1
|
Xu L, Fan X, He Y, Xia X, Zhang J. Design, Synthesis, and Biological Evaluation of Lysine-Stapled Peptide Inhibitors of p53-MDM2/MDMX Interactions with Potent Antitumor Activity In Vivo. J Med Chem 2024; 67:17893-17904. [PMID: 39300610 DOI: 10.1021/acs.jmedchem.4c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
We introduce novel lysine-stapled peptide inhibitors targeting p53-MDM2/MDMX interactions. Leveraging the model peptides pDI (LTFEHYWAQLTS) and PMI-M3 (LTFLEYWAQLMQ) as starting points, a series of lysine-stapled analogues were designed and synthesized. Through in vitro cell assay screening, two lead compounds, SPDI-48-T1 and SPMI-48-T3, were identified for their excellent antiproliferation activity. Fluorescence polarization assays revealed that both compounds exhibited strong binding affinities against MDM2 and MDMX, ascertained by Kd values within the low micromolar spectrum. Further characterization of SPDI-48-T1 and SPMI-48-T3 demonstrated that SPDI-48-T1 possessed superior cell permeability and serum stability. Notably, SPDI-48-T1 displayed a dose-dependent suppression of tumor growth in an HCT116 xenograft mouse model. Our findings indicate that SPDI-48-T1 holds promise as a lead compound for further development as an anticancer agent by modulating p53-MDM2/MDMX interactions. Additionally, this study also proved that the lysine stapling strategy may serve as a robust approach for generating peptide ligands targeting other protein-protein interactions.
Collapse
Affiliation(s)
- Lei Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xin Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yi He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xuefeng Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Jinqiang Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
- Chongqing University Industrial Technology Research Institute, Chongqing 401329, People's Republic of China
| |
Collapse
|
2
|
Zhang C, Cheng H, An Y, Li S, Wu J, Zheng D. Catalyst-Free Radical Carbosulfonylation of Enamides with Indoles, Aryldiazonium Tetrafluoroborates, and DABCO·(SO 2) 2. Org Lett 2024; 26:8307-8311. [PMID: 39311449 DOI: 10.1021/acs.orglett.4c03009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Herein, we have developed a catalyst-free four-component carbosulfonylation of enamides involving indoles, DABCO·(SO2)2, and aryldiazonium tetrafluoroborates for the preparation of various β-amidosulfone products in moderate to excellent yields. This approach features mild reaction conditions, high step-efficiency, and broad substrate scope, which provides a green and efficient strategy for carbosulfonyl difunctionalization of enamides. Based on the results of mechanism studies, a radical tandem reaction process is proposed for the transformation.
Collapse
Affiliation(s)
- Changmei Zhang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Hao Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuanyuan An
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Shaoyu Li
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Danqing Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Zou L, Zheng X, Yi X, Lu Q. Asymmetric paired oxidative and reductive catalysis enables enantioselective alkylarylation of olefins with C(sp 3)-H bonds. Nat Commun 2024; 15:7826. [PMID: 39244599 PMCID: PMC11380679 DOI: 10.1038/s41467-024-52248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Enantioselective transformations of hydrocarbons to three-dimensional chiral molecules remain a significant challenge in synthetic chemistry. This study uses asymmetric paired oxidative and reductive catalysis to promote the enantioselective alkylarylation of olefins through the functionalization of C(sp3)-H bonds in alkanes. This asymmetric photoelectrocatalytic approach enables the facile construction of a wide range of enantioenriched α-aryl carbonyls with excellent enantioselectivity (up to 96% ee) from readily accessible starting materials. Notably, aryl bromides, aryl iodides, and even aryl chlorides were compatible with the developed catalytic system. Mechanistic studies reveal that alkanes and electrophiles are simultaneously activated on the electrodes.
Collapse
Affiliation(s)
- Long Zou
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xinyue Zheng
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - XueZheng Yi
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
- Wuhan University Shenzhen Research Institute, Shenzhen, 518000, P. R. China.
| |
Collapse
|
4
|
Krajcovicova S. Ideas Behind the Tryptophan-Mediated Petasis Reaction (TMPR) Concept for Peptide Stapling. ChemMedChem 2024; 19:e202400148. [PMID: 38726738 DOI: 10.1002/cmdc.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/09/2024] [Indexed: 07/22/2024]
Abstract
This Concept short review offers an insightful analysis of pivotal research papers and explores the key synthetic ideas behind the intersection of two realms in peptide chemistry: using tryptophan and Petasis multicomponent reactions for macrocyclisation and labelling of peptides. The recently published tryptophan-mediated Petasis reaction (TMPR) concept represents a critical junction between these two worlds, highlighting how combining such methodologies leads to more effective and versatile synthetic strategies, setting a potentially new direction for future research in the field of peptide-drug conjugates.
Collapse
Affiliation(s)
- Sona Krajcovicova
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, United Kingdom
- Department of Organic Chemistry, Faculty of Science, Palacky University in Olomouc, Tr. 17. Listopadu 12, 77900, Olomouc, Czech Republic
| |
Collapse
|
5
|
Liu XY, Mykhailenko O, Faraone A, Waser J. Hypervalent Iodine Amino Acid Building Blocks for Bioorthogonal Peptide Macrocyclization. Angew Chem Int Ed Engl 2024; 63:e202404747. [PMID: 38807563 DOI: 10.1002/anie.202404747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Ethynylbenziodoxol(on)es (EB(X)xs) reagents have emerged as useful reagents for peptide/protein modification due to their versatile reactivity and high selectivity. Herein, we report the successful introduction of ethynylbenziodoxoles (EBxs) on different amino acid building blocks (Lys/Orn/Dap), and show their compatibility with both solid phase peptide synthesis (SPPS) and solution phase peptide synthesis (SPS). The selective incorporation of the EBx core into peptide sequences enable efficient macrocyclizations under mild conditions for the synthesis of topologically unique cyclic and bicyclic peptides.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Olha Mykhailenko
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Adriana Faraone
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis (LCSO), Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| |
Collapse
|
6
|
Ding Y, Pedersen SS, Wang Y, Xiao H, Ball ZT. Ex Situ Gaseous Reagent for Multicomponent Amine Bioconjugation. Org Lett 2024; 26:6608-6613. [PMID: 39072587 DOI: 10.1021/acs.orglett.4c02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We report a minimalist gaseous sulfonyl-chloride-derived reagent for multicomponent bioconjugation with amine, phenol, or aniline reagents to afford urea or carbamate products. With the utilization of a gas-phase reagent for a reaction mediated by metal ions, a variety of biologically relevant molecules, such as saccharide, poly(ethylene glycol), fluorophore, and affinity tag, can be efficiently cross-linked to the N terminus or lysine side-chain amines on natural polypeptides or proteins.
Collapse
Affiliation(s)
- Yuxuan Ding
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Simon S Pedersen
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Yixian Wang
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Han Xiao
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Ding Y, Pedersen SS, Wang H, Xiang B, Wang Y, Yang Z, Gao Y, Morosan E, Jones MR, Xiao H, Ball ZT. Selective Macrocyclization of Unprotected Peptides with an Ex Situ Gaseous Linchpin Reagent. Angew Chem Int Ed Engl 2024; 63:e202405344. [PMID: 38753429 DOI: 10.1002/anie.202405344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 07/16/2024]
Abstract
Peptide cyclization has dramatic effects on a variety of important properties, enhancing metabolic stability, limiting conformational flexibility, and altering cellular entry and intracellular localization. The hydrophilic, polyfunctional nature of peptides creates chemoselectivity challenges in macrocyclization, especially for natural sequences without biorthogonal handles. Herein, we describe a gaseous sulfonyl chloride derived reagent that achieves amine-amine, amine-phenol, and amine-aniline crosslinking through a minimalist linchpin strategy that affords macrocyclic urea or carbamate products. The cyclization reaction is metal-mediated and involves a novel application of sulfine species that remains unexplored in aqueous or biological contexts. The aqueous method delivers unique cyclic or bicyclic topologies directly from a variety of natural bioactive peptides without the need for protecting-group strategies.
Collapse
Affiliation(s)
- Yuxuan Ding
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Simon S Pedersen
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Haofan Wang
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Baorui Xiang
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Yixian Wang
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Zhi Yang
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Yuxiang Gao
- Department of Physics and Astronomy, Rice University, Houston, Texas, 77005, United States
| | - Emilia Morosan
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas, 77005, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Han Xiao
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, Texas, 77005, United States
| |
Collapse
|
8
|
Liu Y, Li G, Ma W, Bao G, Li Y, He Z, Xu Z, Wang R, Sun W. Late-stage peptide modification and macrocyclization enabled by tertiary amine catalyzed tryptophan allylation. Chem Sci 2024; 15:11099-11107. [PMID: 39027288 PMCID: PMC11253200 DOI: 10.1039/d4sc01244e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Late-stage modification of peptides could potentially endow peptides with significant bioactivity and physicochemical properties, and thereby provide novel opportunities for peptide pharmaceutical studies. Since tryptophan (Trp) bears a unique indole ring residue and plays various critical functional roles in peptides, the modification methods for tryptophan were preliminarily developed with considerable progress via transition-metal mediated C-H activation. Herein, we report an unprecedented tertiary amine catalyzed peptide allylation via the SN2'-SN2' pathway between the N1 position of the indole ring of Trp and Morita-Baylis-Hillman (MBH) carbonates. Using this method that proceeds under mild conditions, we demonstrated an extremely broad scope of Trp-containing peptides and MBH carbonates to prepare a series of peptide conjugates and cyclic peptides. The reaction is amenable to either solid-phase (on resin) or solution-phase conditions. In addition, the modified peptides can be further conjugated with other biomolecules at Trp, providing a new handle for bioconjugation.
Collapse
Affiliation(s)
- Yuyang Liu
- Research Unit of Peptide Science (2019RU066), Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University Shenzhen 518055 China
| | - Guofeng Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University Shenzhen 518055 China
| | - Wen Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Rui Wang
- Research Unit of Peptide Science (2019RU066), Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University Shenzhen 518055 China
| | - Wangsheng Sun
- Research Unit of Peptide Science (2019RU066), Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
9
|
Smith FR, Meehan D, Griffiths RC, Knowles HJ, Zhang P, Williams HEL, Wilson AJ, Mitchell NJ. Peptide macrocyclisation via intramolecular interception of visible-light-mediated desulfurisation. Chem Sci 2024; 15:9612-9619. [PMID: 38939126 PMCID: PMC11206203 DOI: 10.1039/d3sc05865d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/30/2024] [Indexed: 06/29/2024] Open
Abstract
Synthetic methods that enable the macrocyclisation of peptides facilitate the development of effective therapeutic and diagnostic tools. Herein we report a peptide cyclisation strategy based on intramolecular interception of visible-light-mediated cysteine desulfurisation. This method allows cyclisation of unprotected peptides in an aqueous solution via the installation of a hydrocarbon linkage. We explore the limits of this chemistry using a range of model peptides of increasing length and complexity, including peptides of biological/therapeutic relevance. The method is applied to replace the native disulfide of the peptide hormone, oxytocin, with a proteolytically/redox-stable hydrocarbon, and internal macrocyclisation of an MCL-1-binding peptide.
Collapse
Affiliation(s)
- Frances R Smith
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Declan Meehan
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Rhys C Griffiths
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Harriet J Knowles
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Peiyu Zhang
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Huw E L Williams
- Biodiscovery Institute, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Nicholas J Mitchell
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| |
Collapse
|
10
|
Taya T, Kami D, Teruyama F, Matoba S, Gojo S. Peptide-encoding gene transfer to modulate intracellular protein-protein interactions. Mol Ther Methods Clin Dev 2024; 32:101226. [PMID: 38516692 PMCID: PMC10952081 DOI: 10.1016/j.omtm.2024.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/24/2024] [Indexed: 03/23/2024]
Abstract
Peptide drug discovery has great potential, but the cell membrane is a major obstacle when the target is an intracellular protein-protein interaction (PPI). It is difficult to target PPIs with small molecules; indeed, there are no intervention tools that can target any intracellular PPI. In this study, we developed a platform that enables the introduction of peptides into cells via mRNA-based gene delivery. Peptide-length nucleic acids do not enable stable ribosome binding and exhibit little to no translation into protein. In this study, a construct was created in which the sequence encoding dihydrofolate reductase (DHFR) was placed in front of the sequence encoding the target peptide, together with a translation skipping sequence, as a sequence that meets the requirements of promoting ribosome binding and rapid decay of the translated protein. This enabled efficient translation from the mRNA encoding the target protein while preventing unnecessary protein residues. Using this construct, we showed that it can inhibit Drp1/Fis1 binding, one of the intracellular PPIs, which governs mitochondrial fission, an important aspect of mitochondrial dynamics. In addition, it was shown to inhibit pathological hyperfission, normalize mitochondrial dynamics and metabolism, and inhibit apoptosis of the mitochondrial pathway.
Collapse
Affiliation(s)
- Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumiya Teruyama
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Pharmacology Research Department, Tokyo New Drug Research Laboratories, Kowa Company, Ltd, Tokyo, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Yamada A, Takei T, Kawakami T, Taniguchi Y, Sekiguchi K, Hojo H. Application of cysteinyl prolyl ester for the synthesis of cyclic peptides containing an RGD sequence and their biological activity measurement. Front Chem 2024; 12:1391678. [PMID: 38873405 PMCID: PMC11169864 DOI: 10.3389/fchem.2024.1391678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Cysteinyl RGD-peptidyl cysteinyl prolyl esters, which have different configurations at the cysteine and proline residues, were synthesized by the solid-phase method and cyclized by the native chemical ligation reaction. Cyclization efficiently proceeded to give cyclic peptides, regardless of the difference in the configuration. The peptides were further derivatized to the corresponding desulfurized or methylated cyclic peptides at the Cys residues. The inhibition activity to αvβ6 integrin binding was then analyzed by ELISA. The results showed that the activity varied depending on the difference in the configuration and modification of the cysteinyl prolyl ester (CPC) moiety, demonstrating the usefulness of this method in the search for a good inhibitor of the protein-protein interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
12
|
Li Y, Wu M, Fu Y, Xue J, Yuan F, Qu T, Rissanou AN, Wang Y, Li X, Hu H. Therapeutic stapled peptides: Efficacy and molecular targets. Pharmacol Res 2024; 203:107137. [PMID: 38522761 DOI: 10.1016/j.phrs.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Peptide stapling, by employing a stable, preformed alpha-helical conformation, results in the production of peptides with improved membrane permeability and enhanced proteolytic stability, compared to the original peptides, and provides an effective solution to accelerate the rapid development of peptide drugs. Various reviews present peptide stapling chemistries, anchoring residues and one- or two-component cyclization, however, therapeutic stapled peptides have not been systematically summarized, especially focusing on various disease-related targets. This review highlights the latest advances in therapeutic peptide drug development facilitated by the application of stapling technology, including different stapling techniques, synthetic accessibility, applicability to biological targets, potential for solving biological problems, as well as the current status of development. Stapled peptides as therapeutic drug candidates have been classified and analysed mainly by receptor- and ligand-based stapled peptide design against various diseases, including cancer, infectious diseases, inflammation, and diabetes. This review is expected to provide a comprehensive reference for the rational design of stapled peptides for different diseases and targets to facilitate the development of therapeutic peptides with enhanced pharmacokinetic and biological properties.
Collapse
Affiliation(s)
- Yulei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Minghao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yinxue Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jingwen Xue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Yuan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tianci Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anastassia N Rissanou
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
13
|
Chen FJ, Lin W, Chen FE. Non-symmetric stapling of native peptides. Nat Rev Chem 2024; 8:304-318. [PMID: 38575678 DOI: 10.1038/s41570-024-00591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Stapling has emerged as a powerful technique in peptide chemistry. It enables precise control over peptide conformation leading to enhanced properties such as improved stability and enhanced binding affinity. Although symmetric stapling methods have been extensively explored, the field of non-symmetric stapling of native peptides has received less attention, largely as a result of the formidable challenges it poses - in particular the complexities involved in achieving the high chemo-selectivity and site-selectivity required to simultaneously modify distinct proteinogenic residues. Over the past 5 years, there have been significant breakthroughs in addressing these challenges. In this Review, we describe the latest strategies for non-symmetric stapling of native peptides, elucidating the protocols, reaction mechanisms and underlying design principles. We also discuss current challenges and opportunities this field offers for future applications, such as ligand discovery and peptide-based therapeutics.
Collapse
Affiliation(s)
- Fa-Jie Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
| | - Wanzhen Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Fen-Er Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
14
|
Guo P, Chu X, Wu C, Qiao T, Guan W, Zhou C, Wang T, Tian C, He G, Chen G. Peptide Stapling by Crosslinking Two Amines with α-Ketoaldehydes through Diverse Modified Glyoxal-Lysine Dimer Linkers. Angew Chem Int Ed Engl 2024; 63:e202318893. [PMID: 38376389 DOI: 10.1002/anie.202318893] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
α-Ketoaldehydes play versatile roles in the ubiquitous natural processes of protein glycation. However, leveraging the reactivity of α-ketoaldehydes for biomedical applications has been challenging. Previously, the reactivity of α-ketoaldehydes with guanidine has been harnessed to design probes for labeling Arg residues on proteins in an aqueous medium. Herein, a highly effective, broadly applicable, and operationally simple protocol for stapling native peptides by crosslinking two amino groups through diverse imidazolium linkers with various α-ketoaldehyde reagents is described. The use of hexafluoroisopropanol as a solvent facilitates rapid and clean reactions under mild conditions and enables unique selectivity for Lys over Arg. The naturally occurring GOLD/MOLD linkers have been expanded to encompass a wide range of modified glyoxal-lysine dimer (OLD) linkers. In a proof-of-concept trial, these modular stapling reactions enabled a convenient two-round strategy to streamline the structure-activity relationship (SAR) study of the wasp venom peptide anoplin, leading to enhanced biological activities.
Collapse
Affiliation(s)
- Pan Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin Chu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chengjin Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tianjiao Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenli Guan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Changlin Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
15
|
Cheung TL, Tam LKB, Tam WS, Zhang L, Kai HY, Thor W, Wu Y, Lam PL, Yeung YH, Xie C, Chau HF, Lo WS, Zhang T, Wong KL. Facile Peptide Macrocyclization and Multifunctionalization via Cyclen Installation. SMALL METHODS 2024:e2400006. [PMID: 38593368 DOI: 10.1002/smtd.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Cyclen-peptide bioconjugates are usually prepared in multiple steps that require individual preparation and purification of the cyclic peptide and hydrophilic cyclen derivatives. An efficient strategy is discovered for peptide cyclization and functionalization toward lanthanide probe via three components intermolecular crosslinking on solid-phase peptide synthesis with high conversion yield. Multifunctionality can be conferred by introducing different modular parts or/and metal ions on the cyclen-embedded cyclopeptide. As a proof-of-concept, a luminescent Eu3+ complex and a Gd3+-based contrasting agent for in vitro optical imaging and in vivo magnetic resonance imaging, respectively, are demonstrated through utilizing this preparation of cyclen-embedded cyclic arginylglycylaspartic acid (RGD) peptide.
Collapse
Affiliation(s)
- Tsz-Lam Cheung
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Leo K B Tam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wing-Sze Tam
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Leilei Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, and College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hei-Yui Kai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Waygen Thor
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yue Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Department of Surgery, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Pak-Lun Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yik-Hoi Yeung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chen Xie
- Department of Clinical Oncology, University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong, China
| | - Ho-Fai Chau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wai-Sum Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, and College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Ka-Leung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
16
|
Li J, Ni H, Zhang W, Lai Z, Jin H, Zeng L, Cui S. A multicomponent reaction for modular assembly of indole-fused heterocycles. Chem Sci 2024; 15:5211-5217. [PMID: 38577354 PMCID: PMC10988590 DOI: 10.1039/d4sc00522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
Indoles are privileged chemical entities in natural products and drug discovery. Indole-fused heterocycles, particularly seven-membered ones, have received increasing attention due to their distinctive chemical characteristics and wide spectrum of bioactivities. However, the synthetic access to these compounds is highly limited. Herein, we report a unique multicomponent reaction (MCR) for modular assembly of indole-fused seven-membered heterocycles. In this process, indole, formaldehyde and amino hydrochloride could assemble rapidly to yield indole-fused oxadiazepines, and another addition of sodium thiosulphate would furnish indole-fused thiadiazepines. The biological evaluation disclosed the promising anticancer activity of these compounds. Furthermore, this MCR could be applicable in the late-stage and selective modifications of peptides. Therefore, this work provides a powerful strategy for indole functionalization and valuable tool for construction of seven-membered heterocycles.
Collapse
Affiliation(s)
- Jiaming Li
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Hao Ni
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Weiwei Zhang
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Zhencheng Lai
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Huimin Jin
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Linwei Zeng
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
- Jinhua Institute of Zhejiang University Jinhua Zhejiang Province 321299 China
| |
Collapse
|
17
|
Zhang J, Dong S. In-Bridge Stereochemistry: A Determinant of Stapled Peptide Conformation and Activity. Chembiochem 2024; 25:e202300747. [PMID: 38191871 DOI: 10.1002/cbic.202300747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Peptide side chain stapling has been proven to be an effective strategy for fine-tuning peptide properties. This innovative approach leads to the creation of stapled peptides characterized by stabilized α-helical conformations, enhanced protein-binding affinity, improved cell permeability, superior enzymatic stability, and numerous other advantages. Extensive research has explored the impact of various stapling bridges on the properties of these peptides, with limited investigation into the influence of bridge chirality, until very recently. In this concise review, we provide a brief overview of the current state of knowledge regarding the stereochemistry within the bridges of stapled peptides, offering insights into the potential applications of chiral bridges in the design and development of stapled peptides.
Collapse
Affiliation(s)
- Jingyi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, and School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
18
|
Zhang L, Han H, Zhou J, Wang R, Lv Y, Zong S, Ning X, Ji W. Imprinted covalent organic frameworks solid-phase microextraction fiber for in vivo monitoring of acidic per- and polyfluoroalkyl substances in live aloe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170645. [PMID: 38320695 DOI: 10.1016/j.scitotenv.2024.170645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) can lead to risks associated with animal and human health through the transfer along food chains. It is confirmed that PFASs can be transported to each part of plants after taken up by the roots. To better elucidate the underlying mechanisms for such exposure, it is highly valuable to develop analytical capabilities for in vivo monitoring of PFASs in live plants. In this work, a novel imprinted covalent organic frameworks (CMIP) solid-phase microextraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry was developed with low limits of detection for six acidic PFASs (0.1-0.3 ng g-1) and used for in vivo monitoring in live aloe. The CMIP coating shows good precision (RSD of intra and inter ≤9.6 % and 10.2 %, respectively) and possesses much higher extraction efficiency than the commercial coatings. After cultivating aloe in soil spiked PFASs, the in vivo assays gave a wealth of information, including steady-state concentrations, translocation factors, elimination rate constants, and half-life of PFASs. The in vivo tracing method for live plants can provide much needed and unique information to evaluate the risk of PFASs, which are very important for the safety of agriculture production.
Collapse
Affiliation(s)
- Lidan Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Haoyue Han
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jing Zhou
- Shandong Lancheng Analysis and Testing Co., Ltd., Jinan 250100, China
| | - Rongyu Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yingchao Lv
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Shaojun Zong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiaobei Ning
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
19
|
Chou TC, Hu YL, Xie GC, Jiang JC, Peng LY, Tsai HC, Yao CT, Tsai YJ, Huang TY, Hu JW, Chen YC, Tsai MY, Chen YW, Pan PS. The use of multicomponent reactions in the development of bis-boronic acids for the detection of β-sialic acid. Org Biomol Chem 2024; 22:1639-1645. [PMID: 38180439 DOI: 10.1039/d3ob01877f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Sialic acid (SA) is a naturally occurring monosaccharide found in glycoproteins and glycolipids. Changes in the expression of SA are associated with several diseases; thus, the detection of SA is of great significance for biological research, cancer diagnosis, and treatment. Boronic acid analogs have emerged as a promising tool for detecting sugars such as SA due to its reversible covalent bonding ability. In this study, 11 bis-boronic acid compounds and 2 mono-boronic acid compounds were synthesized via a highly efficient Ugi-4CR strategy. The synthesized compounds were subjected to affinity fluorescence binding experiments to evaluate their binding capability to SA. Compound A1 was shown to have a promising binding constant of 2602 ± 100 M-1 at pH = 6.0. Density Functional Theory (DFT) calculations examining the binding modes between A1 and SA indicated that the position of the boronic acid functional group was strongly correlated with its interaction with SA's α-hydroxy acid unit. The DFT calculations were consistent with the observations from the fluorescence experiments, demonstrating that the number and relative positions of the boronic acid functional groups are critical factors in enhancing the binding affinity to SA. DFT calculations of both S and R configuration of A1 indicated that the effect of the S/R configuration of A1 on its binding with β-sialic acid was insignificant as the Ugi-4CR generated racemic products. A fluorine atom was incorporated into the R2 substituent of A1 as an electron-withdrawing group to produce A5, which possessed a significantly higher capability to bind to SA (Keq = 7015 ± 5 M-1 at pH = 6.0). Finally, A1 and A5 were shown to possess exceptional binding selectivity toward β-sialic acid under pH of 6.0 and 6.5 while preferring to bind with glucose, fructose, and galactose under pH of 7.0 and 7.5.
Collapse
Affiliation(s)
- Tzu-Ching Chou
- Department of Chemistry, Tamkang University, No. 151, Yingzhuan Rd., New Taipei City, Tamsui Dist., Taiwan.
| | - Ying-Li Hu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Guan-Cheng Xie
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Jyh-Chiang Jiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Liang-Ying Peng
- Department of Chemistry, Tamkang University, No. 151, Yingzhuan Rd., New Taipei City, Tamsui Dist., Taiwan.
| | - Hsiao-Chun Tsai
- Department of Chemistry, Tamkang University, No. 151, Yingzhuan Rd., New Taipei City, Tamsui Dist., Taiwan.
| | - Chiao-Tien Yao
- Department of Chemistry, Tamkang University, No. 151, Yingzhuan Rd., New Taipei City, Tamsui Dist., Taiwan.
| | - Yi-Jie Tsai
- Department of Chemistry, Tamkang University, No. 151, Yingzhuan Rd., New Taipei City, Tamsui Dist., Taiwan.
| | - Ting-Yu Huang
- Department of Chemistry, Tamkang University, No. 151, Yingzhuan Rd., New Taipei City, Tamsui Dist., Taiwan.
| | - Jing-Wen Hu
- Department of Chemistry, Tamkang University, No. 151, Yingzhuan Rd., New Taipei City, Tamsui Dist., Taiwan.
| | - Yi-Ching Chen
- Department of Chemistry, Tamkang University, No. 151, Yingzhuan Rd., New Taipei City, Tamsui Dist., Taiwan.
| | - Min-Yeh Tsai
- Department of Chemistry and Biochemistry, National Chung Cheng University, Minhsiung, Taiwan
| | - Yi-Wei Chen
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Shen Pan
- Department of Chemistry, Tamkang University, No. 151, Yingzhuan Rd., New Taipei City, Tamsui Dist., Taiwan.
| |
Collapse
|
20
|
Maust MC, Blakey SB. Photoredox-Driven Three-Component Coupling of Aryl Halides, Olefins, and O 2. ACS Catal 2024; 14:2582-2587. [PMID: 38384944 PMCID: PMC10877571 DOI: 10.1021/acscatal.3c05988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
Modern organic synthesis requires methodologies that bring together abundant feedstock chemicals in a mild and efficient manner. To aid in this effort, we have developed a multicomponent radical hydroxyarylation reaction that utilizes aryl halides, olefins, and O2 as the reaction components. Crucial to this advance was an oxidative, rather than a reductive, approach to aryl radical generation, which enables reaction tolerance to O2. This methodology displays a broad functional group tolerance with a variety of functionalized aryl halides and a broad array of olefins. Development of this methodology enables rapid access to biologically relevant hydroxyaryl products from simple, commercially available starting materials.
Collapse
Affiliation(s)
- Mark C. Maust
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Simon B. Blakey
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
21
|
Patil RD, Pratihar S. Ruthenium(II)-Catalyzed Hydrogenation and Tandem (De)Hydrogenation via Metal-Ligand Cooperation: Base- and Solvent-Assisted Switchable Selectivity. J Org Chem 2024; 89:1361-1378. [PMID: 36283058 DOI: 10.1021/acs.joc.2c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A versatile, selective, solvent (methanol vs ethanol)- and base (potassium vs lithium carbonate)-assisted switchable synthesis of saturated ketone and α-methyl saturated ketone from α,β-unsaturated ketone is developed. Mechanistic aspects, evaluated from spectroscopic studies, in situ monitoring of the reaction progress, control studies, and labeling studies, further indicate the involvement of a tandem dehydrogenation-condensation-hydrogenation sequence in the reaction, in which the interconvertible coordination mode (imino N → Ru and amido N-Ru) of coordinated imidazole with Ru(II)-para-cymene is crucial, without which the efficiency and selectivity of the catalyst are completely lost. The catalyst demonstrates good efficiency, selectivity, and functional group tolerance and displays a broad scope (69 examples) for monomethylation and hydrogenation of unsaturated chalcones, double methylation of ketones, and N-methylation of amines.
Collapse
Affiliation(s)
- Rahul Daga Patil
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Sanjay Pratihar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
22
|
Thakur DG, Rathod NB, Patel SD, Patel DM, Patel RN, Sonawane MA, Ghosh SC. Palladium-Catalyzed Chelation-Assisted Aldehyde C-H Bond Activation of Quinoline-8-carbaldehydes: Synthesis of Amides from Aldehydes with Anilines and Other Amines. J Org Chem 2024. [PMID: 38195393 DOI: 10.1021/acs.joc.3c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A palladium-catalyzed chelation-assisted direct aldehyde C-H bond amidation of quinoline-8-carbaldehydes with an amine was developed under mild reaction conditions. A wide range of amides were obtained in good to excellent yields from aldehyde with a variety of aniline derivatives and aliphatic amines. Our methodology was successfully applied to synthesize known DNA intercalating agents and can be easily scaled up to a gram scale.
Collapse
Affiliation(s)
- Dinesh Gopichand Thakur
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar , Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nileshkumar B Rathod
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar , Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sachinkumar D Patel
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar , Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dharmik M Patel
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar , Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raj N Patel
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar , Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh A Sonawane
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar , Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhash Chandra Ghosh
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar , Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Rizzo C, Pace A, Pibiri I, Buscemi S, Palumbo Piccionello A. From Conventional to Sustainable Catalytic Approaches for Heterocycles Synthesis. CHEMSUSCHEM 2023:e202301604. [PMID: 38140917 DOI: 10.1002/cssc.202301604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Synthesis of heterocyclic compounds is fundamental for all the research area in chemistry, from drug synthesis to material science. In this framework, catalysed synthetic methods are of great interest to effective reach such important building blocks. In this review, we will report on some selected examples from the last five years, of the major improvement in the field, focusing on the most important conventional catalytic systems, such as transition metals, organocatalysts, to more sustainable ones such as photocatalysts, iodine-catalysed reaction, electrochemical reactions and green innovative methods.
Collapse
Affiliation(s)
- Carla Rizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| |
Collapse
|
24
|
Yu Q, Bai L, Jiang X. Disulfide Click Reaction for Stapling of S-terminal Peptides. Angew Chem Int Ed Engl 2023; 62:e202314379. [PMID: 37950389 DOI: 10.1002/anie.202314379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
A disulfide click strategy is disclosed for stapling to enhance the metabolic stability and cellular permeability of therapeutic peptides. A 17-membered library of stapling reagents with adjustable lengths and angles was established for rapid double/triple click reactions, bridging S-terminal peptides from 3 to 18 amino acid residues to provide 18- to 48-membered macrocyclic peptides under biocompatible conditions. The constrained peptides exhibited enhanced anti-HCT-116 activity with a locked α-helical conformation (IC50 =6.81 μM vs. biological incompetence for acyclic linear peptides), which could be unstapled for rehabilitation of the native peptides under the assistance of tris(2-carboxyethyl)phosphine (TCEP). This protocol assembles linear peptides into cyclic peptides controllably to retain the diverse three-dimensional conformations, enabling their cellular uptake followed by release of the disulfides for peptide delivery.
Collapse
Affiliation(s)
- Qing Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Leiyang Bai
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
25
|
Liu XY, Cai W, Ronceray N, Radenovic A, Fierz B, Waser J. Synthesis of Fluorescent Cyclic Peptides via Gold(I)-Catalyzed Macrocyclization. J Am Chem Soc 2023; 145:26525-26531. [PMID: 38035635 PMCID: PMC10722513 DOI: 10.1021/jacs.3c09261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Rapid and efficient cyclization methods that form structurally novel peptidic macrocycles are of high importance for medicinal chemistry. Herein, we report the first gold(I)-catalyzed macrocyclization of peptide-EBXs (ethynylbenziodoxolones) via C2-Trp C-H activation. This reaction was carried out in the presence of protecting group free peptide sequences and is enabled by a simple commercial gold catalyst (AuCl·Me2S). The method displayed a rapid reaction rate (within 10 min), wide functional group tolerance (27 unprotected peptides were cyclized), and up to 86% isolated yield. The obtained highly conjugated cyclic peptide linker, formed through C-H alkynylation, can be directly applied to live-cell imaging as a fluorescent probe without further attachment of fluorophores.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Laboratory
of Catalysis and Organic Synthesis, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, 1015 Lausanne, Switzerland
| | - Wei Cai
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering, École Polytechnique
Fédérale de Lausanne, EPFL SB ISIC LCBM, 1015 Lausanne, Switzerland
| | - Nathan Ronceray
- Laboratory
of Nanoscale Biology, School of Engineering, Institute of Bioengineering, EPFL STI IBI LBEN, 1015 Lausanne, Switzerland
| | - Aleksandra Radenovic
- Laboratory
of Nanoscale Biology, School of Engineering, Institute of Bioengineering, EPFL STI IBI LBEN, 1015 Lausanne, Switzerland
| | - Beat Fierz
- Laboratory
of Biophysical Chemistry of Macromolecules, Institute of Chemical
Sciences and Engineering, École Polytechnique
Fédérale de Lausanne, EPFL SB ISIC LCBM, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory
of Catalysis and Organic Synthesis, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, 1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Delgado JAC, Tian YM, Marcon M, König B, Paixão MW. Side-Selective Solid-Phase Metallaphotoredox N(in)-Arylation of Peptides. J Am Chem Soc 2023; 145:26452-26462. [PMID: 37976043 DOI: 10.1021/jacs.3c10792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Postsynthetic diversification of peptides through selective modification of endogenous amino acid side chains has enabled significant advances in peptide drug discovery while expanding the biological and medical chemistry space. However, current tools have been focused on the modification of reactive polar and ionizable side chains, whereas the decoration of aromatic systems (e.g., the N(in) of the tryptophan) has been a long-standing challenge. Here, we introduce metallaphotocatalysis in solid-phase peptide synthesis for the on-resin orthogonal N-arylation of relevant tryptophan-containing peptides. The protocol allows the chemoselective introduction of a new C(sp2)-N bond at the N(in) of tryptophan in biologically active protected peptide sequences in the presence of native redox-sensitive side chains. The fusion of metallaphotocatalysis with solid-phase peptide synthesis opens new perspectives in diversifying native amino acid side chains.
Collapse
Affiliation(s)
- José A C Delgado
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos─UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Ya-Ming Tian
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Michela Marcon
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Márcio W Paixão
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos─UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
27
|
Blanc A, Todorovic M, Dude I, Merkens H, Bénard F, Perrin DM. Toward tryptathionine-stapled one-bead-one-compound (OBOC) libraries: solid phase synthesis of a bioactive octretoate analog. Org Biomol Chem 2023; 21:8112-8116. [PMID: 37772608 DOI: 10.1039/d3ob01378b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
New somatostatin analogs are highly desirable for diagnosing and treating neuroendocrine tumors (NETs). Here we describe the solid-phase synthesis of a new octreotate (TATE) analog where the disulfide bond is replaced with a tryptathionine (Ttn) staple as part of an effort to prototyping a one-bead-one-compound (OBOC) library of Ttn-stapled peptides. Library design provides the potential for on- and off-bead screening. To validate our method, we labelled Ttn-TATE with a fluorescent dye to demonstrate binding to soluble somatostatin receptor subtype-2 and staining of Ar42J rat prostate cancer cells. By exploring this staple in the context of a ligand of known affinity, this method paves the way for an OBOC library construction of bioactive octreotate analogs and, more broadly speaking, tryptathionine-staped peptide macrocycles.
Collapse
Affiliation(s)
- Antoine Blanc
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, V6T-1Z1, Canada.
| | - Mihajlo Todorovic
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, V6T-1Z1, Canada.
| | - Iulia Dude
- Molecular Oncology, British Columbia Cancer Agency Research Centre, 675 West10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Helen Merkens
- Molecular Oncology, British Columbia Cancer Agency Research Centre, 675 West10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - François Bénard
- Molecular Oncology, British Columbia Cancer Agency Research Centre, 675 West10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - David M Perrin
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, V6T-1Z1, Canada.
| |
Collapse
|
28
|
Manicardi A, Theppawong A, Van Troys M, Madder A. Proximity-Induced Ligation and One-Pot Macrocyclization of 1,4-Diketone-Tagged Peptides Derived from 2,5-Disubstituted Furans upon Release from the Solid Support. Org Lett 2023; 25:6618-6622. [PMID: 37656900 PMCID: PMC10510716 DOI: 10.1021/acs.orglett.3c02289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 09/03/2023]
Abstract
1,4-Dione-containing peptides are generated during the cleavage of 2,5-disubstituted furan-containing systems. The generated electrophilic systems then react with α-effect nucleophiles, following a Paal-Knorr-like mechanism, for the generation of macrocyclic peptides, occurring after simple resuspension of the crude peptide in water. Conveniently, the in situ generation of the electrophile from a stable furan ring avoids the complications associated with the synthesis of carbonyl-containing peptides. Detailed investigation of the reaction characteristics was first performed on supramolecular coiled-coil systems.
Collapse
Affiliation(s)
- Alex Manicardi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Atiruj Theppawong
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Marleen Van Troys
- Department
of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Annemieke Madder
- Organic
and Biomimetic Chemistry Research Group, Department of Organic and
Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| |
Collapse
|
29
|
Zhao H, Zhao Y. Engaging Isatins and Amino Acids in Multicomponent One-Pot 1,3-Dipolar Cycloaddition Reactions-Easy Access to Structural Diversity. Molecules 2023; 28:6488. [PMID: 37764264 PMCID: PMC10536439 DOI: 10.3390/molecules28186488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Multicomponent reactions (MCRs) have undoubtedly emerged as the most indispensable tool for organic chemists worldwide, finding extensive utility in the synthesis of intricate natural products, heterocyclic molecules with significant bioactivity, and pharmaceutical agents. The multicomponent one-pot 1,3-dipolar cycloaddition reactions, which were initially conceptualized by Rolf Huisgen in 1960, find extensive application in contemporary heterocyclic chemistry. In terms of green synthesis, the multicomponent 1,3-dipolar cycloaddition is highly favored owing to its numerous advantages, including high step- and atom-economies, remarkable product diversity, as well as excellent efficiency and diastereoselectivity. Among the numerous pieces of research, the most fascinating reaction involves the utilization of azomethine ylides generated from isatins and amino acids that can be captured by various dipolarophiles. This approach offers a highly efficient and convenient method for constructing spiro-pyrrolidine oxindole scaffolds, which are crucial building blocks in biologically active molecules. Consequently, this review delves deeper into the dipolarophiles utilized in the 1,3-dipolar cycloaddition of isatins and amino acids over the past six years.
Collapse
Affiliation(s)
- Hua Zhao
- Institute of Drug Discovery Technology, Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | | |
Collapse
|
30
|
Cong W, Shen H, Liao X, Zheng M, Kong X, Wang Z, Chen S, Li Y, Hu H, Li X. Discovery of an orally effective double-stapled peptide for reducing ovariectomy-induced bone loss in mice. Acta Pharm Sin B 2023; 13:3770-3781. [PMID: 37719364 PMCID: PMC10502273 DOI: 10.1016/j.apsb.2023.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/16/2023] [Accepted: 05/05/2023] [Indexed: 09/19/2023] Open
Abstract
Stapled peptides with significantly enhanced pharmacological profiles have emerged as promising therapeutic molecules due to their remarkable resistance to proteolysis and performance to penetrate cells. The all-hydrocarbon peptide stapling technique has already widely adopted with great success, yielding numerous potent peptide-based molecules. Based on our prior efforts, we conceived and prepared a double-stapled peptide in this study, termed FRNC-1, which effectively attenuated the bone resorption capacity of mature osteoclasts in vitro through specific inhibition of phosphorylated GSK-3β. The double-stapled peptide FRNC-1 displayed notably improved helical contents and resistance to proteolysis than its linear form. Additionally, FRNC-1 effectively prevented osteoclast activation and improved bone density for ovariectomized (OVX) mice after intravenous injection and importantly, after oral (intragastric) administration. The double-stapled peptide FRNC-1 is the first orally effective peptide that has been validated to date as a therapeutic candidate for postmenopausal osteoporosis (PMOP).
Collapse
Affiliation(s)
- Wei Cong
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Huaxing Shen
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xiufei Liao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Tarim University, Xinjiang Uygur Autonomous Region, Alar City 843300, China
| | - Mengjun Zheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xianglong Kong
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Zhe Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Si Chen
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yulei Li
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, China
| | - Honggang Hu
- School of Medicine Or Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
31
|
Papadopoulos J, Reiss GJ, Mayer B, Müller TJJ. Cyclohexene-Embedded Dicyanomethylene Merocyanines - Consecutive Three-Component Coupling-Addition Synthesis and Chromophore Characteristics. ChemistryOpen 2023; 12:e202300128. [PMID: 37715367 PMCID: PMC10504436 DOI: 10.1002/open.202300128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Indexed: 09/17/2023] Open
Abstract
A concise and efficient consecutive three-component alkynylation-addition synthesis of cyclohexene-embedded dicyanomethylene merocyanines furnishes a small library of dyes in moderate to excellent yield. The dyes possess strong absorption coefficients of the longest wavelength absorption bands. According to the crystal structure, the small bond length alternations account for a highly delocalized electronic ground state. The electronic structure of the absorption bands is qualitatively rationalized by TDDFT calculations, which explain that intense HOMO-LUMO transitions along the merocyanine axis lead to cyanine similar Stokes shifts.
Collapse
Affiliation(s)
- Julian Papadopoulos
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Guido J. Reiss
- Institut für Anorganische Chemie und StrukturchemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Bernhard Mayer
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| |
Collapse
|
32
|
Fragkiadakis M, Anastasiou PK, Zingiridis M, Triantafyllou-Rundell ME, Reyes Romero A, Stoumpos CC, Neochoritis CG. Instant Macrocyclizations via Multicomponent Reactions. J Org Chem 2023; 88:12709-12715. [PMID: 37596972 DOI: 10.1021/acs.joc.3c01379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Macrocycles fascinate chemists due to both their structure and their applications. However, we still lack efficient and sustainable synthetic methods, giving us straightforward access to them. Herein, a rapid macrocyclization utilizing a two-step, one-pot approach based on orthogonal multicomponent reaction (MCR) tactics is introduced. This synthetic protocol, which is based on Ugi and Groebke-Blackburn-Bienaymé reactions with isocyanides tethered to alkyl tosylates, yields medium sized macrocycles that are otherwise difficult to achieve. Single crystal structures reveal conformational reorganization via intramolecular hydrogen bonding, and modeling studies profile the synthesized libraries.
Collapse
Affiliation(s)
| | | | - Marios Zingiridis
- Department of Chemistry, University of Crete, Voutes, 70013 Heraklion, Greece
| | | | - Atilio Reyes Romero
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, P.O. Box 24144, New York, New York 10065, United States
| | - Constantinos C Stoumpos
- Department of Materials Science & Technology, University of Crete, Voutes, 70013 Heraklion, Greece
| | | |
Collapse
|
33
|
Krajcovicova S, Spring DR. Tryptophan in Multicomponent Petasis Reactions for Peptide Stapling and Late-Stage Functionalisation. Angew Chem Int Ed Engl 2023; 62:e202307782. [PMID: 37389988 DOI: 10.1002/anie.202307782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/02/2023]
Abstract
Peptide stapling is a robust strategy for generating enzymatically stable, macrocyclic peptides. The incorporation of biologically relevant tags (such as cell-penetrating motifs or fluorescent dyes) into peptides, while preserving their binding interactions and enhancing their stability, is highly sought after. Despite the unique opportunities offered by tryptophan's indole scaffold for targeted functionalisation, its utilisation in peptide stapling has been limited as compared to other amino acids. Herein, we present an approach for peptide stapling using the tryptophan-mediated Petasis reaction. This method enables the synthesis of both stapled and labelled peptides and is applicable to both solution and solid-phase synthesis. Importantly, the use of the Petasis reaction in combination with tryptophan facilitates the formation of stapled peptides in a straightforward, multicomponent fashion, while circumventing the formation of undesired by-products. Furthermore, this approach allows for efficient and diverse late-stage peptide modifications, thereby enabling rapid production of numerous conjugates for biological and medicinal applications.
Collapse
Affiliation(s)
- Sona Krajcovicova
- Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
- Department of Organic Chemistry, Palacky University Olomouc, Tr. 17. Listopadu 12, 77900, Olomouc, Czech Republic
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield road, CB2 1EW, Cambridge, UK
| |
Collapse
|
34
|
Garnes-Portolés F, Merino E, Leyva-Pérez A. Mizoroki-Heck Macrocyclization Reactions at 1 M Concentration Catalyzed by Sub-nanometric Palladium Clusters. CHEMSUSCHEM 2023; 16:e202300200. [PMID: 37115962 DOI: 10.1002/cssc.202300200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 06/19/2023]
Abstract
The synthesis of cyclized organic compounds with more than ten atoms (macrocycles) is traditionally based on reversible reactions under highly diluted conditions, typically <0.05 M, in order to circumvent the formation of intermolecular products. These reaction conditions severely hamper industrial productivity and the use of solid catalysts. Herein, it is shown that the intramolecular Mizoroki-Heck reaction of ω-iodide cinnamates proceeds at 1 M concentration when catalyzed by few-atom Pd clusters, either in solution or supported on a solid, to give different macrocycles in good yields. This paradigmatic increase in reaction concentration not only opens the door for macrocycle production with high throughputs but also enables the use of solid catalysts for a macrocyclization reaction in flow.
Collapse
Affiliation(s)
- Francisco Garnes-Portolés
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022, Valencia, Spain
| | - Estíbaliz Merino
- Universidad de Alcalá, Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Facultad de Farmacia, Alcalá de Henares, 28805, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. de Colmenar Viejo, Km. 9.100, 28034, Madrid, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022, Valencia, Spain
| |
Collapse
|
35
|
Liu XY, Ji X, Heinis C, Waser J. Peptide-Hypervalent Iodine Reagent Chimeras: Enabling Peptide Functionalization and Macrocyclization. Angew Chem Int Ed Engl 2023; 62:e202306036. [PMID: 37311172 DOI: 10.1002/anie.202306036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Herein, we report a novel strategy for the modification of peptides based on the introduction of highly reactive hypervalent iodine reagents-ethynylbenziodoxolones (EBXs)-onto peptides. These peptide-EBXs can be readily accessed, by both solution- and solid-phase peptide synthesis (SPPS). They can be used to couple the peptide to other peptides or a protein through reaction with Cys, leading to thioalkynes in organic solvents and hypervalent iodine adducts in water buffer. Furthermore, a photocatalytic decarboxylative coupling to the C-terminus of peptides was developed using an organic dye and was also successful in an intramolecular fashion, leading to macrocyclic peptides with unprecedented crosslinking. A rigid linear aryl alkyne linker was essential to achieve high affinity for Keap1 at the Nrf2 binding site with potential protein-protein interaction inhibition.
Collapse
Affiliation(s)
- Xing-Yu Liu
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Xinjian Ji
- Laboratory of Therapeutic Proteins and Peptides, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Christian Heinis
- Laboratory of Therapeutic Proteins and Peptides, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015, Lausanne, Switzerland
| |
Collapse
|
36
|
Li J, Lai Z, Zhang W, Zeng L, Cui S. Modular assembly of indole alkaloids enabled by multicomponent reaction. Nat Commun 2023; 14:4806. [PMID: 37558669 PMCID: PMC10412628 DOI: 10.1038/s41467-023-40598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
Indole alkaloids are one of the largest alkaloid classes, proving valuable structural moiety in pharmaceuticals. Although methods for the synthesis of indole alkaloids are constantly explored, the direct single-step synthesis of these chemical entities with broad structural diversity remains a formidable challenge. Herein, we report a modular assembly of tetrahydrocarboline type of indole alkaloids from simple building blocks in a single step while showing broad compatibility with medicinally relevant functionality. In this protocol, the 2-alkylated or 3-alkylated indoles, formaldehyde, and amine hydrochlorides could undergo a one-pot reaction to deliver γ-tetrahydrocarbolines or β-tetrahydrocarbolines directly. A wide scope of these readily available starting materials is applicable in this process, and numerous structural divergent tetrahydrocarbolines could be achieved rapidly. The control reaction and deuterium-labelling reaction are conducted to probe the mechanism. And mechanistically, this multicomponent reaction relies on a multiple alkylamination cascade wherein an unusual C(sp3)-C(sp3) connection was involved in this process. This method could render rapid access to pharmaceutically interesting compounds, greatly enlarge the indole alkaloid library and accelerate the lead compound optimization thus facilitating drug discovery.
Collapse
Affiliation(s)
- Jiaming Li
- Institute of Drug Discovery and Design, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhencheng Lai
- Institute of Drug Discovery and Design, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weiwei Zhang
- Institute of Drug Discovery and Design, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linwei Zeng
- Institute of Drug Discovery and Design, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
37
|
Chen FJ, Pinnette N, Yang F, Gao J. A Cysteine-Directed Proximity-Driven Crosslinking Method for Native Peptide Bicyclization. Angew Chem Int Ed Engl 2023; 62:e202306813. [PMID: 37285100 PMCID: PMC10527288 DOI: 10.1002/anie.202306813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
Efficient and site-specific modification of native peptides and proteins is desirable for synthesizing antibody-drug conjugates as well as for constructing chemically modified peptide libraries using genetically encoded platforms such as phage display. In particular, there is much interest in efficient multicyclization of native peptides due to the appeals of multicyclic peptides as therapeutics. However, conventional approaches for multicyclic peptide synthesis require orthogonal protecting groups or non-proteinogenic clickable handles. Herein, we report a cysteine-directed proximity-driven strategy for the constructing bicyclic peptides from simple natural peptide precursors. This linear to bicycle transformation initiates with rapid cysteine labeling, which then triggers proximity-driven amine-selective cyclization. This bicyclization proceeds rapidly under physiologic conditions, yielding bicyclic peptides with a Cys-Lys-Cys, Lys-Cys-Lys or N-terminus-Cys-Cys stapling pattern. We demonstrate the utility and power of this strategy by constructing bicyclic peptides fused to proteins as well as to the M13 phage, paving the way to phage display of novel bicyclic peptide libraries.
Collapse
Affiliation(s)
- Fa-Jie Chen
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Nicole Pinnette
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Fan Yang
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Jianmin Gao
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
38
|
Bhujbal SP, Hah JM. An Intriguing Purview on the Design of Macrocyclic Inhibitors for Unexplored Protein Kinases through Their Binding Site Comparison. Pharmaceuticals (Basel) 2023; 16:1009. [PMID: 37513921 PMCID: PMC10386424 DOI: 10.3390/ph16071009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Kinases play an important role in regulating various intracellular signaling pathways that control cell proliferation, differentiation, survival, and other cellular processes, and their deregulation causes more than 400 diseases. Consequently, macrocyclization can be considered a noteworthy approach to developing new therapeutic agents for human diseases. Macrocyclization has emerged as an effective drug discovery strategy over the past decade to improve target selectivity and potency of small molecules. Small compounds with linear structures upon macrocyclization can lead to changes in their physicochemical and biological properties by firmly reducing conformational flexibility. A number of distinct protein kinases exhibit similar binding sites. Comparison of protein binding sites provides crucial insights for drug discovery and development. Binding site similarities are helpful in understanding polypharmacology, identifying potential off-targets, and repurposing known drugs. In this review, we focused on comparing the binding sites of those kinases for which macrocyclic inhibitors are available/studied so far. Furthermore, we calculated the volume of the binding site pocket for each targeted kinase and then compared it with the binding site pocket of the kinase for which only acyclic inhibitors were designed to date. Our review and analysis of several explored kinases might be useful in targeting new protein kinases for macrocyclic drug discovery.
Collapse
Affiliation(s)
- Swapnil P Bhujbal
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Jung-Mi Hah
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| |
Collapse
|
39
|
Zhou Y, Harvey PJ, Koehbach J, Chan LY, Jones A, Andersson Å, Vetter I, Durek T, Craik DJ. A Chemoenzymatic Approach To Produce a Cyclic Analogue of the Analgesic Drug MVIIA (Ziconotide). Angew Chem Int Ed Engl 2023; 62:e202302812. [PMID: 37148162 PMCID: PMC10952433 DOI: 10.1002/anie.202302812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/07/2023]
Abstract
Ziconotide (ω-conotoxin MVIIA) is an approved analgesic for the treatment of chronic pain. However, the need for intrathecal administration and adverse effects have limited its widespread application. Backbone cyclization is one way to improve the pharmaceutical properties of conopeptides, but so far chemical synthesis alone has been unable to produce correctly folded and backbone cyclic analogues of MVIIA. In this study, an asparaginyl endopeptidase (AEP)-mediated cyclization was used to generate backbone cyclic analogues of MVIIA for the first time. Cyclization using six- to nine-residue linkers did not perturb the overall structure of MVIIA, and the cyclic analogues of MVIIA showed inhibition of voltage-gated calcium channels (CaV 2.2) and substantially improved stability in human serum and stimulated intestinal fluid. Our study reveals that AEP transpeptidases are capable of cyclizing structurally complex peptides that chemical synthesis cannot achieve and paves the way for further improving the therapeutic value of conotoxins.
Collapse
Affiliation(s)
- Yan Zhou
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Peta J. Harvey
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Johannes Koehbach
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Lai Yue Chan
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Alun Jones
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Åsa Andersson
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Irina Vetter
- School of PharmacyInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - Thomas Durek
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| | - David J. Craik
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceInstitute for Molecular BioscienceThe University of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
40
|
Reja RM, Chau B, Gao J. Diazaborine-Mediated Bicyclization of Native Peptides with Inducible Reversibility. Org Lett 2023; 25:4489-4492. [PMID: 37306633 PMCID: PMC10330595 DOI: 10.1021/acs.orglett.3c01496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multicyclic peptides are appealing candidates for peptide-based drug discovery. While various methods are developed for peptide cyclization, few allow multicyclization of native peptides. Herein we report a novel cross-linker DCA-RMR1, which elicits facile bicyclization of native peptides via N-terminus Cys-Cys cross-linking. The bicyclization is fast, affords quantitative conversion, and tolerates various side chain functionalities. Importantly, the resulting diazaborine linkage, while stable at a neutral pH, can readily reverse upon mild acidification to give pH-responsive peptides.
Collapse
Affiliation(s)
- Rahi M. Reja
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467; United Sates
| | - Brittney Chau
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467; United Sates
| | - Jianmin Gao
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467; United Sates
| |
Collapse
|
41
|
Walther R, Westermann LM, Carmali S, Jackson SE, Brötz-Oesterhelt H, Spring DR. Identification of macrocyclic peptides which activate bacterial cylindrical proteases. RSC Med Chem 2023; 14:1186-1191. [PMID: 37360394 PMCID: PMC10285738 DOI: 10.1039/d3md00136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
The caseinolytic protease complex ClpXP is an important house-keeping enzyme in prokaryotes charged with the removal and degradation of misfolded and aggregated proteins and performing regulatory proteolysis. Dysregulation of its function, particularly by inhibition or allosteric activation of the proteolytic core ClpP, has proven to be a promising strategy to reduce virulence and eradicate persistent bacterial infections. Here, we report a rational drug-design approach to identify macrocyclic peptides which increase proteolysis by ClpP. This work expands the understanding of ClpP dynamics and sheds light on the conformational control exerted by its binding partner, the chaperone ClpX, by means of a chemical approach. The identified macrocyclic peptide ligands may, in the future, serve as a starting point for the development of ClpP activators for antibacterial applications.
Collapse
Affiliation(s)
- Raoul Walther
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Linda M Westermann
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Bioactive Compounds, University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Sheiliza Carmali
- School of Pharmacy, Queen's University Belfast BT9 7BL Belfast UK
| | - Sophie E Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Dept. of Bioactive Compounds, University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
- Cluster of Excellence Controlling Microbes to Fight Infections Germany
| | - David R Spring
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road CB2 1EW Cambridge UK
| |
Collapse
|
42
|
Keyes ED, Mifflin MC, Austin MJ, Alvey BJ, Lovely LH, Smith A, Rose TE, Buck-Koehntop BA, Motwani J, Roberts AG. Chemoselective, Oxidation-Induced Macrocyclization of Tyrosine-Containing Peptides. J Am Chem Soc 2023; 145:10071-10081. [PMID: 37119237 DOI: 10.1021/jacs.3c00210] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Inspired by nature's wide range of oxidation-induced modifications to install cross-links and cycles at tyrosine (Tyr) and other phenol-containing residue side chains, we report a Tyr-selective strategy for the preparation of Tyr-linked cyclic peptides. This approach leverages N4-substituted 1,2,4-triazoline-3,5-diones (TADs) as azo electrophiles that react chemoselectively with the phenolic side chain of Tyr residues to form stable C-N1-linked cyclic peptides. In the developed method, a precursor 1,2,4-triazolidine-3,5-dione moiety, also known as urazole, is readily constructed at any free amine revealed on a solid-supported peptide. Once prepared, the N4-substituted urazole peptide is selectively oxidized using mild, peptide-compatible conditions to generate an electrophilic N4-substituted TAD peptide intermediate that reacts selectively under aqueous conditions with internal and terminal Tyr residues to furnish Tyr-linked cyclic peptides. The approach demonstrates good tolerance of native residue side chains and enables access to cyclic peptides ranging from 3- to 11-residues in size (16- to 38-atom-containing cycles). The identity of the installed Tyr-linkage, a stable covalent C-N1 bond, was characterized using NMR spectroscopy. Finally, we applied the developed method to prepare biologically active Tyr-linked cyclic peptides bearing the integrin-binding RGDf epitope.
Collapse
Affiliation(s)
- E Dalles Keyes
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Marcus C Mifflin
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Maxwell J Austin
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Brighton J Alvey
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Lotfa H Lovely
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Andriea Smith
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tristin E Rose
- 1200 Pharma LLC, 6100 Bristol Parkway, Culver City, California 90230, United States
| | - Bethany A Buck-Koehntop
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jyoti Motwani
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Andrew G Roberts
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
43
|
Song L, Lv Z, Li Y, Zhang K, Van der Eycken EV, Cai L. Construction of Peptide-Isoquinolone Conjugates via Rh(III)-Catalyzed C-H Activation/Annulation. Org Lett 2023; 25:2996-3000. [PMID: 37129283 DOI: 10.1021/acs.orglett.3c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Herein, we disclose a Rh(III)-catalyzed C-H activation/annulation reaction for the derivatization of Lys-based peptides, in situ affording diverse peptide-isoquinolone conjugates. This approach features racemization-free conditions, high atom- and step-economy, excellent chemo- and site-selectivity, and broad scope including substrates bearing unprotected Trp and Tyr, free Ser and Gln, and Met residues. The peptide-isoquinolone conjugates also display good fluorescent properties with maximum emission wavelengths up to 460 nm. Importantly, preliminary antifungal activity studies indicate that peptide-isoquinolone conjugates show potential activities toward crop and forest pathogenic fungi, in which the peptide-isoquinolone conjugate bearing unprotected Tyr residue exhibits much better antifungal activities toward B. cinerea Pers. and C. chrysosperma than the positive control.
Collapse
Affiliation(s)
- Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhenwei Lv
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yan Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kui Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya street, Moscow, 117198, Russia
| | - Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
44
|
Buskes M, Coffin A, Troast DM, Stein R, Blanco MJ. Accelerating Drug Discovery: Synthesis of Complex Chemotypes via Multicomponent Reactions. ACS Med Chem Lett 2023; 14:376-385. [PMID: 37077380 PMCID: PMC10107905 DOI: 10.1021/acsmedchemlett.3c00012] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 04/21/2023] Open
Abstract
The generation of multiple bonds in one reaction step has attracted massive interest in drug discovery and development. Multicomponent reactions (MCRs) offer the advantage of combining three or more reagents in a one-pot fashion to effectively yield a synthetic product. This approach significantly accelerates the synthesis of relevant compounds for biological testing. However, there is a perception that this methodology will only produce simple chemical scaffolds with limited use in medicinal chemistry. In this Microperspective, we want to highlight the value of MCRs toward the synthesis of complex molecules characterized by the presence of quaternary and chiral centers. This paper will cover specific examples showing the impact of this technology toward the discovery of clinical compounds and recent breakthroughs to expand the scope of the reactions toward topologically rich molecular chemotypes.
Collapse
Affiliation(s)
- Melissa
J. Buskes
- Atavistik Bio 75 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Aaron Coffin
- Atavistik Bio 75 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Dawn M. Troast
- Atavistik Bio 75 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Rachel Stein
- Atavistik Bio 75 Sidney Street, Cambridge, Massachusetts 02139, United States
| | - Maria-Jesus Blanco
- Atavistik Bio 75 Sidney Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
45
|
Zhang Y, Yin R, Jiang H, Wang C, Wang X, Wang D, Zhang K, Yu R, Li X, Jiang T. Peptide Stapling through Site-Directed Conjugation of Triazine Moieties to the Tyrosine Residues of a Peptide. Org Lett 2023; 25:2248-2252. [PMID: 36966420 DOI: 10.1021/acs.orglett.3c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Peptide stapling is a strategy for improving the biological properties of peptides. Herein, we report a novel method for stapling peptides that utilizes bifunctional triazine moieties for two-component conjugation to the phenolic hydroxyl groups of tyrosine, which enables efficient stapling of unprotected peptides. In addition, we applied this strategy to the RGD peptide that can target integrins and demonstrated that the stapled RGD peptide had significantly improved plasma stability and integrin-targeting ability.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute of Qiangdao, Qingdao 266237, China
| | - Hao Jiang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chaoming Wang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiao Wang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Dongping Wang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Kai Zhang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
46
|
Li Y, Zhang W, Yang S, Wang X, Liu Y, Ji D, Chen Q. Nickel‐Catalyzed Unsymmetrical Bis‐Allylation of Alkynes. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ying Li
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei‐Song Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Sa‐Na Yang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiao‐Yu Wang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
47
|
Zhao S, He Y, Gao F, Wei Y, Zhang J, Chen M, Gao Y, Zhang Y, Liu JY, Guo Z, Li Z, Nie S. Rapid access to C2-quaternary 3-methyleneindolines via base-mediated post-Ugi Conia-ene cyclization. Chem Commun (Camb) 2023; 59:3099-3102. [PMID: 36804590 DOI: 10.1039/d2cc06281j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Highly efficient synthesis of diverse 2,2-disubstituted 3-methyleneindoline derivatives through a one-pot base-promoted post-Ugi 5-exo-dig "Conia-ene"-type cyclization has been disclosed. The mechanism study indicates that an intramolecular hydrogen bond may play a vital role in this process. The antiproliferative evaluation of cancer cell lines reveals that this protocol provides practical use in the green synthesis of bioactive compound libraries.
Collapse
Affiliation(s)
- Shuang Zhao
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yi He
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Feiyu Gao
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yue Wei
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Jiawei Zhang
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Mengxiao Chen
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yunyun Gao
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Yuan Zhang
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Jun-Yan Liu
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Zufeng Guo
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Zhenghua Li
- School of Science, Westlake University, Zhejiang 310030, China.
| | - Shenyou Nie
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
48
|
Gattu R, Ramesh SS, Nadigar S, D CG, Ramesh S. Conjugation as a Tool in Therapeutics: Role of Amino Acids/Peptides-Bioactive (Including Heterocycles) Hybrid Molecules in Treating Infectious Diseases. Antibiotics (Basel) 2023; 12:532. [PMID: 36978399 PMCID: PMC10044335 DOI: 10.3390/antibiotics12030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Peptide-based drugs are gaining significant momentum in the modern drug discovery, which is witnessed by the approval of new drugs by the FDA in recent years. On the other hand, small molecules-based drugs are an integral part of drug development since the past several decades. Peptide-containing drugs are placed between small molecules and the biologics. Both the peptides as well as the small molecules (mainly heterocycles) pose several drawbacks as therapeutics despite their success in curing many diseases. This gap may be bridged by utilising the so called 'conjugation chemistry', in which both the partners are linked to one another through a stable chemical bond, and the resulting conjugates are found to possess attracting benefits, thus eliminating the stigma associated with the individual partners. Over the past decades, the field of molecular hybridisation has emerged to afford us new and efficient molecular architectures that have shown high promise in medicinal chemistry. Taking advantage of this and also considering our experience in this field, we present herein a review concerning the molecules obtained by the conjugation of peptides (amino acids) to small molecules (heterocycles as well as bioactive compounds). More than 125 examples of the conjugates citing nearly 100 references published during the period 2000 to 2022 having therapeutic applications in curing infectious diseases have been covered.
Collapse
Affiliation(s)
- Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Sanjay S. Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Siddaram Nadigar
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| | - Channe Gowda D
- Department of Studies in Chemistry, Manasagangotri, University of Mysore, Mysuru 570005, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysuru 570025, Karnataka, India
| |
Collapse
|
49
|
Ding D, Xu S, da Silva-Júnior EF, Liu X, Zhan P. Medicinal chemistry insights into antiviral peptidomimetics. Drug Discov Today 2023; 28:103468. [PMID: 36528280 DOI: 10.1016/j.drudis.2022.103468] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
The (re)emergence of multidrug-resistant viruses and the emergence of new viruses highlight the urgent and ongoing need for new antiviral agents. The use of peptidomimetics as therapeutic drugs has often been associated with advantages, such as enhanced binding affinity, improved metabolic stability, and good bioavailability profiles. The development of novel antivirals is currently driven by strategies of converting peptides into peptidomimetic derivatives. In this review, we outline different structural modification design strategies for developing novel peptidomimetics as antivirals, involving N- or C-cap terminal structure modifications, pseudopeptides, amino acid modifications, inverse-peptides, cyclization, and molecular hybridization. We also present successful recent examples of peptidomimetic designs.
Collapse
Affiliation(s)
- Dang Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | | | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
50
|
Li Y, Zhang WS, Yang SN, Wang XY, Liu Y, Ji DW, Chen QA. Nickel-Catalyzed Unsymmetrical Bis-Allylation of Alkynes. Angew Chem Int Ed Engl 2023; 62:e202300036. [PMID: 36826223 DOI: 10.1002/anie.202300036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 02/25/2023]
Abstract
The catalytic bis-allylation of alkynes is an important but challenging protocol to construct all-carbon tetra-substituted alkenes. Particularly, the catalytic unsymmetrical bis-allylation of alkynes remains as an underexplored task to date. We herein report an unprecedented unsymmetrical bis-allylation by simultaneously utilizing electrophilic trifluoromethyl alkene and nucleophilic allylboronate as the allylic reagents. With the aid of robust Ni0 /NHC catalysis, valuable skipped trienes can be obtained in high regio- and stereo-selectivities under mild conditions. Mechanistic studies indicate that the reaction may proceed through a β-fluorine elimination of a nickelacycle followed by a transmetalation step with allylboronate. The present method exhibits a good tolerance of various functional groups. Besides, the skipped triene products can undergo an array of elaborate transformations, which highlights the potential applications of this strategy.
Collapse
Affiliation(s)
- Ying Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei-Song Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sa-Na Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao-Yu Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|