1
|
Ashok Kumar SS, Bashir S, Pershaanaa M, Kamarulazam F, Kuppusamy AV, Badawi N, Ramesh K, Ramesh S. A review of the role of graphene-based nanomaterials in tackling challenges posed by the COVID-19 pandemic. Microb Pathog 2024; 197:107059. [PMID: 39442812 DOI: 10.1016/j.micpath.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
In 2020, the World Health Organization (WHO) declared a pandemic due to the emergence of the coronavirus disease (COVID-19) which had resulted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At present, the emergence of many new variants and mutants were found to be more harmful compared to the previous strains. As a result, research scientists around the world had devoted significant efforts to understand the mechanism, causes and transmission due to COVID-19 along with the treatment to cure these diseases. However, despite achieving several findings, much more was unknown and yet to be explored. Hence, along with these developments, it is also extremely essential to design effective systems by incorporating smart materials to battle the COVID-19. Therefore, several approaches have been implemented to combat against COVID-19. Recently, the graphene-based materials have been explored for the current COVID-19 and future pandemics due to its superior physicochemical properties, providing efficient nanoplatforms for optical and electrochemical sensing and diagnostic applications with high sensitivity and selectivity. Moreover, based on the photothermal effects or reactive oxygen species formation, the carbon-based nanomaterials have shown its potentiality for targeted antiviral drug delivery and the inhibitory effects against pathogenic viruses. Therefore, this review article sheds light on the recent progress and the most promising strategies related to graphene and related materials and its applications for detection, decontamination, diagnosis, and protection against COVID-19. In addition, the key challenges and future directives are discussed in detail for fundamental design and development of technologies based on graphene-based materials along with the demand aspects of graphene-based products and lastly, our personal opinions on the appropriate approaches to improve these technologies respectively.
Collapse
Affiliation(s)
- Sachin Sharma Ashok Kumar
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; School of Engineering, Taylor's University, 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, 59990, Kuala Lumpur, Malaysia
| | - M Pershaanaa
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fathiah Kamarulazam
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - A V Kuppusamy
- School of Engineering and Computing, Manipal International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Nujud Badawi
- University of Hafr Al-Batin College of Science, Hafer Al-Batin, 39921, Saudi Arabia
| | - K Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India.
| | - S Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India
| |
Collapse
|
2
|
Metto M, Tesfaye A, Atlabachew M, Abebe A. Simultaneous Determination of Sulfamethoxazole and Trimethoprim from Clinical Urine and Blood Serum Samples by the Application of Poly(Cu 2P 4BCL 4)/GCE. ACS OMEGA 2024; 9:43272-43286. [PMID: 39464440 PMCID: PMC11500377 DOI: 10.1021/acsomega.4c08716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Synthetic antibiotics known as sulfonamides suppress the synthesis of tetrahydrofolic acid, which cures respiratory tract infections and protozoal infections by preventing the creation of dihydrofolic acid. Electrochemical sensors based on tetrakis(1,10-phenanthroline)-μ-(4,4'-bipyridine) dicopper(II) chloride monohydrate ([P2Cu-Bip-CuP2]Cl4·H2O or simply Cu2P4BCl4) have been successfully applied for the determination of sulfamethoxazole (SMX) and trimethoprim (TMP) from samples. The experimental conditions and parameters were optimized to achieve the best electrode performances for simultaneous quantification of SMX and TMP. Based on the analysis of the effect of scan rate on the peak parameters, the R 2 for the peak current vs square root of the scan rate was greater than that of the peak current vs scan rate, indicating diffusion-controlled behavior of both species. The current intensities of both SMX and TMP were highly improved due to surface activation of the electrodes by electropolymerization. For SMX, the limit of detection was determined to be 27.94 nM, while for TMP, it was 21.56 nM, and the limit of quantifications was 71.88 nM, and the corresponding relative standard deviation for each was 0.74% and 0.11%. The constructed electrode was stored for varying durations ranging from two h to 2 days, and it was found to be above 97% stable after storing for 15 days. The real applicability of the suggested sensor for the simultaneous determination of SMX and TMP was verified by sensing clinical serum and urine samples and their spike recovery studies.
Collapse
Affiliation(s)
- Melaku Metto
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
- Department
of Chemistry, College of Natural and Computational Sciences, Injibara University, Bahir Dar 6000, Ethiopia
| | - Alemu Tesfaye
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
| | - Minaleshewa Atlabachew
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
- Department
of Chemistry, College of Natural and Computational Sciences, Debark University, Debark 4VCQ+V3P, Ethiopia
| | - Atakilt Abebe
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
| |
Collapse
|
3
|
Chen C, La M, Yi X, Huang M, Xia N, Zhou Y. Progress in Electrochemical Immunosensors with Alkaline Phosphatase as the Signal Label. BIOSENSORS 2023; 13:855. [PMID: 37754089 PMCID: PMC10526794 DOI: 10.3390/bios13090855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
Electrochemical immunosensors have shown great potential in clinical diagnosis, food safety, environmental protection, and other fields. The feasible and innovative combination of enzyme catalysis and other signal-amplified elements has yielded exciting progress in the development of electrochemical immunosensors. Alkaline phosphatase (ALP) is one of the most popularly used enzyme reporters in bioassays. It has been widely utilized to design electrochemical immunosensors owing to its significant advantages (e.g., high catalytic activity, high turnover number, and excellent substrate specificity). In this work, we summarized the achievements of electrochemical immunosensors with ALP as the signal reporter. We mainly focused on detection principles and signal amplification strategies and briefly discussed the challenges regarding how to further improve the performance of ALP-based immunoassays.
Collapse
Affiliation(s)
- Changdong Chen
- College of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 476000, China
| | - Ming La
- College of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 476000, China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Mengjie Huang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yanbiao Zhou
- College of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan 476000, China
| |
Collapse
|
4
|
Dong H, Liu X, Gan L, Fan D, Sun X, Zhang Z, Wu P. Nucleic acid aptamer-based biosensors and their application in thrombin analysis. Bioanalysis 2023. [PMID: 37326345 DOI: 10.4155/bio-2023-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Thrombin is a multifunctional serine protease that plays an important role in coagulation and anticoagulation processes. Aptamers have been widely applied in biosensors due to their high specificity, low cost and good biocompatibility. This review summarizes recent advances in thrombin quantification using aptamer-based biosensors. The primary focus is optical sensors and electrochemical sensors, along with their applications in thrombin analysis and disease diagnosis.
Collapse
Affiliation(s)
- Hang Dong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lu Gan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis & Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
5
|
Madhu S, Ramasamy S, Choi J. Recent Developments in Electrochemical Sensors for the Detection of Antibiotic-Resistant Bacteria. Pharmaceuticals (Basel) 2022; 15:ph15121488. [PMID: 36558939 PMCID: PMC9786047 DOI: 10.3390/ph15121488] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The development of efficient point-of-care (POC) diagnostic tools for detecting infectious diseases caused by destructive pathogens plays an important role in clinical and environmental monitoring. Nevertheless, evolving complex and inconsistent antibiotic-resistant species mire their drug efficacy. In this regard, substantial effort has been expended to develop electrochemical sensors, which have gained significant interest for advancing POC testing with rapid and accurate detection of resistant bacteria at a low cost compared to conventional phenotype methods. This review concentrates on the recent developments in electrochemical sensing techniques that have been applied to assess the diverse latent antibiotic resistances of pathogenic bacteria. It deliberates the prominence of biorecognition probes and tailor-made nanomaterials used in electrochemical antibiotic susceptibility testing (AST). In addition, the bimodal functional efficacy of nanomaterials that can serve as potential transducer electrodes and the antimicrobial agent was investigated to meet the current requirements in designing sensor module development. In the final section, we discuss the challenges with contemporary AST sensor techniques and extend the key ideas to meet the demands of the next POC electrochemical sensors and antibiotic design modules in the healthcare sector.
Collapse
|
6
|
Izadyar A, Van MN, Miranda M, Weatherford S, Hood EE. Electrocatalytic effect of recombinant Mn peroxidase from corn on microbiosensors to detect glucose. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Yang ZW, Pham TTH, Hsu CC, Lien CH, Phan QH. Single-Layer-Graphene-Coated and Gold-Film-Based Surface Plasmon Resonance Prism Coupler Sensor for Immunoglobulin G Detection. SENSORS 2022; 22:s22041362. [PMID: 35214258 PMCID: PMC8962983 DOI: 10.3390/s22041362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
A graphene-based surface plasmon resonance (SPR) prism coupler sensor is proposed for the rapid detection of immunoglobulin G (IgG) antibodies. The feasibility of the proposed sensor is demonstrated by measuring the IgG concentration in phantom mouse and human serum solutions over the range of 0–250 ng/mL. The results show that the circular dichroism and principal fast axis angle of linear birefringence increase in line with increases in IgG concentration over the considered range. Moreover, the proposed device has a resolution of 5–10 ng/mL and a response time of less than three minutes. In general, the sensor provides a promising approach for IgG detection and has significant potential for rapid infectious viral disease testing applications.
Collapse
Affiliation(s)
- Zhe-Wei Yang
- Department of Mechanical Engineering, National United University, Miaoli 36063, Taiwan; (Z.-W.Y.); (C.-C.H.)
| | - Thi-Thu-Hien Pham
- Department of Biomedical Engineering, International University-Vietnam National University, Ho Chi Minh City 700000, Vietnam;
| | - Chin-Chi Hsu
- Department of Mechanical Engineering, National United University, Miaoli 36063, Taiwan; (Z.-W.Y.); (C.-C.H.)
| | - Chi-Hsiang Lien
- Department of Mechanical Engineering, National United University, Miaoli 36063, Taiwan; (Z.-W.Y.); (C.-C.H.)
- Correspondence: (C.-H.L.); (Q.-H.P.)
| | - Quoc-Hung Phan
- Department of Mechanical Engineering, National United University, Miaoli 36063, Taiwan; (Z.-W.Y.); (C.-C.H.)
- Correspondence: (C.-H.L.); (Q.-H.P.)
| |
Collapse
|
8
|
Koukouviti E, Kokkinos C. 3D printed enzymatic microchip for multiplexed electrochemical biosensing. Anal Chim Acta 2021; 1186:339114. [PMID: 34756268 DOI: 10.1016/j.aca.2021.339114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
The low-cost e-fabrication of specialized multianalyte biosensors within the point-of-care (POC) settings in a few minutes remains a great challenge. Unlike prefabricated biosensors, 3D printing seems to be able to meet this challenge, empowering the end user with the freedom to create on-demand devices adapted to immediate bioanalytical need. Here, we describe a novel miniature all-3D-printed 4-electrode biochip, capable of the simultaneous determination of different biomarkers in a single assay. The chip is utterly fabricated via an one-step 3D printing process and it is connected to a mini portable bi-potentiostant, permitting simultaneous measurements. The bioanalytical capability of the microchip is demonstrated through the simultaneous amperometric determination of two cardiac biomarkers (cholesterol and choline) in the same blood droplet, via enzymatic assays developed on its two tiny integrated electrodes. The simultaneous determination of cholesterol and choline is free from cross-talk phenomena and interferences offering limits of detection much lower than the cut-off levels of these biomarkers in blood for coronary syndromes. The biodevice is an easy-constructed, low-cost, sensitive and e-transferable POC chip with wide scope of applicability to other enzymatic bioassays.
Collapse
Affiliation(s)
- Eleni Koukouviti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece
| | - Christos Kokkinos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 157 71, Greece.
| |
Collapse
|
9
|
Ozer T, Henry CS. Paper-based analytical devices for virus detection: Recent strategies for current and future pandemics. Trends Analyt Chem 2021; 144:116424. [PMID: 34462612 PMCID: PMC8387141 DOI: 10.1016/j.trac.2021.116424] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The importance of user-friendly, inexpensive, sensitive, and selective detection of viruses has been highlighted again due to the recent Coronavirus disease 2019 (COVID-19) pandemic. Among the analytical tools, paper-based devices (PADs) have become a leading alternative for point-of-care (POC) testing. In this review, we discuss the recent development strategies and applications in nucleic acid-based, antibody/antigen-based and other affinity-based PADs using optical and electrochemical detection methods for sensing viruses. In addition, advantages and drawbacks of presented PADs are identified. Current state and insights towards future perspectives are presented regarding developing POC diagnosis platform for COVID-19. This review considers state-of-the-art technologies for further development and improvement in PADs performance for virus detection.
Collapse
Affiliation(s)
- Tugba Ozer
- Yildiz Technical University, Faculty of Chemical-Metallurgical Engineering, Department of Bioengineering, 34220, Istanbul, Turkey
| | - Charles S Henry
- Colorado State University, Department of Chemistry, Fort Collins, CO, 80523, USA
- Colorado State University, School of Biomedical Engineering, Fort Collins, CO, 80523, USA
| |
Collapse
|
10
|
Lin S, Zhong J, Chi Y, Chen Y, Khan MS, Shen J. Colorimetric immunosensor based on glassy carbon microspheres test strips for the detection of prostate-specific antigen. Mikrochim Acta 2021; 188:366. [PMID: 34617126 DOI: 10.1007/s00604-021-04907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/19/2021] [Indexed: 10/20/2022]
Abstract
Micro-sized glassy carbon microspheres (GCMs, typically 3 μm in diameter) instead of nano-sized gold nanoparticles (AuNPs, typically 20 nm in diameter) were for the first time used as signal markers for the quantitative detection of antigen such as prostate-specific antigen (PSA). After being treated with concentrated HNO3, GCMs bear carboxyl groups at their surfaces, which enables antibodies to be conjugated with GCMs to yield new type of micro-sized material-based colorimetric probes used for immunochromatographic test strips (ICTSs). The captured black GCMs (with strong and wide-band light absorption) on the T-line of ICTS were used both for qualitative and quantitative determination of PSA. In the case of quantitative determination, a lab-assembled optical strip reader system was used to measure the reflected LED light intensity at 550 nm. The sensing performances of the developed GCM-based ICTSs, such as sensitivity, selectivity, reproducibility, stability, and applicability, were investigated in detail. The developed GCM-based ICTSs can have much higher (3 times) detection sensitivity than AuNP-based ICTSs, showing promising applications in sensitive immunoassay.
Collapse
Affiliation(s)
- Shan Lin
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jiangyan Zhong
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuwu Chi
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Yipeng Chen
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Malik Saddam Khan
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jianzhen Shen
- Department of Hematology, Fujian Institute of Hematology, Union Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
11
|
Gachpazan M, Mohammadinejad A, Saeidinia A, Rahimi HR, Ghayour-Mobarhan M, Vakilian F, Rezayi M. A review of biosensors for the detection of B-type natriuretic peptide as an important cardiovascular biomarker. Anal Bioanal Chem 2021; 413:5949-5967. [PMID: 34396470 DOI: 10.1007/s00216-021-03490-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022]
Abstract
Heart disease, as the most serious threat to human health globally, is responsible for rising mortality rates, largely due to lifestyle and diet. Unfortunately, the main problem for patients at high risk of heart disease is the validation of prognostic tests. To this end, the detection of cardiovascular biomarkers has been employed to obtain pathological and physiological information in order to improve prognosis and early-stage diagnosis of chronic heart failure. Short-term changes in B-type natriuretic peptide are known as a standard and important biomarker for diagnosis of heart failure. The most important problem for detection is low concentration and short half-life in the blood. The normal concentration of BNP in blood is less than 7 nM (25 pg/mL), which increases significantly to more than 80 pg/mL. Therefore, the development of new biosensors with better sensitivity, detection limit, and dynamic range than current commercial kits is urgently needed. This review classifies the biosensors designed for detection of BNP into electrochemical, optical, microfluidic, and lateral-flow immunoassay techniques. The review clearly demonstrates that a variety of immunoassay, aptasensor, enzymatic and catalytic nanomaterials, and fluorophores have been successfully employed for detection of BNP at low attomolar ranges. Dtection of B-type natriuretic peptide with biosensors.
Collapse
Affiliation(s)
- Meysam Gachpazan
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Arash Mohammadinejad
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Amin Saeidinia
- Pediatric Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.,Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, 9196773117, Iran
| | - Hamid Reza Rahimi
- Vascular and Endovascular Surgery Research Center, Alavi Hospital, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Farveh Vakilian
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9176699199, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran. .,Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran. .,Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
12
|
Bai R, Sun Y, Zhao M, Han Z, Zhang J, Sun Y, Dong W, Li S. Preparation of IgG imprinted polymers by metal-free visible-light-induced ATRP and its application in biosensor. Talanta 2021; 226:122160. [PMID: 33676705 PMCID: PMC7845519 DOI: 10.1016/j.talanta.2021.122160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022]
Abstract
Immunoglobulin G (IgG) is related to the occurrence of many diseases, such as measles and inflammatory. In this paper, IgG imprinted polymers (IgGIPs) were fabricated on the surface of nano Au/nano Ni modified Au electrode (IgGIPs/AuNCs/NiNCs/Au) via metal-free visible-light-induced atom transfer radical polymerization (MVL ATRP). The IgGIPs were prepared by IgG conjugated with fluorescein isothiocyanate (FITC-IgG) as both a template and a photocatalyst. After the templates were removed, the photocatalysts (FITC) would not remain in the polymer and avoided all the effect of catalysts on the electrode. The fabricated electrodes were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). Under the optimized conditions, IgGIPs/AuNCs/NiNCs/Au was prepared and used as an electrochemical biosensor. The biosensor could be successfully applied for the determination of IgG by differential pulse voltammetry (DPV) measurement. The results showed that the proposed biosensor displayed a broader linear range and a lower detection limit for IgG determination when it was compared to those similar IgG sensors. The linear range from 1.0 × 10-6 mg L-1 to 1.0 × 101 mg L-1 was obtained with a low detection limit (LOD) of 2.0 × 10-8 mg L-1 (S/N = 3). Briefly, the biosensor in this study introduced an easy and non-toxic method for IgG determination and also provided a progressive approach for designing protein imprinted polymers.
Collapse
Affiliation(s)
- Ru Bai
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
| | - Mengyuan Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Zhen Han
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Juntong Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yuze Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Wenjing Dong
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Siyu Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| |
Collapse
|
13
|
Gowri A, Ashwin Kumar N, Suresh Anand BS. Recent advances in nanomaterials based biosensors for point of care (PoC) diagnosis of Covid-19 - A minireview. Trends Analyt Chem 2021; 137:116205. [PMID: 33531721 PMCID: PMC7842193 DOI: 10.1016/j.trac.2021.116205] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early diagnosis and ultrahigh sample throughput screening are the need of the hour to control the geological spread of the COVID-19 pandemic. Traditional laboratory tests such as enzyme-linked immunosorbent assay (ELISA), reverse transcription polymerase chain reaction (RT-PCR) and computed tomography are implemented for the detection of COVID-19. However, they are limited by the laborious sample collection and processing procedures, longer wait time for test results and skilled technicians to operate sophisticated facilities. In this context, the point of care (PoC) diagnostic platform has proven to be the prospective approach in addressing the abovementioned challenges. This review emphasizes the mechanism of viral infection spread detailing the host-virus interaction, pathophysiology, and the recent advances in the development of affordable PoC diagnostic platforms for rapid and accurate diagnosis of COVID-19. First, the well-established optical and electrochemical biosensors are discussed. Subsequently, the recent advances in the development of PoC biosensors, including lateral flow immunoassays and other emerging techniques, are highlighted. Finally, a focus on integrating nanotechnology with wearables and smartphones to develop smart nanobiosensors is outlined, which could promote COVID-19 diagnosis accessible to both individuals and the mass population at patient care.
Collapse
Affiliation(s)
- Annasamy Gowri
- Department of Biomedical Engineering, Vel Tech Research Park, Vel Tech Rangarajan Dr.Sagunthala R & D Institute of Science and Technology, Avadi, Chennai 600 062, Tamil Nadu, India
| | - N Ashwin Kumar
- Department of Biomedical Engineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Tamil Nadu, India
| | - B S Suresh Anand
- Department of Biomedical Engineering, Rajalakshmi Engineering College, Thandalam, Chennai 602 105, Tamil Nadu, India
| |
Collapse
|
14
|
Karimzadeh Z, Hasanzadeh M, Isildak I, Khalilzadeh B. Multiplex bioassaying of cancer proteins and biomacromolecules: Nanotechnological, structural and technical perspectives. Int J Biol Macromol 2020; 165:3020-3039. [PMID: 33122068 DOI: 10.1016/j.ijbiomac.2020.10.191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
Since the specific proteins (carbohydrate antigens, ligands and interleukins) get raised up in body tissue or fluids in cancer cases, early detection of them will provide an effective treatment and survival rate. Sensitive and accurate determination of multiple cancer proteins can be engaged in chorus by simultaneous/multiplex detection in the biomedical fields. Bioassaying technology is one of the non-invasive, high-sensitive, and economical methods. Currently, extensive application of nanomaterial (biocompatible polymers, metallic and metal oxide) in bioassays resulted in ultra-high sensitive and selective diagnosis. This review article focuses on types of multiplex bioassays for delicate and specific determination of cancer proteins for diagnostic aims. It also covers two modes of multiplex bioassays as multi labeled bioassays and spatially-separated test zones (multi-electrode mode). In this review, the nanotechnological, structural, and technical perspectives in the multiplex analysis of cancer proteins were discussed. Finally, the use of different types of nanomaterials, polysaccharides, biopolymers and their advantages in signal amplification are discussed.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ibrahim Isildak
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, 34220 Istanbul, Turkey
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biosensor Sciences and Technologies Research Center (BSTRC), Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
15
|
Assari P, Rafati AA, Feizollahi A, Joghani RA. Fabrication of a sensitive label free electrochemical immunosensor for detection of prostate specific antigen using functionalized multi-walled carbon nanotubes/polyaniline/AuNPs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111066. [PMID: 32600691 DOI: 10.1016/j.msec.2020.111066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/05/2023]
Abstract
The aim of this research is to introduce a novel label free electrochemical immunosensor based on glassy carbon electrode (GCE) modified with carboxylated carbon nanotubes (COOH-MWCNTs)/polyaniline (PANI)/gold nanoparticles (AuNPs) for the detection of prostate specific antigen (PSA). The AuNPs were utilized as a connector for PSA antibody immobilization through NH2 groups on antibody. Investigations on modified electrode surface were performed by FT-IR spectrum, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) to evaluate the synthesized nanocomposite and modified electrode surface. As a sensitive analytical method for the detection of PSA, differential pulse voltammetry (DPV) was employed in different ranges of antigen concentration, 1.66 ag·mL-1 to 1.3 ng·mL-1. In addition, the detection limit was obtained 0.5 pg·mL-1, from the linear relationship between antigen concentration log and peak current. Also, the proposed immunosensor was carried out for the determination of PSA in human serum samples, indicating recoveries ranging from 92 to 104%. Finally, it should be noted that the reproducibility and specificity, along with the stability of the present immunosensor were examined, and satisfactory findings were obtained, thus proving it as a promising PSA immunosensor.
Collapse
Affiliation(s)
- Parnaz Assari
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| | - Amir Abbas Rafati
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran.
| | - Azizallah Feizollahi
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| | - Roghayeh Asadpour Joghani
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| |
Collapse
|
16
|
Li B, Qi J, Fu L, Han J, Choo J, deMello AJ, Lin B, Chen L. Integrated hand-powered centrifugation and paper-based diagnosis with blood-in/answer-out capabilities. Biosens Bioelectron 2020; 165:112282. [PMID: 32729467 DOI: 10.1016/j.bios.2020.112282] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 12/30/2022]
Abstract
To date, 55% of inhabitants of the developing world still live in rural regions and they have a very urgent need to improve the level of disease diagnosis, especially in resource-limited settings. Herein, we present a microfluidic system that centrifuges whole blood and quantifies contained biomarkers in a rapid, feasible and integrated way. Such a device provides a blood-in/answer-out capability and is small enough to be carried by any individual in any environment. The successful integration a hand-powered centrifuge and immunoassay unit within a rotational paper-based device allows for diagnostic application by untrained users and in environments where access to electricity cannot be assumed. In addition, the low cost (~$ 0.5), light weight and small instrumental footprint make the device ideally suited for rapid on-site detection. To validate the applicability of the system in a clinical diagnostic testing, we successfully perform enzyme-linked immunosorbent assay (ELISA) analysis of carcinoembryonic antigen and alpha fetoprotein from human blood samples. We expect that this powerful platform technology will provide the opportunities for point-of-care diagnosis in resource-limited settings.
Collapse
Affiliation(s)
- Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Ji Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jinglong Han
- School of Environment and Materials Engineering and College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093, Zurich, Switzerland.
| | - Bingcheng Lin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
17
|
Landini N, Anania G, Astolfi M, Fabbri B, Guidi V, Rispoli G, Valt M, Zonta G, Malagù C. Nanostructured Chemoresistive Sensors for Oncological Screening and Tumor Markers Tracking: Single Sensor Approach Applications on Human Blood and Cell Samples. SENSORS 2020; 20:s20051411. [PMID: 32143491 PMCID: PMC7085750 DOI: 10.3390/s20051411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Preventive screening does not only allow to preemptively intervene on pathologies before they can harm the host; but also to reduce the costs of the intervention itself; boosting the efficiency of the NHS (National Health System) by saving resources for other purposes. To improve technology advancements in this field; user-friendly yet low-cost devices are required; and various applications for gas sensors have been tested and proved reliable in past studies. In this work; cell cultures and blood samples have been studied; using nanostructured chemoresistive sensors; to both verify if this technology can reliably detect tumor markers; and if correlations between responses from tumor line metabolites and the screening outcomes on human specimens could be observed. The results showed how sensors responded differently to the emanations from healthy and mutant (for cells) or tumor affected (for blood) samples, and how those results were consistent between them, since the tumoral specimens had higher responses compared to the ones of their healthy counterparts. Even though the patterns in the responses require a bigger population to be defined properly; it appeared that the different macro-groups between the same kind of samples are distinguishable from some of the sensors chosen in the study; giving promising outcomes for further research.
Collapse
Affiliation(s)
- Nicolò Landini
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy; (M.A.); (B.F.); (V.G.); (M.V.); (G.Z.)
- Correspondence:
| | - Gabriele Anania
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Michele Astolfi
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy; (M.A.); (B.F.); (V.G.); (M.V.); (G.Z.)
- SCENT S.r.l, Via Quadrifoglio 11, 44124 Ferrara, Italy
| | - Barbara Fabbri
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy; (M.A.); (B.F.); (V.G.); (M.V.); (G.Z.)
| | - Vincenzo Guidi
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy; (M.A.); (B.F.); (V.G.); (M.V.); (G.Z.)
| | - Giorgio Rispoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Matteo Valt
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy; (M.A.); (B.F.); (V.G.); (M.V.); (G.Z.)
| | - Giulia Zonta
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy; (M.A.); (B.F.); (V.G.); (M.V.); (G.Z.)
| | - Cesare Malagù
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/C, 44122 Ferrara, Italy; (M.A.); (B.F.); (V.G.); (M.V.); (G.Z.)
| |
Collapse
|
18
|
|
19
|
Yin S, Ma Z. Self-sacrificial label assisted electroactivity conversion of sensing interface for ultrasensitive electrochemical immunosensor. Biosens Bioelectron 2019; 140:111355. [DOI: 10.1016/j.bios.2019.111355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 12/11/2022]
|
20
|
Mollarasouli F, Kurbanoglu S, Ozkan SA. The Role of Electrochemical Immunosensors in Clinical Analysis. BIOSENSORS 2019; 9:E86. [PMID: 31324020 PMCID: PMC6784381 DOI: 10.3390/bios9030086] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023]
Abstract
An immunosensor is a kind of affinity biosensor based on interactions between an antigen and specific antigen immobilized on a transducer surface. Immunosensors possess high selectivity and sensitivity due to the specific binding between antibody and corresponding antigen, making them a suitable platform for several applications especially in the medical and bioanalysis fields. Electrochemical immunosensors rely on the measurements of an electrical signal recorded by an electrochemical transducer and can be classed as amperometric, potentiometric, conductometric, or impedimetric depending on the signal type. Among the immunosensors, electrochemical immunosensors have been more perfected due to their simplicity and, especially their ability to be portable, and for in situ or automated detection. This review addresses the potential of immunosensors destined for application in clinical analysis, especially cancer biomarker diagnosis. The emphasis is on the approaches used to fabricate electrochemical immunosensors. A general overview of recent applications of the developed electrochemical immunosensors in the clinical approach is described.
Collapse
Affiliation(s)
- Fariba Mollarasouli
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey.
| |
Collapse
|
21
|
Label-Free Flow Multiplex Biosensing via Photonic Crystal Surface Mode Detection. Sci Rep 2019; 9:8745. [PMID: 31217478 PMCID: PMC6584699 DOI: 10.1038/s41598-019-45166-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/28/2019] [Indexed: 11/08/2022] Open
Abstract
Circulating cancer markers are metabolic products found in body fluids of cancer patients, which are specific for a certain type of malignant tumors. Cancer marker detection plays a key role in cancer diagnosis, treatment, and disease monitoring. The growing need for early cancer diagnosis requires quick and sensitive analytical approaches to detection of cancer markers. The approach based on the photonic crystal surface mode (PC SM) detection has been developed as a label-free high-precision biosensing technique. It allows real-time monitoring of molecular and cellular interactions using independent recording of the total internal reflection angle and the excitation angle of the PC surface wave. We used the PC SM technique for simultaneous detection of the ovarian cancer marker cancer antigen 125 and two breast cancer markers, human epidermal growth factor receptor 2 and cancer antigen 15-3. The new assay is based on the real-time flow detection of specific interaction between the antigens and capture antibodies. Its particular advantage is the possibility of multichannel recording with the same chip, which can be used for multiplexed detection of several cancer markers in a single experiment. The developed approach demonstrates high specificity and sensitivity for detection of all three biomarkers.
Collapse
|
22
|
Lu X, Fan Z. Determination of cholic acid in body fluids by β‑cyclodextrin-modified N-doped carbon dot fluorescent probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:342-348. [PMID: 30921656 DOI: 10.1016/j.saa.2019.03.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
An easy, dependable, and sensitive cholic acid activity experiment was designed based on β‑cyclodextrin-modified carbon dot (β‑CD-CD) nanoprobes with specific host-guest recognizing ability and photoelectron transfer capability. The β‑CD-CD nanoprobes were characterized by infrared, ultraviolet-visible, and fluorescence spectroscopy and transmission electron microscopy. The fluorescence of the probes under optimized conditions linearly responded to cholic acid concentration from 0 to 650 μmol·L-1 with a detection limit of 25 nmol·L-1. The probes also performed well in detecting cholic acid in serum and urine samples with an average recovery rate of 97.1%-103.4%. Thus, this study provides a reliable, rapid, and easy method of cholic acid detection in body fluids that can be potentially applied in medical studies.
Collapse
Affiliation(s)
- Xia Lu
- Department of Chemistry, Shanxi Normal University, Linfen 041004, PR China
| | - Zhefeng Fan
- Department of Chemistry, Shanxi Normal University, Linfen 041004, PR China.
| |
Collapse
|
23
|
Enzymatic/Immunoassay Dual‐Biomarker Sensing Chip: Towards Decentralized Insulin/Glucose Detection. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Vargas E, Teymourian H, Tehrani F, Eksin E, Sánchez‐Tirado E, Warren P, Erdem A, Dassau E, Wang J. Enzymatic/Immunoassay Dual‐Biomarker Sensing Chip: Towards Decentralized Insulin/Glucose Detection. Angew Chem Int Ed Engl 2019; 58:6376-6379. [DOI: 10.1002/anie.201902664] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Eva Vargas
- Department of NanoengineeringUniversity of California, San Diego San Diego, La Jolla CA 92093 USA
| | - Hazhir Teymourian
- Department of NanoengineeringUniversity of California, San Diego San Diego, La Jolla CA 92093 USA
| | - Farshad Tehrani
- Department of NanoengineeringUniversity of California, San Diego San Diego, La Jolla CA 92093 USA
| | - Ece Eksin
- Department of NanoengineeringUniversity of California, San Diego San Diego, La Jolla CA 92093 USA
- Biotechnology DepartmentEge University 35100, Bornova Izmir Turkey
| | - Esther Sánchez‐Tirado
- Department of NanoengineeringUniversity of California, San Diego San Diego, La Jolla CA 92093 USA
- Department of Analytical ChemistryUniversity Complutense of Madrid Avenida de la Complutense, s/n 28040 Madrid Spain
| | - Paul Warren
- Department of NanoengineeringUniversity of California, San Diego San Diego, La Jolla CA 92093 USA
| | - Arzum Erdem
- Biotechnology DepartmentEge University 35100, Bornova Izmir Turkey
| | - Eyal Dassau
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
| | - Joseph Wang
- Department of NanoengineeringUniversity of California, San Diego San Diego, La Jolla CA 92093 USA
| |
Collapse
|
25
|
Wang H, Ma Z. “Off-on” signal amplification strategy amperometric immunosensor for ultrasensitive detection of tumour marker. Biosens Bioelectron 2019; 132:265-270. [DOI: 10.1016/j.bios.2019.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 11/26/2022]
|
26
|
Yang X, Shu W, Wang Y, Gong Y, Gong C, Chen Q, Tan X, Peng GD, Fan X, Rao YJ. Turbidimetric inhibition immunoassay revisited to enhance its sensitivity via an optofluidic laser. Biosens Bioelectron 2019; 131:60-66. [DOI: 10.1016/j.bios.2019.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 11/27/2022]
|
27
|
Khan NU, Feng Z, He H, Wang Q, Liu X, Li S, Shi X, Wang X, Ge B, Huang F. A facile plasmonic silver needle for fluorescence-enhanced detection of tumor markers. Anal Chim Acta 2018; 1040:120-127. [DOI: 10.1016/j.aca.2018.07.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 11/26/2022]
|
28
|
Petrova IO, Konopsky VN, Sukhanova AV, Nabiev IR. Multiparametric detection of bacterial contamination based on the photonic crystal surface mode detection. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2018. [DOI: 10.24075/brsmu.2018.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Conventional techniques for food and water quality control and environmental monitoring in general have a number of drawbacks. Below we propose a label-free highly accurate analytical technique for multiplex detection of biomarkers based on the analysis of propagation of Bloch waves on the surface of a photonic crystal. The technique can be used to measure molecular and cell affinity interactions in real time by recording critical and excitation angles of the surface wave on the surface of a photonic crystal. Based on the analysis of photonic crystal surface modes, we elaborated a protocol for the detection of the exotoxin A of Pseudomonas aeruginosa and the heat-labile toxin LT of Escherichia coli. The protocol exploits detection of affinity interactions between antigens pumped through a microfluidic cell and detector antibodies conjugated to the chemically activated silica chip. The proposed technique is highly sensitive, cheap and less time-consuming in comparison with surface plasmon resonance.
Collapse
Affiliation(s)
- I. O. Petrova
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow
| | - V. N. Konopsky
- Laboratory of Spectroscopy of Condensed Matter, Institute for Spectroscopy, Russian Academy of Sciences, Troitsk
| | - A. V. Sukhanova
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow
| | - I. R. Nabiev
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow
| |
Collapse
|
29
|
Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Baradaran B, Guardia MDL, Hejazi M, Sohrabi H, Mokhtarzadeh A, Maleki A. Recent progress in optical and electrochemical biosensors for sensing of Clostridium botulinum neurotoxin. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Chen F, Zhang F, Liu Y, Cai C. Simply and sensitively simultaneous detection hepatocellular carcinoma markers AFP and miRNA-122 by a label-free resonance light scattering sensor. Talanta 2018; 186:473-480. [PMID: 29784390 DOI: 10.1016/j.talanta.2018.04.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022]
Abstract
In this study, an intelligent and label-free sensor is utilized for the first time to one-spot simultaneous detection hepatocellular carcinoma markers AFP and miRNA-122 by a resonance light scattering (RLS) sensor. cDNA1 hybridizes with cDNA2 to form double-stranded DNA (dsDNA). The construction of dsDNA and methyl violet is used to form the RLS sensor via the electronic interaction. When AFP or miRNA-122 is present, the cDNA (cDNA1 or cDNA2) can bindings of target, thereby RLS intensity changed proportionally with the concentration of AFP or that of miRNA-122. The detection limits of AFP and miRNA-122 are 0.94 μg/L and 98 pM respectively, and their good linear which ranges from 5 to 100 μg/L and 200 pM to 10 nM are achieved using the assay. In the presence of miRNA-122 and AFP mixtures, AFP bound to the AFP aptamer to increase the RLS signal, and miRNA-122 bound to the miRNA-122 complementary strand to decrease the RLS signal. The RLS signal changed in response to changing AFP and miRNA-122 concentrations, so that one-spot simultaneous detection of alpha fetal protein and miRNA-122 is achieved. This method has potential practical applications in the research of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Feng Zhang
- College of Science, Hunan Agricultural University, Changsha 410128, China
| | - Yi Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
31
|
Liu F, Ni L, Zhe J. Lab-on-a-chip electrical multiplexing techniques for cellular and molecular biomarker detection. BIOMICROFLUIDICS 2018; 12:021501. [PMID: 29682143 PMCID: PMC5893332 DOI: 10.1063/1.5022168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Signal multiplexing is vital to develop lab-on-a-chip devices that can detect and quantify multiple cellular and molecular biomarkers with high throughput, short analysis time, and low cost. Electrical detection of biomarkers has been widely used in lab-on-a-chip devices because it requires less external equipment and simple signal processing and provides higher scalability. Various electrical multiplexing for lab-on-a-chip devices have been developed for comprehensive, high throughput, and rapid analysis of biomarkers. In this paper, we first briefly introduce the widely used electrochemical and electrical impedance sensing methods. Next, we focus on reviewing various electrical multiplexing techniques that had achieved certain successes on rapid cellular and molecular biomarker detection, including direct methods (spatial and time multiplexing), and emerging technologies (frequency, codes, particle-based multiplexing). Lastly, the future opportunities and challenges on electrical multiplexing techniques are also discussed.
Collapse
Affiliation(s)
- Fan Liu
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Liwei Ni
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
32
|
Li K, Wang S, Wang L, Yu H, Jing N, Xue R, Wang Z. Fast and Sensitive Ellipsometry-Based Biosensing. SENSORS 2017; 18:s18010015. [PMID: 29271894 PMCID: PMC5795863 DOI: 10.3390/s18010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 01/27/2023]
Abstract
In this work, a biosensing method based on in situ, fast, and sensitive measurements of ellipsometric parameters (Ψ, ∆) is proposed. Bare silicon wafer substrate is functionalized and used to bind biomolecules in the solution. Coupled with a 45° dual-drive symmetric photoelastic modulator-based ellipsometry, the parameters Ψ and ∆ of biolayer arising due to biomolecular interactions are determined directly, and the refractive index (RI) of the solution and the effective thickness and surface mass density of the biolayer for various interaction time can be further monitored simultaneously. To illustrate the performance of the biosensing method, immunosensing for immunoglobulin G (IgG) was taken as a case study. The experiment results show that the biosensor response of the limit of detection for IgG is 15 ng/mL, and the data collection time is in milliseconds. Moreover, the method demonstrates a good specificity. Such technique is a promising candidate in developing a novel sensor which can realize fast and sensitive, label-free, easy operation, and cost-effective biosensing.
Collapse
Affiliation(s)
- Kewu Li
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China.
- Engineering Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, Taiyuan 030051, China.
| | - Shuang Wang
- Engineering Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, Taiyuan 030051, China.
| | - Liming Wang
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China.
| | - Hui Yu
- Engineering Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, Taiyuan 030051, China.
| | - Ning Jing
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China.
- Engineering Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, Taiyuan 030051, China.
| | - Rui Xue
- Engineering Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, Taiyuan 030051, China.
| | - Zhibin Wang
- School of Information and Communication Engineering, North University of China, Taiyuan 030051, China.
- Engineering Technology Research Center of Shanxi Province for Opto-Electric Information and Instrument, Taiyuan 030051, China.
| |
Collapse
|
33
|
Mikani M, Rahmanian R, Karimnia M, Sadeghi A. Novel I-V
Disposable Urea Biosensor Based on a Dip-coated Hierarchical Magnetic Nanocomposite (Fe3
O4
@SiO2
@NH2
) on SnO2
:F Layer. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohaddeseh Mikani
- Young Researchers and Elite Club, North Tehran Branch; Islamic Azad University; Tehran Iran
| | - Reza Rahmanian
- Young Researchers and Elite Club, North Tehran Branch; Islamic Azad University; Tehran Iran
| | - Matin Karimnia
- Department of Chemistry, School of Science; Payame Noor University (PNU); Tehran Iran
| | - Ali Sadeghi
- School of Chemistry; Damghan University; Damghan Iran
| |
Collapse
|
34
|
Zhang S, Sunami Y, Hashimoto H. Mini Review: Nanosheet Technology towards Biomedical Application. NANOMATERIALS 2017; 7:nano7090246. [PMID: 28858235 PMCID: PMC5618357 DOI: 10.3390/nano7090246] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
The fabrication technique of ultrathin film (commonly known as nanosheets) has been significantly developed over the years. Due to the mechanical properties of nanosheets, such as high levels of adhesion and flexibility, this made nanosheets the ideal candidate in biomedical applications. In this review, innovative biomedical applications of nanosheets are discussed, which include, drug delivery, wound treatment, and functional nanosheets towards flexible biodevices, etc. Finally, the future outlook of nanosheet technology towards a biomedical application is discussed.
Collapse
Affiliation(s)
- Sheng Zhang
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
| | - Yuta Sunami
- Micro/Nano Technology Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
- Department of Mechanical Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
| | - Hiromu Hashimoto
- Department of Mechanical Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka-city, Kanagawa 259-1292, Japan.
| |
Collapse
|
35
|
Pavithra M, Muruganand S, Parthiban C. Development of a Simple Isatin-Based Electrochemical Immunosensor on a Screen-Printed Gold Electrode for Highly Sensitive Detection of Carcinoembryonic Antigen. ChemistrySelect 2017. [DOI: 10.1002/slct.201700870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Masilamani Pavithra
- Department of Electronics and Instrumentation; Bharathiar University; Coimbatore India
| | - Shanmugam Muruganand
- Department of Electronics and Instrumentation; Bharathiar University; Coimbatore India
| | | |
Collapse
|
36
|
Kaur N, Prabhakar N. Current scenario in organophosphates detection using electrochemical biosensors. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
37
|
Amperometric immunoassay for the tumor marker neuron-specific enolase using a glassy carbon electrode modified with a nanocomposite consisting of polyresorcinol and of gold and platinum nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2287-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Huang W, Chang CL, Brault ND, Gur O, Wang Z, Jalal SI, Low PS, Ratliff TL, Pili R, Savran CA. Separation and dual detection of prostate cancer cells and protein biomarkers using a microchip device. LAB ON A CHIP 2017; 17:415-428. [PMID: 28054089 DOI: 10.1039/c6lc01279e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Current efforts for the detection of prostate cancer using only prostate specific antigen are not ideal and indicate a need to develop new assays - using multiple targets - that can more accurately stratify disease states. We previously introduced a device capable of the concurrent detection of cellular and molecular markers from a single sample fluid. Here, an improved design, which achieves affinity as well as size-based separation of captured targets using antibody-conjugated magnetic beads and a silicon chip containing micro-apertures, is presented. Upon injection of the sample, the integration of magnetic attraction with the micro-aperture chip permits larger cell-bead complexes to be isolated in an upper chamber with the smaller protein-bead complexes and remaining beads passing through the micro-apertures into the lower chamber. This enhances captured cell purity for on chip quantification, allows the separate retrieval of captured cells and proteins for downstream analysis, and enables higher bead concentrations for improved multiplexed ligand targeting. Using LNCaP cells and prostate specific membrane antigen (PSMA) to model prostate cancer, the device was able to detect 34 pM of spiked PSMA and achieve a cell capture efficiency of 93% from culture media. LNCaP cells and PSMA were then spiked into diluted healthy human blood to mimic a cancer patient. The device enabled the detection of spiked PSMA (relative to endogenous PSMA) while recovering 85-90% of LNCaP cells which illustrated the potential of new assays for the diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Wanfeng Huang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Chun-Li Chang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Norman D Brault
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Onur Gur
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Zhe Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Shadia I Jalal
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Timothy L Ratliff
- Center for Cancer Research and Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Roberto Pili
- Genitourinary Program, Roswell Park Cancer Institute, Buffalo, NY 14263, USA and Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Cagri A Savran
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
39
|
A novel electrochemical immunosensor based on nonenzymatic Ag@Au-Fe3O4 nanoelectrocatalyst for protein biomarker detection. Biosens Bioelectron 2016; 85:343-350. [DOI: 10.1016/j.bios.2016.04.100] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/21/2022]
|
40
|
Munge BS, Stracensky T, Gamez K, DiBiase D, Rusling JF. Multiplex Immunosensor Arrays for Electrochemical Detection of Cancer Biomarker Proteins. ELECTROANAL 2016; 28:2644-2658. [PMID: 28592919 PMCID: PMC5459496 DOI: 10.1002/elan.201600183] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/03/2016] [Indexed: 01/22/2023]
Abstract
Measuring panels of protein biomarkers offer a new personalized approach to early cancer detection, disease monitoring and patients' response to therapy. Multiplex electrochemical methods are uniquely positioned to provide faster, more sensitive, point of care (POC) devices to detect protein biomarkers for clinical diagnosis. Nanomaterials-based electrochemical methods offer sensitivity needed for early cancer detection. This review discusses recent advances in multiplex electrochemical immunosensors for cancer diagnostics and disease monitoring. Different electrochemical strategies including enzyme-based immunoarrays, nanoparticle-based immunoarrays and electrochemiluminescence methods are discussed. Many of these methods have been integrated into microfluidic systems, but measurement of more than 2-4 protein markers in a small single serum sample is still a challenge. For POC applications, a simple, low cost method is required. Major challenges in multiplexed microfluidic immunoassays are reagent additions and washing steps that require creative engineering solutions. 3-D printed microfluidics and paper-based microfluidic devices are also explored.
Collapse
Affiliation(s)
- Bernard S Munge
- Department of Chemistry, Salve Regina University, 100 Ochre Point Avenue, Newport RI 02840, USA
| | - Thomas Stracensky
- Department of Chemistry, Salve Regina University, 100 Ochre Point Avenue, Newport RI 02840, USA
| | - Kathleen Gamez
- Department of Chemistry, Salve Regina University, 100 Ochre Point Avenue, Newport RI 02840, USA
| | - Dimitri DiBiase
- Department of Chemistry, Salve Regina University, 100 Ochre Point Avenue, Newport RI 02840, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, USA
- Department of Surgery and Neag Cancer Center, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
41
|
Wu H, Ohnuki H, Ota S, Murata M, Yoshiura Y, Endo H. New approach for monitoring fish stress: A novel enzyme-functionalized label-free immunosensor system for detecting cortisol levels in fish. Biosens Bioelectron 2016; 93:57-64. [PMID: 27771136 DOI: 10.1016/j.bios.2016.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 11/27/2022]
Abstract
Fishes display a wide variation in their physiological responses to stress, which is clearly evident in the plasma corticosteroid changes, chiefly cortisol levels in fish. As a well-known indicator of fish stress, a simple and rapid method for detecting cortisol changes especially sudden increases is desired. In this study, we describe an enzyme-functionalized label-free immunosensor system for detecting fish cortisol levels. Detection of cortisol using amperometry was achieved by immobilizing both anti-cortisol antibody (selective detection of cortisol) and glucose oxidase (signal amplification and non-toxic measurement) on an Au electrode surface with a self-assembled monolayer. This system is based on the maximum glucose oxidation output current change induced by the generation of a non-conductive antigen-antibody complex, which depends on the levels of cortisol in the sample. The immunosensor responded to cortisol levels with a linear decrease in the current in the range of 1.25-200ngml-1 (R=0.964). Since the dynamic range of the sensor can cover the normal range of plasma cortisol in fish, the samples obtained from the fish did not need to be diluted. Further, electrochemical measurement of one sample required only ~30min. The sensor system was applied to determine the cortisol levels in plasma sampled from Nile tilapia (Oreochromis niloticus), which were then compared with levels of the same samples determined using the conventional method (ELISA). Values determined using both methods were well correlated. These findings suggest that the proposed label-free immunosensor could be useful for rapid and convenient analysis of cortisol levels in fish without sample dilution. We also believe that the proposed system could be integrated in a miniaturized potentiostat for point-of-care cortisol detection and useful as a portable diagnostic in fish farms in the future.
Collapse
Affiliation(s)
- Haiyun Wu
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Hitoshi Ohnuki
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 2-1-6, Etchujima, Koto-ku, Tokyo 135-8533, Japan
| | - Shirei Ota
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Masataka Murata
- Hokkaido Industrial Technology Center, 379 Kikyo-cho, Hakodate, Hokkaido 041-0801, Japan
| | - Yasutoshi Yoshiura
- Yashima station, Stock Enhancement and Management Department, National Research Institute of Fisheries and Enhancement of Inland Sea, Japan Fisheries Research and Education Agency, 243 Yashima-higashi, Takamatsu, Kagawa 761-0111, Japan
| | - Hideaki Endo
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
42
|
A novel label-free microfluidic paper-based immunosensor for highly sensitive electrochemical detection of carcinoembryonic antigen. Biosens Bioelectron 2016; 83:319-26. [DOI: 10.1016/j.bios.2016.04.062] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/01/2016] [Accepted: 04/20/2016] [Indexed: 02/04/2023]
|
43
|
Rocchitta G, Spanu A, Babudieri S, Latte G, Madeddu G, Galleri G, Nuvoli S, Bagella P, Demartis MI, Fiore V, Manetti R, Serra PA. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids. SENSORS 2016; 16:s16060780. [PMID: 27249001 PMCID: PMC4934206 DOI: 10.3390/s16060780] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/06/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022]
Abstract
Enzyme-based chemical biosensors are based on biological recognition. In order to operate, the enzymes must be available to catalyze a specific biochemical reaction and be stable under the normal operating conditions of the biosensor. Design of biosensors is based on knowledge about the target analyte, as well as the complexity of the matrix in which the analyte has to be quantified. This article reviews the problems resulting from the interaction of enzyme-based amperometric biosensors with complex biological matrices containing the target analyte(s). One of the most challenging disadvantages of amperometric enzyme-based biosensor detection is signal reduction from fouling agents and interference from chemicals present in the sample matrix. This article, therefore, investigates the principles of functioning of enzymatic biosensors, their analytical performance over time and the strategies used to optimize their performance. Moreover, the composition of biological fluids as a function of their interaction with biosensing will be presented.
Collapse
Affiliation(s)
- Gaia Rocchitta
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Angela Spanu
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Sergio Babudieri
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Gavinella Latte
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Giordano Madeddu
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Grazia Galleri
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Susanna Nuvoli
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Paola Bagella
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Maria Ilaria Demartis
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Vito Fiore
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Roberto Manetti
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Pier Andrea Serra
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| |
Collapse
|
44
|
Yu S, Zou G, Wei Q. Ultrasensitive electrochemical immunosensor for quantitative detection of tumor specific growth factor by using Ag@CeO2 nanocomposite as labels. Talanta 2016; 156-157:11-17. [PMID: 27260429 DOI: 10.1016/j.talanta.2016.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/14/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
In this paper, an ultrasensitive electrochemical immunosensor was developed for the detection of tumor specific growth factor (TSGF). Reduced graphene oxide-tetraethylene pentamine (rGO-TEPA) was used to modify the surface of glassy carbon electrode (GCE). Meanwhile, Ag@CeO2 nanocomposite was synthesized and applied as secondary-antibody (Ab2) labels for the fabrication of the immunosensor. The amperometric response of the immunosensor for the reduction of H2O2 was recorded. Simultaneously, electrochemical impedance spectroscopy (EIS) and Cyclic voltammetry (CV) were used to characterize the fabrication process of the immunosensor. The anti-TSGF primary antibody (Ab1) was immobilized onto the rGO-TEPA modified GCE via cross-linking with glutaraldehyde (GA). And then the TSGF antigen and Ab2-Ag@CeO2 were modified onto the electrode surface in sequence. Under the optimal conditions, the immunosensor exhibited a wide linear range (0.500-100pg/mL), a low detection limit (0.2pg/mL), good reproducibility, acceptable selectivity and excellent stability. The proposed sensing strategy may provide a potential application in the detection of other cancer biomarkers.
Collapse
Affiliation(s)
- Siqi Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Qin Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China; Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
45
|
Efficient electrocatalytic reduction and detection of hydrogen peroxide at an IrIVOx·H2O nanostructured electrode prepared by electroflocculation. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.10.168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Zhai Q, Zhang X, Xia Y, Li J, Wang E. Electrochromic sensing platform based on steric hindrance effects for CEA detection. Analyst 2016; 141:3985-8. [DOI: 10.1039/c6an00675b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this work, an electrochromic sensing platform with prussian blue (PB) as the indicator was proposed for signaling carcinoembryonic antigen (CEA) using the bipolar electrode (BPE) system.
Collapse
Affiliation(s)
- Qingfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Xiaowei Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Yong Xia
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
47
|
Das P, Das M, Chinnadayyala SR, Singha IM, Goswami P. Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosens Bioelectron 2015; 79:386-97. [PMID: 26735873 DOI: 10.1016/j.bios.2015.12.055] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023]
Abstract
The electrochemical biosensor with enzyme as biorecognition element is traditionally pursued as an attractive research topic owing to their high commercial perspective in healthcare and environmental sectors. The research interest on the subject is sharply increased since the beginning of 21st century primarily, due to the concomitant increase in knowledge in the field of material science. The remarkable effects of many advance materials such as, conductive polymers and nanomaterials, were acknowledged in the developing efficient 3rd generation enzyme bioelectrodes which offer superior selectivity, sensitivity, reagent less detection, and label free fabrication of biosensors. The present review article compiles the major knowledge surfaced on the subject since its inception incorporating the key review and experimental papers published during the last decade which extensively cover the development on the redox enzyme based 3rd generation electrochemical biosensors. The tenet involved in the function of these direct electrochemistry based enzyme electrodes, their characterizations and various strategies reported so far for their development such as, nanofabrication, polymer based and reconstitution approaches are elucidated. In addition, the possible challenges and the future prospects in the development of efficient biosensors following this direct electrochemistry based principle are discussed. A comparative account on the design strategies and critical performance factors involved in the 3rd generation biosensors among some selected prominent works published on the subject during last decade have also been included in a tabular form for ready reference to the readers.
Collapse
Affiliation(s)
- Priyanki Das
- Centre For Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Madhuri Das
- Centre For Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Somasekhar R Chinnadayyala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Irom Manoj Singha
- Centre For Energy, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
48
|
Wang L, Feng F, Ma Z. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay. Sci Rep 2015; 5:16855. [PMID: 26577799 PMCID: PMC4649611 DOI: 10.1038/srep16855] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/21/2015] [Indexed: 01/08/2023] Open
Abstract
Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3',5,5'-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at -0.65 V, -0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Feng Feng
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
49
|
Wang C, Hou F, Ma Y. Simultaneous quantitative detection of multiple tumor markers with a rapid and sensitive multicolor quantum dots based immunochromatographic test strip. Biosens Bioelectron 2015; 68:156-162. [DOI: 10.1016/j.bios.2014.12.051] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/09/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022]
|
50
|
Chen C, Liu Y, Zheng Z, Zhou G, Ji X, Wang H, He Z. A new colorimetric platform for ultrasensitive detection of protein and cancer cells based on the assembly of nucleic acids and proteins. Anal Chim Acta 2015; 880:1-7. [DOI: 10.1016/j.aca.2015.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 11/26/2022]
|