1
|
Beard DJ, Brown LS, Morris GP, Couch Y, Adriaanse BA, Karali CS, Schneider AM, Howells DW, Redzic ZB, Sutherland BA, Buchan AM. Rapamycin Treatment Reduces Brain Pericyte Constriction in Ischemic Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01298-x. [PMID: 39331260 DOI: 10.1007/s12975-024-01298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
The contraction and subsequent death of brain pericytes may play a role in microvascular no-reflow following the reopening of an occluded artery during ischemic stroke. Mammalian target of rapamycin (mTOR) inhibition has been shown to reduce motility/contractility of various cancer cell lines and reduce neuronal cell death in stroke. However, the effects of mTOR inhibition on brain pericyte contraction and death during ischemia have not yet been investigated. Cultured pericytes exposed to simulated ischemia for 12 h in vitro contracted after less than 1 h, which was about 7 h prior to cell death. Rapamycin significantly reduced the rate of pericyte contraction during ischemia; however, it did not have a significant effect on pericyte viability at any time point. Rapamycin appeared to reduce pericyte contraction through a mechanism that is independent of changes in intracellular calcium. Using a mouse model of middle cerebral artery occlusion, we showed that rapamycin significantly increased the diameter of capillaries underneath pericytes and increased the number of open capillaries 30 min following recanalisation. Our findings suggest that rapamycin may be a useful adjuvant therapeutic to reduce pericyte contraction and improve cerebral reperfusion post-stroke.
Collapse
Affiliation(s)
- Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
| | - Lachlan S Brown
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Gary P Morris
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bryan A Adriaanse
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Anna M Schneider
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - David W Howells
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Zoran B Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia.
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Phospholipase D1 Attenuation Therapeutics Promotes Resilience against Synaptotoxicity in 12-Month-Old 3xTg-AD Mouse Model of Progressive Neurodegeneration. Int J Mol Sci 2023; 24:ijms24043372. [PMID: 36834781 PMCID: PMC9967100 DOI: 10.3390/ijms24043372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Abrogating synaptotoxicity in age-related neurodegenerative disorders is an extremely promising area of research with significant neurotherapeutic implications in tauopathies including Alzheimer's disease (AD). Our studies using human clinical samples and mouse models demonstrated that aberrantly elevated phospholipase D1 (PLD1) is associated with amyloid beta (Aβ) and tau-driven synaptic dysfunction and underlying memory deficits. While knocking out the lipolytic PLD1 gene is not detrimental to survival across species, elevated expression is implicated in cancer, cardiovascular conditions and neuropathologies, leading to the successful development of well-tolerated mammalian PLD isoform-specific small molecule inhibitors. Here, we address the importance of PLD1 attenuation, achieved using repeated 1 mg/kg of VU0155069 (VU01) intraperitoneally every alternate day for a month in 3xTg-AD mice beginning only from ~11 months of age (with greater influence of tau-driven insults) compared to age-matched vehicle (0.9% saline)-injected siblings. A multimodal approach involving behavior, electrophysiology and biochemistry corroborate the impact of this pre-clinical therapeutic intervention. VU01 proved efficacious in preventing in later stage AD-like cognitive decline affecting perirhinal cortex-, hippocampal- and amygdala-dependent behaviors. Glutamate-dependent HFS-LTP and LFS-LTD improved. Dendritic spine morphology showed the preservation of mushroom and filamentous spine characteristics. Differential PLD1 immunofluorescence and co-localization with Aβ were noted.
Collapse
|
3
|
Kumar A. Calcium Signaling During Brain Aging and Its Influence on the Hippocampal Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:985-1012. [PMID: 31646542 DOI: 10.1007/978-3-030-12457-1_39] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Calcium (Ca2+) ions are highly versatile intracellular signaling molecules and are universal second messenger for regulating a variety of cellular and physiological functions including synaptic plasticity. Ca2+ homeostasis in the central nervous system endures subtle dysregulation with advancing age. Research has provided abundant evidence that brain aging is associated with altered neuronal Ca2+ regulation and synaptic plasticity mechanisms. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during aging. The current chapter takes a specific perspective, assessing various Ca2+ sources and the influence of aging on Ca2+ sources and synaptic plasticity in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in neuronal Ca2+ signaling and synaptic plasticity mechanisms will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment associated with aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Boczek T, Radzik T, Ferenc B, Zylinska L. The Puzzling Role of Neuron-Specific PMCA Isoforms in the Aging Process. Int J Mol Sci 2019; 20:ijms20246338. [PMID: 31888192 PMCID: PMC6941135 DOI: 10.3390/ijms20246338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 01/02/2023] Open
Abstract
The aging process is a physiological phenomenon associated with progressive changes in metabolism, genes expression, and cellular resistance to stress. In neurons, one of the hallmarks of senescence is a disturbance of calcium homeostasis that may have far-reaching detrimental consequences on neuronal physiology and function. Among several proteins involved in calcium handling, plasma membrane Ca2+-ATPase (PMCA) is the most sensitive calcium detector controlling calcium homeostasis. PMCA exists in four main isoforms and PMCA2 and PMCA3 are highly expressed in the brain. The overall effects of impaired calcium extrusion due to age-dependent decline of PMCA function seem to accumulate with age, increasing the susceptibility to neurotoxic insults. To analyze the PMCA role in neuronal cells, we have developed stable transfected differentiated PC12 lines with down-regulated PMCA2 or PMCA3 isoforms to mimic age-related changes. The resting Ca2+ increased in both PMCA-deficient lines affecting the expression of several Ca2+-associated proteins, i.e., sarco/endoplasmic Ca2+-ATPase (SERCA), calmodulin, calcineurin, GAP43, CCR5, IP3Rs, and certain types of voltage-gated Ca2+ channels (VGCCs). Functional studies also demonstrated profound changes in intracellular pH regulation and mitochondrial metabolism. Moreover, modification of PMCAs membrane composition triggered some adaptive processes to counterbalance calcium overload, but the reduction of PMCA2 appeared to be more detrimental to the cells than PMCA3.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Tomasz Radzik
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University, 92-215 Lodz, Poland; (T.B.); (T.R.); (B.F.)
- Correspondence: ; Tel.: +48-42-272-5680
| |
Collapse
|
5
|
Tarasova EO, Gaydukov AE, Balezina OP. Calcineurin and Its Role in Synaptic Transmission. BIOCHEMISTRY (MOSCOW) 2018; 83:674-689. [PMID: 30195324 DOI: 10.1134/s0006297918060056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calcineurin (CaN) is a serine/threonine phosphatase widely expressed in different cell types and structures including neurons and synapses. The most studied role of CaN is its involvement in the functioning of postsynaptic structures of central synapses. The role of CaN in the presynaptic structures of central and peripheral synapses is less understood, although it has generated a considerable interest and is a subject of a growing number of studies. The regulatory role of CaN in synaptic vesicle endocytosis in the synapse terminals is actively studied. In recent years, new targets of CaN have been identified and its role in the regulation of enzymes and neurotransmitter secretion in peripheral neuromuscular junctions has been revealed. CaN is the only phosphatase that requires calcium and calmodulin for activation. In this review, we present details of CaN molecular structure and give a detailed description of possible mechanisms of CaN activation involving calcium, enzymes, and endogenous and exogenous inhibitors. Known and newly discovered CaN targets at pre- and postsynaptic levels are described. CaN activity in synaptic structures is discussed in terms of functional involvement of this phosphatase in synaptic transmission and neurotransmitter release.
Collapse
Affiliation(s)
- E O Tarasova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - A E Gaydukov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia. .,Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - O P Balezina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| |
Collapse
|
6
|
Altered function of neuronal L-type calcium channels in ageing and neuroinflammation: Implications in age-related synaptic dysfunction and cognitive decline. Ageing Res Rev 2018; 42:86-99. [PMID: 29339150 DOI: 10.1016/j.arr.2018.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/29/2022]
Abstract
The rapid developments in science have led to an increase in human life expectancy and thus, ageing and age-related disorders/diseases have become one of the greatest concerns in the 21st century. Cognitive abilities tend to decline as we get older. This age-related cognitive decline is mainly attributed to aberrant changes in synaptic plasticity and neuronal connections. Recent studies show that alterations in Ca2+ homeostasis underlie the increased vulnerability of neurons to age-related processes like cognitive decline and synaptic dysfunctions. Dysregulation of Ca2+ can lead to dramatic changes in neuronal functions. We discuss in this review, the recent advances on the potential role of dysregulated Ca2+ homeostasis through altered function of L-type voltage gated Ca2+ channels (LTCC) in ageing, with an emphasis on cognitive decline. This review therefore focuses on age-related changes mainly in the hippocampus, and with mention of other brain areas, that are important for learning and memory. This review also highlights age-related memory deficits via synaptic alterations and neuroinflammation. An understanding of these mechanisms will help us formulate strategies to reverse or ameliorate age-related disorders like cognitive decline.
Collapse
|
7
|
Ingwersen J, De Santi L, Wingerath B, Graf J, Koop B, Schneider R, Hecker C, Schröter F, Bayer M, Engelke AD, Dietrich M, Albrecht P, Hartung HP, Annunziata P, Aktas O, Prozorovski T. Nimodipine confers clinical improvement in two models of experimental autoimmune encephalomyelitis. J Neurochem 2018; 146:86-98. [PMID: 29473171 DOI: 10.1111/jnc.14324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis is characterised by inflammatory neurodegeneration, with axonal injury and neuronal cell death occurring in parallel to demyelination. Regarding the molecular mechanisms responsible for demyelination and axonopathy, energy failure, aberrant expression of ion channels and excitotoxicity have been suggested to lead to Ca2+ overload and subsequent activation of calcium-dependent damage pathways. Thus, the inhibition of Ca2+ influx by pharmacological modulation of Ca2+ channels may represent a novel neuroprotective strategy in the treatment of secondary axonopathy. We therefore investigated the effects of the L-type voltage-gated calcium channel blocker nimodipine in two different models of mouse experimental autoimmune encephalomyelitis (EAE), an established experimental paradigm for multiple sclerosis. We show that preventive application of nimodipine (10 mg/kg per day) starting on the day of induction had ameliorating effects on EAE in SJL/J mice immunised with encephalitic myelin peptide PLP139-151 , specifically in late-stage disease. Furthermore, supporting these data, administration of nimodipine to MOG35-55 -immunised C57BL/6 mice starting at the peak of pre-established disease, also led to a significant decrease in disease score, indicating a protective effect on secondary CNS damage. Histological analysis confirmed that nimodipine attenuated demyelination, axonal loss and pathological axonal β-amyloid precursor protein accumulation in the cerebellum and spinal cord in the chronic phase of disease. Of note, we observed no effects of nimodipine on the peripheral immune response in EAE mice with regard to distribution, antigen-specific proliferation or activation patterns of lymphocytes. Taken together, our data suggest a CNS-specific effect of L-type voltage-gated calcium channel blockade to inflammation-induced neurodegeneration.
Collapse
Affiliation(s)
- Jens Ingwersen
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Lorenzo De Santi
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Britta Wingerath
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jonas Graf
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Barbara Koop
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Reiner Schneider
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christina Hecker
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Friederike Schröter
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Mary Bayer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anna Dorothee Engelke
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Dietrich
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Pasquale Annunziata
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tim Prozorovski
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
8
|
Lovell MA, Lynn BC, Fister S, Bradley-Whitman M, Murphy MP, Beckett TL, Norris CM. A Novel Small Molecule Modulator of Amyloid Pathology. J Alzheimers Dis 2018; 53:273-87. [PMID: 27163808 DOI: 10.3233/jad-151160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because traditional approaches to drug development for Alzheimer's disease are becoming increasingly expensive and in many cases disappointingly unsuccessful, alternative approaches are required to shift the paradigm. Following leads from investigations of dihydropyridine calcium channel blockers, we observed unique properties from a class of functionalized naphthyridines and sought to develop these as novel therapeutics that minimize amyloid pathology without the adverse effects associated with current therapeutics. Our data show methyl 2,4-dimethyl-5-oxo-5,6-dihydrobenzo[c][2,7]naphthyridine-1-carboxylate (BNC-1) significantly decreases amyloid burden in a well-established mouse model of amyloid pathology through a unique mechanism mediated by Elk-1, a transcriptional repressor of presenilin-1. Additionally, BNC-1 treatment leads to increased levels of synaptophysin and synapsin, markers of synaptic integrity, but does not adversely impact presenilin-2 or processing of Notch-1, thus avoiding negative off target effects associated with pan-gamma secretase inhibition. Overall, our data show BNC-1 significantly decreases amyloid burden and improves markers of synaptic integrity in a well-established mouse model of amyloid deposition by promoting phosphorylation and activation of Elk-1, a transcriptional repressor of presenilin-1 but not presenilin-2. These data suggest BNC-1 might be a novel, disease-modifying therapeutic that will alter the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Mark A Lovell
- Department of Chemistry, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Bert C Lynn
- Department of Chemistry, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Universisty of Kentucky Mass Spectrometry Center, Lexington, KY, USA
| | - Shuling Fister
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - M Paul Murphy
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Tina L Beckett
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Pharmacology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
9
|
Boczek T, Lisek M, Ferenc B, Zylinska L. Cross talk among PMCA, calcineurin and NFAT transcription factors in control of calmodulin gene expression in differentiating PC12 cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:502-515. [PMID: 28153703 DOI: 10.1016/j.bbagrm.2017.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/16/2017] [Accepted: 01/27/2017] [Indexed: 11/19/2022]
Abstract
Brain aging is characterized by progressive loss of plasma membrane calcium pump (PMCA) and its activator - calmodulin (CaM), but the mechanism of this phenomenon remains unresolved. CaM encoded by three genes Calm1, Calm2, Calm3, works to translate Ca2+ signal into changes in frequently opposite cellular activities. This unique function allows CaM to affect gene expression via stimulation of calcineurin (CaN) and its downstream target - nuclear factor of activated T-cells (NFAT) and to terminate Ca2+ signal by stimulation of its extrusion. PMCA, which exists in four isoforms PMCA1-4, may in turn shape the pattern of Ca2+ transients and control CaN activity by its direct binding. Therefore, the interplay between PMCA, CaM and CaN/NFAT is highly plausible. To verify that, we used differentiated PC12 cells with reduced expression of PMCA2 or PMCA3 to mimic the potential changes in aged brain. Manipulation in PMCAs level decreased CaM protein in PMCA2 or PMCA3-reduced lines that was accompanied by down-regulation of Calm1 and Calm2 in both lines, but Calm3 only in PMCA2-reduced cells. Further studies showed substantially higher NFATc2 nuclear accumulation and increased NFAT transcriptional activity. Blocking of CaN/NFAT signalling resulted in almost full CaM recovery, mainly due to up-regulation of Calm2 and Calm3 genes. Moreover, higher occupancy of Calm2 and Calm3 promoters by NFATc2 and increased expression of these genes in response to NFATc2 silencing were demonstrated in PMCA2 and PMCA3-reduced lines. Our results indicate that decrease in CaM level in response to PMCAs downregulation can be driven by CaN/NFAT pathway.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University, Mazowiecka 6/8 Str., 92-215 Lodz, Poland; Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Medical University, Mazowiecka 6/8 Str., 92-215 Lodz, Poland
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Medical University, Mazowiecka 6/8 Str., 92-215 Lodz, Poland
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University, Mazowiecka 6/8 Str., 92-215 Lodz, Poland
| |
Collapse
|
10
|
Simonyan KV, Chavushyan VA. Protective effects of hydroponic Teucrium polium on hippocampal neurodegeneration in ovariectomized rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:415. [PMID: 27776515 PMCID: PMC5078961 DOI: 10.1186/s12906-016-1407-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/19/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND The hippocampus is a target of ovarian hormones, and is necessary for memory. Ovarian hormone loss is associated with a progressive reduction in synaptic strength and dendritic spine. Teucrium polium has beneficial effects on learning and memory. However, it remains unknown whether Teucrium polium ameliorates hippocampal cells spike activity and morphological impairments induced by estrogen deficiency. METHODS In the present study, we investigated the effects of hydroponic Teucrium polium on hippocampal neuronal activity and morpho-histochemistry of bilateral ovariectomized (OVX) rats. Tetanic potentiation or depression with posttetanic potentiation and depression was recorded extracellularly in response to ipsilateral entorhinal cortex high frequency stimulation. In morpho-histochemical study revealing of the activity of Ca2+-dependent acid phosphatase was observed. In all groups (sham-operated, sham + Teucrium polium, OVX, OVX + Teucrium polium), most recorded hippocampal neurons at HFS of entorhinal cortex showed TD-PTP responses. RESULTS After 8 weeks in OVX group an anomalous evoked spike activity was detected (a high percentage of typical areactive units). In OVX + Teucrium polium group a synaptic activity was revealed, indicating prevention OVX-induced degenerative alterations: balance of types of responses was close to norm and areactive units were not recorded. All recorded neurons in sham + Teucrium polium group were characterized by the highest mean frequency background and poststimulus activity. In OVX+ Teucrium polium group the hippocampal cells had recovered their size and shape in CA1 and CA3 field compared with OVX group where hippocampal cells were characterized by a sharp drop in phosphatase activity and there was a complete lack of processes reaction. CONCLUSION Thus, Teucrium polium reduced OVX-induce neurodegenerative alterations in entorhinal cortex-hippocamp circuitry and facilitated neuronal survival by modulating activity of neurotransmitters and network plasticity.
Collapse
Affiliation(s)
- K. V. Simonyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, Yerevan, 0028 Armenia
| | - V. A. Chavushyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, Yerevan, 0028 Armenia
| |
Collapse
|
11
|
Echeverria V, Yarkov A, Aliev G. Positive modulators of the α7 nicotinic receptor against neuroinflammation and cognitive impairment in Alzheimer's disease. Prog Neurobiol 2016; 144:142-57. [DOI: 10.1016/j.pneurobio.2016.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/07/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023]
|
12
|
Abstract
This study documented the outcomes of 108 HIV-positive persons receiving vocational rehabilitation services. Over a 12-month follow-up, participants reported significantly decreased odds of any unstable housing [Adjusted Odds Ratio (AOR) = 0.21; 95 % CI 0.05-0.90; p < .05] and increased odds of being employed at least part-time (AOR = 10.19; 95 % CI 2.40-43.21; p < .01). However, reductions in perceived barriers to employment and increases in income were more pronounced among those not receiving disability benefits at baseline. This was consistent with findings from baseline qualitative interviews with 22 participants where those not on disability were subject to bureaucratic hurdles to rapidly accessing benefits and anticipated stigma of being on disability that propelled them to rejoin the workforce. Vocational rehabilitation could address key structural barriers to optimizing HIV treatment as prevention, and novel approaches are needed to improve outcomes among individuals receiving disability benefits.
Collapse
|
13
|
Xiang L, Ren Y, Cai H, Zhao W, Song Y. MicroRNA-132 aggravates epileptiform discharges via suppression of BDNF/TrkB signaling in cultured hippocampal neurons. Brain Res 2015; 1622:484-95. [PMID: 26168887 DOI: 10.1016/j.brainres.2015.06.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRs) are increasingly recognized as targets to prevent or disrupt epilepsy as well as serve as diagnostic biomarkers of epileptogenesis. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin related kinase type B (TrkB) also contribute to the pathophysiology of epilepsy. However, the possible involvement of miRs in BDNF-mediated molecular basis for epileptogenesis is less understood. In the present study, we found a dramatic upregulation of miR-132 and BDNF mRNA in the hippocampal neuronal culture model of status epilepticus (SE) obtained by Mg(2+)-free treatment. To investigate the role of miR-132 in the pathogenesis of epilepsy mediated by BDNF/TrkB signaling, we used a transfection approach to overexpress miR-132, and then detected a consequential decrease in BDNF mRNA and BDNF-dependent full-length TrkB receptor (TrkB.FL) signaling activity in the epileptic neurons. We investigated the alterations of epileptiform discharges in the hippocampal neuronal culture model of SE using the whole-cell patch-clamp technique. Activation of TrkB.FL by pretreatment with BDNF partly inhibited the Mg(2+)-free induced continuous high-frequency epileptiform discharges, while overexpression of miR-132 exacerbated epileptiform discharges. MiR-132 was also implicated in the postepileptic enhancement of high voltage dependent calcium channel. These results suggest that miR-132 promotes epileptogenesis through regulating BDNF/TrkB signaling in the hippocampal neuronal culture model of SE.
Collapse
Affiliation(s)
- Lei Xiang
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin 300052, China; Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin 300060, China
| | - Yanping Ren
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin 300052, China
| | - Hao Cai
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin 300052, China
| | - Wen Zhao
- VIP Ward, Tianjin Medical University General Hospital and Tianjin Neurological Institute, Tianjin, 300052, China
| | - Yijun Song
- Department of Neurology, Tianjin Medical University General Hospital, Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin Neurological Institute, Tianjin 300052, China.
| |
Collapse
|
14
|
Evans RC, Herin GA, Hawes SL, Blackwell KT. Calcium-dependent inactivation of calcium channels in the medial striatum increases at eye opening. J Neurophysiol 2015; 113:2979-86. [PMID: 25673739 DOI: 10.1152/jn.00818.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/06/2015] [Indexed: 01/12/2023] Open
Abstract
Influx of calcium through voltage-gated calcium channels (VGCCs) is essential for striatal function and plasticity. VGCCs expressed in striatal neurons have varying kinetics, voltage dependences, and densities resulting in heterogeneous subcellular calcium dynamics. One factor that determines the calcium dynamics in striatal medium spiny neurons is inactivation of VGCCs. Aside from voltage-dependent inactivation, VGCCs undergo calcium-dependent inactivation (CDI): inactivating in response to an influx of calcium. CDI is a negative feedback control mechanism; however, its contribution to striatal neuron function is unknown. Furthermore, although the density of VGCC expression changes with development, it is unclear whether CDI changes with development. Because calcium influx through L-type calcium channels is required for striatal synaptic depression, a change in CDI could contribute to age-dependent changes in striatal synaptic plasticity. Here we use whole cell voltage clamp to characterize CDI over developmental stages and across striatal regions. We find that CDI increases at the age of eye opening in the medial striatum but not the lateral striatum. The developmental increase in CDI mostly involves L-type channels, although calcium influx through non-L-type channels contributes to the CDI in both age groups. Agents that enhance protein kinase A (PKA) phosphorylation of calcium channels reduce the magnitude of CDI after eye opening, suggesting that the developmental increase in CDI may be related to a reduction in the phosphorylation state of the L-type calcium channel. These results are the first to show that modifications in striatal neuron properties correlate with changes to sensory input.
Collapse
Affiliation(s)
- R C Evans
- George Mason University, The Krasnow Institute for Advanced Studies, Fairfax, Virginia; and
| | - G A Herin
- Eastern Mennonite University, Harrisonburg, Virginia
| | - S L Hawes
- George Mason University, The Krasnow Institute for Advanced Studies, Fairfax, Virginia; and
| | - K T Blackwell
- George Mason University, The Krasnow Institute for Advanced Studies, Fairfax, Virginia; and
| |
Collapse
|
15
|
Hadjiasgary A, Banafshe HR, Ardjmand A. Intra-CA1 administration of FK-506 (tacrolimus) in rat impairs learning and memory in an inhibitory avoidance paradigm. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:130-7. [PMID: 25810886 PMCID: PMC4366723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/16/2014] [Indexed: 11/01/2022]
Abstract
OBJECTIVES Calcineurin (CN) is a main phosphatase and a critical regulator of cellular pathways for learning, memory, and plasticity. The FK-506 (tacrolimus), a phosphatase inhibitor, is a fungal-derived agent and a common immune suppressant extensively used for tissue transplantation. To further clarify the role of CN in different stages of learning and memory the main aim of this study was to evaluate the role of FK-506 in an inhibitory avoidance model. MATERIALS AND METHODS Using different doses of FK-506 (0.5, 5, and 50 nM) in the CA1 of hippocampus at different times (before, after the training and also before the test), the effect of drug was evaluated in a step-through inhibitory avoidance paradigm. The latency of entering to the dark compartment was considered as a criterion for memory. RESULTS The pre-training intra-CA1 injections of FK-506 impaired inhibitory avoidance (IA) learning acquisition. In addition, the post-training intra-CA1 injections of FK-506 at 1, 2, and 3 hr relative to training impaired memory consolidation. Moreover, the pre-test intra-CA1 injections of FK-506 impaired memory retrieval. CONCLUSION These findings suggest that the FK-506 selectively interferes with acquisition, retention, and retrieval of information processing in CA1 of hippocampus. Given the crucial role of CN in common signaling pathway of higher functions such as memory performance and cognition, in future it would be a probable therapeutic target in the treatment of a wide verity of neurological conditions involving memory.
Collapse
Affiliation(s)
| | - Hamid Reza Banafshe
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran,Department of Pharmacology, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Ardjmand
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran,*Corresponding author: Abolfazl Ardjmand. Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran. Tel: +98-31-55550021-5(514); Fax: +98-31-55621157;
| |
Collapse
|
16
|
Furman JL, Norris CM. Calcineurin and glial signaling: neuroinflammation and beyond. J Neuroinflammation 2014; 11:158. [PMID: 25199950 PMCID: PMC4172899 DOI: 10.1186/s12974-014-0158-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022] Open
Abstract
Similar to peripheral immune/inflammatory cells, neuroglial cells appear to rely on calcineurin (CN) signaling pathways to regulate cytokine production and cellular activation. Several studies suggest that harmful immune/inflammatory responses may be the most impactful consequence of aberrant CN activity in glial cells. However, newly identified roles for CN in glutamate uptake, gap junction regulation, Ca2+ dyshomeostasis, and amyloid production suggest that CN's influence in glia may extend well beyond neuroinflammation. The following review will discuss the various actions of CN in glial cells, with particular emphasis on astrocytes, and consider the implications for neurologic dysfunction arising with aging, injury, and/or neurodegenerative disease.
Collapse
|
17
|
Núñez-Santana FL, Oh MM, Antion MD, Lee A, Hell JW, Disterhoft JF. Surface L-type Ca2+ channel expression levels are increased in aged hippocampus. Aging Cell 2014; 13:111-20. [PMID: 24033980 PMCID: PMC3947046 DOI: 10.1111/acel.12157] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2013] [Indexed: 12/30/2022] Open
Abstract
Age-related increase in L-type Ca2+ channel (LTCC) expression in hippocampal pyramidal neurons has been hypothesized to underlie the increased Ca2+ influx and subsequent reduced intrinsic neuronal excitability of these neurons that lead to age-related cognitive deficits. Here, using specific antibodies against Cav1.2 and Cav1.3 subunits of LTCCs, we systematically re-examined the expression of these proteins in the hippocampus from young (3 to 4 month old) and aged (30 to 32 month old) F344xBN rats. Western blot analysis of the total expression levels revealed significant reductions in both Cav1.2 and Cav1.3 subunits from all three major hippocampal regions of aged rats. Despite the decreases in total expression levels, surface biotinylation experiments revealed significantly higher proportion of expression on the plasma membrane of Cav1.2 in the CA1 and CA3 regions and of Cav1.3 in the CA3 region from aged rats. Furthermore, the surface biotinylation results were supported by immunohistochemical analysis that revealed significant increases in Cav1.2 immunoreactivity in the CA1 and CA3 regions of aged hippocampal pyramidal neurons. In addition, we found a significant increase in the level of phosphorylated Cav1.2 on the plasma membrane in the dentate gyrus of aged rats. Taken together, our present findings strongly suggest that age-related cognitive deficits cannot be attributed to a global change in L-type channel expression nor to the level of phosphorylation of Cav1.2 on the plasma membrane of hippocampal neurons. Rather, increased expression and density of LTCCs on the plasma membrane may underlie the age-related increase in L-type Ca2+ channel activity in CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Félix Luis Núñez-Santana
- Department of Physiology; Feinberg School of Medicine; Northwestern University; Chicago IL 60611 USA
| | - Myongsoo Matthew Oh
- Department of Physiology; Feinberg School of Medicine; Northwestern University; Chicago IL 60611 USA
| | - Marcia Diana Antion
- Department of Physiology; Feinberg School of Medicine; Northwestern University; Chicago IL 60611 USA
| | - Amy Lee
- Departments of Molecular Physiology and Biophysics, Otolaryngology-Head and Neck Surgery, and Neurology; University of Iowa; Iowa City IA 52242 USA
| | | | - John Francis Disterhoft
- Department of Physiology; Feinberg School of Medicine; Northwestern University; Chicago IL 60611 USA
| |
Collapse
|
18
|
Gant JC, Blalock EM, Chen KC, Kadish I, Porter NM, Norris CM, Thibault O, Landfield PW. FK506-binding protein 1b/12.6: a key to aging-related hippocampal Ca2+ dysregulation? Eur J Pharmacol 2013; 739:74-82. [PMID: 24291098 DOI: 10.1016/j.ejphar.2013.10.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 12/25/2022]
Abstract
It has been recognized for some time that the Ca(2+)-dependent slow afterhyperpolarization (sAHP) is larger in hippocampal neurons of aged compared with young animals. In addition, extensive studies since have shown that other Ca(2+)-mediated electrophysiological responses are increased in hippocampus with aging, including Ca(2+) transients, L-type voltage-gated Ca(2+) channel activity, Ca(2+) spike duration and action potential accommodation. Elevated Ca(2+)-induced Ca(2+) release from ryanodine receptors (RyRs) appears to drive amplification of the Ca(2+) responses. Components of this Ca(2+) dysregulation phenotype correlate with deficits in cognitive function and plasticity, indicating they may play critical roles in aging-related impairment of brain function. However, the molecular mechanisms underlying aging-related Ca(2+) dysregulation are not well understood. FK506-binding proteins 1a and 1b (FKBP1a/1b, also known as FKBP12/12.6) are immunophilin proteins that bind the immunosuppressant drugs FK506 and rapamycin. In muscle cells, FKBP1a/1b also bind RyRs and inhibits Ca(2+)-induced Ca(2+) release, but it is not clear whether FKBPs act similarly in brain cells. Recently, we found that selectively disrupting hippocampal FKBP1b function in young rats, either by microinjecting adeno-associated viral vectors expressing siRNA, or by treatment with rapamycin, increases the sAHP and recapitulates much of the hippocampal Ca(2+) dysregulation phenotype. Moreover, in microarray studies, we found FKBP1b gene expression was downregulated in hippocampus of aging rats and early-stage Alzheimer's disease subjects. These results suggest the novel hypothesis that declining FKBP function is a key factor in aging-related Ca(2+) dysregulation in the brain and point to potential new therapeutic targets for counteracting unhealthy brain aging.
Collapse
Affiliation(s)
- J C Gant
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - E M Blalock
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - K-C Chen
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - I Kadish
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - N M Porter
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - C M Norris
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - O Thibault
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States
| | - P W Landfield
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 800 Rose St., UKMC Lexington, KY 40536, United States.
| |
Collapse
|
19
|
Sama DM, Norris CM. Calcium dysregulation and neuroinflammation: discrete and integrated mechanisms for age-related synaptic dysfunction. Ageing Res Rev 2013; 12:982-95. [PMID: 23751484 PMCID: PMC3834216 DOI: 10.1016/j.arr.2013.05.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 12/30/2022]
Abstract
Some of the best biomarkers of age-related cognitive decline are closely linked to synaptic function and plasticity. This review highlights several age-related synaptic alterations as they relate to Ca(2+) dyshomeostasis, through elevation of intracellular Ca(2+), and neuroinflammation, through production of pro-inflammatory cytokines including interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Though distinct in many ways, Ca(2+) and neuroinflammatory signaling mechanisms exhibit extensive cross-talk and bidirectional interactions. For instance, cytokine production in glial cells is strongly dependent on the Ca(2+) dependent protein phosphatase calcineurin, which shows elevated activity in animal models of aging and disease. In turn, pro-inflammatory cytokines, such as TNF, can augment the expression/activity of L-type voltage sensitive Ca(2+) channels in neurons, leading to Ca(2+) dysregulation, hyperactive calcineurin activity, and synaptic depression. Thus, in addition to discussing unique contributions of Ca(2+) dyshomeostasis and neuroinflammation, this review emphasizes how these processes interact to hasten age-related synaptic changes.
Collapse
Affiliation(s)
- Diana M Sama
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | |
Collapse
|
20
|
Wang Y, Tandan S, Hill JA. Calcineurin-dependent ion channel regulation in heart. Trends Cardiovasc Med 2013; 24:14-22. [PMID: 23809405 DOI: 10.1016/j.tcm.2013.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 02/05/2023]
Abstract
Calcineurin, a serine-threonine-specific, Ca(2+)-calmodulin-activated protein phosphatase, conserved from yeast to humans, plays a key role in regulating cardiac development, hypertrophy, and pathological remodeling. Recent studies demonstrate that calcineurin regulates cardiomyocyte ion channels and receptors in a manner which often entails direct interaction with these target proteins. Here, we review the current state of knowledge of calcineurin-mediated regulation of ion channels in the myocardium with emphasis on the transient outward potassium current (Ito) and L-type calcium current (ICa,L). We go on to discuss unanswered questions that surround these observations and provide perspective on future directions in this exciting field.
Collapse
Affiliation(s)
- Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Department of Pediatrics, Emory University, Atlanta, GA, USA.
| | - Samvit Tandan
- Department of Internal Medicine (Cardiology), University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas, Southwestern Medical Center, Dallas, TX, USA; Department of Molecular Biology, University of Texas, Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Calcineurin signaling mediates activity-dependent relocation of the axon initial segment. J Neurosci 2013; 33:6950-63. [PMID: 23595753 DOI: 10.1523/jneurosci.0277-13.2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The axon initial segment (AIS) is a specialized neuronal subcompartment located at the beginning of the axon that is crucially involved in both the generation of action potentials and the regulation of neuronal polarity. We recently showed that prolonged neuronal depolarization produces a distal shift of the entire AIS structure away from the cell body, a change associated with a decrease in neuronal excitability. Here, we used dissociated rat hippocampal cultures, with a major focus on the dentate granule cell (DGC) population, to explore the signaling pathways underlying activity-dependent relocation of the AIS. First, a pharmacological screen of voltage-gated calcium channels (VGCCs) showed that AIS relocation is triggered by activation of L-type Cav1 VGCCs with negligible contribution from any other VGCC subtypes. Additional pharmacological analysis revealed that downstream signaling events are mediated by the calcium-sensitive phosphatase calcineurin; inhibition of calcineurin with either FK506 or cyclosporin A totally abolished both depolarization- and optogenetically-induced activity-dependent AIS relocation. Furthermore, calcineurin activation is sufficient for AIS plasticity, because expression of a constitutively active form of the phosphatase resulted in relocation of the AIS of DGCs without a depolarizing stimulus. Finally, we assessed the role of calcineurin in other forms of depolarization-induced plasticity. Neither membrane resistance changes nor spine density changes were affected by FK506 treatment, suggesting that calcineurin acts via a separate pathway to modulate AIS plasticity. Together, these results emphasize calcineurin as a vital player in the regulation of intrinsic plasticity as governed by the AIS.
Collapse
|
22
|
Gaydukov AE, Tarasova EO, Balezina OP. Calcium-dependent phosphatase calcineurin downregulates evoked neurotransmitter release in neuromuscular junctions of mice. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Hu HH, Li SJ, Wang P, Yan HC, Cao X, Hou FQ, Fang YY, Zhu XH, Gao TM. An L-Type Calcium Channel Agonist, Bay K8644, Extends the Window of Intervention Against Ischemic Neuronal Injury. Mol Neurobiol 2012; 47:280-9. [DOI: 10.1007/s12035-012-8362-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/01/2012] [Indexed: 01/04/2023]
|
24
|
Nikoletopoulou V, Tavernarakis N. Calcium homeostasis in aging neurons. Front Genet 2012; 3:200. [PMID: 23060904 PMCID: PMC3462315 DOI: 10.3389/fgene.2012.00200] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/19/2012] [Indexed: 11/13/2022] Open
Abstract
The nervous system becomes increasingly vulnerable to insults and prone to dysfunction during aging. Age-related decline of neuronal function is manifested by the late onset of many neurodegenerative disorders, as well as by reduced signaling and processing capacity of individual neuron populations. Recent findings indicate that impairment of Ca(2+) homeostasis underlies the increased susceptibility of neurons to damage, associated with the aging process. However, the impact of aging on Ca(2+) homeostasis in neurons remains largely unknown. Here, we survey the molecular mechanisms that mediate neuronal Ca(2+) homeostasis and discuss the impact of aging on their efficacy. To address the question of how aging impinges on Ca(2+) homeostasis, we consider potential nodes through which mechanisms regulating Ca(2+) levels interface with molecular pathways known to influence the process of aging and senescent decline. Delineation of this crosstalk would facilitate the development of interventions aiming to fortify neurons against age-associated functional deterioration and death by augmenting Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Vassiliki Nikoletopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas Heraklion, Crete, Greece
| | | |
Collapse
|
25
|
Reese LC, Taglialatela G. A role for calcineurin in Alzheimer's disease. Curr Neuropharmacol 2012; 9:685-92. [PMID: 22654726 PMCID: PMC3263462 DOI: 10.2174/157015911798376316] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 09/29/2010] [Accepted: 12/08/2010] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable age-related neurodegenerative disorder characterized by profound memory dysfunction. This bellwether symptom suggests involvement of the hippocampus -- a brain region responsible for memory formation -- and coincidentally an area heavily burdened by hyperphosphorylated tau and neuritic plaques of amyloid beta (Aβ). Recent evidence suggests that pre-fibrillar soluble Aβ underlies an early, progressive loss of synapses that is a hallmark of AD. One of the downstream effects of soluble Aβ aggregates is the activation of the phosphatase calcineurin (CaN). This review details the evidence of CaN hyperactivity in 'normal' aging, models of AD, and actual disease pathogenesis; elaborates on how this could manifest as memory impairment, neuroinflammation, hyperphosphorylated tau, and neuronal death.
Collapse
Affiliation(s)
- Lindsay C Reese
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch at Galveston, Texas, 77555-1043, USA
| | | |
Collapse
|
26
|
Leitermann RJ, Sajdyk TJ, Urban JH. Cell-specific expression of calcineurin immunoreactivity within the rat basolateral amygdala complex and colocalization with the neuropeptide Y Y1 receptor. J Chem Neuroanat 2012; 45:50-6. [PMID: 22884996 DOI: 10.1016/j.jchemneu.2012.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/27/2012] [Accepted: 07/28/2012] [Indexed: 11/17/2022]
Abstract
Neuropeptide Y (NPY) produces potent anxiolytic effects via activation of NPY Y1 receptors (Y1r) within the basolateral amygdaloid complex (BLA). The role of NPY in the BLA was recently expanded to include the ability to produce stress resilience and long-lasting reductions in anxiety-like behavior. These persistent behavioral effects are dependent upon activity of the protein phosphatase, calcineurin (CaN), which has long been associated with shaping long-term synaptic signaling. Furthermore, NPY-induced reductions in anxiety-like behavior persist months after intra-BLA delivery, which together indicate a form of neuronal plasticity had likely occurred. To define a site of action for NPY-induced CaN signaling within the BLA, we employed multi-label immunohistochemistry to determine which cell types express CaN and if CaN colocalizes with the Y1r. We have previously reported that both major neuronal cell populations in the BLA, pyramidal projection neurons and GABAergic interneurons, express the Y1r. Therefore, this current study evaluated CaN immunoreactivity in these cell types, along with Y1r immunoreactivity. Antibodies against calcium-calmodulin kinase II (CaMKII) and GABA were used to identify pyramidal neurons and GABAergic interneurons, respectively. A large population of CaN immunoreactive cells displayed Y1r immunoreactivity (90%). Nearly all (98%) pyramidal neurons displayed CaN immunoreactivity, while only a small percentage of interneurons (10%) contained CaN immunoreactivity. Overall, these anatomical findings provide a model whereby NPY could directly regulate CaN activity in the BLA via activation of the Y1r on CaN-expressing, pyramidal neurons. Importantly, they support BLA pyramidal neurons as prime targets for neuronal plasticity associated with the long-term reductions in anxiety-like behavior produced by NPY injections into the BLA.
Collapse
Affiliation(s)
- Randy J Leitermann
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | | | | |
Collapse
|
27
|
Yamaguchi M. Role of regucalcin in brain calcium signaling: involvement in aging. Integr Biol (Camb) 2012; 4:825-837. [DOI: 10.1039/c2ib20042b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Foods and Nutrition, The University of Georgia, 425 River Road, Rhodes Center, Room 448, Athens, GA 30602-2771, USA
| |
Collapse
|
28
|
Huang CCY, Ko ML, Vernikovskaya DI, Ko GYP. Calcineurin serves in the circadian output pathway to regulate the daily rhythm of L-type voltage-gated calcium channels in the retina. J Cell Biochem 2012; 113:911-22. [PMID: 22371971 DOI: 10.1002/jcb.23419] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The L-type voltage-gated calcium channels (L-VGCCs) in avian retinal cone photoreceptors are under circadian control, in which the protein expression of the α1 subunits and the current density are greater at night than during the day. Both Ras-mitogen-activated protein kinase (MAPK) and Ras-phosphatidylionositol 3 kinase-protein kinase B (PI3K-AKT) signaling pathways are part of the circadian output that regulate the L-VGCC rhythm, while cAMP-dependent signaling is further upstream of Ras to regulate the circadian outputs in photoreceptors. However, there are missing links between cAMP-dependent signaling and Ras in the circadian output regulation of L-VGCCs. In this study, we report that calcineurin, a Ca2+/calmodulin-dependent serine (ser)/threonine (thr) phosphatase, participates in the circadian output pathway to regulate L-VGCCs through modulating both Ras-MAPK and Ras-PI3K-AKT signaling. The activity of calcineurin, but not its protein expression, was under circadian regulation. Application of a calcineurin inhibitor, FK-506 or cyclosporine A, reduced the L-VGCC current density at night with a corresponding decrease in L-VGCCα1D protein expression, but the circadian rhythm of L-VGCCα1D mRNA levels were not affected. Inhibition of calcineurin further reduced the phosphorylation of ERK and AKT (at thr 308) and inhibited the activation of Ras, but inhibitors of MAPK or PI3K signaling did not affect the circadian rhythm of calcineurin activity. However, inhibition of adenylate cyclase significantly dampened the circadian rhythm of calcineurin activity. These results suggest that calcineurin is upstream of MAPK and PI3K-AKT but downstream of cAMP in the circadian regulation of L-VGCCs.
Collapse
Affiliation(s)
- Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | | | | | | |
Collapse
|
29
|
Sama DM, Mohmmad Abdul H, Furman JL, Artiushin IA, Szymkowski DE, Scheff SW, Norris CM. Inhibition of soluble tumor necrosis factor ameliorates synaptic alterations and Ca2+ dysregulation in aged rats. PLoS One 2012; 7:e38170. [PMID: 22666474 PMCID: PMC3362564 DOI: 10.1371/journal.pone.0038170] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/01/2012] [Indexed: 12/14/2022] Open
Abstract
The role of tumor necrosis factor α (TNF) in neural function has been investigated extensively in several neurodegenerative conditions, but rarely in brain aging, where cognitive and physiologic changes are milder and more variable. Here, we show that protein levels for TNF receptor 1 (TNFR1) are significantly elevated in the hippocampus relative to TNF receptor 2 (TNFR2) in aged (22 months) but not young adult (6 months) Fischer 344 rats. To determine if altered TNF/TNFR1 interactions contribute to key brain aging biomarkers, aged rats received chronic (4–6 week) intracranial infusions of XPro1595: a soluble dominant negative TNF that preferentially inhibits TNFR1 signaling. Aged rats treated with XPro1595 showed improved Morris Water Maze performance, reduced microglial activation, reduced susceptibility to hippocampal long-term depression, increased protein levels for the GluR1 type glutamate receptor, and lower L-type voltage sensitive Ca2+ channel (VSCC) activity in hippocampal CA1 neurons. The results suggest that diverse functional changes associated with brain aging may arise, in part, from selective alterations in TNF signaling.
Collapse
Affiliation(s)
- Diana M. Sama
- Graduate Center for Gerontology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hafiz Mohmmad Abdul
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jennifer L. Furman
- Molecular & Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Irina A. Artiushin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | | | - Stephen W. Scheff
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Christopher M. Norris
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Molecular & Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
30
|
Xiang K, Earl D, Dwyer T, Behrle BL, Tietz EI, Greenfield LJ. Hypoxia enhances high-voltage-activated calcium currents in rat primary cortical neurons via calcineurin. Epilepsy Res 2012; 99:293-305. [PMID: 22245138 PMCID: PMC3341530 DOI: 10.1016/j.eplepsyres.2011.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 12/04/2011] [Accepted: 12/18/2011] [Indexed: 01/09/2023]
Abstract
Hypoxia regulates neuronal ion channels, sometimes resulting in seizures. We evaluated the effects of brief sustained hypoxia (1% O(2), 4h) on voltage-gated calcium channels (VGCCs) in cultured rat primary cortical neurons. High-voltage activated (HVA) Ca(2+) currents were acquired immediately after hypoxic exposure or after 48h recovery in 95% air/5% CO(2). Maximal Ca(2+) current density increased 1.5-fold immediately after hypoxia, but reverted to baseline after 48h normoxia. This enhancement was primarily due to an increase in L-type VGCC activity, since nimodipine-insensitive residual Ca(2+) currents were unchanged. The half-maximal potentials of activation and steady-state inactivation were unchanged. The calcineurin inhibitors FK-506 (in the recording pipette) or cyclosporine A (during hypoxia) prevented the post-hypoxic increase in HVA Ca(2+) currents, while rapamycin and okadaic acid did not. L-type VGCCs were the source of Ca(2+) for calcineurin activation, as nimodipine during hypoxia prevented post-hypoxic enhancement. Hypoxia transiently potentiated L-type VGCC currents via calcineurin, suggesting a positive feedback loop to amplify neuronal calcium signaling that may contribute to seizure generation.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Neurology, University of Toledo College of Medicine, Toledo, OH, USA
| | | | | | | | | | | |
Collapse
|
31
|
Kawamoto EM, Vivar C, Camandola S. Physiology and pathology of calcium signaling in the brain. Front Pharmacol 2012; 3:61. [PMID: 22518105 PMCID: PMC3325487 DOI: 10.3389/fphar.2012.00061] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/26/2012] [Indexed: 12/31/2022] Open
Abstract
Calcium (Ca(2+)) plays fundamental and diversified roles in neuronal plasticity. As second messenger of many signaling pathways, Ca(2+) as been shown to regulate neuronal gene expression, energy production, membrane excitability, synaptogenesis, synaptic transmission, and other processes underlying learning and memory and cell survival. The flexibility of Ca(2+) signaling is achieved by modifying cytosolic Ca(2+) concentrations via regulated opening of plasma membrane and subcellular Ca(2+) sensitive channels. The spatiotemporal patterns of intracellular Ca(2+) signals, and the ultimate cellular biological outcome, are also dependent upon termination mechanism, such as Ca(2+) buffering, extracellular extrusion, and intra-organelle sequestration. Because of the central role played by Ca(2+) in neuronal physiology, it is not surprising that even modest impairments of Ca(2+) homeostasis result in profound functional alterations. Despite their heterogeneous etiology neurodegenerative disorders, as well as the healthy aging process, are all characterized by disruption of Ca(2+) homeostasis and signaling. In this review we provide an overview of the main types of neuronal Ca(2+) channels and their role in neuronal plasticity. We will also discuss the participation of Ca(2+) signaling in neuronal aging and degeneration.
Collapse
Affiliation(s)
- Elisa Mitiko Kawamoto
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| | - Carmen Vivar
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research ProgramBaltimore, MD, USA
| |
Collapse
|
32
|
Thibault O, Pancani T, Landfield PW, Norris CM. Reduction in neuronal L-type calcium channel activity in a double knock-in mouse model of Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1822:546-9. [PMID: 22265986 PMCID: PMC3293940 DOI: 10.1016/j.bbadis.2012.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 11/25/2022]
Abstract
Increased function of neuronal L-type voltage-sensitive Ca(2+) channels (L-VSCCs) is strongly linked to impaired memory and altered hippocampal synaptic plasticity in aged rats. However, no studies have directly assessed L-VSCC function in any of the common mouse models of Alzheimer's disease where neurologic deficits are typically more robust. Here, we used cell-attached patch-clamp recording techniques to measure L-VSCC activity in CA1 pyramidal neurons of partially dissociated hippocampal "zipper" slices prepared from 14-month-old wild-type mice and memory-impaired APP/PS1 double knock-in mice. Surprisingly, the functional channel density of L-VSCCs was significantly reduced in the APP/PS1 group. No differences in voltage dependency and unitary conductance of L-VSCCs were observed. The results suggest that mechanisms for Ca(2+) dysregulation can differ substantially between animal models of normal aging and models of pathological aging.
Collapse
Affiliation(s)
- Olivier Thibault
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536 USA
| | - Tristano Pancani
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536 USA
| | - Philip W. Landfield
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536 USA
| | - Christopher M. Norris
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536 USA
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY 40536 USA
| |
Collapse
|
33
|
Reese LC, Laezza F, Woltjer R, Taglialatela G. Dysregulated phosphorylation of Ca(2+) /calmodulin-dependent protein kinase II-α in the hippocampus of subjects with mild cognitive impairment and Alzheimer's disease. J Neurochem 2011; 119:791-804. [PMID: 21883216 DOI: 10.1111/j.1471-4159.2011.07447.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder and the most prevalent senile dementia. The early symptom of memory dysfunction involves synaptic loss, thought to be mediated by soluble amyloid-beta (Aβ) oligomers. These aggregate species target excitatory synapses and their levels correlate with disease severity. Studies in cell culture and rodents have shown that oligomers increase intracellular calcium (Ca(2+)), impairing synaptic plasticity. Yet, the molecular mechanism mediating Aβ oligomers' toxicity in the aged brain remains unclear. Here, we apply quantitative immunofluorescence in human brain tissue from clinically diagnosed mild cognitive impaired (MCI) and AD patients to investigate the distribution of phosphorylated (active) Ca(2+) /calmodulin-dependent protein kinase-α (p(Thr286)CaMKII), a critical enzyme for activity-dependent synaptic remodeling associated with cognitive function. We show that p(Thr286)CaMKII immunoreactivity is redistributed from dendritic arborizations to neural perikarya of both MCI and AD hippocampi. This finding correlates with cognitive assessment scores, suggesting that it may be a molecular read-out of the functional deficits in early AD. Treatment with oligomeric Aβ replicated the observed phenotype in mice and resulted in a loss of p(Thr286)CaMKII from synaptic spines of primary hippocampal neurons. Both outcomes were prevented by inhibiting the phosphatase calcineurin (CaN). Collectively, our results support a model in which the synaptotoxicity of Aβ oligomers in human brain involves the CaN-dependent subcellular redistribution of p(Thr286)CaMKII. Therapies designed to normalize the homeostatic imbalance of neuronal phosphatases and downstream dephosphorylation of synaptic p(Thr286)CaMKII should be considered to prevent and treat early AD.
Collapse
Affiliation(s)
- Lindsay C Reese
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1043, USA
| | | | | | | |
Collapse
|
34
|
Nejatbakhsh N, Feng ZP. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases. Acta Pharmacol Sin 2011; 32:741-8. [PMID: 21642945 DOI: 10.1038/aps.2011.64] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.
Collapse
|
35
|
Disrupting function of FK506-binding protein 1b/12.6 induces the Ca²+-dysregulation aging phenotype in hippocampal neurons. J Neurosci 2011; 31:1693-703. [PMID: 21289178 DOI: 10.1523/jneurosci.4805-10.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
With aging, multiple Ca(2+)-associated electrophysiological processes exhibit increased magnitude in hippocampal pyramidal neurons, including the Ca(2+)-dependent slow afterhyperpolarization (sAHP), L-type voltage-gated Ca(2+) channel (L-VGCC) activity, Ca(2+)-induced Ca(2+) release (CICR) from ryanodine receptors (RyRs), and Ca(2+) transients. This pattern of Ca(2+) dysregulation correlates with reduced neuronal excitability/plasticity and impaired learning/memory and has been proposed to contribute to unhealthy brain aging and Alzheimer's disease. However, little is known about the underlying molecular mechanisms. In cardiomyocytes, FK506-binding protein 1b/12.6 (FKBP1b) binds and stabilizes RyR2 in the closed state, inhibiting RyR-mediated Ca(2+) release. Moreover, we recently found that hippocampal Fkbp1b expression is downregulated, whereas Ryr2 and Frap1/Mtor (mammalian target of rapamycin) expression is upregulated with aging in rats. Here, we tested the hypothesis that disrupting FKBP1b function also destabilizes Ca(2+) homeostasis in hippocampal neurons and is sufficient to induce the aging phenotype of Ca(2+) dysregulation in young animals. Selective knockdown of Fkbp1b with interfering RNA in vitro (96 h) enhanced voltage-gated Ca(2+) current in cultured neurons, whereas in vivo Fkbp1b knockdown by microinjection of viral vector (3-4 weeks) dramatically increased the sAHP in hippocampal slice neurons from young-adult rats. Rapamycin, which displaces FKBP1b from RyRs in myocytes, similarly enhanced VGCC current and the sAHP and also increased CICR. Moreover, FKBP1b knockdown in vivo was associated with upregulation of RyR2 and mTOR protein expression. Thus, disruption of FKBP1b recapitulated much of the Ca(2+)-dysregulation aging phenotype in young rat hippocampus, supporting a novel hypothesis that declining FKBP function plays a major role in unhealthy brain aging.
Collapse
|
36
|
Reese LC, Taglialatela G. Neuroimmunomodulation by calcineurin in aging and Alzheimer's disease. Aging Dis 2010; 1:245-53. [PMID: 22396864 PMCID: PMC3295036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 05/31/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive, age-related neurodegenerative disorder which first manifests as profound memory dysfunction. The majority of cases are idiopathic, although advanced age is the greatest risk factor for AD. Recent evidence suggests that pre-fibrillar soluble amyloid-beta (Aβ) underlies an early, progressive loss of synapses that is a hallmark of AD. One of the downstream effects mediated by soluble Aβ aggregates is the hyperactivation of the phosphatase calcineurin (CaN). This important phosphatase is abundant in the nervous system and intimately involved in the mechanisms of memory as well as the immune response. Such a duality places CaN at the crux of neuroimmunomodulation processes. In the present review, we briefly summarize the role of CaN in physiological aging and discuss how CaN hyperactivity could cause the memory impairment, neuroinflammation, and neuronal death that are pathological mechanisms of AD.
Collapse
Affiliation(s)
- Lindsay C. Reese
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch at Galveston, Texas, 77555-1043, USA
| | - Giulio Taglialatela
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch at Galveston, Texas, 77555-1043, USA
| |
Collapse
|
37
|
Dineley KT, Kayed R, Neugebauer V, Fu Y, Zhang W, Reese LC, Taglialatela G. Amyloid-beta oligomers impair fear conditioned memory in a calcineurin-dependent fashion in mice. J Neurosci Res 2010; 88:2923-32. [PMID: 20544830 PMCID: PMC2919647 DOI: 10.1002/jnr.22445] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Soluble oligomeric aggregates of the amyloid-beta (A beta) peptide are believed to be the most neurotoxic A beta species affecting the brain in Alzheimer disease (AD), a terminal neurodegenerative disorder involving severe cognitive decline underscored by initial synaptic dysfunction and later extensive neuronal death in the CNS. Recent evidence indicates that A beta oligomers are recruited at the synapse, oppose expression of long-term potentiation (LTP), perturb intracellular calcium balance, disrupt dendritic spines, and induce memory deficits. However, the molecular mechanisms behind these outcomes are only partially understood; achieving such insight is necessary for the comprehension of A beta-mediated neuronal dysfunction. We have investigated the role of the phosphatase calcineurin (CaN) in these pathological processes of AD. CaN is especially abundant in the CNS, where it is involved in synaptic activity, LTP, and memory function. Here, we describe how oligomeric A beta treatment causes memory deficits and depresses LTP expression in a CaN-dependent fashion. Mice given a single intracerebroventricular injection of A beta oligomers exhibited increased CaN activity and decreased pCREB, a transcription factor involved in proper synaptic function, accompanied by decreased memory in a fear conditioning task. These effects were reversed by treatment with the CaN inhibitor FK506. We further found that expression of hippocampal LTP in acutely cultured rodent brain slices was opposed by A beta oligomers and that this effect was also reversed by FK506. Collectively, these results indicate that CaN activation may play a central role in mediating synaptic and memory disruption induced by acute oligomeric A beta treatment in mice.
Collapse
Affiliation(s)
- Kelly T Dineley
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555-1043, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
beta-Amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1. J Neurosci 2010; 30:9402-10. [PMID: 20631169 DOI: 10.1523/jneurosci.2154-10.2010] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent gene expression mediating changes of synaptic efficacy is important for memory storage, but the mechanisms underlying gene transcriptional changes in age-related memory disorders are poorly understood. In this study, we report that gene transcription mediated by the cAMP-response element binding protein (CREB)-regulated transcription coactivator CRTC1 is impaired in neurons and brain from an Alzheimer's disease (AD) transgenic mouse expressing the human beta-amyloid precursor protein (APP(Sw,Ind)). Suppression of CRTC1-dependent gene transcription by beta-amyloid (Abeta) in response to cAMP and Ca(2+) signals is mediated by reduced calcium influx and disruption of PP2B/calcineurin-dependent CRTC1 dephosphorylation at Ser151. Consistently, expression of CRTC1 or active CRTC1 S151A and calcineurin mutants reverse the deficits on CRTC1 transcriptional activity in APP(Sw,Ind) neurons. Inhibition of calcium influx by pharmacological blockade of L-type voltage-gated calcium channels (VGCCs), but not by blocking NMDA or AMPA receptors, mimics the decrease on CRTC1 transcriptional activity observed in APP(Sw,Ind) neurons, whereas agonists of L-type VGCCs reverse efficiently these deficits. Consistent with a role of CRTC1 on Abeta-induced synaptic and memory dysfunction, we demonstrate a selective reduction of CRTC1-dependent genes related to memory (Bdnf, c-fos, and Nr4a2) coinciding with hippocampal-dependent spatial memory deficits in APP(Sw,Ind) mice. These findings suggest that CRTC1 plays a key role in coupling synaptic activity to gene transcription required for hippocampal-dependent memory, and that Abeta could disrupt cognition by affecting CRTC1 function.
Collapse
|
39
|
Norris CM, Blalock EM, Chen KC, Porter NM, Thibault O, Kraner SD, Landfield PW. Hippocampal 'zipper' slice studies reveal a necessary role for calcineurin in the increased activity of L-type Ca(2+) channels with aging. Neurobiol Aging 2010; 31:328-38. [PMID: 18471936 PMCID: PMC2795015 DOI: 10.1016/j.neurobiolaging.2008.03.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 02/18/2008] [Accepted: 03/26/2008] [Indexed: 11/23/2022]
Abstract
Previous studies have shown that inhibition of the Ca(2+)-/calmodulin-dependent protein phosphatase calcineurin (CN) blocks L-type voltage sensitive Ca(2+) channel (L-VSCC) activity in cultured hippocampal neurons. However, it is not known whether CN contributes to the increase in hippocampal L-VSCC activity that occurs with aging in at least some mammalian species. It is also unclear whether CN's necessary role in VSCC activity is simply permissive or is directly enhancing. To resolve these questions, we used partially dissociated hippocampal "zipper" slices to conduct cell-attached patch recording and RT-PCR on largely intact single neurons from young-adult, mid-aged, and aged rats. Further, we tested for direct CN enhancement of L-VSCCs using virally mediated infection of cultured neurons with an activated form of CN. Similar to previous work, L-VSCC activity was elevated in CA1 neurons of mid-aged and aged rats relative to young adults. The CN inhibitor, FK-506 (5muM) completely blocked the aging-related increase in VSCC activity, reducing the activity level in aged rat neurons to that in younger rat neurons. However, aging was not associated with an increase in neuronal CN mRNA expression, nor was CN expression correlated with VSCC activity. Delivery of activated CN to primary hippocampal cultures induced an increase in neuronal L-VSCC activity but did not elevate L-VSCC protein levels. Together, the results provide the first evidence that CN activity, but not increased expression, plays a selective and necessary role in the aging-related increase in available L-VSCCs, possibly by direct activation. Thus, these studies point to altered CN function as a novel and potentially key factor in aging-dependent neuronal Ca(2+) dysregulation.
Collapse
Affiliation(s)
- Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Malouitre S, Dube H, Selwood D, Crompton M. Mitochondrial targeting of cyclosporin A enables selective inhibition of cyclophilin-D and enhanced cytoprotection after glucose and oxygen deprivation. Biochem J 2009; 425:137-48. [PMID: 19832699 PMCID: PMC2860807 DOI: 10.1042/bj20090332] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 10/02/2009] [Accepted: 10/15/2009] [Indexed: 12/24/2022]
Abstract
CsA (cyclosporin A) is a hydrophobic undecapeptide that inhibits CyPs (cyclophilins), a family of PPIases (peptidylprolyl cis-trans isomerases). In some experimental models, CsA offers partial protection against lethal cell injury brought about by transient ischaemia; this is believed to reflect inhibition of CyP-D, a mitochondrial isoform that facilitates formation of the permeability transition pore in the mitochondrial inner membrane. To evaluate this further, we have targeted CsA to mitochondria so that it becomes selective for CyP-D in cells. This was achieved by conjugating the inhibitor to the lipophilic triphenylphosphonium cation, enabling its accumulation in mitochondria due to the inner membrane potential. In a cell-free system and in B50 neuroblastoma cells the novel reagent (but not CsA itself) preferentially inhibited CyP-D over extramitochondrial CyP-A. In hippocampal neurons, mitochondrial targeting markedly enhanced the capacity of CsA to prevent cell necrosis brought about by oxygen and glucose deprivation, but largely abolished its capacity to inhibit glutamate-induced cell death. It is concluded that CyP-D has a major pathogenic role in 'energy failure', but not in glutamate excitotoxicity, where cytoprotection primarily reflects CsA interaction with extramitochondrial CyPs and calcineurin. Moreover, the therapeutic potential of CsA against ischaemia/reperfusion injuries not involving glutamate may be improved by mitochondrial targeting.
Collapse
Key Words
- cyclophilin (cyp)
- cyclosporin a (csa)
- glutamate toxicity
- hippocampal neuron
- ischaemia
- necrosis
- csa, cyclosporin a
- cyp, cyclophilin
- cyp-d+, cell line overexpressing cyp-d
- dcm, dichloromethane
- dmem, dulbecco's minimal essential medium
- dmf, dimethylformamide
- esi–ms, electrospray ionization ms
- fbs, fetal bovine serum
- fmoc, fluoren-9-ylmethoxycarbonyl
- hbss, hanks balanced salt solution
- i/r, ischaemia/reperfusion
- lda, lithium diisopropylamide
- l-name, ng-nitro-l-arginine-methyl ester
- mtcsa, mitochondrially targeted csa
- nba, neurobasal a
- nbqx, 2,3-dihydro-6-nitro-7-sulfamoylbenzoquinoxaline
- nmda, n-methyl-d-aspartate
- ogd, oxygen and glucose deprivation
- ppiase, peptidylprolyl cis–trans isomerase
- pt, permeability transition
- pybop, benzotriazol-1-yl-tris-pyrrolidinophosphonium hexafluorophosphate
- smbz-csa, [sarcosine-3(4-methylbenzoate)]-csa
- thf, tetrahydrofuran
- tmre, tetramethylrhodamine ethyl ester
- tpp+, triphenylphosphonium
Collapse
Affiliation(s)
- Sylvanie Malouitre
- *Research Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Henry Dube
- †Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, U.K
| | - David Selwood
- †Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, U.K
| | - Martin Crompton
- *Research Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
41
|
Kumar A, Bodhinathan K, Foster TC. Susceptibility to Calcium Dysregulation during Brain Aging. Front Aging Neurosci 2009; 1:2. [PMID: 20552053 PMCID: PMC2874411 DOI: 10.3389/neuro.24.002.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/27/2009] [Indexed: 01/06/2023] Open
Abstract
Calcium (Ca(2+)) is a highly versatile intracellular signaling molecule that is essential for regulating a variety of cellular and physiological processes ranging from fertilization to programmed cell death. Research has provided ample evidence that brain aging is associated with altered Ca(2+) homeostasis. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during senescence. The current review takes a broader perspective, assessing age-related changes in Ca(2+) sources, Ca(2+) sequestration, and Ca(2+) binding proteins throughout the nervous system. The nature of altered Ca(2+) homeostasis is cell specific and may represent a deficit or a compensatory mechanism, producing complex patterns of impaired cellular function. Incorporating the knowledge of the complexity of age-related alterations in Ca(2+) homeostasis will positively shape the development of highly effective therapeutics to treat brain disorders.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | | | | |
Collapse
|
42
|
Cognitive decline in Alzheimer's disease is associated with selective changes in calcineurin/NFAT signaling. J Neurosci 2009; 29:12957-69. [PMID: 19828810 DOI: 10.1523/jneurosci.1064-09.2009] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Upon activation by calcineurin, the nuclear factor of activated T-cells (NFAT) translocates to the nucleus and guides the transcription of numerous molecules involved in inflammation and Ca(2+) dysregulation, both of which are prominent features of Alzheimer's disease (AD). However, NFAT signaling in AD remains relatively uninvestigated. Using isolated cytosolic and nuclear fractions prepared from rapid-autopsy postmortem human brain tissue, we show that NFATs 1 and 3 shifted to nuclear compartments in the hippocampus at different stages of neuropathology and cognitive decline, whereas NFAT2 remained unchanged. NFAT1 exhibited greater association with isolated nuclear fractions in subjects with mild cognitive impairment (MCI), whereas NFAT3 showed a strong nuclear bias in subjects with severe dementia and AD. Similar to NFAT1, calcineurin-Aalpha also exhibited a nuclear bias in the early stages of cognitive decline. But, unlike NFAT1 and similar to NFAT3, the nuclear bias for calcineurin became more pronounced as cognition worsened. Changes in calcineurin/NFAT3 were directly correlated to soluble amyloid-beta (Abeta((1-42))) levels in postmortem hippocampus, and oligomeric Abeta, in particular, robustly stimulated NFAT activation in primary rat astrocyte cultures. Oligomeric Abeta also caused a significant reduction in excitatory amino acid transporter 2 (EAAT2) protein levels in astrocyte cultures, which was blocked by NFAT inhibition. Moreover, inhibition of astrocytic NFAT activity in mixed cultures ameliorated Abeta-dependent elevations in glutamate and neuronal death. The results suggest that NFAT signaling is selectively altered in AD and may play an important role in driving Abeta-mediated neurodegeneration.
Collapse
|
43
|
Neuroprotective action of FK-506 (tacrolimus) after seizures induced with pilocarpine: quantitative and topographic elemental analysis of brain tissue. J Biol Inorg Chem 2009; 15:283-9. [PMID: 19862562 DOI: 10.1007/s00775-009-0597-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 10/13/2009] [Indexed: 01/29/2023]
Abstract
In the present work, X-ray fluorescence microscopy with a synchrotron source for the exciting radiation was applied for topographic and quantitative elemental analysis of rat brain tissue in pilocarpine-induced epilepsy and neuroprotection with FK-506. The mass per unit area of the elements P, S, Cl, K, Ca, Fe, Cu, Zn, Se, Br, and Rb was determined in four fields of the hippocampal formation (sectors 1 and 3 of Ammon's horn-CA1, CA3; dentate gyrus; hilus of dentate gyrus) and the parietal cortex. The results obtained for epileptic rats treated with FK-506 (SNF) were compared with data obtained previously for epileptic rats (SNS) and a control group. Many statistically significant differences in elemental composition were observed between the SNF and SNS groups. Higher mass per unit area of P was noticed in CA1 and CA3 regions of the hippocampus of SNF rats in comparison with SNS rats. A similar relation was observed for K in all five brain areas analyzed. Also, Fe in CA3 and dentate gyrus, Cu in the parietal cortex, and Zn in CA3 and in the cortex were present at a higher level in the SNF group in comparison with the SNS group. The findings obtained in the present study suggest that the neuroprotective action of FK-506 in epileptic rat brain may involve not only the inhibition of calcineurin but also blockade of the K(+) channels.
Collapse
|
44
|
Ma LQ, Liu C, Wang F, Xie N, Gu J, Fu H, Wang JH, Cai F, Liu J, Chen JG. Activation of phosphatidylinositol-linked novel D1 dopamine receptors inhibits high-voltage-activated Ca2+ currents in primary cultured striatal neurons. J Neurophysiol 2009; 101:2230-8. [PMID: 19225177 DOI: 10.1152/jn.90345.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recent evidences indicate the existence of a putative novel phosphatidylinositol (PI)-linked D(1) dopamine receptor that mediates excellent anti-Parkinsonian but less severe dyskinesia action. To further understand the basic physiological function of this receptor in brain, the effects of a PI-linked D(1) dopamine receptor-selective agonist 6-chloro-7,8-dihydroxy-3-methyl-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959) on high-voltage activated (HVA) Ca(2+) currents in primary cultured striatal neurons were investigated by whole cell patch-clamp technique. The results indicated that stimulation by SKF83959 induced an inhibition of HVA Ca(2+) currents in a dose-dependent manner in substance-P (SP)-immunoreactive striatal neurons. Application of D(1) receptor, but not D(2), alpha(1) adrenergic, 5-HT receptor, or cholinoceptor antagonist prevented SKF83959-induced reduction, indicating that a D(1) receptor-mediated event assumed via PI-linked D(1) receptor. SKF83959-induced inhibitory modulation was mediated by activation of phospholipase C (PLC), mobilization of intracellular Ca(2+) stores and activation of calcineurin. Furthermore, the inhibitory effects were attenuated significantly by the L-type calcium channel antagonist nifedipine, suggesting that L-type calcium channels involved in the regulation induced by SKF83959. These findings may help to further understand the functional role of the PI-linked dopamine receptor in brain.
Collapse
Affiliation(s)
- Li-Qun Ma
- Dept. of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan, Hubei 430030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Napolioni V, Moavero R, Curatolo P. Recent advances in neurobiology of Tuberous Sclerosis Complex. Brain Dev 2009; 31:104-13. [PMID: 19028034 DOI: 10.1016/j.braindev.2008.09.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder with variable phenotypic expression, due to a mutation in one of the two genes, TSC1 and TSC2, and a subsequent hyperactivation of the downstream mTOR pathway, resulting in increased cell growth and proliferation. The central nervous system is consistently involved in TSC, with 90% of individuals affected showing structural abnormalities, and almost all having some degree of CNS clinical manifestations, including seizures, cognitive impairment and behavioural problems. TSC is proving to be a particularly informative model for studying contemporary issues in developmental neurosciences. Recent advances in the neurobiology of TSC from molecular biology, molecular genetics, and animal model studies provide a better understanding of the pathogenesis of TSC-related neurological symptoms. Rapamycin normalizes the dysregulated mTOR pathway, and recent clinical trials have demonstrated its efficacy in various TSC manifestations, suggesting the possibility that rapamycin may have benefit in the treatment of TSC brain disease.
Collapse
Affiliation(s)
- Valerio Napolioni
- Laboratory of Human Genetics, Department of Molecular, Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | | | | |
Collapse
|
46
|
Shi L, Jian K, Ko ML, Trump D, Ko GYP. Retinoschisin, a new binding partner for L-type voltage-gated calcium channels in the retina. J Biol Chem 2008; 284:3966-75. [PMID: 19074145 DOI: 10.1074/jbc.m806333200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The L-type voltage-gated calcium channels (L-VGCCs) are activated under high depolarization voltages. They are vital for diverse biological events, including cell excitability, differentiation, and synaptic transmission. In retinal photoreceptors, L-VGCCs are responsible for neurotransmitter release and are under circadian influences. However, the mechanism of L-VGCC regulation in photoreceptors is not fully understood. Here, we show that retinoschisin, a highly conserved extracellular protein, interacts with the L-VGCCalpha1D subunit and regulates its activities in a circadian manner. Mutations in the gene encoding retinoschisin (RS1) cause retinal disorganization that leads to early onset of macular degeneration. Since ion channel activities can be modulated through interactions with extracellular proteins, disruption of these interactions can alter physiology and be the root cause of disease states. Co-immunoprecipitation and mammalian two-hybrid assays showed that retinoschisin and the N-terminal fragment of the L-VGCCalpha1 subunit physically interacted with one another. The expression and secretion of retinoschisin are under circadian regulation with a peak at night and nadir during the day. Inhibition of L-type VGCCs decreased membrane-bound retinoschisin at night. Overexpression of a missense RS1 mutant gene, R141G, into chicken cone photoreceptors caused a decrease of L-type VGCC currents at night. Our findings demonstrate a novel bidirectional relationship between an ion channel and an extracellular protein; L-type VGCCs regulate the circadian rhythm of retinoschisin secretion, whereas secreted retinoschisin feeds back to regulate L-type VGCCs. Therefore, physical interactions between L-VGCCalpha1 subunits and retinoschisin play an important role in the membrane retention of L-VGCCalpha1 subunits and photoreceptor-bipolar synaptic transmission.
Collapse
Affiliation(s)
- Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458, USA
| | | | | | | | | |
Collapse
|
47
|
Sama MA, Mathis DM, Furman JL, Abdul HM, Artiushin IA, Kraner SD, Norris CM. Interleukin-1beta-dependent signaling between astrocytes and neurons depends critically on astrocytic calcineurin/NFAT activity. J Biol Chem 2008; 283:21953-64. [PMID: 18541537 PMCID: PMC2494911 DOI: 10.1074/jbc.m800148200] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 06/04/2008] [Indexed: 01/13/2023] Open
Abstract
Interleukin-1beta (IL-1beta) and the Ca(2+)/calmodulin-dependent protein phosphatase, calcineurin, have each been shown to play an important role in neuroinflammation. However, whether these signaling molecules interact to coordinate immune/inflammatory processes and neurodegeneration has not been investigated. Here, we show that exogenous application of IL-1beta (10 ng/ml) recruited calcineurin/NFAT (nuclear factor of activated T cells) activation in primary astrocyte-enriched cultures within minutes, through a pathway involving IL-1 receptors and L-type Ca(2+) channels. Adenovirus-mediated delivery of the NFAT inhibitor, VIVIT, suppressed the IL-1beta-dependent induction of several inflammatory mediators and/or markers of astrocyte activation, including tumor necrosis factor alpha, granulocyte/macrophage colony-stimulating factor, and vimentin. Expression of an activated form of calcineurin in one set of astrocyte cultures also triggered the release of factors that, in turn, stimulated NFAT activity in a second set of "naive" astrocytes. This effect was prevented when calcineurin-expressing cultures co-expressed VIVIT, suggesting that the calcineurin/NFAT pathway coordinates positive feedback signaling between astrocytes. In the presence of astrocytes and neurons, 48-h delivery of IL-1beta was associated with several excitotoxic effects, including NMDA receptor-dependent neuronal death, elevated extracellular glutamate, and hyperexcitable synaptic activity. Each of these effects were reversed or ameliorated by targeted delivery of VIVIT to astrocytes. IL-1beta also caused an NFAT-dependent reduction in excitatory amino acid transporter levels, indicating a possible mechanism for IL-1beta-mediated excitotoxicity. Taken together, the results have potentially important implications for the propagation and maintenance of neuroinflammatory signaling processes associated with many neurodegenerative conditions and diseases.
Collapse
Affiliation(s)
- Michelle A Sama
- Department of Molecular and Biomedical Pharmacology, Graduate Center for Gerontology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Brennan AR, Dolinsky B, Vu MAT, Stanley M, Yeckel MF, Arnsten AFT. Blockade of IP3-mediated SK channel signaling in the rat medial prefrontal cortex improves spatial working memory. Learn Mem 2008; 15:93-6. [PMID: 18285467 DOI: 10.1101/lm.767408] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Planning and directing thought and behavior require the working memory (WM) functions of prefrontal cortex. WM is compromised by stress, which activates phosphatidylinositol (PI)-mediated IP3-PKC intracellular signaling. PKC overactivation impairs WM operations and in vitro studies indicate that IP3 receptor (IP3R)-evoked calcium release results in SK channel-dependent hyperpolarization of prefrontal neurons. However, the effects of IP3R signaling on prefrontal function have not been investigated. The present findings demonstrate that blockade of IP3R or SK channels in the prefrontal cortex enhances WM performance in rats, suggesting that both arms of the PI cascade influence prefrontal cognitive function.
Collapse
Affiliation(s)
- Avis R Brennan
- Yale University School of Medicine, Department of Neurobiology, New Haven, Connecticut 06511, USA
| | | | | | | | | | | |
Collapse
|
49
|
Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. Proc Natl Acad Sci U S A 2007; 105:33-8. [PMID: 18162540 DOI: 10.1073/pnas.0710424105] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rapamycin is an immunosuppressive immunophilin ligand reported as having neurotrophic activity. We show that modification of rapamycin at the mammalian target of rapamycin (mTOR) binding region yields immunophilin ligands, WYE-592 and ILS-920, with potent neurotrophic activities in cortical neuronal cultures, efficacy in a rodent model for ischemic stroke, and significantly reduced immunosuppressive activity. Surprisingly, both compounds showed higher binding selectivity for FKBP52 versus FKBP12, in contrast to previously reported immunophilin ligands. Affinity purification revealed two key binding proteins, the immunophilin FKBP52 and the beta1-subunit of L-type voltage-dependent Ca(2+) channels (CACNB1). Electrophysiological analysis indicated that both compounds can inhibit L-type Ca(2+) channels in rat hippocampal neurons and F-11 dorsal root ganglia (DRG)/neuroblastoma cells. We propose that these immunophilin ligands can protect neurons from Ca(2+)-induced cell death by modulating Ca(2+) channels and promote neurite outgrowth via FKBP52 binding.
Collapse
|
50
|
Effects of rapamycin on gene expression, morphology, and electrophysiological properties of rat hippocampal neurons. Epilepsy Res 2007; 77:85-92. [PMID: 17983731 DOI: 10.1016/j.eplepsyres.2007.09.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 09/10/2007] [Accepted: 09/12/2007] [Indexed: 01/26/2023]
Abstract
PURPOSE We assayed the effects of rapamycin, an immunomodulatory agent known to inhibit the activity of the mammalian target of rapamycin (mTOR) cascade, on candidate gene expression and single unit firing properties in cultured rat hippocampal neurons as a strategy to define the effects of rapamycin on neuronal gene transcription and excitability. METHODS Rapamycin was added (100nM) to cultured hippocampal neurons on days 3 and 14. Neuronal somatic size and dendritic length were assayed by immunohistochemistry and digital imaging. Radiolabeled mRNA was amplified from single hippocampal pyramidal neurons and used to probe cDNA arrays containing over 100 distinct candidate genes including cytoskeletal element, growth factor, transcription factor, neurotransmitter, and ion channel genes. In addition, the effects of rapamycin (200nM) on spontaneous neuronal activity and voltage-dependent currents were assessed. RESULTS There were no effects of rapamycin on cell size or dendrite length. Rapamycin altered expression of distinct mRNAs in each gene family on days 3 and 14 in culture. Single unit recordings from neurons exposed to rapamycin exhibited no change from baseline. When spontaneous activity was increased by blocking GABA-mediated inhibition with bicuculline, a fraction of the neurons exhibited a decreased duration of spontaneous bursts and a decrease in synaptic inputs. Rapamycin did not appear to alter voltage-dependent Na(+) or K(+) currents underlying action potentials. CONCLUSIONS These data demonstrate that rapamycin does not produce neurotoxicity nor alter dendritic growth and complexity in vitro and does not significantly alter voltage-gated sodium and potassium currents. Rapamycin does affect neuronal gene transcription in vitro. Use of rapamycin in clinical trials for patients with tuberous sclerosis complex warrants vigilance for possible effects on seizure frequency and neurocognitive function.
Collapse
|