1
|
Mossie T. In vitro antibacterial activity of Bersama abyssinica Fresen crude extract against representative Gram-positive and Gram-negative bacterial isolates. Vet Med Sci 2024; 10:e1498. [PMID: 38896065 PMCID: PMC11186053 DOI: 10.1002/vms3.1498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Bersama abyssinica Fresen is a plant that is used in folk medicine for the treatment of mastitis and other infectious diseases. OBIECTIVE The antibacterial activity of methanol crude extract of plant was evaluated against three common bacterial pathogens, including Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli and Pseudomonas aeruginosa). METHODS The antibacterial activities and minimum inhibitory concentration of B. abyssinica crude extracts were evaluated using agar-well diffusion and broth dilution methods according to the National Committee for Clinical Laboratory Standards (NCCLS). RESULTS A significant difference in the antibacterial activity of crude extracts was observed among different levels of concentration against tested isolates. A higher mean inhibition zone diameter was recorded in E. coli (29.2 ± 1.5 mm), followed by S. aureus (27.8 ± 1.1 mm) and P. aeruginosa (18.0 ± 0.7 mm) at a concentration of 100 mg/mL. The antibacterial activity of crude plant extract at 100 mg/mL was comparable with that of a standard antibiotic (27.6 ± 2.6) against S. aureus and E. coli isolates. The findings indicated that bacterial growth inhibition increased as the concentration of the crude extracts increased. E. coli and S. aureus isolates showed significantly higher susceptibilities to crude extracts than P. aeruginosa at all concentrations. The minimum inhibitory concentrations of extracts against S. aureus, E. coli and P. aeruginosa isolates were 0.78 mg/mL, 1.56 mg/mL and 1.56 mg/mL, respectively. CONCLUSIONS All tested pathogenic bacterial species were susceptible to plant leaf extract and broad-spectrum activity against Gram-positive and Gram-negative bacteria. The study recommends further fractionation of the B. abyssinica plant that contributes to its antibacterial activity and understands the mode of action of this plant against bacteria and other microbes.
Collapse
Affiliation(s)
- Tesfa Mossie
- Veterinary Microbiology, Ethiopian Institute of Agricultural Research (EIAR)JimmaEthiopia
| |
Collapse
|
2
|
Procopio AC, Colletta S, Laratta E, Mellace M, Tilocca B, Ceniti C, Urbani A, Roncada P. Integrated One Health strategies in Dengue. One Health 2024; 18:100684. [PMID: 39010969 PMCID: PMC11247296 DOI: 10.1016/j.onehlt.2024.100684] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 07/17/2024] Open
Abstract
Zoonoses have rapidly spread globally, necessitating the implementation of vaccination strategies as a control measure. Emerging and re-emerging vector-borne diseases are among the major global public health concerns. Dengue, a zoonotic viral infection transmitted to humans by a vector, the Aedes mosquito, is a severe global health problem. Dengue is a serious tropical infectious disease, second only to malaria, causing around 25,000 deaths each year. The resurgence of Dengue is mainly due to climate change, demographic transitions and evolving social dynamics. The development of an effective vaccine against Dengue has proven to be a complex undertaking due to four different viral serotypes with distinct antigenic profiles. This review highlights the urgent need to address the dengue threat by exploring the application of biotechnological and -OMICS sciences.
Collapse
Affiliation(s)
- Anna Caterina Procopio
- Department of Health Sciences, University Magna Graecia of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Simona Colletta
- Department of Health Sciences, University Magna Graecia of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Emanuela Laratta
- Department of Health Sciences, University Magna Graecia of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Matteo Mellace
- Department of Health Sciences, University Magna Graecia of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences, University Magna Graecia of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Carlotta Ceniti
- Department of Health Sciences, University Magna Graecia of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Andrea Urbani
- Department of Diagnostic and Laboratory Medicine, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Basic Biotechnological Sciences, Intensive Care and Perioperative Clinics Research, Catholic University of the Sacred Heart, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paola Roncada
- Department of Health Sciences, University Magna Graecia of Catanzaro, viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Kim SR, Koh SJ, Park H. Childhood Obesity, Weight Change, and Pediatric Immune-Mediated Skin Diseases. J Invest Dermatol 2024; 144:S0022-202X(24)00257-4. [PMID: 39177545 DOI: 10.1016/j.jid.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 08/24/2024]
Abstract
Whether childhood obesity or weight gain leads to the development of pediatric immune-mediated skin diseases remains unclear. We aimed to determine the associations between body mass index or body mass index changes and the development of 3 main immune-mediated skin diseases-alopecia areata, atopic dermatitis (AD), and psoriasis-by analyzing a longitudinal cohort of 2,161,900 Korean children from 2009 to 2020. The findings indicated that children who were obese had a higher risk of pediatric immune-mediated skin diseases than those with normal weight (P for trend < .01). An increase in body mass index was associated with a higher risk of AD, whereas a decrease in body mass index was correlated with a reduced risk of AD. Children who gained weight, transitioning from normal to overweight, exhibited a higher AD risk than those who maintained a normal weight (adjusted hazard ratio = 1.15, 95% confidence interval = 1.11-1.20). However, those who shifted from being overweight to achieving a normal weight (adjusted hazard ratio = 0.87, 95% confidence interval = 0.81-0.94) had a lower AD risk than children who were overweight who maintained their weight. In summary, early childhood obesity may increase the risk of pediatric immune-mediated skin diseases. Weight gain may increase AD risk, whereas weight loss may lower the risk.
Collapse
Affiliation(s)
- Seong Rae Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong-Joon Koh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Intestinal Mucosa and Skin Immunology, Seoul, Republic of Korea.
| | - Hyunsun Park
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Intestinal Mucosa and Skin Immunology, Seoul, Republic of Korea; Department of Dermatology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Pham TX, Huynh TTX, Choi J, Lee JB, Park SC, Kim B, Lim YS, Hwang SB. SARS-CoV-2 exploits cellular RAD51 to promote viral propagation: implication of RAD51 inhibitor as a potential drug candidate against COVID-19. J Virol 2023; 97:e0173723. [PMID: 38051260 PMCID: PMC10734463 DOI: 10.1128/jvi.01737-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Viruses are constantly evolving to promote propagation in the host. Here, we show that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes host RAD51 for replication. Silencing of RAD51 impaired SARS-CoV-2 propagation. Viral RNA colocalized with RAD51 in the cytoplasm of SARS-CoV-2-infected cells, suggesting that both viral RNA and RAD51 may form a replication complex. We, therefore, evaluated RAD51 inhibitors as possible therapeutic agents against SARS-CoV-2. Indeed, RAD51 inhibitors exerted antiviral activities against not only Wuhan but also variants of SARS-CoV-2. Molecular docking model shows that RAD51 inhibitors impede SARS-CoV-2 propagation by interfering with dimerization of RAD51. These data suggest that RAD51 may represent a novel host-based drug target for coronavirus disease 2019 treatment.
Collapse
Affiliation(s)
- Thuy X. Pham
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Trang T. X. Huynh
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Jiwon Choi
- College of Pharmacy, Dongduk Women’s University, Seoul, South Korea
| | - Jae-Bong Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Seok-Chan Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Bumseok Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Yun-Sook Lim
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
| | - Soon B. Hwang
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
- Ilsong Institute of Life Science, Hallym University, Seoul, South Korea
| |
Collapse
|
5
|
Kowalsky JM, Mitchell AM, Okdie BM. Maintaining distance and avoiding going out during the COVID-19 pandemic: a longitudinal examination of an integrated social cognition model. Psychol Health 2023; 38:1420-1441. [PMID: 35007457 DOI: 10.1080/08870446.2021.2023746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Objective: To test an integrated social cognition model predicting two forms of social distancing behavior (maintaining distance and avoiding going out in public) during COVID-19.Design: Participants from the U.S. (Sample 1, n = 433) and Canada (Sample 2, n = 239) completed online measures, reflecting the theory of planned behavior (attitudes, norms, perceived control, intention), COVID-19-specific risk, anticipated regret, fear of catching COVID-19, and perceived capacity related to using technology to connect with others. Self-reported behavior was collected from the U.S. sample at 6-month follow-up.Results: Intention to maintain distance and avoid going out predicted behavior within the U.S. sample. For both samples, intention was predicted by attitudes, subjective norms and perceived behavioral control. Perceived severity of COVID-19, anticipated inaction regret, and fear of catching COVID-19 predicted intention to maintain distance and avoid going out across both samples. Finally, within the U.S. sample, significant indirect effects were present for perceived behavioral control predicting future maintaining distance and avoiding going out via intention to engage in these behaviors.Conclusion: The integrated social cognition model predicts social distancing intentions and long-term social distancing behaviors. Hazard-specific risk and affect were relevant determinants added to the models. Potential avenues for intervention research are described.Supplemental data for this article is available online at https://doi.org/10.1080/08870446.2021.2023746 .
Collapse
Affiliation(s)
| | - Amanda M Mitchell
- Department of Counseling and Human Development, University of Louisville, Louisville, USA
| | - Bradley M Okdie
- Department of Psychology, The Ohio State University, Newark, USA
| |
Collapse
|
6
|
A KOUSOULISA, F. GRANTI, A DUNCANJ, J. LARSONH. REVISITING THE EBOLA EPIDEMIC IN WEST AFRICA: THE ROLE OF EMOTIONAL DETERMINANTS IN PUBLIC RESPONSES. Afr J Infect Dis 2023; 17:14-22. [PMID: 37151757 PMCID: PMC10158957 DOI: 10.21010/ajidv17i2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 05/09/2023] Open
Abstract
Background The 2014-2016 Ebola epidemic was largely restricted to the three nations of Guinea, Liberia and Sierra Leone, yet it tested the world's ability to address a potential global pandemic. This study provides an in-depth examination of the role of emotions in the response to the outbreak and engagement with public health measures, and the contextual factors which influenced them. Methods Historical research methods were utilised in the examination of primary and secondary sources. A multi-faceted SPEECH (Society and Politics, Economy, Epidemiology, Culture, Healthcare and Public Health) framework was developed to aid data synthesis and analysis. Results The outbreak occurred in a region still reeling from years of civil war, where poverty was widespread and healthcare severely underfunded. Internationally, global health security had been politically neglected. After a slow start, the international response to the outbreak was strong, yet the lack of community engagement and inadequate consideration of local culture and traditional beliefs, fueled fear and hindered engagement with professionals and uptake of public health measures. Improved collaboration and communication with rural communities in the latter phases of the response was crucial in effectively addressing the outbreak. Conclusion This study illustrates the importance of effective collaboration between international crisis responders, in-country public health practitioners and local communities in addressing public emotional responses to the Ebola outbreak. It highlights how community engagement and communications tactics can effectively be utilised to soothe and educate the public, abating counterproductive extreme emotional responses, and in turn improving uptake of public health measures.
Collapse
Affiliation(s)
- KOUSOULIS Antonis A
- Vaccine Confidence Project, London School of Hygiene & Tropical Medicine, London, UK
- Mental Health Foundation, London, UK
| | | | | | - LARSON Heidi J.
- Vaccine Confidence Project, London School of Hygiene & Tropical Medicine, London, UK
- Dept. Health Metrics Sciences, University of Washington, Seattle, USA
| |
Collapse
|
7
|
Juhas M. Emerging and Zoonotic Diseases. BRIEF LESSONS IN MICROBIOLOGY 2023:111-122. [DOI: 10.1007/978-3-031-29544-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
8
|
Juhas M. Future Pandemics. BRIEF LESSONS IN MICROBIOLOGY 2023:135-142. [DOI: 10.1007/978-3-031-29544-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Jacquot M, Wallace MA, Streicker DG, Biek R. Geographic Range Overlap Rather than Phylogenetic Distance Explains Rabies Virus Transmission among Closely Related Bat Species. Viruses 2022; 14:v14112399. [PMID: 36366496 PMCID: PMC9697534 DOI: 10.3390/v14112399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 01/31/2023] Open
Abstract
The cross-species transmission (CST) of pathogens can have dramatic consequences, as highlighted by recent disease emergence events affecting human, animal and plant health. Understanding the ecological and evolutionary factors that increase the likelihood of disease agents infecting and establishing in a novel host is therefore an important research area. Previous work across different pathogens, including rabies virus (RABV), found that increased evolutionary distance between hosts reduces the frequency of cross-species transmission and of permanent host shifts. However, whether this effect of host relatedness still holds for transmission among recently diverged hosts is not well understood. We aimed to ask if high host relatedness can still increase the probability of a host shift between more recently diverged hosts, and the importance of this effect relative to ecological predictors. We first addressed this question by quantifying the CST frequency of RABV between North American bat species within the genus Myotis, using a multi-decade data set containing 128 nucleoprotein (N) RABV sequences from ten host species. We compared RABV CST frequency within Myotis to the rates of CST between nine genera of North American bat species. We then examined whether host relatedness or host range overlap better explains the frequency of CST seen between Myotis species. We found that at the within genus scale, host range overlap, rather than host relatedness best explains the frequency of CST events. Moreover, we found evidence of CST occurring among a higher proportion of species, and CST more frequently resulting in sustained transmission in the novel host in the Myotis dataset compared to the multi-genus dataset. Our results suggest that among recently diverged species, the ability to infect a novel host is no longer restricted by physiological barriers but instead is limited by physical contact. Our results improve predictions of where future CST events for RABV might occur and clarify the relationship between host divergence and pathogen emergence.
Collapse
Affiliation(s)
- Maude Jacquot
- School of Biodiversity, One Health and Veterinary Medicine, Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Correspondence: (M.J.); (R.B.)
| | - Megan A. Wallace
- School of Biodiversity, One Health and Veterinary Medicine, Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniel G. Streicker
- School of Biodiversity, One Health and Veterinary Medicine, Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK
| | - Roman Biek
- School of Biodiversity, One Health and Veterinary Medicine, Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Correspondence: (M.J.); (R.B.)
| |
Collapse
|
10
|
Ali IM, Tchuenkam VPK, Colton M, Stittleburg V, Mitchell C, Gaither C, Thwai K, Espinoza DO, Zhu Y, Jamal H, Key A, Juliano JJ, Christopher TB, Piantadosi A, Waggoner JJ, Collins MH. Arboviruses as an unappreciated cause of non-malarial acute febrile illness in the Dschang Health District of western Cameroon. PLoS Negl Trop Dis 2022; 16:e0010790. [PMID: 36223421 PMCID: PMC9591055 DOI: 10.1371/journal.pntd.0010790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/24/2022] [Accepted: 09/05/2022] [Indexed: 11/07/2022] Open
Abstract
Acute febrile illness is a common problem managed by clinicians and health systems globally, particularly in the Tropics. In many regions, malaria is a leading and potentially deadly cause of fever; however, myriad alternative etiologies exist. Identifying the cause of fever allows optimal management, but this depends on many factors including thorough knowledge of circulating infections. Arboviruses such as dengue (DENV) cause fever and may be underdiagnosed in sub-Saharan Africa where malaria is a major focus. We examined cases of fever in western Cameroon that tested negative for malaria and found 13.5% (13/96) were due to DENV, with 75% (9/12) of these being DENV serotype 2 infections. Two complete DENV2 genomes were obtained and clustered closely to recent isolates from Senegal and Burkina Faso. The seroprevalence of DENV in this region was 24.8% (96/387). Neutralizing antibodies to DENV2 were detected in all (15/15) seropositive samples tested. Chikungunya (CHIKV) is an arthritogenic alphavirus that is transmitted by Aedes mosquitoes, the same principal vector as DENV. The seroprevalence for CHIKV was 15.7% (67/427); however, CHIKV did not cause a single case of fever in the 96 subjects tested. Of note, being seropositive for one arbovirus was associated with being seropositive for the other (Χ2 = 16.8, p<0.001). Taken together, these data indicate that Aedes-transmitted arboviruses are endemic in western Cameroon and are likely a common but underappreciated cause of febrile illness. This work supports the need for additional study of arboviruses in sub-Saharan Africa and efforts to improve diagnostic capacity, surveillance systems, and arbovirus prevention strategies. Acute illness with fever is common but can be challenging for clinicians to manage, particularly in resource-limited settings. In sub-Saharan Africa, malaria is a major cause of fever, but other causes of fever are poorly documented or monitored, which impairs optimal medical care to patients and implementation of public health interventions to control leading causes of disease. Viruses transmitted by mosquitoes are a prevalent and expanding problem throughout the tropics and beyond; however, there is concern that these infections frequently go undetected in sub-Saharan Africa. We discovered a previously unrecognized outbreak of dengue virus in western Cameroon by testing remnant samples from over 400 patients that presented with fever. Our results indicate that dengue has circulated in this region for decades with little recognition. This study adds important information about causes of fever in sub-Saharan Africa and advocates for increasing investment in surveillance systems and prevention strategies for mosquito-borne viruses.
Collapse
Affiliation(s)
- Innocent M. Ali
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, West Region of Cameroon, Cameroon
| | - Valery P. K. Tchuenkam
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, West Region of Cameroon, Cameroon
| | - Mia Colton
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Victoria Stittleburg
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Cedar Mitchell
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Claudia Gaither
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kyaw Thwai
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel O. Espinoza
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Yerun Zhu
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Haaris Jamal
- Emory University, Atlanta, Georgia, United States of America
| | - Autum Key
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jonathan J. Juliano
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Tume B. Christopher
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, West Region of Cameroon, Cameroon
| | - Anne Piantadosi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jesse J. Waggoner
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Matthew H. Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Aligne CA. Lost Lessons of the 1918 Influenza: The 1920s Working Hypothesis, the Public Health Paradigm, and the Prevention of Deadly Pandemics. Am J Public Health 2022; 112:1454-1464. [PMID: 36007204 PMCID: PMC9480479 DOI: 10.2105/ajph.2022.306976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/04/2022]
Abstract
In standard historical accounts, the hyperlethal 1918 flu pandemic was inevitable once a novel influenza virus appeared. However, in the years following the pandemic, it was obvious to distinguished flu experts from around the world that social and environmental conditions interacted with infectious agents and could enhance the virulence of flu germs. On the basis of the timing and geographic pattern of the pandemic, they hypothesized that an "essential cause" of the pandemic's extraordinary lethality was the extreme, prolonged, and industrial-scale overcrowding of US soldiers in World War I, particularly on troopships. This literature synthesis considers research from history, public health, military medicine, veterinary science, molecular genetics, virology, immunology, and epidemiology. Arguments against the hypothesis do not provide disconfirming evidence. Overall, the findings are consistent with an immunologically similar virus varying in virulence in response to war-related conditions. The enhancement-of-virulence hypothesis deserves to be included in the history of the pandemic and the war. These lost lessons of 1918 point to possibilities for blocking the transformation of innocuous infections into deadly disasters and are relevant beyond influenza for diseases like COVID-19. (Am J Public Health. 2022;112(10):1454-1464. https://doi.org/10.2105/AJPH.2022.306976).
Collapse
Affiliation(s)
- C Andrew Aligne
- C. Andrew Aligne is with the Hoekelman Center, Department of Pediatrics, Golisano Children's Hospital, University of Rochester School of Medicine & Dentistry, Rochester, NY
| |
Collapse
|
12
|
Kim M, Park SJ, Choi S, Chang J, Kim SM, Jeong S, Park YJ, Lee G, Son JS, Ahn JC, Park SM. Association between antibiotics and dementia risk: A retrospective cohort study. Front Pharmacol 2022; 13:888333. [PMID: 36225572 PMCID: PMC9548656 DOI: 10.3389/fphar.2022.888333] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background: The possible relation between antibiotic exposure and the alteration of gut microbiota, which may affect dementia risk, has been revealed. However, the association between antibiotics and dementia incidence has rarely been studied. We aimed to determine the association between antibiotic exposure and the risk of dementia. Methods: This population-based retrospective cohort study used data from the National Health Insurance Service-Health Screening Cohort (NHIS-HEALS) in South Korea. Exposure was the cumulative days of antibiotic prescription from 2002 to 2005. Newly diagnosed overall dementia, Alzheimer’s disease (AD), and vascular dementia (VD) were identified based on diagnostic codes and prescriptions for dementia-related drugs. The follow-up investigation was carried out from 1 January 2006 to 31 December 2013. The Cox proportional hazards regression was used to assess the association between cumulative antibiotic prescription days and dementia incidence. Results: A total of 313,161 participants were analyzed in this study. Compared to antibiotic non-users, the participants who used antibiotics for 91 or more days had an increased risk of overall dementia [adjusted hazard ratio (aHR), 1.44; 95% confidence interval (CI), 1.19–1.74], AD (aHR, 1.46; 95% CI, 1.17–1.81), and VD (aHR, 1.38; 95% CI, 0.83–2.30). Those who used five or more antibiotic classes had higher risks of overall dementia (aHR, 1.28; 95% CI, 1.00–1.66) and AD (aHR, 1.34; 95% CI, 1.00–1.78) than antibiotic non-users. Conclusion: Antibiotic exposure may increase the risk of dementia in a cumulative duration-dependent manner among adult participants. Future studies are needed to assess the causality between the long-term prescription of antibiotics and dementia risk.
Collapse
Affiliation(s)
- Minseo Kim
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- College of Medicine, Jeonbuk National University, Jeonju, South Korea
| | - Sun Jae Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seulggie Choi
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jooyoung Chang
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung Min Kim
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seogsong Jeong
- Department of Biomedical Informatics, CHA University School of Medicine, Seongnam, South Korea
| | - Young Jun Park
- Medical Research Center, Genomic Medicine Institute, Seoul National University, Seoul, South Korea
| | - Gyeongsil Lee
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Joung Sik Son
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Joseph C. Ahn
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, NY, United States
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- *Correspondence: Sang Min Park,
| |
Collapse
|
13
|
Landoni M, Silverio SA, Ionio C, Giordano F. Managing Children's Fears during the COVID-19 Pandemic: Strategies Adopted by Italian Caregivers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11699. [PMID: 36141968 PMCID: PMC9517545 DOI: 10.3390/ijerph191811699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Life-threatening events, such as the COVID-19 pandemic, may generate feelings of insecurity and fear in the affected population, particularly children. Parents' ability to help children cope with negative emotions is essential during challenging periods. The current study aims to analyse the coping strategies adopted by Italian caregivers concerning their children's fears about COVID-19. METHOD An online survey was administered during the Italian lockdown to 649 parents of at least one child aged 5 to 17 years old. Respondents completed the survey for themselves and their children. In addition, a qualitative content analysis of the data from the open-ended question was conducted (N = 569; 87.9% women; MAge = 45 years). RESULTS Several themes were identified. Firstly, families' primary approach was 'communication and meaning-making'. Secondly, another essential strategy was 'the importance of safe space', enabled by keeping routine in place and creating a loving and caring environment. Thirdly, other factors relevant to managing children's fears were 'adaptation', 'religion', 'a positive attitude', and 'humour and hope'. Finally, the last two strategies significant and valuable for Italian families were 'flexibility' and 'maintaining virtual contacts. CONCLUSION During the pandemic COVID-19, parents may have used various strategies to protect their children from stress. Future research could investigate single parents' coping strategies explicitly developed during the COVID-19 lockdown.
Collapse
Affiliation(s)
- Marta Landoni
- CriDee Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Sergio A. Silverio
- Department of Women & Children’s Health, King’s College London, London SE1 7EH, UK
| | - Chiara Ionio
- CriDee Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| | - Francesca Giordano
- RiRes Department of Psychology, Università Cattolica del Sacro Cuore, 20123 Milan, Italy
| |
Collapse
|
14
|
Detection of human pathogenic bacteria in rectal DNA samples from Zalophus californianus in the Gulf of California, Mexico. Sci Rep 2022; 12:14859. [PMID: 36050340 PMCID: PMC9434536 DOI: 10.1038/s41598-022-18903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022] Open
Abstract
Human intrusions into undisturbed wildlife areas greatly contribute to the emergence of infectious diseases. To minimize the impacts of novel emerging infectious diseases (EIDs) on human health, a comprehensive understanding of the microbial species that reside within wildlife species is required. The Gulf of California (GoC) is an example of an undisturbed ecosystem. However, in recent decades, anthropogenic activities within the GoC have increased. Zalophus californianus has been proposed as the main sentinel species in the GoC; hence, an assessment of sea lion bacterial microbiota may reveal hidden risks for human health. We evaluated the presence of potential human pathogenic bacterial species from the gastrointestinal (GI) tracts of wild sea lions through a metabarcoding approach. To comprehensively evaluate this bacterial consortium, we considered the genetic information of six hypervariable regions of 16S rRNA. Potential human pathogenic bacteria were identified down to the species level by integrating the RDP and Pplacer classifier outputs. The combined genetic information from all analyzed regions suggests the presence of at least 44 human pathogenic bacterial species, including Shigella dysenteriae and Bacillus anthracis. Therefore, the risks of EIDs from this area should be not underestimated.
Collapse
|
15
|
Naseri K, Aliashrafzadeh H, Otadi M, Ebrahimzadeh F, Badfar H, Alipourfard I. Human Responses in Public Health Emergencies for Infectious Disease Control: An Overview of Controlled Topologies for Biomedical Applications. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6324462. [PMID: 36105443 PMCID: PMC9458400 DOI: 10.1155/2022/6324462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022]
Abstract
COVID-19 originated in Wuhan city of Hubei Province in China in December three years ago. Since then, it has spread to more than 210 countries and territories. This disease is caused by Severe Acute Respiratory Syndrome Coronavirus 2. The virus has a size of one to two nanometers and a single-stranded positive RNA. Droplets spread the virus from coughing and sneezing. This condition causes coughing, fever, acute respiratory problems, and even death. According to the WHO, the virus can survive outside the body for several hours. This research aimed to determine how environmental factors influenced the COVID-19 virus's survival and behavior, as well as its transmission, in a complex environment. Based on the results, virus transmissions are influenced by various human and environmental factors such as population distribution, travel, social behavior, and climate change. Environmental factors have not been adequately examined concerning the transmission of this epidemic. Thus, it is necessary to examine various aspects of prevention and control of this disease, including its effects on climate and other environmental factors.
Collapse
Affiliation(s)
- Kamal Naseri
- Department of Architecture and Urban Studies (DAStU), Politecnico di Milano, Milan, Italy
| | | | - Maryam Otadi
- Chemical Engineering Department, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Homayoun Badfar
- Department of Mechanical Engineering, Urmia University of Technology (UUT), PO Box: 57166-419, Urmia, Iran
| | - Iraj Alipourfard
- Institute of Biology,Biotechnology and Environmental Protection, Faculty of Natural Sciences, The University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
16
|
Ghosh S, Mukherjee R, Mukherjee S, Barman S, Haldar J. Engineering Antimicrobial Polymer Nanocomposites: In Situ Synthesis, Disruption of Polymicrobial Biofilms, and In Vivo Activity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34527-34537. [PMID: 35875986 DOI: 10.1021/acsami.2c11466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The increasing incidence of microbial infections and a limited arsenal of effective antibacterial and antifungal agents have entailed the need for new broad-spectrum therapeutics. Polymer-inorganic nanocomposites have emerged as an integral choice of antimicrobials but are limited by complicated synthesis, narrow-spectrum activity, and poor in vivo efficacy. Herein, chloride counterions of a nontoxic, moderately antibacterial polymer have been explored for in situ nanoprecipitation-based synthesis of water-soluble polymer-silver chloride nanocomposites. With the controlled release of silver ions, the nanocomposites were highly active against multidrug-resistant bacteria as well as fluconazole-resistant fungi. Alongside the elimination of metabolically inactive bacterial cells, the nanocomposites disrupted polymicrobial biofilms, unlike antibiotics and only silver-based ointments. This underlined the role of the engineered composite design, where the polymer interacted with the biofilm matrix, facilitating the penetration of nanoparticles to kill microbes. Further, the nanocomposite diminished Pseudomonas aeruginosa burden in mice skin infection (>99.9%) with no dermal toxicity proving its potential for clinical translation.
Collapse
|
17
|
Kasirye R, Hume HA, Bloch EM, Lubega I, Kyeyune D, Shrestha R, Ddungu H, Musana HW, Dhabangi A, Ouma J, Eroju P, de Lange T, Tartakovsky M, White JL, Kakura C, Fowler MG, Musoke P, Nolan M, Grabowski MK, Moulton LH, Stramer SL, Whitby D, Zimmerman PA, Wabwire D, Kajja I, McCullough J, Goodrich R, Quinn TC, Cortes R, Ness PM, Tobian AAR. The Mirasol Evaluation of Reduction in Infections Trial (MERIT): study protocol for a randomized controlled clinical trial. Trials 2022; 23:257. [PMID: 35379302 PMCID: PMC8978156 DOI: 10.1186/s13063-022-06137-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Transfusion-transmitted infections (TTIs) are a global health challenge. One new approach to reduce TTIs is the use of pathogen reduction technology (PRT). In vitro, Mirasol PRT reduces the infectious load in whole blood (WB) by at least 99%. However, there are limited in vivo data on the safety and efficacy of Mirasol PRT. The objective of the Mirasol Evaluation of Reduction in Infections Trial (MERIT) is to investigate whether Mirasol PRT of WB can prevent seven targeted TTIs (malaria, bacteria, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, hepatitis E virus, and human herpesvirus 8). METHODS MERIT is a randomized, double-blinded, controlled clinical trial. Recruitment started in November 2019 and is expected to end in 2024. Consenting participants who require transfusion as medically indicated at three hospitals in Kampala, Uganda, will be randomized to receive either Mirasol-treated WB (n = 1000) or standard WB (n = 1000). TTI testing will be performed on donor units and recipients (pre-transfusion and day 2, day 7, week 4, and week 10 after transfusion). The primary endpoint is the cumulative incidence of one or more targeted TTIs from the Mirasol-treated WB vs. standard WB in a previously negative recipient for the specific TTI that is also detected in the donor unit. Log-binomial regression models will be used to estimate the relative risk reduction of a TTI by 10 weeks associated with Mirasol PRT. The clinical effectiveness of Mirasol WB compared to standard WB products in recipients will also be evaluated. DISCUSSION Screening infrastructure for TTIs in low-resource settings has gaps, even for major TTIs. PRT presents a fast, potentially cost-effective, and easy-to-use technology to improve blood safety. MERIT is the largest clinical trial designed to evaluate the use of Mirasol PRT for WB. In addition, this trial will provide data on TTIs in Uganda. TRIAL REGISTRATION Mirasol Evaluation of Reduction in Infections Trial (MERIT) NCT03737669 . Registered on 9 November 2018.
Collapse
Affiliation(s)
- Ronnie Kasirye
- grid.421981.7MUJHU Research Collaboration, Kampala, Uganda
| | - Heather A. Hume
- grid.14848.310000 0001 2292 3357Department of Pediatrics, University of Montreal, Montréal, QC Canada
| | - Evan M. Bloch
- grid.21107.350000 0001 2171 9311Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Irene Lubega
- grid.421981.7MUJHU Research Collaboration, Kampala, Uganda
| | | | - Ruchee Shrestha
- grid.21107.350000 0001 2171 9311Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Henry Ddungu
- grid.512320.70000 0004 6015 3252Uganda Cancer Institute, Kampala, Uganda
| | | | - Aggrey Dhabangi
- grid.11194.3c0000 0004 0620 0548Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda
| | - Joseph Ouma
- grid.421981.7MUJHU Research Collaboration, Kampala, Uganda
| | | | - Telsa de Lange
- grid.419681.30000 0001 2164 9667National Institute of Allergy and Infectious Diseases Office of Cyber Infrastructure and Computational Biology, Bethesda, MD USA
| | - Michael Tartakovsky
- grid.419681.30000 0001 2164 9667National Institute of Allergy and Infectious Diseases Office of Cyber Infrastructure and Computational Biology, Bethesda, MD USA
| | - Jodie L. White
- grid.21107.350000 0001 2171 9311Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Ceasar Kakura
- grid.421981.7MUJHU Research Collaboration, Kampala, Uganda
| | - Mary Glenn Fowler
- grid.21107.350000 0001 2171 9311Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Philippa Musoke
- grid.11194.3c0000 0004 0620 0548Makerere University, Kampala, Uganda
| | - Monica Nolan
- grid.421981.7MUJHU Research Collaboration, Kampala, Uganda
| | - M. Kate Grabowski
- grid.21107.350000 0001 2171 9311Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Lawrence H. Moulton
- grid.21107.350000 0001 2171 9311Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Susan L. Stramer
- grid.281926.60000 0001 2214 8581Department of Scientific Affairs, American Red Cross, Gaithersburg, MD USA
| | - Denise Whitby
- grid.418021.e0000 0004 0535 8394Leidos Biomedical Research, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Peter A. Zimmerman
- grid.67105.350000 0001 2164 3847The Center for Global Health & Diseases, Pathology Department, Case Western Reserve University, Cleveland, OH USA
| | - Deo Wabwire
- grid.421981.7MUJHU Research Collaboration, Kampala, Uganda
| | - Isaac Kajja
- grid.11194.3c0000 0004 0620 0548Department of Orthopaedics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Jeffrey McCullough
- grid.215654.10000 0001 2151 2636College of Health Solutions, Arizona State University, Phoenix, AZ USA
| | - Raymond Goodrich
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO USA
| | - Thomas C. Quinn
- grid.21107.350000 0001 2171 9311Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, MD USA ,grid.94365.3d0000 0001 2297 5165Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | | | - Paul M. Ness
- grid.21107.350000 0001 2171 9311Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Aaron A. R. Tobian
- grid.21107.350000 0001 2171 9311Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD USA ,grid.11194.3c0000 0004 0620 0548Department of Paediatrics and Child Health, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
18
|
Collins MH, Potter GE, Hitchings MDT, Butler E, Wiles M, Kennedy JK, Pinto SB, Teixeira ABM, Casanovas-Massana A, Rouphael NG, Deye GA, Simmons CP, Moreira LA, Nogueira ML, Cummings DAT, Ko AI, Teixeira MM, Edupuganti S. EVITA Dengue: a cluster-randomized controlled trial to EValuate the efficacy of Wolbachia-InfecTed Aedes aegypti mosquitoes in reducing the incidence of Arboviral infection in Brazil. Trials 2022; 23:185. [PMID: 35236394 PMCID: PMC8889395 DOI: 10.1186/s13063-022-05997-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 01/03/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Arboviruses transmitted by Aedes aegypti including dengue, Zika, and chikungunya are a major global health problem, with over 2.5 billion at risk for dengue alone. There are no licensed antivirals for these infections, and safe and effective vaccines are not yet widely available. Thus, prevention of arbovirus transmission by vector modification is a novel approach being pursued by multiple researchers. However, the field needs high-quality evidence derived from randomized, controlled trials upon which to base the implementation and maintenance of vector control programs. Here, we report the EVITA Dengue trial design (DMID 17-0111), which assesses the efficacy in decreasing arbovirus transmission of an innovative approach developed by the World Mosquito Program for vector modification of Aedes mosquitoes by Wolbachia pipientis. METHODS DMID 17-0111 is a cluster-randomized trial in Belo Horizonte, Brazil, with clusters defined by primary school catchment areas. Clusters (n = 58) will be randomized 1:1 to intervention (release of Wolbachia-infected Aedes aegypti mosquitoes) vs. control (no release). Standard vector control activities (i.e., insecticides and education campaigns for reduction of mosquito breeding sites) will continue as per current practice in the municipality. Participants (n = 3480, 60 per cluster) are children aged 6-11 years enrolled in the cluster-defining school and living within the cluster boundaries who will undergo annual serologic surveillance for arboviral infection. The primary objective is to compare sero-incidence of arboviral infection between arms. DISCUSSION DMID 17-0111 aims to determine the efficacy of Wolbachia-infected mosquito releases in reducing human infections by arboviruses transmitted by Aedes aegypti and will complement the mounting evidence for this method from large-scale field releases and ongoing trials. The trial also represents a critical step towards robustness and rigor for how vector control methods are assessed, including the simultaneous measurement and correlation of entomologic and epidemiologic outcomes. Data from this trial will inform further the development of novel vector control methods. TRIAL REGISTRATION ClinicalTrials.gov NCT04514107 . Registered on 17 August 2020 Primary sponsor: National Institute of Health, National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- Matthew H Collins
- Department of Medicine, Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Gail E Potter
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- The Emmes Company, LLC, Rockville, USA
| | - Matt D T Hitchings
- Emerging Pathogens Institute and Department of Biology, University of Florida, Gainesville, FL, USA
| | - Ellie Butler
- Department of Medicine, Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Michelle Wiles
- Department of Medicine, Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | | | - Sofia B Pinto
- World Mosquito Program, Monash University, Melbourne, 3800, Australia
| | - Adla B M Teixeira
- School of Education, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Nadine G Rouphael
- Department of Medicine, Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Gregory A Deye
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Cameron P Simmons
- World Mosquito Program, Monash University, Melbourne, 3800, Australia
| | - Luciano A Moreira
- Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Mauricio L Nogueira
- Medical School of São Jose do Rio Preto FAMERP, São Jose do Rio Preto, São Paulo, Brazil
| | - Derek A T Cummings
- Emerging Pathogens Institute and Department of Biology, University of Florida, Gainesville, FL, USA.
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Salvador, Bahia, Brazil.
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Srilatha Edupuganti
- Department of Medicine, Division of Infectious Diseases, The Hope Clinic of the Emory Vaccine Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
19
|
Pramanik A, Gao Y, Patibandla S, Gates K, Ray PC. Bioconjugated Nanomaterial for Targeted Diagnosis of SARS-CoV-2. ACCOUNTS OF MATERIALS RESEARCH 2022; 3:134-148. [PMID: 37556282 PMCID: PMC8791035 DOI: 10.1021/accountsmr.1c00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/03/2022] [Indexed: 05/26/2023]
Abstract
Infectious diseases by pathogenic microorganisms are one of the leading causes of mortality worldwide. Healthcare and socio-economic development have been seriously affected for different civilizations because of bacterial and viral infections. According to the Centers for Disease Control and Prevention (CDC), pandemic in 1918 by the Influenza A virus of the H1N1 subtype was responsible for 50 to 100 million deaths worldwide. Similarly, the Asian flu pandemic in 1957, Hong Kong flu in 1968, and H1N1pdm09 flu pandemic in 2009 were responsible for more than 1 million deaths across the globe each time. As per the World Health Organization (WHO), the current pandemic by coronavirus disease 2019 (COVID-19) due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is responsible for more than 4.8 M death worldwide until now. Since the gold standard polymerase chain reaction (PCR) test is more time-consuming, the health care system cannot test all symptomatic and asymptomatic Covid patients every day, which is extremely important to tackle the outbreak. One of the significant challenges during the current pandemic is developing mass testing tools, which is critical to control the virus spread in the community. Therefore, it is highly desirable to develop advanced material-based approaches that can provide a rapid and accurate diagnosis of COVID-19, which will have the capability to save millions of human lives. Aiming for the targeted diagnosis of deadly virus, researchers have developed nanomaterials with various sizes, shapes, and dimensions. These nanomaterials have been used to identify biomolecules via unique optical, electrical, magnetic, structural, and functional properties, which are lacking in other materials. Despite significant progress, nanomaterial-based diagnosis of biomolecules is still facing several obstacles due to low targeting efficiency and nonspecific interactions. To overcome these problems, the bioconjugated nanoparticle has been designed via surface coating with polyethylene glycol (PEG) and then conjugated with antibodies, DNA, RNA, or peptide aptamers. Therefore, the current Account summarizes an overview of the recent advances in the design of bioconjugated nanomaterial-based approached as effective diagnosis of the SARS-CoV-2 virus and the SARS-CoV-2 viral RNA, antigen, or antibody, with a particular focus on our work and other's work related to this subject. First, we present how to tailor the surface functionalities of nanomaterials to achieve bioconjugated material for targeted diagnosis of the virus. Then we review the very recent advances in the design of antibody/aptamer/peptide conjugated nanostructure, which represent a powerful platform for naked-eye colorimetric detection via plasmonic nanoparticles. We then discuss nanomaterial-based surface-enhanced Raman scattering (SERS) spectroscopy, which has the capability for very low-level fingerprint identification of virus, antigen, and antibody via graphene, plasmonic nanoparticle, and heterostructure material. After that, we summarized about fluorescence and nanoparticle surface energy transfer (NSET)-based on specific identification of SARS-CoV-2 infections via CNT, quantum dots (QDs), and plasmonic nanoparticles. Finally, we highlight the merit and significant challenges of nanostructure-based tools in infectious diseases diagnosis. For the researchers who want to engage in the new development of bioconjugated material for our survival from the current and future pandemics, we hope that this Account will be helpful for generating ideas that are scientifically stimulating and practically challenging.
Collapse
Affiliation(s)
- Avijit Pramanik
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Ye Gao
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Shamily Patibandla
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Kalein Gates
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Paresh Chandra Ray
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
20
|
Fu X, Gao Y, Yan W, Zhang Z, Sarker S, Yin Y, Liu Q, Feng J, Chen J. Preparation of eugenol nanoemulsions for antibacterial activities. RSC Adv 2022; 12:3180-3190. [PMID: 35425353 PMCID: PMC8979276 DOI: 10.1039/d1ra08184e] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Eugenol is a versatile plant essential oil, but its high volatility and low water solubility greatly limit its application. Accordingly, this study prepared eugenol nanoemulsions by a high-speed shearing technique. Through visual inspection and a series of characterizations, including dynamic light scattering, and confocal laser scanning microscopy, the optimized formula was determined to be 5% (w/w) oil phase (eugenol) and 8% (w/w) surfactant (Tween-80), and the optimized shearing time was 5 min. The optimized nanoemulsion had good stability, small droplets (85 nm), and uniform distribution. At a concentration of 0.02 mg μL-1, the nanoemulsion showed strong inhibition against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Scanning electron microscopy (SEM) images showed severe deformation and membrane rupture of both bacteria treated by the nanoemulsion. This result was further confirmed by the leakage of proteins in both bacteria after treatment. The results of reactive oxygen species (ROS) and malondialdehyde (MDA) measurements indicated that the increased levels of ROS in both bacteria treated by the nanoemulsion triggered lipid peroxidation, thus increasing the MDA levels, ultimately causing changes in cell membrane permeability and disruption of the membrane structure. In addition, the nanoemulsion had a small effect on the proliferation and apoptosis of hepatocytes (L02) and lung cells (BEAS-2B), indicating its good biocompatibility. In this study, we developed a novel eugenol nanoemulsion with high stability and good biological activity, which may provide a promising and effective method for wound treatment in the healthcare area.
Collapse
Affiliation(s)
- Xuan Fu
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Yuan Gao
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Weiyao Yan
- College of Horticulture and Plant Protection, Yangzhou University Yangzhou 225009 China +86-514-87979395
| | - Ziluo Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Shovra Sarker
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Yinyan Yin
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Qi Liu
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| | - Jianguo Feng
- College of Horticulture and Plant Protection, Yangzhou University Yangzhou 225009 China +86-514-87979395
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University Yangzhou 225009 China +86-514-87992233
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University Yangzhou 225009 China
| |
Collapse
|
21
|
Salazar-García M, Acosta-Contreras S, Rodríguez-Martínez G, Cruz-Rangel A, Flores-Alanis A, Patiño-López G, Luna-Pineda VM. Pseudotyped Vesicular Stomatitis Virus-Severe Acute Respiratory Syndrome-Coronavirus-2 Spike for the Study of Variants, Vaccines, and Therapeutics Against Coronavirus Disease 2019. Front Microbiol 2022; 12:817200. [PMID: 35095820 PMCID: PMC8795712 DOI: 10.3389/fmicb.2021.817200] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
World Health Organization (WHO) has prioritized the infectious emerging diseases such as Coronavirus Disease (COVID-19) in terms of research and development of effective tests, vaccines, antivirals, and other treatments. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), the etiological causative agent of COVID-19, is a virus belonging to risk group 3 that requires Biosafety Level (BSL)-3 laboratories and the corresponding facilities for handling. An alternative to these BSL-3/-4 laboratories is to use a pseudotyped virus that can be handled in a BSL-2 laboratory for study purposes. Recombinant Vesicular Stomatitis Virus (VSV) can be generated with complementary DNA from complete negative-stranded genomic RNA, with deleted G glycoprotein and, instead, incorporation of other fusion protein, like SARS-CoV-2 Spike (S protein). Accordingly, it is called pseudotyped VSV-SARS-CoV-2 S. In this review, we have described the generation of pseudotyped VSV with a focus on the optimization and application of pseudotyped VSV-SARS-CoV-2 S. The application of this pseudovirus has been addressed by its use in neutralizing antibody assays in order to evaluate a new vaccine, emergent SARS-CoV-2 variants (delta and omicron), and approved vaccine efficacy against variants of concern as well as in viral fusion-focused treatment analysis that can be performed under BSL-2 conditions.
Collapse
Affiliation(s)
- Marcela Salazar-García
- Laboratorio de Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Samyr Acosta-Contreras
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | | | - Armando Cruz-Rangel
- Laboratorio de Bioquímica de Enfermedades Crónicas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alejandro Flores-Alanis
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Genaro Patiño-López
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Victor M. Luna-Pineda
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| |
Collapse
|
22
|
Zhang J, Liu J, Yan H, Wang X, Dong H. Novel Approach of Phyto-Mediated Thermo-Sensitive and Biocompatible Nano-Formulation to Improve Anti-Microbial Efficacy Against Pathogenic Bacterial for the Treatment of Wound Infections. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Design and development of novel methods for the synthesis of metal nanopartilces (MNPs) was greatly attracted by research community due to various applications. We described a greener strategy for the synthesis of silver nanoformulation (Ag NF) using leaf extract of Ziziphus zizyphus
and then surface functionalized using P(NIPAM-co-MQ). The synthesized AgNPs were characterized by UV-visible spectroscopy and Transmission electron microscopy. Further, the functionalized AgNPs were characterized XPS and x-ray diffraction studies. The design of bioactive and biocompatible
Ag nanoformulation preparations have been provide promising alternative source for bacterial-related therapies. The developed Ag NF have demonstrated predominant bactericidal action with highinhibition rate and long-term efficiency against clinically approved bacterial pathogens (S. aureus
and E. coli), which greatly contributed treatment of wound infections. The observations of the present study could provide new avenue for the antimicrobial treatment of wound therapy
Collapse
Affiliation(s)
- Jing Zhang
- Ophthalmic Clinic, Qingdao Municipal Hospital, 266071, PR China
| | - Jie Liu
- Section for Outpatients, Qingdao Municipal Hospital, 266071, PR China
| | - Hui Yan
- Operating Room, Wulian People’s Hospital, 262399, PR China
| | - Xuyu Wang
- Ophthalmic Clinic, Qingdao Municipal Hospital, 266071, PR China
| | - Huiyan Dong
- Department of Gastroenterology, Affiliated Hospital of Jining Medical College, 272007, PR China
| |
Collapse
|
23
|
Kousoulis AA, Grant I. “SPEECH”: A LITERATURE BASED FRAMEWORK FOR THE STUDY OF PAST EPIDEMICS. J Infect Public Health 2022; 15:307-311. [PMID: 35124326 PMCID: PMC8767933 DOI: 10.1016/j.jiph.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
|
24
|
Association between antibiotics use and diabetes incidence in a nationally representative retrospective cohort among Koreans. Sci Rep 2021; 11:21681. [PMID: 34737360 PMCID: PMC8568925 DOI: 10.1038/s41598-021-01125-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have reported that antibiotics could lead to diabetes, even after adjusting for confounding variables. This study aimed to determine the causal relationship between antibiotics use and diabetes in a nationally representative cohort. This retrospective cohort study included adults aged 40 years or older who were enrolled in the Korean National Health Insurance Service-Health Screening Cohort. Antibiotic exposure was assessed from 2002 to 2005 and newly diagnosed diabetes mellitus was determined based on diagnostic codes and history of antidiabetic medication use from 2006 to 2015. Multivariate Cox proportional hazards model was used to assess the association between antibiotic use and diabetes incidence. The mean age of the 201,459 study subjects was 53.2 years. People who used antibiotics for 90 or more days had a higher risk of diabetes (adjusted hazard ratio [aHR] 1.16, 95% confidence interval [CI] 1.07–1.26) compared to non-users. Those who used five or more classes of antibiotics had a higher risk of diabetes than those who used one antibiotic class (aHR 1.14; 95% CI 1.06–1.23). The clear dose-dependent association between antibiotics and diabetes incidence supports the judicious use of antibiotics in the future.
Collapse
|
25
|
Chala B, Hamde F. Emerging and Re-emerging Vector-Borne Infectious Diseases and the Challenges for Control: A Review. Front Public Health 2021; 9:715759. [PMID: 34676194 PMCID: PMC8524040 DOI: 10.3389/fpubh.2021.715759] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
Vector-borne emerging and re-emerging diseases pose considerable public health problem worldwide. Some of these diseases are emerging and/or re-emerging at increasing rates and appeared in new regions in the past two decades. Studies emphasized that the interactions among pathogens, hosts, and the environment play a key role for the emergence or re-emergence of these diseases. Furthermore, social and demographic factors such as human population growth, urbanization, globalization, trade exchange and travel and close interactions with livestock have significantly been linked with the emergence and/or re-emergence of vector-borne diseases. Other studies emphasize the ongoing evolution of pathogens, proliferation of reservoir populations, and antimicrobial drug use to be the principal exacerbating forces for emergence and re-emergence of vector-borne infectious diseases. Still other studies equivocally claim that climate change has been associated with appearance and resurgence of vector-borne infectious diseases. Despite the fact that many important emerging and re-emerging vector-borne infectious diseases are becoming better controlled, our success in stopping the many new appearing and resurging vector-borne infectious diseases that may happen in the future seems to be uncertain. Hence, this paper reviews and synthesizes the existing literature to explore global patterns of emerging and re-emerging vector-borne infections and the challenges for their control. It also attempts to give insights to the epidemiological profile of major vector-borne diseases including Zika fever, dengue, West Nile fever, Crimean-Congo hemorrhagic fever, Chikungunya, Yellow fever, and Rift Valley fever.
Collapse
Affiliation(s)
- Bayissa Chala
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Feyissa Hamde
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
26
|
Abstract
Paramyxoviruses are a diverse group of negative-sense, single-stranded RNA viruses of which several species cause significant mortality and morbidity. In recent years the collection of paramyxoviruses sequences detected in wild mammals has substantially grown, however little is known about paramyxovirus diversity in North American mammals. To better understand natural paramyxovirus diversity, host range, and host specificity, we sought to comprehensively characterize paramyxoviruses across a range of diverse co-occurring wild small mammals in Southern Arizona. We used highly degenerate primers to screen fecal and urine samples and obtained a total of 55 paramyxovirus sequences from 12 rodent species and 6 bat species. We also performed illumina RNA-seq and de novo assembly on 14 of the positive samples to recover a total of five near full-length viral genomes. We show there are at least two clades of rodent-borne paramyxoviruses in Arizona, while bat-associated paramyxoviruses formed a putative single clade. Using structural homology modeling of the viral attachment protein, we infer that three of the five novel viruses likely bind sialic acid in a manner similar to other Respiroviruses, while the other two viruses from Heteromyid rodents likely bind a novel host receptor. We find no evidence for cross-species transmission, even among closely related sympatric host species. Taken together, these data suggest paramyxoviruses are a common viral infection in some bat and rodent species present in North America, and illuminate the evolution of these viruses. Importance There are a number of viral lineages that are potential zoonotic threats to humans. One of these, paramyxoviruses, have jumped into humans multiple times from wild and domestic animals. We conducted one of the largest viral surveys of wild mammals in the United States to better understand paramyxovirus diversity and evolution.
Collapse
|
27
|
Khaitov M, Nikonova A, Shilovskiy I, Kozhikhova K, Kofiadi I, Vishnyakova L, Nikolskii A, Gattinger P, Kovchina V, Barvinskaia E, Yumashev K, Smirnov V, Maerle A, Kozlov I, Shatilov A, Timofeeva A, Andreev S, Koloskova O, Kuznetsova N, Vasina D, Nikiforova M, Rybalkin S, Sergeev I, Trofimov D, Martynov A, Berzin I, Gushchin V, Kovalchuk A, Borisevich S, Valenta R, Khaitov R, Skvortsova V. Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy 2021; 76:2840-2854. [PMID: 33837568 PMCID: PMC8251148 DOI: 10.1111/all.14850] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Background First vaccines for prevention of Coronavirus disease 2019 (COVID‐19) are becoming available but there is a huge and unmet need for specific forms of treatment. In this study we aimed to evaluate the anti‐SARS‐CoV‐2 effect of siRNA both in vitro and in vivo. Methods To identify the most effective molecule out of a panel of 15 in silico designed siRNAs, an in vitro screening system based on vectors expressing SARS‐CoV‐2 genes fused with the firefly luciferase reporter gene and SARS‐CoV‐2‐infected cells was used. The most potent siRNA, siR‐7, was modified by Locked nucleic acids (LNAs) to obtain siR‐7‐EM with increased stability and was formulated with the peptide dendrimer KK‐46 for enhancing cellular uptake to allow topical application by inhalation of the final formulation – siR‐7‐EM/KK‐46. Using the Syrian Hamster model for SARS‐CoV‐2 infection the antiviral capacity of siR‐7‐EM/KK‐46 complex was evaluated. Results We identified the siRNA, siR‐7, targeting SARS‐CoV‐2 RNA‐dependent RNA polymerase (RdRp) as the most efficient siRNA inhibiting viral replication in vitro. Moreover, we showed that LNA‐modification and complexation with the designed peptide dendrimer enhanced the antiviral capacity of siR‐7 in vitro. We demonstrated significant reduction of virus titer and lung inflammation in animals exposed to inhalation of siR‐7‐EM/KK‐46 in vivo. Conclusions Thus, we developed a therapeutic strategy for COVID‐19 based on inhalation of a modified siRNA‐peptide dendrimer formulation. The developed medication is intended for inhalation treatment of COVID‐19 patients.
Collapse
Affiliation(s)
| | - Alexandra Nikonova
- NRC Institute of Immunology FMBA Moscow Russia
- Mechnikov Research Institute for Vaccines and Sera Moscow Russia
| | | | | | | | | | | | | | | | | | | | | | | | - Ivan Kozlov
- NRC Institute of Immunology FMBA Moscow Russia
| | | | | | | | | | - Nadezhda Kuznetsova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Daria Vasina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Maria Nikiforova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | | | | | | | | | - Igor Berzin
- Federal Medico‐biological Agency of Russia (FMBA Russia) Moscow Russia
| | - Vladimir Gushchin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Aleksey Kovalchuk
- 48 Central Research Institute of the Ministry of Defense of the Russian Federation Moscow Russia
| | - Sergei Borisevich
- 48 Central Research Institute of the Ministry of Defense of the Russian Federation Moscow Russia
| | - Rudolf Valenta
- NRC Institute of Immunology FMBA Moscow Russia
- Medical University of Vienna Vienna Austria
| | | | | |
Collapse
|
28
|
Seidah NG, Pasquato A, Andréo U. How Do Enveloped Viruses Exploit the Secretory Proprotein Convertases to Regulate Infectivity and Spread? Viruses 2021; 13:v13071229. [PMID: 34202098 PMCID: PMC8310232 DOI: 10.3390/v13071229] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibition of the binding of enveloped viruses surface glycoproteins to host cell receptor(s) is a major target of vaccines and constitutes an efficient strategy to block viral entry and infection of various host cells and tissues. Cellular entry usually requires the fusion of the viral envelope with host plasma membranes. Such entry mechanism is often preceded by “priming” and/or “activation” steps requiring limited proteolysis of the viral surface glycoprotein to expose a fusogenic domain for efficient membrane juxtapositions. The 9-membered family of Proprotein Convertases related to Subtilisin/Kexin (PCSK) serine proteases (PC1, PC2, Furin, PC4, PC5, PACE4, PC7, SKI-1/S1P, and PCSK9) participate in post-translational cleavages and/or regulation of multiple secretory proteins. The type-I membrane-bound Furin and SKI-1/S1P are the major convertases responsible for the processing of surface glycoproteins of enveloped viruses. Stefan Kunz has considerably contributed to define the role of SKI-1/S1P in the activation of arenaviruses causing hemorrhagic fever. Furin was recently implicated in the activation of the spike S-protein of SARS-CoV-2 and Furin-inhibitors are being tested as antivirals in COVID-19. Other members of the PCSK-family are also implicated in some viral infections, such as PCSK9 in Dengue. Herein, we summarize the various functions of the PCSKs and present arguments whereby their inhibition could represent a powerful arsenal to limit viral infections causing the present and future pandemics.
Collapse
Affiliation(s)
- Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
- Correspondence: ; Tel.: +1-514-987-5609
| | - Antonella Pasquato
- Antonella Pasquato, Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy;
| | - Ursula Andréo
- Laboratory of Biochemical Neuroendocrinology Montreal Clinical Research Institute, University of Montreal, Montreal, QC H2W1R7, Canada;
| |
Collapse
|
29
|
Sun TT, Tao R, Su CW, Umar M. How Do Economic Fluctuations Affect the Mortality of Infectious Diseases? Front Public Health 2021; 9:678213. [PMID: 33968891 PMCID: PMC8100195 DOI: 10.3389/fpubh.2021.678213] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
This paper uses the mixed frequency vector autoregression model to explore the impact of economic fluctuations on infectious diseases mortality (IDM) from China perspective. We find that quarterly gross domestic product (GDP) fluctuations have a negative impact on the annual IDM, indicating that the mortality of infectious diseases varies counter-cyclically with the business cycle in China. Specifically, IDM usually increases with deterioration in economic conditions, and vice versa. The empirical results are consistent with the hypothesis I derived from the theoretical analysis, which highlights that economic fluctuations can negatively affect the mortality of infectious diseases. The findings can offer revelations for the government to consider the role of economic conditions in controlling the epidemic of infectious diseases. Policymakers should adopt appropriate and effective strategies to mitigate the potential negative effects of macroeconomic downturns on the mortality of infectious diseases. In the context of the COVID-19 pandemic, these analyses further emphasize the importance of promoting economic growth, increasing public health expenditure, and preventing and controlling foreign infectious diseases.
Collapse
Affiliation(s)
- Ting-Ting Sun
- School of Economics, Qingdao University, Qingdao, China
| | - Ran Tao
- Qingdao Municipal Center for Disease Control and Preventation, Qingdao, China
| | - Chi-Wei Su
- School of Economics, Qingdao University, Qingdao, China
| | - Muhammad Umar
- School of Economics, Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Carlsten C, Gulati M, Hines S, Rose C, Scott K, Tarlo SM, Torén K, Sood A, de la Hoz RE. COVID-19 as an occupational disease. Am J Ind Med 2021; 64:227-237. [PMID: 33491195 PMCID: PMC8014565 DOI: 10.1002/ajim.23222] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/27/2020] [Accepted: 01/02/2021] [Indexed: 12/11/2022]
Abstract
The impact of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 permeates all aspects of society worldwide. Initial medical reports and media coverage have increased awareness of the risk imposed on healthcare workers in particular, during this pandemic. However, the health implications of COVID-19 for the global workforce are multifaceted and complex, warranting careful reflection and consideration to mitigate the adverse effects on workers worldwide. Accordingly, our review offers a framework for considering this topic, highlighting key issues, with the aim to prompt and inform action, including research, to minimize the occupational hazards imposed by this ongoing challenge. We address respiratory disease as a primary concern, while recognizing the multisystem spectrum of COVID-19-related disease and how clinical aspects are interwoven with broader socioeconomic forces.
Collapse
Affiliation(s)
- Christopher Carlsten
- Department of Medicine, Division of Respiratory MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Mridu Gulati
- Department of Pulmonary, Critical Care & Sleep MedicineYale UniversityNew HavenConnecticutUSA
| | - Stella Hines
- Department of MedicineUniversity of MarylandBaltimoreMarylandUSA
| | - Cecile Rose
- Department of Medicine, Division of Environmental & Occupational Health Sciences, National Jewish HealthUniversity of Colorado DenverDenverColoradoUSA
| | - Kenneth Scott
- Denver Health and Hospital AuthorityDenver Public HealthDenverColoradoUSA
| | - Susan M. Tarlo
- Occupational & Environmental Health Division, University Health NetworkUniversity of TorontoTorontoOntarioCanada
| | - Kjell Torén
- Occupational and Environmental Medicine Division, School of Public Health and Community Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Occupational and Environmental MedicineSahlgrenska University HospitalGothenburgSweden
| | - Akshay Sood
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of MedicineUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Rafael E. de la Hoz
- Division of Occupational and Environmental MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
31
|
Yamori K, Goltz JD. Disasters without Borders: The Coronavirus Pandemic, Global Climate Change and the Ascendancy of Gradual Onset Disasters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3299. [PMID: 33806758 PMCID: PMC8004615 DOI: 10.3390/ijerph18063299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
Throughout much of its history, the sociological study of human communities in disaster has been based on events that occur rapidly, are limited in geographic scope, and their management understood as phased stages of response, recovery, mitigation and preparedness. More recent literature has questioned these concepts, arguing that gradual-onset phenomena like droughts, famines and epidemics merit consideration as disasters and that their exclusion has negative consequences for the communities impacted, public policy in terms of urgency and visibility and for the discipline itself as the analytical tools of sociological research are not brought to bear on these events. We agree that gradual-onset disasters merit greater attention from social scientists and in this paper have addressed the two most significant ongoing disasters that are gradual in onset, global in scope and have caused profound impacts on lives, livelihoods, communities and the governments that must cope with their effects. These disasters are the coronavirus pandemic and global climate change both of which include dimensions that challenge the prevailing definition of disaster. We begin with an examination of the foundational work in the sociological study of a disaster that established a conceptual framework based solely on rapidly occurring disasters. Our focus is on several components of the existing framework for defining and studying disasters, which we term "borders." These borders are temporal, spatial, phasing and positioning, which, in our view, must be reexamined, and to some degree expanded or redefined to accommodate the full range of disasters to which our globalized world is vulnerable. To do so will expand or redefine these borders to incorporate and promote an understanding of significant risks associated with disaster agents that are gradual and potentially catastrophic, global in scope and require international cooperation to manage.
Collapse
Affiliation(s)
- Katsuya Yamori
- Disaster Reductions Systems, Disaster Prevention Research Institute, Kyoto University, Gokasho, Kyoto Prefecture, Uji-City 611-0011, Japan;
| | - James D. Goltz
- Research Affiliate, Natural Hazards Center 483UCB, Institute for Behavioral Science, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
32
|
Gupta D, Biswas D, Kabiraj P. COVID-19 outbreak and Urban dynamics: regional variations in India. GEOJOURNAL 2021; 87:2719-2737. [PMID: 33678946 PMCID: PMC7925257 DOI: 10.1007/s10708-021-10394-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 05/15/2023]
Abstract
India was the second highest COVID-19 affected country in the world with 2.1 million cases by 11th August. This study focused on the spatial transmission of the pandemic among the 640 districts in India over time, and aimed to understand the urban-centric nature of the infection. The connectivity context was emphasized that possibly had inflicted the outbreak. Using the modes of transmission data for the available cases, the diffusion of this disease was explained. Metropolitans contributed three-fourths of total cases from the beginning. The transport networks attributed significantly in transmitting the virus from the urban containment zones. Later, there was a gradual shift of infections from urban to rural areas; however, the numbers kept increasing in the former. The massive reverse migration after lockdown spiked the infected cases further. Districts with airports reported more with influx of international passengers. A profound east-west division in April with higher infections in the southern and western districts existed. By mid-May eastern India saw a steep rise in active cases. Moran's I analysis showed a low autocorrelation initially which increased over time. Hotspot clustering was observed in western Maharashtra, eastern Tamil Nadu, Gujarat and around Kolkata by the second week of August. The diffusion was due to travel, exposure to infected individuals and among the frontline workers. Spatial regression models confirmed that urbanization was positively correlated with higher incidences of infections. Transit mediums, especially rail and aviation were positively associated. These models validated the crucial role of spatial proximity in diffusion of the pandemic.
Collapse
Affiliation(s)
- Devarupa Gupta
- International Institute for Population Sciences, Govandi Station Road, Deonar, Mumbai, 400088 Maharashtra India
- Purulia, India
| | - Dibyendu Biswas
- Institute of Development Studies Kolkata, 27/D, DD Block, Sector 1, Salt Lake, Kolkata, 700064 West Bengal India
| | - Pintu Kabiraj
- Institute of Development Studies Kolkata, 27/D, DD Block, Sector 1, Salt Lake, Kolkata, 700064 West Bengal India
| |
Collapse
|
33
|
Co-epidemics: have measures against COVID-19 helped to reduce Lassa fever cases in Nigeria? New Microbes New Infect 2021; 40:100851. [PMID: 33614042 PMCID: PMC7884914 DOI: 10.1016/j.nmni.2021.100851] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
While the coronavirus disease 2019 (COVID-19) pandemic has multiple devastating public health and socio-economic effects across the world, Nigeria along with other West African countries is simultaneously faced with a recurrent Lassa fever epidemic. The complicating scenario is the similarity in the clinical manifestation of COVID-19 and Lassa fever, making the misdiagnosis of the initial presentation of both diseases a significant risk with an increased likelihood of co-infection. However, the strict implementation of COVID-19 infection prevention and control measures across Nigeria after the initial outbreaks concurrently resulted in the reduction of Lassa fever cases. The abrupt change in the behaviour of Lassa fever epidemiological data, which are attributable to the implementation of COVID-19 infection prevention and control measures at the national, sub-national and community levels, requires detailed investigation during and after the COVID-19 epidemic to elucidate the interactions and evolutionary dynamics of Lassa fever cases in Nigeria.
Collapse
|
34
|
The interaction of Ag 2O nanoparticles with Escherichia coli: inhibition-sterilization process. Sci Rep 2021; 11:1703. [PMID: 33462370 PMCID: PMC7813836 DOI: 10.1038/s41598-021-81305-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/04/2021] [Indexed: 01/22/2023] Open
Abstract
Silver-based antibacterial agents have obtained wide attention due to the fact that bacteria in the environment is ubiquitous, which has become one of the most difficult problems for human health. However, the antibacterial mechanism and process are still inconclusive. Here, Ag2O nanoparticles (NPs) with uniform spherical morphology and small size (around 30 nm) were prepared. The as-prepared Ag2O NPs induced high antibacterial activity (100% inhibition ratio) against E. coli. A two-step antibacterial process was proposed and confirmed, which divided into inhibition and sterilization steps. The optical density measurement, malondialdehyde concentration detection, morphologic imaging with electronic microscopy and Fourier transform infrared spectroscopic analysis unveiled the interaction of Ag2O NPs with E. coli, which verified the inhibition–sterilization process we proposed.
Collapse
|
35
|
Hamer DH, Rizwan A, Freedman DO, Kozarsky P, Libman M. GeoSentinel: past, present and future†. J Travel Med 2020; 27:taaa219. [PMID: 33247586 PMCID: PMC7799014 DOI: 10.1093/jtm/taaa219] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
RATIONALE FOR REVIEW In response to increased concerns about emerging infectious diseases, GeoSentinel, the Global Surveillance Network of the International Society of Travel Medicine in partnership with the US Centers for Disease Control and Prevention (CDC), was established in 1995 in order to serve as a global provider-based emerging infections sentinel network, conduct surveillance for travel-related infections and communicate and assist global public health responses. This review summarizes the history, past achievements and future directions of the GeoSentinel Network. KEY FINDINGS Funded by the US CDC in 1996, GeoSentinel has grown from a group of eight US-based travel and tropical medicine centers to a global network, which currently consists of 68 sites in 28 countries. GeoSentinel has provided important contributions that have enhanced the ability to use destination-specific differences to guide diagnosis and treatment of returning travelers, migrants and refugees. During the last two decades, GeoSentinel has identified a number of sentinel infectious disease events including previously unrecognized outbreaks and occurrence of diseases in locations thought not to harbor certain infectious agents. GeoSentinel has also provided useful insight into illnesses affecting different traveling populations such as migrants, business travelers and students, while characterizing in greater detail the epidemiology of infectious diseases such as typhoid fever, leishmaniasis and Zika virus disease. CONCLUSIONS Surveillance of travel- and migration-related infectious diseases has been the main focus of GeoSentinel for the last 25 years. However, GeoSentinel is now evolving into a network that will conduct both research and surveillance. The large number of participating sites and excellent geographic coverage for identification of both common and illnesses in individuals who have traversed international borders uniquely position GeoSentinel to make important contributions of travel-related infectious diseases in the years to come.
Collapse
Affiliation(s)
- Davidson H Hamer
- Department of Global Health, Boston University School of Public Health, Crosstown 308, 801 Massachusetts Avenue, Boston, MA 02118, USA
- Section of Infectious Disease, Department of Medicine, Boston University School of Medicine, Crosstown 308, 801 Massachusetts Avenue, Boston, MA 02118, USA
- National Emerging Infectious Disease Laboratory, Boston University, Crosstown 308, 801 Massachusetts Avenue, Boston, MA 02118, USA
| | - Aisha Rizwan
- GeoSentinel, International Society of Travel Medicine, 11720 Amber Park Drive, Suite 160, Alpharetta, GA 30009, USA
| | - David O Freedman
- Division of Infectious Diseases, University of Alabama at Birmingham, 1720 2nd Ave S, BBRB 201, Birmingham, AL 35294 2170, USA
| | - Phyllis Kozarsky
- Division of Infectious Diseases (Emerita), Department of Medicine, Emory University, 2500 Peachtree Road NW, Suite 505, Atlanta, GA 30305, USA
| | - Michael Libman
- J.D. MacLean Centre for Tropical Diseases, McGill University, Room E05.1830, 1001 Boulevard Décarie, Montréal, Québec H4A 3J1, Canada
| |
Collapse
|
36
|
Morens DM, Fauci AS. Emerging Pandemic Diseases: How We Got to COVID-19. Cell 2020; 182:1077-1092. [PMID: 32846157 PMCID: PMC7428724 DOI: 10.1016/j.cell.2020.08.021] [Citation(s) in RCA: 304] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Infectious diseases prevalent in humans and animals are caused by pathogens that once emerged from other animal hosts. In addition to these established infections, new infectious diseases periodically emerge. In extreme cases they may cause pandemics such as COVID-19; in other cases, dead-end infections or smaller epidemics result. Established diseases may also re-emerge, for example by extending geographically or by becoming more transmissible or more pathogenic. Disease emergence reflects dynamic balances and imbalances, within complex globally distributed ecosystems comprising humans, animals, pathogens, and the environment. Understanding these variables is a necessary step in controlling future devastating disease emergences.
Collapse
Affiliation(s)
- David M Morens
- Office of the Director, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Anthony S Fauci
- Office of the Director, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Morens DM, Breman JG, Calisher CH, Doherty PC, Hahn BH, Keusch GT, Kramer LD, LeDuc JW, Monath TP, Taubenberger JK. The Origin of COVID-19 and Why It Matters. Am J Trop Med Hyg 2020; 103:955-959. [PMID: 32700664 PMCID: PMC7470595 DOI: 10.4269/ajtmh.20-0849] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic is among the deadliest infectious diseases to have emerged in recent history. As with all past pandemics, the specific mechanism of its emergence in humans remains unknown. Nevertheless, a large body of virologic, epidemiologic, veterinary, and ecologic data establishes that the new virus, SARS-CoV-2, evolved directly or indirectly from a β-coronavirus in the sarbecovirus (SARS-like virus) group that naturally infect bats and pangolins in Asia and Southeast Asia. Scientists have warned for decades that such sarbecoviruses are poised to emerge again and again, identified risk factors, and argued for enhanced pandemic prevention and control efforts. Unfortunately, few such preventive actions were taken resulting in the latest coronavirus emergence detected in late 2019 which quickly spread pandemically. The risk of similar coronavirus outbreaks in the future remains high. In addition to controlling the COVID-19 pandemic, we must undertake vigorous scientific, public health, and societal actions, including significantly increased funding for basic and applied research addressing disease emergence, to prevent this tragic history from repeating itself.
Collapse
Affiliation(s)
- David M. Morens
- American Committee on Arthropod-Borne Viruses, American Society of Tropical Medicine and Hygiene, Arlington, Virginia
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joel G. Breman
- American Society of Tropical Medicine and Hygiene, Arlington, Virginia
| | - Charles H. Calisher
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Peter C. Doherty
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute, Melbourne, Australia
| | | | - Gerald T. Keusch
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts
- National Emerging Infectious Diseases Laboratory at Boston University, Boston, Massachusetts
| | - Laura D. Kramer
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York
| | - James W. LeDuc
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Thomas P. Monath
- American Society of Tropical Medicine and Hygiene, Arlington, Virginia
- Crozet BioPharma LLC, Devens, Massachusetts
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
Travel-screening documentation to enable the "Identify-Isolate-Inform" framework for emerging infectious diseases: It's all in the details. Infect Control Hosp Epidemiol 2020; 41:1449-1451. [PMID: 32847641 DOI: 10.1017/ice.2020.338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The early phase of the coronavirus disease 2019 (COVID-19) pandemic and ongoing efforts for mitigation underscore the importance of universal travel and symptom screening. We analyzed adherence to documentation of travel and symptom screening through a travel navigator tool with clinical decision support to identify patients at risk for Middle East Respiratory Syndrome.
Collapse
|
39
|
Nacher M, Douine M, Gaillet M, Flamand C, Rousset D, Rousseau C, Mahdaoui C, Carroll S, Valdes A, Passard N, Carles G, Djossou F, Demar M, Epelboin L. Simultaneous dengue and COVID-19 epidemics: Difficult days ahead? PLoS Negl Trop Dis 2020; 14:e0008426. [PMID: 32797035 PMCID: PMC7428060 DOI: 10.1371/journal.pntd.0008426] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Mathieu Nacher
- Centre d’Investigation Clinique Antilles Guyane, CIC INSERM 1424, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
- DFR Santé, Université de Guyane, Cayenne, French Guiana
- * E-mail:
| | - Maylis Douine
- Centre d’Investigation Clinique Antilles Guyane, CIC INSERM 1424, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Mélanie Gaillet
- Centres Délocalisés de Prévention et de Soins, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Claude Flamand
- Unité d’épidémiologie, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Dominique Rousset
- Centre National de Référence Arbovirus et virus respiratoires, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Cyril Rousseau
- Santé Publique France, CIRE Antilles Guyane, Cayenne, French Guiana
| | - Chedli Mahdaoui
- Maison de Garde, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | | | - Audrey Valdes
- Hygiène, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | | | - Gabriel Carles
- Service d’obstétrique, centre hospitalier de l’Ouest Guyanais, French Guiana
| | - Félix Djossou
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Magalie Demar
- DFR Santé, Université de Guyane, Cayenne, French Guiana
- Laboratoire, Centre Hospitalier de Cayenne, Cayenne, French Guiana
- TBIP, Université de Guyane, Cayenne, French Guiana
| | - Loïc Epelboin
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| |
Collapse
|
40
|
WU Y, LI ZJ, YU SC, CHEN L, WANG JC, QIN Y, SONG YD, GAO GF, DONG XP, WANG LP, ZHANG Q, HE GX. Epidemiological Characteristics of Notifiable Infectious Diseases among Foreign Cases in China, 2004-2017. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2020; 33:421-430. [PMID: 32641205 PMCID: PMC7347353 DOI: 10.3967/bes2020.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 12/03/2019] [Indexed: 06/11/2023]
Abstract
OBJECTIVE We aimed to assess the features of notifiable infectious diseases found commonly in foreign nationals in China between 2004 and 2017 to improve public health policy and responses for infectious diseases. METHODS We performed a descriptive study of notifiable infectious diseases among foreigners reported from 2004 to 2017 in China using data from the Chinese National Notifiable Infectious Disease Reporting System (NNIDRIS). Demographic, temporal-spatial distribution were described and analyzed. RESULTS A total of 67,939 cases of 33 different infectious diseases were reported among foreigners. These diseases were seen in 31 provinces of China and originated from 146 countries of the world. The infectious diseases with the highest incidence number were human immunodeficiency virus (HIV) of 18,713 cases, hepatitis B (6,461 cases), hand, foot, and mouth disease (6,327 cases). Yunnan province had the highest number of notifiable infectious diseases in foreigners. There were different trends of the major infectious diseases among foreign cases seen in China and varied among provinces. CONCLUSIONS This is the first description of the epidemiological characteristic of notifiable infectious diseases among foreigners in China from 2004 to 2017. These data can be used to better inform policymakers about national health priorities for future research and control strategies.
Collapse
Affiliation(s)
- Yue WU
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhen Jun LI
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing 102206, China
| | - Shi Cheng YU
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Liang CHEN
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ji Chun WANG
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yu QIN
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yu Dan SONG
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - George F. GAO
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- SavaId Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Ping DONG
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li Ping WANG
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qun ZHANG
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Guang Xue HE
- Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
41
|
Abstract
With great apprehension, the world is now watching the birth of a novel pandemic already causing tremendous suffering, death, and disruption of normal life. Uncertainty and dread are exacerbated by the belief that what we are experiencing is new and mysterious. However, deadly pandemics and disease emergences are not new phenomena: they have been challenging human existence throughout recorded history. Some have killed sizeable percentages of humanity, but humans have always searched for, and often found, ways of mitigating their deadly effects. With great apprehension, the world is now watching the birth of a novel pandemic already causing tremendous suffering, death, and disruption of normal life. Uncertainty and dread are exacerbated by the belief that what we are experiencing is new and mysterious. However, deadly pandemics and disease emergences are not new phenomena: they have been challenging human existence throughout recorded history. Some have killed sizeable percentages of humanity, but humans have always searched for, and often found, ways of mitigating their deadly effects. We here review the ancient and modern histories of such diseases, discuss factors associated with their emergences, and attempt to identify lessons that will help us meet the current challenge.
Collapse
|
42
|
Hegde ST, Salje H, Sazzad HMS, Hossain MJ, Rahman M, Daszak P, Klena JD, Nichol ST, Luby SP, Gurley ES. Using healthcare-seeking behaviour to estimate the number of Nipah outbreaks missed by hospital-based surveillance in Bangladesh. Int J Epidemiol 2020; 48:1219-1227. [PMID: 30977803 DOI: 10.1093/ije/dyz057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Understanding the true burden of emergent diseases is critical for assessing public-health impact. However, surveillance often relies on hospital systems that only capture a minority of cases. We use the example of Nipah-virus infection in Bangladesh, which has a high case-fatality ratio and frequent person-to-person transmission, to demonstrate how healthcare-seeking data can estimate true burden. METHODS We fit logistic-regression models to data from a population-based, healthcare-seeking study of encephalitis cases to characterize the impact of distance and mortality on attending one of three surveillance hospital sites. The resulting estimates of detection probabilities, as a function of distance and outcome, are applied to all observed Nipah outbreaks between 2007 and 2014 to estimate the true burden. RESULTS The probability of attending a surveillance hospital fell from 82% for people with fatal encephalitis living 10 km away from a surveillance hospital to 54% at 50 km away. The odds of attending a surveillance hospital are 3.2 (95% confidence interval: 1.6, 6.6) times greater for patients who eventually died (i.e. who were more severely ill) compared with those who survived. Using these probabilities, we estimated that 119 Nipah outbreaks (95% confidence interval: 103, 140)-an average of 15 outbreaks per Nipah season-occurred during 2007-14; 62 (52%) were detected. CONCLUSIONS Our findings suggest hospital-based surveillance missed nearly half of all Nipah outbreaks. This analytical method allowed us to estimate the underlying burden of disease, which is important for emerging diseases where healthcare access may be limited.
Collapse
Affiliation(s)
- Sonia T Hegde
- Johns Hopkins University, Baltimore, Maryland, USA.,Global Disease Detection, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Henrik Salje
- Johns Hopkins University, Baltimore, Maryland, USA.,Institut Pasteur, Paris, France
| | - Hossain M S Sazzad
- International Center for Diarrheal Disease Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh.,University of New South Wales, Sydney, New South Wales, Australia
| | - M Jahangir Hossain
- International Center for Diarrheal Disease Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh
| | - Mahmudur Rahman
- Institute of Epidemiology Disease Control and Research, Dhaka, Bangladesh
| | | | - John D Klena
- Viral Special Pathogens, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stuart T Nichol
- Viral Special Pathogens, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen P Luby
- Global Disease Detection, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.,Stanford University, Palo Alto, California, USA
| | - Emily S Gurley
- Johns Hopkins University, Baltimore, Maryland, USA.,International Center for Diarrheal Disease Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh
| |
Collapse
|
43
|
Vega LE, Espinoza LR. Human immunodeficiency virus infection (HIV)-associated rheumatic manifestations in thepre- and post-HAART eras. Clin Rheumatol 2020; 39:2515-2522. [PMID: 32297034 PMCID: PMC7159285 DOI: 10.1007/s10067-020-05082-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 12/29/2022]
Abstract
Rheumatic manifestations remain an important clinical manifestation associated to HIV. To date after 4 decades of the onset of the HIV/AIDS pandemic, almost 37 million individuals are living with the infection, including close to 2 million of newly infected individuals. The status, however, of a considerable proportion of HIV/AIDS patients has changed from a near fatal disorder secondary to opportunistic infections to a chronic disease in which renal cardiovascular, diabetes, malignancy, and autoimmune co-morbid disorders have become prevalent and relevant. In addition, the spectrum of rheumatic disorders also has changed since the introduction of HAART and its diagnosis and treatment represents a challenge. The purpose of this review is to define and discuss the HIV-related rheumatic manifestations in the pre- and post-HAART eras.
Collapse
Affiliation(s)
- Luis E Vega
- Section of Rheumatology, Air Force Hospital, Aramburú Ave 2nd block, Lima, Peru.
| | - Luis R Espinoza
- Louisiana State University Health Sciences Center, 433 Bolivar St, New Orleans, LA, 70112, USA
| |
Collapse
|
44
|
Beaurepaire A, Piot N, Doublet V, Antunez K, Campbell E, Chantawannakul P, Chejanovsky N, Gajda A, Heerman M, Panziera D, Smagghe G, Yañez O, de Miranda JR, Dalmon A. Diversity and Global Distribution of Viruses of the Western Honey Bee, Apis mellifera. INSECTS 2020; 11:E239. [PMID: 32290327 PMCID: PMC7240362 DOI: 10.3390/insects11040239] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Abstract
In the past centuries, viruses have benefited from globalization to spread across the globe, infecting new host species and populations. A growing number of viruses have been documented in the western honey bee, Apis mellifera. Several of these contribute significantly to honey bee colony losses. This review synthetizes the knowledge of the diversity and distribution of honey-bee-infecting viruses, including recent data from high-throughput sequencing (HTS). After presenting the diversity of viruses and their corresponding symptoms, we surveyed the scientific literature for the prevalence of these pathogens across the globe. The geographical distribution shows that the most prevalent viruses (deformed wing virus, sacbrood virus, black queen cell virus and acute paralysis complex) are also the most widely distributed. We discuss the ecological drivers that influence the distribution of these pathogens in worldwide honey bee populations. Besides the natural transmission routes and the resulting temporal dynamics, global trade contributes to their dissemination. As recent evidence shows that these viruses are often multihost pathogens, their spread is a risk for both the beekeeping industry and the pollination services provided by managed and wild pollinators.
Collapse
Affiliation(s)
- Alexis Beaurepaire
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland;
- Agroscope, Swiss Bee Research Center, 3003 Bern, Switzerland
- UR Abeilles et Environnement, INRAE, 84914 Avignon, France;
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (N.P.); (G.S.)
| | - Vincent Doublet
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 86069 Ulm, Germany;
| | - Karina Antunez
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay;
| | - Ewan Campbell
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 3FX, UK;
| | - Panuwan Chantawannakul
- Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Bee Protection Laboratory (BeeP), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nor Chejanovsky
- Entomology Department, Institute of Plant Protection, The Volcani Center, Rishon Lezion, Tel Aviv 5025001, Israel;
| | - Anna Gajda
- Laboratory of Bee Diseases, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | | | - Delphine Panziera
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (N.P.); (G.S.)
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland;
- Agroscope, Swiss Bee Research Center, 3003 Bern, Switzerland
| | - Joachim R. de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden;
| | - Anne Dalmon
- UR Abeilles et Environnement, INRAE, 84914 Avignon, France;
| |
Collapse
|
45
|
Ornell F, Schuch JB, Sordi AO, Kessler FHP. "Pandemic fear" and COVID-19: mental health burden and strategies. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2020; 42:232-235. [PMID: 32267343 PMCID: PMC7236170 DOI: 10.1590/1516-4446-2020-0008] [Citation(s) in RCA: 639] [Impact Index Per Article: 159.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Felipe Ornell
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Departamento de Psiquiatria e Medicina Legal, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jaqueline B. Schuch
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Departamento de Psiquiatria e Medicina Legal, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Anne O. Sordi
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felix Henrique Paim Kessler
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Departamento de Psiquiatria e Medicina Legal, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
46
|
Lateef F. Face to Face with Coronavirus Disease 19: Maintaining Motivation, Psychological Safety, and Wellness. J Emerg Trauma Shock 2020; 13:116-123. [PMID: 33013090 PMCID: PMC7472823 DOI: 10.4103/jets.jets_27_20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 03/12/2020] [Indexed: 01/17/2023] Open
Abstract
Emerging infectious diseases have the potential to spread across borders extremely quickly. This was seen during the severe acute respiratory syndrome (SARS) outbreak and now, coronavirus disease (COVID 19) (novel coronavirus) pandemic. For outbreaks and pandemics, there will be behavioral, affective, and cognitive changes and adaptation seen. This may be prominent in frontline workers and healthcare workers (HCWs), who work in high-risk areas, as well as people in general. What represents the psychology and mindset of people during a pandemic? What is needed to allay anxieties and instill calm? What will be needed to keep the motivation levels of people and HCW high so that they continue to function optimally? Which motivation theory can be used to explain this and how do employers and management utilize this in their approach/strategies in planning for an outbreak? Finally, the impact of culture, in the various contexts, cannot be overlooked in crisis and pandemic management. The author is a senior emergency physician in Singapore, who has been through SARS and now the COVID pandemic. She has been instrumental in sharing some of the changes and practices implemented in Singapore, since SARS 17 years ago, until now. Besides being a full-time practicing emergency physician, the author is also an elected Member of the Singapore Parliament for the last 14 years. She shares her views on an aspect often overlooked during a pandemic: psychological wellness and motivations of people, including for HCW at the frontline.
Collapse
Affiliation(s)
- Fatimah Lateef
- Department of Emergency Medicine, Singapore General Hospital, Singapore
- Adjunct Professor, Duke NUS Graduate Medical School, Singapore
- Adjunct Professor, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singhealth Duke NUS Institute of Medical Simulation, Singapore
- Founding and Board Member, World Academic Council in Emergency Medicine, Singapore
| |
Collapse
|
47
|
Size-controllable preparation and antibacterial mechanism of thermo-responsive copolymer-stabilized silver nanoparticles with high antimicrobial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110735. [PMID: 32204045 DOI: 10.1016/j.msec.2020.110735] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 12/30/2022]
Abstract
The emergence of bacterial resistance has become one of the top global concern, and silver nanoparticles (AgNPs) provide alternative strategies for the development of new antimicrobial agent. Herein, three small sizes (1.5-4.0 nm) of well-dispersed AgNPs were successfully synthesized using a thermo-sensitive P(NIPAM-co-MQ) copolymer with coordination ability as a stabilizer. The copolymer stabilized silver nanoparticles (AgNPs@P) displayed good thermo-sensitive characteristics and solution stability at pH = 6.5-8.0. AgNPs@P had high-efficiency and long-term antimicrobial properties for Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). In particular, AgNPs@P3 with ultrasmall size (1.59 nm) exhibited better antimicrobial activity against both normal bacteria and antibiotic-resistant bacteria with a very low MIC value of 4.05 μg/mL. Moreover, AgNPs@P also showed an interesting temperature-dependent antibacterial activity mainly owing to the effect of thermo-sensitive copolymer on AgNPs. It was found that the antibacterial activity of the AgNPs@P also was affected by the proportion of copolymer, sizes of AgNPs, and experimental temperature. The antibacterial mechanism of AgNPs@P involved a variety of ways including destroying cell membranes, internalization of AgNPs and generation of ROS. Our research provides a new perspective for the preparation of effective nanosilver antimicrobial agents.
Collapse
|
48
|
Synthesis and Characterization of Selenium Nanoparticles-Lysozyme Nanohybrid System with Synergistic Antibacterial Properties. Sci Rep 2020; 10:510. [PMID: 31949299 PMCID: PMC6965607 DOI: 10.1038/s41598-019-57333-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/28/2019] [Indexed: 02/01/2023] Open
Abstract
In the light of promising potency of selenium nanoparticles in biomedical applications, this is the first study to report the synergistic antibacterial activity of these nanoparticles and lysozyme. The nanohybrid system was prepared with various concentrations of each component. Resistance of Escherichia coli and Staphylococcus aureus was compared in the presence of individual Nano and Bio counterparts as well as the nanohybrid system. Upon interaction of SeNPs with Lysozyme, the nanohybrid system efficiently enhanced the antibacterial activity compared to the protein. Therefore, SeNPs play an important role in inhibition of bacterial growth at very low concentrations of protein; whereas very high amount of the protein is required to inhibit bacterial growth individually. On the other hand, lysozyme has also played a vital role in antibacterial property of SeNPs, inducing 100% inhibition at very low concentration of each component. Hence, presence of both nano and bio counterparts induced vital interplay in the Nanohybrid system. The aged samples also presented good stability of SeNPs both as the intact and complex form. Results of this effort highlight design of nanohybrid systems with synergistic antibacterial properties to overcome the emerging antibiotic resistance as well as to define fruitful applications in biomedicine and food safety.
Collapse
|
49
|
Ornell F, Schuch JB, Sordi AO, Kessler FHP. "Pandemic fear" and COVID-19: mental health burden and strategies. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2020; 42:232-235. [PMID: 32267343 DOI: 10.1590/1516–4446–2020–0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 05/23/2023]
Affiliation(s)
- Felipe Ornell
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Departamento de Psiquiatria e Medicina Legal, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- IBGEN Business School, Grupo Uniftec, Porto Alegre, RS, Brazil
| | - Jaqueline B Schuch
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Departamento de Psiquiatria e Medicina Legal, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Anne O Sordi
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felix Henrique Paim Kessler
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Departamento de Psiquiatria e Medicina Legal, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
50
|
Worsnop CZ. Concealing Disease: Trade and Travel Barriers and the Timeliness of Outbreak Reporting. INTERNATIONAL STUDIES PERSPECTIVES 2019; 20:344-372. [PMID: 38626279 PMCID: PMC7149472 DOI: 10.1093/isp/ekz005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Slow outbreak reporting by states is a key challenge to effectively responding to global health emergencies like Zika, Ebola, and H1N1. Current policy focuses on improving domestic outbreak surveillance capacity globally in order to reduce reporting lags. However, governments also face economic and political incentives to conceal outbreaks, and these incentives largely are ignored in policy discussions. In spite of the policy implications for outbreak response, the "capacity" and "will" explanations have not been systematically examined. Analysis of a dataset coding the timeliness of outbreak reporting from 1996-2014 finds evidence that states' unwillingness to report-rather than just their inability-leads to delayed reporting. The findings suggest that though building surveillance capacity is critical, doing so may not be sufficient to reduce reporting lags. Policy aimed at encouraging rapid reporting must also mitigate the associated economic and political costs.
Collapse
|