganisms may improve the efficacy of PCE degradation vastly that occur at different intensities with different ZVI brands and their respective production batches over time. Further, comparing comprehensive long-term column (kobs = 0.0488 1/h) and short-term batch experiments (kobs = 0.07794 1/h) as well as refined kinetic analyses (kobs = 0.0424 1/h) clearly prove that an appropriate guidance protocol for successful full-scale in situ remediation is required for properly select the right ZVI brand and production batch before it is loaded to a PRB in the field.
Collapse
Affiliation(s)
- Rahul Singh
- Hochschule Wismar - University of Applied Sciences, Technology, Business, and Design, Faculty of Engineering Science, Department of Mechanical, Process and Environmental Engineering, Philipp-Müller-Str. 14, 23966, Wismar, Germany; Indian Institute of Technology Delhi, Department of Civil Engineering, Hauz Khas, New Delhi, 110016, India.
| | - Lothar Vigelahn
- Hochschule Wismar - University of Applied Sciences, Technology, Business, and Design, Faculty of Engineering Science, Department of Mechanical, Process and Environmental Engineering, Philipp-Müller-Str. 14, 23966, Wismar, Germany.
| | - Christine Schütt
- Ostfalia University of Applied Sciences, Faculty of Civil and Environmental Engineering, Campus Suderburg, Germany.
| | - Harald Burmeier
- Ostfalia University of Applied Sciences, Faculty of Civil and Environmental Engineering, Campus Suderburg, Germany.
| | - Sumedha Chakma
- Indian Institute of Technology Delhi, Department of Civil Engineering, Hauz Khas, New Delhi, 110016, India.
| | - Volker Birke
- Hochschule Wismar - University of Applied Sciences, Technology, Business, and Design, Faculty of Engineering Science, Department of Mechanical, Process and Environmental Engineering, Philipp-Müller-Str. 14, 23966, Wismar, Germany.
| |
Collapse
|
2
|
Kwak E, Kim JH, Lee S. Longevity evaluation of non-pumping reactive wells for control of groundwater contamination: Application of upscaling methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122136. [PMID: 37419206 DOI: 10.1016/j.envpol.2023.122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Non-pumping reactive wells (NPRWs) are subsurface structures used for the passive treatment of contaminated groundwater using wells containing reactive media. In the vicinity of NPRWs, a combination of hydrogeological and chemical processes makes it difficult to predict their longevity. In this study, we evaluated the longevity of NPRWs using the upscaling methods. A horizontal two-dimensional sandbox was constructed to mimic the hydrogeological and chemical processes in a single unit of NPRW (unit NPRW). The groundwater flow and solute transport were simulated numerically to validate the processes of contaminant spreading prevention in the sandbox. Dye tracing and arsenic transport tests showed different performance of NPRW due to induced flow and uneven consumption of reactivity, which is dependent on the pathway length and residence time of the coal waste. Through numerical modeling of the experiments, the fate-related processes of contamination around NPRW were described in detail in both spatial and temporal terms. The stepwise approach of the upscaling methods was used to predict the contamination-blocking performance of the entire facility based on the reactivity of the materials and the contamination removal of the unit NPRW.
Collapse
Affiliation(s)
- Eunjie Kwak
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jae-Hyun Kim
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soonjae Lee
- Department of Earth and Environmental Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Zhan L, Zhao L, Wu L, You Y, Bate B. A passive sink-zeolite permeable reactive barrier to control NH 4+-N pollution plume within groundwater: Conceptual design and numerical modeling. CHEMOSPHERE 2023; 334:138965. [PMID: 37236276 DOI: 10.1016/j.chemosphere.2023.138965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Ammonium nitrogen (NH4+-N) is a typical inorganic pollutant in the groundwater at landfill sites, and high-concentration NH4+-N is toxic to humans and organisms. Zeolite can effectively remove NH4+-N in water by adsorption, and it is suitable to be used as a type of reactive materials for permeable reactive barriers (PRBs). A passive sink-zeolite PRB (PS-zPRB) with higher capture efficiency than a continuous permeable reactive barrier (C-PRB) was proposed. And a passive sink configuration was integrated with PRB in the PS-zPRB, this configuration enabled the high hydraulic gradient of groundwater at the treated sites to be fully utilized. In order to explore treatment efficiency for groundwater NH4+-N using the PS-zPRB, numerical modeling on decontamination of NH4+-N plumes at a landfill site was performed. The results indicated that the NH4+-N concentrations of PRB effluent gradually decreased from 21.0 mg/L to 0.5 mg/L within 5 y, and met the drinking water standards after treatment for 900 d. The decontamination efficiency index of PS-zPRB was consistently higher than 95% within 5 y, and the service life of PS-zPRB would be over 5 y. The capture width of PS-zPRB effectively exceeded the PRB length by around 50%. Compared with C-PRB, the capture efficiency of PS-zPRB was increased by around 28%, and the reactive material of PS-zPRB was saved by approximately 23% in volume.
Collapse
Affiliation(s)
- Liangtong Zhan
- Department of Civil Engineering, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Li Zhao
- Department of Civil Engineering, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Linbo Wu
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, 310058, China; Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University, Hangzhou, 310058, China.
| | - Yuqing You
- Department of Civil Engineering, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Bate Bate
- Department of Civil Engineering, Zhejiang University, Hangzhou, 310058, China; MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Singh R, Chakma S, Birke V. Performance of field-scale permeable reactive barriers: An overview on potentials and possible implications for in-situ groundwater remediation applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:158838. [PMID: 36122715 DOI: 10.1016/j.scitotenv.2022.158838] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Permeable reactive barriers (PRBs) are significant among all the promising remediation technologies for treating contaminated groundwater. Since the first commercial full field-scale PRB emplacement in Sunnyvale, California, in 1994-1995, >200 PRB systems have been installed worldwide. The main working principle of a PRB is to treat a variety of contaminants downstream from the contaminated source zone ("hot spot"). However, to accurately assess the longevity of PRBs, it is essential to know the total contaminant mass in the source area and its approximate geometry. PRBs are regarded as both a safeguarding and an advanced decontamination technique, depending on the contamination scenario and its outcome during the operational lifetime of the barrier. In the last three decades, many PRBs have performed very well, that is, met expected clean-up goals at a variety of contaminated sites. However, there is still the necessity of thoroughly evaluating the implications of the performance of different PRB designs and reactive or adsorptive materials worldwide. Therefore, this study presents a comprehensive overview of field-scale PRBs applications and their long-term performance after on-site emplacements. This paper provides in-depth insight into this passive in-situ remediation technology for treating and even eliminating a contaminated plume over a long time in the subsurface. The overview will help all stakeholders worldwide understand the implications of PRBs and guide them to take all the required measures before its on-site application to avoid any potential failure.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India; Faculty of Engineering Science, Department of Mechanical, Process, and Environmental Engineering, University of Wismar - University of Applied Sciences, Technology, Business, and Design, Philipp-Müller-Str. 14, 23966 Wismar, Germany.
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Volker Birke
- Faculty of Engineering Science, Department of Mechanical, Process, and Environmental Engineering, University of Wismar - University of Applied Sciences, Technology, Business, and Design, Philipp-Müller-Str. 14, 23966 Wismar, Germany
| |
Collapse
|
5
|
Clavijo SP, Addassi M, Finkbeiner T, Hoteit H. A coupled phase-field and reactive-transport framework for fracture propagation in poroelastic media. Sci Rep 2022; 12:17819. [PMID: 36280683 PMCID: PMC9592620 DOI: 10.1038/s41598-022-22684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
We present a novel approach to model hydro-chemo-mechanical responses in rock formations subject to fracture propagation within chemically active rock formations. The framework developed integrates the mechanisms of reactive transport, fluid flow and transport in porous media, and phase-field modelling of fracture propagation in poroelastic media. The solution approach integrates the geochemical package PHREEQC with a finite-element open-source platform, FEniCs. The PHREEQC solver is used to calculate the localized chemical reaction, including solid dissolution/precipitation. The resulting solid weakening by chemical damage is estimated from the reaction-induced porosity change. The proposed coupled model was verified with previous numerical results and applied to a synthetic case exhibiting hydraulic fracturing enhanced with chemical damage. Simulation results suggest that mechanical failure could be accelerated in the presence of ongoing chemical processes due to rock weakening and porosity changes, allowing the nucleation, growth, and development of fractures.
Collapse
Affiliation(s)
- Santiago Pena Clavijo
- grid.45672.320000 0001 1926 5090King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Mouadh Addassi
- grid.45672.320000 0001 1926 5090King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Thomas Finkbeiner
- grid.45672.320000 0001 1926 5090King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Hussein Hoteit
- grid.45672.320000 0001 1926 5090King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| |
Collapse
|
6
|
Ekolu SO, Solomon F, de Beer F, Bitandi L, Kilula RN, Maseko KT, Mahlangu FG. Measurement of pore volume, connectivity and clogging of pervious concrete reactive barrier used to treat acid mine drainage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55743-55756. [PMID: 35322361 DOI: 10.1007/s11356-022-18850-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
It has recently been shown that pervious concrete is a promising, effective technology as a permeable reactive barrier system for treatment of acid mine drainage (AMD). However, pore clogging also occurs simultaneously during AMD treatment. In the present study, mixtures of pervious concrete were made and used in a column experiment during which pore clogging occurred in the samples. Pore volume, connectivity and other parameters of pervious concrete were evaluated using five (5) different methods comprising the volumetric method (VM), linear-traverse method (LTM), image analysis (IA), falling head permeability test and X-ray microcomputed tomography. It was found that pervious concrete effectively removed from AMD, about 90 to 99% of various heavy metals including Al, Fe, Zn, Mn and Mg. Cr concentration significantly increased in the treated effluent, owing to leaching from cementitious materials used in mixtures. The VM and LTM gave statistically similar pore volume results, while IA's values were 20 to 30% higher than those of the conventional methods. The falling head permeability test and IA were found to be effective in quantifying pore clogging effects. Pervious concrete exhibited high pore connectivity of 95.0 to 99.7%, which underlies its efficacious hydraulic conductivity.
Collapse
Affiliation(s)
- Stephen O Ekolu
- Department of Civil Engineering, Nelson Mandela University, Gqeberha, South Africa
| | - Fitsum Solomon
- Department of Civil Engineering, Nelson Mandela University, Gqeberha, South Africa.
| | - Frikkie de Beer
- Nuclear Technology Division, NECSA, Box 582, Pretoria, 0001, South Africa
| | - Louisette Bitandi
- Department of Civil Engineering Science, University of Johannesburg, Johannesburg, South Africa
| | - Rais N Kilula
- Department of Civil Engineering Science, University of Johannesburg, Johannesburg, South Africa
| | - Khaya T Maseko
- Department of Civil Engineering Science, University of Johannesburg, Johannesburg, South Africa
| | - Fatty G Mahlangu
- Department of Civil Engineering Science, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
7
|
Cho YC, Hsu CC, Lin YP. Integration of in-situ chemical oxidation and permeable reactive barrier for the removal of chlorophenols by copper oxide activated peroxydisulfate. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128726. [PMID: 35316633 DOI: 10.1016/j.jhazmat.2022.128726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/27/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In-situ chemical oxidation (ISCO) and permeable reactive barrier (PRB) have been used in field practices for contaminated groundwater remediation. In this lab-scale study, a novel system integrating ISCO and PRB using peroxydisulfate (PDS) as the oxidant and copper oxide (CuO) as the reactive barrier material was developed for the removal of 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The influences of chlorophenol concentration and flow rate on the system performance were first evaluated using synthetic solutions. The removal efficiencies of target chlorophenols were greater than 90% when sufficient PDS was supplied ([PDS]/[chlorophenol]>1). It was also found that the removal efficiencies decreased with the increasing chlorophenol concentrations (10-150 μM) and flow rates (1.8-14.4 mL/min). When three real groundwaters were employed, the removal efficiencies of 2,4-DCP and 2,4,6-TCP slightly reduced to 90% and 85%, respectively. For PCP, the removal efficiency dropped to 20% in two groundwaters with relatively high levels of alkalinity. The influences of pH and TOC were found to be insignificant for the range investigated (pH 6.5-8.7 and TOC = 0.4-1.5 mgC/L). The reduced removal efficiency could be due to the formation of weaker radicals and the stronger competition between bicarbonate ions and PDS for the activation sites on the CuO surfaces.
Collapse
Affiliation(s)
- Yi-Chin Cho
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chia-Chun Hsu
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yi-Pin Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan; NTU Research Center for Future Earth, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Zhao B, Sun Z, Liu Y. An overview of in-situ remediation for nitrate in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149981. [PMID: 34517309 DOI: 10.1016/j.scitotenv.2021.149981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Faced with the increasing nitrate pollution in groundwater, in-situ remediation has been widely studied and applied on field-scale as an efficient, economical and less disturbing remediation technology. In this review, we discussed various in-situ remediation for nitrate in groundwater and elaborate on biostimulation, phytoremediation, electrokinetic remediation, permeable reactive barrier and combined remediation. This review described principles of each in-situ remediation, application, the latest progress, problems and challenges on field-scale. Factors affecting the efficiency of in-situ remediation for nitrate in groundwater are also summarized. Finally, this review presented the prospect of in-situ remediation for nitrate pollution in groundwater. The objective of this review is to examine the state of knowledge on in-situ remediation for nitrate in groundwater and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. This helps to better understand the control mechanisms of various in-situ remediation for nitrate pollution in groundwater and the design options available for application to the field-scale.
Collapse
Affiliation(s)
- Bei Zhao
- China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhanxue Sun
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China.
| | - Yajie Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
9
|
Chien SWC, Li YP, Liu CC. Permeable reactive barrier of waste sludge from wine processing utilized to block a metallic mixture plume in a simulated aquifer. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2472-2485. [PMID: 34810325 DOI: 10.2166/wst.2021.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heavy metal contamination in underground water commonly occurs in industrial areas in Taiwan. Wine-processing waste sludge (WPWS) can adsorb and remove several toxic metals from aqueous solutions. In this study, WPWS particles were used to construct a permeable reactive barrier (PRB) for the remediation of a contaminant plume comprising HCrO4-, Cu2+, Zn2+, Ni2+, Cd2+, and AsO33- in a simulated aquifer. This PRB effectively prevented the dispersals of Cu2+, Zn2+, and HCrO4-, and their concentrations in the pore water behind the barrier declined below the control standard levels. However, the PRB failed to prevent the diffusion of Ni2+, Cd2+, and AsO33-, and their concentrations were occasionally higher than the control standard levels. However, 18% to 45% of As, 84% to 93% of Cd, and 16% to 77% of Ni were removed by the barrier. Ni ions showed less adsorption on the fine sand layer because of the layer's ineffectiveness in multiple competitive adsorptions. Therefore, the ions infiltrated the barrier at a high concentration, which increased the loading for the barrier blocking. The blocking efficiency was related to the degree of adsorption of heavy metals in the sand layer and the results of their competitive adsorption.
Collapse
Affiliation(s)
- Shui-Wen Chang Chien
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 41349, Taiwan
| | - Yi-Pei Li
- Department of Environmental Engineering, National Ilan University, Ilan 26047, Taiwan E-mail:
| | - Cheng-Chung Liu
- Department of Environmental Engineering, National Ilan University, Ilan 26047, Taiwan E-mail:
| |
Collapse
|
10
|
Maamoun I, Falyouna O, Eljamal R, Bensaida K, Eljamal O. Optimization Modeling of nFe0/Cu-PRB Design for Cr(VI) Removal from Groundwater. ACTA ACUST UNITED AC 2021. [DOI: 10.18178/ijesd.2021.12.5.1330] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Hexavalent chromium is one of the highly toxic heavy metals which could lead to severe health issues when it is discharged into aquifers as industrial wastewater. In the current study nFe0/Cu was successfully employed in PRB technology for Cr(VI) removal from groundwater. Batch and column experiments confirmed the high reactive performance of nFe0/Cu towards Cr(VI) removal by around 85% removal efficiency. The main pathways for Cr-species removal by nFe0/Cu were determined as the reduction of Cr(VI) to Cr(III) by both nFe0 and Cu0 and the precipitation/co-precipitation of Cr(III) with the released iron oxides on the nFe0/Cu surface. The developed 3D-surface response optimization model confirmed the reciprocal relation between the residence time, barrier thickness and hydraulic conductivity. The interaction and sensitivity analysis between the model’s parameters were significantly crucial for defining the optimal design conditions of the nFe0/Cu-PRB. Generally, the current study could represent a great contribution in scaling-up the PRB technology towards the real field applications.
Collapse
|
11
|
Liu CC, Liu YC, Liu JU. Wine-processing waste sludge permeable reaction barrier utilized to block a gasoline plume in a simulated aquifer. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1304-1311. [PMID: 33079711 DOI: 10.2166/wst.2020.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oil leakage from gas stations in Taiwan is commonly caused by the corrosion of oil tanks or loose pipeline joints, contaminating the soil and groundwater near the gas station. Wine-processing waste sludge (WPWS) does not contain toxic substances and has a high organic matter content. Thus, it has high affinity for methyl tert-butyl ether (MTBE) and benzene, toluene, ethylbenzene, and xylenes (BTEX), being suitable for application in preventing and controlling groundwater pollution. In this study, a permeable reaction barrier (PRB) constructed utilizing WPWS in a large water tank was designed to simulate the diffusion and blockage of gasoline plumes in an aquifer. The constructed WPWS PRB had a rectangular shape with a thickness and height of 9 and 60 cm, respectively. The depth in the aquifer was adjusted to 50 cm. MTBE was detected in the aquifer downstream of the WPWS PRB every day during the experiment; however, the maximum concentration detected was only 5.33 ppb. BTEX were only detected on 3 days during the experiment and had maximum concentrations of 1.76, 2.28, 0.34, and 0.60 ppb, which are below the water quality control standards.
Collapse
Affiliation(s)
- Cheng-Chung Liu
- Department of Environmental Engineering, National Ilan University, Ilan 260, Taiwan E-mail:
| | - Yu-Chun Liu
- Department of Environmental Engineering, National Ilan University, Ilan 260, Taiwan E-mail:
| | - Jun-Ui Liu
- Department of Environmental Engineering, National Ilan University, Ilan 260, Taiwan E-mail:
| |
Collapse
|
12
|
Maamoun I, Eljamal O, Falyouna O, Eljamal R, Sugihara Y. Multi-objective optimization of permeable reactive barrier design for Cr(VI) removal from groundwater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110773. [PMID: 32464445 DOI: 10.1016/j.ecoenv.2020.110773] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
The present study aims to develop a practical approach for the optimal permeable reactive barrier (PRB) design towards Cr(VI) removal from groundwater. Batch and column experiments were performed to investigate the characteristics of the four proposed reactive materials; nanoscale zero-valent iron (Fe0), bimetallic nanoscale zero-valent iron (Fe0/Cu), activated carbon (AC) and sand/zeolite mixture (S/Z). Kinetic analysis and dynamic modeling of the experimental data were implemented to determine the controlling conditions of the reactive performance of the PRB's materials. The sensitivity index of the design parameters was examined as an indicator of their effect on the reactive responses. Moreover, the Response Surface Methodology (RSM) was considered for optimizing the design variables of the PRB based on the practical factorial analysis. Results revealed that Fe0 and Fe0/Cu showed high performance in Cr(VI) removal, with a slight superiority to Fe0, with final removal efficiency values of 89.7 and 84.1%, respectively. Kinetic analysis depicted that pseudo second order was the best fitting model for Cr(VI) removal in the four materials' cases. ANOVA statistical analysis revealed that quadratic polynomial model was the best model, corresponding to the highest correlation efficiency and adequate precision, to describe the relationships in the four PRB's cases between the selected dependent variables; resident time (tR), reactive material mass per sectional area of contaminant plume (M/A) and reactive material cost (CostPRB) towards the independent parameters; barrier thickness (b) and permeability (Kr). Additionally, sensitivity analysis has been conducted which depicted the high sensitivity, in the four PRB's cases, of average pore water velocity within the barrier (vr) vr and Kr with the highest and the second-highest sensitivity index (SI) values towards tR, respectively. The RSM-optimization revealed that Fe0 is the most feasible reactive material, comparing to the other considered materials, with respect to the optimal conditions regarding the long residency (tR = 22 days) and low cost (b = 0.521 m), with around 95.2% desirability of its optimal solution. Overall, the current study represents a significant contribution and a vital step towards an accurate PRB's design based on previously determined optimal conditions.
Collapse
Affiliation(s)
- Ibrahim Maamoun
- Environmental Fluid Science, Department of Earth System Science and Technology, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen Kasuga, Fukuoka, 816-8580, Japan
| | - Osama Eljamal
- Environmental Fluid Science, Department of Earth System Science and Technology, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen Kasuga, Fukuoka, 816-8580, Japan.
| | - Omar Falyouna
- Environmental Fluid Science, Department of Earth System Science and Technology, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen Kasuga, Fukuoka, 816-8580, Japan
| | - Ramadan Eljamal
- Environmental Fluid Science, Department of Earth System Science and Technology, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen Kasuga, Fukuoka, 816-8580, Japan
| | - Yuji Sugihara
- Environmental Fluid Science, Department of Earth System Science and Technology, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
13
|
Falciglia PP, Gagliano E, Brancato V, Finocchiaro G, Catalfo A, De Guidi G, Romano S, Roccaro P, Vagliasindi FGA. Field technical applicability and cost analysis for microwave based regenerating permeable reactive barriers (MW-PRBs) operating in Cs-contaminated groundwater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 260:110064. [PMID: 32090811 DOI: 10.1016/j.jenvman.2020.110064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/24/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
The present study tests the potentiality of a novel microwave based regenerating permeable reactive barrier (MW-PRB) system as combined treatment for Cs-contaminated groundwater. Granular activated carbon (GAC) was selected as adsorptive materials in batch and column MW-regeneration experiments. Experimental and modeling data were elaborated for technical and economic considerations in order to assess the MW-PRB feasibility jointly with essential information regarding its real field applicability. Batch experiments investigated the effects of 10 adsorption-MW regeneration cycles under different MW irradiation conditions (applied electric field = 200-460 V m-1; irradiation times = 1-15 min) by assessing GAC variation properties in term of regeneration yield (δ), specific area and weight loss (WL) variation. Column tests were carried using a dedicated setup essentially including a column filled with GAC implanted in a MW oven cavity (MW electric field of 385 V m-1, irradiation times 5-15 min). Lab-scale results shown the ability of MW in Cs removal from GAC as demonstrated by regeneration yield (δ = 79-110%) and WL (6.78% for 10 cycles) values. This was confirmed in dynamic conditions by data from MW-column tests highlighting the highest Cs removal of ~80% when the maximum regeneration time was applied. Residual Cs concentration in breakthrough curves fitted well with the proposed Yoon and Nelson model (R2 = ~0.97). Results from techno-economic analysis revealed the MW-PRB viability and its advantages also in comparison with conventional PRB systems, demonstrating the concept of combined MW-PRB treatment. Saved cost obtained demonstrated in fact the potential cost effectiveness of MW-PRB system and, consequently, the implementation of novel approach is encouraged. Calculated PRB longevity vs groundwater velocity curves are useful in order to predict long-term PRB performance and the response of the remediation activities, as well as for guiding the design and the scaling-up of MW-PRB treatment.
Collapse
Affiliation(s)
- Pietro P Falciglia
- Dipartimento di Ingegneria Civile e Architettura, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy; Laboratori Nazionali del Sud - Istituto Nazionale di Fisica Nucleare, Via S. Sofia, 62 - 95125, Catania, Italy
| | - Erica Gagliano
- Dipartimento di Ingegneria Civile e Architettura, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Vincenza Brancato
- CNR - ITAE - Istituto di Tecnologie Avanzate per l'Energia, "Nicola Giordano", Salita S. Lucia sopra Contesse 5, Messina, 98126, Italy
| | - Guglielmo Finocchiaro
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Alfio Catalfo
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Guido De Guidi
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy; Centro di ricerca per l'analisi, il monitoraggio e le metodologie di minimizzazione del rischio ambientale (CRAM3RA), Università di, Catania, Italy
| | - Stefano Romano
- Laboratori Nazionali del Sud - Istituto Nazionale di Fisica Nucleare, Via S. Sofia, 62 - 95125, Catania, Italy; Dipartimento di Fisica e Astronomia, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Paolo Roccaro
- Dipartimento di Ingegneria Civile e Architettura, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Federico G A Vagliasindi
- Dipartimento di Ingegneria Civile e Architettura, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
14
|
Vaezihir A, Bayanlou MB, Ahmadnezhad Z, Barzegari G. Remediation of BTEX plume in a continuous flow model using zeolite-PRB. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 230:103604. [PMID: 32005456 DOI: 10.1016/j.jconhyd.2020.103604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/29/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Adsorption is a well-known phenomenon that causes the remediation of BTEX (Benzene, Toluene, Ethylbenzene, and Xylene). Zeolite is typically useful for the removal of BTEX from groundwater. In this study, the migration of the BTEX plume was investigated in a bench-scale tank model as a shallow aquifer. The objective of this research was to analyze the performance of a natural zeolite in-situ PRB remediation technique. Natural zeolite was applied as a physical permeable reactive barrier. In the first part of the experiment, 40 ml of BTEX as a contaminant was injected at the injection point (BI) into the sand tank. Samples were taken periodically via 14 boreholes for BTEX test for 23 days and analyzed using a GC-FID instrument. The results indicated high removal rates of BTEX by passing through the zeolite barrier. Zeolite barrier reduced the BTEX concentration up to 90% of the initial value. However, the barrier efficiency started to decrease after 132 h since pollution injection reached a minimum amount (%53 of the initial value) due to occupying the free space and grain pore where BTEX was adsorbed onto the surface of zeolite, thereby decreasing the barrier efficiency.
Collapse
Affiliation(s)
- Abdorreza Vaezihir
- Department of Earth Sciences, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran.
| | | | - Zeinab Ahmadnezhad
- Department of Earth Sciences, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran
| | - Ghodrat Barzegari
- Department of Earth Sciences, University of Tabriz, 29 Bahman Blvd., Tabriz, Iran
| |
Collapse
|
15
|
Gibert O, Assal A, Devlin H, Elliot T, Kalin RM. Performance of a field-scale biological permeable reactive barrier for in-situ remediation of nitrate-contaminated groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:211-220. [PMID: 30599340 DOI: 10.1016/j.scitotenv.2018.12.340] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
We report the performance of a field-scale permeable reactive barrier (PRB) for the biological treatment of nitrate-contaminated groundwater. The reactive material of the PRB consisted of a mixture of gravel and mulch as a carbon source for denitrifying bacteria. The PRB was equipped with a delivery system that allowed injecting NO3- at controlled rates from the surface directly into the up-gradient layer of the PRB. This way, NO3- concentration entering the PRB was varied (from 1 to 530 mg/L) with the purpose of evaluating the ultimate efficiency of the PRB under different NO3- loadings. The PRB was successful at removing NO3- from groundwater at inlet concentrations up to 280 mg/L (with NO3- removal percentages ≥97%). Monitoring of groundwater at different depths within the PRB provided evidence that NO3- underwent denitrification preferably at the deepest part of the PRB, where more favourable reducing conditions were achieved. Among the shortcomings of the PRB were the fluctuations of groundwater fluxes caused by intense rainfalls during the study period, although they generally did not pose concern for the denitrification capacity of the PRB. Emission fluxes of gases (CO2, CH4 and N2O) from the PRB to the atmosphere were also measured. The results are finally compared with the few others reported existing PRBs for nitrate-contaminated groundwater worldwide.
Collapse
Affiliation(s)
- Oriol Gibert
- Chemical Engineering Department, EEBE, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, c/Eduard Maristany 10-14, Barcelona 08019, Spain; Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, c/Eduard Maristany 10-14, Barcelona 08019, Spain.
| | - Antoine Assal
- Department of Civil and Environmental Engineering, University of Strathclyde, 75 Montrose St., Glasgow G1 1XJ, United Kingdom
| | - Hayley Devlin
- Department of Civil and Environmental Engineering, University of Strathclyde, 75 Montrose St., Glasgow G1 1XJ, United Kingdom
| | - Trevor Elliot
- School of Natural & Built Environment, Queen's University Belfast, Stranmillis Rd, Belfast BT9 5AG, Antrim, United Kingdom
| | - Robert M Kalin
- Department of Civil and Environmental Engineering, University of Strathclyde, 75 Montrose St., Glasgow G1 1XJ, United Kingdom
| |
Collapse
|
16
|
Wang W, Wu Y. Sequential coupling of bio-augmented permeable reactive barriers for remediation of 1,1,1-trichloroethane contaminated groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12042-12054. [PMID: 30827025 DOI: 10.1007/s11356-019-04676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Sequential coupling of high-density luffa sponge (HDLS) immobilized microorganism and permeable reactive barriers (IM Bio-PRBs) was superior to intimate coupling of free microorganism and permeable reactive barriers (FM Bio-PRBs) for remediation of 1,1,1-trichloroethane contaminated groundwater. IM Bio-PRBs had much better performance to removal 1,1,1-trichloroethane (1,1,1-TCA) and prevent the transport of 1,1,1-TCA and inorganic ions (NO3-, PO43-, and SO42-). The majority of them were prevented and accumulated in upgradient of IM Bio-PRBs. 1,1,1-TCA and inorganic ions in there contributed to the much faster growth of microorganism in upgradient aquifer. Therefore, the removal of 1,1,1-TCA and consumption of inorganic ions in upgradient of Bio-PRBs played a constructive role in reducing the processing load of following zero-valent iron (ZVI) PRBs and the negative effect of free microorganism cells (biological clogging) and inorganic ions (chemical clogging) on Bio-PRB permeability. In addition, IM Bio-PRBs were more conducive to accelerate the removal of 1,1,1-TCA in long-term remediation and 1,1,1-TCA residual concentration significantly lower than the safety standard of 0.2 mg L-1. The change of terminal by-products of 1,1,1-TCA contaminated groundwater in Bio-PRBs showed that 1,1,1-TCA could be effectively de-chlorinated and mineralized in Bio-PRBs. The reductant H2S (prolong the service life of ZVI-PRBs) was much more produced and utilized in IM Bio-PRBs. Taken together, sequentially coupled IM Bio-PRBs had a better overall performance, and its service life could be prolonged. It was a different design and idea to update conventional PRB remediation technology and theory.
Collapse
Affiliation(s)
- Wenbing Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yanqing Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
17
|
Zhang Y, Jin F, Shen Z, Wang F, Lynch R, Al-Tabbaa A. Adsorption of methyl tert-butyl ether (MTBE) onto ZSM-5 zeolite: Fixed-bed column tests, breakthrough curve modelling and regeneration. CHEMOSPHERE 2019; 220:422-431. [PMID: 30594793 DOI: 10.1016/j.chemosphere.2018.12.170] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
ZSM-5, as a hydrophobic zeolite, has a good adsorption capacity for methyl tert-butyl ether (MTBE) in batch adsorption studies. This study explores the applicability of ZSM-5 as a reactive material in permeable reactive barriers (PRBs) to decontaminate the MTBE-containing groundwater. A series of laboratory scale fixed-bed column tests were carried out to determine the breakthrough curves and evaluate the adsorption performance of ZSM-5 towards MTBE under different operational conditions, including bed length, flow rate, initial MTBE concentration and ZSM-5 dosage, and regeneration tests were carried out at 80, 150 and 300 °C for 24 h. Dose-Response model was found to best describe the breakthrough curves. MTBE was effectively removed by the fixed-bed column packed with a ZSM-5/sand mixture with an adsorption capacity of 31.85 mg g-1 at 6 cm bed length, 1 mL min-1 flow rate, 300 mg L-1 initial MTBE concentration and 5% ZSM-5 dosage. The maximum adsorption capacity increased with the increase of bed length and the decrease of flow rate and MTBE concentration. The estimated kinetic parameters can be used to predict the dynamic behaviour of column systems. In addition, regeneration study shows that the adsorption capacity of ZSM-5 remains satisfactory (>85%) after up to four regeneration cycles.
Collapse
Affiliation(s)
- Yunhui Zhang
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom.
| | - Fei Jin
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Zhengtao Shen
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton T6G 2E3, Canada
| | - Fei Wang
- Institute of Geotechnical Engineering, School of Transportation, Southeast University, Nanjing, 210096, China
| | - Rod Lynch
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom
| | - Abir Al-Tabbaa
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom
| |
Collapse
|
18
|
Zingaretti D, Verginelli I, Baciocchi R. Dehalogenation of trichloroethylene vapors by partially saturated zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:682-689. [PMID: 30092524 DOI: 10.1016/j.scitotenv.2018.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
The reduction of trichloroethylene (TCE) in gas phase by different types of granular zero-valent iron (Fe0) was examined in anaerobic batch vapor systems performed at room temperature. Concentrations of TCE and byproducts were determined at discrete time intervals by analysis of the headspace vapors. Depending on the type of iron used, reductions of TCE gas concentration from 35% up to 99% were observed for treatments of 6 weeks. In line with other experimental studies performed with aqueous solutions, the particle size was found to play a key role in the reactivity of the iron. Namely an increase of the TCE removal up to almost 3 times was observed using iron powders with particle size lower than 425 μm compared to iron powders with particle size lower than 850 μm. The manufacturing process of the iron powder was instead found to play only a limited role. Namely, no significant differences were observed in the TCE reduction by Fe0 obtained using an iron powder attained by water atomization and sieving compared to the removal achieved using an iron powder subjected to a further annealing processes to reduce the content of oxides. Conversely, the pretreatment of the iron powder with HCl was found to enhance the reactivity of the iron. In particular, by washing the iron powder of 425 μm with HCl acid 0.1 M the reduction of TCE after 6 weeks of treatment increase from approximately 80% for the as received material to >99% for the pretreated iron powder. We also performed tests at different humidity of the iron observing that not statistical differences were obtained using a water content of 10% or 50% by weight. In all the experiments, the only detectable byproducts of the reactions were C4-C6 alkenes and alkanes that can be attributed to a hydrogenation of the CCl bond.
Collapse
Affiliation(s)
- Daniela Zingaretti
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico, 1, 00133 Rome, Italy
| | - Iason Verginelli
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico, 1, 00133 Rome, Italy
| | - Renato Baciocchi
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico, 1, 00133 Rome, Italy.
| |
Collapse
|
19
|
Wang W, Wu Y. Effects of biological clogging on 1,1,1-TCA and its intermediates distribution and fate in heterogeneous saturated bio-augmented permeable reactive barriers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28628-28641. [PMID: 30094670 DOI: 10.1007/s11356-018-2908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Biological clogging in porous media was an important concern in the design of bio-augmented permeable reactive barriers (Bio-PRBs) that were used to remediate groundwater with dense non-aqueous phase liquids (DNAPLs). Here, we used laboratory sandbox experiments to develop and calibrate reactive transport models (C1 and C2) simulating 1,1,1-trichloroethane (1,1,1-TCA) change in heterogeneous saturated porous media. The routine (1,1,1-TCA chain kinetic reactions) and subroutine (the relationship between hydraulic conductivity (K) and time (t)) were included in the model computer code. The simulation results suggested that the model C1 had the applicability for simulating contaminant transport and fate in bio-augmented flow field. By using the model C1 which was suitable for constant K condition, the performance of different types of Bio-PRBs was evaluated, and the regularity of contaminants chain kinetic reactions in different heterogeneous saturated porous media was obtained. The results demonstrated that Bio-PRBs in immobilized microorganism (IM) protocol were more superior to Bio-PRBs in free microorganism (FM) protocol. In addition, by using the model C2 (updated model C1) which was suitable for decreasing K condition, the different and optimized regularity of contaminants transport and transformation was obtained. The results showed that microbial growth which further decreased K was beneficial to preventing the transport of contaminants and accelerating the transformation of contaminants. However, the negative effects of biological clogging on hydraulic conductivity and relative hydraulic conductivity ratio in FM Bio-PRBs were significantly stronger than that in IM Bio-PRBs. Deploying IM Bio-PRBs for groundwater remediation would be much more efficient and meet the design criteria. The research work had guiding significance to engineering and provided consultation for designing and optimizing Bio-PRBs system. To make the design and optimization of Bio-PRBs system convenient, it was very essential to choose the suitable mathematical model (C1 or C2).
Collapse
Affiliation(s)
- Wenbing Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yanqing Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
20
|
Capodici M, Avona A, Laudicina VA, Viviani G. Biological groundwater denitrification systems: Lab-scale trials aimed at nitrous oxide production and emission assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:462-468. [PMID: 29486440 DOI: 10.1016/j.scitotenv.2018.02.260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Bio-trenches are a sustainable option for treating nitrate contamination in groundwater. However, a possible side effect of this technology is the production of nitrous oxide, a greenhouse gas that can be found both dissolved in the liquid effluent as well as emitted as off gas. The aim of this study was to analyze NO3- removal and N2O production in lab-scale column trials. The column contained olive nut as organic carbon media. The experimental study was divided into three phases (I, II and III) each characterized by different inlet NO3- concentrations (30, 50, 75mgNO3-NL-1 respectively). Sampling ports deployed along the length of the column allowed to observe the denitrification process as well as the formation and consumption of intermediate products, such as nitrite (NO2-) and nitrous oxide (N2O). In particular, it was observed that N2O production represent only a small fraction of removed NO3- during Phase I and II, both for dissolved (0.007%) and emitted (0.003%) phase, and it was recorded a high denitrification efficiency, over 99%. Nevertheless, significantly higher values were recorded for Phase 3 concerning emitted phase (0.018%). This fact is due to increased inlet concentration which resulted in a carbon limitation and in a consequent decrease in denitrification efficiency (76%).
Collapse
Affiliation(s)
- Marco Capodici
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze ed. 8, 90128 Palermo, Italy
| | - Alessia Avona
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze ed. 8, 90128 Palermo, Italy.
| | - Vito Armando Laudicina
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze ed. 4, 90128 Palermo, Italy
| | - Gaspare Viviani
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze ed. 8, 90128 Palermo, Italy
| |
Collapse
|
21
|
Gunawardana B, Swedlund PJ, Singhal N, Nieuwoudt MK. Pentachlorophenol dechlorination with zero valent iron: a Raman and GCMS study of the complex role of surficial iron oxides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17797-17806. [PMID: 29675820 DOI: 10.1007/s11356-018-2003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
The dechlorination of chlorinated organic pollutants by zero valent iron (ZVI) is an important water treatment process with a complex dependence on many variables. This complexity means that there are reported inconsistencies in terms of dechlorination with ZVI and the effect of ZVI acid treatment, which are significant and are as yet unexplained. This study aims to decipher some of this complexity by combining Raman spectroscopy with gas chromatography-mass spectrometry (GC-MS) to investigate the influence of the mineralogy of the iron oxide phases on the surface of ZVI on the reductive dechlorination of pentachlorophenol (PCP). Two electrolytic iron samples (ZVI-T and ZVI-H) were found to have quite different PCP dechlorination reactivity in batch reactors under anoxic conditions. Raman analysis of the "as-received" ZVI-T indicated the iron was mainly covered with the ferrous oxide (FeO) wustite, which is non-conducting and led to a low rate of PCP dechlorination. In contrast, the dominant oxide on the "as-received" ZVI-H was magnetite which is conducting and, compared to ZVI-T, the ZVI-H rate of PCP dechlorination was four times faster. Treating the ZVI-H sample with 1 N H2SO4 made small change to the composition of the oxide layers and also minute change to the rate of PCP dechlorination. However, treating the ZVI-T sample with H2SO4 led to the loss of wustite so that magnetite became the dominant oxide and the rate of PCP dechlorination increased to that of the ZVI-H material. In conclusion, this study clearly shows that iron oxide mineralogy can be a contributing factor to apparent inconsistencies in the literature related to ZVI performance towards dechlorination and the effect of acid treatment on ZVI reactivity.
Collapse
Affiliation(s)
- Buddhika Gunawardana
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand.
- Department of Civil Engineering, University of Moratuwa, Moratuwa, Sri Lanka.
| | - Peter J Swedlund
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand
| | - Michel K Nieuwoudt
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
22
|
Hudak PF. Remediating Contaminant Plumes in Groundwater with Shallow Excavations Containing Coarse Reactive Media. ENVIRONMENTAL MANAGEMENT 2018; 61:304-309. [PMID: 29282532 DOI: 10.1007/s00267-017-0977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
A groundwater flow and mass transport model tested the capability of shallow excavations filled with coarse, reactive media to remediate a hypothetical unconfined aquifer with a maximum saturated thickness of 5 m. Modeled as contaminant sinks, the rectangular excavations were 10 m downgradient of an initial contaminant plume originating from a source at the top of the aquifer. The initial plume was approximately 259 m long, 23 m wide, and 5 m thick, with a downgradient tip located approximately 100 m upgradient of the site boundary. The smallest trench capable of preventing offsite migration was 11 m long (measured perpendicular to groundwater flow), 4 m wide (measured parallel to groundwater flow), and 3 m deep. Results of this study suggest that shallow trenches filled with coarse filter media that partially penetrate unconfined aquifers may be a viable alternative for remediating contaminated groundwater at some sites.
Collapse
Affiliation(s)
- Paul F Hudak
- Department of Geography and the Environment, University of North Texas, 1155 Union Circle #305279, Denton, TX, 76203-5017, USA.
| |
Collapse
|
23
|
Andryushchenko ND, Safonov AV, Babich TL, Ivanov PV, Konevnik YV, Kondrashova AA, Proshin IM, Zakharova EV. Sorption characteristics of materials of the filtration barrier in upper aquifers contaminated with radionuclides. RADIOCHEMISTRY 2017. [DOI: 10.1134/s1066362217040154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Combination of zero-valent iron and anaerobic microorganisms immobilized in luffa sponge for degrading 1,1,1-trichloroethane and the relevant microbial community analysis. Appl Microbiol Biotechnol 2016; 101:783-796. [DOI: 10.1007/s00253-016-7933-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/07/2016] [Accepted: 10/12/2016] [Indexed: 11/25/2022]
|
25
|
Velimirovic M, Schmid D, Wagner S, Micić V, von der Kammer F, Hofmann T. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:713-23. [PMID: 26596889 DOI: 10.1016/j.scitotenv.2015.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 05/09/2023]
Abstract
Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a "green" agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation.
Collapse
Affiliation(s)
- Milica Velimirovic
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Doris Schmid
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Stephan Wagner
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Vesna Micić
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Frank von der Kammer
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Thilo Hofmann
- Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
26
|
Raman CD, Kanmani S. Textile dye degradation using nano zero valent iron: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 177:341-55. [PMID: 27115482 DOI: 10.1016/j.jenvman.2016.04.034] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 05/06/2023]
Abstract
Water soluble unfixed dyes and inorganic salts are the major pollutants in textile dyeing industry wastewater. Existing treatment methods fail to degrade textile dyes and have limitations too. The inadequate treatment of textile dyeing wastewater is a major concern when effluent is directly discharged into the nearby environment. Long term disposal threatens the environment, which needs reclamation. This article reviews the current knowledge of nano zero valent iron (nZVI) technique in the degradation of textile dyes. The application of nZVI on textile dye degradation is receiving great attention in the recent years because nZVI particles are highly reactive towards the pollutant, less toxic, and economical. The nZVI particles aggregate quickly with respect to time and the addition of supports such as resin, nickel, zinc, bentonite, biopolymer, kaolin, rectorite, nickel-montmorillonite, bamboo, cellulose, biochar, graphene, and clinoptilolite enhanced the stability of iron nanoparticles. Inclusion of supports may in turn introduce additional toxic pollutants, hence green supports are recommended. The majority of investigations concluded dye color removal as textile dye compound removal, which is not factual. Very few studies monitored the removal of total organic carbon and observed the products formed. The results revealed that partial mineralization of the textile dye compound was achieved. Instead of stand alone technique, nZVI can be integrated with other suitable technique to achieve complete degradation of textile dye and also to treat multiple pollutants in the real textile dyeing wastewater. It is highly recommended to perform more bench-scale and pilot-scale studies to apply this technique to the textile effluent contaminated sites.
Collapse
Affiliation(s)
- Chandra Devi Raman
- Centre for Environmental Studies, Anna University, Chennai, 600 025, Tamil Nadu, India
| | - S Kanmani
- Centre for Environmental Studies, Anna University, Chennai, 600 025, Tamil Nadu, India.
| |
Collapse
|
27
|
Mena E, Villaseñor J, Cañizares P, Rodrigo M. Influence of electric field on the remediation of polluted soil using a biobarrier assisted electro-bioremediation process. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.133] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Luo X, Liu H, Huang G, Li Y, Zhao Y, Li X. Remediation of arsenic-contaminated groundwater using media-injected permeable reactive barriers with a modified montmorillonite: sand tank studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:870-877. [PMID: 26347414 DOI: 10.1007/s11356-015-5254-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
A modified montmorillonite (MMT) was prepared using an acid activation-sodium activation-iron oxide coating method to improve the adsorption capacities of natural MMTs. For MMT, its interlamellar distance increased from 12.29 to 13.36 Å, and goethite (α-FeOOH) was intercalated into its clay layers. Two novel media-injected permeable reactive barrier (MI-PRB) configurations were proposed for removing arsenic from groundwater. Sand tank experiments were conducted to investigate the performance of the two MI-PRBs: Tank A was filled with quartz sand. Tank B was packed with quartz sand and zero-valent iron (ZVI) in series, and the MMT slurry was respectively injected into them to form reactive zones. The results showed that for tank A, total arsenic (TA) removal of 98.57% was attained within the first 60 mm and subsequently descended slowly to 88.84% at the outlet. For tank B, a similar spatial variation trend was observed in the quartz sand layer, and subsequently, TA removal increased to ≥99.80% in the ZVI layer. TA removal by MMT mainly depended on both surface adsorption and electrostatic adhesion. TA removal by ZVI mainly relied on coagulation/precipitation and adsorption during the iron corrosion. The two MI-PRBs are feasible alternatives for in situ remediation of groundwater with elevated As levels.
Collapse
Affiliation(s)
- Ximing Luo
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Haifei Liu
- CERI Eco Technology Co., Ltd., Beijing, 100053, China
| | - Guoxin Huang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing, 100068, China.
| | - Ye Li
- Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Yan Zhao
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing, 100068, China
| | - Xu Li
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing, 100068, China
| |
Collapse
|
29
|
Ramírez EM, Jiménez CS, Camacho JV, Rodrigo MA, Cañizares P. Feasibility Of Coupling Permeable Bio-Barriers And Electrokinetics For The Treatment Of Diesel Hydrocarbons Polluted Soils. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.02.201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Musmarra D, Di Natale M, Bortone I, Erto A, Ciarmiello M. Remediation of Thallium-contaminated Groundwater by Permeable Adsorptive Barrier. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proenv.2015.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Soto-Rios PC, Nakano K, Leon-Romero M, Aikawa Y, Arai S, Nishimura O. Differences in the removal mechanisms of Undaria pinnatifida and Phragmites australis as biomaterials for lead removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:1226-33. [PMID: 26398039 DOI: 10.2166/wst.2015.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study offers the opportunity to utilize Undaria pinnatifida and Phragmites australis to remove lead from water in permeable reactive barrier (PRB) technology. Its efficacy was tested using batch experiments and PRB column systems. From the batch experiment results, a higher adsorption capacity was observed for Undaria pinnatifida. Nevertheless, Phragmites australis in the column system efficiently removed lead and the breakthrough occurred at the same time for both biomaterials. To dissipate this difference, a sequential extraction for metal speciation analysis was used for both columns. The results have shown that each biomaterial has a dominant mechanism. Phragmites australis removed lead by physical adsorption, whereas Undaria pinnatifida showed a higher tendency to bind lead due to organic matter, primary and secondary minerals.
Collapse
Affiliation(s)
- Paula Cecilia Soto-Rios
- Ecological Engineering Laboratory, Graduate School of Engineering, Tohoku University, Tohoku 980-8579, Japan E-mail:
| | - Kazunori Nakano
- Ecological Engineering Laboratory, Faculty of Engineering, Nihon University, Nihon 963-8642, Japan
| | - Marco Leon-Romero
- Ecological Engineering Laboratory, Graduate School of Engineering, Tohoku University, Tohoku 980-8579, Japan E-mail:
| | - Yoshio Aikawa
- Ecological Engineering Laboratory, Graduate School of Engineering, Tohoku University, Tohoku 980-8579, Japan E-mail:
| | - Shigeyuki Arai
- Environmental Technology Research Center, Mitsubishi Materials Corporation, 37-02 Uguizuwa-nangoaramachi, Kurihara, Miyagi 989-5402, Japan
| | - Osamu Nishimura
- Ecological Engineering Laboratory, Graduate School of Engineering, Tohoku University, Tohoku 980-8579, Japan E-mail:
| |
Collapse
|
32
|
Obiri-Nyarko F, Grajales-Mesa SJ, Malina G. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. CHEMOSPHERE 2014; 111:243-59. [PMID: 24997925 DOI: 10.1016/j.chemosphere.2014.03.112] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/14/2014] [Accepted: 03/22/2014] [Indexed: 05/26/2023]
Abstract
Permeable reactive barriers (PRBs) are one of the innovative technologies widely accepted as an alternative to the 'pump and treat' (P&T) for sustainable in situ remediation of contaminated groundwater. The concept of the technology involves the emplacement of a permeable barrier containing reactive materials across the flow path of the contaminated groundwater to intercept and treat the contaminants as the plume flows through it under the influence of the natural hydraulic gradient. Since the invention of PRBs in the early 1990s, a variety of materials has been employed to remove contaminants including heavy metals, chlorinated solvents, aromatic hydrocarbons, and pesticides. Contaminant removal is usually accomplished via processes such as adsorption, precipitation, denitrification and biodegradation. Despite wide acknowledgment, there are still unresolved issues about long term-performance of PRBs, which have somewhat affected their acceptability and full-scale implementation. The current paper presents an overview of the PRB technology, which includes the state of art, the merits and limitations, the reactive media used so far, and the mechanisms employed to transform or immobilize contaminants. The paper also looks at the design, construction and the long-term performance of PRBs.
Collapse
Affiliation(s)
- Franklin Obiri-Nyarko
- Hydrogeotechnika Sp z oo, Department of Environmental Protection and Cartography, ul. Sciegiennego 262A, 25-112, Kielce, Poland
| | - S Johana Grajales-Mesa
- AGH University of Science and Technology, Department of Hydrogeology and Engineering Geology, Al. Mickiewicza 30, 30-059, Kraków, Poland.
| | - Grzegorz Malina
- AGH University of Science and Technology, Department of Hydrogeology and Engineering Geology, Al. Mickiewicza 30, 30-059, Kraków, Poland
| |
Collapse
|
33
|
Erto A, Bortone I, Di Nardo A, Di Natale M, Musmarra D. Permeable Adsorptive Barrier (PAB) for the remediation of groundwater simultaneously contaminated by some chlorinated organic compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 140:111-119. [PMID: 24747934 DOI: 10.1016/j.jenvman.2014.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
In this paper, a Permeable Reactive Barrier (PRB) made with activated carbon, namely a Permeable Adsorptive Barrier (PAB), is put forward as an effective technique for the remediation of aquifers simultaneously contaminated by some chlorinated organic compounds. A design procedure, based on a computer code and including different routines, is presented as a tool to accurately describe mass transport within the aquifer and adsorption/desorption phenomena occurring inside the barrier. The remediation of a contaminated aquifer near a solid waste landfill in the district of Napoli (Italy), where Tetrachloroethylene (PCE) and Trichloroethylene (TCE) are simultaneously present, is considered as a case study. A complete hydrological and geotechnical site characterization, as well as a number of dedicated adsorption laboratory tests for the determination of activated carbon PCE/TCE adsorption capacity in binary systems, are carried out to support the barrier design. By means of a series of numerical simulations it is possible to determine the optimal barrier location, orientation and dimensions. PABs appear to be an effective remediation tool for the in-situ treatment of an aquifer contaminated by PCE and TCE simultaneously, as the concentration of both compounds flowing out of the barrier is everywhere lower than the regulatory limits on groundwater quality.
Collapse
Affiliation(s)
- A Erto
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy.
| | - I Bortone
- Dipartimento di Ingegneria Civile, Design, Edilizia e Ambiente, Seconda Università degli Studi di Napoli, Via Roma 29, 81031 Aversa (CE), Italy
| | - A Di Nardo
- Dipartimento di Ingegneria Civile, Design, Edilizia e Ambiente, Seconda Università degli Studi di Napoli, Via Roma 29, 81031 Aversa (CE), Italy
| | - M Di Natale
- Dipartimento di Ingegneria Civile, Design, Edilizia e Ambiente, Seconda Università degli Studi di Napoli, Via Roma 29, 81031 Aversa (CE), Italy
| | - D Musmarra
- Dipartimento di Ingegneria Civile, Design, Edilizia e Ambiente, Seconda Università degli Studi di Napoli, Via Roma 29, 81031 Aversa (CE), Italy
| |
Collapse
|
34
|
Velimirovic M, Larsson PO, Simons Q, Bastiaens L. Impact of carbon, oxygen and sulfur content of microscale zerovalent iron particles on its reactivity towards chlorinated aliphatic hydrocarbons. CHEMOSPHERE 2013; 93:2040-2045. [PMID: 23962383 DOI: 10.1016/j.chemosphere.2013.07.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/10/2013] [Accepted: 07/13/2013] [Indexed: 06/02/2023]
Abstract
Zerovalent iron (ZVI) abiotically degrades several chlorinated aliphatic hydrocarbons (CAHs) via reductive dechlorination, which offers perspectives for in situ groundwater remediation applications. The difference in reactivity between ZVI particles is often linked with their specific surface area. However, other parameters may influence the reactivity as well. Earlier, we reported for a set of microscale zerovalent iron (mZVI) particles the disappearance kinetic of different CAHs which were collected under consistent experimental conditions. In the present study, these kinetic data were correlated with the carbon, oxygen and sulfur content of mZVI particles. It was confirmed that not only the specific surface area affects the disappearance kinetic of CAHs, but also the chemical composition of the mZVI particles. The chemical composition, in addition, influences CAHs removal mechanism inducing sorption onto mZVI particles instead of dechlorination. Generally, high disappearance kinetic of CAHs was observed for particles containing less oxygen. A high carbon content, on the other hand, induced nonreactive sorption of the contaminants on the mZVI particles. To obtain efficient remediation of CAHs by mZVI particles, this study suggested that the carbon and oxygen content should not exceed 0.5% and 1% respectively. Finally, the efficiency of the mZVI particles may be improved to some extent by enriching them with sulfur. However, the impact of sulfur content on the reactivity of mZVI particles is less pronounced than that of the carbon and oxygen content.
Collapse
Affiliation(s)
- Milica Velimirovic
- Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; University of Antwerp, Department of Bio-Engineering, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | | | | | | |
Collapse
|
35
|
Bortone I, Di Nardo A, Di Natale M, Erto A, Musmarra D, Santonastaso GF. Remediation of an aquifer polluted with dissolved tetrachloroethylene by an array of wells filled with activated carbon. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:914-20. [PMID: 23876256 DOI: 10.1016/j.jhazmat.2013.06.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 05/14/2023]
Abstract
In this work, an array of deep passive wells filled with activated carbon, namely a Discontinuous Permeable Adsorptive Barrier (PAB-D), has been proposed for the remediation of an aquifer contaminated by tetrachloroethylene (PCE). The dynamics of the aquifer in the particular PAB-D configuration chosen, including the contaminant transport in the aquifer and the adsorption onto the barrier material, has been accurately performed by means of a computer code which allows describing all the phenomena occurring in the aquifer, simultaneously. A PAB-D design procedure is presented and the main dimensions of the barrier (number and position of passive wells) have been evaluated. Numerical simulations have been carried out over a long time span to follow the contaminant plume and to assess the effectiveness of the remediation method proposed. The model results show that this PAB-D design allows for a complete remediation of the aquifer under a natural hydraulic gradient, the PCE concentrations flowing out of the barrier being always lower than the corresponding Italian regulation limit. Finally, the results have been compared with those obtained for the design of a more traditional continuous barrier (PAB-C) for the same remediation process.
Collapse
Affiliation(s)
- I Bortone
- Dipartimento di Ingegneria Civile, Design, Edilizia e Ambiente, Seconda Università di Napoli, via Roma, 29, 81031 Aversa (CE), Italy
| | | | | | | | | | | |
Collapse
|
36
|
Weber A, Ruhl AS, Amos RT. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling. JOURNAL OF CONTAMINANT HYDROLOGY 2013; 151:68-82. [PMID: 23743511 DOI: 10.1016/j.jconhyd.2013.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 04/09/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
The reactive and hydraulic efficacy of zero valent iron permeable reactive barriers (ZVI PRBs) is strongly affected by geochemical composition of the groundwater treated. An enhanced version of the geochemical simulation code MIN3P was applied to simulate dominating processes in chlorinated hydrocarbons (CHCs) treating ZVI PRBs including geochemical dependency of ZVI reactivity, gas phase formation and a basic formulation of degassing. Results of target oriented column experiments with distinct chemical conditions (carbonate, calcium, sulfate, CHCs) were simulated to parameterize the model. The simulations demonstrate the initial enhancement of anaerobic iron corrosion due to carbonate and long term inhibition by precipitates (chukanovite, siderite, iron sulfide). Calcium was shown to enhance long term corrosion due to competition for carbonate between siderite, chukanovite, and aragonite, with less inhibition of iron corrosion by the needle like aragonite crystals. Application of the parameterized model to a field site (Bernau, Germany) demonstrated that temporarily enhanced groundwater carbonate concentrations caused an increase in gas phase formation due to the acceleration of anaerobic iron corrosion.
Collapse
Affiliation(s)
- Anne Weber
- DGFZ e. V., Meraner Str. 10, 01217 Dresden, Germany.
| | | | | |
Collapse
|
37
|
Velimirovic M, Larsson PO, Simons Q, Bastiaens L. Reactivity screening of microscale zerovalent irons and iron sulfides towards different CAHs under standardized experimental conditions. JOURNAL OF HAZARDOUS MATERIALS 2013; 252-253:204-212. [PMID: 23510992 DOI: 10.1016/j.jhazmat.2013.02.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/05/2013] [Accepted: 02/25/2013] [Indexed: 06/01/2023]
Abstract
A standardized batch test procedure was developed and used to evaluate the reactivity of twelve newly designed microscale zerovalent iron (mZVI) particles and two biogenic iron sulfides towards a mixture of chlorinated aliphatic hydrocarbons (CAHs) and their breakdown products. For comparison, commercially available mZVIs, nanoscale zerovalent irons (nZVIs), iron sulfides (FeS) and granular zerovalent iron were also tested. Reactivity of the particles was based on observed (kobs) and mass normalized (kM) pseudo-first-order degradation rate constants, as well as specific surface area normalized reaction rate constants (kSA). Sorption characteristics of the particles were based on mass balance data. Among the new mZVIs, significant differences in reactivity were observed and the most reactive particles were identified. Based on kM data, nZVI degraded the examined contaminants one to two orders of magnitude faster than the mZVIs. kM values for biogenic iron sulfides were similar to the least reactive mZVIs. On the other hand, comparison of kSA data revealed that the reactivity of some newly designed mZVIs was similar to highly reactive nZVIs, and even up to one order of magnitude higher. kSA values for biogenic iron sulfides were one to two orders of magnitude lower than those reported for reactive mZVIs.
Collapse
Affiliation(s)
- Milica Velimirovic
- Flemish Institute for Technological Research, VITO, Boeretang 200, 2400 Mol, Belgium.
| | | | | | | |
Collapse
|
38
|
Aly MM, Hamza MF. A Review: Studies on Uranium Removal Using Different Techniques. Overview. J DISPER SCI TECHNOL 2013. [DOI: 10.1080/01932691.2012.657954] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Wang Y, Sikora S, Kim H, Boyer TH, Bonzongo JC, Townsend TG. Effects of solution chemistry on the removal reaction between calcium carbonate-based materials and Fe(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 443:717-724. [PMID: 23228717 DOI: 10.1016/j.scitotenv.2012.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 10/25/2012] [Accepted: 11/04/2012] [Indexed: 06/01/2023]
Abstract
Elevated iron concentrations have been observed in the groundwater underlying and surrounding several Florida landfill sites. An in situ groundwater remediation method for iron (present as soluble ferrous iron) using a permeable reactive barrier composed of calcium carbonate-based materials (CCBMs), such as limestone, was examined as a potentially effective and low-cost treatment technique. The effects of various environmental factors (i.e., pH, co-existing cations, and natural organic matter (NOM)) on the removal reaction were investigated using laboratory batch studies. Solution pH had a minor effect on iron removal, with superior iron removal observed in the highest pH solution (pH of 9). Sodium and calcium tended to impede the iron removal process by increasing the ionic strength of the solution. Manganese competes with iron ions at the adsorption sites on CCBMs; therefore, the presence of manganese prohibits iron removal and reduces removal effectiveness. NOM was found to decrease Fe(II) uptake by CCBMs and reduce the removal effectiveness by complexing Fe(II), most likely through the carboxyl group, thereby maintaining Fe(II) mobility in the aqueous phase.
Collapse
Affiliation(s)
- Yu Wang
- Department of Environmental Engineering Sciences, University of Florida, P. O. Box 116450, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
40
|
Velimirovic M, Chen H, Simons Q, Bastiaens L. Reactivity recovery of guar gum coupled mZVI by means of enzymatic breakdown and rinsing. JOURNAL OF CONTAMINANT HYDROLOGY 2012; 142-143:1-10. [PMID: 23047137 DOI: 10.1016/j.jconhyd.2012.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 06/01/2023]
Abstract
Microscale zerovalent iron (mZVI) reduces chlorinated aliphatic hydrocarbons (CAHs) to harmless compounds, but the sedimentation of the mZVI particles in the injection fluid limits the injectability of the particles during field applications. In this study, mZVI particles in suspension were stabilized by green polymer guar gum, which had a positive impact on mZVI stability, but decreased the reactivity of the particles towards CAHs by 1 to 8 times. Guar gum (GG) was found to adsorb onto the mZVI surface, inhibiting contact between the chlorinated compounds and the reactive iron surface. Indications were found for intermolecular hydrogen bonding between mZVI and the guar gum. Subsequent addition of commercially available enzymes resulted in the cleavage of the polysaccharide guar gum into lower molecular fragments, but not in improved reactivity. The reactivity recovery of guar gum coupled mZVI was recovered after intensive rinsing of the iron particles, removing the guar gum fragments from the particles. Overall, this study shows that CAHs can be treated efficiently by guar gum stabilized mZVI after reactivation by means of enzymatic breakdown and rinsing.
Collapse
Affiliation(s)
- Milica Velimirovic
- Flemish Institute for Technological Research, VITO, Boeretang 200, 2400 Mol, Belgium.
| | | | | | | |
Collapse
|
41
|
Shukla AK, Upadhyay SN, Dubey SK. Current trends in trichloroethylene biodegradation: a review. Crit Rev Biotechnol 2012; 34:101-14. [PMID: 23057686 DOI: 10.3109/07388551.2012.727080] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Over the past few years biodegradation of trichloroethylene (TCE) using different microorganisms has been investigated by several researchers. In this review article, an attempt has been made to present a critical summary of the recent results related to two major processes--reductive dechlorination and aerobic co-metabolism used for TCE biodegradation. It has been shown that mainly Clostridium sp. DC-1, KYT-1, Dehalobacter, Dehalococcoides, Desulfuromonas, Desulfitobacterium, Propionibacterium sp. HK-1, and Sulfurospirillum bacterial communities are responsible for the reductive dechlorination of TCE. Efficacy of bacterial communities like Nitrosomonas, Pseudomonas, Rhodococcus, and Xanthobacter sp. etc. for TCE biodegradation under aerobic conditions has also been examined. Mixed cultures of diazotrophs and methanotrophs have been used for TCE degradation in batch and continuous cultures (biofilter) under aerobic conditions. In addition, some fungi (Trametes versicolor, Phanerochaete chrysosporium ME-446) and Actinomycetes have also been used for aerobic biodegradation of TCE. The available information on kinetics of biofiltration of TCE and its degradation end-products such as CO2 are discussed along with the available results on the diversity of bacterial community obtained using molecular biological approaches. It has emerged that there is a need to use metabolic engineering and molecular biological tools more intensively to improve the robustness of TCE degrading microbial species and assess their diversity.
Collapse
Affiliation(s)
- Awadhesh Kumar Shukla
- Department of Botany, Faculty of Science, Banaras Hindu University , Varanasi , India and
| | | | | |
Collapse
|
42
|
Rusevova K, Kopinke FD, Georgi A. Stabilization of potassium permanganate particles with manganese dioxide. CHEMOSPHERE 2012; 86:783-788. [PMID: 22130122 DOI: 10.1016/j.chemosphere.2011.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 10/27/2011] [Accepted: 11/02/2011] [Indexed: 05/31/2023]
Abstract
A new potassium permanganate reagent with slow-release properties was designed and tested for possible application in in situ chemical oxidation. For this purpose, MnO(2)-coated KMnO(4) particles (MCP) were prepared by partial reduction of solid KMnO(4) using the acid-catalyzed reaction with n-propanol or the comproportionation of Mn(VII) and Mn(II) in n-propanol as reaction medium. Column tests showed that, for MCP with a residual KMnO(4) fraction of 70wt%, the duration of permanganate release under flow-through conditions was prolonged by a factor of 10 compared to untreated KMnO(4). While KMnO(4) is too soluble to be used in reactive barriers, MCP could be introduced into the aquifer by filling of trenches or boreholes; this would allow a prolonged passive dosing of permanganate into the flowing groundwater. In addition, experiments were conducted in order to determine the oxidation capability of native KMnO(4) particles and MCP in CH(2)Cl(2), a representative non-polar non-aqueous phase liquid (NAPL). It may be possible to utilize the significantly higher reactivity of MCP under these conditions for the design of slow-release permanganate particles for NAPL source treatment.
Collapse
Affiliation(s)
- Klara Rusevova
- UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Engineering, Permoserstrasse 15, Leipzig, Germany
| | | | | |
Collapse
|
43
|
Oliveira PEF, Oliveira LD, Ardisson JD, Lago RM. Potential of modified iron-rich foundry waste for environmental applications: Fenton reaction and Cr(VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2011; 194:393-398. [PMID: 21890267 DOI: 10.1016/j.jhazmat.2011.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
A magnetic fraction (15%) from a waste of foundry sand (WFS), composed of sand, carbon, bentonite clay and iron (10%) was modified by thermal treatment at 400, 600 and 800°C under inert atmosphere. Mössbauer analyses showed that the thermal treatment increased the amount of Fe(3)O(4) from 25 to 55% by reduction of Fe(2)O(3) and highly dispersed Fe(3+) by the carbon present in the waste. The Fe(3)O(4) caused a significant increase on the activity of two important reactions with application in environmental remediation: the Fenton oxidation of indigo carmine dye with H(2)O(2) and the reduction of Cr(VI) to Cr(III). The magnetic fraction of WFS was also mixed with hematite (Fe(2)O(3)) and thermally treated at 400, 600 and 800°C. This treatment produced large amounts of surface Fe(3)O(4) and increased substantially the rate of Fenton reaction as well as Cr(VI) reduction. This reactivity combined with the presence of carbon (an adsorbent for organic contaminants), bentonite clay (an adsorbent for metallic contaminants) and the granulometry/packing/hydrodynamic features make WFS a promising material for use in reactive permeable barriers.
Collapse
Affiliation(s)
- Patrícia E F Oliveira
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | | | | |
Collapse
|
44
|
Liu H, Zhang L, Deng H, Liu N, Liu C. Microbiological characteristics of multi-media PRB reactor in the bioremediation of groundwater contaminated by petroleum hydrocarbons. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 181:43-49. [PMID: 21152971 DOI: 10.1007/s10661-010-1811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 11/22/2010] [Indexed: 05/30/2023]
Abstract
A multi-media bio-PRB reactor was designed to treat groundwater contaminated with petroleum hydrocarbons. After a 208-day bioremediation, combined with the total petroleum hydrocarbons content in the groundwater flowed through the reactor, microbiological characteristics of the PRB reactor including microbes immobilized and its dehydrogenase activity were investigated. TPH was significantly reduced by as much as 65% in the back of the second media layer, whereas in the third layer, the TPH content reached lower than 1 mg l⁻¹. For microbes immobilized on the media, the variations with depth in different media were significantly the same and the regularity was obvious in the forepart of the media, which increased with depth at first and then reduced gradually, while in the back-end, the microbes almost did not have any variations with depth but decreased with the distance. The dehydrogenase activity varied from 2.98 to 16.16 mg TF L⁻¹ h⁻¹ and its distribution illustrated a similar trend with numbers of microbial cell, therefore, the noticeable correlation was found between them.
Collapse
Affiliation(s)
- Hong Liu
- College of Environment and Resources, Jilin University, Changchun, Jilin, 130026, People's Republic of China.
| | | | | | | | | |
Collapse
|
45
|
Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B. Remediation technologies for heavy metal contaminated groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2011; 92:2355-88. [PMID: 21708421 DOI: 10.1016/j.jenvman.2011.06.009] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/17/2011] [Accepted: 06/03/2011] [Indexed: 05/14/2023]
Abstract
The contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes. Comparison tables have been provided at the end of each process for a better understanding of each category. Selection of a suitable technology for contamination remediation at a particular site is one of the most challenging job due to extremely complex soil chemistry and aquifer characteristics and no thumb-rule can be suggested regarding this issue. In the past decade, iron based technologies, microbial remediation, biological sulphate reduction and various adsorbents played versatile and efficient remediation roles. Keeping the sustainability issues and environmental ethics in mind, the technologies encompassing natural chemistry, bioremediation and biosorption are recommended to be adopted in appropriate cases. In many places, two or more techniques can work synergistically for better results. Processes such as chelate extraction and chemical soil washings are advisable only for recovery of valuable metals in highly contaminated industrial sites depending on economical feasibility.
Collapse
Affiliation(s)
- M A Hashim
- Department of Chemical Engineering, University of Malaya, Pantai Valley, 50603 Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
46
|
Do SH, Kwon YJ, Kong SH. Feasibility study on an oxidant-injected permeable reactive barrier to treat BTEX contamination: adsorptive and catalytic characteristics of waste-reclaimed adsorbent. JOURNAL OF HAZARDOUS MATERIALS 2011; 191:19-25. [PMID: 21514045 DOI: 10.1016/j.jhazmat.2011.03.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/18/2011] [Accepted: 03/29/2011] [Indexed: 05/16/2023]
Abstract
The adsorptive and catalytic characteristics of waste-reclaimed adsorbent (WR), which is a calcined mixture of bottom-ash and dredged-soil, was investigated for its application to treating BTEX contamination. BTEX adsorption in WR was 54%, 64%, 62%, and 65%, respectively, for a 72 h reaction time. Moreover, the catalytic characteristics of WR were observed when three types of oxidation systems (i.e., H(2)O(2), persulfate (PS), and H(2)O(2)/Fe(III)/oxalate) were tested, and these catalytic roles of WR could be due to iron oxide on its surface. In PS/WR system, large amounts of metal ions from WR were released because of large drops of solution pH, and the surface area of WR was also greatly reduced. Moreover, the BTEX that was removed per consumed oxidant (ΔC(rem)/ΔOx) increased with increasing PS. In H(2)O(2)/Fe(III)/oxalate with WR system, the highest BTEX degradation rate constants (k(deg)) were calculated as 0.338, 0.365, 0.500 and 0.716 h(-1), respectively, when 500 mM of H(2)O(2) was used, and the sorbed BTEX on the surface of WR was also degraded, which suggests the regeneration of WR. Therefore, the oxidant-injected permeable reactive barrier filled in WR could be an alternative to treating BTEX with both adsorption and catalytic degradation.
Collapse
Affiliation(s)
- Si-Hyun Do
- Department of Chemical Engineering, Hanyang University, Seoul, Republic of Korea
| | | | | |
Collapse
|
47
|
Kauspediene D, Kazlauskiene E, Gefeniene A, Binkiene R. Comparison of the efficiency of activated carbon and neutral polymeric adsorbent in removal of chromium complex dye from aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2010; 179:933-939. [PMID: 20403662 DOI: 10.1016/j.jhazmat.2010.03.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/22/2010] [Accepted: 03/23/2010] [Indexed: 05/29/2023]
Abstract
The removal efficiency of chromium complex dye Lanasyn Navy M-DNL from aqueous solution using the activated carbon (AC) and the neutral polymeric adsorbent Macronet MN 200 (MN 200) has been investigated under various experimental conditions: initial dye concentration, pH and temperature. The effectiveness of MN 200 for the dye removal was found relatively higher than that of AC in both acidic and neutral solutions. Two theoretical models (pseudo-second-order-reaction and intraparticle diffusion) were used to describe the sorption kinetics, and to determine the constants of sorption rate (k(2)), intraparticle (k(i)) and film diffusion (k(s)). The both sorption systems dye-AC and dye-MN 200 follow the pseudo-second-order model with a higher k(2) value for dye-MN 200 in acidic media at 20 degrees C when compared with that of the dye-AC. With increase in the solution temperature from 20 to 40 degrees C the k(2) value for dye-AC indicate an increase in acidic media and decrease in alkaline media; whereas k(2) values for dye-MN 200 decrease in both acidic and neutral media. The rate of dye adsorption on both adsorbents is dependent on intraparticle and film diffusion proceeding simultaneously. The boundary layer effect is more pronounced in acidic solutions and with increase in temperature.
Collapse
Affiliation(s)
- D Kauspediene
- Institute of Chemistry, A. Gostauto 9, 01108 Vilnius, Lithuania.
| | | | | | | |
Collapse
|
48
|
Yeh CH, Lin CW, Wu CH. A permeable reactive barrier for the bioremediation of BTEX-contaminated groundwater: Microbial community distribution and removal efficiencies. JOURNAL OF HAZARDOUS MATERIALS 2010; 178:74-80. [PMID: 20122795 DOI: 10.1016/j.jhazmat.2010.01.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 01/03/2010] [Accepted: 01/09/2010] [Indexed: 05/22/2023]
Abstract
This study was conducted with column experiments, batch experiments, and bench-scale permeable reactive barrier (PRB) for monitoring the PRB in the relation between BTEX (benzene, toluene, ethylbenzene, and p-xylene) decomposition efficiency and the distribution of a microbial community. To obtain the greatest amount of dissolved oxygen from oxygen-releasing compounds (ORCs), 20-d column tests were conducted, the results of which showed that the highest average amount of dissolved oxygen (DO) of 5.08 mg l(-1) (0.25 mg-O(2)d(-1)g(-1)-ORC) was achieved at a 40% level of CaO(2). In the batch experiments, the highest concentrations of benzene and toluene in which these compounds could be completely degraded were assumed to be 80 mg l(-1). Long-term monitoring for a PRB indicated that ORCs made with the oxygen-releasing rate of 0.25 mg-O(2)d(-1)g(-1)-ORC were applicable for use in the PRB because these ORCs have a long-term effect and adequately meet the oxygen demand of bacteria. The results from the DGGE of 16S rDNAs and real-time PCR of catechol 2,3-dioxygenase gene revealed the harmful effects of shock-loading on the microbial community and reduction in the removal efficiencies of BTEX. However, the efficiencies in the BTEX decomposition were improved and the microbial activities could be recovered thereafter as evidenced by the DGGE results.
Collapse
Affiliation(s)
- Chi-Hui Yeh
- Department of Environmental Engineering, Dayeh University, 168 University Rd., Dacun, Changhua, 51591, Taiwan, ROC
| | | | | |
Collapse
|
49
|
Lee SH, Jo HY, Yun ST, Lee YJ. Evaluation of factors affecting performance of a zeolitic rock barrier to remove zinc from water. JOURNAL OF HAZARDOUS MATERIALS 2010; 175:224-234. [PMID: 19880248 DOI: 10.1016/j.jhazmat.2009.09.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/03/2009] [Accepted: 09/30/2009] [Indexed: 05/28/2023]
Abstract
This study examined the factors affecting the performance of zeolitic rocks as reactive media in a permeable reactive barrier (PRB) used to remediate groundwater contaminated with Zn. Serial batch kinetic and sorption tests were conducted on zeolitic rock samples under a variety of conditions (i.e., reaction time, pH, initial Zn concentration, and particle size) using Zn(NO(3))(2).6H(2)O solutions. Serial column tests were also conducted on zeolitic rock samples at various flow rates. The removal of Zn increased approximately from 20-60 to 70-100% with increasing pH from 2 to 4 and decreasing initial Zn concentration from 434 to 5mg/L. Zn removal was not affected by the particle size, regardless of the zeolitic rock samples used in this study. The Zn removal increased approximately from 20-70 to 60-100% with increasing the cation exchange capacity (CEC) from 124.9 to 178.5meq/100g and increasing zeolite (i.e., clinoptilonite and mordenite) and montmorillonite contents from 53.7 to 73.2%. The results from the column and batch tests were comparable. Increasing the flow rate caused the earlier breakthrough of Zn (sorbing cation) and a rapid decrease in the concentration of Na, Ca, and Mg (desorbing cations). The hydraulic conductivities of the samples were unaffected by the particle size and mineral components.
Collapse
Affiliation(s)
- Se-Hoon Lee
- Department of Earth and Environmental Sciences, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea
| | | | | | | |
Collapse
|
50
|
Cruz Viggi C, Pagnanelli F, Cibati A, Uccelletti D, Palleschi C, Toro L. Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors. WATER RESEARCH 2010; 44:151-158. [PMID: 19804893 DOI: 10.1016/j.watres.2009.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 05/28/2023]
Abstract
In this work a batch-optimised mixture (w/w %: 6% leaves, 9% compost, 3% Fe(0), 30% silica sand, 30% perlite, 22% limestone) was investigated in a continuous fixed bed column reactor for the treatment of synthetic acid-mine drainage (AMD). A column reactor was inoculated with sulphate-reducing bacteria and fed with a solution containing sulphate and heavy metals (As(V), Cd, Cr(VI), Cu and Zn). At steady state, sulphate abatement was 50+/-10%, while metals were totally removed. A degradation rate constant (k) of 0.015+/-0.001h(-1) for sulphate removal was determined from column data by assuming a first order degradation rate. Reduction of AMD toxicity was assessed by using the nematode Caenorhabditis elegans as a test organism. A lethality assay was performed with the toxicants before and after the treatment, showing that only 5% of the animals were still alive after 48h in presence of the contaminants, while the percentage increased to 73% when the nematodes were exposed to the solution eluted from the column.
Collapse
Affiliation(s)
- C Cruz Viggi
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | |
Collapse
|