1
|
Girme A, Gupta V. A Case Report of the Coexistence of Gastric Cancer With Polycystic Kidney and Liver Disease: Unveiling the Complexity. Cureus 2024; 16:e53574. [PMID: 38445116 PMCID: PMC10914406 DOI: 10.7759/cureus.53574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 03/07/2024] Open
Abstract
Polycystic kidney disease (PKD) is a genetic disorder that comprises multiple cystic lesions in the kidneys. The association of PKD with gastric cancer has been studied. We present a rare presentation of stomach cancer with polycystic liver and kidney disease. A male patient in his 40s presented with epigastric pain, nausea, retrosternal burning, and occasional episodes of vomiting. Esophagogastroduodenoscopy revealed ulceroproliferative growth in the prepyloric region. Biopsies revealed moderately differentiated adenocarcinoma which was confirmed by contrast-enhanced computed tomography of the abdomen and pelvis. This showed a chance finding of polycystic kidney and liver disease. After confirmation with a positron emission tomography scan, the patient was diagnosed with gastric carcinoma (cT3N1M0, Stage IIB) with polycystic kidney and liver disease. We provide a case of early-stage stomach cancer in a patient with PKD. More extensive research is needed for a better understanding of this association between polycystic kidney and liver disease and gastric cancer development, to achieve earlier diagnosis.
Collapse
Affiliation(s)
- Amit Girme
- General Surgery, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, IND
| | - Vernika Gupta
- General Surgery, Dr. D. Y. Patil Medical College, Hospital & Research Centre, Pune, IND
| |
Collapse
|
2
|
Janečková E, Feng J, Guo T, Han X, Ghobadi A, Araujo-Villalba A, Rahman MS, Ziaei H, Ho TV, Pareek S, Alvarez J, Chai Y. Canonical Wnt signaling regulates soft palate development by mediating ciliary homeostasis. Development 2023; 150:dev201189. [PMID: 36825984 PMCID: PMC10108707 DOI: 10.1242/dev.201189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
Craniofacial morphogenesis requires complex interactions involving different tissues, signaling pathways, secreted factors and organelles. The details of these interactions remain elusive. In this study, we have analyzed the molecular mechanisms and homeostatic cellular activities governing soft palate development to improve regenerative strategies for individuals with cleft palate. We have identified canonical Wnt signaling as a key signaling pathway primarily active in cranial neural crest (CNC)-derived mesenchymal cells surrounding soft palatal myogenic cells. Using Osr2-Cre;β-cateninfl/fl mice, we show that Wnt signaling is indispensable for mesenchymal cell proliferation and subsequently for myogenesis through mediating ciliogenesis. Specifically, we have identified that Wnt signaling directly regulates expression of the ciliary gene Ttll3. Impaired ciliary disassembly leads to differentiation defects in mesenchymal cells and indirectly disrupts myogenesis through decreased expression of Dlk1, a mesenchymal cell-derived pro-myogenesis factor. Moreover, we show that siRNA-mediated reduction of Ttll3 expression partly rescues mesenchymal cell proliferation and myogenesis in the palatal explant cultures from Osr2-Cre;β-cateninfl/fl embryos. This study highlights the role of Wnt signaling in palatogenesis through the control of ciliary homeostasis, which establishes a new mechanism for Wnt-regulated craniofacial morphogenesis.
Collapse
Affiliation(s)
- Eva Janečková
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Aileen Ghobadi
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Angelita Araujo-Villalba
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Md Shaifur Rahman
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Heliya Ziaei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Siddhika Pareek
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jasmine Alvarez
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
3
|
Steidl ME, Nigro EA, Nielsen AK, Pagliarini R, Cassina L, Lampis M, Podrini C, Chiaravalli M, Mannella V, Distefano G, Yang M, Aslanyan M, Musco G, Roepman R, Frezza C, Boletta A. Primary cilia sense glutamine availability and respond via asparagine synthetase. Nat Metab 2023; 5:385-397. [PMID: 36879119 PMCID: PMC10042734 DOI: 10.1038/s42255-023-00754-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Depriving cells of nutrients triggers an energetic crisis, which is resolved by metabolic rewiring and organelle reorganization. Primary cilia are microtubule-based organelles at the cell surface, capable of integrating multiple metabolic and signalling cues, but their precise sensory function is not fully understood. Here we show that primary cilia respond to nutrient availability and adjust their length via glutamine-mediated anaplerosis facilitated by asparagine synthetase (ASNS). Nutrient deprivation causes cilia elongation, mediated by reduced mitochondrial function, ATP availability and AMPK activation independently of mTORC1. Of note, glutamine removal and replenishment is necessary and sufficient to induce ciliary elongation or retraction, respectively, under nutrient stress conditions both in vivo and in vitro by restoring mitochondrial anaplerosis via ASNS-dependent glutamate generation. Ift88-mutant cells lacking cilia show reduced glutamine-dependent mitochondrial anaplerosis during metabolic stress, due to reduced expression and activity of ASNS at the base of cilia. Our data indicate a role for cilia in responding to, and possibly sensing, cellular glutamine levels via ASNS during metabolic stress.
Collapse
Affiliation(s)
- Maria Elena Steidl
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Ph.D Program in Molecular and Cellular Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa A Nigro
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Anne Kallehauge Nielsen
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Ph.D Program in Molecular and Cellular Biology, Vita-Salute San Raffaele University, Milan, Italy
| | - Roberto Pagliarini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Laura Cassina
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Lampis
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Christine Podrini
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Marco Chiaravalli
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Mannella
- Center for Omics Sciences, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Gianfranco Distefano
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Ming Yang
- MRC, Cancer Unit Cambridge, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- CECAD Research Center, Cologne, Germany
| | - Mariam Aslanyan
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Giovanna Musco
- Biomolecular Nuclear Magnetic Resonance Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Ronald Roepman
- Department of Human Genetics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Frezza
- MRC, Cancer Unit Cambridge, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- CECAD Research Center, Cologne, Germany
| | - Alessandra Boletta
- Molecular Basis of Cystic Kidney Disorders Unit, Division of Genetics and Cell Biology, IRCCS, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
4
|
Agborbesong E, Li LX, Li L, Li X. Molecular Mechanisms of Epigenetic Regulation, Inflammation, and Cell Death in ADPKD. Front Mol Biosci 2022; 9:922428. [PMID: 35847973 PMCID: PMC9277309 DOI: 10.3389/fmolb.2022.922428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder, which is caused by mutations in the PKD1 and PKD2 genes, characterizing by progressive growth of multiple cysts in the kidneys, eventually leading to end-stage kidney disease (ESKD) and requiring renal replacement therapy. In addition, studies indicate that disease progression is as a result of a combination of factors. Understanding the molecular mechanisms, therefore, should facilitate the development of precise therapeutic strategies for ADPKD treatment. The roles of epigenetic modulation, interstitial inflammation, and regulated cell death have recently become the focuses in ADPKD. Different epigenetic regulators, and the presence of inflammatory markers detectable even before cyst growth, have been linked to cyst progression. Moreover, the infiltration of inflammatory cells, such as macrophages and T cells, have been associated with cyst growth and deteriorating renal function in humans and PKD animal models. There is evidence supporting a direct role of the PKD gene mutations to the regulation of epigenetic mechanisms and inflammatory response in ADPKD. In addition, the role of regulated cell death, including apoptosis, autophagy and ferroptosis, have been investigated in ADPKD. However, there is no consensus whether cell death promotes or delays cyst growth in ADPKD. It is therefore necessary to develop an interactive picture between PKD gene mutations, the epigenome, inflammation, and cell death to understand why inherited PKD gene mutations in patients may result in the dysregulation of these processes that increase the progression of renal cyst formation.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Lu Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Scholz JK, Kraus A, Lüder D, Skoczynski K, Schiffer M, Grampp S, Schödel J, Buchholz B. Loss of Polycystin-1 causes cAMP-dependent switch from tubule to cyst formation. iScience 2022; 25:104359. [PMID: 35620436 PMCID: PMC9127160 DOI: 10.1016/j.isci.2022.104359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/23/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease is the most common monogenic disease that causes end-stage renal failure. It primarily results from mutations in the PKD1 gene that encodes for Polycystin-1. How loss of Polycystin-1 translates into bilateral renal cyst development is mostly unknown. cAMP is significantly involved in cyst enlargement but its role in cyst initiation has remained elusive. Deletion of Polycystin-1 in collecting duct cells resulted in a switch from tubule to cyst formation and was accompanied by an increase in cAMP. Pharmacological elevation of cAMP in Polycystin-1-competent cells caused cyst formation, impaired plasticity, nondirectional migration, and mis-orientation, and thus strongly resembled the phenotype of Polycystin-1-deficient cells. Mis-orientation of developing tubule cells in metanephric kidneys upon loss of Polycystin-1 was phenocopied by pharmacological increase of cAMP in wildtype kidneys. In vitro, cAMP impaired tubule formation after capillary-induced injury which was further impaired by loss Polycystin-1. Loss of Polycystin-1 switches renal cells from tubule to cyst formation Deletion of Polycystin-1 leads to increase in cAMP Elevation of cAMP in wildtype cells phenocopies Polycystin-1-deficient features Features are: impaired plasticity, nondirectional migration, and mis-orientation
Collapse
|
6
|
Liu M, Cardilla A, Ngeow J, Gong X, Xia Y. Studying Kidney Diseases Using Organoid Models. Front Cell Dev Biol 2022; 10:845401. [PMID: 35309912 PMCID: PMC8927804 DOI: 10.3389/fcell.2022.845401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
The prevalence of chronic kidney disease (CKD) is rapidly increasing over the last few decades, owing to the global increase in diabetes, and cardiovascular diseases. Dialysis greatly compromises the life quality of patients, while demand for transplantable kidney cannot be met, underscoring the need to develop novel therapeutic approaches to stop or reverse CKD progression. Our understanding of kidney disease is primarily derived from studies using animal models and cell culture. While cross-species differences made it challenging to fully translate findings from animal models into clinical practice, primary patient cells quickly lose the original phenotypes during in vitro culture. Over the last decade, remarkable achievements have been made for generating 3-dimensional (3D) miniature organs (organoids) by exposing stem cells to culture conditions that mimic the signaling cues required for the development of a particular organ or tissue. 3D kidney organoids have been successfully generated from different types of source cells, including human pluripotent stem cells (hPSCs), adult/fetal renal tissues, and kidney cancer biopsy. Alongside gene editing tools, hPSC-derived kidney organoids are being harnessed to model genetic kidney diseases. In comparison, adult kidney-derived tubuloids and kidney cancer-derived tumoroids are still in their infancy. Herein, we first summarize the currently available kidney organoid models. Next, we discuss recent advances in kidney disease modelling using organoid models. Finally, we consider the major challenges that have hindered the application of kidney organoids in disease modelling and drug evaluation and propose prospective solutions.
Collapse
Affiliation(s)
- Meng Liu
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Angelysia Cardilla
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Joanne Ngeow
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Cancer Genetics Service, National Cancer Centre Singapore, Singapore, Singapore
| | - Ximing Gong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- *Correspondence: Ximing Gong, ; Yun Xia,
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- *Correspondence: Ximing Gong, ; Yun Xia,
| |
Collapse
|
7
|
Sousa MV, Amaral AG, Freitas JA, Murata GM, Watanabe EH, Balbo BE, Tavares MD, Hortegal RA, Rocon C, Souza LE, Irigoyen MC, Salemi VM, Onuchic LF. Smoking accelerates renal cystic disease and worsens cardiac phenotype in Pkd1-deficient mice. Sci Rep 2021; 11:14443. [PMID: 34262092 PMCID: PMC8280209 DOI: 10.1038/s41598-021-93633-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/23/2021] [Indexed: 11/08/2022] Open
Abstract
Smoking has been associated with renal disease progression in ADPKD but the underlying deleterious mechanisms and whether it specifically worsens the cardiac phenotype remain unknown. To investigate these matters, Pkd1-deficient cystic mice and noncystic littermates were exposed to smoking from conception to 18 weeks of age and, along with nonexposed controls, were analyzed at 13-18 weeks. Renal cystic index and cyst-lining cell proliferation were higher in cystic mice exposed to smoking than nonexposed cystic animals. Smoking increased serum urea nitrogen in cystic and noncystic mice and independently enhanced tubular cell proliferation and apoptosis. Smoking also increased renal fibrosis, however this effect was much higher in cystic than in noncystic animals. Pkd1 deficiency and smoking showed independent and additive effects on reducing renal levels of glutathione. Systolic function and several cardiac structural parameters were also negatively affected by smoking and the Pkd1-deficient status, following independent and additive patterns. Smoking did not increase, however, cardiac apoptosis or fibrosis in cystic and noncystic mice. Notably, smoking promoted a much higher reduction in body weight in Pkd1-deficient than in noncystic animals. Our findings show that smoking aggravated the renal and cardiac phenotypes of Pkd1-deficient cystic mice, suggesting that similar effects may occur in human ADPKD.
Collapse
Affiliation(s)
- Marciana V Sousa
- Divisions of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Andressa G Amaral
- Divisions of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Jessica A Freitas
- Divisions of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Gilson M Murata
- Divisions of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Elieser H Watanabe
- Divisions of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Bruno E Balbo
- Divisions of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil
| | - Marcelo D Tavares
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Renato A Hortegal
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Camila Rocon
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Leandro E Souza
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Maria C Irigoyen
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Vera M Salemi
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luiz F Onuchic
- Divisions of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, Avenida Dr. Arnaldo, 455 - Sala 4304, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
8
|
Yasuda T, Ishikawa T, Hirose R, Doi T, Inoue K, Dohi O, Yoshida N, Kamada K, Uchiyama K, Takagi T, Konishi H, Inamori O, Morinaga Y, Konishi E, Naito Y, Itoh Y. Aggressive advanced gastric cancer in a patient with autosomal dominant polycystic kidney disease. Clin J Gastroenterol 2021; 14:1014-1019. [PMID: 34028786 DOI: 10.1007/s12328-021-01407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
A 60-year-old man with autosomal dominant polycystic kidney disease presented with malaise, melena, and epigastric discomfort. Esophagogastroduodenoscopy revealed a massive elevated gastric cancer lesion involving the cardia. Histopathological evaluation of a biopsy specimen showed poorly differentiated adenocarcinoma. Fluorodeoxyglucose-positron emission tomography revealed significant fluorodeoxyglucose uptake in the stomach, liver, bones, and bone marrow. He was diagnosed with metastatic gastric cancer resistant to chemotherapy, and he developed bone marrow carcinomatosis and disseminated intravascular coagulation and died 8 weeks after disease onset. A statistically significant association is reported between autosomal dominant polycystic kidney disease and gastric cancer. Moreover, the specific clinical features observed in our patient could be attributed to the molecular disorders like PC-1 and mechanistic target of rapamycin that are known to occur in autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Takeshi Yasuda
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takeshi Ishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Ryohei Hirose
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshifumi Doi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ken Inoue
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Naohisa Yoshida
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuhiro Kamada
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kazuhiko Uchiyama
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomohisa Takagi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hideyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Osamu Inamori
- Department of Surgical Pathology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yukiko Morinaga
- Department of Surgical Pathology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
9
|
Nigro EA, Boletta A. Role of the polycystins as mechanosensors of extracellular stiffness. Am J Physiol Renal Physiol 2021; 320:F693-F705. [PMID: 33615892 DOI: 10.1152/ajprenal.00545.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polycystin-1 (PC-1) is a transmembrane protein, encoded by the PKD1 gene, mutated in autosomal dominant polycystic kidney disease (ADPKD). This common genetic disorder, characterized by cyst formation in both kidneys, ultimately leading to renal failure, is still waiting for a definitive treatment. The overall function of PC-1 and the molecular mechanism responsible for cyst formation are slowly coming to light, but they are both still intensively studied. In particular, PC-1 has been proposed to act as a mechanosensor, although the precise signal that activates the mechanical properties of this protein has been long debated and questioned. In this review, we report studies and evidence of PC-1 function as a mechanosensor, starting from the peculiarity of its structure, through the long journey that progressively shed new light on the potential initiating events of cystogenesis, concluding with the description of PC-1 recently shown ability to sense the mechanical stimuli provided by the stiffness of the extracellular environment. These new findings have potentially important implications for the understanding of ADPKD pathophysiology and potentially for designing new therapies.NEW & NOTEWORTHY Polycystin-1 has recently emerged as a possible receptor able to sense extracellular stiffness and to negatively control the cellular actomyosin contraction machinery. Here, we revisit a large body of literature on autosomal dominant polycystic kidney disease providing a new possible mechanistic view on the topic.
Collapse
Affiliation(s)
- Elisa A Nigro
- Molecular Basis of Cystic Kidney Diseases, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Boletta
- Molecular Basis of Cystic Kidney Diseases, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
10
|
Dixon EE, Maxim DS, Halperin Kuhns VL, Lane-Harris AC, Outeda P, Ewald AJ, Watnick TJ, Welling PA, Woodward OM. GDNF drives rapid tubule morphogenesis in a novel 3D in vitro model for ADPKD. J Cell Sci 2020; 133:jcs249557. [PMID: 32513820 PMCID: PMC7375472 DOI: 10.1242/jcs.249557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/03/2023] Open
Abstract
Cystogenesis is a morphological consequence of numerous genetic diseases of the epithelium. In the kidney, the pathogenic mechanisms underlying the program of altered cell and tubule morphology are obscured by secondary effects of cyst expansion. Here, we developed a new 3D tubuloid system to isolate the rapid changes in protein localization and gene expression that correlate with altered cell and tubule morphology during cyst initiation. Mouse renal tubule fragments were pulsed with a cell differentiation cocktail including glial-derived neurotrophic factor (GDNF) to yield collecting duct-like tubuloid structures with appropriate polarity, primary cilia, and gene expression. Using the 3D tubuloid model with an inducible Pkd2 knockout system allowed the tracking of morphological, protein, and genetic changes during cyst formation. Within hours of inactivation of Pkd2 and loss of polycystin-2, we observed significant progression in tubuloid to cyst morphology that correlated with 35 differentially expressed genes, many related to cell junctions, matrix interactions, and cell morphology previously implicated in cystogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Eryn E Dixon
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| | - Demetrios S Maxim
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| | | | - Allison C Lane-Harris
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| | - Patricia Outeda
- University of Maryland School of Medicine, Department of Medicine, Baltimore, MD 21201, USA
| | - Andrew J Ewald
- Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD 21205, USA
| | - Terry J Watnick
- University of Maryland School of Medicine, Department of Medicine, Baltimore, MD 21201, USA
| | - Paul A Welling
- Johns Hopkins University School of Medicine, Departments of Medicine and Physiology, Baltimore, MD 21205, USA
| | - Owen M Woodward
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Nowak KL, Edelstein CL. Apoptosis and autophagy in polycystic kidney disease (PKD). Cell Signal 2019; 68:109518. [PMID: 31881325 DOI: 10.1016/j.cellsig.2019.109518] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023]
Abstract
Apoptosis in the cystic epithelium is observed in most rodent models of polycystic kidney disease (PKD) and in human autosomal dominant PKD (ADPKD). Apoptosis inhibition decreases cyst growth, whereas induction of apoptosis in the kidney of Bcl-2 deficient mice increases proliferation of the tubular epithelium and subsequent cyst formation. However, alternative evidence indicates that both induction of apoptosis as well as increased overall rates of apoptosis are associated with decreased cyst growth. Autophagic flux is suppressed in cell, zebra fish and mouse models of PKD and suppressed autophagy is known to be associated with increased apoptosis. There may be a link between apoptosis and autophagy in PKD. The mammalian target of rapamycin (mTOR), B-cell lymphoma 2 (Bcl-2) and caspase pathways that are known to be dysregulated in PKD, are also known to regulate both autophagy and apoptosis. Induction of autophagy in cell and zebrafish models of PKD results in suppression of apoptosis and reduced cyst growth supporting the hypothesis autophagy induction may have a therapeutic role in decreasing cyst growth, perhaps by decreasing apoptosis and proliferation in PKD. Future research is needed to evaluate the effects of direct autophagy inducers on apoptosis in rodent PKD models, as well as the cause and effect relationship between autophagy, apoptosis and cyst growth in PKD.
Collapse
Affiliation(s)
- Kristen L Nowak
- Division of Renal Diseases and Hypertension, Univ. of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, Univ. of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
12
|
Polycystin-1 Regulates Actomyosin Contraction and the Cellular Response to Extracellular Stiffness. Sci Rep 2019; 9:16640. [PMID: 31719603 PMCID: PMC6851149 DOI: 10.1038/s41598-019-53061-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/24/2019] [Indexed: 01/01/2023] Open
Abstract
Polycystin-1 (PC-1) and 2 (PC-2) are the products of the PKD1 and PKD2 genes, which are mutated in Autosomal Dominant Polycystic Kidney Disease (ADPKD). They form a receptor/channel complex that has been suggested to function as a mechanosensor, possibly activated by ciliary bending in the renal tubule, and resulting in calcium influx. This model has recently been challenged, leaving the question as to which mechanical stimuli activate the polycystins still open. Here, we used a SILAC/Mass-Spec approach to identify intracellular binding partners of tagged-endogenous PC-1 whereby we detected a class of interactors mediating regulation of cellular actomyosin contraction. Accordingly, using gain and loss-of-function cellular systems we found that PC-1 negatively regulates cellular contraction and YAP activation in response to extracellular stiffness. Thus, PC-1 enables cells to sense the rigidity of the extracellular milieu and to respond appropriately. Of note, in an orthologous murine model of PKD we found evidence of increased actomyosin contraction, leading to enhanced YAP nuclear translocation and transcriptional activity. Finally, we show that inhibition of ROCK-dependent actomyosin contraction by Fasudil reversed YAP activation and significantly improved disease progression, in line with recent studies. Our data suggest a possible direct role of PC-1 as a mechanosensor of extracellular stiffness.
Collapse
|
13
|
Micropattern-based platform as a physiologically relevant model to study epithelial morphogenesis and nephrotoxicity. Biomaterials 2019; 218:119339. [DOI: 10.1016/j.biomaterials.2019.119339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/09/2023]
|
14
|
Pkd1-targeted mutation reveals a role for the Wolffian duct in autosomal dominant polycystic kidney disease. J Dev Orig Health Dis 2019; 11:78-85. [PMID: 31412963 DOI: 10.1017/s2040174419000436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several life-threatening diseases of the kidney have their origins in mutational events that occur during embryonic development. In this study, we investigate the role of the Wolffian duct (WD), the earliest embryonic epithelial progenitor of renal tubules, in the etiology of autosomal dominant polycystic kidney disease (ADPKD). ADPKD is associated with a germline mutation of one of the two Pkd1 alleles. For the disease to occur, a second event that disrupts the expression of the other inherited Pkd1 allele must occur. We postulated that this secondary event can occur in the pronephric WD. Using Cre-Lox recombination, mice with WD-specific deletion of one or both Pkd1 alleles were generated. Homozygous Pkd1-targeted deletion in WD-derived tissues resulted in mice with large cystic kidneys and serologic evidence of renal failure. In contrast, heterozygous deletion of Pkd1 in the WD led to kidneys that were phenotypically indistinguishable from control in the early postnatal period. High-throughput sequencing, however, revealed underlying gene and microRNA (miRNA) changes in these heterozygous mutant kidneys that suggest a strong predisposition toward developing ADPKD. Bioinformatic analysis of this data demonstrated an upregulation of several miRNAs that have been previously associated with PKD; pathway analysis further demonstrated that the differentially expressed genes in the heterozygous mutant kidneys were overrepresented in signaling pathways associated with maintenance and function of the renal tubular epithelium. These results suggest that the WD may be an early epithelial target for the genetic or molecular signals that can lead to cyst formation in ADPKD.
Collapse
|
15
|
Hong S, Banchereau R, Maslow BSL, Guerra MM, Cardenas J, Baisch J, Branch DW, Porter TF, Sawitzke A, Laskin CA, Buyon JP, Merrill J, Sammaritano LR, Petri M, Gatewood E, Cepika AM, Ohouo M, Obermoser G, Anguiano E, Kim TW, Nulsen J, Nehar-Belaid D, Blankenship D, Turner J, Banchereau J, Salmon JE, Pascual V. Longitudinal profiling of human blood transcriptome in healthy and lupus pregnancy. J Exp Med 2019; 216:1154-1169. [PMID: 30962246 PMCID: PMC6504211 DOI: 10.1084/jem.20190185] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Healthy and uncomplicated lupus pregnancies exhibit early and sustained transcriptional modulation of lupus-related pathways. This might contribute to fetal tolerance while predisposing pregnant women to certain infections. Failure to modulate these pathways is associated with lupus pregnancy complications. Systemic lupus erythematosus carries an increased risk of pregnancy complications, including preeclampsia and fetal adverse outcomes. To identify the underlying molecular mechanisms, we longitudinally profiled the blood transcriptome of 92 lupus patients and 43 healthy women during pregnancy and postpartum and performed multicolor flow cytometry in a subset of them. We also profiled 25 healthy women undergoing assisted reproductive technology to monitor transcriptional changes around embryo implantation. Sustained down-regulation of multiple immune signatures, including interferon and plasma cells, was observed during healthy pregnancy. These changes appeared early after embryo implantation and were mirrored in uncomplicated lupus pregnancies. Patients with preeclampsia displayed early up-regulation of neutrophil signatures that correlated with expansion of immature neutrophils. Lupus pregnancies with fetal complications carried the highest interferon and plasma cell signatures as well as activated CD4+ T cell counts. Thus, blood immunomonitoring reveals that both healthy and uncomplicated lupus pregnancies exhibit early and sustained transcriptional modulation of lupus-related signatures, and a lack thereof associates with adverse outcomes.
Collapse
Affiliation(s)
- Seunghee Hong
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY.,Department of Pediatrics, Weill Cornell Medicine, New York, NY.,Baylor Institute for Immunology Research, Dallas, TX
| | - Romain Banchereau
- Baylor Institute for Immunology Research, Dallas, TX.,Oncology Biomarker Development, Genentech, South San Francisco, CA
| | | | - Marta M Guerra
- Department of Medicine and Program in Inflammation and Autoimmunity, Hospital for Special Surgery, New York, NY
| | | | - Jeanine Baisch
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY.,Department of Pediatrics, Weill Cornell Medicine, New York, NY.,Baylor Institute for Immunology Research, Dallas, TX
| | - D Ware Branch
- University of Utah Health Sciences Center, Salt Lake City, UT.,Intermountain Healthcare, Salt Lake City, UT
| | - T Flint Porter
- University of Utah Health Sciences Center, Salt Lake City, UT.,Intermountain Healthcare, Salt Lake City, UT
| | - Allen Sawitzke
- University of Utah Health Sciences Center, Salt Lake City, UT
| | - Carl A Laskin
- Mount Sinai Hospital and the University of Toronto, Toronto, Ontario, Canada
| | - Jill P Buyon
- New York University School of Medicine, New York, NY
| | - Joan Merrill
- Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Lisa R Sammaritano
- Department of Medicine and Program in Inflammation and Autoimmunity, Hospital for Special Surgery, New York, NY.,Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Michelle Petri
- Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - Marina Ohouo
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY.,Department of Pediatrics, Weill Cornell Medicine, New York, NY.,Baylor Institute for Immunology Research, Dallas, TX
| | | | | | - Tae Whan Kim
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY.,Department of Pediatrics, Weill Cornell Medicine, New York, NY.,Baylor Institute for Immunology Research, Dallas, TX
| | - John Nulsen
- University of Connecticut School of Medicine, Farmington, CT
| | | | | | - Jacob Turner
- Baylor Institute for Immunology Research, Dallas, TX
| | | | - Jane E Salmon
- Department of Medicine and Program in Inflammation and Autoimmunity, Hospital for Special Surgery, New York, NY.,Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Virginia Pascual
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY.,Department of Pediatrics, Weill Cornell Medicine, New York, NY.,Baylor Institute for Immunology Research, Dallas, TX
| |
Collapse
|
16
|
Kim K, Trott JF, Gao G, Chapman A, Weiss RH. Plasma metabolites and lipids associate with kidney function and kidney volume in hypertensive ADPKD patients early in the disease course. BMC Nephrol 2019; 20:66. [PMID: 30803434 PMCID: PMC6388487 DOI: 10.1186/s12882-019-1249-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/06/2019] [Indexed: 01/09/2023] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and is characterized by gradual cyst growth and expansion, increase in kidney volume with an ultimate decline in kidney function leading to end stage renal disease (ESRD). Given the decades long period of stable kidney function while cyst growth occurs, it is important to identify those patients who will progress to ESRD. Recent data from our and other laboratories have demonstrated that metabolic reprogramming may play a key role in cystic epithelial proliferation resulting in cyst growth in ADPKD. Height corrected total kidney volume (ht-TKV) accurately reflects cyst burden and predicts future loss of kidney function. We hypothesize that specific plasma metabolites will correlate with eGFR and ht-TKV early in ADPKD, both predictors of disease progression, potentially indicative of early physiologic derangements of renal disease severity. Methods To investigate the predictive role of plasma metabolites on eGFR and/or ht-TKV, we used a non-targeted GC-TOF/MS-based metabolomics approach on hypertensive ADPKD patients in the early course of their disease. Patient data was obtained from the HALT-A randomized clinical trial at baseline including estimated glomerular filtration rate (eGFR) and measured ht-TKV. To identify individual metabolites whose intensities are significantly correlated with eGFR and ht-TKV, association analyses were performed using linear regression with each metabolite signal level as the primary predictor variable and baseline eGFR and ht-TKV as the continuous outcomes of interest, while adjusting for covariates. Significance was determined by Storey’s false discovery rate (FDR) q-values to correct for multiple testing. Results Twelve metabolites significantly correlated with eGFR and two triglycerides significantly correlated with baseline ht-TKV at FDR q-value < 0.05. Specific significant metabolites, including pseudo-uridine, indole-3-lactate, uric acid, isothreonic acid, and creatinine, have been previously shown to accumulate in plasma and/or urine in both diabetic and cystic renal diseases with advanced renal insufficiency. Conclusions This study identifies metabolic derangements in early ADPKD which may be prognostic for ADPKD disease progression. Clinical trial HALT Progression of Polycystic Kidney Disease (HALT PKD) Study A; Clinical www.clinicaltrials.gov identifier: NCT00283686; first posted January 30, 2006, last update posted March 19, 2015. Electronic supplementary material The online version of this article (10.1186/s12882-019-1249-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Josephine F Trott
- Division of Nephrology, Department of Internal Medicine, University of California, Genome and Biomedical Sciences Building, Room 6311, 451 Health Sciences Dr, Davis, CA, 95616, USA
| | - Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Arlene Chapman
- Nephrology Section, University of Chicago, Chicago, IL, USA
| | - Robert H Weiss
- Division of Nephrology, Department of Internal Medicine, University of California, Genome and Biomedical Sciences Building, Room 6311, 451 Health Sciences Dr, Davis, CA, 95616, USA. .,Cancer Center, University of California, Davis, CA, USA. .,Medical Service, VA Northern California Health Care System, Sacramento, CA, USA.
| |
Collapse
|
17
|
Samuelson H, Giannotti G, Guralnick A. Jejunal lymphangioma causing intussusception in an adult: An unusual case with review of the literature. Ann Med Surg (Lond) 2018; 34:39-42. [PMID: 30210794 PMCID: PMC6132174 DOI: 10.1016/j.amsu.2018.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 02/07/2023] Open
Abstract
Introduction Adult intussusception is rare, and 90% are due to a lead point secondary to a pathologic condition. Lymphangioma is an uncommon tumor of the lymphatic system and is rarely found within the small bowel. Small bowel lymphangioma causing intussuception in an adult is a rare occurrence, with three very distinct rare pathologies occurring simultaneously Case description A 70-year-old male patient with multiple pre-existing pathologies such as advanced ADPKD, multiple persistent tubulovillous colon polyps and colon cancer in situ, was hospitalized due to rapid weight loss of 20 lbs, hematemesis, and abdominal pain. He was subsequently found to have jejunal intussusception caused by two lymphangiomas of the small bowel. The portion of intussuscepted jejunum was resected and final diagnosis on pathology was two jejunal lymphangiomas. Discussion Lymphangiomas of the small bowel are rare, but increasing in incidence due to the accessibility of endoscopic evaluations. A hypothetical connection between lymphangioma and ADPKD is unknown, but both diseases are built on a foundation of cystogenesis. There is little known about the effect ADPKD on cystogenesis and tumor formation extra-renally, and there is a possible correlation between genetic mutations in polycystin and cystic tumors such as lymphangiomas. Conclusion Lymphangioma, although rare in the small bowel, is a possible cause of intussusception and should be considered on the differential of abdominal pain in adults. The pathogenesis of polycystic kidney disease has implications that could predispose to cystic development beyond the kidney, and more research into the genetic mechanism behind the disease is necessary to support or deny this claim. Intussusception is a rare finding in adults, but should be considered on the differential for abdominal pain until ruled out using a thorough review of the imaging and symptom set. Lymphangiomas of the small bowel are rare compared to occurrence in the head and neck, but if found they can cause a lead point through which intussusception can occur. The effect of cytogenesis and tumor formation extra-renally in autosomal dominant polycystic kidney disease is poorly understood. Implications for formation of these cysts and tumors outside of the kidneys could explain this incidence of lymphangioma, and possibly his list of multiple other gastrointestinal cancers.
Collapse
|
18
|
Yanda MK, Liu Q, Cebotaru L. A potential strategy for reducing cysts in autosomal dominant polycystic kidney disease with a CFTR corrector. J Biol Chem 2018; 293:11513-11526. [PMID: 29875161 DOI: 10.1074/jbc.ra118.001846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/22/2018] [Indexed: 12/27/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is associated with progressive enlargement of cysts, leading to a decline in function and renal failure that cannot be prevented by current treatments. Mutations in pkd1 and pkd2, encoding the polycystin 1 and 2 proteins, induce growth-related pathways, including heat shock proteins, as occurs in some cancers, raising the prospect that pharmacological interventions that target these pathways might alleviate or prevent ADPKD. Here, we demonstrate a role for VX-809, a corrector of cystic fibrosis transmembrane conductance regulator (CFTR), conventionally used to manage cystic fibrosis in reducing renal cyst growth. VX-809 reduced cyst growth in Pkd1-knockout mice and in proximal, tubule-derived, cultured Pkd1 knockout cells. VX-809 reduced both basal and forskolin-activated cAMP levels and also decreased the expression of the adenylyl cyclase AC3 but not of AC6. VX-809 also decreased resting levels of intracellular Ca2+ but did not affect ATP-stimulated Ca2+ release. Notably, VX-809 dramatically decreased thapsigargin-induced release of Ca2+ from the endoplasmic reticulum (ER). VX-809 also reduced the levels of heat shock proteins Hsp27, Hsp70, and Hsp90 in mice cystic kidneys, consistent with the restoration of cellular proteostasis. Moreover, VX-809 strongly decreased an ER stress marker, the GADD153 protein, and cell proliferation but had only a small effect on apoptosis. Given that administration of VX-809 is safe, this drug potentially offers a new way to treat patients with ADPKD.
Collapse
Affiliation(s)
- Murali K Yanda
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Qiangni Liu
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Liudmila Cebotaru
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|
19
|
Lin CC, Kurashige M, Liu Y, Terabayashi T, Ishimoto Y, Wang T, Choudhary V, Hobbs R, Liu LK, Lee PH, Outeda P, Zhou F, Restifo NP, Watnick T, Kawano H, Horie S, Prinz W, Xu H, Menezes LF, Germino GG. A cleavage product of Polycystin-1 is a mitochondrial matrix protein that affects mitochondria morphology and function when heterologously expressed. Sci Rep 2018; 8:2743. [PMID: 29426897 PMCID: PMC5807443 DOI: 10.1038/s41598-018-20856-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Recent studies have reported intrinsic metabolic reprogramming in Pkd1 knock-out cells, implicating dysregulated cellular metabolism in the pathogenesis of polycystic kidney disease. However, the exact nature of the metabolic changes and their underlying cause remains controversial. We show herein that Pkd1 k o /ko renal epithelial cells have impaired fatty acid utilization, abnormal mitochondrial morphology and function, and that mitochondria in kidneys of ADPKD patients have morphological alterations. We further show that a C-terminal cleavage product of polycystin-1 (CTT) translocates to the mitochondria matrix and that expression of CTT in Pkd1 ko/ko cells rescues some of the mitochondrial phenotypes. Using Drosophila to model in vivo effects, we find that transgenic expression of mouse CTT results in decreased viability and exercise endurance but increased CO2 production, consistent with altered mitochondrial function. Our results suggest that PC1 may play a direct role in regulating mitochondrial function and cellular metabolism and provide a framework to understand how impaired mitochondrial function could be linked to the regulation of tubular diameter in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Cheng-Chao Lin
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mahiro Kurashige
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yi Liu
- Laboratory of Molecular Genetics; National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Takeshi Terabayashi
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yu Ishimoto
- Division of Nephrology and Endocrinology and the Division of CKD Pathophysiology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tanchun Wang
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Vineet Choudhary
- Laboratory of Cell and Molecular Biology; National Institute of Diabetes and Digestive and Kidney Disease, NIH, Bethesda, MD, USA
| | - Ryan Hobbs
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Li-Ka Liu
- Laboratory of Cell and Molecular Biology; National Institute of Diabetes and Digestive and Kidney Disease, NIH, Bethesda, MD, USA
| | - Ping-Hsien Lee
- Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Patricia Outeda
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fang Zhou
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nicholas P Restifo
- Center for Cell-Based Therapy, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Terry Watnick
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haruna Kawano
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - William Prinz
- Laboratory of Cell and Molecular Biology; National Institute of Diabetes and Digestive and Kidney Disease, NIH, Bethesda, MD, USA
| | - Hong Xu
- Laboratory of Molecular Genetics; National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Luis F Menezes
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Gregory G Germino
- Kidney Disease Branch; National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
20
|
Cruz NM, Song X, Czerniecki SM, Gulieva RE, Churchill AJ, Kim YK, Winston K, Tran LM, Diaz MA, Fu H, Finn LS, Pei Y, Himmelfarb J, Freedman BS. Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. NATURE MATERIALS 2017; 16:1112-1119. [PMID: 28967916 PMCID: PMC5936694 DOI: 10.1038/nmat4994] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/29/2017] [Indexed: 05/23/2023]
Abstract
Polycystic kidney disease (PKD) is a life-threatening disorder, commonly caused by defects in polycystin-1 (PC1) or polycystin-2 (PC2), in which tubular epithelia form fluid-filled cysts. A major barrier to understanding PKD is the absence of human cellular models that accurately and efficiently recapitulate cystogenesis. Previously, we have generated a genetic model of PKD using human pluripotent stem cells and derived kidney organoids. Here we show that systematic substitution of physical components can dramatically increase or decrease cyst formation, unveiling a critical role for microenvironment in PKD. Removal of adherent cues increases cystogenesis 10-fold, producing cysts phenotypically resembling PKD that expand massively to 1-centimetre diameters. Removal of stroma enables outgrowth of PKD cell lines, which exhibit defects in PC1 expression and collagen compaction. Cyclic adenosine monophosphate (cAMP), when added, induces cysts in both PKD organoids and controls. These biomaterials establish a highly efficient model of PKD cystogenesis that directly implicates the microenvironment at the earliest stages of the disease.
Collapse
Affiliation(s)
- Nelly M. Cruz
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Xuewen Song
- Division of Nephrology, University Health Network, ON, M5G2N2, Canada
- University of Toronto, Toronto, ON, M5G2N2, Canada
| | - Stefan M. Czerniecki
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Ramila E. Gulieva
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Angela J. Churchill
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Yong Kyun Kim
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Kosuke Winston
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Linh M. Tran
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Marco A. Diaz
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Hongxia Fu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Division of Hematology, Department of Medicine and Seattle WA 98109, USA
- Department of Bioengineering, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Laura S. Finn
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98105, USA
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - York Pei
- Division of Nephrology, University Health Network, ON, M5G2N2, Canada
- University of Toronto, Toronto, ON, M5G2N2, Canada
| | - Jonathan Himmelfarb
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| | - Benjamin S. Freedman
- Division of Nephrology, University of Washington School of Medicine, Seattle WA 98109, USA
- Kidney Research Institute, University of Washington School of Medicine, Seattle WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
- Department of Medicine, University of Washington School of Medicine, Seattle WA 98109, USA
| |
Collapse
|
21
|
Polycystin-1 inhibits eIF2α phosphorylation and cell apoptosis through a PKR-eIF2α pathway. Sci Rep 2017; 7:11493. [PMID: 28904368 PMCID: PMC5597606 DOI: 10.1038/s41598-017-11526-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/21/2017] [Indexed: 01/06/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2 which encodes polycystin-1 (PC1) and polycystin-2, respectively. PC1 was previously shown to slow cell proliferation and inhibit apoptosis but the underlying mechanisms remain elusive or controversial. Here we showed in cultured mammalian cells and Pkd1 knockout mouse kidney epithelial cells that PC1 and its truncation mutant comprising the last five transmembrane segments and the intracellular C-terminus (PC1-5TMC) down-regulate the phosphorylation of protein kinase R (PKR) and its substrate eukaryotic translation initiation factor 2 alpha (eIF2α). PKR is known to be activated by interferons and dsRNAs, inhibits protein synthesis and induces apoptosis. By co-immunoprecipitation experiments we found that PC1 truncation mutants associate with PKR, or with PKR and its activator PACT. Further experiments showed that PC1 and PC1-5TMC reduce phosphorylation of eIF2α through inhibiting PKR phosphorylation. Our TUNEL experiments using tunicamycin, an apoptosis inducer, and GADD34, an inhibitor of eIF2α phosphorylation, demonstrated that PC1-5TMC inhibits apoptosis of HEK293T cells in a PKR-eIF2α-dependent manner, with concurrent up- and down-regulation of Bcl-2 and Bax, respectively, revealed by Western blotting. Involvement of PC1-regulated eIF2α phosphorylation and a PKR-eIF2α pathway in cell apoptosis may be an important part of the mechanism underlying ADPKD pathogenesis.
Collapse
|
22
|
van de Laarschot LFM, Drenth JPH. Genetics and mechanisms of hepatic cystogenesis. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1491-1497. [PMID: 28782656 DOI: 10.1016/j.bbadis.2017.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
Polycystic liver disease (PLD) is a heterogeneous genetic condition. PKD1 and PKD2 germline mutations are found in patients with autosomal dominant polycystic kidney disease (ADPKD). Autosomal dominant polycystic liver disease (ADPLD) is associated with germline mutations in PRKCSH, SEC63, LRP5, and recently ALG8 and SEC61. GANAB mutations are found in both patient groups. Loss of heterozygosity of PLD-genes in cyst epithelium contributes to the development of hepatic cysts. A genetic interaction network is implied in hepatic cystogenesis that connects the endoplasmic glycoprotein control mechanisms and polycystin expression and localization. Wnt signalling could be the major downstream signalling pathway that results in hepatic cyst growth. PLD in ADPLD and ADPKD probably results from changes in one common final pathway that initiates cyst growth. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
| | - J P H Drenth
- Department of Gastroenterology and Hepatology, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Yanda MK, Liu Q, Cebotaru L. An inhibitor of histone deacetylase 6 activity, ACY-1215, reduces cAMP and cyst growth in polycystic kidney disease. Am J Physiol Renal Physiol 2017; 313:F997-F1004. [PMID: 28747357 DOI: 10.1152/ajprenal.00186.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/26/2017] [Accepted: 07/17/2017] [Indexed: 11/22/2022] Open
Abstract
Adult-onset autosomal-dominant polycystic kidney disease (ADPKD) is caused by mutations in either the PKD1 or PKD2 gene, leading to malfunction of their gene products, polycystin 1 or 2. Histone deacetylase 6 (HDAC6) expression and activity are increased in PKD1 mutant renal epithelial cells. Here we studied the effect of ACY-1215, a specific HDAC6 inhibitor, on cyst growth in ADPKD. Treatment with ACY-1215 slowed cyst growth in a mouse model of ADPKD that forms massive cysts within 3 wk after knockout of polycystin 1 function. It also prevented cyst formation in MDCK.2 cells, an in vitro model of cystogenesis, and in an ADPKD cell line derived from the proximal tubules from a pkd1-/-.mouse (PN cells). In PN cells ACY-1215 also reduced the size of already established cysts. We found that ACY-1215 lowered cAMP levels and protein expression of adenylyl cyclase 6. Our results suggest that HDAC6 could potentially serve as a therapeutic target in ADPKD.
Collapse
Affiliation(s)
- Murali K Yanda
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qiangni Liu
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Liudmila Cebotaru
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Ganoderma triterpenes retard renal cyst development by downregulating Ras/MAPK signaling and promoting cell differentiation. Kidney Int 2017; 92:1404-1418. [PMID: 28709639 DOI: 10.1016/j.kint.2017.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 01/02/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenetic disease characterized by the progressive development of renal cysts with further need for effective therapy. Here our aim was to investigate the effect of Ganoderma triterpenes (GT) on the development of kidney cysts. Importantly, GT attenuated cyst development in two mouse models of ADPKD with phenotypes of severe cystic kidney disease. Assays for tubulogenesis showed that GT promoted epithelial tubule formation in MDCK cells, suggesting a possible effect on epithelial cell differentiation. The role of GT in regulating key signaling pathways involved in the pathogenesis of PKD was further investigated by immune blotting. This showed that GT specifically downregulated the activation of the Ras/MAPK signaling pathway both in vitro and in vivo without detectable effect on the mTOR pathway. This mechanism may be involved in GT downregulating intracellular cAMP levels. Screening of 15 monomers purified from GT for their effects on cyst development indicated that CBLZ-7 (ethyl ganoderate C2) had a potent inhibitory effect on cyst development in vitro. Additionally, like GT, CBLZ-7 was able to downregulate forskolin-induced activation of the Ras/MAPK pathway. Thus, GT and its purified monomer CBLZ-7 may be potential therapeutic regents for treating ADPKD.
Collapse
|
25
|
Ernandez T, Komarynets O, Chassot A, Sougoumarin S, Soulié P, Wang Y, Montesano R, Feraille E. Primary cilia control the maturation of tubular lumen in renal collecting duct epithelium. Am J Physiol Cell Physiol 2017; 313:C94-C107. [DOI: 10.1152/ajpcell.00290.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 11/22/2022]
Abstract
The key role of the primary cilium in developmental processes is illustrated by ciliopathies resulting from genetic defects of its components. Ciliopathies include a large variety of dysmorphic syndromes that share in common the presence of multiple kidney cysts. These observations suggest that primary cilia may control morphogenetic processes in the developing kidney. In this study, we assessed the role of primary cilium in branching tubulogenesis and/or lumen development using kidney collecting duct-derived mCCDN21 cells that display spontaneous tubulogenic properties when grown in collagen-Matrigel matrix. Tubulogenesis and branching were not altered when cilium body growth was inhibited by Kif3A or Ift88 silencing. In agreement with the absence of a morphogenetic effect, proliferation and wound-healing assay revealed that neither cell proliferation nor migration were altered by cilium body disruption. The absence of cilium following Kif3A or Ift88 silencing in mCCDN21 cells did not alter the initial stages of tubular lumen generation while lumen maturation and enlargement were delayed. This delay in tubular lumen maturation was not observed after Pkd1 knockdown in mCCDN21 cells. The delayed lumen maturation was explained by neither defective secretion or increased reabsorption of luminal fluid. Our results indicate that primary cilia do not control early morphogenetic processes in renal epithelium. Rather, primary cilia modulate tubular lumen maturation and enlargement resulting from luminal fluid accumulation in tubular structures derived from collecting duct cells.
Collapse
Affiliation(s)
- Thomas Ernandez
- Service of Nephrology, University Hospital of Geneva, Geneva, Switzerland; and
| | - Olga Komarynets
- Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| | - Alexandra Chassot
- Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| | - Soushma Sougoumarin
- Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| | - Priscilla Soulié
- Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| | - Yubao Wang
- Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| | - Roberto Montesano
- Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| | - Eric Feraille
- Service of Nephrology, University Hospital of Geneva, Geneva, Switzerland; and
- Department of Cell Physiology and Metabolism, University Medical Center, Geneva, Switzerland
| |
Collapse
|
26
|
Peintner L, Borner C. Role of apoptosis in the development of autosomal dominant polycystic kidney disease (ADPKD). Cell Tissue Res 2017; 369:27-39. [PMID: 28560694 DOI: 10.1007/s00441-017-2628-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a widespread genetic disorder in the Western world and is characterized by cystogenesis that often leads to end-stage renal disease (ESRD). Mutations in the pkd1 gene, encoding for polycystin-1 (PC1) and its interaction partner pkd2, encoding for polycystin-2 (PC2), are the main drivers of this disease. PC1 and PC2 form a multiprotein membrane complex at cilia sites of the plasma membrane and at intracellular membranes. This complex mediates calcium influx and stimulates various signaling pathways regulating cell survival, proliferation and differentiation. The molecular consequences of pkd1 and pkd2 mutations are still a matter of debate. In particular, the ways in which the cysts are initially formed and progress throughout the disease are unknown. The mechanisms proposed to play a role include enhanced cell proliferation, increased apoptotic cell death and diminished autophagy. In this review, we summarize our current understanding about the contribution of apoptosis to cystogenesis and ADPKD. We present the animal models and the tools and methods that have been created to analyze this process. We also critically review the data that are in favor or against the involvement of apoptosis in disease generation. We argue that apoptosis is probably not the sole driver of cystogenesis but that a cooperative action of cell death, compensatory cell proliferation and perturbed autophagy gradually establish the disease. Finally, we propose novel strategies for uncovering the mode of action of PC1 and PC2 and suggest means by which their dysfunction or loss of expression lead to cystogenesis and ADPKD development.
Collapse
Affiliation(s)
- Lukas Peintner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, Stefan Meier Strasse 17, 79104, Freiburg, Germany
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, Stefan Meier Strasse 17, 79104, Freiburg, Germany. .,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University of Freiburg, Albertstrasse 19a, 79104, Freiburg, Germany.
| |
Collapse
|
27
|
Lemos FO, Ehrlich BE. Polycystin and calcium signaling in cell death and survival. Cell Calcium 2017; 69:37-45. [PMID: 28601384 DOI: 10.1016/j.ceca.2017.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022]
Abstract
Mutations in polycystin-1 (PC1) and polycystin-2 (PC2) result in a commonly occurring genetic disorder, called Autosomal Dominant Polycystic Kidney Disease (ADPKD), that is characterized by the formation and development of kidney cysts. Epithelial cells with loss-of-function of PC1 or PC2 show higher rates of proliferation and apoptosis and reduced autophagy. PC1 is a large multifunctional transmembrane protein that serves as a sensor that is usually found in complex with PC2, a calcium (Ca2+)-permeable cation channel. In addition to decreased Ca2+ signaling, several other cell fate-related pathways are de-regulated in ADPKD, including cAMP, MAPK, Wnt, JAK-STAT, Hippo, Src, and mTOR. In this review we discuss how polycystins regulate cell death and survival, highlighting the complexity of molecular cascades that are involved in ADPKD.
Collapse
Affiliation(s)
- Fernanda O Lemos
- Department of Pharmacology, Yale University, 333 Cedar St, New Haven, CT, 06520, USA
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, 333 Cedar St, New Haven, CT, 06520, USA; Department of Cellular and Molecular Physiology, Yale University, 333 Cedar St, New Haven, CT, 06520, USA.
| |
Collapse
|
28
|
On the Many Actions of Ouabain: Pro-Cystogenic Effects in Autosomal Dominant Polycystic Kidney Disease. Molecules 2017; 22:molecules22050729. [PMID: 28467389 PMCID: PMC5688955 DOI: 10.3390/molecules22050729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/19/2017] [Accepted: 04/30/2017] [Indexed: 02/07/2023] Open
Abstract
Ouabain and other cardenolides are steroidal compounds originally discovered in plants. Cardenolides were first used as poisons, but after finding their beneficial cardiotonic effects, they were rapidly included in the medical pharmacopeia. The use of cardenolides to treat congestive heart failure remained empirical for centuries and only relatively recently, their mechanisms of action became better understood. A breakthrough came with the discovery that ouabain and other cardenolides exist as endogenous compounds that circulate in the bloodstream of mammals. This elevated these compounds to the category of hormones and opened new lines of investigation directed to further study their biological role. Another important discovery was the finding that the effect of ouabain was mediated not only by inhibition of the activity of the Na,K-ATPase (NKA), but by the unexpected role of NKA as a receptor and a signal transducer, which activates a complex cascade of intracellular second messengers in the cell. This broadened the interest for ouabain and showed that it exerts actions that go beyond its cardiotonic effect. It is now clear that ouabain regulates multiple cell functions, including cell proliferation and hypertrophy, apoptosis, cell adhesion, cell migration, and cell metabolism in a cell and tissue type specific manner. This review article focuses on the cardenolide ouabain and discusses its various in vitro and in vivo effects, its role as an endogenous compound, its mechanisms of action, and its potential use as a therapeutic agent; placing especial emphasis on our findings of ouabain as a pro-cystogenic agent in autosomal dominant polycystic kidney disease (ADPKD).
Collapse
|
29
|
Hofherr A, Busch T, Huber N, Nold A, Bohn A, Viau A, Bienaimé F, Kuehn EW, Arnold SJ, Köttgen M. Efficient genome editing of differentiated renal epithelial cells. Pflugers Arch 2016; 469:303-311. [PMID: 27987038 PMCID: PMC5222933 DOI: 10.1007/s00424-016-1924-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
Recent advances in genome editing technologies have enabled the rapid and precise manipulation of genomes, including the targeted introduction, alteration, and removal of genomic sequences. However, respective methods have been described mainly in non-differentiated or haploid cell types. Genome editing of well-differentiated renal epithelial cells has been hampered by a range of technological issues, including optimal design, efficient expression of multiple genome editing constructs, attainable mutation rates, and best screening strategies. Here, we present an easily implementable workflow for the rapid generation of targeted heterozygous and homozygous genomic sequence alterations in renal cells using transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR) system. We demonstrate the versatility of established protocols by generating novel cellular models for studying autosomal dominant polycystic kidney disease (ADPKD). Furthermore, we show that cell culture-validated genetic modifications can be readily applied to mouse embryonic stem cells (mESCs) for the generation of corresponding mouse models. The described procedure for efficient genome editing can be applied to any cell type to study physiological and pathophysiological functions in the context of precisely engineered genotypes.
Collapse
Affiliation(s)
- Alexis Hofherr
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany. .,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany. .,Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Tilman Busch
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Nora Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Nold
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Albert Bohn
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Amandine Viau
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Frank Bienaimé
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - E Wolfgang Kuehn
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Michael Köttgen
- Renal Division, Department of Medicine, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| |
Collapse
|
30
|
Polycystins and intercellular mechanotransduction: A precise dosage of polycystin 2 is necessary for alpha-actinin reinforcement of junctions upon mechanical stimulation. Exp Cell Res 2016; 348:23-35. [PMID: 27575580 DOI: 10.1016/j.yexcr.2016.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/06/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022]
Abstract
Polycystins 1 and 2, which are mutated in Autosomal Polycystic Kidney Disease, are involved in mechanotransduction through various mechanisms. In renal cells, polycystins not only have an important mechanotransductive role in primary cilia but are also present in intercellular contacts but their role there remains unclear. Here, we address the hypothesis that polycystins are involved in mechanotransduction via intercellular junctions, which would be expected to have consequences on tissue organization. We focused on the role of polycystin 2, which could be involved in mechanical organization at junctions either by its channel activity or by the direct recruitment of cytoskeleton components such as the F-actin cross-linker α-actinin. After mechanical stimulation of intercellular junctions in MDCK renal epithelial cells, α-actinin is rapidly recruited but this is inhibited upon overexpression of PC2 or the D509V mutant that lacks channel activity, and is also decreased upon PC2 silencing. This suggests that a precise dosage of PC2 is necessary for an adequate mechanosensitive α-actinin recruitment at junctions. At the multicellular level, a change in PC2 expression was associated with changes in velocity in confluent epithelia and during wound healing together with a loss of orientation. This study suggests that the mechanosensitive regulation of cytoskeleton by polycystins in intercellular contacts may be important in the context of ADPKD.
Collapse
|
31
|
Balbo BE, Amaral AG, Fonseca JM, de Castro I, Salemi VM, Souza LE, Dos Santos F, Irigoyen MC, Qian F, Chammas R, Onuchic LF. Cardiac dysfunction in Pkd1-deficient mice with phenotype rescue by galectin-3 knockout. Kidney Int 2016; 90:580-97. [PMID: 27475230 DOI: 10.1016/j.kint.2016.04.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022]
Abstract
Alterations in myocardial wall texture stand out among ADPKD cardiovascular manifestations in hypertensive and normotensive patients. To elucidate their pathogenesis, we analyzed the cardiac phenotype in Pkd1(cond/cond)Nestin(cre) (CYG+) cystic mice exposed to increased blood pressure, at 5 to 6 and 20 to 24 weeks of age, and Pkd1(+/-) (HTG+) noncystic mice at 5-6 and 10-13 weeks. Echocardiographic analyses revealed decreased myocardial deformation and systolic function in CYG+ and HTG+ mice, as well as diastolic dysfunction in older CYG+ mice, compared to their Pkd1(cond/cond) and Pkd1(+/+) controls. Hearts from CYG+ and HTG+ mice presented reduced polycystin-1 expression, increased apoptosis, and mild fibrosis. Since galectin-3 has been associated with heart dysfunction, we studied it as a potential modifier of the ADPKD cardiac phenotype. Double-mutant Pkd1(cond/cond):Nestin(cre);Lgals3(-/-) (CYG-) and Pkd1(+/-);Lgals3(-/-) (HTG-) mice displayed improved cardiac deformability and systolic parameters compared to single-mutants, not differing from the controls. CYG- and HTG- showed decreased apoptosis and fibrosis. Analysis of a severe cystic model (Pkd1(V/V); VVG+) showed that Pkd1(V/V);Lgals3(-/-) (VVG-) mice have longer survival, decreased cardiac apoptosis and improved heart function compared to VVG+. CYG- and VVG- animals showed no difference in renal cystic burden compared to CYG+ and VVG+ mice. Thus, myocardial dysfunction occurs in different Pkd1-deficient models and suppression of galectin-3 expression rescues this phenotype.
Collapse
Affiliation(s)
- Bruno E Balbo
- Division of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Andressa G Amaral
- Division of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Jonathan M Fonseca
- Division of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Isac de Castro
- Division of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Vera M Salemi
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Leandro E Souza
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Fernando Dos Santos
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Maria C Irigoyen
- Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Feng Qian
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Roger Chammas
- Center for Translational Research in Oncology, Cancer Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luiz F Onuchic
- Division of Nephrology and Molecular Medicine, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil; Center for Cellular and Molecular Studies and Therapy (NETCEM), University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
32
|
Marra AN, Li Y, Wingert RA. Antennas of organ morphogenesis: the roles of cilia in vertebrate kidney development. Genesis 2016; 54:457-69. [PMID: 27389733 PMCID: PMC5053263 DOI: 10.1002/dvg.22957] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022]
Abstract
Cilia arose early during eukaryotic evolution, and their structural components are highly conserved from the simplest protists to complex metazoan species. In recent years, the role of cilia in the ontogeny of vertebrate organs has received increasing attention due to a staggering correlation between human disease and dysfunctional cilia. In particular, the presence of cilia in both the developing and mature kidney has become a deep area of research due to ciliopathies common to the kidney, such as polycystic kidney disease (PKD). Interestingly, mutations in genes encoding proteins that localize to the cilia cause similar cystic phenotypes in kidneys of various vertebrates, suggesting an essential role for cilia in kidney organogenesis and homeostasis as well. Importantly, the genes so far identified in kidney disease have conserved functions across species, whose kidneys include both primary and motile cilia. Here, we aim to provide a comprehensive description of cilia and their role in kidney development, as well as highlight the usefulness of the zebrafish embryonic kidney as a model to further understand the function of cilia in kidney health.
Collapse
Affiliation(s)
- Amanda N Marra
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Yue Li
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
33
|
Li A, Tian X, Zhang X, Huang S, Ma Y, Wu D, Moeckel G, Somlo S, Wu G. Human polycystin-2 transgene dose-dependently rescues ADPKD phenotypes in Pkd2 mutant mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2843-60. [PMID: 26435415 DOI: 10.1016/j.ajpath.2015.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/19/2015] [Accepted: 06/24/2015] [Indexed: 11/25/2022]
Abstract
Although much is known about the molecular genetic mechanisms of autosomal-dominant polycystic kidney disease (ADPKD), few effective treatment is currently available. Here, we explore the in vivo effects of causal gene replacement in orthologous gene models of ADPKD in mice. Wild-type mice with human PKD2 transgene (PKD2(tg)) overexpressed polycystin (PC)-2 in several tissues, including the kidney and liver, and showed no significant cyst formation in either organ. We cross-mated PKD2(tg) with a Pkd2-null mouse model, which is embryonically lethal and forms renal and pancreatic cysts. Pkd2(-/-) mice with human PKD2 transgene (Pkd2(-/-);PKD2(tg)) were born in expected Mendelian ratios, indicating that the embryonic lethality of the Pkd2(-/-) mice was rescued. Pkd2(-/-);PKD2(tg) mice survived up to 12 months and exhibited moderate to severe cystic phenotypes of the kidney, liver, and pancreas. Moreover, Pkd2(-/-) mice with homozygous PKD2(tg)-transgene alleles (Pkd2(-/-);PKD2(tg/tg)) showed significant further amelioration of the cystic severity compared to that in Pkd2(-/-) mice with a hemizygous PKD2(tg) allele (Pkd2(-/-);PKD2(tg)), suggesting that the ADPKD phenotype was improved by increased transgene dosage. On further analysis, cystic improvement mainly resulted from reduced proliferation, rather apoptosis, of cyst-prone epithelial cells in the mouse model. The finding that the functional restoration of human PC2 significantly rescued ADPKD phenotypes in a dose-dependent manner suggests that increasing PC2 activity may be beneficial in some forms of ADPKD.
Collapse
Affiliation(s)
- Ao Li
- Center of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Xiaoli Zhang
- Center of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shunwei Huang
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Yujie Ma
- Center of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dianqing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Gilbert Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Stefan Somlo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Guanqing Wu
- Center of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medicine, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
34
|
Venugopal J, Blanco G. Ouabain Enhances ADPKD Cell Apoptosis via the Intrinsic Pathway. Front Physiol 2016; 7:107. [PMID: 27047392 PMCID: PMC4805603 DOI: 10.3389/fphys.2016.00107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/07/2016] [Indexed: 11/13/2022] Open
Abstract
Progression of autosomal dominant polycystic kidney disease (ADPKD) is highly influenced by factors circulating in blood. We have shown that the hormone ouabain enhances several characteristics of the ADPKD cystic phenotype, including the rate of cell proliferation, fluid secretion and the capacity of the cells to form cysts. In this work, we found that physiological levels of ouabain (3 nM) also promote programmed cell death of renal epithelial cells obtained from kidney cysts of patients with ADPKD (ADPKD cells). This was determined by Alexa Fluor 488 labeled-Annexin-V staining and TUNEL assay, both biochemical markers of apoptosis. Ouabain-induced apoptosis also takes place when ADPKD cell growth is blocked; suggesting that the effect is not secondary to the stimulatory actions of ouabain on cell proliferation. Ouabain alters the expression of BCL family of proteins, reducing BCL-2 and increasing BAX expression levels, anti- and pro-apoptotic mediators respectively. In addition, ouabain caused the release of cytochrome c from mitochondria. Moreover, ouabain activates caspase-3, a key “executioner” caspase in the cell apoptotic pathway, but did not affect caspase-8. This suggests that ouabain triggers ADPKD cell apoptosis by stimulating the intrinsic, but not the extrinsic pathway of programmed cell death. The apoptotic effects of ouabain are specific for ADPKD cells and do not occur in normal human kidney cells (NHK cells). Taken together with our previous observations, these results show that ouabain causes an imbalance in cell growth/death, to favor growth of the cystic cells. This event, characteristic of ADPKD, further suggests the importance of ouabain as a circulating factor that promotes ADPKD progression.
Collapse
Affiliation(s)
- Jessica Venugopal
- Department of Molecular and Integrative Physiology and The Kidney Institute, University of Kansas Medical Center Kansas City, KS, USA
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology and The Kidney Institute, University of Kansas Medical Center Kansas City, KS, USA
| |
Collapse
|
35
|
Pema M, Drusian L, Chiaravalli M, Castelli M, Yao Q, Ricciardi S, Somlo S, Qian F, Biffo S, Boletta A. mTORC1-mediated inhibition of polycystin-1 expression drives renal cyst formation in tuberous sclerosis complex. Nat Commun 2016; 7:10786. [PMID: 26931735 PMCID: PMC4778067 DOI: 10.1038/ncomms10786] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/20/2016] [Indexed: 01/07/2023] Open
Abstract
Previous studies report a cross-talk between the polycystic kidney disease (PKD) and tuberous sclerosis complex (TSC) genes. mTOR signalling is upregulated in PKD and rapamycin slows cyst expansion, whereas renal inactivation of the Tsc genes causes cysts. Here we identify a new interplay between the PKD and TSC genes, with important implications for the pathophysiology of both diseases. Kidney-specific inactivation of either Pkd1 or Tsc1 using an identical Cre (KspCre) results in aggressive or very mild PKD, respectively. Unexpectedly, we find that mTORC1 negatively regulates the biogenesis of polycystin-1 (PC-1) and trafficking of the PC-1/2 complex to cilia. Genetic interaction studies reveal an important role for PC-1 downregulation by mTORC1 in the cystogenesis of Tsc1 mutants. Our data potentially explain the severe renal manifestations of the TSC/PKD contiguous gene syndrome and open new perspectives for the use of mTOR inhibitors in autosomal dominant PKD caused by hypomorphic or missense PKD1 mutations. Polycystic kidney disease (PKD) is a ciliopathy resulting from defective localization of membrane proteins such as PC-1 to the primary cilium, resulting in renal cysts, and is associated with another cystic genetic disease called tuberous sclerosis complex (TSC). Here the authors use kidney-specific Tsc1 and Pkd1 mice to show that mTORC1 signalling inhibits PC-1 biogenesis as a potential mechanism of TSC/PKD contiguous gene syndrome.
Collapse
Affiliation(s)
- Monika Pema
- Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, Via Olgettina, 58, Milano 20132, Italy.,PhD Program in Biology and Biotherapy of Cancer, Università Vita-Salute San Raffaele, Via Olgettina, 58, Milano 20132, Italy
| | - Luca Drusian
- Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, Via Olgettina, 58, Milano 20132, Italy.,PhD Program in Biology and Biotherapy of Cancer, Università Vita-Salute San Raffaele, Via Olgettina, 58, Milano 20132, Italy
| | - Marco Chiaravalli
- Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, Via Olgettina, 58, Milano 20132, Italy
| | - Maddalena Castelli
- Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, Via Olgettina, 58, Milano 20132, Italy
| | - Qin Yao
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | - Stefan Somlo
- Department of Internal Medicine and Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8029, USA
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Stefano Biffo
- INGM, Via Sforza 28, Milano 20122, Italy.,Department of Biosciences, University of Milan, Via Celoria, 26, Milano 20133, Italy
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, Via Olgettina, 58, Milano 20132, Italy
| |
Collapse
|
36
|
Mangolini A, de Stephanis L, Aguiari G. Role of calcium in polycystic kidney disease: From signaling to pathology. World J Nephrol 2016; 5:76-83. [PMID: 26788466 PMCID: PMC4707171 DOI: 10.5527/wjn.v5.i1.76] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/21/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited monogenic kidney disease. Characterized by the development and growth of cysts that cause progressive kidney enlargement, it ultimately leads to end-stage renal disease. Approximately 85% of ADPKD cases are caused by mutations in the PKD1 gene, while mutations in the PKD2 gene account for the remaining 15% of cases. The PKD1 gene encodes for polycystin-1 (PC1), a large multi-functional membrane receptor protein able to regulate ion channel complexes, whereas polycystin-2 (PC2), encoded by the PKD2 gene, is an integral membrane protein that functions as a calcium-permeable cation channel, located mainly in the endoplasmic reticulum (ER). In the primary cilia of the epithelial cells, PC1 interacts with PC2 to form a polycystin complex that acts as a mechanosensor, regulating signaling pathways involved in the differentiation of kidney tubular epithelial cells. Despite progress in understanding the function of these proteins, the molecular mechanisms associated with the pathogenesis of ADPKD remain unclear. In this review we discuss how an imbalance between functional PC1 and PC2 proteins may disrupt calcium channel activities in the cilium, plasma membrane and ER, thereby altering intracellular calcium signaling and leading to the aberrant cell proliferation and apoptosis associated with the development and growth of renal cysts. Research in this field could lead to the discovery of new molecules able to rebalance intracellular calcium, thereby normalizing cell proliferation and reducing kidney cyst progression.
Collapse
|
37
|
Freedman BS. Modeling Kidney Disease with iPS Cells. Biomark Insights 2015; 10:153-69. [PMID: 26740740 PMCID: PMC4689367 DOI: 10.4137/bmi.s20054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/19/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are somatic cells that have been transcriptionally reprogrammed to an embryonic stem cell (ESC)-like state. iPSCs are a renewable source of diverse somatic cell types and tissues matching the original patient, including nephron-like kidney organoids. iPSCs have been derived representing several kidney disorders, such as ADPKD, ARPKD, Alport syndrome, and lupus nephritis, with the goals of generating replacement tissue and ‘disease in a dish’ laboratory models. Cellular defects in iPSCs and derived kidney organoids provide functional, personalized biomarkers, which can be correlated with genetic and clinical information. In proof of principle, disease-specific phenotypes have been described in iPSCs and ESCs with mutations linked to polycystic kidney disease or focal segmental glomerulosclerosis. In addition, these cells can be used to model nephrotoxic chemical injury. Recent advances in directed differentiation and CRISPR genome editing enable more specific iPSC models and present new possibilities for diagnostics, disease modeling, therapeutic screens, and tissue regeneration using human cells. This review outlines growth opportunities and design strategies for this rapidly expanding and evolving field.
Collapse
Affiliation(s)
- Benjamin S Freedman
- Division of Nephrology, Kidney Research Institute, and Institute for Stem Cell and Regenerative Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
38
|
Nigro EA, Castelli M, Boletta A. Role of the Polycystins in Cell Migration, Polarity, and Tissue Morphogenesis. Cells 2015; 4:687-705. [PMID: 26529018 PMCID: PMC4695853 DOI: 10.3390/cells4040687] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022] Open
Abstract
Cystic kidney diseases (CKD) is a class of disorders characterized by ciliary dysfunction and, therefore, belonging to the ciliopathies. The prototype CKD is autosomal dominant polycystic kidney disease (ADPKD), whose mutated genes encode for two membrane-bound proteins, polycystin-1 (PC-1) and polycystin-2 (PC-2), of unknown function. Recent studies on CKD-associated genes identified new mechanisms of morphogenesis that are central for establishment and maintenance of proper renal tubular diameter. During embryonic development in the mouse and lower vertebrates a convergent-extension (CE)-like mechanism based on planar cell polarity (PCP) and cellular intercalation is involved in “sculpting” the tubules into a narrow and elongated shape. Once the appropriate diameter is established, further elongation occurs through oriented cell division (OCD). The polycystins (PCs) regulate some of these essential processes. In this review we summarize recent work on the role of PCs in regulating cell migration, the cytoskeleton, and front-rear polarity. These important properties are essential for proper morphogenesis of the renal tubules and the lymphatic vessels. We highlight here several open questions and controversies. Finally, we try to outline some of the next steps required to study these processes and their relevance in physiological and pathological conditions.
Collapse
Affiliation(s)
- Elisa Agnese Nigro
- Division of Genetics and Cell Biology, Dibit, IRCCS-San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy.
| | - Maddalena Castelli
- Division of Genetics and Cell Biology, Dibit, IRCCS-San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy.
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, Dibit, IRCCS-San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
39
|
Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, Saad AF, Li MK, Hughes MR, Werff RV, Peters DT, Lu J, Baccei A, Siedlecki AM, Valerius MT, Musunuru K, McNagny KM, Steinman TI, Zhou J, Lerou PH, Bonventre JV. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 2015; 6:8715. [PMID: 26493500 PMCID: PMC4620584 DOI: 10.1038/ncomms9715] [Citation(s) in RCA: 494] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022] Open
Abstract
Human-pluripotent-stem-cell-derived kidney cells (hPSC-KCs) have important potential for disease modelling and regeneration. Whether the hPSC-KCs can reconstitute tissue-specific phenotypes is currently unknown. Here we show that hPSC-KCs self-organize into kidney organoids that functionally recapitulate tissue-specific epithelial physiology, including disease phenotypes after genome editing. In three-dimensional cultures, epiblast-stage hPSCs form spheroids surrounding hollow, amniotic-like cavities. GSK3β inhibition differentiates spheroids into segmented, nephron-like kidney organoids containing cell populations with characteristics of proximal tubules, podocytes and endothelium. Tubules accumulate dextran and methotrexate transport cargoes, and express kidney injury molecule-1 after nephrotoxic chemical injury. CRISPR/Cas9 knockout of podocalyxin causes junctional organization defects in podocyte-like cells. Knockout of the polycystic kidney disease genes PKD1 or PKD2 induces cyst formation from kidney tubules. All of these functional phenotypes are distinct from effects in epiblast spheroids, indicating that they are tissue specific. Our findings establish a reproducible, versatile three-dimensional framework for human epithelial disease modelling and regenerative medicine applications. Generating organized kidney tissues from human pluripotent stem cell is a major challenge. Here, Freedman et al. describe a differentiation system forming spheroids and tubular structures, characteristic of these kidney structures, and using CRISPR/Cas9, delete PKD1/2, to model polycystic kidney disease.
Collapse
Affiliation(s)
- Benjamin S Freedman
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Suite 550, 4 Blackfan Circle, Boston, Massachusetts 02115, USA.,Division of Nephrology, Department of Medicine, University of Washington School of Medicine, 850 Republican Street, Room S565, Seattle, Washington 98109, USA.,Kidney Research Institute, Department of Medicine, University of Washington, 325 Ninth Avenue, Box 359606, Seattle, Washington 98104, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Craig R Brooks
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Suite 550, 4 Blackfan Circle, Boston, Massachusetts 02115, USA
| | - Albert Q Lam
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Suite 550, 4 Blackfan Circle, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Hongxia Fu
- Department of Biological Chemistry and Pharmacology, Boston Children's Hospital, Center for Life Sciences, Harvard Medical School, Room 3103, 3 Blackfan Circle, Boston, Massachusetts 02115, USA
| | - Ryuji Morizane
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Suite 550, 4 Blackfan Circle, Boston, Massachusetts 02115, USA
| | - Vishesh Agrawal
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Suite 823, 4 Blackfan Circle, Boston, Massachusetts 02115, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Abdelaziz F Saad
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Suite 550, 4 Blackfan Circle, Boston, Massachusetts 02115, USA
| | - Michelle K Li
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Suite 550, 4 Blackfan Circle, Boston, Massachusetts 02115, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Sherman Fairchild Biochemistry Building 160, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Michael R Hughes
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Ryan Vander Werff
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Derek T Peters
- Department of Stem Cell and Regenerative Biology, Harvard University, Sherman Fairchild Biochemistry Building 160, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Junjie Lu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Suite 823, 4 Blackfan Circle, Boston, Massachusetts 02115, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Anna Baccei
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Suite 823, 4 Blackfan Circle, Boston, Massachusetts 02115, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Andrew M Siedlecki
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Suite 550, 4 Blackfan Circle, Boston, Massachusetts 02115, USA
| | - M Todd Valerius
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Suite 550, 4 Blackfan Circle, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Kiran Musunuru
- Department of Stem Cell and Regenerative Biology, Harvard University, Sherman Fairchild Biochemistry Building 160, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Theodore I Steinman
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Suite 550, 4 Blackfan Circle, Boston, Massachusetts 02115, USA.,Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue DA517, Boston, Massachusetts 02115, USA
| | - Jing Zhou
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Suite 550, 4 Blackfan Circle, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Paul H Lerou
- Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Suite 823, 4 Blackfan Circle, Boston, Massachusetts 02115, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Joseph V Bonventre
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Institutes of Medicine Suite 550, 4 Blackfan Circle, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
40
|
Castelli M, De Pascalis C, Distefano G, Ducano N, Oldani A, Lanzetti L, Boletta A. Regulation of the microtubular cytoskeleton by Polycystin-1 favors focal adhesions turnover to modulate cell adhesion and migration. BMC Cell Biol 2015; 16:15. [PMID: 25947155 PMCID: PMC4437554 DOI: 10.1186/s12860-015-0059-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background Polycystin-1 (PC-1) is a large plasma membrane receptor, encoded by the PKD1 gene, which is mutated in most cases of Autosomal Dominant Polycystic Kidney Disease (ADPKD). The disease is characterized by renal cysts. The precise function of PC-1 remains elusive, although several studies suggest that it can regulate the cellular shape in response to external stimuli. We and others reported that PC-1 regulates the actin cytoskeleton and cell migration. Results Here we show that cells over-expressing PC-1 display enhanced adhesion rates to the substrate, while cells lacking PC-1 have a reduced capability to adhere. In search for the mechanism responsible for this new property of PC-1 we found that this receptor is able to regulate the stability of the microtubules, in addition to its capability to regulate the actin cytoskeleton. The two cytoskeletal components are acting in a coordinated fashion. Notably, we uncovered that PC-1 regulation of the microtubule cytoskeleton impacts on the turnover rates of focal adhesions in migrating cells and we link all these properties to the capability of PC-1 to regulate the activation state of Focal Adhesion Kinase (FAK). Conclusions In this study we show several new features of the PC-1 receptor in modulating microtubules and adhesion dynamics, which are essential for its capability to regulate migration. Electronic supplementary material The online version of this article (doi:10.1186/s12860-015-0059-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maddalena Castelli
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.
| | - Chiara De Pascalis
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy. .,Current Address: International PhD Program, Institut Pasteur, Paris, France.
| | - Gianfranco Distefano
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.
| | - Nadia Ducano
- Candiolo Cancer Institute, Candiolo, Torino, Italy. .,Department of Oncology, University of Torino, Torino, Italy.
| | - Amanda Oldani
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy.
| | - Letizia Lanzetti
- Candiolo Cancer Institute, Candiolo, Torino, Italy. .,Department of Oncology, University of Torino, Torino, Italy.
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
41
|
Xu JX, Lu TS, Li S, Wu Y, Ding L, Denker BM, Bonventre JV, Kong T. Polycystin-1 and Gα12 regulate the cleavage of E-cadherin in kidney epithelial cells. Physiol Genomics 2014; 47:24-32. [PMID: 25492927 DOI: 10.1152/physiolgenomics.00090.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interaction of polycystin-1 (PC1) and Gα12 is important for development of kidney cysts in autosomal dominant polycystic kidney disease (ADPKD). The integrity of cell polarity and cell-cell adhesions (mainly E-cadherin-mediated adherens junction) is altered in the renal epithelial cells of ADPKD. However, the key signaling pathway for this alteration is not fully understood. Madin-Darby canine kidney (MDCK) cells maintain the normal integrity of epithelial cell polarity and adherens junctions. Here, we found that deletion of Pkd1 increased activation of Gα12, which then promoted the cystogenesis of MDCK cells. The morphology of these cells was altered after the activation of Gα12. By using liquid chromatography-mass spectrometry, we found several proteins that could be related this change in the extracellular milieu. E-cadherin was one of the most abundant peptides after active Gα12 was induced. Gα12 activation or Pkd1 deletion increased the shedding of E-cadherin, which was mediated via increased ADAM10 activity. The increased shedding of E-cadherin was blocked by knockdown of ADAM10 or specific ADAM10 inhibitor GI254023X. Pkd1 deletion or Gα12 activation also changed the distribution of E-cadherin in kidney epithelial cells and caused β-catenin to shift from cell membrane to nucleus. Finally, ADAM10 inhibitor, GI254023X, blocked the cystogenesis induced by PC1 knockdown or Gα12 activation in renal epithelial cells. Our results demonstrate that the E-cadherin/β-catenin signaling pathway is regulated by PC1 and Gα12 via ADAM10. Specific inhibition of this pathway, especially ADAM10 activity, could be a novel therapeutic regimen for ADPKD.
Collapse
Affiliation(s)
- Jen X Xu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tzong-Shi Lu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Suyan Li
- Division of Basic Neuroscience, McLean Hospital, Belmont, Massachusetts
| | - Yong Wu
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lai Ding
- Harvard NeuroDiscovery Center, Boston, Massachusetts; and
| | - Bradley M Denker
- Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Joseph V Bonventre
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tianqing Kong
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts;
| |
Collapse
|
42
|
Ravichandran K, Zafar I, Ozkok A, Edelstein CL. An mTOR kinase inhibitor slows disease progression in a rat model of polycystic kidney disease. Nephrol Dial Transplant 2014; 30:45-53. [PMID: 25239638 DOI: 10.1093/ndt/gfu296] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The mTOR pathway, which consists of mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), is activated in polycystic kidney disease (PKD) kidneys. Sirolimus and everolimus indirectly bind and inhibit mTORC1. A novel group of drugs, the mTOR kinase inhibitors, directly bind to mTOR kinase, thus inhibiting both mTORC1 and 2. The aim of the study was to determine the therapeutic effect of an mTOR kinase inhibitor, PP242, in the Han:SPRD rat (Cy/+) model of PKD. METHODS Male rats were treated with PP242 5 mg/kg/day IP or vehicle for 5 weeks. RESULTS PP242 significantly reduced the kidney enlargement, the cyst density and the blood urea nitrogen in Cy/+ rats. On immunoblot of kidneys, PP242 resulted in a decrease in pS6, a marker of mTORC1 signaling and pAkt(Ser473), a marker of mTORC2 signaling. mTORC plays an important role in regulating cytokine production. There was an increase in IL-1, IL-6, CXCL1 and TNF-α in Cy/+ rat kidneys that was unaffected by PP242. Apoptosis or proliferation is known to play a causal role in cyst growth. PP242 had no effect on caspase-3 activity, TUNEL positive or active caspase-3-positive tubular cells in Cy/+ kidneys. PP242 reduced the number of proliferating cells per cyst and per non-cystic tubule in Cy/+ rats. CONCLUSIONS In a rat model of autosomal dominant polycystic kidney disease, PP242 treatment (i) decreases proliferation in cystic and non-cystic tubules; (ii) inhibits renal enlargement and cystogenesis and (iii) significantly reduces the loss of kidney function.
Collapse
Affiliation(s)
- Kameswaran Ravichandran
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| | - Iram Zafar
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| | - Abdullah Ozkok
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado at Denver, Aurora, CO, USA
| |
Collapse
|
43
|
Chen Y, Chiang HC, Litchfield P, Pena M, Juang C, Riley DJ. Expression of Nek1 during kidney development and cyst formation in multiple nephron segments in the Nek1-deficient kat2J mouse model of polycystic kidney disease. J Biomed Sci 2014; 21:63. [PMID: 25030234 PMCID: PMC4422189 DOI: 10.1186/s12929-014-0063-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/03/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neks, mammalian orthologs of the fungal protein kinase never-in-mitosis A, have been implicated in the pathogenesis of polycystic kidney disease. Among them, Nek1 is the primary protein inactivated in kat2J mouse models of PKD. RESULT We report the expression pattern of Nek1 and characterize the renal cysts that develop in kat2J mice. Nek1 is detectable in all murine tissues but its expression in wild type and kat2J heterozygous kidneys decrease as the kidneys mature, especially in tubular epithelial cells. In the embryonic kidney, Nek1 expression is most prominent in cells that will become podocytes and proximal tubules. Kidney development in kat2J homozygous mice is aberrant early, before the appearance of gross cysts: developing cortical zones are thin, populated by immature glomeruli, and characterized by excessive apoptosis of several cell types. Cysts in kat2J homozygous mice form postnatally in Bowman's space as well as different tubular subtypes. Late in life, kat2J heterozygous mice form renal cysts and the cells lining these cysts lack staining for Nek1. The primary cilia of cells lining cysts in kat2J homozygous mice are morphologically diverse: in some cells they are unusually long and in others there are multiple cilia of varying lengths. CONCLUSION Our studies indicate that Nek1 deficiency leads to disordered kidney maturation, and cysts throughout the nephron.
Collapse
Affiliation(s)
- Yumay Chen
- Department of Medicine, Division of Endocrinology, University of California, Gross Hall 1130, Mail Code, 4086, Irvine, CA, 92697, USA.
| | - Huai-Chin Chiang
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
| | - Patricia Litchfield
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
| | - Michelle Pena
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
| | - Charity Juang
- Department of Medicine, Division of Endocrinology, University of California, Gross Hall 1130, Mail Code, 4086, Irvine, CA, 92697, USA.
| | - Daniel J Riley
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
- University Transplant Center, The University of Texas Health Science Center at San Antonio, Medicine/Nephrology, MC 7882, 7703 Floyd Curl Dr, San Antonio, TX, 78229-3900, USA.
- Renal Research Division, South Texas Veterans Health Care System, Audie L. Murphy Division, 7703 Floyd Curl Dr, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
44
|
Guan T, Gao Q, Chen P, Fu L, Zhao H, Zou Z, Mei C. Effects of polycystin‑1 N‑terminal fragment fusion protein on the proliferation and apoptosis of rat mesangial cells. Mol Med Rep 2014; 10:1626-34. [PMID: 24970599 DOI: 10.3892/mmr.2014.2354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 04/24/2014] [Indexed: 11/06/2022] Open
Abstract
Mesangial proliferative glomerulonephritis (MsPGN) is characterized by widespread mesangial cell proliferation and an accumulation of extracellular matrix (ECM) in the mesangial area. In a previous study we developed a polycystin‑1 N‑terminal fragment (PC‑1 NF) fusion protein that inhibits the proliferation of cyst‑lining epithelial cells in autosomal dominant polycystic kidney disease. In addition, the PC‑1 NF fusion protein arrests the cell cycle of cancer cells at the G0/G1 phase, inhibiting their proliferation. In the present study, the effect of the PC‑1 NF fusion protein on MsPGN was investigated. It was found that the PC‑1 NF fusion protein inhibited the proliferation of rat mesangial cells and induced G0/G1 phase arrest and apoptosis in vitro. PC‑1 NF fusion protein treatment also resulted in a decrease in mRNA expression levels of proliferating cell nuclear antigen, cyclin D1 and B‑cell lymphoma‑2 (Bcl‑2) and an increase in mRNA expression levels of Bcl‑2‑associated X protein (Bax) and p21Waf1. Furthermore, a decrease in Bcl‑2, c‑fos, c‑jun and protein kinase C‑α protein levels was observed, whereas Bax protein levels increased. Additionally, PC‑1 NF fusion protein induced ECM degradation and inhibited ECM expansion. The results also demonstrated that PC‑1 NF fusion protein treatment resulted in a decrease in type IV collagen and tissue inhibitor of metalloproteinase mRNA levels but an increase in matrix metalloproteinase 2 mRNA levels. In combination, these results suggest that the PC‑1 NF fusion protein inhibits proliferation, promotes apoptosis and induces ECM degradation in MsPGN rats. This study offers novel perspectives for the treatment of MsPGN.
Collapse
Affiliation(s)
- Tianjun Guan
- Department of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Qing Gao
- Department of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Ping Chen
- Department of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Lili Fu
- Division of Nephrology, Center of Kidney Disease, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Haidan Zhao
- Department of Nephrology, Navy General Hospital, Beijing 100000, P.R. China
| | - Zhuying Zou
- Division of Nephrology, Center of Kidney Disease, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Changlin Mei
- Division of Nephrology, Center of Kidney Disease, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
45
|
Su X, Driscoll K, Yao G, Raed A, Wu M, Beales PL, Zhou J. Bardet-Biedl syndrome proteins 1 and 3 regulate the ciliary trafficking of polycystic kidney disease 1 protein. Hum Mol Genet 2014; 23:5441-51. [PMID: 24939912 DOI: 10.1093/hmg/ddu267] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) and autosomal dominant polycystic kidney disease (ADPKD) are two genetically distinct ciliopathies but share common phenotypes such as renal cysts. Seven BBS proteins form a complex called the BBSome which is localized at the basal body or ciliary axoneme and regulates the ciliary entry or flagellar exit of several signaling molecules. Here, we demonstrate that, unlike the seven-span somatostatin receptor 3 or the leptin receptor that interacts with all subunits of the BBSome, the ADPKD protein polycystin-1 (PC1) interacts with BBS1, BBS4, BBS5 and BBS8, four of the seven components of the BBSome. Only depletion or mutation of BBS1, but not depletion of BBS5 and BBS8, or knockout of BBS4, impairs ciliary trafficking of PC1 in kidney epithelial cells. Depletion of these BBS proteins affects neither the ciliary length nor the plasma membrane targeting of PC1. Expression of a pathogenic BBS3/Arl6 mutant (T31R) that locks Arl6 in the GDP form leads to stunted cilia and inhibition of PC1 on primary cilia. We propose that the 11-span membrane protein PC1 is a BBSome cargo and that the components of the BBSome may possess subunit-specific functions. Moreover, physical interactions between the BBS and ADPKD proteins may underline the overlapping renal phenotypes in these two diseases.
Collapse
Affiliation(s)
- Xuefeng Su
- Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and
| | - Kaitlin Driscoll
- Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and
| | - Gang Yao
- Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and
| | - Anas Raed
- Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and
| | - Maoqing Wu
- Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and
| | - Philip L Beales
- Molecular Medicine Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Jing Zhou
- Center for Polycystic Kidney Disease Research and Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and
| |
Collapse
|
46
|
Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis. Nat Commun 2014; 4:2658. [PMID: 24153433 PMCID: PMC3967097 DOI: 10.1038/ncomms3658] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/23/2013] [Indexed: 11/09/2022] Open
Abstract
Several organs, including lungs and kidneys, are formed by epithelial tubes whose proper morphogenesis ensures correct function. This is best exemplified by the kidney, where defective establishment or maintanance of tubular diameter results in polycystic kidney disease, a common genetic disorder. Most polycystic kidney disease cases result from loss-of-function mutations in the PKD1 gene, encoding Polycystin-1 (PC-1), a large receptor of unknown function. Here we demonstrate that PC-1 plays an essential role in establishment of correct tubular diameter during nephron development. PC-1 associates with Par3 favoring the assembly of a pro-polarizing Par3/aPKC complex and it regulates a program of cell polarity important for oriented cell migration and for a convergent extension-like process during tubular morphogenesis. Par3 inactivation in the developing kidney results in defective convergent extension and tubular morphogenesis and in renal cyst formation. Our data define PC-1 as central to cell polarization and to epithelial tube morphogenesis and homeostasis.
Collapse
|
47
|
Polycystin-1 cleavage and the regulation of transcriptional pathways. Pediatr Nephrol 2014; 29:505-11. [PMID: 23824180 PMCID: PMC3844055 DOI: 10.1007/s00467-013-2548-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 01/26/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic cause of end-stage renal disease, affecting approximately 1 in 1,000 people. The disease is characterized by the development of numerous large fluid-filled renal cysts over the course of decades. These cysts compress the surrounding renal parenchyma and impair its function. Mutations in two genes are responsible for ADPKD. The protein products of both of these genes, polycystin-1 and polycystin-2, localize to the primary cilium and participate in a wide variety of signaling pathways. Polycystin-1 undergoes several proteolytic cleavages that produce fragments which manifest biological activities. Recent results suggest that the production of polycystin-1 cleavage fragments is necessary and sufficient to account for at least some, although certainly not all, of the physiological functions of the parent protein.
Collapse
|
48
|
Retailleau K, Duprat F. Polycystins and partners: proposed role in mechanosensitivity. J Physiol 2014; 592:2453-71. [PMID: 24687583 DOI: 10.1113/jphysiol.2014.271346] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations of the two polycystins, PC1 and PC2, lead to polycystic kidney disease. Polycystins are able to form complexes with numerous families of proteins that have been suggested to participate in mechanical sensing. The proposed role of polycystins and their partners in the kidney primary cilium is to sense urine flow. A role for polycystins in mechanosensing has also been shown in other cell types such as vascular smooth muscle cells and cardiac myocytes. At the plasma membrane, polycystins interact with diverse ion channels of the TRP family and with stretch-activated channels (Piezos, TREKs). The actin cytoskeleton and its interacting proteins, such as filamin A, have been shown to be essential for these interactions. Numerous proteins involved in cell-cell and cell-extracellular matrix junctions interact with PC1 and/or PC2. These multimeric protein complexes are important for cell structure integrity, the transmission of force, as well as for mechanosensing and mechanotransduction. A group of polycystin partners are also involved in subcellular trafficking mechanisms. Finally, PC1 and especially PC2 interact with elements of the endoplasmic reticulum and are essential components of calcium homeostasis. In conclusion, we propose that both PC1 and PC2 act as conductors to tune the overall cellular mechanosensitivity.
Collapse
Affiliation(s)
- Kevin Retailleau
- CNRS Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne, France
| | - Fabrice Duprat
- CNRS Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne, France
| |
Collapse
|
49
|
Lian P, Li A, Li Y, Liu H, Liang D, Hu B, Lin D, Jiang T, Moeckel G, Qin D, Wu G. Loss of polycystin-1 inhibits Bicc1 expression during mouse development. PLoS One 2014; 9:e88816. [PMID: 24594709 PMCID: PMC3940423 DOI: 10.1371/journal.pone.0088816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/16/2014] [Indexed: 12/21/2022] Open
Abstract
Bicc1 is a mouse homologue of Drosophila Bicaudal-C (dBic-C), which encodes an RNA-binding protein. Orthologs of dBic-C have been identified in many species, from C. elegans to humans. Bicc1-mutant mice exhibit a cystic phenotype in the kidney that is very similar to human polycystic kidney disease. Even though many studies have explored the gene characteristics and its functions in multiple species, the developmental profile of the Bicc1 gene product (Bicc1) in mammal has not yet been completely characterized. To this end, we generated a polyclonal antibody against Bicc1 and examined its spatial and temporal expression patterns during mouse embryogenesis and organogenesis. Our results demonstrated that Bicc1 starts to be expressed in the neural tube as early as embryonic day (E) 8.5 and is widely expressed in epithelial derivatives including the gut and hepatic cells at E10.5, and the pulmonary bronchi at E11.5. In mouse kidney development, Bicc1 appears in the early ureteric bud and mesonephric tubules at E11.5 and is also expressed in the metanephros at the same stage. During postnatal kidney development, Bicc1 expression gradually expands from the cortical to the medullary and papillary regions, and it is highly expressed in the proximal tubules. In addition, we discovered that loss of the Pkd1 gene product, polycystin-1 (PC1), whose mutation causes human autosomal dominant polycystic kidney disease (ADPKD), downregulates Bicc1 expression in vitro and in vivo. Our findings demonstrate that Bicc1 is developmentally regulated and reveal a new molecular link between Bicc1 and Pkd1.
Collapse
Affiliation(s)
- Peiwen Lian
- Division of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ao Li
- Division of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Yuan Li
- Division of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haichao Liu
- Division of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Liang
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Bo Hu
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - De Lin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Tang Jiang
- Department of Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gilbert Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dahui Qin
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Guanqing Wu
- Division of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
50
|
Cebotaru V, Cebotaru L, Kim H, Chiaravalli M, Boletta A, Qian F, Guggino WB. Polycystin-1 negatively regulates Polycystin-2 expression via the aggresome/autophagosome pathway. J Biol Chem 2014; 289:6404-6414. [PMID: 24459142 DOI: 10.1074/jbc.m113.501205] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations of the PKD1 and PKD2 genes, encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively, lead to autosomal dominant polycystic kidney disease. Interestingly, up-regulation or down-regulation of PKD1 or PKD2 leads to polycystic kidney disease in animal models, but their interrelations are not completely understood. We show here that full-length PC1 that interacts with PC2 via a C-terminal coiled-coil domain regulates PC2 expression in vivo and in vitro by down-regulating PC2 expression in a dose-dependent manner. Expression of the pathogenic mutant R4227X, which lacks the C-terminal coiled-coil domain, failed to down-regulate PC2 expression, suggesting that PC1-PC2 interaction is necessary for PC2 regulation. The proteasome and autophagy are two pathways that control protein degradation. Proteins that are not degraded by proteasomes precipitate in the cytoplasm and are transported via histone deacetylase 6 (HDAC6) toward the aggresomes. We found that HDAC6 binds to PC2 and that expression of full-length PC1 accelerates the transport of the HDAC6-PC2 complex toward aggresomes, whereas expression of the R4227X mutant fails to do so. Aggresomes are engulfed by autophagosomes, which then fuse with the lysosome for degradation; this process is also known as autophagy. We have now shown that PC1 overexpression leads to increased degradation of PC2 via autophagy. Interestingly, PC1 does not activate autophagy generally. Thus, we have now uncovered a new pathway suggesting that when PC1 is expressed, PC2 that is not bound to PC1 is directed to aggresomes and subsequently degraded via autophagy, a control mechanism that may play a role in autosomal dominant polycystic kidney disease pathogenesis.
Collapse
Affiliation(s)
- Valeriu Cebotaru
- Division of Nephrology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Liudmila Cebotaru
- Departments of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hyunho Kim
- Division of Nephrology, Departments of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Marco Chiaravalli
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Feng Qian
- Division of Nephrology, Departments of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - William B Guggino
- Departments of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|