1
|
Sebastian FL, Settele S, Li H, Flavel BS, Zaumseil J. How to recognize clustering of luminescent defects in single-wall carbon nanotubes. NANOSCALE HORIZONS 2024. [PMID: 39380328 PMCID: PMC11462117 DOI: 10.1039/d4nh00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Semiconducting single-wall carbon nanotubes (SWCNTs) are a promising material platform for near-infrared in vivo imaging, optical sensing, and single-photon emission at telecommunication wavelengths. The functionalization of SWCNTs with luminescent defects can lead to significantly enhanced photoluminescence (PL) properties due to efficient trapping of highly mobile excitons and red-shifted emission from these trap states. Among the most studied luminescent defect types are oxygen and aryl defects that have largely similar optical properties. So far, no direct comparison between SWCNTs functionalized with oxygen and aryl defects under identical conditions has been performed. Here, we employ a combination of spectroscopic techniques to quantify the number of defects, their distribution along the nanotubes and thus their exciton trapping efficiencies. The different slopes of Raman D/G+ ratios versus calculated defect densities from PL quantum yield measurements indicate substantial dissimilarities between oxygen and aryl defects. Supported by statistical analysis of single-nanotube PL spectra at cryogenic temperatures they reveal clustering of oxygen defects. The clustering of 2-3 oxygen defects, which act as a single exciton trap, occurs irrespective of the functionalization method and thus enables the use of simple equations to determine the density of oxygen defects and defect clusters in SWCNTs based on standard Raman spectroscopy. The presented analytical approach is a versatile and sensitive tool to study defect distribution and clustering in SWCNTs and can be applied to any new functionalization method.
Collapse
Affiliation(s)
- Finn L Sebastian
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | - Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | - Han Li
- Department of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, FI-20520 Turku, Finland
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
2
|
Husel L, Trapp J, Scherzer J, Wu X, Wang P, Fortner J, Nutz M, Hümmer T, Polovnikov B, Förg M, Hunger D, Wang Y, Högele A. Cavity-enhanced photon indistinguishability at room temperature and telecom wavelengths. Nat Commun 2024; 15:3989. [PMID: 38734738 PMCID: PMC11088649 DOI: 10.1038/s41467-024-48119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Indistinguishable single photons in the telecom-bandwidth of optical fibers are indispensable for long-distance quantum communication. Solid-state single photon emitters have achieved excellent performance in key benchmarks, however, the demonstration of indistinguishability at room-temperature remains a major challenge. Here, we report room-temperature photon indistinguishability at telecom wavelengths from individual nanotube defects in a fiber-based microcavity operated in the regime of incoherent good cavity-coupling. The efficiency of the coupled system outperforms spectral or temporal filtering, and the photon indistinguishability is increased by more than two orders of magnitude compared to the free-space limit. Our results highlight a promising strategy to attain optimized non-classical light sources.
Collapse
Affiliation(s)
- Lukas Husel
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Julian Trapp
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Johannes Scherzer
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Manuel Nutz
- Qlibri GmbH, Maistr. 67, 80337, München, Germany
| | | | - Borislav Polovnikov
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Michael Förg
- Qlibri GmbH, Maistr. 67, 80337, München, Germany
| | - David Hunger
- Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA.
| | - Alexander Högele
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799, München, Germany.
| |
Collapse
|
3
|
Zhang Y, Jia MR, Liu XY, Fang WH, Cui G. Photoinduced Dynamics of a Single-Walled Carbon Nanotube with a sp 3 Defect: The Importance of Excitonic Effects. J Phys Chem A 2024; 128:3311-3320. [PMID: 38654690 DOI: 10.1021/acs.jpca.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Herein, we employed linear-response time-dependent functional theory nonadiabatic dynamic simulations to explore the photoinduced exciton dynamics of a chiral single-walled carbon nanotube CNT(6,5) covalently doped with a 4-nitrobenzyl group (CNT65-NO2). The results indicate that the introduction of a sp3 defect leads to the splitting of the degenerate VBM/VBM-1 and CBM/CBM+1 states. Both the VBM upshift and the CBM downshift are responsible for the experimentally observed redshifted E11* trapping state. The simulations reveal that the photoinduced exciton relaxation dynamics completes within 500 fs, which is consistent with the experimental work. On the other hand, we also conducted the nonadiabatic carrier (electron and hole) dynamic simulations, which completely ignore the excitonic effects. The comparison demonstrates that excitonic effects are indispensable. Deep analyses show that such effects induce several dark states, which play an important role in regulating the photoinduced dynamics of CNT65-NO2. The present work demonstrates the importance of including excitonic effects in simulating photoinduced processes of carbon nanotubes. In addition, it not only rationalizes previous experiments but also provides valuable insights that will help in the future rational design of novel covalently doped carbon nanotubes with superior photoluminescent properties.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Meng-Ru Jia
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Li MK, Dehm S, Kappes MM, Hennrich F, Krupke R. Correlation Measurements for Carbon Nanotubes with Quantum Defects. ACS NANO 2024; 18:9525-9534. [PMID: 38513118 DOI: 10.1021/acsnano.3c12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Single-photon sources are essential building blocks for the development of photonic quantum technology. Regarding potential practical application, an on-demand electrically driven quantum-light emitter on a chip is notably crucial for photonic integrated circuits. Here, we propose functionalized single-walled carbon nanotube field-effect transistors as a promising solid-state quantum-light source by demonstrating photon antibunching behavior via electrical excitation. The sp3 quantum defects were formed on the surface of (7, 5) carbon nanotubes by 3,5-dichlorophenyl functionalization, and individual carbon nanotubes were wired to graphene electrode pairs. Filtered electroluminescent defect-state emission at 77 K was coupled into a Hanbury Brown and Twiss experiment setup, and single-photon emission was observed by performing second-order correlation function measurements. We discuss the dependence of the intensity correlation measurement on electrical power and emission wavelength, highlighting the challenges of performing such measurements while simultaneously analyzing acquired data. Our results indicate a route toward room-temperature electrically triggered single-photon emission.
Collapse
Affiliation(s)
- Min-Ken Li
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Simone Dehm
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Frank Hennrich
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Ralph Krupke
- Institute of Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
5
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Han B, Li Y, Wu W, Cai X, Qiu S, He X, Wang S. Infrared Light-Emitting Diodes Based on Chirality-Sorted Carbon Nanotube Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4975-4983. [PMID: 38233025 DOI: 10.1021/acsami.3c11990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
An important goal in carbon nanotube optoelectronics is to achieve a high-performance near-infrared light source. But there are still many challenges such as the purity of single-walled carbon nanotube (SWCNT) chirality, nonradiative defects, thin-film quality, and device structure design. Here, we realize infrared light-emitting diodes (LEDs) based on chirality-sorted (10, 5) SWCNT network films, which operate at a low bias voltage and emit at a telecom O band of 1290 nm. Asymmetric palladium (Pd) and hafnium (Hf) contacts are used as electrodes for hole and electron injection, respectively. However, the large Schottky barrier at the interface of the SWCNTs and the Hf electrode, primarily resulting from the polymer wrapped on the nanotube surface during the sorting process, leads to inefficient electron injection and thus a low electroluminescence efficiency. We find that the efficiency of electron injection can be improved by the local doping of the nanotubes with dielectric layers of YOX-HfO2, which reduces the Schottky barrier at the SWCNT/Hf interface. Accordingly, the (10, 5) SWCNT film-based LED achieves an external quantum efficiency of larger than 0.05% without any optical coupling structure. With further improvement, we expect that such an infrared light source will have great application potential in the carbon nanotube monolithic optoelectronic integrated system and on-chip optical interconnection, especially in the field of short-distance optical fiber communications and data center.
Collapse
Affiliation(s)
- Bing Han
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Yahui Li
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Weifeng Wu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Xiang Cai
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing 100871, China
| | - Song Qiu
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Xiaowei He
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Sheng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Ma X, Long R. The sp 3 Defect Decreases Charge Carrier Lifetime in (8,3) Single-Walled Carbon Nanotubes. J Phys Chem Lett 2023; 14:10242-10248. [PMID: 37937588 DOI: 10.1021/acs.jpclett.3c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A recent experimental approach introduces sp3 defects into single-walled carbon nanotubes (SWNTs) through controlled functionalization with guanine, resulting in a decrease in charge carrier lifetime. However, the physical mechanism behind this phenomenon remains unclear. We employ nonadiabatic molecular dynamics to systematically model the nonradiative recombination process of electron-hole pairs in SWNTs with sp3 defects generated by a guanine molecule. We demonstrate that the introduction of sp3 defects creates an overlapping channel between the highest occupied (HOMO) and lowest unoccupied molecular orbital (LUMO), significantly enhancing the nonadiabatic (NA) coupling and leading to a 4.7-fold acceleration in charge carrier recombination compared to defect-free SWNTs. The charge carrier recombination slows significantly at a lower temperature (50 K) due to the weakening of the NA coupling. Our results rationalize the accelerated recombination of charge carriers in SWNTs with sp3 defects in experiments and contribute to a deeper understanding of the carrier dynamics in SWNTs.
Collapse
Affiliation(s)
- Xinbo Ma
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
8
|
Sebastian FL, Becker F, Yomogida Y, Hosokawa Y, Settele S, Lindenthal S, Yanagi K, Zaumseil J. Unified Quantification of Quantum Defects in Small-Diameter Single-Walled Carbon Nanotubes by Raman Spectroscopy. ACS NANO 2023; 17:21771-21781. [PMID: 37856164 PMCID: PMC10655237 DOI: 10.1021/acsnano.3c07668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
The covalent functionalization of single-walled carbon nanotubes (SWCNTs) with luminescent quantum defects enables their application as near-infrared single-photon sources, as optical sensors, and for in vivo tissue imaging. Tuning the emission wavelength and defect density is crucial for these applications. While the former can be controlled by different synthetic protocols and is easily measured, defect densities are still determined as relative rather than absolute values, limiting the comparability between different nanotube batches and chiralities. Here, we present an absolute and unified quantification metric for the defect density in SWCNT samples based on Raman spectroscopy. It is applicable to a range of small-diameter semiconducting nanotubes and for arbitrary laser wavelengths. We observe a clear inverse correlation of the D/G+ ratio increase with nanotube diameter, indicating that curvature effects contribute significantly to the defect activation of Raman modes. Correlation of intermediate frequency modes with defect densities further corroborates their activation by defects and provides additional quantitative metrics for the characterization of functionalized SWCNTs.
Collapse
Affiliation(s)
- Finn L. Sebastian
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Felicitas Becker
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Yohei Yomogida
- Department
of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yuuya Hosokawa
- Department
of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Simon Settele
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Lindenthal
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Kazuhiro Yanagi
- Department
of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Jana Zaumseil
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
9
|
Zorn N, Settele S, Sebastian FL, Lindenthal S, Zaumseil J. Tuning Electroluminescence from Functionalized SWCNT Networks Further into the Near-Infrared. ACS APPLIED OPTICAL MATERIALS 2023; 1:1706-1714. [PMID: 37915970 PMCID: PMC10616844 DOI: 10.1021/acsaom.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Near-infrared electroluminescence from carbon-based emitters, especially in the second biological window (NIR-II) or at telecommunication wavelengths, is difficult to achieve. Single-walled carbon nanotubes (SWCNTs) have been proposed as a possible solution due to their tunable and narrowband emission in the near-infrared region and high charge carrier mobilities. Furthermore, the covalent functionalization of SWCNTs with a controlled number of luminescent sp3 defects leads to even more red-shifted photoluminescence with enhanced quantum yields. Here, we demonstrate that by tailoring the binding configuration of the introduced sp3 defects and hence tuning their optical trap depth, we can generate emission from polymer-sorted (6,5) and (7,5) nanotubes that is mainly located in the telecommunication O-band (1260-1360 nm). Networks of these functionalized nanotubes are integrated in ambipolar, light-emitting field-effect transistors to yield the corresponding narrowband near-infrared electroluminescence. Further investigation of the current- and carrier density-dependent electro- and photoluminescence spectra enables insights into the impact of different sp3 defects on charge transport in networks of functionalized SWCNTs.
Collapse
Affiliation(s)
- Nicolas
F. Zorn
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Finn L. Sebastian
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Lindenthal
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
10
|
Weight BM, Sifain AE, Gifford BJ, Htoon H, Tretiak S. On-the-Fly Nonadiabatic Dynamics Simulations of Single-Walled Carbon Nanotubes with Covalent Defects. ACS NANO 2023; 17:6208-6219. [PMID: 36972076 DOI: 10.1021/acsnano.2c08579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) with covalent surface defects have been explored recently due to their promise for use in single-photon telecommunication emission and in spintronic applications. The all-atom dynamic evolution of electrostatically bound excitons (the primary electronic excitations) in these systems has only been loosely explored from a theoretical perspective due to the size limitations of these large systems (>500 atoms). In this work, we present computational modeling of nonradiative relaxation in a variety of SWCNT chiralities with single-defect functionalizations. Our excited-state dynamics modeling uses a trajectory surface hopping algorithm accounting for excitonic effects with a configuration interaction approach. We find a strong chirality and defect-composition dependence on the population relaxation (varying over 50-500 fs) between the primary nanotube band gap excitation E11 and the defect-associated, single-photon-emitting E11* state. These simulations give direct insight into the relaxation between the band-edge states and the localized excitonic state, in competition with dynamic trapping/detrapping processes observed in experiment. Engineering fast population decay into the quasi-two-level subsystem with weak coupling to higher-energy states increases the effectiveness and controllability of these quantum light emitters.
Collapse
Affiliation(s)
- Braden M Weight
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, United States
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew E Sifain
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540 United States
| | - Brendan J Gifford
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Han Htoon
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
11
|
Hayashi K, Niidome Y, Shiga T, Yu B, Nakagawa Y, Janas D, Fujigaya T, Shiraki T. Azide modification forming luminescent sp 2 defects on single-walled carbon nanotubes for near-infrared defect photoluminescence. Chem Commun (Camb) 2022; 58:11422-11425. [PMID: 36134499 DOI: 10.1039/d2cc04492g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azide functionalization produced luminescent sp2-type defects on single-walled carbon nanotubes, by which defect photoluminescence appeared in near infrared regions (1116 nm). Changes in exciton properties were induced by localization effects at the defect sites, creating exciton-engineered nanomaterials based on the defect structure design.
Collapse
Affiliation(s)
- Keita Hayashi
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yoshiaki Niidome
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Tamehito Shiga
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Boda Yu
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yasuto Nakagawa
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. .,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. .,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
12
|
Zheng W, Zorn NF, Bonn M, Zaumseil J, Wang HI. Probing Carrier Dynamics in sp3-Functionalized Single-Walled Carbon Nanotubes with Time-Resolved Terahertz Spectroscopy. ACS NANO 2022; 16:9401-9409. [PMID: 35709437 PMCID: PMC9246260 DOI: 10.1021/acsnano.2c02199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The controlled introduction of covalent sp3 defects into semiconducting single-walled carbon nanotubes (SWCNTs) gives rise to exciton localization and red-shifted near-infrared luminescence. The single-photon emission characteristics of these functionalized SWCNTs make them interesting candidates for electrically driven quantum light sources. However, the impact of sp3 defects on the carrier dynamics and charge transport in carbon nanotubes remains an open question. Here, we use ultrafast, time-resolved optical-pump terahertz-probe spectroscopy as a direct and quantitative technique to investigate the microscopic and temperature-dependent charge transport properties of pristine and functionalized (6,5) SWCNTs in dispersions and thin films. We find that sp3 functionalization increases charge carrier scattering, thus reducing the intra-nanotube carrier mobility. In combination with electrical measurements of SWCNT network field-effect transistors, these data enable us to distinguish between contributions of intra-nanotube band transport, sp3 defect scattering and inter-nanotube carrier hopping to the overall charge transport properties of nanotube networks.
Collapse
Affiliation(s)
- Wenhao Zheng
- Max
Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Nicolas F. Zorn
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Hai I. Wang
- Max
Planck Institute for Polymer Research, D-55128 Mainz, Germany
| |
Collapse
|
13
|
Kozawa D, Wu X, Ishii A, Fortner J, Otsuka K, Xiang R, Inoue T, Maruyama S, Wang Y, Kato YK. Formation of organic color centers in air-suspended carbon nanotubes using vapor-phase reaction. Nat Commun 2022; 13:2814. [PMID: 35595760 PMCID: PMC9123200 DOI: 10.1038/s41467-022-30508-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022] Open
Abstract
Organic color centers in single-walled carbon nanotubes have demonstrated exceptional ability to generate single photons at room temperature in the telecom range. Combining the color centers with pristine air-suspended nanotubes would be desirable for improved performance, but all current synthetic methods occur in solution which makes them incompatible. Here we demonstrate the formation of color centers in air-suspended nanotubes using a vapor-phase reaction. Functionalization is directly verified by photoluminescence spectroscopy, with unambiguous statistics from more than a few thousand individual nanotubes. The color centers show strong diameter-dependent emission, which can be explained with a model for chemical reactivity considering strain along the tube curvature. We also estimate the defect density by comparing the experiments with simulations based on a one-dimensional exciton diffusion equation. Our results highlight the influence of the nanotube structure on vapor-phase reactivity and emission properties, providing guidelines for the development of high-performance near-infrared quantum light sources. Organic color centers in single-walled carbon nanotubes can act as single-photon sources in the telecom range. Here the authors report the functionalization of air-suspended nanotubes through a vapor-phase photochemical reaction, demonstrating a further tailoring of quantum emitter materials.
Collapse
Affiliation(s)
- Daichi Kozawa
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan.
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Akihiro Ishii
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan.,Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Keigo Otsuka
- Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Rong Xiang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.,Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Taiki Inoue
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.,Department of Applied Physics, Osaka University, Osaka, 565-0871, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.,Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| | - Yuichiro K Kato
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama, 351-0198, Japan. .,Nanoscale Quantum Photonics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan.
| |
Collapse
|
14
|
Sebastian FL, Zorn NF, Settele S, Lindenthal S, Berger FJ, Bendel C, Li H, Flavel BS, Zaumseil J. Absolute Quantification of sp 3 Defects in Semiconducting Single-Wall Carbon Nanotubes by Raman Spectroscopy. J Phys Chem Lett 2022; 13:3542-3548. [PMID: 35420437 PMCID: PMC9059186 DOI: 10.1021/acs.jpclett.2c00758] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The functionalization of semiconducting single-wall carbon nanotubes (SWCNTs) with luminescent sp3 defects creates red-shifted emission features in the near-infrared and boosts their photoluminescence quantum yields (PLQYs). While multiple synthetic routes for the selective introduction of sp3 defects have been developed, a convenient metric to precisely quantify the number of defects on a SWCNT lattice is not available. Here, we present a direct and simple quantification protocol based on a linear correlation of the integrated Raman D/G+ signal ratios and defect densities as extracted from PLQY measurements. Corroborated by a statistical analysis of single-nanotube emission spectra at cryogenic temperature, this method enables the quantitative evaluation of sp3 defect densities in (6,5) SWCNTs with an error of ±3 defects per micrometer and the determination of oscillator strengths for different defect types. The developed protocol requires only standard Raman spectroscopy and is independent of the defect configuration, dispersion solvent, and nanotube length.
Collapse
Affiliation(s)
- Finn L. Sebastian
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Nicolas F. Zorn
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Simon Settele
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Lindenthal
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Felix J. Berger
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Christoph Bendel
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Han Li
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, D-76131 Karlsruhe, Germany
| | - Benjamin S. Flavel
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, D-76131 Karlsruhe, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
15
|
Nandi S, Caicedo K, Cognet L. When Super-Resolution Localization Microscopy Meets Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12091433. [PMID: 35564142 PMCID: PMC9105540 DOI: 10.3390/nano12091433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
We recently assisted in a revolution in the realm of fluorescence microscopy triggered by the advent of super-resolution techniques that surpass the classic diffraction limit barrier. By providing optical images with nanometer resolution in the far field, super-resolution microscopy (SRM) is currently accelerating our understanding of the molecular organization of bio-specimens, bridging the gap between cellular observations and molecular structural knowledge, which was previously only accessible using electron microscopy. SRM mainly finds its roots in progress made in the control and manipulation of the optical properties of (single) fluorescent molecules. The flourishing development of novel fluorescent nanostructures has recently opened the possibility of associating super-resolution imaging strategies with nanomaterials’ design and applications. In this review article, we discuss some of the recent developments in the field of super-resolution imaging explicitly based on the use of nanomaterials. As an archetypal class of fluorescent nanomaterial, we mainly focus on single-walled carbon nanotubes (SWCNTs), which are photoluminescent emitters at near-infrared (NIR) wavelengths bearing great interest for biological imaging and for information optical transmission. Whether for fundamental applications in nanomaterial science or in biology, we show how super-resolution techniques can be applied to create nanoscale images “in”, “of” and “with” SWCNTs.
Collapse
Affiliation(s)
- Somen Nandi
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, UMR 5298, 33400 Talence, France; (S.N.); (K.C.)
- Institut d’Optique and CNRS, LP2N UMR 5298, 33400 Talence, France
| | - Karen Caicedo
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, UMR 5298, 33400 Talence, France; (S.N.); (K.C.)
- Institut d’Optique and CNRS, LP2N UMR 5298, 33400 Talence, France
| | - Laurent Cognet
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, UMR 5298, 33400 Talence, France; (S.N.); (K.C.)
- Institut d’Optique and CNRS, LP2N UMR 5298, 33400 Talence, France
- Correspondence:
| |
Collapse
|
16
|
Ko BA, Berry K, Qin Z, Sokolov AV, Hu J, Scully MO, Bao J, Zhang Z. Resonant Degenerate Four-Wave Mixing at the Defect Energy Levels of 2D Organic-Inorganic Hybrid Perovskite Crystals. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57075-57083. [PMID: 34797627 DOI: 10.1021/acsami.1c14092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional organic-inorganic lead halide perovskites are generating great interest due to their optoelectronic characteristics such as high solar energy conversion efficiency and a tunable direct band gap in the visible regime. However, the presence of defect states within the two-dimensional crystal structure can affect these properties, resulting in changes to their band gap emission as well as the emergence of nonlinear optical phenomena. Here, we have investigated the effects of the presence of defect states on the nonlinear optical phenomena of the 2D hybrid perovskite (BA)2(MA)2Pb3Br10. When two pulses, one narrowband pump pulse centered at 800 nm and one supercontinuum pulse with bandwidth from 800-1100 nm, are incident on a perovskite flake, degenerate four-wave mixing (FWM) occurs, with peaks corresponding to the energy levels of the defect states present within the crystal. The longer carrier lifetime of the defect state, in comparison to that of virtual transitions that take place in nonresonant FWM processes, allows for a larger population of electrons to be excited by the second pump photon, resulting in increased FWM signal at the defect energy levels. The quenching of the two-photon luminescence as flake thickness increases is also observed and attributed to the increased presence of defects within the flake at larger thicknesses. This technique shows the potential of detecting defect energy levels in crystals using FWM for a variety of optoelectronic applications.
Collapse
Affiliation(s)
- Brian A Ko
- Baylor University, Waco, Texas 76706, United States
- Texas A&M University, College Station, Texas 77843, United States
| | - Keith Berry
- Baylor University, Waco, Texas 76706, United States
| | - Zhaojun Qin
- University of Houston, Houston, Texas 77004, United States
| | - Alexei V Sokolov
- Baylor University, Waco, Texas 76706, United States
- Texas A&M University, College Station, Texas 77843, United States
| | - Jonathan Hu
- Baylor University, Waco, Texas 76706, United States
| | - Marlan O Scully
- Baylor University, Waco, Texas 76706, United States
- Texas A&M University, College Station, Texas 77843, United States
- Princeton University, Princeton, New Jersey 08544, United States
| | - Jiming Bao
- University of Houston, Houston, Texas 77004, United States
| | | |
Collapse
|
17
|
Zheng Y, Kim Y, Jones AC, Olinger G, Bittner ER, Bachilo SM, Doorn SK, Weisman RB, Piryatinski A, Htoon H. Quantum Light Emission from Coupled Defect States in DNA-Functionalized Carbon Nanotubes. ACS NANO 2021; 15:10406-10414. [PMID: 34061507 DOI: 10.1021/acsnano.1c02709] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Solid-state single-photon sources are essential building blocks for quantum photonics and quantum information technologies. This study demonstrates promising single-photon emission from quantum defects generated in single-wall carbon nanotubes (SWCNTs) by covalent reaction with guanine nucleotides in their single-stranded DNA coatings. Low-temperature photoluminescence spectroscopy and photon-correlation measurements on individual guanine-functionalized SWCNTs (GF-SWCNTs) indicate that multiple, closely spaced guanine defect sites within a single ssDNA strand collectively form an exciton trapping potential that supports a localized quantum state capable of room-temperature single-photon emission. In addition, exciton traps from adjacent ssDNA strands are weakly coupled to give cross-correlations between their separate photon emissions. Theoretical modeling identifies coupling mechanism as a capture of band-edge excitons. Because the spatial pattern of nanotube functionalization sites can be readily controlled by selecting ssDNA base sequences, GF-SWCNTs should become a versatile family of quantum light emitters with engineered properties.
Collapse
Affiliation(s)
- Yu Zheng
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Younghee Kim
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew C Jones
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Gabrielle Olinger
- Department of Physics, University of Houston, Houston, Texas 77204, United States
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Eric R Bittner
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Sergei M Bachilo
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Stephen K Doorn
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - R Bruce Weisman
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Andrei Piryatinski
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Han Htoon
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
18
|
Zorn N, Berger FJ, Zaumseil J. Charge Transport in and Electroluminescence from sp 3-Functionalized Carbon Nanotube Networks. ACS NANO 2021; 15:10451-10463. [PMID: 34048654 PMCID: PMC8223481 DOI: 10.1021/acsnano.1c02878] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The controlled covalent functionalization of semiconducting single-walled carbon nanotubes (SWCNTs) with luminescent sp3 defects leads to additional narrow and tunable photoluminescence features in the near-infrared and even enables single-photon emission at room temperature, thus strongly expanding their application potential. However, the successful integration of sp3-functionalized SWCNTs in optoelectronic devices with efficient defect state electroluminescence not only requires control over their emission properties but also a detailed understanding of the impact of functionalization on their electrical performance, especially in dense networks. Here, we demonstrate ambipolar, light-emitting field-effect transistors based on networks of pristine and functionalized polymer-sorted (6,5) SWCNTs. We investigate the influence of sp3 defects on charge transport by employing electroluminescence and (charge-modulated) photoluminescence spectroscopy combined with temperature-dependent current-voltage measurements. We find that sp3-functionalized SWCNTs actively participate in charge transport within the network as mobile carriers efficiently sample the sp3 defects, which act as shallow trap states. While both hole and electron mobilities decrease with increasing degree of functionalization, the transistors remain fully operational, showing electroluminescence from the defect states that can be tuned by the defect density.
Collapse
|
19
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
He X, Kevlishvili I, Murcek K, Liu P, Star A. [2π + 2π] Photocycloaddition of Enones to Single-Walled Carbon Nanotubes Creates Fluorescent Quantum Defects. ACS NANO 2021; 15:4833-4844. [PMID: 33689301 DOI: 10.1021/acsnano.0c09583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been widely applied in biomedical fields such as drug delivery, biosensing, bioimaging, and tissue engineering. Understanding their reactivity with biomolecules is important for these applications. We describe here a photoinduced cycloaddition reaction between enones and SWCNTs. By creating covalent and tunable sp3 defects in the sp2 carbon lattice of SWCNTs through [2π + 2π] photocycloaddition, a bright red-shifted photoluminescence was gradually generated. The photocycloaddition functionalization was demonstrated with various organic molecules bearing an enone functional group, including biologically important oxygenated lipid metabolites. The mechanism of this reaction was studied empirically and using computational methods. Density functional theory calculations were employed to elucidate the identity of the reaction product and understand the origin of different substrate reactivities. The results of this study can enable engineering of the optical and electronic properties of semiconducting SWCNTs and provide understanding into their interactions with the lipid biocorona.
Collapse
Affiliation(s)
- Xiaoyun He
- Department of Chemistry, ‡Department of Chemical and Petroleum Engineering, and §Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ilia Kevlishvili
- Department of Chemistry, ‡Department of Chemical and Petroleum Engineering, and §Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Katherina Murcek
- Department of Chemistry, ‡Department of Chemical and Petroleum Engineering, and §Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, ‡Department of Chemical and Petroleum Engineering, and §Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- Department of Chemistry, ‡Department of Chemical and Petroleum Engineering, and §Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
21
|
Berger F, de Sousa JA, Zhao S, Zorn NF, El Yumin AA, Quintana García A, Settele S, Högele A, Crivillers N, Zaumseil J. Interaction of Luminescent Defects in Carbon Nanotubes with Covalently Attached Stable Organic Radicals. ACS NANO 2021; 15:5147-5157. [PMID: 33600164 PMCID: PMC7992189 DOI: 10.1021/acsnano.0c10341] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/05/2021] [Indexed: 05/17/2023]
Abstract
The functionalization of single-walled carbon nanotubes (SWCNTs) with luminescent sp3 defects has greatly improved their performance in applications such as quantum light sources and bioimaging. Here, we report the covalent functionalization of purified semiconducting SWCNTs with stable organic radicals (perchlorotriphenylmethyl, PTM) carrying a net spin. This model system allows us to use the near-infrared photoluminescence arising from the defect-localized exciton as a highly sensitive probe for the short-range interaction between the PTM radical and the SWCNT. Our results point toward an increased triplet exciton population due to radical-enhanced intersystem crossing, which could provide access to the elusive triplet manifold in SWCNTs. Furthermore, this simple synthetic route to spin-labeled defects could enable magnetic resonance studies complementary to in vivo fluorescence imaging with functionalized SWCNTs and facilitate the scalable fabrication of spintronic devices with magnetically switchable charge transport.
Collapse
Affiliation(s)
- Felix
J. Berger
- Institute
for Physical Chemistry, Universität
Heidelberg, 69120 Heidelberg, Germany
- Centre
for Advanced Materials, Universität
Heidelberg, 69120 Heidelberg, Germany
| | - J. Alejandro de Sousa
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Laboratorio
de Electroquímica, Departamento de Química, Facultad
de Ciencias, Universidad de los Andes, 5101 Mérida, Venezuela
| | - Shen Zhao
- Faculty
of Physics, Munich Quantum Center and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539 München, Germany
- Munich Center
for Quantum Science and Technology (MCQST), 80799 München, Germany
| | - Nicolas F. Zorn
- Institute
for Physical Chemistry, Universität
Heidelberg, 69120 Heidelberg, Germany
- Centre
for Advanced Materials, Universität
Heidelberg, 69120 Heidelberg, Germany
| | - Abdurrahman Ali El Yumin
- Institute
for Physical Chemistry, Universität
Heidelberg, 69120 Heidelberg, Germany
- Centre
for Advanced Materials, Universität
Heidelberg, 69120 Heidelberg, Germany
| | - Aleix Quintana García
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Simon Settele
- Institute
for Physical Chemistry, Universität
Heidelberg, 69120 Heidelberg, Germany
| | - Alexander Högele
- Faculty
of Physics, Munich Quantum Center and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539 München, Germany
- Munich Center
for Quantum Science and Technology (MCQST), 80799 München, Germany
| | - Núria Crivillers
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Jana Zaumseil
- Institute
for Physical Chemistry, Universität
Heidelberg, 69120 Heidelberg, Germany
- Centre
for Advanced Materials, Universität
Heidelberg, 69120 Heidelberg, Germany
- E-mail:
| |
Collapse
|
22
|
Paviolo C, Cognet L. Near-infrared nanoscopy with carbon-based nanoparticles for the exploration of the brain extracellular space. Neurobiol Dis 2021; 153:105328. [PMID: 33713842 DOI: 10.1016/j.nbd.2021.105328] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/19/2022] Open
Abstract
Understanding the physiology and pathology of the brain requires detailed knowledge of its complex structures as well as dynamic internal processes at very different scales from the macro down to the molecular dimensions. A major yet poorly described brain compartment is the brain extracellular space (ECS). Signalling molecules rapidly diffuse through the brain ECS which is complex and dynamic structure at numerous lengths and time scales. In recent years, characterization of the ECS using nanomaterials has made remarkable progress, including local analysis of nanoscopic dimensions and diffusivity as well as local chemical sensing. In particular, carbon nanomaterials combined with advanced optical technologies, biochemical and biophysical analysis, offer novel promises for understanding the ECS morphology as well as neuron connectivity and neurochemistry. In this review, we present the state-of-the-art in this quest, which mainly focuses on a type of carbon nanomaterial, single walled carbon nanotubes, as fluorescent nanoprobes to unveil the ECS features in the nanometre domain.
Collapse
Affiliation(s)
- Chiara Paviolo
- LP2N, Institut d'Optique Graduate School, CNRS, Université de Bordeaux, 33400 Talence, France
| | - Laurent Cognet
- LP2N, Institut d'Optique Graduate School, CNRS, Université de Bordeaux, 33400 Talence, France.
| |
Collapse
|
23
|
Zheng Y, Weight BM, Jones AC, Chandrasekaran V, Gifford BJ, Tretiak S, Doorn SK, Htoon H. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes. ACS NANO 2021; 15:923-933. [PMID: 33395262 DOI: 10.1021/acsnano.0c07544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical reactions between semiconducting single-wall carbon nanotubes (SWCNTs) and single-stranded DNA (ssDNA) achieve spatially patterned covalent functionalization sites and create coupled fluorescent quantum defects on the nanotube surface, tailoring SWCNT photophysics for applications such as single-photon emitters in quantum information technologies. The evaluation of relaxation dynamics of photoluminescence (PL) from those coupled quantum defects is essential for understanding the nanotube electronic structure and beneficial to the design of quantum light emitters. Here, we measured the PL decay for ssDNA-functionalized SWCNTs as a function of the guanine content of the ssDNA oligo that dictates the red-shifting of their PL emission peaks relative to the band-edge exciton. We then correlate the observed dependence of PL decay dynamics on energy red-shifts to the exciton potential energy landscape, which is modeled using first-principles approaches based upon the morphology of ssDNA-altered SWCNTs obtained by atomic force microscopy (AFM) imaging. Our simulations illustrate that the multiple guanine defects introduced within a single ssDNA strand strongly interact to create a deep exciton trapping well, acting as a single hybrid trap. The emission decay from the distinctive trapping potential landscape is found to be biexponential for ssDNA-modified SWCNTs. We attributed the fast time component of the biexponential PL decay to the redistribution of exciton population among the lowest energy bright states and a manifold of dark states emerging from the coupling of multiple guanine defects. The long lifetime component in the biexponential decay, on the other hand, is attributed to the redistribution of exciton population among different exciton trapping sites that arise from the binding of multiple ssDNA strands along the nanotube axis. AFM measurements indicate that those trapping sites are separated on average by ∼8 nm along the nanotube axis.
Collapse
Affiliation(s)
| | - Braden M Weight
- Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | | | | | | | | | | | | |
Collapse
|
24
|
Lüttgens JM, Berger FJ, Zaumseil J. Population of Exciton-Polaritons via Luminescent sp 3 Defects in Single-Walled Carbon Nanotubes. ACS PHOTONICS 2021; 8:182-193. [PMID: 33506074 PMCID: PMC7821305 DOI: 10.1021/acsphotonics.0c01129] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 05/27/2023]
Abstract
Semiconducting single-walled carbon nanotubes (SWCNTs) are an interesting material for strong-light matter coupling due to their stable excitons, narrow emission in the near-infrared region, and high charge carrier mobilities. Furthermore, they have emerged as quantum light sources as a result of the controlled introduction of luminescent quantum defects (sp3 defects) with red-shifted transitions that enable single-photon emission. The complex photophysics of SWCNTs and the overall goal of polariton condensation pose the question of how exciton-polaritons are populated and how the process might be optimized. The contributions of possible relaxation processes, i.e., scattering with acoustic phonons, vibrationally assisted scattering, and radiative pumping, are investigated using angle-resolved reflectivity and time-resolved photoluminescence measurements on microcavities with a wide range of detunings. We show that the predominant population mechanism for SWCNT exciton-polaritons in planar microcavities is radiative pumping. Consequently, the limitation of polariton population due to the low photoluminescence quantum yield of nanotubes can be overcome by luminescent sp3 defects. Without changing the polariton branch structure, radiative pumping through these emissive defects leads to an up to 10-fold increase of the polariton population for detunings with a large photon fraction. Thus, the controlled and tunable functionalization of SWCNTs with sp3 defects presents a viable route toward bright and efficient polariton devices.
Collapse
|
25
|
Lohmann SH, Trerayapiwat KJ, Niklas J, Poluektov OG, Sharifzadeh S, Ma X. sp3-Functionalization of Single-Walled Carbon Nanotubes Creates Localized Spins. ACS NANO 2020; 14:17675-17682. [PMID: 33306353 DOI: 10.1021/acsnano.0c08782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chemical functionalization-introduced sp3 quantum defects in single-walled carbon nanotubes (SWCNTs) have shown compelling optical properties for their potential applications in quantum information science and bioimaging. Here, we utilize temperature- and power-dependent electron spin resonance measurements to study the fundamental spin properties of SWCNTs functionalized with well-controlled densities of sp3 quantum defects. Signatures of isolated spins that are highly localized at the sp3 defect sites are observed, which we further confirm with density functional theory calculations. Applying temperature-dependent line width analysis and power-saturation measurements, we estimate the spin-lattice relaxation time T1 and spin dephasing time T2 to be around 9 μs and 40 ns, respectively. These findings of the localized spin states that are associated with the sp3 quantum defects not only deepen our understanding of the molecular structures of the quantum defects but could also have strong implications for their applications in quantum information science.
Collapse
Affiliation(s)
- Sven-Hendrik Lohmann
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sahar Sharifzadeh
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering and Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
26
|
Gaviria Rojas WA, Hersam MC. Chirality-Enriched Carbon Nanotubes for Next-Generation Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905654. [PMID: 32255238 DOI: 10.1002/adma.201905654] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/10/2019] [Indexed: 05/06/2023]
Abstract
For the past half century, silicon has served as the primary material platform for integrated circuit technology. However, the recent proliferation of nontraditional electronics, such as wearables, embedded systems, and low-power portable devices, has led to increasingly complex mechanical and electrical performance requirements. Among emerging electronic materials, single-walled carbon nanotubes (SWCNTs) are promising candidates for next-generation computing as a result of their superlative electrical, optical, and mechanical properties. Moreover, their chirality-dependent properties enable a wide range of emerging electronic applications including sub-10 nm complementary field-effect transistors, optoelectronic integrated circuits, and enantiomer-recognition sensors. Here, recent progress in SWCNT-based computing devices is reviewed, with an emphasis on the relationship between chirality enrichment and electronic functionality. In particular, after highlighting chirality-dependent SWCNT properties and chirality enrichment methods, the range of computing applications that have been demonstrated using chirality-enriched SWCNTs are summarized. By identifying remaining challenges and opportunities, this work provides a roadmap for next-generation SWCNT-based computing.
Collapse
Affiliation(s)
- William A Gaviria Rojas
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
27
|
Flach JT, Wang J, Arnold MS, Zanni MT. Providing Time to Transfer: Longer Lifetimes Lead to Improved Energy Transfer in Films of Semiconducting Carbon Nanotubes. J Phys Chem Lett 2020; 11:6016-6024. [PMID: 32639162 DOI: 10.1021/acs.jpclett.0c01555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The performance of photovoltaic devices made using semiconducting carbon nanotubes is limited by the transverse exciton diffusion length, which is ultimately set by intertube energy transfer. In this paper, we study whether extending the exciton lifetime improves energy transfer, by allowing more time for exciton transfer between carbon nanotubes, and thereby device performance. To do so, we prepare nanotubes by either shear-force mixing or ultrasonication, leading to different lengths and defect densities. We create thin films that mix (6,5) and (7,5) nanotubes and quantify the relative amounts of energy transfer in them using two-dimensional white-light (2DWL) spectroscopy and photoluminescence excitation (PLE) spectroscopy. Cross-peaks appearing in 2DWL spectra and quenching of the (6,5) PLE signal upon mixing both quantify energy transfer from (6,5) to (7,5). In both spectroscopies, energy transfer between shear-force mixed tubes is ∼20% more efficient. The cross-peaks in 2DWL spectra grow in at the same rate regardless of the processing method with the all shear-force mixed sample ultimately reaching a larger cross-peak amplitude. Shear-force mixing methods instead of sonication have improved external quantum efficiency in carbon nanotube devices by 30%. The spectroscopic results observed here link energy transfer to exciton diffusion and correlate to device performance.
Collapse
Affiliation(s)
- Jessica T Flach
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jialiang Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
28
|
Kim Y, Goupalov SV, Weight BM, Gifford BJ, He X, Saha A, Kim M, Ao G, Wang Y, Zheng M, Tretiak S, Doorn SK, Htoon H. Hidden Fine Structure of Quantum Defects Revealed by Single Carbon Nanotube Magneto-Photoluminescence. ACS NANO 2020; 14:3451-3460. [PMID: 32053343 DOI: 10.1021/acsnano.9b09548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Organic color-center quantum defects in semiconducting carbon nanotube hosts are rapidly emerging as promising candidates for solid-state quantum information technologies. However, it is unclear whether these defect color-centers could support the spin or pseudospin-dependent excitonic fine structure required for spin manipulation and readout. Here we conducted magneto-photoluminescence spectroscopy on individual organic color-centers and observed the emergence of fine structure states under an 8.5 T magnetic field applied parallel to the nanotube axis. One to five fine structure states emerge depending on the chirality of the nanotube host, nature of chemical functional group, and chemical binding configuration, presenting an exciting opportunity toward developing chemical control of magnetic brightening. We attribute these hidden excitonic fine structure states to field-induced mixing of singlet excitons trapped at sp3 defects and delocalized band-edge triplet excitons. These findings provide opportunities for using organic color-centers for spintronics, spin-based quantum computing, and quantum sensing.
Collapse
Affiliation(s)
- Younghee Kim
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Serguei V Goupalov
- Department of Physics, Jackson State University, Jackson, Mississippi 39217, United States
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Braden M Weight
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Brendan J Gifford
- Center for Nonlinear Studies, Theory Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xiaowei He
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Avishek Saha
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mijin Kim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Geyou Ao
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Theory Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Stephen K Doorn
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Han Htoon
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
29
|
Luo Y, He X, Kim Y, Blackburn JL, Doorn SK, Htoon H, Strauf S. Carbon Nanotube Color Centers in Plasmonic Nanocavities: A Path to Photon Indistinguishability at Telecom Bands. NANO LETTERS 2019; 19:9037-9044. [PMID: 31682759 DOI: 10.1021/acs.nanolett.9b04069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Indistinguishable single photon generation at telecom wavelengths from solid-state quantum emitters remains a significant challenge to scalable quantum information processing. Here we demonstrate efficient generation of "indistinguishable" single photons directly in the telecom O-band from aryl-functionalized carbon nanotubes by overcoming the emitter quantum decoherence with plasmonic nanocavities. With an unprecedented single-photon spontaneous emission time down to 10 ps (from initially 0.7 ns) generated in the coupling scheme, we show a two-photon interference visibility at 4 K reaching up to 0.79, even without applying post selection. Cavity-enhanced quantum yields up to 74% and Purcell factors up to 415 are achieved with single-photon purities up to 99%. Our results establish the capability to fabricate fiber-based photonic devices for quantum information technology with coherent properties that can enable quantum logic.
Collapse
Affiliation(s)
- Yue Luo
- Center for Nanoscale Systems , Harvard University , Cambridge , Massachusetts 02138 , United States
| | | | - Younghee Kim
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Jeffrey L Blackburn
- National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Stephen K Doorn
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Han Htoon
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | |
Collapse
|
30
|
Gifford BJ, Saha A, Weight BM, He X, Ao G, Zheng M, Htoon H, Kilina S, Doorn SK, Tretiak S. Mod(n-m,3) Dependence of Defect-State Emission Bands in Aryl-Functionalized Carbon Nanotubes. NANO LETTERS 2019; 19:8503-8509. [PMID: 31682455 DOI: 10.1021/acs.nanolett.9b02926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecularly functionalized single-walled carbon nanotubes (SWCNTs) are potentially useful for fiber optical applications due to their room temperature single-photon emission capacity at telecommunication wavelengths. Several distinct defect geometries are generated upon covalent functionalization. While it has been shown that the defect geometry controls electron localization around the defect site, thereby changing the electronic structure and generating new optically bright red-shifted emission bands, the reasons for such localization remain unexplained. Our joint experimental and computational studies of functionalized SWCNTs with various chiralities show that the value of mod(n-m,3) in an (n,m) chiral nanotube plays a key role in the relative ordering of defect-dependent emission energies. This dependence is linked to the complex nodal characteristics of electronic wave function extending along specific bonds in the tube, which justifies the defect-geometry dependent exciton localization. This insight helps to uncover the essential structural motifs allowing tuning the redshifts of emission energies in functionalized SWCNTs.
Collapse
Affiliation(s)
| | - Avishek Saha
- CSIR-Central Scientific Instruments Organization , Chandigarh 160030 , India
| | | | | | - Geyou Ao
- Materials Science and Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899-8540 , United States
| | - Ming Zheng
- Materials Science and Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899-8540 , United States
| | | | | | | | | |
Collapse
|
31
|
Kwon H, Kim M, Nutz M, Hartmann NF, Perrin V, Meany B, Hofmann MS, Clark CW, Htoon H, Doorn SK, Högele A, Wang Y. Probing Trions at Chemically Tailored Trapping Defects. ACS CENTRAL SCIENCE 2019; 5:1786-1794. [PMID: 31807680 PMCID: PMC6891859 DOI: 10.1021/acscentsci.9b00707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 05/28/2023]
Abstract
Trions, charged excitons that are reminiscent of hydrogen and positronium ions, have been intensively studied for energy harvesting, light-emitting diodes, lasing, and quantum computing applications because of their inherent connection with electron spin and dark excitons. However, these quasi-particles are typically present as a minority species at room temperature making it difficult for quantitative experimental measurements. Here, we show that by chemically engineering the well depth of sp3 quantum defects through a series of alkyl functional groups covalently attached to semiconducting carbon nanotube hosts, trions can be efficiently generated and localized at the trapping chemical defects. The exciton-electron binding energy of the trapped trion approaches 119 meV, which more than doubles that of "free" trions in the same host material (54 meV) and other nanoscale systems (2-45 meV). Magnetoluminescence spectroscopy suggests the absence of dark states in the energetic vicinity of trapped trions. Unexpectedly, the trapped trions are approximately 7.3-fold brighter than the brightest previously reported and 16 times as bright as native nanotube excitons, with a photoluminescence lifetime that is more than 100 times larger than that of free trions. These intriguing observations are understood by an efficient conversion of dark excitons to bright trions at the defect sites. This work makes trions synthetically accessible and uncovers the rich photophysics of these tricarrier quasi-particles, which may find broad implications in bioimaging, chemical sensing, energy harvesting, and light emitting in the short-wave infrared.
Collapse
Affiliation(s)
- Hyejin Kwon
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United
States
| | - Mijin Kim
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United
States
| | - Manuel Nutz
- Fakultat
für Physik, Center for NanoScience and Munich Quantum Center, Ludwig-Maximilians-Universitat München, Geschwister-Scholl-Platz 1, D-80539 München, Germany
| | - Nicolai F. Hartmann
- Center
for Integrated Nanotechnologies, Materials Physics and Applications
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Vivien Perrin
- Fakultat
für Physik, Center for NanoScience and Munich Quantum Center, Ludwig-Maximilians-Universitat München, Geschwister-Scholl-Platz 1, D-80539 München, Germany
| | - Brendan Meany
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United
States
| | - Matthias S. Hofmann
- Fakultat
für Physik, Center for NanoScience and Munich Quantum Center, Ludwig-Maximilians-Universitat München, Geschwister-Scholl-Platz 1, D-80539 München, Germany
| | - Charles W. Clark
- Joint
Quantum Institute, National Institute of
Standards and Technology, Gaithersburg, Maryland 20902, United States
| | - Han Htoon
- Center
for Integrated Nanotechnologies, Materials Physics and Applications
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Stephen K. Doorn
- Center
for Integrated Nanotechnologies, Materials Physics and Applications
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexander Högele
- Fakultat
für Physik, Center for NanoScience and Munich Quantum Center, Ludwig-Maximilians-Universitat München, Geschwister-Scholl-Platz 1, D-80539 München, Germany
| | - YuHuang Wang
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United
States
- Maryland
NanoCenter, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
32
|
Sykes ME, Kim M, Wu X, Wiederrecht GP, Peng L, Wang Y, Gosztola DJ, Ma X. Ultrafast Exciton Trapping at sp3 Quantum Defects in Carbon Nanotubes. ACS NANO 2019; 13:13264-13270. [PMID: 31661244 DOI: 10.1021/acsnano.9b06279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Semiconducting single-walled carbon nanotubes (SWCNTs) constitute an ideal platform for developing near-infrared biosensors, single photon sources, and nanolasers due to their distinct optical and electrical properties. Covalent doping of SWCNTs has recently been discovered as an efficient approach in enhancing their emission intensities. We perform pump-probe studies of SWCNTs that are covalently doped with sp3 quantum defects and reveal strikingly different exciton formation dynamics and decay mechanisms in the presence of the defect sites. We show that, in highly doped SWCNTs, ultrafast trapping of excitons at the defect sites can outpace other photodynamic processes and lead to ground-state photobleaching of the quantum defects. Our fitting of the transient data with a kinetic model also reveals an upper limit in the quantum defect density for obtaining highly luminescent SWCNTs without causing irreversible damage. These findings not only deepen our understanding of the photodynamics in covalently doped SWCNTs but also reveal critical information for the design of bright near-infrared emitters that can be utilized in biological, quantum information, and nanophotonic applications.
Collapse
Affiliation(s)
- Matthew E Sykes
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Mijin Kim
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Gary P Wiederrecht
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Lintao Peng
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - David J Gosztola
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Xuedan Ma
- Center for Nanoscale Materials , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| |
Collapse
|
33
|
Chen Y, Marty L, Bendiab N. New Light on Molecule-Nanotube Hybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902917. [PMID: 31553098 DOI: 10.1002/adma.201902917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Optoelectronics benefits from outstanding new nanomaterials that provide emission and detection in the visible and near-infrared range, photoswitches, two level systems for single photon emission, etc. Among these, carbon nanotubes are envisioned as game changers despite difficult handling and control over chirality burdening their use. However, recent breakthroughs on hybrid carbon nanotubes have established nanotubes as pioneers for a new family of building blocks for optics and quantum optics. Functionalization of carbon nanotubes with molecules or polymers not only preserves the nanotube properties from the environment, but also promotes new performance abilities to the resulting hybrids. Photoluminescence and Raman signals are enhanced in the hybrids, which questions the nature of the electronic coupling between nanotube and molecules. Furthermore, coupling to optical cavities dramatically enhances single photon emission, which operates up to room temperature. This new light on nanotube hybrids shows their potential to push optoelectronics a step forward.
Collapse
Affiliation(s)
- Yani Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000, Grenoble, France
| | - Laëtitia Marty
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000, Grenoble, France
| | - Nedjma Bendiab
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000, Grenoble, France
| |
Collapse
|
34
|
Velizhanin KA. Exciton relaxation in carbon nanotubes via electronic-to-vibrational energy transfer. J Chem Phys 2019; 151:144703. [PMID: 31615218 DOI: 10.1063/1.5121300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Covalent functionalization of semiconducting single-wall carbon nanotubes (CNTs) introduces new photoluminescent emitting states. These states are spatially localized around functionalization sites and strongly red-shifted relative to the emission commonly observed from the CNT band-edge exciton state. A particularly important feature of these localized exciton states is that because the exciton is no longer free to diffusively sample photoluminescent quenching sites along the CNT length, its lifetime is significantly extended. We have recently demonstrated that an important relaxation channel of such localized excitons is the electronic-to-vibrational energy transfer (EVET). This process is analogous to the Förster resonance energy transfer except the final state of this process is not electronically, but vibrationally excited molecules of the surrounding medium (e.g., solvent). In this work, we develop a theory of EVET for a nanostructure of arbitrary shape and apply it to the specific case of EVET-mediated relaxation of defect-localized excitons in a covalently functionalized CNT. The resulting EVET relaxation times are in good agreement with experimental data.
Collapse
Affiliation(s)
- Kirill A Velizhanin
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
35
|
Nutz M, Zhang J, Kim M, Kwon H, Wu X, Wang Y, Högele A. Photon Correlation Spectroscopy of Luminescent Quantum Defects in Carbon Nanotubes. NANO LETTERS 2019; 19:7078-7084. [PMID: 31478677 PMCID: PMC6814285 DOI: 10.1021/acs.nanolett.9b02553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/14/2019] [Indexed: 05/27/2023]
Abstract
Defect-decorated single-wall carbon nanotubes have shown rapid growing potential for imaging, sensing, and the development of room-temperature single-photon sources. The key to the highly nonclassical emission statistics is the discrete energy spectrum of defect-localized excitons. However, variations in defect configurations give rise to distinct spectral bands that may compromise single-photon efficiency and purity in practical devices, and experimentally it has been challenging to study the exciton population distribution among the various defect-specific states. Here, we performed photon correlation spectroscopy on hexyl-decorated single-wall carbon nanotubes to unravel the dynamics and competition between neutral and charged exciton populations. With autocorrelation measurements at the single-tube level, we prove the nonclassical photon emission statistics of defect-specific exciton and trion photoluminescence and identify their mutual exclusiveness in photoemissive events with cross-correlation spectroscopy. Moreover, our study reveals the presence of a dark state with population-shelving time scales between 10 and 100 ns. These new insights will guide further development of chemically tailored carbon nanotube states for quantum photonics applications.
Collapse
Affiliation(s)
- Manuel Nutz
- Faculty
of Physics, Munich Quantum Center and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Munich
Center for Quantum Science and Technology (MCQST), Schellingtr. 4, 80799 München, Germany
| | - Jiaxiang Zhang
- Faculty
of Physics, Munich Quantum Center and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Shanghai
Institute of Microsystem and Information Technology, Chinese Academy
of Sciences, 865 Changning
Road, Shanghai 200050, China
| | - Mijin Kim
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regent
Drive, College Park, Maryland 20742, United States
| | - Hyejin Kwon
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regent
Drive, College Park, Maryland 20742, United States
| | - Xiaojian Wu
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regent
Drive, College Park, Maryland 20742, United States
| | - YuHuang Wang
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regent
Drive, College Park, Maryland 20742, United States
| | - Alexander Högele
- Faculty
of Physics, Munich Quantum Center and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- Munich
Center for Quantum Science and Technology (MCQST), Schellingtr. 4, 80799 München, Germany
| |
Collapse
|
36
|
Berger F, Lüttgens J, Nowack T, Kutsch T, Lindenthal S, Kistner L, Müller CC, Bongartz LM, Lumsargis VA, Zakharko Y, Zaumseil J. Brightening of Long, Polymer-Wrapped Carbon Nanotubes by sp 3 Functionalization in Organic Solvents. ACS NANO 2019; 13:9259-9269. [PMID: 31381849 PMCID: PMC6716210 DOI: 10.1021/acsnano.9b03792] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/05/2019] [Indexed: 05/18/2023]
Abstract
The functionalization of semiconducting single-walled carbon nanotubes (SWNTs) with sp3 defects that act as luminescent exciton traps is a powerful means to enhance their photoluminescence quantum yield (PLQY) and to add optical properties. However, the synthetic methods employed to introduce these defects are currently limited to aqueous dispersions of surfactant-coated SWNTs, often with short tube lengths, residual metallic nanotubes, and poor film-formation properties. In contrast to that, dispersions of polymer-wrapped SWNTs in organic solvents feature unrivaled purity, higher PLQY, and are easily processed into thin films for device applications. Here, we introduce a simple and scalable phase-transfer method to solubilize diazonium salts in organic nonhalogenated solvents for the controlled reaction with polymer-wrapped SWNTs to create luminescent aryl defects. Absolute PLQY measurements are applied to reliably quantify the defect-induced brightening. The optimization of defect density and trap depth results in PLQYs of up to 4% with 90% of photons emitted through the defect channel. We further reveal the strong impact of initial SWNT quality and length on the relative brightening by sp3 defects. The efficient and simple production of large quantities of defect-tailored polymer-sorted SWNTs enables aerosol-jet printing and spin-coating of thin films with bright and nearly reabsorption-free defect emission, which are desired for carbon nanotube-based near-infrared light-emitting devices.
Collapse
Affiliation(s)
- Felix
J. Berger
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jan Lüttgens
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tim Nowack
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tobias Kutsch
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
- Institute
of Physical Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - Sebastian Lindenthal
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Lucas Kistner
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Christine C. Müller
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Lukas M. Bongartz
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Victoria A. Lumsargis
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Yuriy Zakharko
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
37
|
Brozena AH, Kim M, Powell LR, Wang Y. Controlling the optical properties of carbon nanotubes with organic colour-centre quantum defects. Nat Rev Chem 2019; 3:375-392. [PMID: 32789186 PMCID: PMC7418925 DOI: 10.1038/s41570-019-0103-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Previously unwelcome, defects are emerging as a new frontier of research, providing a molecular focal point to study the coupling of electrons, excitons, phonons and spin in low-dimensional materials. This opportunity is particularly intriguing in semiconducting single-walled carbon nanotubes, in which covalently bonding organic functional groups to the sp 2 carbon lattice can produce tunable sp 3 quantum defects that fluoresce brightly in the shortwave IR, emitting pure single photons at room temperature. These novel physical properties have made such synthetic defects, or 'organic colour centres', exciting new systems for chemistry, physics, materials science, engineering and quantum technologies. This Review examines progress in this emerging field and presents a unified description of this new family of quantum emitters, as well as providing an outlook of the rapidly expanding research and applications of synthetic defects.
Collapse
Affiliation(s)
- Alexandra H. Brozena
- Department of Chemistry and Biochemistry, University of
Maryland, College Park, MD, USA
| | - Mijin Kim
- Department of Chemistry and Biochemistry, University of
Maryland, College Park, MD, USA
| | - Lyndsey R. Powell
- Department of Chemistry and Biochemistry, University of
Maryland, College Park, MD, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of
Maryland, College Park, MD, USA
- Maryland NanoCenter, University of Maryland, College Park,
MD, USA
| |
Collapse
|
38
|
He X, Sun L, Gifford BJ, Tretiak S, Piryatinski A, Li X, Htoon H, Doorn SK. Intrinsic limits of defect-state photoluminescence dynamics in functionalized carbon nanotubes. NANOSCALE 2019; 11:9125-9132. [PMID: 31032824 DOI: 10.1039/c9nr02175b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Defect states introduced to single wall carbon nanotubes (SWCNTs) by covalent functionalization give rise to novel photophysics and are showing promise as sources of room-temperature quantum emission of interest for quantum information technologies. Evaluation of their ultimate potential for such needs requires a knowledge of intrinsic dynamic and coherence behaviors. Here we probe population relaxation and dephasing time (T1 and T2, respectively) of defect states following deposition of functionalized SWCNTs on polystyrene substrates that are subjected to an isopropanol rinse to remove surfactant. Low-temperature (4 K) photo-luminescence linewidths (∼100 μeV) following surfactant removal are a factor of ten narrower than those for unrinsed SWCNTs. Measured recombination lifetimes, on the order of 1.5 ns, compare well with those estimated from DFT calculations, indicating that the intrinsic radiatively-limited lifetime is approached following this sample treatment. Dephasing times evaluated directly through an interferometric approach compare closely to those established by photoluminescence linewidths. Dephasing times as high as 12 ps are found; a factor of up to 6 times greater than those evaluated for band-edge exciton states. Such enhancement of dephasing and photoluminescence lifetime behavior is a direct consequence of exciton localization at the SWCNT defect sites.
Collapse
Affiliation(s)
- Xiaowei He
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
de los Reyes C, Smith McWilliams AD, Hernández K, Walz-Mitra KL, Ergülen S, Pasquali M, Martí AA. Adverse Effect of PTFE Stir Bars on the Covalent Functionalization of Carbon and Boron Nitride Nanotubes Using Billups-Birch Reduction Conditions. ACS OMEGA 2019; 4:5098-5106. [PMID: 31459687 PMCID: PMC6648908 DOI: 10.1021/acsomega.8b03677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/21/2019] [Indexed: 06/10/2023]
Abstract
The functionalization of nanomaterials has long been studied as a way to manipulate and tailor their properties to a desired application. Of the various methods available, the Billups-Birch reduction has become an important and widely used reaction for the functionalization of carbon nanotubes (CNTs) and, more recently, boron nitride nanotubes. However, an easily overlooked source of error when using highly reductive conditions is the utilization of poly(tetrafluoroethylene) (PTFE) stir bars. In this work, we studied the effects of using this kind of stir bar versus using a glass stir bar by measuring the resulting degree of functionalization with 1-bromododecane. Thermogravimetric analysis studies alone could deceive one into thinking that reactions stirred with PTFE stir bars are highly functionalized; however, the utilization of spectroscopic techniques, such as Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, tells otherwise. Furthermore, in the case of CNTs, we determined that using Raman spectroscopy alone for analysis is not sufficient to demonstrate successful chemical modification.
Collapse
Affiliation(s)
- Carlos
A. de los Reyes
- Department
of Chemistry, Department of Chemical and Biomolecular Engineering, Department of Materials
Science and NanoEngineering, Department of Bioengineering,
and Smalley-Curl Institute
for Nanoscale Science and Technology, Rice
University, Houston, Texas 77005, United States
| | - Ashleigh D. Smith McWilliams
- Department
of Chemistry, Department of Chemical and Biomolecular Engineering, Department of Materials
Science and NanoEngineering, Department of Bioengineering,
and Smalley-Curl Institute
for Nanoscale Science and Technology, Rice
University, Houston, Texas 77005, United States
| | - Katharyn Hernández
- Department
of Chemistry, Department of Chemical and Biomolecular Engineering, Department of Materials
Science and NanoEngineering, Department of Bioengineering,
and Smalley-Curl Institute
for Nanoscale Science and Technology, Rice
University, Houston, Texas 77005, United States
| | - Kendahl L. Walz-Mitra
- Department
of Chemistry, Department of Chemical and Biomolecular Engineering, Department of Materials
Science and NanoEngineering, Department of Bioengineering,
and Smalley-Curl Institute
for Nanoscale Science and Technology, Rice
University, Houston, Texas 77005, United States
| | - Selin Ergülen
- Department
of Chemistry, Department of Chemical and Biomolecular Engineering, Department of Materials
Science and NanoEngineering, Department of Bioengineering,
and Smalley-Curl Institute
for Nanoscale Science and Technology, Rice
University, Houston, Texas 77005, United States
| | - Matteo Pasquali
- Department
of Chemistry, Department of Chemical and Biomolecular Engineering, Department of Materials
Science and NanoEngineering, Department of Bioengineering,
and Smalley-Curl Institute
for Nanoscale Science and Technology, Rice
University, Houston, Texas 77005, United States
| | - Angel A. Martí
- Department
of Chemistry, Department of Chemical and Biomolecular Engineering, Department of Materials
Science and NanoEngineering, Department of Bioengineering,
and Smalley-Curl Institute
for Nanoscale Science and Technology, Rice
University, Houston, Texas 77005, United States
| |
Collapse
|
40
|
Kim Y, Velizhanin KA, He X, Sarpkaya I, Yomogida Y, Tanaka T, Kataura H, Doorn SK, Htoon H. Photoluminescence Intensity Fluctuations and Temperature-Dependent Decay Dynamics of Individual Carbon Nanotube sp 3 Defects. J Phys Chem Lett 2019; 10:1423-1430. [PMID: 30848914 DOI: 10.1021/acs.jpclett.8b03732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent demonstration of room temperature, telecommunication wavelength single photon generation by sp3 defects of single wall carbon nanotubes established these defects as a new class of quantum materials. However, their practical utilization in development of quantum light sources calls for a significant improvement in their imperfect quantum yield (QY∼10-30%). PL intensity fluctuations observed with some defects also need to be eliminated. Aiming toward attaining fundamental understanding necessary for addressing these critical issues, we investigate PL intensity fluctuation and PL decay dynamics of aryl sp3 defects of (6,5), (7,5), and (10,3) single wall carbon nanotubes (SWCNTs) at temperatures ranging from 300 to 4 K. By correlating defect-state PL intensity fluctuations with change (or lack of change) in PL decay dynamics, we identified random variations in the trapping efficiency of E11 band-edge excitons (likely resulting from the existence of a fluctuating potential barrier in the vicinity of the defect) as the mechanism mainly responsible for the defect PL intensity fluctuations. Furthermore, by analyzing the temperature dependence of PL intensity and decay dynamics of individual defects based on a kinetic model involving the trapping and detrapping of excitons by optically allowed and forbidden (bright and dark) defect states, we estimate the height of the potential barrier to be in the 3-22 meV range. Our analysis also provides further confirmation of recent DFT simulation results that the emissive sp3 defect state is accompanied by an energetically higher-lying optically forbidden (dark) exciton state.
Collapse
Affiliation(s)
- Younghee Kim
- Center for Integrated Nanotechnologies, Materials Physics and Application Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Kirill A Velizhanin
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Xiaowei He
- Center for Integrated Nanotechnologies, Materials Physics and Application Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Ibrahim Sarpkaya
- Center for Integrated Nanotechnologies, Materials Physics and Application Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Yohei Yomogida
- Nanomaterials Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| | - Takeshi Tanaka
- Nanomaterials Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| | - Hiromichi Kataura
- Nanomaterials Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| | - Stephen K Doorn
- Center for Integrated Nanotechnologies, Materials Physics and Application Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Han Htoon
- Center for Integrated Nanotechnologies, Materials Physics and Application Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
41
|
Shiraki T, Shiga T, Shiraishi T, Onitsuka H, Nakashima N, Fujigaya T. Multistep Wavelength Switching of Near-Infrared Photoluminescence Driven by Chemical Reactions at Local Doped Sites of Single-Walled Carbon Nanotubes. Chemistry 2018; 24:19162-19165. [PMID: 30370950 DOI: 10.1002/chem.201805342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Indexed: 11/07/2022]
Abstract
Local chemical functionalization is used for defect doping of single-walled carbon nanotubes (SWNTs), to develop near-infrared photoluminescence (NIR PL) properties. We report the multistep wavelength shifting of the NIR PL of SWNTs through chemical reactions at local doped sites tethered to an arylaldehyde group. The PL wavelength of the doped SWNTs is modulated based on imine chemistry. This involves the imine formation of aldehyde groups with added arylamines, imine dissociation reaction, exchange reaction of bound arylamines in the imine, and the Kabachnik-Fields reaction of imine groups using diisopropyl phosphite. Using doped sites as a localized chemical reaction platform can exploit the versatile molecularly driven functionality of carbon nanotubes and related nanomaterials.
Collapse
Affiliation(s)
- Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tamehito Shiga
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomonari Shiraishi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hisashi Onitsuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Naotoshi Nakashima
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
42
|
Kim M, Wu X, Ao G, He X, Kwon H, Hartmann NF, Zheng M, Doom SK, Wang Y. Mapping Structure-Property Relationships of Organic Color Centers. Chem 2018; 4:2180-2191. [PMID: 31763495 PMCID: PMC6874404 DOI: 10.1016/j.chempr.2018.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Organic color centers are an emergent class of quantum emitters that hold vast potential for applications in bioimaging, chemical sensing, and quantum information processing. Here, we show that these synthetic color centers follow interesting structure-property relationships through comparative spectral studies of 14 purified single-walled carbon nanotube chiralities and 30 different functional groups that vary in electron-withdrawing capability and bonding configurations. The defect emission is tunable by as much as 400 meV in the near-infrared as a function of host structure and the chemical nature of the color centers. However, the emission energy is nearly free from chiral angle and family patterns of the nanotube host (although this strongly depends on the nanotube diameter), suggesting that a trapped exciton at the organic color centers to some degree electronically decouples from the one-dimensional semiconductor host. Our findings provide important insights for designing and controlling this new family of synthetic color centers.
Collapse
Affiliation(s)
- Mijin Kim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Geyou Ao
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Xiaowei He
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Hyejin Kwon
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Nicolai F. Hartmann
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Stephen K. Doom
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
- Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
- Lead Contact
| |
Collapse
|
43
|
Narrow-band single-photon emission through selective aryl functionalization of zigzag carbon nanotubes. Nat Chem 2018; 10:1089-1095. [DOI: 10.1038/s41557-018-0126-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/25/2018] [Indexed: 11/08/2022]
|
44
|
He X, Velizhanin KA, Bullard G, Bai Y, Olivier JH, Hartmann NF, Gifford BJ, Kilina S, Tretiak S, Htoon H, Therien MJ, Doorn SK. Solvent- and Wavelength-Dependent Photoluminescence Relaxation Dynamics of Carbon Nanotube sp 3 Defect States. ACS NANO 2018; 12:8060-8070. [PMID: 29995379 DOI: 10.1021/acsnano.8b02909] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Photoluminescent sp3 defect states introduced to single wall carbon nanotubes (SWCNTs) through low-level covalent functionalization create new photophysical behaviors and functionality as a result of defect sites acting as exciton traps. Evaluation of relaxation dynamics in varying dielectric environments can aid in advancing a more complete description of defect-state relaxation pathways and electronic structure. Here, we exploit helical wrapping polymers as a route to suspending (6,5) SWCNTs covalently functionalized with 4-methoxybenzene in solvent systems including H2O, D2O, methanol, dimethylformamide, tetrahydrofuran, and toluene, spanning a range of dielectric constants from 80 to 3. Defect-state photoluminescence decays were measured as a function of emission wavelength and solvent environment. Emission decays are biexponential, with short lifetime components on the order of 65 ps and long components ranging from around 100 to 350 ps. Both short and long decay components increase as emission wavelength increases, while only the long lifetime component shows a solvent dependence. We demonstrate that the wavelength dependence is a consequence of thermal detrapping of defect-state excitons to produce mobile E11 excitons, providing an important mechanism for loss of defect-state population. Deeper trap states (i.e., those emitting at longer wavelengths) result in a decreased rate for thermal loss. The solvent-independent behavior of the short lifetime component is consistent with its assignment as the characteristic time for redistribution of exciton population between bright and dark defect states. The solvent dependence of the long lifetime component is shown to be consistent with relaxation via an electronic to vibrational energy transfer mechanism, in which energy is resonantly lost to solvent vibrations in a complementary mechanism to multiphonon decay processes.
Collapse
Affiliation(s)
- Xiaowei He
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Kirill A Velizhanin
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - George Bullard
- Department of Chemistry, French Family Science Center , Duke University , Durham , North Carolina 27708 , United States
| | - Yusong Bai
- Department of Chemistry, French Family Science Center , Duke University , Durham , North Carolina 27708 , United States
| | - Jean-Hubert Olivier
- Department of Chemistry, French Family Science Center , Duke University , Durham , North Carolina 27708 , United States
| | - Nicolai F Hartmann
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Brendan J Gifford
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
- Center for Nonlinear Sciences , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58108 , United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58108 , United States
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Han Htoon
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Michael J Therien
- Department of Chemistry, French Family Science Center , Duke University , Durham , North Carolina 27708 , United States
| | - Stephen K Doorn
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
45
|
He X, Htoon H, Doorn SK, Pernice WHP, Pyatkov F, Krupke R, Jeantet A, Chassagneux Y, Voisin C. Carbon nanotubes as emerging quantum-light sources. NATURE MATERIALS 2018; 17:663-670. [PMID: 29915427 DOI: 10.1038/s41563-018-0109-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/14/2018] [Indexed: 05/18/2023]
Abstract
Progress in quantum computing and quantum cryptography requires efficient, electrically triggered, single-photon sources at room temperature in the telecom wavelengths. It has been long known that semiconducting single-wall carbon nanotubes (SWCNTs) display strong excitonic binding and emit light over a broad range of wavelengths, but their use has been hampered by a low quantum yield and a high sensitivity to spectral diffusion and blinking. In this Perspective, we discuss recent advances in the mastering of SWCNT optical properties by chemistry, electrical contacting and resonator coupling towards advancing their use as quantum light sources. We describe the latest results in terms of single-photon purity, generation efficiency and indistinguishability. Finally, we consider the main fundamental challenges stemming from the unique properties of SWCNTs and the most promising roads for SWCNT-based chip integrated quantum photonic sources.
Collapse
Affiliation(s)
- X He
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - H Htoon
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - S K Doorn
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - W H P Pernice
- Institute of Physics, University of Münster, Münster, Germany
| | - F Pyatkov
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
| | - R Krupke
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
| | - A Jeantet
- Laboratoire Pierre Aigrain, École Normale Supérieure, PSL University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Université, CNRS, Paris, France
| | - Y Chassagneux
- Laboratoire Pierre Aigrain, École Normale Supérieure, PSL University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Université, CNRS, Paris, France
| | - C Voisin
- Laboratoire Pierre Aigrain, École Normale Supérieure, PSL University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Université, CNRS, Paris, France.
| |
Collapse
|
46
|
Shayan K, He X, Luo Y, Rabut C, Li X, Hartmann NF, Blackburn JL, Doorn SK, Htoon H, Strauf S. Suppression of exciton dephasing in sidewall-functionalized carbon nanotubes embedded into metallo-dielectric antennas. NANOSCALE 2018; 10:12631-12638. [PMID: 29943788 DOI: 10.1039/c8nr03542c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Covalent functionalization of single-walled carbon nanotubes (SWCNTs) is a promising route to enhance the quantum yield of exciton emission and can lead to single-photon emission at room temperature. However, the spectral linewidth of the defect-related E11* emission remains rather broad. Here, we systematically investigate the low-temperature exciton emission of individual SWCNTs that have been dispersed with sodium-deoxycholate (DOC) and polyfluorene (PFO-BPy), are grown by laser vaporization (LV) or by CoMoCat techniques and are functionalized with oxygen as well as 3,5-dichlorobenzene groups. The E11 excitons in oxygen-functionalized SWCNTs remain rather broad with up to 10 meV linewidth while exciton emission from 3,5-dichlorobenzene functionalized SWCNTs is found to be about one order of magnitude narrower. In all cases, wrapping with PFO-BPy provides significantly better protection against pump induced dephasing compared to DOC. To further study the influence of exciton localization on pump-induced dephasing, we have embedded the functionalized SWCNTs into metallo-dielectric antenna cavities to maximize light collection. We show that 0D excitons attributed to the E11* emission of 3,5-dichlorobenzene quantum defects of LV-grown SWCNTs can display near resolution-limited linewidths down to 35 μeV. Interestingly, these 0D excitons give rise to a 3-fold suppressed pump-induced exciton dephasing compared to the E11 excitons in the same SWCNT. These findings provide a foundation to build a unified description of the emergence of novel optical behavior from the interplay of covalently introduced defects, dispersants, and exciton confinement in SWCNTs and might further lead to the realization of indistinguishable photons from carbon nanotubes.
Collapse
Affiliation(s)
- Kamran Shayan
- Department of Physics, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Danné N, Kim M, Godin AG, Kwon H, Gao Z, Wu X, Hartmann NF, Doorn SK, Lounis B, Wang Y, Cognet L. Ultrashort Carbon Nanotubes That Fluoresce Brightly in the Near-Infrared. ACS NANO 2018; 12:6059-6065. [PMID: 29889499 DOI: 10.1021/acsnano.8b02307] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The intrinsic near-infrared photoluminescence observed in long single-walled carbon nanotubes is known to be quenched in ultrashort nanotubes due to their tiny size as compared to the exciton diffusion length in these materials (>100 nm). Here, we show that intense photoluminescence can be created in ultrashort nanotubes (∼40 nm length) upon incorporation of exciton-trapping sp3 defect sites. Using super-resolution photoluminescence imaging at <25 nm resolution, we directly show the preferential localization of excitons at the nanotube ends, which separate by less than 40 nm and behave as independent emitters. This unexpected observation opens the possibility to synthesize fluorescent ultrashort nanotubes-a goal that has been long thought impossible-for bioimaging applications, where bright near-infrared photoluminescence and small size are highly desirable, and for quantum information science, where high quality and well-controlled near-infrared single photon emitters are needed.
Collapse
Affiliation(s)
- Noémie Danné
- Laboratoire Photonique Numérique et Nanosciences , Univ. Bordeaux , UMR 5298, F-33400 Talence , France
- Institut d'Optique & CNRS , LP2N UMR 5298, F-33400 Talence , France
| | - Mijin Kim
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Antoine G Godin
- Laboratoire Photonique Numérique et Nanosciences , Univ. Bordeaux , UMR 5298, F-33400 Talence , France
- Institut d'Optique & CNRS , LP2N UMR 5298, F-33400 Talence , France
| | - Hyejin Kwon
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Zhenghong Gao
- Laboratoire Photonique Numérique et Nanosciences , Univ. Bordeaux , UMR 5298, F-33400 Talence , France
- Institut d'Optique & CNRS , LP2N UMR 5298, F-33400 Talence , France
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Nicolai F Hartmann
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 United States
| | - Stephen K Doorn
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 United States
| | - Brahim Lounis
- Laboratoire Photonique Numérique et Nanosciences , Univ. Bordeaux , UMR 5298, F-33400 Talence , France
- Institut d'Optique & CNRS , LP2N UMR 5298, F-33400 Talence , France
| | - YuHuang Wang
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
- Maryland NanoCenter , University of Maryland , College Park , Maryland 20742 , United States
| | - Laurent Cognet
- Laboratoire Photonique Numérique et Nanosciences , Univ. Bordeaux , UMR 5298, F-33400 Talence , France
- Institut d'Optique & CNRS , LP2N UMR 5298, F-33400 Talence , France
| |
Collapse
|
48
|
Ishii A, He X, Hartmann NF, Machiya H, Htoon H, Doorn SK, Kato YK. Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities. NANO LETTERS 2018; 18:3873-3878. [PMID: 29781621 DOI: 10.1021/acs.nanolett.8b01170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ∼50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ∼30% decrease of emission lifetime is observed. The statistics of photons emitted from the cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ∼1.7 × 107 Hz.
Collapse
Affiliation(s)
- Akihiro Ishii
- Nanoscale Quantum Photonics Laboratory, RIKEN , Saitama 351-0198 , Japan
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics , Saitama 351-0198 , Japan
| | - Xiaowei He
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Nicolai F Hartmann
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Hidenori Machiya
- Nanoscale Quantum Photonics Laboratory, RIKEN , Saitama 351-0198 , Japan
- Department of Electrical Engineering , The University of Tokyo , Tokyo 113-8656 , Japan
| | - Han Htoon
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Stephen K Doorn
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Yuichiro K Kato
- Nanoscale Quantum Photonics Laboratory, RIKEN , Saitama 351-0198 , Japan
- Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics , Saitama 351-0198 , Japan
| |
Collapse
|
49
|
Onitsuka H, Fujigaya T, Nakashima N, Shiraki T. Control of the Near Infrared Photoluminescence of Locally Functionalized Single-Walled Carbon Nanotubes via Doping by Azacrown-Ether Modification. Chemistry 2018; 24:9393-9398. [PMID: 29741218 DOI: 10.1002/chem.201800904] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/25/2018] [Indexed: 11/05/2022]
Abstract
Doped semiconducting single-walled carbon nanotubes (SWNTs) through local chemical functionalization (lf-SWNTs) show fascinating photoluminescence (PL) that appears with a longer wavelength and enhanced quantum yield compared to the original PL of non-modified SWNTs. In this study, we introduce an azacrown ether moiety at the doped sites of lf-SWNTs (CR-lf-SWNTs), and observe selective PL wavelength shifts depending on different interaction modes of silver ion inclusion and protonation of the amino group in the ring. Interestingly, their different values of the wavelength shifts show a clear correlation with calculated electron density of the nitrogen atom in the azacrown moiety in case of the inclusion form and the protonated form. This newly-observed responsiveness based on molecular interactions is expected to create doped sites that can versatilely control the PL functions based on molecular systems.
Collapse
Affiliation(s)
- Hisashi Onitsuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Naotoshi Nakashima
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
50
|
Gifford BJ, Sifain AE, Htoon H, Doorn SK, Kilina S, Tretiak S. Correction Scheme for Comparison of Computed and Experimental Optical Transition Energies in Functionalized Single-Walled Carbon Nanotubes. J Phys Chem Lett 2018; 9:2460-2468. [PMID: 29678108 DOI: 10.1021/acs.jpclett.8b00653] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Covalent functionalization of single-walled carbon nanotubes (SWCNTs) introduces red-shifted emission features in the near-infrared spectral range due to exciton localization around the defect site. Such chemical modifications increase their potential use as near-infrared emitters and single-photon sources in telecommunications applications. Density functional theory (DFT) studies using finite-length tube models have been used to calculate their optical transition energies. Predicted energies are typically blue-shifted compared to experiment due to methodology errors including imprecise self-interaction corrections in the density functional and finite-size basis sets. Furthermore, artificial quantum confinement in finite models cannot be corrected by a constant-energy shift since they depend on the degree of exciton localization. Herein, we present a method that corrects the emission energies predicted by time-dependent DFT. Confinement and methodology errors are separately estimated using experimental data for unmodified tubes. Corrected emission energies are in remarkable agreement with experiment, suggesting the value of this straightforward method toward predicting and interpreting the optical features of functionalized SWCNTs.
Collapse
Affiliation(s)
- Brendan J Gifford
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58108 , United States
| | - Andrew E Sifain
- Department of Physics and Astronomy , University of Southern California , Los Angeles , California 90089 , United States
| | | | | | - Svetlana Kilina
- Department of Chemistry and Biochemistry , North Dakota State University , Fargo , North Dakota 58108 , United States
| | | |
Collapse
|