1
|
Zeng J, Desmond P, Ngo HH, Lin W, Liu X, Liu B, Li G, Ding A. Membrane modification in enhancement of virus removal: A critical review. J Environ Sci (China) 2024; 146:198-216. [PMID: 38969448 DOI: 10.1016/j.jes.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2024]
Abstract
Many waterborne diseases are related with viruses, and COVID-19 worldwide has raised the concern of virus security in water into the public horizon. Compared to other conventional water treatment processes, membrane technology can achieve satisfactory virus removal with fewer chemicals, and prevent the outbreaks of viruses to a maximal extent. Researchers developed new modification methods to improve membrane performance. This review focused on the membrane modifications that enhance the performance in virus removal. The characteristics of viruses and their removal by membrane filtration were briefly generalized, and membrane modifications were systematically discussed through different virus removal mechanisms, including size exclusion, hydrophilic and hydrophobic interactions, electronic interactions, and inactivation. Advanced functional materials for membrane modification were summarized based on their nature. Furthermore, it is suggested that membranes should be enhanced through different mechanisms mainly based on their ranks of pore size. The current review provided theoretical support regarding membrane modifications in the enhancement of virus removal and avenues for practical application.
Collapse
Affiliation(s)
- Jie Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peter Desmond
- Institute of Environmental Engineering (ISA), RWTH Aachen University, Aachen 52056, Germany
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, Sydney 2007, Australia
| | - Wei Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingsheng Liu
- The Second Construction Co. Ltd. of China Construction Third Engineering Bureau, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Ezhumalai N, Nanthagopal M, Kasthuri J, Rajendiran N. Synthesis of N-acetylcysteine functionalized cholic acid based triarmed poly DL-Lactide and encapsulation of gold nanoparticles: Studies on the antimicrobial activity and biocompatibility for drug delivery applications. Int J Biol Macromol 2024; 279:135085. [PMID: 39197626 DOI: 10.1016/j.ijbiomac.2024.135085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Cholic acid based biodegradable reverse polymeric micelles have been widely utilized as preclinically suitable drug delivery system for poorly water-soluble drugs. In this report, we developed N-acetylcysteine functionalized cholic acid based triarmed poly (Dl-lactide) (ACyCA-triarmed (DLL)n as reversed polymeric micelles for drug delivery studies. ACyCA was synthesized via thiol-yne click reaction and subsequently used as an initiator for the synthesis of ACyCA-triarmed (DLL)n through ring opening polymerization (ROP) using Sn (Oct)2 as a catalyst. The synthesized ACyCA-triarmed (DLL)n was characterized using GPC, FT-IR, 1H NMR, 13C NMR, spectrofluorometer, HR-TEM, DSC, TGA, XRD, DLS, and zeta potential techniques. The reverse critical micellar concentration of the polymer was determined to be 1.99 mg/mL using a spectrofluorometer. The synthesized reverse micelles (RMs) were utilized as a reducing and capping agent for the preparation of AuNPs under sunlight exposure. The formed AuNPs exhibited spherical in shape with an average size of ∼ 23.4 nm and Dh was found to be 86.8 ± 1.3 nm as evidenced by the TEM and DLS analysis. Furthermore, the antimicrobial activity, hemolytic activity, anti-oxidant activity, and in-vitro drug release studies were examined for the RMs-AuNPs and compared with RMs. The hydrophobic nature of RMs and RMs-AuNPs had better haemocompatibility at above the reversed CMC. The antioxidant activity RMs-AuNPs showed better inhibitory effect in a dose-dependent manner as compared to RMs. The RMs-AuNPs formulation act as reservoir for solubilization of hydrophobic doxorubicin (Dox.HCl) drugs and can be used as therapeutic platform for slow and sustained release of drugs in biological medium.
Collapse
Affiliation(s)
- Nishanthi Ezhumalai
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Manivannan Nanthagopal
- Department of Microbiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, India
| | - Jayapalan Kasthuri
- Department of Chemistry, Quaid-E-Millath Government College for Women, Chennai 600002, Tamil Nadu, India
| | - Nagappan Rajendiran
- Department of Polymer Science, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| |
Collapse
|
3
|
Cheong YE, Weyandt R, Dewald W, Tolksdorf T, Müller L, Braun A. A realistic approach for evaluating antimicrobial surfaces for dry surface exposure scenarios. Appl Environ Microbiol 2024; 90:e0115024. [PMID: 39365048 PMCID: PMC11497783 DOI: 10.1128/aem.01150-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 pandemic has raised public awareness about the importance of hygiene, leading to an increased demand for antimicrobial surfaces to minimize microbial contamination on high-touch surfaces. This is particularly relevant in public and private transportation settings, where surfaces frequently touched by individuals pose a significant, yet preventable, risk of infection transmission. Typically, the antimicrobial activity of surfaces is tested using test methods of the International Standards Organization, American Society for Testing and Materials, or Japanese Industrial Standards, which involve complete submersion in liquid, elevated temperature (37°C), and prolonged (24 h) contact periods. However, these conditions do not accurately represent real-world scenarios where surfaces are exposed to air. In this study, we propose a modified test method designed to better reflect real-life conditions in the intended end-use setting. The modifications included using deionized water instead of nutrient broth while preparing bacterial inoculum, applying a small test inoculum to the surface and allowing it to dry, maintaining ambient temperature and relative humidity throughout the contact period, and reducing the contact period to 4 h. With this modified approach, the antimicrobial activity of 20 samples was reassessed. This screening revealed that out of 20 samples, only 2 samples were effective against all species, while 8 samples demonstrated partial effectiveness against selected species, and 10 samples showed no significant effect. These findings highlight the inadequacy of the current test standard and emphasize the urgent necessity for revised and adapted testing method to ensure a reliable and accurate evaluation.IMPORTANCEThe recent severe acute respiratory syndrome coronavirus 2 pandemic has sparked increased demand for antimicrobial surfaces to mitigate the risk of fomites-transmitted infection in both indoors and confined spaces. Commonly, the antimicrobial activity of these surfaces is assessed using test standards established by national standards bodies, which do not distinguish between different application scenarios. While these test standards are suitable for surfaces intended for submerged application, they are inappropriate for antimicrobial surfaces designed for dry surface exposure. The usage of these standards can lead to an overestimation of antimicrobial efficacy. Thus, this study introduces a modified dry exposure test method aimed at better reflecting real-life conditions in the intended end-use setting. Our results revealed the subpar antimicrobial performance of numerous samples, highlighting the necessity to revise and tailor the universal test standard to real-world scenarios in order to ensure a reliable and accurate evaluation.
Collapse
Affiliation(s)
| | - Ralph Weyandt
- Bioservices Department, SGS Institut Fresenius GmbH, Taunusstein, Germany
| | - Wilma Dewald
- Volkswagen AG, Group Innovation, Wolfsburg, Germany
| | | | - Laura Müller
- Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine – Hannover (Germany), Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) research network Hannover (Germany), Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD) and Institute of Immunology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Armin Braun
- Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine – Hannover (Germany), Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) research network Hannover (Germany), Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD) and Institute of Immunology, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
4
|
Vargas-Lizarazo AY, Ali MA, Mazumder NA, Kohli GM, Zaborska M, Sons T, Garnett M, Senanayake IM, Goodson BM, Vargas-Muñiz JM, Pond A, Jensik PJ, Olson ME, Hamilton-Brehm SD, Kohli P. Electrically polarized nanoscale surfaces generate reactive oxygenated and chlorinated species for deactivation of microorganisms. SCIENCE ADVANCES 2024; 10:eado5555. [PMID: 39093965 DOI: 10.1126/sciadv.ado5555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Because of the decreasing supply of new antibiotics, recent outbreaks of infectious diseases, and the emergence of antibiotic-resistant microorganisms, it is imperative to develop new effective strategies for deactivating a broad spectrum of microorganisms and viruses. We have implemented electrically polarized nanoscale metallic (ENM) coatings that deactivate a wide range of microorganisms including Gram-negative and Gram-positive bacteria with greater than 6-log reduction in less than 10 minutes of treatment. The electrically polarized devices were also effective in deactivating lentivirus and Candida albicans. The key to the high deactivation effectiveness of ENM devices is electrochemical production of micromolar cuprous ions, which mediated reduction of oxygen to hydrogen peroxide. Formation of highly damaging species, hydroxyl radicals and hypochlorous acid, from hydrogen peroxide contributed to antimicrobial properties of the ENM devices. The electric polarization of nanoscale coatings represents an unconventional tool for deactivating a broad spectrum of microorganisms through in situ production of reactive oxygenated and chlorinated species.
Collapse
Affiliation(s)
- Annie Y Vargas-Lizarazo
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - M Aswad Ali
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Nehal A Mazumder
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | | | - Miroslava Zaborska
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Tyler Sons
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Michelle Garnett
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Ishani M Senanayake
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - José M Vargas-Muñiz
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Amber Pond
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Philip J Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Michael E Olson
- Department of Medical Microbiology, Immunology and Cell Biology, School of Medicine, Southern Illinois University, Springfield, IL 62702, USA
| | | | - Punit Kohli
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Integrated Microscopy and Graphics Expertise (IMAGE) Center, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
5
|
Edo GI, Yousif E, Al-Mashhadani MH. Modified chitosan: Insight on biomedical and industrial applications. Int J Biol Macromol 2024; 275:133526. [PMID: 38960250 DOI: 10.1016/j.ijbiomac.2024.133526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Chitosan (CS), a by -product of chitin deacetylation can be useful in a broad range of purposes, to mention agriculture, pharmaceuticals, material science, food and nutrition, biotechnology and of recent, in gene therapy. Chitosan is a highly desired biomolecule due to the existence of many sensitive functional groups inside the molecule and also because of its net cationicity. The latter provides flexibility for creating a wide range of derivatives for particular end users across various industries. This overview aims to compile some of the most recent research on the bio-related applications that chitosan and its derivatives can be used for. However, chitosan's reactive functional groups are amendable to chemical reaction. Modifying the material to show enhanced solubility, a greater range of application options and pH-sensitive targeting and others have been a major focus of chitosan research. This review describes the modifications of chitosan that have been made to improve its water solubility, pH sensitivity, and capacity to target chitosan derivatives. Applying the by-products of chitosan as antibacterial, in targeting, extended release and as delivery systems is also covered. The by-products of chitosan will be important and potentially useful in developing new biomedical drugs in time to come.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
6
|
Thakkar N, Gajera G, Mehta D, Kothari V. Silversol ® (a Colloidal Nanosilver Formulation) Inhibits Growth of Antibiotic-Resistant Staphylococcus aureus by Disrupting Its Physiology in Multiple Ways. Pharmaceutics 2024; 16:726. [PMID: 38931848 PMCID: PMC11206351 DOI: 10.3390/pharmaceutics16060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Antibiotic-resistant strains of Staphylococcus aureus are being viewed as a serious threat by various public health agencies. Identifying novel targets in this important pathogen is crucial to the development of new effective antibacterial formulations. We investigated the antibacterial effect of a colloidal nanosilver formulation, Silversol®, against an antibiotic-resistant strain of S. aureus using appropriate in vitro assays. Moreover, we deciphered the molecular mechanisms underlying this formulation's anti-S. aureus activity using whole transcriptome analysis. Lower concentrations of the test formulation exerted a bacteriostatic effect against this pathogen, and higher concentrations exerted a bactericidal effect. Silversol® at sub-lethal concentration was found to disturb multiple physiological traits of S. aureus such as growth, antibiotic susceptibility, membrane permeability, efflux, protein synthesis and export, biofilm and exopolysaccharide production, etc. Transcriptome data revealed that the genes coding for transcriptional regulators, efflux machinery, transferases, β-lactam resistance, oxidoreductases, metal homeostasis, virulence factors, and arginine biosynthesis are expressed differently under the influence of the test formulation. Genes (argG and argH) involved in arginine biosynthesis emerged among the major targets of Silversol®'s antibacterial activity against S. aureus.
Collapse
Affiliation(s)
- Nidhi Thakkar
- Institute of Science, Nirma University, Ahmedabad 382481, India; (N.T.); (G.G.)
| | - Gemini Gajera
- Institute of Science, Nirma University, Ahmedabad 382481, India; (N.T.); (G.G.)
| | - Dilip Mehta
- Viridis BioPharma Pvt. Ltd., Mumbai 400043, India;
| | - Vijay Kothari
- Institute of Science, Nirma University, Ahmedabad 382481, India; (N.T.); (G.G.)
| |
Collapse
|
7
|
Sun K, Hu H, He Z, Xiao Z, Jin X, Zheng C, Liu Y. One-pot green solid-state synthesis of Cu 2O/microcrystalline cellulose composite with high anti-pathogenic activity. Carbohydr Polym 2024; 332:121851. [PMID: 38431425 DOI: 10.1016/j.carbpol.2024.121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024]
Abstract
Cuprous oxide (Cu2O) is proven as an excellent anti-harmful microbial material. However, the liquid and vapor pha5se preparation methods reported so far hardly make pure Cu2O-containing composites and suffer environmental issues caused by chemical reducing agents with multiple processing steps. This work develops a facile one-pot solid-state sintering method to synthesize Cu2O/microcrystalline cellulose (MCC) composite via the thermal decomposition and oxidation-reduction reactions where copper formate was reduced by MCC. The Cu2O/MCC composite exhibits superior purity, dispersibility, stability, high yield, and high efficacy of antibacterial and antiviral properties, e.g., against E. coli, S. aureus, and Equine Arteritis Viral. This work utilizes elegantly the strong reducing capability of cellulose to develop an environmentally benign method to prepare high-purity Cu2O-polymer composites with low cytotoxicity and cost, which can be incorporated readily into other substrate materials to form various forms of anti-harmful microbial materials widely used in public health care products. In addition, the preparation of Cu2O-containing composites based on the reducing capability of cellulose is also expected to be applied to other cellulose-based materials for the loading of Cu2O particles.
Collapse
Affiliation(s)
- Ke Sun
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Han Hu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zirong He
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zhuojun Xiao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xiaoqian Jin
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chen Zheng
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Yi Liu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China; Zhejiang Laboratory, Hangzhou 311100, China.
| |
Collapse
|
8
|
Raymond P, St-Germain F, Paul S, Chabot D, Deschênes L. Impact of Nanoparticle-Based TiO 2 Surfaces on Norovirus Capsids and Genome Integrity. Foods 2024; 13:1527. [PMID: 38790828 PMCID: PMC11121413 DOI: 10.3390/foods13101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Human noroviruses (HuNoVs) are among the main causes of acute gastroenteritis worldwide. HuNoVs can survive for several days up to weeks at room temperature in the environment, on food, and on food handling and processing surfaces. As a result, this could lead to viral spread through the ingestion of food in contact with contaminated surfaces. The development of stable surface materials with antiviral activity might be useful to reduce viral outbreaks. Metal-based compounds, including photoactivated titanium nanoparticles (TiO2 NPs), are known for their antiviral activity. In this study, we tested the impact of 2000 µg/mL TiO2 NPs, with or without UV activation, on HuNoV GII and murine norovirus. Their recovery rates were reduced by 99.6%. We also evaluated a new TiO2 NP-coating process on a polystyrene surface. This process provided a homogenous coated surface with TiO2 NPs ranging between 5 nm and 15 nm. Without photoactivation, this TiO2 NP-coated polystyrene surface reduced the recovery rates of intact HuNoV GII by more than 94%. When a capsid integrity treatment with PtCl4 or a longer reverse transcription polymerase chain detection approach was used to evaluate virus integrity following contact with the TiO2 NP-coated polystyrene, the HuNoV GII recovery yield reduction varied between 97 and 100%. These results support the hypothesis that TiO2 NP-coated surfaces have the potential to prevent viral transmission associated with contaminated food surfaces.
Collapse
Affiliation(s)
- Philippe Raymond
- Canadian Food Inspection Agency (CFIA), St-Hyacinthe Laboratory—Food Virology National Reference Centre, St-Hyacinthe, QC J2S 8E3, Canada
| | - François St-Germain
- Agriculture and Agri-Food Canada (AAFC), St-Hyacinthe Food Research and Development Centre, 3600 Casavant W, St-Hyacinthe, QC J2S 8E3, Canada
| | - Sylvianne Paul
- Canadian Food Inspection Agency (CFIA), St-Hyacinthe Laboratory—Food Virology National Reference Centre, St-Hyacinthe, QC J2S 8E3, Canada
| | - Denise Chabot
- Agriculture and Agri-Food Canada (AAFC), Ottawa Food Research and Development Centre, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
| | - Louise Deschênes
- Agriculture and Agri-Food Canada (AAFC), St-Hyacinthe Food Research and Development Centre, 3600 Casavant W, St-Hyacinthe, QC J2S 8E3, Canada
| |
Collapse
|
9
|
Ralhan K, Iyer KA, Diaz LL, Bird R, Maind A, Zhou QA. Navigating Antibacterial Frontiers: A Panoramic Exploration of Antibacterial Landscapes, Resistance Mechanisms, and Emerging Therapeutic Strategies. ACS Infect Dis 2024; 10:1483-1519. [PMID: 38691668 PMCID: PMC11091902 DOI: 10.1021/acsinfecdis.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The development of effective antibacterial solutions has become paramount in maintaining global health in this era of increasing bacterial threats and rampant antibiotic resistance. Traditional antibiotics have played a significant role in combating bacterial infections throughout history. However, the emergence of novel resistant strains necessitates constant innovation in antibacterial research. We have analyzed the data on antibacterials from the CAS Content Collection, the largest human-curated collection of published scientific knowledge, which has proven valuable for quantitative analysis of global scientific knowledge. Our analysis focuses on mining the CAS Content Collection data for recent publications (since 2012). This article aims to explore the intricate landscape of antibacterial research while reviewing the advancement from traditional antibiotics to novel and emerging antibacterial strategies. By delving into the resistance mechanisms, this paper highlights the need to find alternate strategies to address the growing concern.
Collapse
Affiliation(s)
| | | | - Leilani Lotti Diaz
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Ankush Maind
- ACS
International India Pvt. Ltd., Pune 411044, India
| | | |
Collapse
|
10
|
Le HN, Nguyen TBY, Nguyen DTT, Dao TBT, Nguyen TD, Ha Thuc CN. Sonochemical synthesis of bioinspired graphene oxide-zinc oxide hydrogel for antibacterial painting on biodegradable polylactide film. NANOTECHNOLOGY 2024; 35:305601. [PMID: 38640906 DOI: 10.1088/1361-6528/ad40b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Graphene oxide nanosheet (GO) is a multifunctional platform for binding with nanoparticles and stacking with two dimensional substrates. In this study, GO nanosheets were sonochemically decorated with zinc oxide nanoparticles (ZnO) and self-assembled into a hydrogel of GO-ZnO nanocomposite. The GO-ZnO hydrogel structure is a bioinspired approach for preserving graphene-based nanosheets from van der Waals stacking. X-ray diffraction analysis (XRD) showed that the sonochemical synthesis led to the formation of ZnO crystals on GO platforms. High water content (97.2%) of GO-ZnO hydrogel provided good property of ultrasonic dispersibility in water. Ultraviolet-visible spectroscopic analysis (UV-vis) revealed that optical band gap energy of ZnO nanoparticles (∼3.2 eV) GO-ZnO nanosheets (∼2.83 eV). Agar well diffusion tests presented effective antibacterial activities of GO-ZnO hydrogel against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus). Especially, GO-ZnO hydrogel was directly used for brush painting on biodegradable polylactide (PLA) thin films. Graphene-based nanosheets with large surface area are key to van der Waals stacking and adhesion of GO-ZnO coating to the PLA substrate. The GO-ZnO/PLA films were characterized using photography, light transmittance spectroscopy, coating stability, scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopic mapping (EDS), antibacterial test and mechanical tensile measurement. Specifically, GO-ZnO coating on PLA substrate exhibited stability in aqueous food simulants for packaging application. GO-ZnO coating inhibited the infectious growth ofE. colibiofilm. GO-ZnO/PLA films had strong tensile strength and elastic modulus. As a result, the investigation of antibacterial GO-ZnO hydrogel and GO-ZnO coating on PLA film is fundamental for sustainable development of packaging and biomedical applications.
Collapse
Affiliation(s)
- Hon Nhien Le
- Faculty of Materials Science and Technology, VNUHCM University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Thi Binh Yen Nguyen
- Faculty of Materials Science and Technology, VNUHCM University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Dac Thanh Tung Nguyen
- Faculty of Materials Science and Technology, VNUHCM University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Thi Bang Tam Dao
- Faculty of Materials Science and Technology, VNUHCM University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Trung Do Nguyen
- Faculty of Materials Science and Technology, VNUHCM University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| | - Chi Nhan Ha Thuc
- Faculty of Materials Science and Technology, VNUHCM University of Science, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
11
|
Goswami S, Dutta D, Pandey S, Chattopadhyay P, Lalhmunsiama, Dubey R, Tiwari D. Novel fibrous Ag(NP) decorated clay-polymer composite: Implications in water purification contaminated with predominant micro-pollutants and bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121063. [PMID: 38704955 DOI: 10.1016/j.jenvman.2024.121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Due to the potential harm caused by emerging micro-pollutants to living organisms, contaminating water supplies by micro-pollutants like EDCs, pharmaceuticals, and microorganisms has become a concern in many countries. Considering both microbiological and micro-pollutant exposure risks associated with water use for agricultural/or household purposes, it is imperative to create a strategy for improving pollutant removal from treated wastewater that is both effective and affordable. Natural clay minerals efficiently remove contaminants from wastewater, though the pristine clay has less affinity to several organic pollutants. Hydrophilic polymers, viz., poly(ethylene glycol) (PEG), improve the dispersion of particles, flocculation processes, and surface properties. In this study, PEG grafted with attapulgite, thereby providing a high-specific surface-area, mesoporous materials for the adsorption of micro-pollutants like ciprofloxacin (CIP) and 17α-ethinylestradiol (EE2) at high rates. A gentle washing process regenerates the clay-polymer material several times with no performance loss, and the natural water implications show fair applicability of solid in decontaminating the CIP and EE2 in an aqueous medium. Further, greenly synthesized silver nanoparticles in situ disperse with the clay polymer efficiently remove the gram-positive and gram-negative bacterium viz., Bacillus subtilis, and Pseudomonas aeruginosa, which are commonly persistent in aquatic environments. The clay polymer outperformed a modified clay composite to eliminate microorganisms and organic micro-pollutants in significant quantities quickly. These results clearly show the importance of fibrous clay-polymer composite for water purification technologies.
Collapse
Affiliation(s)
- Swagata Goswami
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, 796004, India
| | - Dhiraj Dutta
- DRL, Post Bag No 02, Tezpur, Assam, 784001, India
| | - Shreekant Pandey
- Department of Biotechnology, Vinoba Bhave University, Hazaribagh, Jharkhand, 825301, India
| | | | - Lalhmunsiama
- Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl, 796004, India
| | - Rama Dubey
- DRL, Post Bag No 02, Tezpur, Assam, 784001, India
| | - Diwakar Tiwari
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, 796004, India.
| |
Collapse
|
12
|
Josyula T, Kumar Malla L, Thomas TM, Kalichetty SS, Sinha Mahapatra P, Pattamatta A. Fundamentals and Applications of Surface Wetting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8293-8326. [PMID: 38587490 DOI: 10.1021/acs.langmuir.3c03339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In an era defined by an insatiable thirst for sustainable energy solutions, responsible water management, and cutting-edge lab-on-a-chip diagnostics, surface wettability plays a pivotal role in these fields. The seamless integration of fundamental research and the following demonstration of applications on these groundbreaking technologies hinges on manipulating fluid through surface wettability, significantly optimizing performance, enhancing efficiency, and advancing overall sustainability. This Review explores the behavior of liquids when they engage with engineered surfaces, delving into the far-reaching implications of these interactions in various applications. Specifically, we explore surface wetting, dissecting it into three distinctive facets. First, we delve into the fundamental principles that underpin surface wetting. Next, we navigate the intricate liquid-surface interactions, unraveling the complex interplay of various fluid dynamics, as well as heat- and mass-transport mechanisms. Finally, we report on the practical realm, where we scrutinize the myriad applications of these principles in everyday processes and real-world scenarios.
Collapse
Affiliation(s)
- Tejaswi Josyula
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Laxman Kumar Malla
- School of Mechanical Sciences, Odisha University of Technology and Research, Bhubaneswar 751029, India
| | - Tibin M Thomas
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Pallab Sinha Mahapatra
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Arvind Pattamatta
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
13
|
Schio AL, de Lima MS, Frassini R, Scariot FJ, Cemin F, Elois MA, Alvarez F, Michels AF, Fongaro G, Roesch-Ely M, Figueroa CA. Light, Copper, Action: Visible-Light Illumination Enhances Bactericidal Activity of Copper Particles. ACS Biomater Sci Eng 2024; 10:1808-1818. [PMID: 38411100 DOI: 10.1021/acsbiomaterials.3c01873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Bacteria are an old concern to human health, as they are responsible for nosocomial infections, and the number of antibiotic-resistant microorganisms keeps growing. Copper is known for its intrinsic biocidal properties, and therefore, it is a promising material to combat infections when added to surfaces. However, its biocidal properties in the presence of light illumination have not been fully explored, especially regarding the use of microsized particles since nanoparticles have taken over all fields of research and subjugated microparticles despite them being abundant and less expensive. Thus, the present work studied the bactericidal properties of metallic copper particles, in microscale (CuMPs) and nanoscale (CuNPs), in the absence of light and under white LED light illumination. The minimum bactericidal concentration (MBC) of CuMPs against Staphylococcus aureus that achieved a 6-log reduction was 5.0 and 2.5 mg mL-1 for assays conducted in the absence of light and under light illumination, respectively. Similar behavior was observed against Escherichia coli. The bactericidal activity under illumination provided a percentage increase in log reduction values of 65.2% for S. aureus and 166.7% for E. coli when compared to the assays under dark. This assay reproduced the testing CuNPs, which showed superior bactericidal activity since the concentration of 2.5 mg mL-1 promoted a 6-log reduction of both bacteria even under dark. Its superior bactericidal activity, which overcame the effect of illumination, was expected once the nanoscale facilitated the interaction of copper within the surface of bacteria. The results from MBC were supported by fluorescence microscopy and atomic absorption spectroscopy. Therefore, CuMPs and CuNPs proved to have size- and dose-dependent biocidal activity. However, we have shown that CuMPs photoactivity is competitive compared to that of CuNPs, allowing their application as a self-cleaning material for disinfection processes assisted by conventional light sources without additives to contain the spread of pathogens.
Collapse
Affiliation(s)
- Aline L Schio
- Postgraduate Program in Materials Science and Engineering, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | - Michele S de Lima
- Postgraduate Program in Materials Science and Engineering, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | - Rafaele Frassini
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | - Fernando Joel Scariot
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | - Felipe Cemin
- "Gleb Wataghin" Institute of Physics, State University of Campinas, Campinas 13083-859, São Paulo, Brazil
| | - Mariana A Elois
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Fernando Alvarez
- "Gleb Wataghin" Institute of Physics, State University of Campinas, Campinas 13083-859, São Paulo, Brazil
| | - Alexandre F Michels
- Postgraduate Program in Materials Science and Engineering, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | - Gislaine Fongaro
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Mariana Roesch-Ely
- Postgraduate Program in Materials Science and Engineering, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
- Biotechnology Institute, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | - Carlos A Figueroa
- Postgraduate Program in Materials Science and Engineering, University of Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Kim DY, Oh YB, Park JS, Min YH, Park MC. Anti-Microbial Activities of Mussel-Derived Recombinant Proteins against Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:239. [PMID: 38534674 DOI: 10.3390/antibiotics13030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
Many anti-microbial peptides (AMPs) and pro-apoptotic peptides are considered as novel anti-microbial agents, distinguished by their different characteristics. Nevertheless, AMPs exhibit certain limitations, including poor stability and potential toxicity, which hinder their suitability for applications in pharmaceutics and medical devices. In this study, we used recombinant mussel adhesive protein (MAP) as a robust scaffold to overcome these limitations associated with AMPs. Mussel adhesive protein fused with functional peptides (MAP-FPs) was used to evaluate anti-microbial activities, minimal inhibitory concentration (MIC), and time-kill kinetics (TKK) assays against six of bacteria strains. MAP and MAP-FPs were proved to have an anti-microbial effect with MIC of 4 or 8 µM against only Gram-negative bacteria strains. All tested MAP-FPs killed four different Gram-negative bacteria strains within 180 min. Especially, MAP-FP-2 and -5 killed three Gram-negative bacteria strain, including E. coli, S. typhimurium, and K. pneumoniae, within 10 min. A cytotoxicity study using Vero and HEK293T cells indicated the safety of MAP and MAP-FP-2 and -3. Thermal stability of MAP-FP-2 was also validated by HPLC analysis at an accelerated condition for 4 weeks. This study identified that MAP-FPs have novel anti-microbial activity, inhibiting the growth and rapidly killing Gram-negative bacteria strains with high thermal stability and safety.
Collapse
Affiliation(s)
- Dong Yun Kim
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea
| | - You Bin Oh
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50832, Republic of Korea
| | - Je Seon Park
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50832, Republic of Korea
| | - Yu-Hong Min
- College of Health and Welfare, Daegu Hanny University, Gyeongsan 38610, Republic of Korea
| | - Min Chul Park
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea
| |
Collapse
|
15
|
Hasan SF, Abo Elsoud MM, Sidkey NM, Elhateir MM. Production and characterization of polyhydroxybutyrate bioplastic precursor from Parageobacillus toebii using low-cost substrates and its potential antiviral activity. Int J Biol Macromol 2024; 262:129915. [PMID: 38325682 DOI: 10.1016/j.ijbiomac.2024.129915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
There is an increasing desire for bioplastics produced from renewable resources as an alternative to their petrochemical counterparts. These biopolymers have long-unnoticed antiviral properties. This study aimed to produce and characterize bioplastics by Parageobacillus toebii using low-cost substrates and determine their antiviral activity against coxsackievirus B4. Seven low-cost substrates (bagasse, water hyacinth, rice straw, rice water, sesame husks, molasses, and corn syrup) were compared with glucose for bioplastic precursor production. The highest bioplastic produced was from water hyacinth and glucose, followed by molasses, rice straw, rice water, sesame husks, and bagasse. Water hyacinth and glucose media were further optimized to increase the bioplastic precursor yield. The optimization of the media leads to increases in bioplastic precursor yields of 1.8-fold (3.456 g/L) and 1.496-fold (2.768 g/L), respectively. These bioplastics were further characterized by thermogravimetric analysis (TGA), Fourier-transformed infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR), and gas chromatography-mass spectrometry (GC-MS). They are thermostable, and their characterizations confirm the presence of polyhydroxybutyrate. The antiviral assay showed reasonable antiviral effects for bioplastics from water hyacinth (80.33 %) and glucose (55.47 %) media at 250 μg/mL maximum non-toxic concentrations (MNTC). The present investigation demonstrates a low-cost model for producing polyhydroxybutyrate bioplastic precursor for antiviral applications.
Collapse
Affiliation(s)
- Seham F Hasan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Yossuf Abbas St., P.O. 11754, Nasr City, Cairo, Egypt.
| | - Mostafa M Abo Elsoud
- Microbial Biotechnology Department, National Research Centre, 33 El-Buhouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Nagwa M Sidkey
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Yossuf Abbas St., P.O. 11754, Nasr City, Cairo, Egypt
| | - Mai M Elhateir
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Yossuf Abbas St., P.O. 11754, Nasr City, Cairo, Egypt
| |
Collapse
|
16
|
Bromberg L, Magariños B, Torres BS, Santos Y, Concheiro A, Hatton TA, Alvarez-Lorenzo C. Multifunctional polymeric guanidine and hydantoin halamines with broad biocidal activity. Int J Pharm 2024; 651:123779. [PMID: 38181993 DOI: 10.1016/j.ijpharm.2024.123779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Prolonged and excessive use of biocides during the coronavirus disease era calls for incorporating new antiviral polymers that enhance the surface design and functionality for existing and potential future pandemics. Herein, we investigated previously unexplored polyamines with nucleophilic biguanide, guanidine, and hydantoin groups that all can be halogenated leading to high contents of oxidizing halogen that enables enhancement of the biocidal activity. Primary amino groups can be used to attach poly(N-vinylguanidine) (PVG) and poly(allylamine-co-4-aminopyridine-co-5-(4-hydroxybenzylidene)hydantoin) (PAH) as well as a broad-spectrum commercial biocide poly(hexamethylene biguanide) (PHMB) onto a solid support. Halogenation of polymer suspensions was conducted through in situ generation of excess hypobromous acid (HBrO) from bromine and sodium hydroxide or by sodium hypochlorite in aqueous solutions, resulting in N-halamines with high contents of active > N-Br or > N-Cl groups. The virucidal activity of the polymers against human respiratory coronavirus HCoV-229E increased dramatically with their halogenation. Brominated PHMB-Br showed activation activity value > 5 even at 1 mg/L, and complete virus inhibition was observed with either PHMB-Br or PAH-Br at 10 mg/mL. Brominated PVG-Br and PAH-Br possessed fungicidal activity against C. albicans, while PHMB was fungistatic. PHMB, PHMB-Br and PAH polymers demonstrated excellent bactericidal activity against the methicillin-resistant S. aureus and vancomycin-resistant E. faecium. Brominated polymers (PHMB-Br, PVG-Br, PAH-Br) were not toxic to the HeLa monolayers, indicating acceptable biocompatibility to cultured human cells. With these features, the N-halamine polymers of the present study are a worthwhile addition to the arsenal of biocides and are promising candidates for development of non-leaching coatings.
Collapse
Affiliation(s)
- Lev Bromberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Beatriz Magariños
- Department of Microbiology and Parasitology, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Beatriz S Torres
- Department of Microbiology and Parasitology, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ysabel Santos
- Department of Microbiology and Parasitology, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carmen Alvarez-Lorenzo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
17
|
Burak D, Seo DC, An HE, Jeong S, Lee SE, Cho SH. Chitosan-Based Structural Color Films for Humidity Sensing with Antiviral Effect. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:351. [PMID: 38392724 PMCID: PMC10892554 DOI: 10.3390/nano14040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
This scientific investigation emphasizes the essential integration of nature's influence in crafting multifunctional surfaces with bio-inspired designs for enhanced functionality and environmental advantages. The study introduces an innovative approach, merging color decoration, humidity sensing, and antiviral properties into a unified surface using chitosan, an organo-biological polymer, to create cost-effective multilayered films through sol-gel deposition and UV photoinduced deposition of metal nanoparticles. The resulting chitosan films showcase diverse structural colors and demonstrate significant antiviral efficiency, with a 50% and 85% virus inhibition rate within a rapid 20 min reaction, validated through fluorescence cell expression and real-time qPCR (polymerase chain reaction) assays. Silver-deposited chitosan films further enhance antiviral activity, achieving remarkable 91% and 95% inhibition in independent assays. These films exhibit humidity-responsive color modifications across a 25-90% relative humidity range, enabling real-time monitoring validated through simulation studies. The proposed three-in-one functional surface can have versatile applications in surface decoration, medicine, air conditioning, and the food industry. It can serve as a real-time humidity sensor for indoor and outdoor surfaces, find use in biomedical devices for continuous humidity monitoring, and offer antiviral protection for frequently handled devices and tools. The customizable colors enhance visual appeal, making it a comprehensive solution for diverse applications.
Collapse
Affiliation(s)
- Darya Burak
- Materials Architecturing Research Center, Korea Institute of Science & Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; (D.B.); (H.-E.A.); (S.J.)
- Department of Nanomaterial Science and Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Dong-Chan Seo
- Research Animal Resources Center, Korea Institute of Science & Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea;
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hong-Eun An
- Materials Architecturing Research Center, Korea Institute of Science & Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; (D.B.); (H.-E.A.); (S.J.)
- Department of Materials Science and Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sohee Jeong
- Materials Architecturing Research Center, Korea Institute of Science & Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; (D.B.); (H.-E.A.); (S.J.)
| | - Seung Eun Lee
- Research Animal Resources Center, Korea Institute of Science & Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea;
| | - So-Hye Cho
- Materials Architecturing Research Center, Korea Institute of Science & Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; (D.B.); (H.-E.A.); (S.J.)
- Department of Nanomaterial Science and Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
18
|
Xing Z, Dong B, Zhang X, Qiu L, Jiang P, Xuan Y, Ni X, Xu H, Wang J. Cypate-loaded hollow mesoporous Prussian blue nanoparticle/hydrogel system for efficient photodynamic therapy/photothermal therapy dual-modal antibacterial therapy. J Biomed Mater Res A 2024; 112:53-64. [PMID: 37728144 DOI: 10.1002/jbm.a.37613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Infectious diseases caused by pathogenic microorganisms are a significant burden on public health and the economic stability of societies all over the world. The appearance of drug-resistant bacteria has severely blocked the effectiveness of conventional antibiotics. Therefore, developing novel antibiotic-free strategies to combat bacteria holds huge potential for maximizing validity and minimizing the risk of enhancing bacterial resistance. Herein, a cypate-loaded hollow mesoporous Prussian blue nanoparticles (Cy-HMPBs) was built to achieve the PDT/PTT synergistic antimicrobial therapy. The carbomer hydrogel (CH) was combined with the Cy-HMPBs to form a nanoparticle/hydrogel therapeutic system (Cy-HMPBs/CH) to reach the goal of local delivery of antimicrobial cargo. The low concentration of Cy-HMPBs/CH receives over 99% of antimicrobial ability against Escherichia coli and Staphylococcus aureus upon near-infrared (NIR) irradiation. More importantly, Cy-HMPBs/CH has favorable biocompatibility and can play therapeutic effects only after laser irradiation, indicating the on-demand therapy at the targeted region to avert side effects on healthy tissue. This study provides ideas for the design of an antibiotic-free antimicrobial strategy against infectious diseases.
Collapse
Affiliation(s)
- Zheng Xing
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Bingyu Dong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Xiaoxiao Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Yang Xuan
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Xinye Ni
- Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hongbin Xu
- Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
19
|
Meier P, Clement P, Altenried S, Reina G, Ren Q, Züst R, Enger O, Choi F, Nestle N, Deisenroth T, Neubauer P, Wick P. Quaternary ammonium-based coating of textiles is effective against bacteria and viruses with a low risk to human health. Sci Rep 2023; 13:20556. [PMID: 37996620 PMCID: PMC10667359 DOI: 10.1038/s41598-023-47707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
While the global healthcare system is slowly recovering from the COVID-19 pandemic, new multi-drug-resistant pathogens are emerging as the next threat. To tackle these challenges there is a need for safe and sustainable antiviral and antibacterial functionalized materials. Here we develop an 'easy-to-apply' procedure for the surface functionalization of textiles, rendering them antiviral and antibacterial and assessing the performance of these textiles. A metal-free quaternary ammonium-based coating was applied homogeneously and non-covalently to hospital curtains. Abrasion, durability testing, and aging resulted in little change in the performance of the treated textile. Additionally, qualitative and quantitative antibacterial assays on Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumanii revealed excellent antibacterial activity with a CFU reduction of 98-100% within only 4 h of exposure. The treated curtain was aged 6 months before testing. Similarly, the antiviral activity tested according to ISO-18184 with murine hepatitis virus (MHV) showed > 99% viral reduction with the functionalized curtain. Also, the released active compounds of the coating 24 ± 5 µg mL-1 revealed no acute in vitro skin toxicity (IC50: 95 µg mL-1) and skin sensitization. This study emphasizes the potential of safe and sustainable metal-free textile coatings for the rapid antiviral and antibacterial functionalization of textiles.
Collapse
Affiliation(s)
- Philipp Meier
- Particles-Biology Interactions Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| | - Pietro Clement
- Particles-Biology Interactions Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| | - Stefanie Altenried
- Biointerfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| | - Giacomo Reina
- Particles-Biology Interactions Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| | - Qun Ren
- Biointerfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland
| | - Roland Züst
- Federal Office for Civil Protection FOCP, Spiez Laboratory, 3700, Spiez, Switzerland
| | - Olivier Enger
- Technology Scouting & Incubation, BASF Schweiz AG, 4005, Basel, Switzerland
| | - Francis Choi
- BASF Corporation, 1609 Biddle Avenue, Wyandotte, MI, 48192, USA
| | - Nikolaus Nestle
- BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Ted Deisenroth
- Formulation Research, BASF Corporation, 500 White Plains Road, Tarrytown, NY, 10591, USA
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, TU Berlin, 13355, Berlin, Germany
| | - Peter Wick
- Particles-Biology Interactions Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, 9014, St. Gallen, Switzerland.
| |
Collapse
|
20
|
Binczarski MJ, Zuberek JZ, Samadi P, Cieslak M, Kaminska I, Berlowska J, Pawlaczyk A, Szynkowska-Jozwik MI, Witonska IA. Use of copper-functionalized cotton waste in combined chemical and biological processes for production of valuable chemical compounds. RSC Adv 2023; 13:34681-34692. [PMID: 38035250 PMCID: PMC10682913 DOI: 10.1039/d3ra06071c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Cotton textiles modified with copper compounds have a documented mechanism of antimicrobial action against bacteria, fungi, and viruses. During the COVID-19 pandemic, there was pronounced interest in finding new solutions for textile engineering, using modifiers and bioactive methods of functionalization, including introducing copper nanoparticles and complexes into textile products (e.g. masks, special clothing, surface coverings, or tents). However, copper can be toxic, depending on its form and concentration. Functionalized waste may present a risk to the environment if not managed correctly. Here, we present a model for managing copper-modified cotton textile waste. The process includes pressure and temperature-assisted hydrolysis and use of the hydrolysates as a source of sugars for cultivating yeast and lactic acid bacteria biomass as valuable chemical compounds.
Collapse
Affiliation(s)
- Michal J Binczarski
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | - Justyna Z Zuberek
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | - Payam Samadi
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | - Malgorzata Cieslak
- Lukasiewicz Research Network - Lodz Institute of Technology, Department of Chemical Textile Technologies 19/27 Marii Sklodowska-Curie Street 90-570 Lodz Poland
| | - Irena Kaminska
- Lukasiewicz Research Network - Lodz Institute of Technology, Department of Chemical Textile Technologies 19/27 Marii Sklodowska-Curie Street 90-570 Lodz Poland
| | - Joanna Berlowska
- Lodz University of Technology, Department of Environmental Biotechnology 171/173 Wolczanska Street 90-924 Lodz Poland
| | - Aleksandra Pawlaczyk
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | | | - Izabela A Witonska
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| |
Collapse
|
21
|
Vadivelmurugan A, Sharmila R, Pan WL, Tsai SW. Preparation and Evaluation of Aminomalononitrile-Coated Ca-Sr Metal-Organic Frameworks as Drug Delivery Carriers for Antibacterial Applications. ACS OMEGA 2023; 8:41909-41917. [PMID: 37970043 PMCID: PMC10633883 DOI: 10.1021/acsomega.3c06991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
After orthopedic surgery, antibiotics are usually employed to reduce the risk of infection. If it is possible to enhance antimicrobial functionality and incorporate antimicrobial agents into the bone-filling matrix, not only it can promote bone tissue regeneration, but it can also enable localized administration of medication to elevate antibacterial efficacy. Meanwhile, previous studies have shown that calcium and strontium can support the growth of osteoblastic cells and diminish bone resorption or deterioration. In the past few years, metal-organic frameworks (MOFs) have been widely used as drug carriers owing to their characteristic advantages. In this study, a MOF was prepared in an aqueous solution by a simple coprecipitation method with the organic ligand 1,3,5-tricarboxylic benzene (H3BTC) as a linker to form Ca-Sr-MOF. Furthermore, the Ca-Sr-MOF was coated with aminomalononitrile (AMN), which adhered through the electrostatic interactions between H3BTC and AMN. With this MOF (Ca-Sr-AMN-MOF), AMN polymerization reactions can occur in aqueous environments, and a polymer layer was observed on the MOF surface with moderate hydrophilicity. The prepared Ca-Sr-MOF and Ca-Sr-AMN-MOF were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy. Finally, tetracycline (TC) was selected as the model drug to measure the drug loading efficiency, release profile, and antibiotic activity. The percent cumulative drug release of TC from Ca-Sr-MOF and Ca-Sr-AMN-MOF was 55.15 and 9.1%, respectively. The antibacterial effectiveness of TC-loaded MOF against Gram-negative Escherichia coli bacteria was evaluated, revealing the remarkable antimicrobial performance of these substances.
Collapse
Affiliation(s)
| | - Ramalingam Sharmila
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Whei-Lin Pan
- Department
of Periodontics, Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Shiao-Wen Tsai
- Department
of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department
of Periodontics, Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| |
Collapse
|
22
|
Rahmani R, Lopes SI, Prashanth KG. Selective Laser Melting and Spark Plasma Sintering: A Perspective on Functional Biomaterials. J Funct Biomater 2023; 14:521. [PMID: 37888186 PMCID: PMC10607885 DOI: 10.3390/jfb14100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Achieving lightweight, high-strength, and biocompatible composites is a crucial objective in the field of tissue engineering. Intricate porous metallic structures, such as lattices, scaffolds, or triply periodic minimal surfaces (TPMSs), created via the selective laser melting (SLM) technique, are utilized as load-bearing matrices for filled ceramics. The primary metal alloys in this category are titanium-based Ti6Al4V and iron-based 316L, which can have either a uniform cell or a gradient structure. Well-known ceramics used in biomaterial applications include titanium dioxide (TiO2), zirconium dioxide (ZrO2), aluminum oxide (Al2O3), hydroxyapatite (HA), wollastonite (W), and tricalcium phosphate (TCP). To fill the structures fabricated by SLM, an appropriate ceramic is employed through the spark plasma sintering (SPS) method, making them suitable for in vitro or in vivo applications following minor post-processing. The combined SLM-SPS approach offers advantages, such as rapid design and prototyping, as well as assured densification and consolidation, although challenges persist in terms of large-scale structure and molding design. The individual or combined application of SLM and SPS processes can be implemented based on the specific requirements for fabricated sample size, shape complexity, densification, and mass productivity. This flexibility is a notable advantage offered by the combined processes of SLM and SPS. The present article provides an overview of metal-ceramic composites produced through SLM-SPS techniques. Mg-W-HA demonstrates promise for load-bearing biomedical applications, while Cu-TiO2-Ag exhibits potential for virucidal activities. Moreover, a functionally graded lattice (FGL) structure, either in radial or longitudinal directions, offers enhanced advantages by allowing adjustability and control over porosity, roughness, strength, and material proportions within the composite.
Collapse
Affiliation(s)
- Ramin Rahmani
- CiTin—Centro de Interface Tecnológico Industrial, 4970-786 Arcos de Valdevez, Portugal;
- proMetheus, Instituto Politécnico de Viana do Castelo (IPVC), 4900-347 Viana do Castelo, Portugal
| | - Sérgio Ivan Lopes
- CiTin—Centro de Interface Tecnológico Industrial, 4970-786 Arcos de Valdevez, Portugal;
- ADiT-Lab, Instituto Politécnico de Viana do Castelo (IPVC), 4900-347 Viana do Castelo, Portugal
| | - Konda Gokuldoss Prashanth
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, 19086 Tallinn, Estonia;
- CBCMT, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 630014, Tamil Nadu, India
| |
Collapse
|
23
|
Li W, Anantachaisophon S, Vachiraanun T, Promchaisri W, Sangsawang P, Tanalikhit P, Ittisanronnachai S, Atithep T, Sanguanchua P, Ratanasangsathien A, Jirapunyawong M, Suntiworapong S, Warintaraporn S, Mueanngern Y. Enhanced Antibacterial Activity at Ag-Cu Nanojunctions: Unveiling the Mechanism with Simple Surfaces of CuNPs-on-Ag Films. ACS OMEGA 2023; 8:34919-34927. [PMID: 37779963 PMCID: PMC10536021 DOI: 10.1021/acsomega.3c04303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Deposition of CuNPs on silver film gives rise to the formation of active Ag-Cu interfaces leading to dramatic enhancements in antibacterial activity against Escherichia coli. Transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDAX) analyses reveal that CuNPs are covered in a thin Cu2O shell, while X-ray photoelectron spectroscopy measurements (XPS) reveal that the Ag film samples contain significant amounts of Ag2O. XPS analyses show that the deposition of CuNPs on Ag films leads to the formation of a photoactive Ag2O-Cu2O heterostructure. Following a Z-scheme mechanism, electrons from the conduction band of Ag2O recombine with photogenerated holes from the valence band of Cu2O. Consequently, electrons at Cu2O's conduction band render Cu reduced and cause reductive activation of surface oxygen species on Cu forming reactive oxygen species (ROS). Interaction between metallic Cu and ROS species leads to the formation of a Cu(OH)2 phase. Both ROS and Cu(OH)2 species have previously been reported to lead to enhanced antibacterial properties. Holes on Ag2O produce a highly oxidized AgO phase, a phase reported to exhibit excellent antibacterial properties. Quantitative analysis of Cu and Ag high-resolution X-ray photoelectron spectroscopy (HR-XPS) spectra directly reveals several-fold increases in these active phases in full agreement with the observed increase in antibacterial activities. This study provides insight and surface design parameters by elucidating the important roles of Ag and Cu's bifunctionality as active antibacterial materials.
Collapse
Affiliation(s)
- Weerapat Li
- Department
of Chemistry, Kamnoetvidya Science Academy, 999 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| | - Supphanat Anantachaisophon
- Department
of Chemistry, Kamnoetvidya Science Academy, 999 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| | - Thanakrit Vachiraanun
- Department
of Chemistry, Kamnoetvidya Science Academy, 999 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| | - Worachon Promchaisri
- Department
of Chemistry, Kamnoetvidya Science Academy, 999 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| | - Pongpop Sangsawang
- Department
of Chemistry, Kamnoetvidya Science Academy, 999 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| | - Pattarapon Tanalikhit
- Department
of Physics, Korea Advanced Institute of
Science and Technology, Daejeon 34141, Republic
of Korea
| | - Somlak Ittisanronnachai
- Frontier
Research Center (FRC), Vidyasirimedhi Institute
of Science and Technology 555 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| | - Thassanant Atithep
- Frontier
Research Center (FRC), Vidyasirimedhi Institute
of Science and Technology 555 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| | - Passapan Sanguanchua
- Department
of Chemistry, Kamnoetvidya Science Academy, 999 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| | - Arjaree Ratanasangsathien
- Department
of Chemistry, Kamnoetvidya Science Academy, 999 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| | - Mathus Jirapunyawong
- Department
of Chemistry, Kamnoetvidya Science Academy, 999 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| | - Siriporn Suntiworapong
- Department
of Biology, Kamnoetvidya Science Academy, 999 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| | - Sakol Warintaraporn
- Department
of Chemistry, Kamnoetvidya Science Academy, 999 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| | - Yutichai Mueanngern
- Department
of Chemistry, Kamnoetvidya Science Academy, 999 Moo 1, Pa Yup Nai, Wang Chan, Rayong 21210, Thailand
| |
Collapse
|
24
|
Tarannum T, Ahmed S. Recent development in antiviral surfaces: Impact of topography and environmental conditions. Heliyon 2023; 9:e16698. [PMID: 37260884 PMCID: PMC10227326 DOI: 10.1016/j.heliyon.2023.e16698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
The transmission of viruses is largely dependent on contact with contaminated virus-laden communal surfaces. While frequent surface disinfection and antiviral coating techniques are put forth by researchers as a plan of action to tackle transmission in dire situations like the Covid-19 pandemic caused by SARS-CoV-2 virus, these procedures are often laborious, time-consuming, cost-intensive, and toxic. Hence, surface topography-mediated antiviral surfaces have been gaining more attention in recent times. Although bioinspired hydrophobic antibacterial nanopatterned surfaces mimicking the natural sources is a very prevalent and successful strategy, the antiviral prospect of these surfaces is yet to be explored. Few recent studies have explored the potential of nanopatterned antiviral surfaces. In this review, we highlighted surface properties that have an impact on virus attachment and persistence, particularly focusing and emphasizing on the prospect of the nanotextured surface with enhanced properties to be used as antiviral surface. In addition, recent developments in surface nanopatterning techniques depending on the nano-scaled dimensions have been discussed. The impacts of environments and surface topology on virus inactivation have also been reviewed.
Collapse
Affiliation(s)
- Tanjina Tarannum
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh
| | - Shoeb Ahmed
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh
| |
Collapse
|
25
|
Jyske T, Liimatainen J, Tienaho J, Brännström H, Aoki D, Kuroda K, Reshamwala D, Kunnas S, Halmemies E, Nakayama E, Kilpeläinen P, Ora A, Kaseva J, Hellström J, Marjomäki VS, Karonen M, Fukushima K. Inspired by nature: Fiber networks functionalized with tannic acid and condensed tannin-rich extracts of Norway spruce bark show antimicrobial efficacy. Front Bioeng Biotechnol 2023; 11:1171908. [PMID: 37152647 PMCID: PMC10154533 DOI: 10.3389/fbioe.2023.1171908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
This study demonstrated the antibacterial and antiviral potential of condensed tannins and tannic acid when incorporated into fiber networks tested for functional material purposes. Condensed tannins were extracted from industrial bark of Norway spruce by using pressurized hot water extraction (PHWE), followed by purification of extracts by using XADHP7 treatment to obtain sugar-free extract. The chemical composition of the extracts was analyzed by using HPLC, GC‒MS and UHPLC after thiolytic degradation. The test matrices, i.e., lignocellulosic handsheets, were produced and impregnated with tannin-rich extracts, and tannic acid was used as a commercial reference. The antibacterial and antiviral efficacy of the handsheets were analyzed by using bioluminescent bacterial strains (Staphylococcus aureus RN4220+pAT19 and Escherichia coli K12+pCGLS11) and Enterovirus coxsackievirus B3. Potential bonding of the tannin-rich extract and tannic acid within the fiber matrices was studied by using FTIR-ATR spectroscopy. The deposition characteristics (distribution and accumulation patterns) of tannin compounds and extracts within fiber networks were measured and visualized by direct chemical mapping using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and digital microscopy. Our results demonstrated for the first time, how tannin-rich extracts obtained from spruce bark side streams with green chemistry possess antiviral and antibacterial properties when immobilized into fiber matrices to create substitutes for plastic hygienic products, personal protection materials such as surgical face masks, or food packaging materials to prolong the shelf life of foodstuffs and prevent the spread of infections. However, more research is needed to further develop this proof-of-concept to ensure stable chemical bonding in product prototypes with specific chemistry.
Collapse
Affiliation(s)
- Tuula Jyske
- Natural Resources Institute Finland, Latokartanonkaari 9, Helsinki, Finland
| | - Jaana Liimatainen
- Natural Resources Institute Finland, Latokartanonkaari 9, Helsinki, Finland
| | - Jenni Tienaho
- Natural Resources Institute Finland, Latokartanonkaari 9, Helsinki, Finland
| | - Hanna Brännström
- Natural Resources Institute Finland, Teknologiakatu 7, Kokkola, Finland
| | - Dan Aoki
- Department of Forest and Environmental Resources Sciences, Nagoya University, Nagoya, Japan
| | - Katsushi Kuroda
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Susan Kunnas
- Natural Resources Institute Finland, Ounasjoentie 6, Rovaniemi, Finland
| | - Eelis Halmemies
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Eiko Nakayama
- Department of Environmental Science Design, Showa Women’s University, Tokyo, Japan
| | - Petri Kilpeläinen
- Natural Resources Institute Finland, Latokartanonkaari 9, Helsinki, Finland
| | - Ari Ora
- Natural Resources Institute Finland, Latokartanonkaari 9, Helsinki, Finland
| | - Janne Kaseva
- Natural Resources Institute Finland, Myllytie 1, Jokioinen, Finland
| | - Jarkko Hellström
- Natural Resources Institute Finland, Myllytie 1, Jokioinen, Finland
| | - Varpu S. Marjomäki
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Kazuhiko Fukushima
- Department of Forest and Environmental Resources Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
26
|
Davydova VN, Krylova NV, Iunikhina OV, Volod'ko AV, Pimenova EA, Shchelkanov MY, Yermak IM. Physicochemical Properties and Antiherpetic Activity of κ-Carrageenan Complex with Chitosan. Mar Drugs 2023; 21:md21040238. [PMID: 37103377 PMCID: PMC10141160 DOI: 10.3390/md21040238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Nanoparticles formation is one of the ways to modulate the physicochemical properties and enhance the activity of original polysaccharides. For this purpose, based on the polysaccharide of red algae, κ-carrageenan (κ-CRG), it polyelectrolyte complex (PEC), with chitosan, were obtained. The complex formation was confirmed by ultracentrifugation in a Percoll gradient, with dynamic light scattering. According to electron microscopy and DLS, PEC is dense spherical particles with sizes in the range of 150-250 nm. A decrease in the polydispersity of the initial CRG was detected after the PEC formation. Simultaneous exposure of Vero cells with the studied compounds and herpes simplex virus type 1 (HSV-1) showed that the PEC exhibited significant antiviral activity, effectively inhibiting the early stages of virus-cell interaction. A two-fold increase in the antiherpetic activity (selective index) of PEC compared to κ-CRG was shown, which may be due to a change in the physicochemical characteristics of κ-CRG in PEC.
Collapse
Affiliation(s)
- Viktoriya N Davydova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Natalya V Krylova
- G.P. Somov Institute of Epidemiology and Microbiology, Rospotrebnadzor, 690087 Vladivostok, Russia
| | - Olga V Iunikhina
- G.P. Somov Institute of Epidemiology and Microbiology, Rospotrebnadzor, 690087 Vladivostok, Russia
| | - Aleksandra V Volod'ko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Evgeniya A Pimenova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo 17, 690041 Vladivostok, Russia
| | - Mikhail Y Shchelkanov
- G.P. Somov Institute of Epidemiology and Microbiology, Rospotrebnadzor, 690087 Vladivostok, Russia
| | - Irina M Yermak
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
27
|
Praveen Kumar CH, Katagi MS, Samuel J, Nandeshwarappa BP. Synthesis, Characterization and Structural Studies of Novel Pyrazoline Derivatives as Potential Inhibitors of NAD+ Synthetase in Bacteria and Cytochrome P450 51 in Fungi. ChemistrySelect 2023. [DOI: 10.1002/slct.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
28
|
Diabate O, Cisse C, Sangare M, Soremekun O, Fatumo S, Shaffer JG, Doumbia S, Wele M. Identification of promising high-affinity inhibitors of SARS-CoV-2 main protease from African Natural Products Databases by Virtual Screening. RESEARCH SQUARE 2023:rs.3.rs-2673755. [PMID: 36993208 PMCID: PMC10055610 DOI: 10.21203/rs.3.rs-2673755/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
With the rapid spread of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen agent of COVID-19 pandemic created a serious threat to global public health, requiring the most urgent research for potential therapeutic agents. The availability of genomic data of SARS-CoV-2 and efforts to determine the protein structure of the virus facilitated the identification of potent inhibitors by using structure-based approach and bioinformatics tools. Many pharmaceuticals have been proposed for the treatment of COVID-19, although their effectiveness has not been assessed yet. However, it is important to find out new-targeted drugs to overcome the resistance concern. Several viral proteins such as proteases, polymerases or structural proteins have been considered as potential therapeutic targets. But the virus target must be essential for host invasion match some drugability criterion. In this Work, we selected the highly validated pharmacological target main protease Mpro and we performed high throughput virtual screening of African Natural Products Databases such as NANPDB, EANPDB, AfroDb, and SANCDB to identify the most potent inhibitors with the best pharmacological properties. In total, 8753 natural compounds were virtually screened by AutoDock vina against the main protease of SARS-CoV-2. Two hundred and five (205) compounds showed high-affinity scores (less than - 10.0 Kcal/mol), while fifty-eight (58) filtered through Lipinski's rules showed better affinity than known Mpro inhibitors (i.e., ABBV-744, Onalespib, Daunorubicin, Alpha-ketoamide, Perampanel, Carprefen, Celecoxib, Alprazolam, Trovafloxacin, Sarafloxacin, Ethyl biscoumacetate…). Those promising compounds could be considered for further investigations toward the developpement of SARS-CoV-2 drug development.
Collapse
Affiliation(s)
- Oudou Diabate
- University of Sciences, Technics and Technologies of Bamako (USTTB)
| | - Cheickna Cisse
- University of Sciences, Technics and Technologies of Bamako (USTTB)
| | | | | | - Segun Fatumo
- University of Sciences, Technics and Technologies of Bamako (USTTB)
| | | | - Seydou Doumbia
- University of Sciences, Technics and Technologies of Bamako (USTTB)
| | - Mamadou Wele
- University of Sciences, Technics and Technologies of Bamako (USTTB)
| |
Collapse
|
29
|
Ladhari S, Vu NN, Boisvert C, Saidi A, Nguyen-Tri P. Recent Development of Polyhydroxyalkanoates (PHA)-Based Materials for Antibacterial Applications: A Review. ACS APPLIED BIO MATERIALS 2023; 6:1398-1430. [PMID: 36912908 DOI: 10.1021/acsabm.3c00078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The diseases caused by microorganisms are innumerable existing on this planet. Nevertheless, increasing antimicrobial resistance has become an urgent global challenge. Thus, in recent decades, bactericidal materials have been considered promising candidates to combat bacterial pathogens. Recently, polyhydroxyalkanoates (PHAs) have been used as green and biodegradable materials in various promising alternative applications, especially in healthcare for antiviral or antiviral purposes. However, it lacks a systematic review of the recent application of this emerging material for antibacterial applications. Therefore, the ultimate goal of this review is to provide a critical review of the state of the art recent development of PHA biopolymers in terms of cutting-edge production technologies as well as promising application fields. In addition, special attention was given to collecting scientific information on antibacterial agents that can potentially be incorporated into PHA materials for biological and durable antimicrobial protection. Furthermore, the current research gaps are declared, and future research perspectives are proposed to better understand the properties of these biopolymers as well as their possible applications.
Collapse
Affiliation(s)
- Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Nhu-Nang Vu
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Cédrik Boisvert
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Alireza Saidi
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Institut de Recherche Robert-Sauvé en Santé et Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve Ouest, Montréal, Québec H3A 3C2, Canada
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| |
Collapse
|
30
|
Patil D, Golia V, Overland M, Stoller M, Chatterjee K. Mechanobactericidal Nanotopography on Nitrile Surfaces toward Antimicrobial Protective Gear. ACS Macro Lett 2023; 12:227-233. [PMID: 36706309 DOI: 10.1021/acsmacrolett.2c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have much to learn from other living organisms when it comes to engineering strategies to combat bacterial infections. This study describes the fabrication of cicada wing-inspired nanotopography on commercially pure (CP) nitrile sheets and nitrile gloves for medical use using the reactive ion etching (RIE) technique. Antibacterial activity against P. aeruginosa was tested using two different surface morphologies. It was observed that the etched nitrile surfaces effectively minimized bacterial colonization by inducing membrane damage. Our findings demonstrate a single-step dry etching method for creating mechanobactericidal topographies on nitrile-based surfaces. These findings have utility in designing next-generation personal protective gear in the clinical setting and for many other important applications in the age of antimicrobial resistance.
Collapse
Affiliation(s)
- Deepak Patil
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bengaluru 560012, India
| | - Vibhanshu Golia
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bengaluru 560012, India
| | - Maya Overland
- Division of Pediatric Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Marshall Stoller
- Department of Urology, University of California, San Francisco, California 94143, United States
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bengaluru 560012, India
| |
Collapse
|
31
|
Pilaquinga F, Bosch R, Morey J, Bastidas-Caldes C, Torres M, Toscano F, Debut A, Pazmiño-Viteri K, Nieves Piña MDL. High in vitroactivity of gold and silver nanoparticles from Solanum mammosum L. against SARS-CoV-2 surrogate Phi6 and viral model PhiX174. NANOTECHNOLOGY 2023; 34:175705. [PMID: 36689773 DOI: 10.1088/1361-6528/acb558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
The search for new strategies to curb the spread of the SARS-CoV-2 coronavirus, which causes COVID-19, has become a global priority. Various nanomaterials have been proposed as ideal candidates to inactivate the virus; however, because of the high level of biosecurity required for their use, alternative models should be determined. This study aimed to compare the effects of two types of nanomaterials gold (AuNPs) and silver nanoparticles (AgNPs), recognized for their antiviral activity and affinity with the coronavirus spike protein using PhiX174 and enveloped Phi6 bacteriophages as models. To reduce the toxicity of nanoparticles, a species known for its intermediate antiviral activity,Solanum mammosumL. (Sm), was used. NPs prepared with sodium borohydride (NaBH4) functioned as the control. Antiviral activity against PhiX174 and Phi6 was analyzed using its seed, fruit, leaves, and essential oil; the leaves were the most effective on Phi6. Using the aqueous extract of the leaves, AuNPs-Sm of 5.34 ± 2.25 nm and AgNPs-Sm of 15.92 ± 8.03 nm, measured by transmission electron microscopy, were obtained. When comparing NPs with precursors, both gold(III) acetate and silver nitrate were more toxic than their respective NPs (99.99% at 1 mg ml-1). The AuNPs-Sm were less toxic, reaching 99.30% viral inactivation at 1 mg ml-1, unlike the AgNPs-Sm, which reached 99.94% at 0.01 mg ml-1. In addition, cell toxicity was tested in human adenocarcinoma alveolar basal epithelial cells (A549) and human foreskin fibroblasts. Gallic acid was the main component identified in the leaf extract using high performance liquid chromatography with diode array detection (HPLC-DAD). The FT-IR spectra showed the presence of a large proportion of polyphenolic compounds, and the antioxidant analysis confirmed the antiradical activity. The control NPs showed less antiviral activity than the AuNPs-Sm and AgNPs-Sm, which was statistically significant; this demonstrates that both theS. mammosumextract and its corresponding NPs have a greater antiviral effect on the surrogate Phi bacteriophage, which is an appropriate model for studying SARS-CoV-2.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- Laboratory of Nanotechnology, School of Chemistry Sciences, Pontificia Universidad Católica del Ecuador, Avenida 12 de octubre 1076 y Roca, Quito, Ecuador
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Rafael Bosch
- Environmental Microbiology, IMEDEA (CSIC-UIB); and Microbiology, Department of Biology, University of Balearic Islands, Palma de Mallorca, Spain
| | - Jeroni Morey
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Carlos Bastidas-Caldes
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de las Américas, Redondel del Ciclista, Antigua Vía a Nayón, Quito, Ecuador
- Programa de Doctorado en Salud Pública y Animal, Universidad de Extremadura, Plaza de Caldereros, s/n, Extremadura, Spain
| | - Marbel Torres
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio de Inmunología y Virología, Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Fernanda Toscano
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio de Inmunología y Virología, Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - Katherine Pazmiño-Viteri
- Centro de Nanociencia y Nanotecnología CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - María de Las Nieves Piña
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain
| |
Collapse
|
32
|
Qian J, Dong Q, Chun K, Zhu D, Zhang X, Mao Y, Culver JN, Tai S, German JR, Dean DP, Miller JT, Wang L, Wu T, Li T, Brozena AH, Briber RM, Milton DK, Bentley WE, Hu L. Highly stable, antiviral, antibacterial cotton textiles via molecular engineering. NATURE NANOTECHNOLOGY 2023; 18:168-176. [PMID: 36585515 DOI: 10.1038/s41565-022-01278-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/27/2022] [Indexed: 05/25/2023]
Abstract
Cotton textiles are ubiquitous in daily life and are also one of the primary mediums for transmitting viruses and bacteria. Conventional approaches to fabricating antiviral and antibacterial textiles generally load functional additives onto the surface of the fabric and/or their microfibres. However, such modifications are susceptible to deterioration after long-term use due to leaching of the additives. Here we show a different method to impregnate copper ions into the cellulose matrix to form a copper ion-textile (Cu-IT), in which the copper ions strongly coordinate with the oxygen-containing polar functional groups (for example, hydroxyl) of the cellulose chains. The Cu-IT displays high antiviral and antibacterial performance against tobacco mosaic virus and influenza A virus, and Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa and Bacillus subtilis bacteria due to the antimicrobial properties of copper. Furthermore, the strong coordination bonding of copper ions with the hydroxyl functionalities endows the Cu-IT with excellent air/water retainability and superior mechanical stability, which can meet daily use and resist repeated washing. This method to fabricate Cu-IT is cost-effective, ecofriendly and highly scalable, and this textile appears very promising for use in household products, public facilities and medical settings.
Collapse
Affiliation(s)
- Ji Qian
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Qi Dong
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Kayla Chun
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Dongyang Zhu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Xin Zhang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - James N Culver
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Sheldon Tai
- Maryland Institute for Applied Environmental Health, University of Maryland, College Park, MD, USA
| | - Jennifer R German
- Maryland Institute for Applied Environmental Health, University of Maryland, College Park, MD, USA
| | - David P Dean
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jeffrey T Miller
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Liguang Wang
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Tianpin Wu
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Tian Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Alexandra H Brozena
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Robert M Briber
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Donald K Milton
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA.
- Center for Materials Innovation, University of Maryland, College Park, MD, USA.
| |
Collapse
|
33
|
Yu K, Warsaba R, Yazdani-Ahmadabadi H, Lange D, Jan E, Kizhakkedathu JN. Antibacterial and Antiviral Coating on Surfaces through Dopamine-Assisted Codeposition of an Antifouling Polymer and In Situ Formed Nanosilver. ACS Biomater Sci Eng 2023; 9:329-339. [PMID: 36516234 DOI: 10.1021/acsbiomaterials.2c01350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacteria and viruses can adhere onto diverse surfaces and be transmitted in multiple ways. A bifunctional coating that integrates both antibacterial and antiviral activities is a promising approach to mitigate bacterial and viral infections arising from a contaminated surface. However, current coating approaches encounter a slow reaction, limited activity against diverse bacteria or viruses, short-term activity, difficulty in scaling-up, and poor adaptation to diverse material surfaces. Here, we report a new one-step strategy for the development of a polydopamine-based nonfouling antibacterial and antiviral coating by the codeposition of various components. The in situ formed nanosilver in the presence of polydopamine was incorporated into the coating and served as both antibacterial and antiviral agents. In addition, the coassembly of polydopamine and a nonfouling hydrophilic polymer was constructed to prevent the adhesion of bacteria and viruses on the coating. The coating was prepared on model surfaces and thoroughly characterized using various surface analytical techniques. The coating exhibited strong antifouling properties with a reduction of nonspecific protein adsorption up to 90%. The coating was tested against both Gram-positive and Gram-negative bacteria and showed long-term antibacterial effectiveness, which correlated with the composition of the coating. The antiviral activity of the coating was evaluated against human coronavirus 229E. A possible mechanism of action of the coating was proposed. We anticipate that the optimized coating will have applications in the development of infection prevention devices and surfaces.
Collapse
|
34
|
Zhang S, Zhang L, Liu L, Chu X, Wang X, Song S, Zhang H. Boosting the catalytic performance of Pt/TiO2 catalysts in room-temperature formaldehyde elimination by incorporating CeO2 promoters. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
35
|
Alagarasan D, Harikrishnan A, Surendiran M, Indira K, Khalifa AS, Elesawy BH. RETRACTED ARTICLE: Synthesis and characterization of CuO nanoparticles and evaluation of their bactericidal and fungicidal activities in cotton fabrics. APPLIED NANOSCIENCE 2023; 13:1797. [PMID: 34540519 PMCID: PMC8435145 DOI: 10.1007/s13204-021-02054-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023]
Affiliation(s)
| | - A. Harikrishnan
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission’s Research Foundation, Aarupadai Veedu (VMRF-AV) Campus, Paiyanoor, Chennai, Tamil Nadu 603104 India
| | - M. Surendiran
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission’s Research Foundation, Aarupadai Veedu (VMRF-AV) Campus, Paiyanoor, Chennai, Tamil Nadu 603104 India
| | - Karuppusamy Indira
- Department of Chemistry, M. Kumarasamy College of Engineering, Karur, Tamil Nadu 639113 India
| | - Amany Salah Khalifa
- Department of Clinical Pathology and Pharmaceutics, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| |
Collapse
|
36
|
Tsagkaris C, Eleftheriades A, Laubscher L, Vladyckuk V, Papadakis M. Viruses monkeying around with surgical safety: Monkeypox preparedness in surgical settings. J Med Virol 2023; 95:e27915. [PMID: 35665517 DOI: 10.1002/jmv.27915] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Christos Tsagkaris
- European Student Think Tank, Public Health and Policy Working Group, Amsterdam, Netherlands
| | - Anna Eleftheriades
- European Student Think Tank, Public Health and Policy Working Group, Amsterdam, Netherlands
| | - Lily Laubscher
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zürich, Switzerland
| | - Valeriia Vladyckuk
- Faculty of Medicine, Bogomolets National Medical University, Kyiv, Ukraine
| | - Marios Papadakis
- Department of Surgery II, University of Witten-Herdecke, Wuppertal, Germany
| |
Collapse
|
37
|
da Silva DJ, Duran A, Cabral AD, Fonseca FLA, Bueno RF, Wang SH, Rosa DS. Delta SARS-CoV-2 inactivation and bactericidal performance of cotton wipes decorated with TiO 2/Ag nanoparticles like Brazilian heavy-fruited Myrciaria cauliflora. MATERIALS TODAY. COMMUNICATIONS 2022; 33:104288. [PMID: 36033158 PMCID: PMC9394096 DOI: 10.1016/j.mtcomm.2022.104288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The current pandemic of Coronavirus Disease 2019 (COVID-19) raised several concerns about using conventional textiles for manufacturing personal protective equipment without self-disinfecting properties since the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is transmitted mainly by aerosols that can transpose cotton masks. Therefore, developing new cotton fibers with high self-disinfecting ability is essential to avoid a new pandemic due to new SARS-CoV-2 variants. Herein, we developed cotton wipes (CFs) with fibers coated by Ag, TiO2, and Ag/TiO2 hybrid nanoparticles like Brazilian heavy-fruited Myrciaria cauliflora by a sonochemical approach. Moreover, the coated CFs present high antimicrobial performance against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), being able to inactivate infectious SARS-CoV-2 (Delta variant) by the destruction of the spike, membrane, and nucleocapsid proteins while the viral RNA is not significantly affected, according to the molecular biological findings.
Collapse
Affiliation(s)
- Daniel J da Silva
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados 5001, Santo André, SP 09210-210, Brazil
- Department of Metallurgical and Materials Engineering, Polytechnic School, University of São Paulo, Av. Prof. Mello Moraes 2643, São Paulo, SP, 05508-030, Brazil
| | - Adriana Duran
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados 5001, Santo André, SP 09210-210, Brazil
| | - Aline D Cabral
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados 5001, Santo André, SP 09210-210, Brazil
| | - Fernando L A Fonseca
- Faculty of Medicine of ABC (FMABC), Department of Clinical Analysis, Av. Lauro Gomes 2000, Santo André, SP 09060-870, Brazil
| | - Rodrigo F Bueno
- Coordinator of the COVID-19 Monitoring Network in Wastewater National Water and Basic Sanitation Agency, Ministry of Science, Technology and Innovation and Ministry of Health, Brazil. Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados 5001, Santo André, SP 09210-210, Brazil
| | - Shu Hui Wang
- Department of Metallurgical and Materials Engineering, Polytechnic School, University of São Paulo, Av. Prof. Mello Moraes 2643, São Paulo, SP, 05508-030, Brazil
| | - Derval S Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Av. dos Estados 5001, Santo André, SP 09210-210, Brazil
| |
Collapse
|
38
|
Wang F, Yang S, Lu Q, Liu W, Sun P, Wang Q, Cao W. Colloidal Cu-doped TiO2 nanocrystals containing oxygen vacancies for highly-efficient photocatalytic degradation of benzene and antibacterial. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
39
|
Wang CG, Surat'man NEB, Mah JJQ, Qu C, Li Z. Surface antimicrobial functionalization with polymers: fabrication, mechanisms and applications. J Mater Chem B 2022; 10:9349-9368. [PMID: 36373687 DOI: 10.1039/d2tb01555b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Undesirable adhesion of microbes such as bacteria, fungi and viruses onto surfaces affects many industries such as marine, food, textile, and healthcare. In particular in healthcare and food packaging, the effects of unwanted microbial contamination can be life-threatening. With the current global COVID-19 pandemic, interest in the development of surfaces with superior anti-viral and anti-bacterial activities has multiplied. Polymers carrying anti-microbial properties are extensively used to functionalize material surfaces to inactivate infection-causing and biocide-resistant microbes including COVID-19. This review aims to introduce the fabrication of polymer-based antimicrobial surfaces through physical and chemical modifications, followed by the discussion of the inactivation mechanisms of conventional biocidal agents and new-generation antimicrobial macromolecules in polymer-modified antimicrobial surfaces. The advanced applications of polymer-based antimicrobial surfaces on personal protective equipment against COVID-19, food packaging materials, biomedical devices, marine vessels and textiles are also summarized to express the research trend in academia and industry.
Collapse
Affiliation(s)
- Chen-Gang Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| | - Nayli Erdeanna Binte Surat'man
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| | - Justin Jian Qiang Mah
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Chenyang Qu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore. .,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| |
Collapse
|
40
|
Kubo AL, Rausalu K, Savest N, Žusinaite E, Vasiliev G, Viirsalu M, Plamus T, Krumme A, Merits A, Bondarenko O. Antibacterial and Antiviral Effects of Ag, Cu and Zn Metals, Respective Nanoparticles and Filter Materials Thereof against Coronavirus SARS-CoV-2 and Influenza A Virus. Pharmaceutics 2022; 14:2549. [PMID: 36559043 PMCID: PMC9785359 DOI: 10.3390/pharmaceutics14122549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Due to the high prevalence of infectious diseases and their concurrent outbreaks, there is a high interest in developing novel materials with antimicrobial properties. Antibacterial and antiviral properties of a range of metal-based nanoparticles (NPs) are a promising means to fight airborne diseases caused by viruses and bacteria. The aim of this study was to test antimicrobial metals and metal-based nanoparticles efficacy against three viruses, namely influenza A virus (H1N1; A/WSN/1933) and coronaviruses TGEV and SARS-CoV-2; and two bacteria, Escherichia coli and Staphylococcus aureus. The efficacy of ZnO, CuO, and Ag NPs and their respective metal salts, i.e., ZnSO4, CuSO4, and AgNO3, was evaluated in suspensions, and the compounds with the highest antiviral efficacy were chosen for incorporation into fibers of cellulose acetate (CA), using electrospinning to produce filter materials for face masks. Among the tested compounds, CuSO4 demonstrated the highest efficacy against influenza A virus and SARS-CoV-2 (1 h IC50 1.395 mg/L and 0.45 mg/L, respectively), followed by Zn salt and Ag salt. Therefore, Cu compounds were selected for incorporation into CA fibers to produce antiviral and antibacterial filter materials for face masks. CA fibers comprising CuSO4 decreased SARS-CoV-2 titer by 0.38 logarithms and influenza A virus titer by 1.08 logarithms after 5 min of contact; after 1 h of contact, SARS-COV-2 virus was completely inactivated. Developed CuO- and CuSO4-based filter materials also efficiently inactivated the bacteria Escherichia coli and Staphylococcus aureus. The metal NPs and respective metal salts were potent antibacterial and antiviral compounds that were successfully incorporated into the filter materials of face masks. New antibacterial and antiviral materials developed and characterized in this study are crucial in the context of the ongoing SARS-CoV-2 pandemic and beyond.
Collapse
Affiliation(s)
- Anna-Liisa Kubo
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Nanordica Medical OÜ, Vana-Lõuna 39a-7, 10134 Tallinn, Estonia
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Natalja Savest
- Laboratory of Polymers and Textile Technology, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Eva Žusinaite
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Grigory Vasiliev
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Nanordica Medical OÜ, Vana-Lõuna 39a-7, 10134 Tallinn, Estonia
| | - Mihkel Viirsalu
- Laboratory of Polymers and Textile Technology, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Tiia Plamus
- Laboratory of Polymers and Textile Technology, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Andres Krumme
- Laboratory of Polymers and Textile Technology, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Olesja Bondarenko
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Nanordica Medical OÜ, Vana-Lõuna 39a-7, 10134 Tallinn, Estonia
| |
Collapse
|
41
|
Filip DG, Surdu VA, Paduraru AV, Andronescu E. Current Development in Biomaterials-Hydroxyapatite and Bioglass for Applications in Biomedical Field: A Review. J Funct Biomater 2022; 13:248. [PMID: 36412889 PMCID: PMC9680477 DOI: 10.3390/jfb13040248] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Inorganic biomaterials, including different types of metals and ceramics are widely used in various fields due to their biocompatibility, bioactivity, and bioresorbable capacity. In recent years, biomaterials have been used in biomedical and biological applications. Calcium phosphate (CaPs) compounds are gaining importance in the field of biomaterials used as a standalone material or in more complex structures, especially for bone substitutes and drug delivery systems. The use of multiple dopants into the structure of CaPs compounds can significantly improve their in vivo and in vitro activity. Among the general information included in the Introduction section, in the first section of this review paper, the authors provided a background on the development of hydroxyapatite, methods of synthesis, and its applications. The advantages of using different ions and co-ions for substitution into the hydroxyapatite lattice and their influence on physicochemical, antibacterial, and biological properties of hydroxyapatite are also presented in this section of the review paper. Larry Hench's 45S5 Bioglass®, commercially named 45S5, was the first bioactive glass that revealed a chemical bond with bone, highlighting the potential of this biomaterial to be widely used in biomedicine for bone regeneration. The second section of this article is focused on the development and current products based on 45S5 Bioglass®, covering the historical evolution, importance of the sintering method, hybrid bioglass composites, and applications. To overcome the limitations of the original biomaterials, studies were performed to combine hydroxyapatite and 45S5 Bioglass® into new composites used for their high bioactivity and improved properties. This particular type of combined hydroxyapatite/bioglass biomaterial is discussed in the last section of this review paper.
Collapse
Affiliation(s)
- Diana Georgiana Filip
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Andrei Viorel Paduraru
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Centre for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 50085 Bucharest, Romania
| |
Collapse
|
42
|
Askari S, Khodaei MM, Jafarzadeh M, Mikaeili A. In-situ formation of Ag NPs on the ribonic γ-lactone-modified UiO-66-NH2: An effective catalyst for organic synthesis and antibacterial applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
43
|
Ivanauskas R, Ancutienė I, Milašienė D, Ivanauskas A, Bronušienė A. Effect of Reducing Agent on Characteristics and Antibacterial Activity of Copper-Containing Particles in Textile Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7623. [PMID: 36363214 PMCID: PMC9657411 DOI: 10.3390/ma15217623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Textile materials modified with copper-containing particles have antibacterial and antiviral properties that have prospects for use in healthcare. In the study, textile materials were saturated with copper-containing particles in their entire material volume by the absorption/diffusion method. The antibacterial properties of modified textile materials were confirmed by their inhibitory effect on Staphylococcus aureus, a Gram-positive bacterium that spreads predominantly through the respiratory tract. For the modification, ordinary textile materials of various origins and fiber structures were used. Technological conditions and compositions of modifying solutions were established, as well as the most suitable textile materials for modification. To assess the morphological and physical characteristics of copper-containing particles and the textile materials themselves, X-ray diffraction, a scanning electron microscope, and an energy-dispersive X-ray spectrum were used. In modified textile samples, XRD data showed the presence of crystalline phases of copper (Cu) and copper (I) oxide (Cu2O). On the grounds of the SEM/EDS analysis, the saturation of textile materials with copper-containing particles depends on the structure of the textile materials and the origins of the fibers included in their composition, as well as the modification conditions and the copper precursor.
Collapse
Affiliation(s)
- Remigijus Ivanauskas
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Ingrida Ancutienė
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Daiva Milašienė
- Faculty of Mechanical Engineering and Design, Department of Production Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Algimantas Ivanauskas
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Asta Bronušienė
- Faculty of Chemical Technology, Department of Physical and Inorganic Chemistry, Kaunas University of Technology, 44249 Kaunas, Lithuania
| |
Collapse
|
44
|
Ren N, Petchsuk A, Opaprakasit M, Sreearunothai P, Opaprakasit P. Surface modifications of low-density polyethylene films with hydrophobic and antibacterial properties by chitosan-based materials. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2075275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Narath Ren
- Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat UniversitySchool of Bio-chemical, Pathum Thani, Thailand
| | - Atitsa Petchsuk
- National Metal and Materials Technology Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Mantana Opaprakasit
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Paiboon Sreearunothai
- Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat UniversitySchool of Bio-chemical, Pathum Thani, Thailand
| | - Pakorn Opaprakasit
- Engineering and Technology, Sirindhorn International Institute of Technology (SIIT), Thammasat UniversitySchool of Bio-chemical, Pathum Thani, Thailand
| |
Collapse
|
45
|
Cieślak M, Kowalczyk D, Krzyżowska M, Janicka M, Witczak E, Kamińska I. Effect of Cu Modified Textile Structures on Antibacterial and Antiviral Protection. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6164. [PMID: 36079542 PMCID: PMC9457927 DOI: 10.3390/ma15176164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Textile structures with various bioactive and functional properties are used in many areas of medicine, special clothing, interior textiles, technical goods, etc. We investigated the effect of two different textile woven structures made of 90% polyester with 10% polyamide (PET) and 100% cotton (CO) modified by magnetron sputtering with copper (Cu) on bioactive properties against Gram-positive and Gram-negative bacteria and four viruses and also on the some comfort parameters. PET/Cu and CO/Cu fabrics have strong antibacterial activity against Staphylococcus aureus and Klebsiella pneumonia. CO/Cu fabric has good antiviral activity in relation to vaccinia virus (VACV), herpes simplex virus type 1 (HSV-1) and influenza A virus H1N1 (IFV), while its antiviral activity against mouse coronavirus (MHV) is weak. PET/Cu fabric showed weak antiviral activity against HSV-1 and MHV. Both modified fabrics showed no significant toxicity in comparison to the control medium and pristine fabrics. After Cu sputtering, fabric surfaces became hydrophobic and the value of the surface free energy was over four times lower than for pristine fabrics. The modification improved thermal conductivity and thermal diffusivity, facilitated water vapour transport, and air permeability did not decrease.
Collapse
Affiliation(s)
- Małgorzata Cieślak
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| | - Dorota Kowalczyk
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| | - Małgorzata Krzyżowska
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Martyna Janicka
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Ewa Witczak
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| | - Irena Kamińska
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| |
Collapse
|
46
|
Shin SM, Park HI, Sung AY. Development of Functional Ophthalmic Materials Using Natural Materials and Gold Nanoparticles. MICROMACHINES 2022; 13:1451. [PMID: 36144074 PMCID: PMC9504253 DOI: 10.3390/mi13091451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Ginsenoside, known as a natural substance, is a saponin component in ginseng and has various effects, such as antibacterial, antioxidant, and anti-inflammatory effects. In addition, gold nanoparticles can realize various optical and physical properties according to particle size and shape. For polymer polymerization, ginsenoside and gold nanoparticles were used as additives and copolymerized with a basic silicone hydrogel material. As gold nanoparticles, spherical and rod-shaped particles were used, and basic physical properties, such as water content, refractive index, and wettability of the prepared ophthalmic lenses, were measured. As a result of measuring the physical properties of the resulting polymer, it was found that the contact angle decreased by about 1.6% to 83.1% as the addition ratio of ginsenoside increased. In addition, as the addition ratio of metal nanoparticles increased, the refractive index was found to increase regardless of the shape of the nanoparticles. In addition, in the case of water content, the spherical shape gradually decreased according to the addition ratio, while the rod shape gradually increased according to the addition ratio. Therefore, it was found that the addition of ginsenoside, known as a saponin-based natural substance, has excellent wettability, and gold nanoparticles with different shapes have different properties. Thus, it is judged that the resulting copolymer can be utilized as a variety of highly functional ophthalmic polymer materials with high refractive index and high wettability.
Collapse
|
47
|
Yoon J, Kim J, Lee J, Hong SP, Park S, Jeong YW, Lee C, Oh SG. Fabrication of antiviral nanofibers containing various Cu salts and ZnO nanorods by electrospinning. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
48
|
Iyigundogdu Z, Basar B, Couvreur R, Tamrakar S, Yoon J, Ersoy OG, Sahin F, Mielewski D, Kiziltas A. Thermoplastic elastomers containing antimicrobial and antiviral additives for mobility applications. COMPOSITES. PART B, ENGINEERING 2022; 242:110060. [PMID: 35754456 PMCID: PMC9212865 DOI: 10.1016/j.compositesb.2022.110060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The transmission of the SARS-CoV-2 coronavirus has been shown through droplets generated by infected people when coughing, sneezing, or talking in close contact. These droplets either reach the next person directly or land on nearby surfaces. The objective of this study is to develop a novel, durable, and effective disinfecting antimicrobial (antiviral, antibacterial, and antifungal) styrene-ethylene/butylene-styrene (SEBS) based thermoplastic elastomers (TPE). TPE incorporated with six different formulations was investigated for mechanical and antiviral performance. The formulations consist of a combination of zinc pyrithione (ZnPT), sodium pentaborate pentahydrate (NaB), disodium octaborate tetrahydrate (DOT), and chlorhexidine (CHX). ZnPT and DOT incorporated TPE showed a reduction of microbes such as bacteria by up to 99.99%, deactivated Adenovirus, Poliovirus, Norovirus, and reduced a strain of the coronavirus family by 99.95% in 60 min on TPE samples. Control samples had higher tensile strengths among all formulations and tensile strength decreased by around 14%, 21% and 27% for ZnPT and DOT combinations compared to control samples. The elongation at break decreased by around 7%, 9% and 12% with ZnPT and DOT combinations, where it reached minimum values of 720%, 702% and 684%, respectively. The 100% Modulus and 300% Modulus slightly increased with ZnPT and NaB combination (reaching values from 1.6 to 1.9 MPa and 2.6-2.9 MPa respectively) in comparison with control samples. The MFI also decreased with antimicrobial and antiviral additives (decreasing values from 64.8 to 43.3 g/10 min). ZnPT and NaB combination showed the lowest MFI (43.3 g/10 min) and reduced the MFI of control sample by around 33%. TPE samples containing ZnPT and DOT combination showed biocidal activity against the microorganisms tested and can be used to develop antimicrobial products for multiple touchpoints within a vehicle and micro-mobility.
Collapse
Affiliation(s)
- Zeynep Iyigundogdu
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, 01250, Saricam, Adana, Turkey
| | - Basak Basar
- Ravago Petrokimya Üretim A.Ş., R&D Center, Taysad OSB 1. Cd. No:18 Çayırova, Kocaeli, 41420, Turkey
| | - Rachel Couvreur
- Ford Motor Company, Research and Innovation Center, Dearborn, MI, 48128, USA
| | - Sandeep Tamrakar
- Ford Motor Company, Research and Innovation Center, Dearborn, MI, 48128, USA
| | - Jaewon Yoon
- Ford Motor Company, Research and Innovation Center, Dearborn, MI, 48128, USA
| | - Osman G Ersoy
- Ravago Petrokimya Üretim A.Ş., R&D Center, Taysad OSB 1. Cd. No:18 Çayırova, Kocaeli, 41420, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi, Istanbul, 34755, Turkey
| | - Deborah Mielewski
- Ford Motor Company, Research and Innovation Center, Dearborn, MI, 48128, USA
| | - Alper Kiziltas
- Ford Motor Company, Research and Innovation Center, Dearborn, MI, 48128, USA
| |
Collapse
|
49
|
Krishnan RR, Chandran SR, Johnson E, Hariharan PK. Biomedical Applications of Dendrimer Functionalized Magnetic Nanoparticles. ChemistrySelect 2022. [DOI: 10.1002/slct.202201401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Raji Rama Krishnan
- Post Graduate Department of Chemistry and Research Centre Sanatana Dharma College University of Kerala Alappuzha Kerala India 688003
- Research Centre University of Kerala Thiruvananthapuram Kerala India 695034
| | - Shine Rama Chandran
- Post Graduate Department of Chemistry and Research Centre Sanatana Dharma College University of Kerala Alappuzha Kerala India 688003
- Research Centre University of Kerala Thiruvananthapuram Kerala India 695034
| | - Elizabath Johnson
- Post Graduate Department of Chemistry and Research Centre Sanatana Dharma College University of Kerala Alappuzha Kerala India 688003
- Research Centre University of Kerala Thiruvananthapuram Kerala India 695034
| | - Prema Kakkadath Hariharan
- Post Graduate Department of Chemistry and Research Centre Sanatana Dharma College University of Kerala Alappuzha Kerala India 688003
- Research Centre University of Kerala Thiruvananthapuram Kerala India 695034
| |
Collapse
|
50
|
Marquez R, Zwilling J, Zambrano F, Tolosa L, Marquez ME, Venditti R, Jameel H, Gonzalez R. Nanoparticles and essential oils with antiviral activity on packaging and surfaces: An overview of their selection and application. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ronald Marquez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Jacob Zwilling
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Franklin Zambrano
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Laura Tolosa
- School of Chemical Engineering Universidad de Los Andes Mérida Venezuela
| | - Maria E. Marquez
- Laboratory of Parasite Enzymology, Department of Biology Universidad de Los Andes Mérida Venezuela
| | - Richard Venditti
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Hasan Jameel
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Ronalds Gonzalez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| |
Collapse
|