1
|
Liang T, Liu Y, Guo N, Li Y, Niu L, Liu J, Ma Q, Zhang J, Shan M. Jinhong decoction ameliorates injury in septic mice without disrupting the equilibrium of gut microbiota. J Pharm Biomed Anal 2024; 251:116404. [PMID: 39154578 DOI: 10.1016/j.jpba.2024.116404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Sepsis is a life-threatening condition and usually be treated with antibiotics, which however often has severe side effects. This work proposed a novel Chinese traditional medicine JINHONG (JH) decoction for therapy of sepsis. We first identified the chemical constituents of JH decoction by using high-performance liquid chromatography and mass spectrometry (HPLC-MS). Then, we constructed a model mouse for sepsis by using cecal ligation and puncture (CLP). Metagenomic sequencing method was used to compare the diversity and abundance of the gut microbiota between normal, disease model, JH decoction-treatment and antibiotic-treatment mice. Many indices including the number of platelets, CD62p and CD63 content, AQP2 and AQP8 level, as well as the expression level of protein C confirmed that the sepsis resulted in serious pathological damage, while all of these indices could be reversed by JH decoction and antibiotics. The diversity and abundance of intestinal flora decreased in CLP mice, and the decrements aggravated after antibiotic treatment while can be recovered by JH decoction treatment. The abundance of anti-inflammatory Ruminococcaceae increased after JH decoction treatment, indicating that JH decoction could ameliorate pathology associated with sepsis in CLP model via modulating the intestinal flora. This study demonstrates that JH decoction could treat sepsis clinically without obvious adverse effects on gut microbiota.
Collapse
Affiliation(s)
- Tengxiao Liang
- Department of Emergency, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China
| | - Yang Liu
- Center for Integrated Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Nan Guo
- Intensive Care Unit, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China
| | - Yanpeng Li
- Department of Emergency, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China
| | - Liqiang Niu
- Department of Emergency, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China
| | - Jin Liu
- Intensive Care Unit, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China
| | - Qian Ma
- Department of Emergency, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China
| | - Jiaqi Zhang
- Department of Emergency, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China
| | - Minmin Shan
- Department of Emergency, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China.
| |
Collapse
|
2
|
Hou D, Liu R, Hao S, Dou Y, Chen G, Liu L, Li T, Cao Y, Huang H, Duan C. Notoginsenoside R1 improves intestinal microvascular functioning in sepsis by targeting Drp1-mediated mitochondrial quality imbalance. PHARMACEUTICAL BIOLOGY 2024; 62:250-260. [PMID: 38389274 PMCID: PMC10896147 DOI: 10.1080/13880209.2024.2318349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
CONTEXT Sepsis can result in critical organ failure, and notoginsenoside R1 (NGR1) offers mitochondrial protection. OBJECTIVE To determine whether NGR1 improves organ function and prognosis after sepsis by protecting mitochondrial quality. MATERIALS AND METHODS A sepsis model was established in C57BL/6 mice using cecum ligation puncture (CLP) and an in vitro model with lipopolysaccharide (LPS, 10 µg/mL)-stimulated primary intestinal microvascular endothelial cells (IMVECs) and then determine NGR1's safe dosage. Groups for each model were: in vivo-a control group, a CLP-induced sepsis group, and a CLP + NGR1 treatment group (30 mg/kg/d for 3 d); in vitro-a control group, a LPS-induced sepsis group, and a LPS + NGR1 treatment group (4 μM for 30 min). NGR1's effects on survival, intestinal function, mitochondrial quality, and mitochondrial dynamic-related protein (Drp1) were evaluated. RESULTS Sepsis resulted in approximately 60% mortality within 7 days post-CLP, with significant reductions in intestinal microvascular perfusion and increases in vascular leakage. Severe mitochondrial quality imbalance was observed in IMVECs. NGR1 (IC50 is 854.1 μM at 30 min) targeted Drp1, inhibiting mitochondrial translocation, preventing mitochondrial fragmentation and restoring IMVEC morphology and function, thus protecting against intestinal barrier dysfunction, vascular permeability, microcirculatory flow, and improving sepsis prognosis. DISCUSSION AND CONCLUSIONS Drp1-mediated mitochondrial quality imbalance is a potential therapeutic target for sepsis. Small molecule natural drugs like NGR1 targeting Drp1 may offer new directions for organ protection following sepsis. Future research should focus on clinical trials to evaluate NGR1's efficacy across various patient populations, potentially leading to novel treatments for sepsis.
Collapse
Affiliation(s)
- Dongyao Hou
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Ruixue Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Yong Dou
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Guizhen Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Liangming Liu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Tao Li
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Yunxing Cao
- Department of Intensive Care Unit, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
3
|
Su J, Chen K, Sang X, Feng Z, Zhou F, Zhao H, Wu S, Deng X, Lin C, Lin X, Xie L, Ye H, Chen Q. Huperzine a ameliorates sepsis-induced acute lung injury by suppressing inflammation and oxidative stress via α7 nicotinic acetylcholine receptor. Int Immunopharmacol 2024; 141:112907. [PMID: 39159557 DOI: 10.1016/j.intimp.2024.112907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Sepsis, characterized by high mortality rates, causes over 50 % of acute lung injury (ALI) cases, primarily due to the heightened susceptibility of the lungs during this condition. Suppression of the excessive inflammatory response is critical for improving the survival of patients with sepsis; nevertheless, no specific anti-sepsis drugs exist. Huperzine A (HupA) exhibits neuroprotective and anti-inflammatory properties; however, its underlying mechanisms and effects on sepsis-induced ALI have yet to be elucidated. In this study, we demonstrated the potential of HupA for treating sepsis and explored its mechanism of action. To investigate the in vivo impacts of HupA, a murine model of sepsis was induced through cecal ligation and puncture (CLP) in both wild-type (WT) and α7 nicotinic acetylcholine receptor (α7nAChR) knockout mice. Our results showed that HupA ameliorates sepsis-induced acute lung injury by activating the α7nAChR. We used the CLP sepsis model in wild-type and α7nAChR -/- mice and found that HupA significantly increased the survival rate through α7nAChR, reduced the pro-inflammatory cytokine levels and oxidative stress, ameliorated histopathological lung injury, altered the circulating immune cell composition, regulated gut microbiota, and promoted short-chain fatty acid production through α7nAChR in vivo. Additionally, HupA inhibited Toll-like receptor NF-κB signaling by upregulating the α7nAChR/protein kinase B/glycogen synthase kinase-3 pathways. Our data elucidate HupA's mechanism of action and support a "new use for an old drug" in treating sepsis. Our findings serve as a basis for further in vivo studies of this drug, followed by application to humans. Therefore, the findings have the potential to benefit patients with sepsis.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiao Sang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| |
Collapse
|
4
|
Yu C, Xu D, Luo Y, Jiao J, Liu G, Wang F, Gao Y, Sun X, Lv X, Wu H, Kong X. Osteopontin Depletion in Nonhematopoietic Cells Improves Outcomes in Septic Mice by Enhancing Antimicrobial Peptide Production. J Infect Dis 2024; 230:e1146-e1157. [PMID: 38913690 PMCID: PMC11566238 DOI: 10.1093/infdis/jiae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Osteopontin (Opn) depletion can improve septic outcomes, but the underlying mechanism remains unknown. In this study, we demonstrated that nonhematopoietic but not hematopoietic Opn depletion improved septic outcomes. When compared with wild type mice, cohoused Opn-/- mice displayed enhanced production of antibacterial peptides (AMPs), decreased bacterial loads, and a distinct bacterial composition of gut microbiota. Fecal microbiota transplantation and OPN neutralization assay showed that Opn depletion could reduce bacterial loads and improve septic inflammation. By employing an intestinal organoid culture system, we proved that OPN neutralization in wild type organoids could inactivate AKT and decrease FOXO3a phosphorylation, resulting in enhanced AMP production, whereas OPN treatment in OPN-deficient organoids could activate AKT and increase FOXO3a phosphorylation, leading to reduced AMP production. Our findings identified OPN as a novel regulatory factor of AMP production to modulate bacterial loads and composition of gut microbiota, in turn affecting sepsis outcomes.
Collapse
Affiliation(s)
- Chang Yu
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| | - Dongwei Xu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine
| | - Yichun Luo
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| | - Junzhe Jiao
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| | - Guanjie Liu
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| | - Fang Wang
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| | - Xuehua Sun
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine
| | - Hailong Wu
- Shanghai Key Laboratory for Molecular Imaging, Collaborative Research Center, Shanghai University of Medicine and Health Sciences, China
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine
| |
Collapse
|
5
|
Parsanathan R. Reassessing the role of butyrate-producing bacteria in infection risk. THE LANCET. MICROBE 2024:101036. [PMID: 39547243 DOI: 10.1016/j.lanmic.2024.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Affiliation(s)
- Rajesh Parsanathan
- Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610 005, Tamil Nadu, India.
| |
Collapse
|
6
|
Li Q, Tian P, Guo M, Liu X, Su T, Tang M, Meng B, Yu L, Yang Y, Liu Y, Li Y, Li J. Spermidine Associated with Gut Microbiota Protects Against MRSA Bloodstream Infection by Promoting Macrophage M2 Polarization. ACS Infect Dis 2024; 10:3751-3764. [PMID: 39382005 PMCID: PMC11559170 DOI: 10.1021/acsinfecdis.3c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major human pathogen that causes various diseases. Extensive researches highlight the significant role of gut microbiota and its metabolites, particularly spermidine, in infectious diseases. However, the immunomodulatory mechanisms of spermidine in MRSA-induced bloodstream infection remain unclear. Here, we confirmed the protective effects of spermidine in bloodstream infection in mice. Spermidine reduced the bacterial load and expression of inflammatory factors by shifting the macrophage phenotype to an anti-inflammatory phenotype, ultimately prolonging the survival of the infected mice. The protective effect against MRSA infection may rely on the elevated expression of protein tyrosine phosphatase nonreceptor 2 (PTPN2). Collectively, these findings confirm the immunoprotective effects of spermidine via binding to PTPN2 in MRSA bloodstream infection, providing new ideas for the treatment of related infectious diseases.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Infectious Diseases & Anhui Center
for Surveillance of Bacterial Resistance, The First Affiliated Hospital of
Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Infectious Diseases
& Institute of Bacterial Resistance, Anhui Medical
University, Hefei 230022, China
| | - Ping Tian
- Department of Infectious Diseases & Anhui Center
for Surveillance of Bacterial Resistance, The First Affiliated Hospital of
Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Infectious Diseases
& Institute of Bacterial Resistance, Anhui Medical
University, Hefei 230022, China
| | - Mingjuan Guo
- Department of Hepatology, The First
Affiliated Hospital of Jilin University, Changchun 130021,
China
| | - Xiaoqiang Liu
- Department of Infectious Diseases & Anhui Center
for Surveillance of Bacterial Resistance, The First Affiliated Hospital of
Anhui Medical University, Hefei 230022, China
| | - Tingting Su
- Department of Infectious Diseases & Anhui Center
for Surveillance of Bacterial Resistance, The First Affiliated Hospital of
Anhui Medical University, Hefei 230022, China
| | - Mingyang Tang
- Department of Infectious Diseases & Anhui Center
for Surveillance of Bacterial Resistance, The First Affiliated Hospital of
Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Infectious Diseases
& Institute of Bacterial Resistance, Anhui Medical
University, Hefei 230022, China
| | - Bao Meng
- Department of Infectious Diseases & Anhui Center
for Surveillance of Bacterial Resistance, The First Affiliated Hospital of
Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Infectious Diseases
& Institute of Bacterial Resistance, Anhui Medical
University, Hefei 230022, China
| | - Liang Yu
- Department of Infectious Diseases & Anhui Center
for Surveillance of Bacterial Resistance, The First Affiliated Hospital of
Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Infectious Diseases
& Institute of Bacterial Resistance, Anhui Medical
University, Hefei 230022, China
| | - Yi Yang
- Department of Infectious Diseases & Anhui Center
for Surveillance of Bacterial Resistance, The First Affiliated Hospital of
Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Infectious Diseases
& Institute of Bacterial Resistance, Anhui Medical
University, Hefei 230022, China
| | - Yanyan Liu
- Department of Infectious Diseases & Anhui Center
for Surveillance of Bacterial Resistance, The First Affiliated Hospital of
Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Infectious Diseases
& Institute of Bacterial Resistance, Anhui Medical
University, Hefei 230022, China
| | - Yasheng Li
- Department of Infectious Diseases & Anhui Center
for Surveillance of Bacterial Resistance, The First Affiliated Hospital of
Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Infectious Diseases
& Institute of Bacterial Resistance, Anhui Medical
University, Hefei 230022, China
| | - Jiabin Li
- Department of Infectious Diseases & Anhui Center
for Surveillance of Bacterial Resistance, The First Affiliated Hospital of
Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Infectious Diseases
& Institute of Bacterial Resistance, Anhui Medical
University, Hefei 230022, China
| |
Collapse
|
7
|
Kroemer G, Montégut L, Kepp O, Zitvogel L. The danger theory of immunity revisited. Nat Rev Immunol 2024:10.1038/s41577-024-01102-9. [PMID: 39511426 DOI: 10.1038/s41577-024-01102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
The danger theory of immunity, introduced by Polly Matzinger in 1994, posits that tissue stress, damage or infection has a decisive role in determining immune responses. Since then, a growing body of evidence has supported the idea that the capacity to elicit cognate immune responses (immunogenicity) relies on the combination of antigenicity (the ability to be recognized by T cell receptors or antibodies) and adjuvanticity (additional signals arising owing to tissue damage). Here, we discuss the molecular foundations of the danger theory while focusing on immunologically relevant damage-associated molecular patterns, microorganism-associated molecular patterns, and neuroendocrine stress-associated immunomodulatory molecules, as well as on their receptors. We critically evaluate patient-relevant evidence, examining how cancer cells and pathogenic viruses suppress damage-associated molecular patterns to evade immune recognition, how intestinal dysbiosis can reduce immunostimulatory microorganism-associated molecular patterns and compromise immune responses, and which hereditary immune defects support the validity of the danger theory. Furthermore, we incorporate the danger hypothesis into a close-to-fail-safe hierarchy of immunological tolerance mechanisms that also involve the clonal deletion and inactivation of immune cells.
Collapse
Affiliation(s)
- Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Léa Montégut
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France.
- INSERM UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Université Paris-Saclay, Ile-de-France, Paris, France.
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France.
| |
Collapse
|
8
|
Chowdhury S, Kullberg RFJ, Haak BW, Duran C, Earny VA, Eshwara VK, Lawley TD, Wiersinga WJ, Mukhopadhyay C. Gut Microbiome in Human Melioidosis: Composition and Resistome Dynamics from Diagnosis to Discovery. Open Forum Infect Dis 2024; 11:ofae654. [PMID: 39553288 PMCID: PMC11568386 DOI: 10.1093/ofid/ofae654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
Background Melioidosis, attributable to the soil-dwelling bacterium Burkholderia pseudomallei, stands as a paramount global health challenge, necessitating extended courses of antibiotics. While murine studies identified the gut microbiota as a modulator of bacterial dissemination during melioidosis, the human intestinal microbiota during melioidosis remains uncharacterized. Here, we characterized gut microbiota composition and antimicrobial resistance (AMR) genes at diagnosis, during treatment, and postdischarge for melioidosis. We hypothesized that the gut microbiota of melioidosis patients would be extensively distorted. Methods In this prospective observational cohort, stool samples of patients with culture-confirmed melioidosis admitted to a tertiary care hospital in India were collected at diagnosis, 14 days after diagnosis, or discharge (whichever occurred first) and at 6 months postinfection. Family members or neighbors served as community controls. The gut microbiota and resistome were profiled by shotgun metagenomic sequencing. Results We longitudinally analyzed the gut microbiota of 70 fecal samples from 28 patients and 16 community controls. At diagnosis, the gut microbiota of patients differed from that of controls, characterized by high abundances of potentially pathogenic bacteria, a loss of butyrate-producing bacteria, and higher levels of AMR genes. Microbiota composition and resistome remained different from community controls at 6 months, driven by total antibiotic exposure. During hospitalization, gut microbiota profiles were associated with secondary Klebsiella pneumoniae infections. Conclusions This first study on gut microbiota composition and resistome in human melioidosis showed extensive disruptions during hospitalization, with limited signs of restoration 6 months postinfection. Given the adverse outcomes linked with microbiome perturbations, limiting microbiota disruptions or using microbiota-restorative therapies (eg, butyrate-producing probiotics) may be beneficial.
Collapse
Affiliation(s)
- Soumi Chowdhury
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Center of Emerging and Tropical Diseases (CETD), Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Robert F J Kullberg
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan W Haak
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Claudio Duran
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Venkat A Earny
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Center of Emerging and Tropical Diseases (CETD), Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vandana K Eshwara
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Center of Emerging and Tropical Diseases (CETD), Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Center for Antimicrobial Resistance and Education (CARE), Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Center of Emerging and Tropical Diseases (CETD), Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Center for Antimicrobial Resistance and Education (CARE), Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
9
|
Du Y, Hu J, Zhang P, Ge T, Zhou Y. Application of Sini Decoction at acupoint on gastrointestinal dysfunction in patients with sepsis: A clinical study. Medicine (Baltimore) 2024; 103:e40464. [PMID: 39495969 PMCID: PMC11537635 DOI: 10.1097/md.0000000000040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
The occurrence of gastrointestinal dysfunction is widely recognized as a prevalent complication in patients with sepsis. To investigate clinical effect of Sini Decoction at acupoint on gastrointestinal dysfunction in sepsis patients. Seventy-five patients with gastrointestinal dysfunction caused by sepsis were randomly divided into 2 groups. Treatment group received routine Western medicine treatment combined with Sini Decoction at acupoint, while control group treated with talcum powder at acupoint. Treatments in both groups lasted 7 days. Changes in the acute physiology and chronic health evaluation II score, sequential organ failure assessment score, mechanical ventilation duration, the length of Intensive Care Unit (ICU) stay, enteral nutrition tolerance scores, abdominal circumference, gastric residual volume, bowel sounds, and serum index were observed. After treatment, the enteral nutrition tolerance score, abdominal circumference, gastric residual volume, and levels of lactate and interleukin-6 were significantly lower in the treatment group compared to the control group. Bowel sounds were more active and motilin levels were higher in the treatment group. Additionally, the length of ICU stay was significantly shorter in the treatment group than in the control group. Our findings demonstrated that the application of Sini Decoction at acupoints in sepsis patients with gastrointestinal dysfunction can effectively enhance gastrointestinal function, leading to a reduction in ICU stay duration and an improvement in patients' prognosis.
Collapse
Affiliation(s)
- Yuteng Du
- Department of Emergency Medicine, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang Province, PR China
| | - Jingjing Hu
- Department of Emergency Medicine, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang Province, PR China
| | - Pingping Zhang
- Department of Emergency Medicine, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang Province, PR China
| | - Ting’ai Ge
- Department of Emergency Medicine, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang Province, PR China
| | - Yidan Zhou
- Department of Emergency Medicine, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang Province, PR China
| |
Collapse
|
10
|
Jing J, Li X, Liu S, Yu J, Wang K, Li Y, Wang J, Wan X. Molecular patterns of microbial and metabolic interactions in septic patients with persistent lymphopenia. Microb Pathog 2024; 197:107093. [PMID: 39486555 DOI: 10.1016/j.micpath.2024.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Persistent lymphopenia can be regarded as an important index of acquired immune dysfunction in sepsis. Whether the specific immune factor changes in septic patients with lymphopenia and the correlation to gut microbiota and metabolites remain unclear. METHODS This single-center prospective observation conducted lymphocyte subgroup analysis of blood samples and 16S rRNA gene amplicons sequencing and untargeted metabolomics analysis of fecal samples from 36 subjects with the persistent (≥3d) (n = 21) and non-persistent lymphopenia (<3d) (n = 15). RESULTS The persistent lymphopenia showed higher the 28d mortality and 90d mortality, while significantly lower CD3+T/LY, CD3+T cells, CD3+CD4+T cells, CD3+CD8+T cells, Th1 cells, Th2 cells, CD45RA + Treg cells. The 16S rRNA results showed that Staphylococcus, Peptostreptococcus, Bulleidia, Leuconostoc were significant enriched in the persistent lymphopenia. The metabolomics analysis showed that α-Ketoisovaleric acid was increased and 7-DHCA, α-MCA, β-MCA, HCA, LCA-3S, CA, UCA and Citramalic acid were decreased in the persistent lymphopenia. CONCLUSION In the process of interaction between host receptors and gut microbiota in patients with persistent lymphopenia sepsis, with a significant reduction in gut microbiota diversity and bile acid metabolites. That can affect various inflammatory pathways of gut immune cells, causing immune dysfunction in the body, which may be one of the main causes of death.
Collapse
Affiliation(s)
- Juanjuan Jing
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Xiaonan Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Shanshan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Jiawen Yu
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Kaixuan Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Yi Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Jia Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| |
Collapse
|
11
|
Chamani A, Mashhadi F, Khademi G, Nematy M, Emadzadeh M, Sezavar M, Roudi F. Investigating the effect of synbiotic supplementation on inflammatory indices in critically ill septic children: a protocol study for randomized control trial. Trials 2024; 25:712. [PMID: 39443948 PMCID: PMC11515531 DOI: 10.1186/s13063-024-08514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Sepsis, a severe inflammatory response to infection, is a global health priority due to its high mortality and long-term disability rates. Its pathophysiology involves both inflammation and immune suppression. Managing sepsis requires significant healthcare resources and expenditure, with sepsis being a leading cause of hospital costs. Gut microbiotas play a crucial role in sepsis, and probiotics show promise in managing it by restoring microbial balance. Despite advances, targeted therapies for sepsis remain elusive, necessitating innovative approaches such as probiotic therapy. METHOD Fifty-four eligible patients with sepsis will be randomly assigned to either the synbiotic or placebo group. The synbiotic supplement, KidiLact, comprises ten probiotic strains and prebiotic fructooligosaccharides. Participants will receive two sachets daily for 7 days, mixed with sterile water and administered orally or via gavage. Inflammatory factors including interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) will be evaluated. Anthropometric measurements, nutritional assessment, biochemical analysis, and clinical evaluation will be conducted to assess treatment outcomes. Statistical analysis will be performed to compare results between the two groups, employing SPSS version 19 with a significance level of P < .05. CONCLUSION This randomized clinical trial aims to evaluate synbiotic supplementation effects on inflammatory markers and clinical outcomes in pediatric sepsis patients in the pediatric intensive care unit (PICU). Probiotics have shown promise in reducing proinflammatory cytokines like IL-6, TNF-α, and CRP, which are vital in the inflammatory response. Synbiotics can enhance gut integrity, preventing pathogen translocation and reducing inflammation. If our expectations regarding the effects of probiotics are correct, we can use them as a cost-effective supplement to improve the condition of pediatric sepsis in hospitals. TRIAL REGISTRATION IRCT,IRCT20230523058266N1 Registered 30 October 2023, https://irct.behdasht.gov.ir/trial/71397 .
Collapse
Affiliation(s)
- Ali Chamani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Mashhadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Khademi
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Nematy
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Emadzadeh
- Department of Community Medicine and Public Health, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Sezavar
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Roudi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Liu L, Ma L, Liu H, Zhao F, Li P, Zhang J, Lü X, Zhao X, Yi Y. Targeted discovery of gut microbiome-remodeling compounds for the treatment of systemic inflammatory response syndrome. mSystems 2024; 9:e0078824. [PMID: 39235366 PMCID: PMC11494991 DOI: 10.1128/msystems.00788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/09/2024] [Indexed: 09/06/2024] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a severe inflammatory response that can lead to organ dysfunction and death. Modulating the gut microbiome is a promising therapeutic approach for managing SIRS. This study assesses the therapeutic potential of the Xuanfei Baidu (XFBD) formula in treating SIRS. The results showed that XFBD administration effectively reduced mortality rates and inflammation in SIRS mice. Using 16S rRNA sequencing and fecal microbiota transplantation (FMT), we substantiated that the therapeutic effects of XFBD are partly attributed to gut microbiota modulation. We conducted in vitro experiments to accurately assess the gut microbiome remodeling effects of 51 compounds isolated from XFBD. These compounds exhibited varying abilities to induce a microbial structure that closely resembles that of the healthy control group. By quantifying their impact on microbial structure and clustering their regulatory patterns, we devised multiple gut microbiome remodeling compound (GMRC) cocktails. GMRC cocktail C, comprising aucubin, gentiopicroside, syringic acid, gallic acid, p-hydroxybenzaldehyde, para-hydroxybenzoic acid, and isoimperatorin, demonstrated superior efficacy in treating SIRS compared to a single compound or to other cocktails. Finally, in vitro experiments showcased that GMRC cocktail C effectively rebalanced bacteria composition in SIRS patients. This study underscores XFBD's therapeutic potential in SIRS and highlights the importance of innovative treatment approaches for this disease by targeting the gut microbiota.IMPORTANCEDeveloping effective treatment strategies for systemic inflammatory response syndrome (SIRS) is crucial due to its severe and often life-threatening nature. While traditional treatments like dexamethasone have shown efficacy, they also come with significant side effects and limitations. This study makes significant strides by demonstrating that the Xuanfei Baidu (XFBD) formula can substantially reduce mortality rates and inflammation in SIRS mice through effective modulation of the gut microbiota. By quantitatively assessing the impact of 51 compounds derived from XFBD on the gut microbiome, we developed a potent gut microbiome remodeling compound cocktail. This cocktail outperformed individual compounds and other mixtures in efficacy against SIRS. These findings highlight the potential of XFBD as a therapeutic solution for SIRS and underscore the critical role of innovative strategies targeting the gut microbiota in addressing this severe inflammatory condition.
Collapse
Affiliation(s)
- Luyao Liu
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Lin Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huan Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Zhao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Pu Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, China, Shaanxi
| | - Junhua Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| | - Xin Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Shaanxi, China
| |
Collapse
|
13
|
Nonejuie P, Wilantho A, McDonald D, Htoo HH, Chalerm J, Tripathi A, Ngamphiw C, Tongsima S, Knight R, Paiboonsukwong K, Fucharoen S. Differential gut microbiota composition in β-Thalassemia patients and its correlation with iron overload. Sci Rep 2024; 14:23858. [PMID: 39394230 PMCID: PMC11470119 DOI: 10.1038/s41598-024-75456-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
Recent research highlights the significant impact of the gut microbiota on health and disease. Thalassemia, a hereditary blood disorder, requires regular blood transfusions, leading to an accumulation of iron in the body. Such changes could potentially alter the intestinal microbiota, thereby increasing the susceptibility of thalassemic patients to infection. In this study, we analyzed the fecal microbiota of 70 non-transfusion-dependent (NTDT) β-thalassemia/HbE patients and 30 healthy controls. Our findings indicate that iron chelation intervention had no detectable effect on the microbiome profile of thalassemic patients. However, the cross-sectional analysis revealed that the bacterial diversity and community structure in patients were significantly less diverse and distinct compared to those of healthy subjects. Using reference frames, we were also able to demonstrate that bacterial taxa that are known to produce short chain fatty acids, from the genera Alistipes, Coprococcus, and Oscillospira, and those from the family Ruminococcaceae, were less prevalent in the patients. In contrast, bacterial taxa associated with an unhealthy gut, including the genus Clostridium and those from the families Fusobacteriaceae, Enterobacteriaceae, and Peptostrptococcaceae, were more prevalent in patients and found to be correlated with higher levels of ferritin. Collectively, these changes in the microbiota could be regarded as markers of raised ferritin levels, and therefore, awareness should be exercised as they could interfere, albeit indirectly, with the treatment of the co-morbidities of thalassemia.
Collapse
Affiliation(s)
- Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Alisa Wilantho
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Biobank of Thailand, Pathum Thani, Thailand
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Htut Htut Htoo
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Jenjira Chalerm
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Anupriya Tripathi
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Chumpol Ngamphiw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Biobank of Thailand, Pathum Thani, Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Biobank of Thailand, Pathum Thani, Thailand
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Kittiphong Paiboonsukwong
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
14
|
Foadi N, Dos Santos Teixeira L, Fitzner F, Dieck T, Rhein M, Karst M. Therapeutic Use of Cannabinoids in Critically Ill Patients: A Survey of Intensive Care Physicians in Germany. Cannabis Cannabinoid Res 2024; 9:e1433-e1442. [PMID: 37669012 DOI: 10.1089/can.2023.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Background: In the course of the legalization of cannabis for therapeutic purposes in Germany, there has been growing interest in the medical use of cannabinoids. To date, the therapeutic potential of cannabinoids for the treatment of critically ill patients has not been explored. Objectives: This study aims to understand better whether and how frequently cannabinoids have been administered to critically ill patients in recent years. Study Design: Initially, a survey was conducted among physicians working in intensive care units (ICUs) at the Hannover Medical School. Subsequently, 653 physicians working in ICUs throughout Germany were surveyed. The frequency and regimen of cannabinoid therapy initiated by the participating physicians in the last 2 years at the time of the survey were characterized. Results: Eight out of 9 physicians at Hannover Medical School and 59 out of 653 physicians in ICUs in Germany participated. At Hannover Medical School, 6 out of 8 physicians and in ICUs in Germany, 16 out of 59 physicians had used cannabinoids in some patients (mainly 9-10) during the 2-year period studied, with dronabinol in doses between 1 and 20 mg being their cannabinoid of choice. Metabolic and psychological distress and medication savings, followed by pain and nausea/vomiting, were the most frequently cited indications for cannabinoid therapy. No relevant safety issues arrived. Lack of personal experience, limited evidence, and gaps in knowledge were the most commonly cited reservations about cannabinoid use. Conclusions: During a 2-year period, dronabinol is used in a few critically ill patients in ICUs. The main indications are to reduce metabolic and psychological distress and to save medication. The majority of participating physicians indicated that the use of cannabinoids in the context of critical care medicine needs further exploration.
Collapse
Affiliation(s)
- Nilufar Foadi
- Department of Anesthesiology, Pain Clinic, Hannover Medical School, Hannover, Germany
| | | | - Franziska Fitzner
- Department of Anesthesiology, Pain Clinic, Hannover Medical School, Hannover, Germany
| | - Thorben Dieck
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Mathias Rhein
- Laboratory of Molecular Neuroscience, Social Psychiatry and Psychotherapy, Department of Psychiatry, Hannover Medical School, Hannover, Germany
| | - Matthias Karst
- Department of Anesthesiology, Pain Clinic, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Hu J, Yao Q, Zhao L. Evidences and perspectives on the association between gut microbiota and sepsis: A bibliometric analysis from 2003 to 2023. Heliyon 2024; 10:e37921. [PMID: 39315201 PMCID: PMC11417584 DOI: 10.1016/j.heliyon.2024.e37921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Background In the last two decades, the role of the gut microbiome in the development, maintenance, and outcome of sepsis has received increased attention; however, few descriptive studies exist on its research focus, priorities, and future prospects. This study aimed to identify the current state, evolution, and emerging trends in the field of gut microbiota and sepsis using bibliometric analysis. Methods All publications on sepsis and gut microbiota were retrieved from the Web of Science Core Collection and included in this study. VOSviewer, CiteSpace, and the Web of Science online analysis platform were used to visualize trends based on publication country, institution, author, journal, and keywords. Results A total of 1,882 articles on sepsis-related gut microbiota were screened, mainly from 95 countries or regions and 2,581 institutions. The United States and China contributed the most to this research field, with 521 (27.683 %) and 376 (19.979 %) articles, respectively. Scientists from the University of California were the most prolific, publishing 63 (3.348 %) articles. Cani PD published papers with the highest H-index, establishing himself as a leader in the field. The most publications were published in the journals "Nutrients" and "PLOS One." The journals with the most co-citations were "PLOS One," "Nature," and "Gut." The most used keywords were prebiotics, gut microbiota, and sepsis. The keyword burst research analysis revealed that research on treatment strategies based on the intestinal microbiota, intestine-liver axis, and regulatory mechanisms of bacterial metabolites are currently hot directions. Conclusion This study presents a global overview of the current state and potential trends in the field of sepsis-related gut microbiota. This study identified hot research sub-directions and new trends through comparison and analysis, which will aid in the development of this field.
Collapse
Affiliation(s)
- Jiahui Hu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou City, 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Linjun Zhao
- Department of Emergency, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Rd, Hangzhou City, 310006, China
| |
Collapse
|
16
|
Tao YL, Wang JR, Liu M, Liu YN, Zhang JQ, Zhou YJ, Li SW, Zhu SF. Progress in the study of the correlation between sepsis and intestinal microecology. Front Cell Infect Microbiol 2024; 14:1357178. [PMID: 39391883 PMCID: PMC11464487 DOI: 10.3389/fcimb.2024.1357178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Sepsis, a disease with high incidence, mortality, and treatment costs, has a complex interaction with the gut microbiota. With advances in high-throughput sequencing technology, the relationship between sepsis and intestinal dysbiosis has become a new research focus. However, owing to the intricate interplay between critical illness and clinical interventions, it is challenging to establish a causal relationship between sepsis and intestinal microbiota imbalance. In this review, the correlation between intestinal microecology and sepsis was summarized, and new therapies for sepsis intervention based on microecological target therapy were proposed, and the shortcomings of bacterial selection and application timing in clinical practice were addressed. In conclusion, current studies on metabolomics, genomics and other aspects aimed at continuously discovering potential probiotics are all providing theoretical basis for restoring intestinal flora homeostasis for subsequent treatment of sepsis.
Collapse
Affiliation(s)
- Yan-Lin Tao
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jing-Ran Wang
- Department of Surgery ICU, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Miao Liu
- Department of Respiratory Medicine, Dingzhou People’s Hospital, Dingzhou, Heibei, China
| | - Ya-Nan Liu
- Department of Critical Care Medicine, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jin-Qiu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yi-Jing Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shu-Fen Zhu
- Physical Examination Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
17
|
Xu K, Huang Q, Lyu Y, Wang S, Lu Y, Qian G. Phosphatidylserine improves aging sepsis survival, modulates gut microbiome, and prevents sepsis-associated encephalopathy. Biomed Pharmacother 2024; 178:117200. [PMID: 39053420 DOI: 10.1016/j.biopha.2024.117200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Aged adults are prone to both short- and long-term complications following sepsis due to ineffective therapy. Phosphatidylserine (PS) is a membrane nutrient supplement known to enhance cognition and brain function, but its potential effects in treating sepsis are not well-documented. Our study aimed to explore the potential of PS in improving outcomes in sepsis and sepsis-associated encephalopathy (SAE). Middle-aged mice were administered PS for two months following induction of sepsis by lipopolysaccharides. The results indicated a significant increase in the survival rate of mice treated with PS after sepsis. Surviving mice underwent open field and shuttle box tests 45 days post-sepsis, revealing potential alleviation of neurobehavioral impairments due to PS pretreatment. Analysis at 60 days post-sepsis euthanasia showed reduced cleaved-caspase 3 in neurons and glial cell markers in the PS-treated group compared to the untreated sepsis group. Furthermore, PS administration effectively reduced proinflammatory cytokine gene expression in the hippocampus of mice with SAE, potentially inhibiting the TBK1/NLRP3/ASC signaling pathway. In the gut, PS pretreatment modulated β-diversity while maintaining jejunal morphology and colon ZO-1 expression, without significantly affecting α-diversity indices. Our findings suggest that PS administration improves survival rates, modulates the gut microbiome, preserves gut integrity, and ameliorates brain pathology in survived mice after sepsis. Importantly, these findings have significant implications for sepsis treatment and cognitive function preservation in aging individuals, providing new insights and sparking further interest and investigation into the potential of PS in sepsis treatment.
Collapse
Affiliation(s)
- Kejia Xu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Qiong Huang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Ying Lyu
- Department of Traditional Chinese Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Shuyan Wang
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yinzhong Lu
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Gang Qian
- Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200050, China.
| |
Collapse
|
18
|
Kullberg RFJ, Wikki I, Haak BW, Kauko A, Galenkamp H, Peters-Sengers H, Butler JM, Havulinna AS, Palmu J, McDonald D, Benchraka C, Abdel-Aziz MI, Prins M, Maitland van der Zee AH, van den Born BJ, Jousilahti P, de Vos WM, Salomaa V, Knight R, Lahti L, Nieuwdorp M, Niiranen T, Wiersinga WJ. Association between butyrate-producing gut bacteria and the risk of infectious disease hospitalisation: results from two observational, population-based microbiome studies. THE LANCET. MICROBE 2024; 5:100864. [PMID: 38909617 DOI: 10.1016/s2666-5247(24)00079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Microbiota alterations are common in patients hospitalised for severe infections, and preclinical models have shown that anaerobic butyrate-producing gut bacteria protect against systemic infections. However, the relationship between microbiota disruptions and increased susceptibility to severe infections in humans remains unclear. We investigated the relationship between gut microbiota and the risk of future infection-related hospitalisation in two large population-based cohorts. METHODS In this observational microbiome study, gut microbiota were characterised using 16S rRNA gene sequencing in independent population-based cohorts from the Netherlands (HELIUS study; derivation cohort) and Finland (FINRISK 2002 study; validation cohort). HELIUS was conducted in Amsterdam, Netherlands, and included adults (aged 18-70 years at inclusion) who were randomly sampled from the municipality register of Amsterdam. FINRISK 2002 was conducted in six regions in Finland and is a population survey that included a random sample of adults (aged 25-74 years). In both cohorts, participants completed questionnaires, underwent a physical examination, and provided a faecal sample at inclusion (Jan 3, 2013, to Nov 27, 2015, for HELIUS participants and Jan 21 to April 19, 2002, for FINRISK participants. For inclusion in our study, a faecal sample needed to be provided and successfully sequenced, and national registry data needed to be available. Primary predictor variables were microbiota composition, diversity, and relative abundance of butyrate-producing bacteria. Our primary outcome was hospitalisation or mortality due to any infectious disease during 5-7-year follow-up after faecal sample collection, based on national registry data. We examined associations between microbiota and infection risk using microbial ecology and Cox proportional hazards. FINDINGS We profiled gut microbiota from 10 699 participants (4248 [39·7%] from the derivation cohort and 6451 [60·3%] from the validation cohort). 602 (5·6%) participants (152 [3·6%] from the derivation cohort; 450 [7·0%] from the validation cohort) were hospitalised or died due to infections during follow-up. Gut microbiota composition of these participants differed from those without hospitalisation for infections (derivation p=0·041; validation p=0·0002). Specifically, higher relative abundance of butyrate-producing bacteria was associated with a reduced risk of hospitalisation for infections (derivation cohort cause-specific hazard ratio 0·75 [95% CI 0·60-0·94] per 10% increase in butyrate producers, p=0·013; validation cohort 0·86 [0·77-0·96] per 10% increase, p=0·0077). These associations remained unchanged following adjustment for demographics, lifestyle, antibiotic exposure, and comorbidities. INTERPRETATION Gut microbiota composition, specifically colonisation with butyrate-producing bacteria, was associated with protection against hospitalisation for infectious diseases in the general population across two independent European cohorts. Further studies should investigate whether modulation of the microbiome can reduce the risk of severe infections. FUNDING Amsterdam UMC, Porticus, National Institutes of Health, Netherlands Organisation for Health Research and Development (ZonMw), and Leducq Foundation.
Collapse
Affiliation(s)
- Robert F J Kullberg
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
| | - Irina Wikki
- Division of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Bastiaan W Haak
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Anni Kauko
- Division of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joe M Butler
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Aki S Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland; Institute for Molecular Medicine Finland, FIMM-HiLIFE, Finland
| | - Joonatan Palmu
- Division of Medicine, Turku University Hospital and University of Turku, Turku, Finland; Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | | | - Mahmoud I Abdel-Aziz
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maria Prins
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, Netherlands; Department of Internal Medicine, Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Bert-Jan van den Born
- Department of Public and Occupational Health, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Internal Medicine, Division of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands; Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Max Nieuwdorp
- Department of Internal Medicine, Division of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Teemu Niiranen
- Division of Medicine, Turku University Hospital and University of Turku, Turku, Finland; Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Department of Internal Medicine, Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Zhong H, Liu T, Shang Y, Huang C, Pan S. Breaking the vicious cycle: Targeting the NLRP3 inflammasome for treating sepsis-associated encephalopathy. Biomed Pharmacother 2024; 177:117042. [PMID: 39004064 DOI: 10.1016/j.biopha.2024.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a collection of clinical syndromes resulting from sepsis and characterized by widespread brain dysfunction. The high prevalence of SAE has adverse outcomes on the clinical management and prognosis of sepsis patients. However, currently, there are no effective treatments to ameliorate SAE. The pathogenesis of SAE is complex, including neuroinflammation and microglia activation, destruction of the blood-brain barrier (BBB), neurotransmitter dysfunction, cerebral metabolism and mitochondrial impairment, accumulation of amyloid beta and tauopathy, complement activation, among others. Furthermore, these mechanisms intertwine with each other, further complicating the comprehension of SAE. Among them, neuroinflammation mediated by hyperactivated microglia is considered the primary etiology of SAE. This instigates a detrimental cycle wherein BBB permeability escalates, facilitating direct damage to the central nervous system (CNS) by various neurotoxic substances. Activation of the NLRP3 inflammasome, situated within microglia, can be triggered by diverse danger signals, leading to cell pyroptosis, apoptosis, and tauopathy. These complex processes intricately regulate the onset and progression of neuroinflammation. In this review, we focus on elucidating the inhibitory regulatory mechanism of the NLRP3 inflammasome in microglia, which ultimately manifests as suppression of the inflammatory response. Our ultimate objective is to augment comprehension regarding the role of microglial NLRP3 inflammasome as we explore potential targets for therapeutic interventions against SAE.
Collapse
Affiliation(s)
- Hui Zhong
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,; Hubei Clinical Research Center for Infectious Diseases, ,; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, ,; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences,
| | - Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
| | - Chaolin Huang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,; Hubei Clinical Research Center for Infectious Diseases, ,; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, ,; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,.
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, ,.
| |
Collapse
|
20
|
Shu T, Zhang J, Hu R, Zhou F, Li H, Liu J, Fan Y, Li X, Ding P. Qi Huang Fang improves intestinal barrier function and intestinal microbes in septic mice through NLRP3 inflammasome-mediated cellular pyroptosis. Transpl Immunol 2024; 85:102072. [PMID: 38857634 DOI: 10.1016/j.trim.2024.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE Sepsis has a high incidence, morbidity, and mortality rate and is a great threat to human safety. Gut health plays an important role in sepsis development. Qi Huang Fang (QHF) contains astragalus, rhubarb, zhishi, and atractylodes. It is used to treat syndromes of obstructive qi and deficiency of righteousness. This study aimed to investigate whether QHF improves intestinal barrier function and microorganisms in mice through NLRP3 inflammatory vesicle-mediated cellular focal death. METHODS A mouse model of sepsis was constructed by cecal ligation and puncture (CLP) of specific pathogen-free (SPF)-grade C57BL/6 mice after continuous gavage of low, medium, and high doses of astragalus formula or probiotics for 4 weeks. Twenty-four hours postoperatively, the mechanism of action of QHF in alleviating septic intestinal dysfunction and restoring intestinal microecology, thereby alleviating intestinal injury, was evaluated by pathological observation, immunohistochemistry, western blotting, ELISA, and 16S rDNA high-throughput sequencing. RESULTS Different doses of QHF and probiotics ameliorated intestinal injury and reduced colonic apoptosis in mice to varying degrees (P < 0.05). Meanwhile, different doses of QHF and probiotics were able to reduce the serum levels of IL-6, IL-1β, and TNF-α (P < 0.05); down-regulate the protein expression of NLRP3, caspase-1, and caspase-11 (P < 0.05); and up-regulate the protein expression of zonula occluden-1 (ZO-1) and occludin (P < 0.05), which improved the intestinal barrier function in mice. In addition, QHF decreased the relative abundance of harmful bacteria (Firmicutes, Muribaculaceae, Campilobacterota, Helicobacter, and Alistipes) and increased the relative abundance of beneficial bacteria (Bacteroidetes and Actinobacteria) (P < 0.05). CONCLUSION QHF improves intestinal barrier function and gut microbiology in mice via NLRP3 inflammasome-mediated cellular pyroptosis.
Collapse
Affiliation(s)
- Tingting Shu
- Department of Intensive Care Unit, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Jun Zhang
- Department of Intensive Care Unit, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Ruiying Hu
- Department of Emergency Medicine, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Fang Zhou
- Department of Emergency Medicine, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Hanyong Li
- Department of Intensive Care Unit, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Jing Liu
- Department of Medical, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Yanbo Fan
- Department of Science and Education Section, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Xucheng Li
- Department of Emergency Medicine, Wuhan Hospital of Traditional Chinese Medicine, China
| | - Peiwu Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
21
|
Ma Y, Peng X, Zhang J, Zhu Y, Huang R, Li G, Wu Y, Zhou C, You J, Fang S, Xiang S, Qiu J. Gut microbiota in preterm infants with late-onset sepsis and pneumonia: a pilot case-control study. BMC Microbiol 2024; 24:272. [PMID: 39039501 PMCID: PMC11265154 DOI: 10.1186/s12866-024-03419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Late-onset sepsis (LOS) and pneumonia are common infectious diseases, with high morbidity and mortality in neonates. This study aimed to investigate the differences in the gut microbiota among preterm infants with LOS, or pneumonia, and full-term infants. Furthermore, this study aimed to determine whether there is a correlation between intestinal pathogenic colonization and LOS. METHODS In a single-center case‒control study, 16 S rRNA gene sequencing technology was used to compare gut microbiota characteristics and differences among the LOS group, pneumonia group, and control group. RESULTS Our study revealed that the gut microbiota in the control group was more diverse than that in the LOS group and pneumonia group (P < 0.05). No significant differences in diversity were detected between the LOS and pneumonia groups (P > 0.05). Compared with the control group, the abundances of Akkermansia, Escherichia/Shigella, and Enterococcus increased, while the abundances of Bacteroides and Stenotrophomonas decreased in the LOS and pneumonia groups. The pathogenic bacteria in infants with LOS were consistent with the distribution of the main bacteria in the intestinal microbiota. An increase in Escherichia/Shigella abundance may predict a high risk of LOS occurrence, with an area under the curve (AUC) of 0.773. CONCLUSION Changes in the gut microbiota composition were associated with an increased risk of LOS and pneumonia. The dominant bacteria in the gut microbiota of the LOS group were found to be associated with the causative pathogen of LOS. Moreover, preterm infants exhibiting an elevated abundance of Escherichia/Shigella may be considered potential candidates for predicting the onset of LOS.
Collapse
Affiliation(s)
- Ye Ma
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
| | - Xiaoming Peng
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
| | - Juan Zhang
- Department of Pediatrics, Zhuzhou Central Hospital, 116 Changnan Road, Tianyuan District, Zhuzhou, China
| | - Yulian Zhu
- Department of Obstetrics, Hunan Prevention and Treatment Institute for Occupational Diseases, 162 Xinjian West Road, Yuhua District, Changsha, China
| | - Ruiwen Huang
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
| | - Guinan Li
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
| | - Yunqin Wu
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
| | - Changci Zhou
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
- The School of Pediatrics, Hengyang Medical School, University of South China (Hunan Children's Hospital), 28 West Changsheng Road, Zhengxiang District, Hengyang, China
| | - Jiajia You
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
- The School of Pediatrics, Hengyang Medical School, University of South China (Hunan Children's Hospital), 28 West Changsheng Road, Zhengxiang District, Hengyang, China
| | - Siwei Fang
- Department of Neonatology, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
- The School of Pediatrics, Hengyang Medical School, University of South China (Hunan Children's Hospital), 28 West Changsheng Road, Zhengxiang District, Hengyang, China
| | - Shiting Xiang
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), 86 Ziyuan Road, Yuhua District, Changsha, China.
| |
Collapse
|
22
|
Wang S, Yin F, Sun W, Li R, Guo Z, Wang Y, Zhang Y, Sun C, Sun D. The causal relationship between gut microbiota and nine infectious diseases: a two-sample Mendelian randomization analysis. Front Immunol 2024; 15:1304973. [PMID: 39050854 PMCID: PMC11266007 DOI: 10.3389/fimmu.2024.1304973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/18/2024] [Indexed: 07/27/2024] Open
Abstract
Background Evidence from observational studies and clinical trials has associated gut microbiota with infectious diseases. However, the causal relationship between gut microbiota and infectious diseases remains unclear. Methods We identified gut microbiota based on phylum, class, order, family, and genus classifications, and obtained infectious disease datasets from the IEU OpenGWAS database. The two-sample Mendelian Randomization (MR) analysis was then performed to determine whether the gut microbiota were causally associated with different infectious diseases. In addition, we performed reverse MR analysis to test for causality. Results Herein, we characterized causal relationships between genetic predispositions in the gut microbiota and nine infectious diseases. Eight strong associations were found between genetic predisposition in the gut microbiota and infectious diseases. Specifically, the abundance of class Coriobacteriia, order Coriobacteriales, and family Coriobacteriaceae was found to be positively associated with the risk of lower respiratory tract infections (LRTIs). On the other hand, family Acidaminococcaceae, genus Clostridiumsensustricto1, and class Bacilli were positively associated with the risk of endocarditis, cellulitis, and osteomyelitis, respectively. We also discovered that the abundance of class Lentisphaeria and order Victivallales lowered the risk of sepsis. Conclusion Through MR analysis, we found that gut microbiota were causally associated with infectious diseases. This finding offers new insights into the microbe-mediated infection mechanisms for further clinical research.
Collapse
Affiliation(s)
- Song Wang
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Fangxu Yin
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Wei Sun
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Rui Li
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Zheng Guo
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Yuchao Wang
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| | - Yiyuan Zhang
- Department of Reproductive Endocrinology, Second Hospital of Shandong University, Jinan, China
| | - Chao Sun
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University, General Hospital, Tianjin, China
| |
Collapse
|
23
|
Munley JA, Kelly LS, Park G, Drury SK, Gillies GS, Coldwell PS, Kannan KB, Bible LE, Efron PA, Nagpal R, Mohr AM. Acute emergence of the intestinal pathobiome after postinjury pneumonia. J Trauma Acute Care Surg 2024; 97:65-72. [PMID: 38480488 PMCID: PMC11199099 DOI: 10.1097/ta.0000000000004300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND Previous preclinical studies have demonstrated sex-specific alterations in the gut microbiome following traumatic injury or sepsis alone; however, the impact of host sex on dysbiosis in the setting of postinjury sepsis acutely is unknown. We hypothesized that multicompartmental injury with subsequent pneumonia would result in host sex-specific dysbiosis. METHODS Male and proestrus female Sprague-Dawley rats (n = 8/group) were subjected to either multicompartmental trauma (PT) (lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofracture), PT plus 2-hour daily restraint stress (PT/RS), PT with postinjury day 1 Pseudomonas aeruginosa pneumonia (PT-PNA), PT/RS with pneumonia (PT/RS-PNA), or naive controls. Fecal microbiome was measured on days 0 and 2 using high-throughput 16S rRNA sequencing and Quantitative Insights Into Microbial Ecology 2 bioinformatics analyses. Microbial α-diversity was assessed using Chao1 (number of different unique species) and Shannon (species richness and evenness) indices. β-diversity was assessed using principal coordinate analysis. Significance was defined as p < 0.05. RESULTS All groups had drastic declines in the Chao1 (α-diversity) index compared with naive controls ( p < 0.05). Groups PT-PNA and PT/RS-PNA resulted in different β-diversity arrays compared with uninfected counterparts (PT, PT/RS) ( p = 0.001). Postinjury sepsis cohorts showed a loss of commensal bacteria along with emergence of pathogenic bacteria, with blooms of Proteus in PT-PNA and Escherichia-Shigella group in PT/RS-PNA compared with other cohorts. At day 2, PT-PNA resulted in β-diversity, which was unique between males and females ( p = 0.004). Microbiome composition in PT-PNA males was dominated by Anaerostipes and Parasuterella , whereas females had increased Barnesiella and Oscillibacter . The PT/RS males had an abundance of Gastranaerophilales and Muribaculaceae . CONCLUSION Multicompartmental trauma complicated by sepsis significantly diminishes diversity and alters microbial composition toward a severely dysbiotic state early after injury, which varies between males and females. These findings highlight the role of sex in postinjury sepsis and the pathobiome, which may influence outcomes after severe trauma and sepsis.
Collapse
Affiliation(s)
- Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Gwoncheol Park
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Stacey K. Drury
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Gwendolyn S. Gillies
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Preston S. Coldwell
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Letitia E. Bible
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
24
|
Li D, Wei R, Zhang X, Gong S, Wan M, Wang F, Li J, Chen M, Liu R, Wan Y, Hong Y, Zeng Z, Gu P, Wang Z, Selva Nandakumar K, Jiang Y, Zhou H, Chen P. Gut commensal metabolite rhamnose promotes macrophages phagocytosis by activating SLC12A4 and protects against sepsis in mice. Acta Pharm Sin B 2024; 14:3068-3085. [PMID: 39027244 PMCID: PMC11252530 DOI: 10.1016/j.apsb.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/14/2024] [Accepted: 02/23/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis progression is significantly associated with the disruption of gut eubiosis. However, the modulatory mechanisms of gut microbiota operating during sepsis are still unclear. Herein, we investigated how gut commensals impact sepsis development in a pre-clinical model. Cecal ligation and puncture (CLP) surgery was used to establish polymicrobial sepsis in mice. Mice depleted of gut microbiota by an antibiotic cocktail (ABX) exhibited a significantly higher level of mortality than controls. As determined by metabolomics analysis, ABX treatment has depleted many metabolites, and subsequent supplementation with l-rhamnose (rhamnose, Rha), a bacterial carbohydrate metabolite, exerted profound immunomodulatory properties with a significant enhancement in macrophage phagocytosis, which in turn improved organ damage and mortality. Mechanistically, rhamnose binds directly to and activates the solute carrier family 12 (potassium-chloride symporter), member 4 (SLC12A4) in macrophages and promotes phagocytosis by activating the small G-proteins, Ras-related C3 botulinum toxin substrate1 (Rac1) and cell division control protein 42 homolog (Cdc42). Interestingly, rhamnose has enhanced the phagocytosis capacity of macrophages from sepsis patients. In conclusion, by identifying SLC12A4 as the host interacting protein, we disclosed that the gut commensal metabolite rhamnose is a functional molecular that could promote the phagocytosis capacity of macrophages and protect the host against sepsis.
Collapse
Affiliation(s)
- Dongping Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Rongjuan Wei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Xianglong Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Shenhai Gong
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Meijuan Wan
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Fangzhao Wang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Meiling Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Ruofan Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Yantong Wan
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Yinghao Hong
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou 510000, China
| | - Kutty Selva Nandakumar
- Department of Environmental and Biosciences, School of Business, Innovation and Sustainability, Kristian IV's väg 3, Halmstad University, Halmstad 30004, Sweden
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
25
|
Sun L, Fang K, Yang Z. Combination therapy with probiotics and anti-PD-L1 antibody synergistically ameliorates sepsis in mouse model. Heliyon 2024; 10:e31747. [PMID: 38828304 PMCID: PMC11140784 DOI: 10.1016/j.heliyon.2024.e31747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The study investigated the protective effects and mechanisms of probiotics in conjunction with an anti-PD-L1 antibody on the immune functions of septic mice. Sixty-four mice were assigned to sepsis groups receiving vehicle, probiotics, and anti-PD-L1 antibody individually or in combination, with healthy mice as controls. Sepsis was induced by cecal ligation and puncture (CLP), followed by intraperitoneal Lipopolysaccharide (LPS) injection. Blood and tissues were collected one day post-injection for detecting inflammation-related cytokines, Treg, PI3K/Akt pathway-related protein expression, and lung tissue pathology. The survival time of the remaining ten mice was recorded over seven days. Compared to healthy mice, septic mice given PBS exhibited significantly different serum levels of IL-6, IL-8, IL-17, IL-10, and IFN-γ (all p < 0.001). Treatment with anti-PD-L1 antibody combined with probiotics significantly increased the 7-day survival rate in septic mice, accompanied by decreased pro-inflammatory cytokines, increased anti-inflammatory cytokines, improved oxidative stress, reduced lung injury, and enhanced Th17/Treg balance. This combined therapy demonstrated superior efficacy compared to antibodies or probiotics alone. Additionally, it facilitated peripheral blood polymorphonuclear neutrophil apoptosis, enhancing protection by blocking PD-L1 function and inhibiting PI3K-dependent AKT phosphorylation. In conclusion, combining probiotics with an anti-PD-L1 antibody enhances protective effects in septic mice by reducing serum inflammatory factors, promoting neutrophil apoptosis, regulating Th17/Treg balance, and inhibiting the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Leiming Sun
- Department of Critical Care Medicine, Hangzhou Red Cross Hospital, Hangzhou, 310003, Zhejiang Province, China
| | - Kun Fang
- Department of Critical Care Medicine, Hangzhou Red Cross Hospital, Hangzhou, 310003, Zhejiang Province, China
| | - Zheng Yang
- Department of Critical Care Medicine, Hangzhou Red Cross Hospital, Hangzhou, 310003, Zhejiang Province, China
| |
Collapse
|
26
|
吕 昭, 王 六, 徐 梅, 白 新, 曹 利. [Association between the structure of intestinal flora and inflammatory response in children with sepsis: a prospective cohort study]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:567-574. [PMID: 38926372 PMCID: PMC11562058 DOI: 10.7499/j.issn.1008-8830.2312113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/23/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES To investigate the structural characteristics of intestinal flora in children with sepsis and its association with inflammatory response. METHODS A prospective cohort study was conducted. The children with sepsis who were admitted from December 2021 to January 2023 were enrolled as the sepsis group, and the children with non-sepsis who were admitted during the same period were enrolled as the non-sepsis group. The two groups were compared in terms of the distribution characteristics of intestinal flora, peripheral white blood cell count (WBC), C reactive protein (CRP), and cytokines, and the correlation of the relative abundance of fecal flora with WBC, CRP, and cytokines was analyzed. RESULTS At the genus level, compared with the non-sepsis group, the sepsis group had significantly lower relative abundance of Akkermansia, Ruminococcus, and Alistipes and significantly higher relative abundance of Enterococcus, Streptococcus, and Staphylococcus (P<0.05). At the phylum level, Proteobacteria was the dominant phylum (37.46%) in the group of children with a score of ≤70 from the Pediatric Critical Illness Score (PICS), and Firmicutes was the dominant phylum in the group of children with a score of 71-80 or 81-90 from the PICS (72.20% and 43.88%, respectively). At the genus level, among the 18 specimens, 5 had a relative abundance of >50% for a single flora. Compared with the non-sepsis group, the sepsis group had significant higher levels of WBC, CRP, interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α (P<0.05). The Spearman's rank correlation analysis showed that at the genus level, the relative abundance of Ruminococcus, Alistipes, and Parasutterella in the sepsis group was negatively correlated with the levels of WBC, CRP, and IL-6 (P<0.05); the relative abundance of Enterococcus was positively correlated with the CRP level (P<0.01); the relative abundance of Streptococcus and Staphylococcus was positively correlated with the levels of CRP and IL-6 (P<0.05); the relative abundance of Streptococcus was positively correlated with WBC (P<0.05). CONCLUSIONS Intestinal flora disturbance is observed in children with sepsis, and its characteristics vary with the severity of the disease. The structural changes of intestinal flora are correlated with inflammatory response in children with sepsis.
Collapse
|
27
|
Su J, Chen W, Zhou F, Li R, Tong Z, Wu S, Ye Z, Zhang Y, Lin B, Yu X, Guan B, Feng Z, Chen K, Chen Q, Chen L. Inhibitory mechanisms of decoy receptor 3 in cecal ligation and puncture-induced sepsis. mBio 2024; 15:e0052124. [PMID: 38700314 PMCID: PMC11237498 DOI: 10.1128/mbio.00521-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Despite its high mortality, specific and effective drugs for sepsis are lacking. Decoy receptor 3 (DcR3) is a potential biomarker for the progression of inflammatory diseases. The recombinant human DcR3-Fc chimera protein (DcR3.Fc) suppresses inflammatory responses in mice with sepsis, which is critical for improving survival. The Fc region can exert detrimental effects on the patient, and endogenous peptides are highly conducive to clinical application. However, the mechanisms underlying the effects of DcR3 on sepsis are unknown. Herein, we aimed to demonstrate that DcR3 may be beneficial in treating sepsis and investigated its mechanism of action. Recombinant DcR3 was obtained in vitro. Postoperative DcR3 treatment was performed in mouse models of lipopolysaccharide- and cecal ligation and puncture (CLP)-induced sepsis, and their underlying molecular mechanisms were explored. DcR3 inhibited sustained excessive inflammation in vitro, increased the survival rate, reduced the proinflammatory cytokine levels, changed the circulating immune cell composition, regulated the gut microbiota, and induced short-chain fatty acid synthesis in vivo. Thus, DcR3 protects against CLP-induced sepsis by inhibiting the inflammatory response and apoptosis. Our study provides valuable insights into the molecular mechanisms associated with the protective effects of DcR3 against sepsis, paving the way for future clinical studies. IMPORTANCE Sepsis affects millions of hospitalized patients worldwide each year, but there are no sepsis-specific drugs, which makes sepsis therapies urgently needed. Suppression of excessive inflammatory responses is important for improving the survival of patients with sepsis. Our results demonstrate that DcR3 ameliorates sepsis in mice by attenuating systematic inflammation and modulating gut microbiota, and unveil the molecular mechanism underlying its anti-inflammatory effect.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
- Institute of Edible Fungi, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Rui Li
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Tong
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zhen Ye
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Yichao Zhang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Ben Lin
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Xing Yu
- Department of Gastroenterology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Biyun Guan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Long Chen
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Lu W, Aihaiti A, Abudukeranmu P, Liu Y, Gao H. Unravelling the role of intratumoral bacteria in digestive system cancers: current insights and future perspectives. J Transl Med 2024; 22:545. [PMID: 38849871 PMCID: PMC11157735 DOI: 10.1186/s12967-024-05320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/18/2024] [Indexed: 06/09/2024] Open
Abstract
Recently, research on the human microbiome, especially concerning the bacteria within the digestive system, has substantially advanced. This exploration has unveiled a complex interplay between microbiota and health, particularly in the context of disease. Evidence suggests that the gut microbiome plays vital roles in digestion, immunity and the synthesis of vitamins and neurotransmitters, highlighting its significance in maintaining overall health. Conversely, disruptions in these microbial communities, termed dysbiosis, have been linked to the pathogenesis of various diseases, including digestive system cancers. These bacteria can influence cancer progression through mechanisms such as DNA damage, modulation of the tumour microenvironment, and effects on the host's immune response. Changes in the composition and function within the tumours can also impact inflammation, immune response and cancer therapy effectiveness. These findings offer promising avenues for the clinical application of intratumoral bacteria for digestive system cancer treatment, including the potential use of microbial markers for early cancer detection, prognostication and the development of microbiome-targeted therapies to enhance treatment outcomes. This review aims to provide a comprehensive overview of the pivotal roles played by gut microbiome bacteria in the development of digestive system cancers. Additionally, we delve into the specific contributions of intratumoral bacteria to digestive system cancer development, elucidating potential mechanisms and clinical implications. Ultimately, this review underscores the intricate interplay between intratumoral bacteria and digestive system cancers, underscoring the pivotal role of microbiome research in transforming diagnostic, prognostic and therapeutic paradigms for digestive system cancers.
Collapse
Affiliation(s)
- Weiqin Lu
- General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | | | - Yajun Liu
- Aksu First People's Hospital, Xinjiang, China
| | - Huihui Gao
- Cancer Center, Department of Hospital Infection Management and Preventive Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
29
|
Sankar J, Thakral V, Bharadwaj K, Agarwal S, Kabra SK, Lodha R, Rathore S. The Microbiome and Metabolome of the Gut of Children with Sepsis and Septic Shock. J Intensive Care Med 2024; 39:514-524. [PMID: 38073164 DOI: 10.1177/08850666231216361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
BACKGROUND There is limited understanding of alteration of gut microbiota and metabolome in children with sepsis/septic shock. METHODS In this prospective observational study carried out in a pediatric intensive care unit of a tertiary care center from 2020 to 2022, patients aged <17 years with sepsis/septic shock and healthy children (HC) were enrolled. We characterized the gut bacterial compositions by metagenome sequencing and metabolomes by untargeted gas chromatography-mass spectrometry. The primary outcome was to compare the gut microbiota and metabolome of children with sepsis/septic shock with that of HC. The Firmicutes/Bacteroidetes (F/B) ratio was compared between children with sepsis/septic shock and HC. Key secondary outcomes were to evaluate association of factors associated with a low F/B ratio in children with sepsis/septic shock. RESULTS A total of 40 children (63% boys) (15 children with sepsis and septic shock and 10 healthy children) with a median (IQR) age of 5.5 (1.5, 10) years were enrolled. In the fecal microbiota, the α-diversity index including Shannon and Simpson indices of the sepsis/septic shock groups was significantly lower than that of the HC. The samples lacked beneficial Bifidobacterium spp. and were dominated by Bacteroides, Enterobacteriaceae, and Enterococcaceae. There was reduction in short-chain fatty acids (SCFAs) in patients with sepsis/septic shock as compared to healthy children. A lower F/B ratio (≤1.57) of the gut microbiota discriminated well between children with sepsis/septic shock and HC. Factors associated with lower F/B ratio were male gender, clinical GI dysfunction, elevated inflammatory markers, and higher organ failure scores. CONCLUSION There were significant alterations in the gut microbiota and metabolome in children with sepsis/septic shock as compared to healthy children. Larger study is needed to confirm these exploratory findings and develop potential therapeutic targets that will improve outcomes in children with sepsis/septic shock.
Collapse
Affiliation(s)
- Jhuma Sankar
- Division of Pediatric Pulmonology and Intensive Care, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Thakral
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Kanchan Bharadwaj
- Department of Biotechnology, Manav Rachna University, Faridabad, Haryana, India
| | - Sheetal Agarwal
- Division of Pediatric Pulmonology and Intensive Care, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil Kumar Kabra
- Division of Pediatric Pulmonology and Intensive Care, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Division of Pediatric Pulmonology and Intensive Care, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sumit Rathore
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
30
|
Tang Z, Zhu Y, Hu X, Lui K, Li S, Song X, Cai C, Guan X. Improving Intestinal Barrier Function in Sepsis by Partially Hydrolysed Guar Gum via the Suppression of the NF-κB/MLCK Pathway. Mol Biotechnol 2024:10.1007/s12033-024-01180-z. [PMID: 38789715 DOI: 10.1007/s12033-024-01180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/12/2024] [Indexed: 05/26/2024]
Abstract
Partially hydrolyzed guar gum (PHGG) protects against intestinal barrier dysfunction and can ameliorate some intestinal diseases. However, whether PHGG has a role in protecting intestinal barrier function (IBF) during sepsis remains unclear. This study aimed to investigate the role and probable mechanism of PHGG in the intestinal mucosa in sepsis. A rat sepsis model was constructed using cecal ligation and puncture (CLP). FITC-dextran 4 (FD-4) flux, serum inflammatory mediator levels, tight junction (TJ) levels, jejunum mucosa pathology, and epithelial intercellular junction ultrastructure were monitored to evaluate the effect of PHGG on IBF. Caco-2 monolayers were used to study the impact and mechanism of PHGG on lipopolysaccharide (LPS)-induced barrier dysfunction in vitro. The expression of zonula occludens protein-1 and occludin and the location of P65 were studied by immunofluorescence. Nuclear factor kappa B (NF-κB) and myosin light chain kinase 3 (MLCK) pathway-related protein expression was verified by quantitative reverse transcriptase polymerase chain reaction or western blotting. The results indicated that the jejunal mucosa structure was destroyed, the villi were disrupted and shortened, and neutrophil infiltration was evident in the septic rats. Compared to Sham group, spetic rats had increased Chiu's score, serum inflammatory mediator levels, and FD-4 flux but decreased TJ and gap junction density. In addition, the expression of MLCK, p-MLC, and TJ proteins and the expression of P65 in the nucleus were increased in septic rats. Furthermore, compared to those in the Control group, LPS-treated Caco-2 cells showed lower cell viability and transepithelial electrical resistance, while had higher FD-4 flux and the expression of MLCK, p-MLC, TJ proteins and P65 in the nucleus. PHGG pretreatment reversed the above effects induced by CLP or LPS treatment. Moreover, SN50, an NF-κB inhibitor, attenuated the above effects of LPS on Caco-2 cells. Overall, PHGG reduced inflammation, increased TJ protein expression and localization, and relieved damage to the TJ structure and intestinal permeability through suppression of the NF-κB/MLCK pathway. This study provides new insights into the role of PHGG in sepsis therapy.
Collapse
Affiliation(s)
- Zhaoxia Tang
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, China
| | - Yanping Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, China
| | - Xiaoguang Hu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, China
| | - Kayin Lui
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, China
| | - Shuhe Li
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, China
| | - Xiaodong Song
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, China
| | - Changjie Cai
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, China.
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, 510080, China.
| |
Collapse
|
31
|
Chen H, Yu Z, Qi Z, Huang X, Gao J. Tongfu Lifei Decoction Attenuated Sepsis-Related Intestinal Mucosal Injury Through Regulating Th17/Treg Balance and Modulating Gut Microbiota. J Interferon Cytokine Res 2024; 44:208-220. [PMID: 38691831 DOI: 10.1089/jir.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Intestinal damage and secondary bacterial translocation are caused by the inflammatory response induced by sepsis. Tongfu Lifei (TLF) decoction has a protective effect on sepsis-related gastrointestinal function injury. However, the relation between gut microbiota, immune barrier, and sepsis under the treatment of TLF have not been well clarified yet. Here, rats were subjected to cecal ligation and puncture (CLP) to create a sepsis model. Subsequently, the TLF decoction was given to CLP rats by gavage, fecal microbiota transplantation (FMT), and antibiotic were used as positive control. TLF suppressed the inflammatory response and improved the pathological changes in the intestines of CLP rats. Besides, TLF promoted the balance of the percentage of the Th17 and Treg cells. Intestinal barrier function was also improved by TLF through enhancing ZO-1, and Occludin and Claudin 1 expression, preventing the secondary translocation of other gut microbiota. TLF dramatically boosted the gut microbiota's alpha- and beta-diversity in CLP rats. Moreover, it increased the relative abundance of anti-inflammatory gut microbiota and changed the progress of the glucose metabolism. In short, TLF regulated the gut microbiota to balance the ratio of Th17/Treg cells, reducing the inflammation in serum and intestinal mucosal injury in rats.
Collapse
Affiliation(s)
- Huizhen Chen
- Department of Intensive Care Medicine, and Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| | - Zhenfei Yu
- Department of Intensive Care Medicine, and Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| | - Zeming Qi
- Department of Infectious Diseases, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| | - Xiaozhe Huang
- Department of Infectious Diseases, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| | - Jianting Gao
- Department of Intensive Care Medicine, and Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou, China
| |
Collapse
|
32
|
Gao Y, Liu L, Cui Y, Zhang J, Wu X. The causality of gut microbiota on onset and progression of sepsis: a bi-directional Mendelian randomization analysis. Front Immunol 2024; 15:1266579. [PMID: 38698853 PMCID: PMC11063379 DOI: 10.3389/fimmu.2024.1266579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Background Several observational studies have proposed a potential link between gut microbiota and the onset and progression of sepsis. Nevertheless, the causality of gut microbiota and sepsis remains debatable and warrants more comprehensive exploration. Methods We conducted a two-sample Mendelian randomization (MR) analysis to test the causality between gut microbiota and the onset and progression of sepsis. The genome-wide association study (GWAS) summary statistics for 196 bacterial traits were extracted from the MiBioGen consortium, whereas the GWAS summary statistics for sepsis and sepsis-related outcomes came from the UK Biobank. The inverse-variance weighted (IVW) approach was the primary method used to examine the causal association. To complement the IVW method, we utilized four additional MR methods. We performed a series of sensitivity analyses to examine the robustness of the causal estimates. Results We assessed the causality of 196 bacterial traits on sepsis and sepsis-related outcomes. Genus Coprococcus2 [odds ratio (OR) 0.81, 95% confidence interval (CI) (0.69-0.94), p = 0.007] and genus Dialister (OR 0.85, 95% CI 0.74-0.97, p = 0.016) had a protective effect on sepsis, whereas genus Ruminococcaceae UCG011 (OR 1.10, 95% CI 1.01-1.20, p = 0.024) increased the risk of sepsis. When it came to sepsis requiring critical care, genus Anaerostipes (OR 0.49, 95% CI 0.31-0.76, p = 0.002), genus Coprococcus1 (OR 0.65, 95% CI 0.43-1.00, p = 0.049), and genus Lachnospiraceae UCG004 (OR 0.51, 95% CI 0.34-0.77, p = 0.001) emerged as protective factors. Concerning 28-day mortality of sepsis, genus Coprococcus1 (OR 0.67, 95% CI 0.48-0.94, p = 0.020), genus Coprococcus2 (OR 0.48, 95% CI 0.27-0.86, p = 0.013), genus Lachnospiraceae FCS020 (OR 0.70, 95% CI 0.52-0.95, p = 0.023), and genus Victivallis (OR 0.82, 95% CI 0.68-0.99, p = 0.042) presented a protective effect, whereas genus Ruminococcus torques group (OR 1.53, 95% CI 1.00-2.35, p = 0.049), genus Sellimonas (OR 1.25, 95% CI 1.04-1.50, p = 0.019), and genus Terrisporobacter (OR 1.43, 95% CI 1.02-2.02, p = 0.040) presented a harmful effect. Furthermore, genus Coprococcus1 (OR 0.42, 95% CI 0.19-0.92, p = 0.031), genus Coprococcus2 (OR 0.34, 95% CI 0.14-0.83, p = 0.018), and genus Ruminiclostridium6 (OR 0.43, 95% CI 0.22-0.83, p = 0.012) were associated with a lower 28-day mortality of sepsis requiring critical care. Conclusion This MR analysis unveiled a causality between the 21 bacterial traits and sepsis and sepsis-related outcomes. Our findings may help the development of novel microbiota-based therapeutics to decrease the morbidity and mortality of sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Xiuying Wu
- Department of Anesthesia, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
33
|
Santacroce E, D’Angerio M, Ciobanu AL, Masini L, Lo Tartaro D, Coloretti I, Busani S, Rubio I, Meschiari M, Franceschini E, Mussini C, Girardis M, Gibellini L, Cossarizza A, De Biasi S. Advances and Challenges in Sepsis Management: Modern Tools and Future Directions. Cells 2024; 13:439. [PMID: 38474403 PMCID: PMC10931424 DOI: 10.3390/cells13050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Sepsis, a critical condition marked by systemic inflammation, profoundly impacts both innate and adaptive immunity, often resulting in lymphopenia. This immune alteration can spare regulatory T cells (Tregs) but significantly affects other lymphocyte subsets, leading to diminished effector functions, altered cytokine profiles, and metabolic changes. The complexity of sepsis stems not only from its pathophysiology but also from the heterogeneity of patient responses, posing significant challenges in developing universally effective therapies. This review emphasizes the importance of phenotyping in sepsis to enhance patient-specific diagnostic and therapeutic strategies. Phenotyping immune cells, which categorizes patients based on clinical and immunological characteristics, is pivotal for tailoring treatment approaches. Flow cytometry emerges as a crucial tool in this endeavor, offering rapid, low cost and detailed analysis of immune cell populations and their functional states. Indeed, this technology facilitates the understanding of immune dysfunctions in sepsis and contributes to the identification of novel biomarkers. Our review underscores the potential of integrating flow cytometry with omics data, machine learning and clinical observations to refine sepsis management, highlighting the shift towards personalized medicine in critical care. This approach could lead to more precise interventions, improving outcomes in this heterogeneously affected patient population.
Collapse
Affiliation(s)
- Elena Santacroce
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Miriam D’Angerio
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Linda Masini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Irene Coloretti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Stefano Busani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany;
| | - Marianna Meschiari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Erica Franceschini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Cristina Mussini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Massimo Girardis
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| |
Collapse
|
34
|
Dai N, Gu J, Luo Y, Tao Y, Chou Y, He Y, Qin H, Chen T, Fu X, Chen M, Xing Z. Impact of hyperoxia on the gut during critical illnesses. Crit Care 2024; 28:66. [PMID: 38429791 PMCID: PMC10905909 DOI: 10.1186/s13054-024-04848-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
Molecular oxygen is typically delivered to patients via oxygen inhalation or extracorporeal membrane oxygenation (ECMO), potentially resulting in systemic hyperoxia from liberal oxygen inhalation or localized hyperoxia in the lower body from peripheral venoarterial (VA) ECMO. Consequently, this exposes the gastrointestinal tract to excessive oxygen levels. Hyperoxia can trigger organ damage due to the overproduction of reactive oxygen species and is associated with increased mortality. The gut and gut microbiome play pivotal roles in critical illnesses and even small variations in oxygen levels can have a dramatic influence on the physiology and ecology of gut microbes. Here, we reviewed the emerging preclinical evidence which highlights how excessive inhaled oxygen can provoke diffuse villous damage, barrier dysfunction in the gut, and gut dysbiosis. The hallmark of this dysbiosis includes the expansion of oxygen-tolerant pathogens (e.g., Enterobacteriaceae) and the depletion of beneficial oxygen-intolerant microbes (e.g., Muribaculaceae). Furthermore, we discussed potential impact of oxygen on the gut in various underlying critical illnesses involving inspiratory oxygen and peripheral VA-ECMO. Currently, the available findings in this area are somewhat controversial, and a consensus has not yet to be reached. It appears that targeting near-physiological oxygenation levels may offer a means to avoid hyperoxia-induced gut injury and hypoxia-induced mesenteric ischemia. However, the optimal oxygenation target may vary depending on special clinical conditions, including acute hypoxia in adults and neonates, as well as particular patients undergoing gastrointestinal surgery or VA-ECMO support. Last, we outlined the current challenges and the need for future studies in this area. Insights into this vital ongoing research can assist clinicians in optimizing oxygenation for critically ill patients.
Collapse
Affiliation(s)
- Ninan Dai
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Juan Gu
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 214 28, Malmö, Sweden
| | - Yanhong Luo
- First Clinical College, Zunyi Medical University, Zunyi, China
| | - Yuanfa Tao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuehting Chou
- Department of Cardiopulmonary Bypass, Wuhan Asian Heart Hospital, Wuhan, China
| | - Ying He
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Han Qin
- Department of Respiratory and Critical Care Medicine, Kweichow Moutai Hospital, Guizhou Province, Zunyi, China
| | - Tao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaoyun Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Zhouxiong Xing
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
35
|
Lai J, Liang J, Chen K, Guan B, Chen Z, Chen L, Fan J, Zhang Y, Li Q, Su J, Chen Q, Lin J. Carrimycin ameliorates lipopolysaccharide and cecal ligation and puncture-induced sepsis in mice. Chin J Nat Med 2024; 22:235-248. [PMID: 38553191 DOI: 10.1016/s1875-5364(24)60600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 04/02/2024]
Abstract
Carrimycin (CA), sanctioned by China's National Medical Products Administration (NMPA) in 2019 for treating acute bronchitis and sinusitis, has recently been observed to exhibit multifaceted biological activities, encompassing anti-inflammatory, antiviral, and anti-tumor properties. Despite these applications, its efficacy in sepsis treatment remains unexplored. This study introduces a novel function of CA, demonstrating its capacity to mitigate sepsis induced by lipopolysaccharide (LPS) and cecal ligation and puncture (CLP) in mice models. Our research employed in vitro assays, real-time quantitative polymerase chain reaction (RT-qPCR), and RNA-seq analysis to establish that CA significantly reduces the levels of pro-inflammatory cytokines, namely tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6), in response to LPS stimulation. Additionally, Western blotting and immunofluorescence assays revealed that CA impedes Nuclear Factor Kappa B (NF-κB) activation in LPS-stimulated RAW264.7 cells. Complementing these findings, in vivo experiments demonstrated that CA effectively alleviates LPS- and CLP-triggered organ inflammation in C57BL/6 mice. Further insights were gained through 16S sequencing, highlighting CA's pivotal role in enhancing gut microbiota diversity and modulating metabolic pathways, particularly by augmenting the production of short-chain fatty acids in mice subjected to CLP. Notably, a comparative analysis revealed that CA's anti-inflammatory efficacy surpasses that of equivalent doses of aspirin (ASP) and TIENAM. Collectively, these findings suggest that CA exhibits significant therapeutic potential in sepsis treatment. This discovery provides a foundational theoretical basis for the clinical application of CA in sepsis management.
Collapse
Affiliation(s)
- Junzhong Lai
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jiadi Liang
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou 350001, China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Biyun Guan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Zhirong Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Linqin Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Jiqiang Fan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Yong Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, China.
| | - Jizhen Lin
- The Cancer Center, Fujian Medical University Union Hospital, Fuzhou 350001, China; The Department of Otolaryngology, Head & Neck Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
36
|
Basak B, Akashi-Takamura S. IRF3 function and immunological gaps in sepsis. Front Immunol 2024; 15:1336813. [PMID: 38375470 PMCID: PMC10874998 DOI: 10.3389/fimmu.2024.1336813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Lipopolysaccharide (LPS) induces potent cell activation via Toll-like receptor 4/myeloid differentiation protein 2 (TLR4/MD-2), often leading to septic death and cytokine storm. TLR4 signaling is diverted to the classical acute innate immune, inflammation-driving pathway in conjunction with the classical NF-κB pivot of MyD88, leading to epigenetic linkage shifts in nuclear pro-inflammatory transcription and chromatin structure-function; in addition, TLR4 signaling to the TIR domain-containing adapter-induced IFN-β (TRIF) apparatus and to nuclear pivots that signal the association of interferons alpha and beta (IFN-α and IFN-β) with acute inflammation, often coupled with oxidants favor inhibition or resistance to tissue injury. Although the immune response to LPS, which causes sepsis, has been clarified in this manner, there are still many current gaps in sepsis immunology to reduce mortality. Recently, selective agonists and inhibitors of LPS signals have been reported, and there are scattered reports on LPS tolerance and control of sepsis development. In particular, IRF3 signaling has been reported to be involved not only in sepsis but also in increased pathogen clearance associated with changes in the gut microbiota. Here, we summarize the LPS recognition system, main findings related to the IRF3, and finally immunological gaps in sepsis.
Collapse
Affiliation(s)
- Bristy Basak
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
37
|
Yang S, Guo J, Kong Z, Deng M, Da J, Lin X, Peng S, Fu J, Luo T, Ma J, Yin H, Liu L, Liu J, Zha Y, Tan Y, Zhang J. Causal effects of gut microbiota on sepsis and sepsis-related death: insights from genome-wide Mendelian randomization, single-cell RNA, bulk RNA sequencing, and network pharmacology. J Transl Med 2024; 22:10. [PMID: 38167131 PMCID: PMC10763396 DOI: 10.1186/s12967-023-04835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Gut microbiota alterations have been implicated in sepsis and related infectious diseases, but the causal relationship and underlying mechanisms remain unclear. METHODS We evaluated the association between gut microbiota composition and sepsis using two-sample Mendelian randomization (MR) analysis based on published genome-wide association study (GWAS) summary statistics. Sensitivity analyses were conducted to validate the robustness of the results. Reverse MR analysis and integration of GWAS and expression quantitative trait loci (eQTL) data were performed to identify potential genes and therapeutic targets. RESULTS Our analysis identified 11 causal bacterial taxa associated with sepsis, with increased abundance of six taxa showing positive causal relationships. Ten taxa had causal effects on the 28-day survival outcome of septic patients, with increased abundance of six taxa showing positive associations. Sensitivity analyses confirmed the robustness of these associations. Reverse MR analysis did not provide evidence of reverse causality. Integration of GWAS and eQTL data revealed 76 genes passing the summary data-based Mendelian randomization (SMR) test. Differential expression of these genes was observed between sepsis patients and healthy individuals. These genes represent potential therapeutic targets for sepsis. Molecular docking analysis predicted potential drug-target interactions, further supporting their therapeutic potential. CONCLUSION Our study provides insights for the development of personalized treatment strategies for sepsis and offers preliminary candidate targets and drugs for future drug development.
Collapse
Affiliation(s)
- Sha Yang
- Guizhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Jing Guo
- Guizhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Zhuo Kong
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Mei Deng
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jingjing Da
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xin Lin
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shuo Peng
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Junwu Fu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Tao Luo
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jun Ma
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hao Yin
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lin Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Guizhou University Medical College, Guiyang, 550025, Guizhou, China
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Ying Tan
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
38
|
Lee SJ, Kim D, Ann HW, Han M, Lee JA, Lee Y, Ahn S, Seo HW, Kim JH, Ahn JY, Jeong SJ, Ku NS, Yeom JS, Ryu CM, Choi JY. DECIPHERING GUT MICROBIOTA IN PATIENTS WITH SEVERE SEPSIS AND SEPTIC SHOCK. Shock 2024; 61:28-33. [PMID: 37878472 DOI: 10.1097/shk.0000000000002241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Introduction: Gut microbiota dysbiosis is associated with susceptibility to sepsis and poor outcomes. However, changes to the intestinal microbiota during sepsis and their value as biomarkers are unclear. In this study, we compared the intestinal microbiota of patients with sepsis and healthy controls. Methods: Stool was collected from patients with sepsis (subdivided according to mortality) and controls. Microbiome diversity and composition were analyzed by 16S rRNA gene pyrosequencing. The α-diversity of the intestinal microbiome was determined using operational taxonomic unit counts and the Chao1, Shannon, and ACE indices. Adjusted Cox regression analyses assessed 6-month mortality risk factors. Results: Fifty-nine patients (14 in-hospital deaths) and 29 healthy controls were enrolled. Operational taxonomic unit counts and Chao1 and ACE indices were lower in the nonsurvivor than in the other groups. The controls showed a higher Shannon and lower Simpson index than did the sepsis group. The genus Blautia was more abundant in controls than in the sepsis group, and Faecalibacterium less abundant in the nonsurvivor than in the other groups. Regression analysis associated low Shannon index with 6-month mortality. Conclusions: Survivors of sepsis, nonsurvivors, and healthy controls have different gut microbiomes, and a low Shannon index is a risk factor for 6-month mortality.
Collapse
Affiliation(s)
| | - Dajeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hea Won Ann
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Han
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Ah Lee
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yongseop Lee
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangmin Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hwi Won Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jung Ho Kim
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Young Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Jin Jeong
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nam Su Ku
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon-Sup Yeom
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Choong-Min Ryu
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jun Yong Choi
- Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
39
|
Yang T, Xie S, Cao L, Li M, Ding L, Wang L, Pang S, Wang Z, Geng L. ASTRAGALOSIDE Ⅳ MODULATES GUT MACROPHAGES M1/M2 POLARIZATION BY RESHAPING GUT MICROBIOTA AND SHORT CHAIN FATTY ACIDS IN SEPSIS. Shock 2024; 61:120-131. [PMID: 37962207 DOI: 10.1097/shk.0000000000002262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
ABSTRACT M1 macrophage-mediated inflammation is critical in sepsis. We previously found the protective role of astragaloside intravenous (AS-IV) in sepsis-associated gut impairment, whose specific mechanism remains unknown. Gut microbiota modulates gut homeostatic balance to avoid excessive inflammation. Here, we aimed to investigate effects of AS-IV on gut macrophages polarization and potential roles of gut microbiota and short chain fatty acids (SCFAs) in septic gut damage. Mice were pretreated by AS-IV gavage for 7 days before cecal ligation and puncture. M1 polarization of gut lamina propria macrophages (LpMs) was promoted by cecal ligation and puncture, accompanied by abnormal cytokines release and intestinal barrier dysfunction. NLRP3 inflammasome was activated in M1 LpMs. 16S rRNA sequencing demonstrated gut microbiota imbalance. The levels of acetate, propionate, and butyrate in fecal samples decreased. Notably, AS-IV reversed LpMs M1/M2 polarization, lightened gut inflammation and barrier injury, reduced NLRP3 inflammasome expression in LpMs, restored the diversity of gut microbiome, and increased butyrate levels. Similarly, these benefits were mimicked by fecal microbiota transplantation or exogenous butyrate supplementation. In Caco-2 and THP-1 cocultured model, LPS and interferon γ caused THP-1 M1 polarization, Caco-2 barrier impairment, abnormal cytokines release, and high NLRP3 inflammasome expression in THP-1 cells, all of which were mitigated by butyrate administration. However, these protective effects of butyrate were abrogated by NLRP3 gene overexpression in THP-1. In conclusion, AS-IV can ameliorate sepsis-induced gut inflammation and barrier dysfunction by modulating M1/M2 polarization of gut macrophages, whose underlying mechanism may be restoring gut microbiome and SCFA to restrain NLRP3 inflammasome activation.
Collapse
Affiliation(s)
| | - Shuhua Xie
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | | | - Man Li
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Ling Ding
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Lei Wang
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Shenyue Pang
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| | - Zhifen Wang
- Department of Anesthesiology, Tianjin Children's Hospital, Tianjin, China
| | - Licheng Geng
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
40
|
Cao X, Zhao H, Liang Z, Cao Y, Min M. Long-term administration of probiotics prevents gastrointestinal mucosal barrier dysfunction in septic mice partly by upregulating the 5-HT degradation pathway. Open Med (Wars) 2023; 18:20230869. [PMID: 38152336 PMCID: PMC10751891 DOI: 10.1515/med-2023-0869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/22/2023] [Accepted: 11/12/2023] [Indexed: 12/29/2023] Open
Abstract
Sepsis can impair gastrointestinal (GI) barrier integrity. Oral probiotics (PT) can maintain the balance of GI microflora and improve GI function. 5-Hydroxytryptamine (5-HT) is a key promoter of GI injury caused by sepsis. However, the mechanism by which PT attenuates sepsis by regulating 5-HT is not fully understood. In this study, C57BL6 mice were intragastric administrated with normal saline (NC) or PT once a day for 4 weeks before cecal ligation and puncture (CLP). Compared with NC-CLP mice, PT-CLP mice had lower clinical score, higher body temperature. The survival rate of PT-CLP mice was significantly improved. The levels of inflammatory cytokines and 5-HT were obviously decreased in PT-CLP mice, and GI peristalsis and barrier function were enhanced. Moreover, sepsis downregulated the expression of tight junction proteins, while PT pretreatment could maintain them at the level of sham operation group. Furthermore, PT pretreatment increased the expression of serotonin transporter and monoamine oxidase A. PT administration could inhibit NF-κB activity, and activate ERK activity. In conclusion, long-term supplementation of PT before CLP can prevent sepsis-induced GI mucosal barrier dysfunction in mice, which may be partially mediated by upregulating the 5-HT degradation pathway via activating ERK signaling.
Collapse
Affiliation(s)
- Xiaopeng Cao
- Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing, 100048China
| | - Hui Zhao
- Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing, 100048China
| | - Zhimin Liang
- Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing, 100048China
| | - Yi Cao
- Department of Global Health, Milken Institute School of Public Health, The George Washington University, WashingtonDC, 20052USA
| | - Min Min
- Department of Gastroenterology, The Fifth Medical Center of PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100039China
| |
Collapse
|
41
|
Zhou P, Zou Z, Wu W, Zhang H, Wang S, Tu X, Huang W, Chen C, Zhu S, Weng Q, Zheng S. The gut-lung axis in critical illness: microbiome composition as a predictor of mortality at day 28 in mechanically ventilated patients. BMC Microbiol 2023; 23:399. [PMID: 38110878 PMCID: PMC10726596 DOI: 10.1186/s12866-023-03078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/20/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Microbial communities are of critical importance in the human host. The lung and gut microbial communities represent the most essential microbiota within the human body, collectively referred to as the gut-lung axis. However, the differentiation between these communities and their influence on clinical outcomes in critically ill patients remains uncertain. METHODS An observational cohort study was obtained in the intensive care unit (ICU) of an affiliated university hospital. Sequential samples were procured from two distinct anatomical sites, namely the respiratory and intestinal tracts, at two precisely defined time intervals: within 48 h and on day 7 following intubation. Subsequently, these samples underwent a comprehensive analysis to characterize microbial communities using 16S ribosomal RNA (rRNA) gene sequencing and to quantify concentrations of fecal short-chain fatty acids (SCFAs). The primary predictors in this investigation included lung and gut microbial diversity, along with indicator species. The primary outcome of interest was the survival status at 28 days following mechanical ventilation. RESULTS Sixty-two mechanically ventilated critically ill patients were included in this study. Compared to the survivors, the diversity of microorganisms was significantly lower in the deceased, with a significant contribution from the gut-originated fraction of lung microorganisms. Lower concentrations of fecal SCFAs were detected in the deceased. Multivariate Cox regression analysis revealed that not only lung microbial diversity but also the abundance of Enterococcaceae from the gut were correlated with day 28 mortality. CONCLUSION Critically ill patients exhibited lung and gut microbial dysbiosis after mechanical ventilation, as evidenced by a significant decrease in lung microbial diversity and the proliferation of Enterococcaceae in the gut. Levels of fecal SCFAs in the deceased served as a marker of imbalance between commensal and pathogenic flora in the gut. These findings emphasize the clinical significance of microbial profiling in predicting the prognosis of ICU patients.
Collapse
Affiliation(s)
- Piaopiao Zhou
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhiqiang Zou
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wenwei Wu
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hui Zhang
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shuling Wang
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoyan Tu
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Weibin Huang
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Cunrong Chen
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shuaijun Zhu
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qinyong Weng
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Shixiang Zheng
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
42
|
Xie S, Li J, Lyu F, Xiong Q, Gu P, Chen Y, Chen M, Bao J, Zhang X, Wei R, Deng Y, Wang H, Zeng Z, Chen Z, Deng Y, Lian Z, Zhao J, Gong W, Chen Y, Liu KX, Duan Y, Jiang Y, Zhou HW, Chen P. Novel tripeptide RKH derived from Akkermansia muciniphila protects against lethal sepsis. Gut 2023; 73:78-91. [PMID: 37553229 DOI: 10.1136/gutjnl-2023-329996] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVE The pathogenesis of sepsis is complex, and the sepsis-induced systemic proinflammatory phase is one of the key drivers of organ failure and consequent mortality. Akkermansia muciniphila (AKK) is recognised as a functional probiotic strain that exerts beneficial effects on the progression of many diseases; however, whether AKK participates in sepsis pathogenesis is still unclear. Here, we evaluated the potential contribution of AKK to lethal sepsis development. DESIGN Relative abundance of gut microbial AKK in septic patients was evaluated. Cecal ligation and puncture (CLP) surgery and lipopolysaccharide (LPS) injection were employed to establish sepsis in mice. Non-targeted and targeted metabolomics analysis were used for metabolites analysis. RESULTS We first found that the relative abundance of gut microbial AKK in septic patients was significantly reduced compared with that in non-septic controls. Live AKK supplementation, as well as supplementation with its culture supernatant, remarkably reduced sepsis-induced mortality in sepsis models. Metabolomics analysis and germ-free mouse validation experiments revealed that live AKK was able to generate a novel tripeptide Arg-Lys-His (RKH). RKH exerted protective effects against sepsis-induced death and organ damage. Furthermore, RKH markedly reduced sepsis-induced inflammatory cell activation and proinflammatory factor overproduction. A mechanistic study revealed that RKH could directly bind to Toll-like receptor 4 (TLR4) and block TLR4 signal transduction in immune cells. Finally, we validated the preventive effects of RKH against sepsis-induced systemic inflammation and organ damage in a piglet model. CONCLUSION We revealed that a novel tripeptide, RKH, derived from live AKK, may act as a novel endogenous antagonist for TLR4. RKH may serve as a novel potential therapeutic approach to combat lethal sepsis after successfully translating its efficacy into clinical practice.
Collapse
Affiliation(s)
- Shihao Xie
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Critical Care Medicine, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Critical Care Medicine, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Fengyuan Lyu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qingming Xiong
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Yuqi Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiling Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingna Bao
- Department of Critical Care Medicine, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Xianglong Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rongjuan Wei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Youpeng Deng
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongzheng Wang
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yongqiang Deng
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhuoshi Lian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Ye Chen
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Ke-Xuan Liu
- Departmentof Anesthesiology, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong, China
| | - Yi Duan
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hong-Wei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Ohta R, Sano C. Bacterial Translocation As the Origin of Gram-Negative Rods Bloodstream Infection Among Older Patients in Rural Hospitals: A Cross-Sectional Study. Cureus 2023; 15:e50706. [PMID: 38234963 PMCID: PMC10792400 DOI: 10.7759/cureus.50706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Bloodstream infections caused by Gram-negative rods are a pressing concern for the aging global population, particularly in rural settings. This study investigates the prevalence and entry pathways of Gram-negative rod bloodstream infections in elderly patients at a rural Japanese hospital, aiming to clarify the frequency and associated factors of straightforward entry and bacterial translocation. Method In this cross-sectional study, we analyzed electronic medical records of patients over 18 years of age with symptomatic Gram-negative rod bloodstream infections at Unnan City Hospital, Japan, from September 2021 to August 2023. We used multivariate logistic regression to assess factors of age, sex, body mass index, care dependency, and comorbidities. Results Among the participants who met the inclusion criteria, significant differences were observed in age, sex, inpatient status, and prevalence of conditions like respiratory diseases and cancer between the straightforward entry and bacterial translocation groups. Escherichia coli was the most common pathogen identified. Conclusion The study emphasizes the need for tailored medical approaches for elderly patients with bloodstream infections, considering their unique health profiles and risks. It highlights the importance of age, inpatient status, and cancer in determining infection risks, pointing to areas for further research to enhance infection management and healthcare outcomes in older populations.
Collapse
Affiliation(s)
| | - Chiaki Sano
- Community Medicine, Shimane University Faculty of Medicine, Izumo, JPN
| |
Collapse
|
44
|
Luo Y, Zhou Y, Huang P, Zhang Q, Luan F, Peng Y, Wei J, Li N, Wang C, Wang X, Zhang J, Yu K, Zhao M, Wang C. Causal relationship between gut Prevotellaceae and risk of sepsis: a two-sample Mendelian randomization and clinical retrospective study in the framework of predictive, preventive, and personalized medicine. EPMA J 2023; 14:697-711. [PMID: 38094582 PMCID: PMC10713913 DOI: 10.1007/s13167-023-00340-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Gut microbiota is closely related to sepsis. Recent studies have suggested that Prevotellaceae could be associated with intestinal inflammation; however, the causal relationship between Prevotellaceae and sepsis remains uncertain. From the perspective of predictive, preventive, and personalized medicine (PPPM), exploring the causal relationship between gut Prevotellaceae and sepsis could provide opportunity for targeted prevention and personalized treatment. METHODS The genome-wide association study (GWAS) summary-level data of Prevotellaceae (N = 7738) and sepsis were obtained from the Dutch Microbiome Project and the UK Biobank (sepsis, 1380 cases; 429,985 controls). MR analysis was conducted to estimate the associations between Prevotellaceae and sepsis risk. The 16S rRNA sequencing analysis was conducted to calculate the relative abundance of Prevotellaceae in sepsis patients to explore the relationship between Prevotellaceae relative abundance and the 28-day mortality. RESULTS Genetic liability to f__Prevotellaceae (OR, 1.91; CI, 1.35-2.71; p = 0.0003) was associated with a high risk of sepsis with inverse-variance weighted (IVW). The median Prevotellaceae relative abundance in non-survivors was significantly higher than in survivors (2.34% vs 0.17%, p < 0.001). Multivariate analysis confirmed that Prevotellaceae relative abundance (OR, 1.10; CI, 1.03-1.22; p = 0.027) was an independent factor of 28-day mortality in sepsis patients. ROC curve analysis indicated that Prevotellaceae relative abundance (AUC: 0.787, 95% CI: 0.671-0.902, p = 0.0003) could predict the prognosis of sepsis patients. CONCLUSION Our results revealed that Prevotellaceae was causally associated with sepsis and affected the prognosis of sepsis patients. These findings may provide insights to clinicians on developing improved sepsis PPPM strategies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13167-023-00340-6.
Collapse
Affiliation(s)
- Yinghao Luo
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Yang Zhou
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Pengfei Huang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Qianqian Zhang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Feiyu Luan
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Yahui Peng
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Jieling Wei
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Nana Li
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Chunying Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Xibo Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Jiannan Zhang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Kaijiang Yu
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Mingyan Zhao
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| | - Changsong Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, 150001 Heilongjiang China
| |
Collapse
|
45
|
Zuo Z, Pei L, Liu T, Liu X, Chen Y, Hu Z. Investigation of Gut Microbiota Disorders in Sepsis and Sepsis Complicated with Acute Gastrointestinal Injury Based on 16S rRNA Genes Illumina Sequencing. Infect Drug Resist 2023; 16:7389-7403. [PMID: 38053580 PMCID: PMC10695144 DOI: 10.2147/idr.s440335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Background Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection, which can cause acute gastrointestinal injury (AGI). The gut microbiota is dynamic and plays a role in the immune and metabolic. The aim of this study was to investigate the composition and function of gut microbiota in patients with sepsis, as well as the gut microbiome that may be involved in the occurrence of AGI. Methods A total of 23 stool samples from healthy control individuals and 41 stool samples from sepsis patients were collected. Patients with sepsis were followed up for one week to observe whether AGI has occurred. Finally, 41 patients included 21 sepsis complicated with AGI (referred to as Com-AGI) and 20 sepsis without complicated with AGI (referred to as No-AGI). The gut microbiota was analyzed by 16S rRNA gene sequencing, followed by composition analysis, difference analysis, correlation analysis, functional prediction analysis. Results The diversity and evenness of gut microbiota were decreased in patients with sepsis. Compared with No-AGI, the gut microbiota of Com-AGI has higher community diversity, richness, and phylogenetic diversity. Escherichia-Shigella, Blautia and Enterococcus may be important indicators of sepsis. The correlation analysis showed that aspartate aminotransferase (AST) and Barnesiella have the most significant positive correlation. Moreover, Clostridium_innocuum_group, Christensenellaceae_R-7_group and Eubacterium were all significantly correlated with LAC and DAO. Clostridium_innocuum_group, Barnesiella, Christensenellaceae_R-7_group and Eubacterium may play important roles in the occurrence of AGI in sepsis. PICRUSt analysis revealed multiple functional pathways involved in the relationship between gut microbiota and sepsis, including starch degradation V, glycogen degradation I (bacterial), Lipoic acid metabolism and Valine, leucine and isoleucine biosynthesis. BugBase analysis showed that the gut microbiota with Aerobic phenotype may play an important role in sepsis. Conclusion Dysfunction of gut microbiota was associated with sepsis and AGI in patients with sepsis.
Collapse
Affiliation(s)
- Zhigang Zuo
- Department of Critical Care Medicine, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, People’s Republic of China
- Department of Critical Care Medicine, the First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei, 050011, People’s Republic of China
| | - Liu Pei
- Department of Laboratory, the First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, People’s Republic of China
| | - Tianzhi Liu
- Department of Critical Care Medicine, the First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, People’s Republic of China
| | - Xiujuan Liu
- Department of Critical Care Medicine, the First Hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, People’s Republic of China
| | - Yuhong Chen
- Department of Critical Care Medicine, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei, 050011, People’s Republic of China
| | - Zhenjie Hu
- Department of Critical Care Medicine, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, People’s Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, Hebei, 050011, People’s Republic of China
| |
Collapse
|
46
|
Meng H, Xu D, Wang Q, Liu L, Liu W, Wang J. Maintaining immune homeostasis with Coptis Chinensis water extract to mitigate sepsis severity via modulating gut microbiome and metabolism. J Pharm Biomed Anal 2023; 236:115719. [PMID: 37742503 DOI: 10.1016/j.jpba.2023.115719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Sepsis arises from an uncontrolled inflammatory response to infection that can lead to organ failure. The gut microbiome is increasingly recognized as a key modulator of sepsis progression. This study investigated whether Coptis chinensis water extract (CCWE) could attenuate sepsis by modulating the gut microbiome and immune response. A rat model of sepsis induced by cecum ligation and perforation was used. 16 S ribosomal ribonucleic acid (rRNA) sequencing, proton nuclear magnetic resonance (1H NMR) metabolomics and flow cytometry assays were used to evaluate microbial, metabolic and immune profiles. CCWE treatment reversed sepsis-induced loss of beneficial bacteria like Firmicutes and Bacteroidetes and restored gut microbial balance. CCWE increased short-chain fatty acids, carnitine and phenylacetate, which provide energy and curb inflammation. By enhancing immune homeostasis and maintaining regulatory T cells (Tregs), CCWE treatment also exerted bidirectional regulation on T cells for initially suppressing hyperactivation then enabling recovery. Overall, CCWE may benefit sepsis by regulating the gut-microbiome-immune axis. By restoring microbiome balance, improving metabolism, and modulating immunity, CCWE treatment shows potential for alleviating sepsis severity and progression. The increases in beneficial bacteria, Tregs, and anti-inflammatory metabolites coupled with decreases in opportunistic pathogens likely contributed collectively to CCWE's protective effects. CCWE may emerge as an alternative or adjunctive option for managing disorders of dangerous inflammation like sepsis. Future research should explore CCWE's mechanisms of action clinically to determine its potential as a safe, effective means of modulating health through natural regulation of the gut microbiome and immune function.
Collapse
Affiliation(s)
- Huihui Meng
- Center of Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Di Xu
- Center of Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Qing Wang
- Department of Interventional Surgery, Zibo Central Hospital, No.54 Gongqingtuan Road (W), Zhangdian District, Zibo City, Shandong, China
| | - Lin Liu
- Department of Interventional Surgery, Zibo Central Hospital, No.54 Gongqingtuan Road (W), Zhangdian District, Zibo City, Shandong, China
| | - Wenya Liu
- Center of Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Junsong Wang
- Center of Molecular Metabolism, School of Environmental & Biological Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
47
|
Zhou Y, Luo Y, Wang X, Luan F, Peng Y, Li Y, Ma X, Jia X, Li N, Man M, Wei J, Ji Y, Zhang Q, Wang C, Mu W, Wang J, Wang C, Zhao M, Yu K. Early gut microbiological changes and metabolomic changes in patients with sepsis: a preliminary study. Int Microbiol 2023; 26:1131-1142. [PMID: 37145385 DOI: 10.1007/s10123-023-00363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
The gut microbiota is closely related to the development of sepsis. The aim of this study was to explore changes in the gut microbiota and gut metabolism, as well as potential relationships between the gut microbiota and environmental factors in the early stages of sepsis. Fecal samples were collected from 10 septic patients on the first and third days following diagnosis in this study. The results showed that in the early stages of sepsis, the gut microbiota is dominated by microorganisms that are tightly associated with inflammation, such as Escherichia-Shigella, Enterococcus, Enterobacteriaceae, and Streptococcus. On sepsis day 3 compared to day 1, there was a significant decrease in Lactobacillus and Bacteroides and a significant increase in Enterobacteriaceae, Streptococcus, and Parabacteroides. Culturomica_massiliensis, Prevotella_7 spp., Prevotellaceae, and Pediococcus showed significant differences in abundance on sepsis day 1, but not on sepsis day 3. Additionally, 2-keto-isovaleric acid 1 and 4-hydroxy-6-methyl-2-pyrone metabolites significantly increased on sepsis day 3 compared to day 1. Prevotella_7 spp. was positively correlated with phosphate and negatively correlated with 2-keto-isovaleric acid 1 and 3-hydroxypropionic acid 1, while Prevotella_9 spp. was positively correlated with sequential organ failure assessment score, procalcitonin and intensive care unit stay time. In conclusion, the gut microbiota and metabolites are altered during sepsis, with some beneficial microorganisms decreasing and some pathogenic microorganisms increasing. Furthermore, Prevotellaceae members may play different roles in the intestinal tract, with Prevotella_7 spp. potentially possessing beneficial health properties and Prevotella_9 spp. potentially playing a promoting role in sepsis.
Collapse
Affiliation(s)
- Yang Zhou
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yinghao Luo
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Xibo Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Feiyu Luan
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yahui Peng
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yue Li
- Departments of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Xiaohui Ma
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Xiaonan Jia
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Nana Li
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Mingyin Man
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Jieling Wei
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yuanyuan Ji
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Qianqian Zhang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Chunying Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Wenjing Mu
- Departments of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, 150081, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Jun Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Changsong Wang
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| | - Mingyan Zhao
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| | - Kaijiang Yu
- Departments of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
48
|
You J, Bi X, Zhang K, Xie D, Chai Y, Wen S, Xian Y, Fan M, Xu W, Li M, Yuan X. Causal associations between gut microbiota and sepsis: A two-sample Mendelian randomization study. Eur J Clin Invest 2023; 53:e14064. [PMID: 37464539 DOI: 10.1111/eci.14064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/09/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Targeting the gut microbiota may become a new therapeutic to prevent and treat sepsis. Nonetheless, the causal relationship between specific intestinal flora and sepsis is still unclear. METHODS A two-sample Mendelian randomization study was performed using the summary statistics of gut microbiota from the largest available genome-wide association study (n = 18,340). The summary statistics of sepsis were obtained from the UK Biobank (n = 486,484). Inverse-variance weighted, weighted median and MR-Egger were used to examine the causal association between gut microbiota and sepsis. Cochrane's Q test, MR-Egger intercept test, MR-PRESSO Global test and Rucker's Q'-test were used for sensitivity analyses. The leave-one method was used for testing the stability of MR results, and Bonferroni-corrected was used to test the strength of the causal relationship between exposure and outcome. RESULTS Nine intestinal microflora were found causally associated with sepsis, and 11 intestinal microflora were causally associated with 28-day death in sepsis. Among them, Order Victivallales had a strong causality with lower risk of sepsis (OR = 0.86, 95% CI: 0.78-0.94, p = .00165) and lower 28-day mortality of sepsis (OR = 0.68, 95% CI: 0.53-0.87, p = .00179) after Bonferroni-corrected test. No pleiotropy was detected. CONCLUSIONS Through the two-sample MR analysis, we identified the specific intestinal flora that had a causal relationship with the risk and prognosis of sepsis at the level of gene prediction, which may provide helpful biomarkers for early disease diagnosis and potential therapeutic targets for sepsis.
Collapse
Affiliation(s)
- Jingya You
- Department of General Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaogang Bi
- Department of General Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kouxing Zhang
- Department of General Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dan Xie
- Department of General Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiwen Chai
- Department of General Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sha Wen
- Department of Critical Care Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ying Xian
- Department of General Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Fan
- Department of General Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen Xu
- Department of General Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingliang Li
- Department of General Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Yuan
- Department of General Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
49
|
Lin X, Abdalla M, Yang J, Liu L, Fu Y, Zhang Y, Yang S, Yu H, Ge Y, Zhang S, Kang G, Dang W, Jiang Q, Wang Y, Gai Z. Relationship between gut microbiota dysbiosis and immune indicator in children with sepsis. BMC Pediatr 2023; 23:516. [PMID: 37845615 PMCID: PMC10578006 DOI: 10.1186/s12887-023-04349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Sepsis is a life-threatening multiple-organ injury caused by disordered host immune response to microbial infection. However, the correlation between gut microbiota dysbiosis and immune indicators remains unexplored. To address this gap in knowledge, we carried out 16 S rDNA sequencing, analyzed clinical fecal samples from children with sepsis (n = 30) and control children (n = 25), and obtained immune indicators, including T cell subtypes (CD3+, CD3+CD4+, CD3+CD8+, and CD4/CD8), NK cells, cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α and IFN-γ), and immunoglobulin indices (IgA, IgE, IgM and IgG). In addition, we analyzed the correlation between gut microbiota dysbiosis and immune indicators, and evaluated the clinical discriminatory power of discovered bacterial biomarkers. We found that children with sepsis exhibited gut bacterial dysbiosis and low alpha diversity. The Spearman's rank correlation coefficient suggested that Rhodococcus erythropolis had a significantly positive correlation with IFN-γ and CD3+ T cells. Klebsiella pneumoniae and Streptococcus mitis were significantly correlated with NK cells. Bacteroides uniformis was significantly positively correlated with IgM and erythrocyte sedimentation rate, and Eubacterium eligens was significantly positively correlated with IL-4 and CD3+CD8+ T cells. The biomarkers discovered in this study had strong discriminatory power. These changes in the gut microbiome may be closely related to immunologic dysfunction and to the development or exacerbation of sepsis. However, a large sample size is required for verification.
Collapse
Affiliation(s)
- Xia Lin
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Mohnad Abdalla
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Junjie Yang
- College of Life Science, Qilu Normal University, Jinan, Shandong, 250200, China
| | - Lei Liu
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Yali Fu
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Yanli Zhang
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Shuchun Yang
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Han Yu
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Yongsheng Ge
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Sufang Zhang
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Guiyun Kang
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Wei Dang
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Qin Jiang
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China.
- Jinan Children's Hospital, Jinan, 250022, China.
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China.
| | - Ying Wang
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China.
- Jinan Children's Hospital, Jinan, 250022, China.
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China.
| | - Zhongtao Gai
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| |
Collapse
|
50
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|