1
|
Altun AB, Aydin D, Oguz M, Erdemir S. Low-level tracking palladium species with a xanthene-indandione conjugated system in foodstuff, environmental samples, and living cells. Food Chem 2025; 464:141792. [PMID: 39476580 DOI: 10.1016/j.foodchem.2024.141792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Palladium (Pd) is a significant heavy metal with outstanding catalytic properties, extensively utilized in the pharmaceutical industry and organic chemistry. Due to the detrimental impact of palladium on human health and the environment, there is a pressing need for efficient and convenient analytical techniques. In this context, we have created a simple fluorescent switch-on probe, INXPd, for the selective determination of Pd0. The allyl carbonate in INX-Pd could be entirely cleaved by Pd0 to produce the intermediate INX-OH, resulting in distinct colorimetric and fluorometric alterations. INX-Pd displayed high sensitivity in detecting Pd0, with a detection limit of 56 nM, and a fast response time (2.0 min). INX-Pd was successively utilized to determine Pd0 in drugs, water, soil, and various foodstuff samples as well as smartphone and test strips. Moreover, cell imaging experiments demonstrated that INX-Pd is suitable for imaging Pd0 in living cells.
Collapse
Affiliation(s)
- Ayse Betul Altun
- Selcuk University, Science Faculty, Department of Chemistry, Konya 42250, Turkey
| | - Duygu Aydin
- Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry, Karaman 70100, Turkey
| | - Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, Konya 42250, Turkey
| | - Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, Konya 42250, Turkey.
| |
Collapse
|
2
|
Dong Y, Chang CR, Liu PP, Kan JL, Huang F, Dong Y, Dong YB. Metal Bis(acyclic diaminocarbene)-Derived Homochiral Organometallic Frameworks: Synthesis and Asymmetric Catalytic Application. Inorg Chem 2025. [PMID: 39812450 DOI: 10.1021/acs.inorgchem.4c04692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
As an indispensable member of the reticular material family, metal-carbon-based organometallic frameworks (OMFs) remain largely underexplored, and no chiral OMFs (COMFs) have been reported thus far. Herein, we first report the construction of COMFs from a Pd-isocyanide OMF via nucleophilic addition to the Pd-isocyanide moiety with optically pure amines. The obtained Pd-bis(acyclic diaminocarbene) (Pd-BADC)-derived chiral OMFs display excellent applicability and can be reusable chiral catalysts to highly promote asymmetric Strecker and Suzuki-Miyaura cross-coupling reactions in a heterogeneous way. We anticipate that this type of chiral reticular material will be applicable to a broad range of asymmetric catalytic applications, and this appealing synthetic strategy will likely provide access to more other such materials with unprecedented structures and catalytic activities.
Collapse
Affiliation(s)
- Ying Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Chun-Run Chang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Pan-Pan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Ying Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
3
|
Nopper C, Veith A, Himmelsbach F, Söhner L, Breit B. O-p-Methoxyphenyl α-Hydroxycarboxylic Acids as Versatile Hydroxyalkylation Agents for Photocatalysis. Chemistry 2025; 31:e202403495. [PMID: 39412206 DOI: 10.1002/chem.202403495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Reliable radical precursors are crucial for photocatalytic processes. In particular, heteroatom-stabilized radicals have attracted considerable research interest in photocatalysis. Among them, α-amino radicals have received the most attention, while the research on α-hydroxy radicals is much less developed. Herein, we present O-PMP α-hydroxycarboxylic acids as novel precursors for the formation of oxygen-stabilized radicals. These radicals have been successfully used as building blocks in Pd-catalyzed allylation reactions, Ni-catalyzed arylation and alkenylation reactions, and Giese reactions. A subsequent deprotection step liberates the corresponding hydroxyalkylation products.
Collapse
Affiliation(s)
- Christoph Nopper
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau, 79104, Germany
| | - Adrian Veith
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau, 79104, Germany
| | - Felix Himmelsbach
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau, 79104, Germany
| | - Luca Söhner
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau, 79104, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau, 79104, Germany
| |
Collapse
|
4
|
Patel AR, Maity G, Pati TK, Adak L, Cioffi CL, Banerjee S. Hybrid Pd 0.1Cu 0.9Co 2O 4 nano-flakes: a novel, efficient and reusable catalyst for the one-pot heck and Suzuki couplings with simultaneous transesterification reactions under microwave irradiation. Front Chem 2024; 12:1496234. [PMID: 39539394 PMCID: PMC11557397 DOI: 10.3389/fchem.2024.1496234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
We report the fabrication of a novel spinel-type Pd₀.₁Cu₀.₉Co₂O₄ nano-flake material designed for Mizoroki-Heck and Suzuki coupling-cum-transesterification reactions. The Pd₀.₁Cu₀.₉Co₂O₄ material was synthesized using a simple co-precipitation method, and its crystalline phase and morphology were characterized through powder XRD, UV-Vis, FESEM, and EDX studies. This material demonstrated excellent catalytic activity in Mizoroki-Heck and Suzuki cross-coupling reactions, performed in the presence of a mild base (K₂CO₃), ethanol as the solvent, and microwave irradiation under ligand-free conditions. Notably, the Heck coupling of acrylic esters proceeded concurrently with transesterification using various alcohols as solvents. The catalyst exhibited remarkable stability under reaction conditions and could be recycled and reused up to ten times while maintaining its catalytic integrity.
Collapse
Affiliation(s)
- Ashok Raj Patel
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Gurupada Maity
- Department of Physics, School of Basic and Applied Science, Galgotias University, Greater Noida, India
| | - Tanmay K. Pati
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Laksmikanta Adak
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, India
| | | | - Subhash Banerjee
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
5
|
Ye Q, Xie G, Hao W, Cai M. Carbonylative Cyclization of 2-Iodofluorobenzenes and 2-Aminophenols with Recyclable Palladium-Complexed Dendrimers on SBA-15: One-Pot Synthesis of Dibenzoxazepinones. J Org Chem 2024; 89:14864-14879. [PMID: 39329374 DOI: 10.1021/acs.joc.4c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A novel, efficient, and practical route to dibenzoxazepinones has been developed through a one-pot heterogeneous palladium-catalyzed aminocarbonylation/aromatic nucleophilic substitution (SNAr) sequence starting from readily available 2-iodofluorobenzenes and 2-aminophenols. The carbonylative cyclization reaction proceeds smoothly in dimethyl sulfoxide (DMSO) at 120 °C with 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) as the base by using a polyamidoamine (PAMAM)-dendronized SBA-15-supported bidentate phosphine-palladium complex [G(1)-2P-Pd(OAc)2-SBA-15] as the catalyst under 10 bar of CO, yielding a wide variety of dibenzo[b,e][1,4]oxazepin-11(5H)-one derivatives in good to excellent yields. Moreover, this new heterogenized dendritic palladium catalyst has competitive advantages in that it can be facilely recovered by simple filtration in air and recycled more than eight times without any significant loss of activity. The broad substrate scope, high functional group tolerance, and excellent palladium catalyst recyclability of the reaction make this approach a general, efficient, and economical method for the construction of valuable dibenzoxazepinone derivatives.
Collapse
Affiliation(s)
- Qian Ye
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and College of Chemistry & Materials Science, Jiangxi Normal University, Nanchang 330022, China
| | - Gang Xie
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and College of Chemistry & Materials Science, Jiangxi Normal University, Nanchang 330022, China
| | - Wenyan Hao
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and College of Chemistry & Materials Science, Jiangxi Normal University, Nanchang 330022, China
| | - Mingzhong Cai
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and College of Chemistry & Materials Science, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
6
|
Hong H, Wang L, Xu Y, Ji X, Chen L, Li Y, Jiang H. Synthesis of Dihalonaphthalenes via Silver-Catalyzed Halogenation and Electrophilic Cyclization of Terminal Alkynols. Org Lett 2024; 26:7387-7392. [PMID: 39177186 DOI: 10.1021/acs.orglett.4c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Herein, we report a silver-catalyzed halogenation and electrophilic cyclization reaction based on the trifunctionalization of terminal alkynols with NBS or iodine monochloride in a step-efficient synthetic way to produce homo/heterodihalogenated naphthalene derivatives bearing two different halogen atoms in moderate to good yields. This methodology readily accommodates various functional groups, including electron-withdrawing nitro, cyano, acid-sensitive dioxazolyl, and alkoxy groups.
Collapse
Affiliation(s)
- Huanliang Hong
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529090, Guangdong, China
| | - Li Wang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529090, Guangdong, China
| | - Yuyan Xu
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529090, Guangdong, China
| | - Xiaoliang Ji
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lu Chen
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529090, Guangdong, China
| | - Yibiao Li
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529090, Guangdong, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515548, Guangdong, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
7
|
Morriss CE, Cheung CK, Nunn E, Parmeggiani F, Powell NA, Kimber RL, Haigh SJ, Lloyd JR. Biosynthesis Parameters Control the Physicochemical and Catalytic Properties of Microbially Supported Pd Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311016. [PMID: 38461530 DOI: 10.1002/smll.202311016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Indexed: 03/12/2024]
Abstract
The biosynthesis of Pd nanoparticles supported on microorganisms (bio-Pd) is achieved via the enzymatic reduction of Pd(II) to Pd(0) under ambient conditions using inexpensive buffers and electron donors, like organic acids or hydrogen. Sustainable bio-Pd catalysts are effective for C-C coupling and hydrogenation reactions, but their industrial application is limited by challenges in controlling nanoparticle properties. Here, using the metal-reducing bacterium Geobacter sulfurreducens, it is demonstrated that synthesizing bio-Pd under different Pd loadings and utilizing different electron donors (acetate, formate, hydrogen, no e- donor) influences key properties such as nanoparticle size, Pd(II):Pd(0) ratio, and cellular location. Controlling nanoparticle size and location controls the activity of bio-Pd for the reduction of 4-nitrophenol, whereas high Pd loading on cells synthesizes bio-Pd with high activity, comparable to commercial Pd/C, for Suzuki-Miyaura coupling reactions. Additionally, the study demonstrates the novel synthesis of microbially-supported ≈2 nm PdO nanoparticles due to the hydrolysis of biosorbed Pd(II) in bicarbonate buffer. Bio-PdO nanoparticles show superior activity in 4-nitrophenol reduction compared to commercial Pd/C catalysts. Overall, controlling biosynthesis parameters, such as electron donor, metal loading, and solution chemistry, enables tailoring of bio-Pd physicochemical and catalytic properties.
Collapse
Affiliation(s)
- Christopher Egan Morriss
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Casey K Cheung
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Elliot Nunn
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Fabio Parmeggiani
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci, Milan, 20133, Italy
| | | | - Richard L Kimber
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sarah J Haigh
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
8
|
De Snoo W, Kong WY, Tantillo DJ. Allyl-Allyl Coupling Promoted by Catalyst Systems with two Palladium Atoms - A Plethora of Potentially Pericyclic Processes. Angew Chem Int Ed Engl 2024; 63:e202406095. [PMID: 38709849 DOI: 10.1002/anie.202406095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Recently, Huang and co-workers reported a catalytic reaction that utilizes H2 as the sole reductant for a C-C coupling of allyl groups with yields up to 96 %. Here we use computational quantum chemistry to identify several key features of this reaction that provide clarity on how it proceeds. We propose the involvement of a Pd-Pd bound dimer precatalyst, demonstrate the importance of ligand π-π interactions and counterions, and identify a new, energetically viable, mechanism involving two dimerized, outer-sphere reductive elimination transition structures that determine both the rate and selectivity. Although we rule out the previously proposed transmetalation step on energetic grounds, we show it to have an unusual aromatic transition structure in which two Pd atoms support rearranging electrons. The prevalence of potential metal-supported pericyclic reactions in this system suggests that one should consider such processes regularly, but the results of our calculations also indicate that one should do so with caution.
Collapse
Affiliation(s)
- William De Snoo
- Department of Chemistry, University of California-Davis, Davis, CA 95616, USA
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California-Davis, Davis, CA 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
9
|
Fukuda T, Kishikawa N, El-Maghrabey M, Nakamura S, Ohba Y, Kawakami S, Wada M, Kuroda N. 4-Iodobenzonitrile as a fluorogenic derivatization reagent for chromatographic analysis of L-p-boronophenylalanine in whole blood samples using Suzuki coupling reaction. Anal Chim Acta 2024; 1313:342700. [PMID: 38862203 DOI: 10.1016/j.aca.2024.342700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND L-p-Boronophehylalanine (BPA) is used in boron neutron capture therapy (BNCT), which is a novel selective cancer radiotherapy technique. It is important to measure BPA levels in human blood for effective radiotherapy; a prompt gamma-ray spectrometer, ICP-AES, and ICP-MS have been used for this purpose. However, these methods require sophisticated and expensive apparatuses as well as experienced analysts. Herein, we propose an HPLC-FL method for the determination of BPA after precolumn derivatization. A new fluorogenic reagent for aryl boronic acid derivatives, namely, 4-iodobenzonitrile, was employed for the fluorogenic derivatization of BPA based on the Suzuki coupling reaction. RESULTS After the fluorogenic derivatization, a fluorescent cyanobiphenyl derivative is formed with maximum fluorescence at 335 nm after excitation at 290 nm. The developed method showed good linearity (r2=0.997) over the concentration range of 0.5-1000 nmol/L, and the detection limit (S/N = 3) was 0.26 nmol/L. The proposed method is more sensitive than previously reported methods for the determination of BPA, including the ICP-MS. Finally, the proposed method was successively applied to the measurement of BPA in human whole blood samples with a good recovery rate (≥95.7 %) using only 10 μL of blood sample. The proposed method offers a simple and efficient solution for monitoring BPA levels in BNCT-treated patients. SIGNIFICANCE 4-Iodobenzonitrile was investigated as a new fluorogenic reagent for BPA based on Suzuki coupling. A new HPLC-FL method for BPA in whole blood samples with ultrasensitivity was developed. The developed method is superior in sensitivity to all previously reported methods for BPA. The method requires only a very small sample volume, making it suitable for micro-blood analysis of BPA via fingerstick sampling.
Collapse
Affiliation(s)
- Takayuki Fukuda
- Department of Analytical Chemistry for Pharmaceuticals, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Naoya Kishikawa
- Department of Analytical Chemistry for Pharmaceuticals, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Mahmoud El-Maghrabey
- Department of Analytical Chemistry for Pharmaceuticals, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| | - Saori Nakamura
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 HuisTen Bosch Cho, Sasebo, Nagasaki, 859-3298, Japan
| | - Yoshihito Ohba
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 HuisTen Bosch Cho, Sasebo, Nagasaki, 859-3298, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Mitsuhiro Wada
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigakudori, SanyoOnoda, Yamaguchi, 756-0884, Japan
| | - Naotaka Kuroda
- Department of Analytical Chemistry for Pharmaceuticals, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| |
Collapse
|
10
|
Zhang X, Huang K, Fu Y, Zhang N, Kong X, Cheng Y, Zheng M, Cheng Y, Zhu T, Fu B, Feng S, Chen H. Demethylation C-C coupling reaction facilitated by the repulsive Coulomb force between two cations. Nat Commun 2024; 15:5881. [PMID: 38997250 PMCID: PMC11245495 DOI: 10.1038/s41467-024-49946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Carbon chain elongation (CCE) is normally carried out using either chemical catalysts or bioenzymes. Herein we demonstrate a catalyst-free approach to promote demethylation C-C coupling reactions for advanced CCE constructed with functional groups under ambient conditions. Accelerated by the electric field, two organic cations containing a methyl group (e.g., ketones, acids, and aldehydes) approach each other with such proximity that the energy of the repulsive Coulomb interaction between these two cations exceeds the bond energy of the methyl group. This results in the elimination of a methyl cation and the coupling of the residual carbonyl carbon groups. As confirmed by high-resolution mass spectrometry and isotope-labeling experiments, the C-C coupling reactions (yields up to 76.5%) were commonly observed in the gas phase or liquid phase, for which the mechanism was further studied using molecular dynamics simulations and stationary-point calculations, revealing deep insights and perspectives of chemistry.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yanlin Fu
- State Key Laboratory of Molecular Reaction Dynamics, Center for Theoretical and Computational Chemistry, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Ni Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Xianglei Kong
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuanyuan Cheng
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China
| | - Mingyu Zheng
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China
| | - Yihao Cheng
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China
| | - Tenggao Zhu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics, Center for Theoretical and Computational Chemistry, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.
- Hefei National Laboratory, Hefei, 230088, China.
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, P. R. China.
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China.
| |
Collapse
|
11
|
Liu Q, Pan W, Zhang J, Yang M, Chen Q, Liu F, Li J, Wei S, Zhu G. Porphyrin-based porous organic polymers synthesized using the Alder-Longo method: the most traditional synthetic strategy with exceptional capacity. RSC Adv 2024; 14:20837-20855. [PMID: 38952933 PMCID: PMC11216041 DOI: 10.1039/d4ra02277g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Porphyrin is a typical tetrapyrrole chromophore-based pigment with a special electronic structure and functionalities, which is frequently introduced into various porous organic polymers (POPs). Porphyrin-based POPs are widely used in various fields ranging from environmental and energy to biomedicine-related fields. Currently, most porphyrin-based POPs are prepared via the copolymerization of specific-group-functionalized porphyrins with other building blocks, in which the tedious and inefficient synthesis procedure for the porphyrin greatly hinders the development of such materials. This review aimed to summarize information on porphyrin-based POPs synthesized using the Alder-Longo method, thereby skipping the complex synthesis of porphyrin-bearing monomers, in which the porphyrin macrocycles are formed directly via the cyclic tetramerization of pyrrole with monomers containing multiple aldehyde groups during the polymerization process. The representative applications of porphyrin-based POPs derived using the Alder-Longo method are finally introduced, which pinpoints a clear relationship between the structure and function from the aspect of the building blocks used and porous structures. This review is therefore valuable for the rational design of efficient porphyrin-based porous organic polymer systems that may be utilized in various fields from energy-related conversion/storage technologies to biomedical science.
Collapse
Affiliation(s)
- Qian Liu
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
- Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University Weifang 261053 Shandong P. R. China
| | - Wen Pan
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Junshan Zhang
- Weifang People's Hospital, Shandong Second Medical University Weifang 261041 Shandong P. R. China
| | - Mei Yang
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Qin Chen
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Feng Liu
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Juan Li
- Weifang People's Hospital, Shandong Second Medical University Weifang 261041 Shandong P. R. China
| | - Songrui Wei
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| | - Guoji Zhu
- Children's Hospital of Soochow University, Soochow University Suzhou 215008 PR China
| |
Collapse
|
12
|
Zhou Y, Akkarasereenon K, Liu L, Lin R, Song L, Tong R. Ecofriendly Protocol for ipso-Bromination of Arylboronic Acids. Org Lett 2024; 26:5151-5156. [PMID: 38864512 DOI: 10.1021/acs.orglett.4c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
We report a novel and environmentally friendly method for the ipso-bromination of arylboronic acids by exploiting the oxone/KBr system. We discovered that CuBr can catalyze the reaction and increase the yield from 63 to 97%. We believe that CuBr might catalyze the in situ generation of HOBr from oxone/KBr. The mild reaction condition permits tolerance of a diverse array of functional groups with exclusive regio- and chemoselectivity and allows low-cost large-scale reaction without explosion risk.
Collapse
Affiliation(s)
- Yiqin Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| | - Kornkamon Akkarasereenon
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| | - Lifang Liu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ran Lin
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liyan Song
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
13
|
Brodzka A, Koszelewski D, Trzeciak A, Ruzik L, Grela M, Ostaszewski R. The Influence of Ligands on the Pd-Catalyzed Diarylation of Vinyl Esters. Molecules 2024; 29:2268. [PMID: 38792129 PMCID: PMC11123883 DOI: 10.3390/molecules29102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The impact of ligands on the palladium-catalyzed 1,2-diarylation reaction course is presented. The application of Pd-dmpzc as a catalyst provides an efficient, chemoselective and sustainable protocol for the synthesis of valuable 1,2-diphenylethyl acetates. The reaction is conducted in water under mild conditions. Reaction products can be easily separated from the reaction mixture and catalyst by simple extraction. What is more, the rational choice of catalyst significantly reduces the leaching of the metal into the product and its contamination (0.1 ppm). Efficient phase separation and ultralow Pd leaching enable the reuse of the water medium containing the Pd-dmpzc catalyst several times without a significant loss of activity and with even higher selectivity (from 95% to 100% in the third cycle). The recyclability of both the catalyst and the reaction medium together with high chemoselectivity and low palladium leaching reduces the amount of waste and the cost of the process, exhibiting an example of a sustainable and green methodology.
Collapse
Affiliation(s)
- Anna Brodzka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland (M.G.)
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland (M.G.)
| | - Anna Trzeciak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland;
| | - Lena Ruzik
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Malgorzata Grela
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland (M.G.)
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland (M.G.)
| |
Collapse
|
14
|
P H, M V, Dey R. Multicomponent synthesis via acceptorless alcohol dehydrogenation: an easy access to tri-substituted pyridines. RSC Adv 2024; 14:10761-10767. [PMID: 38572342 PMCID: PMC10988360 DOI: 10.1039/d4ra00439f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Herein, we report palladium supported on a hydroxyapatite catalyst for synthesizing tri-substituted pyridines using ammonium acetate as the nitrogen source via acceptorless alcohol dehydrogenation strategy. The strategy offers a broad substrate scope using inexpensive and readily available alcohols as the starting material. The catalyst was prepared using a simple method and analyzed by several techniques, including FE-SEM, EDS, HR-TEM, BET, XRD, FT-IR, UV-visible spectroscopy, and XPS, demonstrating the anchoring of Pd nanoparticles on hydroxyapatite in the zero oxidation state. Moreover, several controlled experiments were carried out to understand the reaction pathway and a suitable mechanism has been proposed.
Collapse
Affiliation(s)
- Hima P
- Department of Chemistry, National Institute of Technology Calicut Kozhikode 673601 India
| | - Vageesh M
- Department of Chemistry, National Institute of Technology Calicut Kozhikode 673601 India
| | - Raju Dey
- Department of Chemistry, National Institute of Technology Calicut Kozhikode 673601 India
| |
Collapse
|
15
|
Wang B, Ren M, Iqbal N, Mu X, Bäckvall JE, Yang B. Palladium-Catalyzed Dehydrogenative Carbonylative Esterification of Allenoic Acids for the Synthesis of γ-Butyrolactone Derivatives. Org Lett 2024. [PMID: 38502799 DOI: 10.1021/acs.orglett.4c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A highly efficient dehydrogenative carbonylative esterification of allenoic acids using Pd-catalysis was developed, providing a novel approach to synthesizing esterified γ-butyrolactone derivatives with consistently good to excellent results demonstrated across over 50 examples. Additionally, we used a heterogeneous catalyst known as Pd-AmP-MCF and harnessed biomimetic-aerobic-oxidation conditions to facilitate the practical execution of this reaction. Furthermore, our detailed study of γ-butyrolactone products highlighted their potential in synthesizing bioactive compounds.
Collapse
Affiliation(s)
- Bolin Wang
- School of Chemistry, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Mingzhe Ren
- School of Chemistry, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Nasir Iqbal
- School of Chemistry, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Xin Mu
- School of Chemistry, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Bin Yang
- School of Chemistry, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| |
Collapse
|
16
|
Tangku C, Saelee T, Rittiruam M, Khajondetchairit P, Praserthdam S, Anutrasakda W, Kuwahara Y, Praserthdam P. Pd-loaded hierarchical titanosilicalite-1 catalysts on CO 2 cycloaddition with epoxides: Experimental and DFT investigations. CHEMOSPHERE 2024; 352:141321. [PMID: 38307339 DOI: 10.1016/j.chemosphere.2024.141321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
This work presents the synthesis of Pd-loaded microporous titanosilicalite-1 (Pd/TS-1) and Pd-loaded hierarchical titanosilicalite-1 (Pd/HTS-1) with abundant mesopores (2-30 nm) inside the framework via hydrothermal method using polydiallydimethyl ammonium chloride as the non-surfactant mesopore template. XRD, N2 sorption, FT-IR, FESEM-EDX, TEM, XPS, and DR-UV techniques were used to characterize the morphological and physicochemical properties of the synthesized materials. These materials were tested as heterogeneous catalysts, along with tetrapropylammonium bromide as co-catalyst, for cycloaddition reactions of CO2 with epoxides to produce cyclic carbonates. It was found that the epoxide conversions were influenced by acidity and pore accessibility of the catalysts. Using Pd/HTS-1 facilitated bulky substrates to access active sites, resulting in higher conversions than Pd/TS-1. Over 85 % conversions were achieved for at least five consecutive cycles without significant loss in catalytic activity. The interaction between the Pd active surfaces and epichlorohydrin (ECH) was further studied by DFT calculations. The existence of Pd(200) was more influential on adsorbing epichlorohydrin (ECH) and subsequent formation of dissociated ECH (DECH) intermediate than Pd(111) surface. However, Pd(111) was dominant in enhancing the activity of DECH species for capturing CO2. Therefore, the co-existence of Pd(200) and Pd(111) surfaces was needed for cycloaddition of CO2 with ECH.
Collapse
Affiliation(s)
- Chutima Tangku
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tinnakorn Saelee
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Meena Rittiruam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patcharaporn Khajondetchairit
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supareak Praserthdam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Wipark Anutrasakda
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Piyasan Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
17
|
Yu H, Gold JI, Wolter TJ, Bao N, Smith E, Zhang HA, Twieg RJ, Mavrikakis M, Abbott NL. Actuating Liquid Crystals Rapidly and Reversibly by Using Chemical Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2309605. [PMID: 38331028 DOI: 10.1002/adma.202309605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Microtubules and catalytic motor proteins underlie the microscale actuation of living materials, and they have been used in reconstituted systems to harness chemical energy to drive new states of organization of soft matter (e.g., liquid crystals (LCs)). Such materials, however, are fragile and challenging to translate to technological contexts. Rapid (sub-second) and reversible changes in the orientations of LCs at room temperature using reactions between gaseous hydrogen and oxygen that are catalyzed by Pd/Au surfaces are reported. Surface chemical analysis and computational chemistry studies confirm that dissociative adsorption of H2 on the Pd/Au films reduces preadsorbed O and generates 1 ML of adsorbed H, driving nitrile-containing LCs from a perpendicular to a planar orientation. Subsequent exposure to O2 leads to oxidation of the adsorbed H, reformation of adsorbed O on the Pd/Au surface, and a return of the LC to its initial orientation. The roles of surface composition and reaction kinetics in determining the LC dynamics are described along with a proof-of-concept demonstration of microactuation of beads. These results provide fresh ideas for utilizing chemical energy and catalysis to reversibly actuate functional LCs on the microscale.
Collapse
Affiliation(s)
- Huaizhe Yu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca, NY, 14853, USA
| | - Jake I Gold
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Trenton J Wolter
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Nanqi Bao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca, NY, 14853, USA
| | - Evangelos Smith
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Hanyu Alice Zhang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca, NY, 14853, USA
| | - Robert J Twieg
- Department of Chemistry and Biochemistry, Kent State University, 1175 Risman Drive, Kent, OH, 44242, USA
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Nicholas L Abbott
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 1 Ho Plaza, Ithaca, NY, 14853, USA
| |
Collapse
|
18
|
Neyyathala A, Flecken F, Rang F, Papke C, Hanf S. Support Engineering for the Stabilisation of Heterogeneous Pd 3 P-Based Catalysts for Heck Coupling Reactions. Chemistry 2024; 30:e202302825. [PMID: 37870098 DOI: 10.1002/chem.202302825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Herein we report the use of a supported Pd3 P catalyst for Heck coupling reactions. For the stabilisation of Pd3 P and Pd, as reference system, the silica support material was modified via phosphorus doping (0.5 and 1 wt % P). Through this so-called support engineering approach, the catalytic activity of Pd3 P was clearly enhanced. Whereas an iodobenzene conversion of 79 % was witnessed for Pd3 P@SiO2 in the coupling of styrene and iodobenzene in 1 h, 90 % conversion could be achieved using Pd3 P@1P-SiO2 . This improved catalytic activity probably stems from an electronic modulation of the support surface via the introduction of phosphorus. Simultaneously, the recyclability was boosted and the Pd3 P@1P-SiO2 catalyst has shown to maintain its catalytic activity over several recovery tests. Hereby, metal leaching could almost be suppressed completely to 3 % by the use of a P-modified silica support.
Collapse
Affiliation(s)
- Arjun Neyyathala
- Karlsruhe Institute of Technology, Institute for Inorganic Chemistry, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Franziska Flecken
- Karlsruhe Institute of Technology, Institute for Inorganic Chemistry, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Fabian Rang
- Karlsruhe Institute of Technology, Institute for Inorganic Chemistry, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Christina Papke
- Karlsruhe Institute of Technology, Institute for Inorganic Chemistry, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Schirin Hanf
- Karlsruhe Institute of Technology, Institute for Inorganic Chemistry, Engesserstr. 15, 76131, Karlsruhe, Germany
| |
Collapse
|
19
|
Pandey J, Singh BD, Khanam H, Tiwari B, Azaz T, Singh R. Cassia fistula galactomannan stabilized copper nanocatalyst as an efficient, recyclable heterogeneous catalyst for the fast clickable [3+2] Huisgen cycloadditions in water. Int J Biol Macromol 2024; 255:128098. [PMID: 37972839 DOI: 10.1016/j.ijbiomac.2023.128098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
In this study, we have first time investigated the synthesis of copper nanocatalyst by using biopolymer galactomannan, naturally extracted from Cassia fistula pods. The methodology involved for the preparation of copper nanocatalyst is economical, efficient, environment friendly, and did not involve further processing for stabilization or reduction of copper nanoparticles. The morphology and structural characterization of the nanocatalyst was performed by using different techniques such as FT-IR, 1H NMR, SEM, EDX, HR-TEM, XRD, XPS, ICP-MS, BET, and TGA analysis. The prepared copper nanocatalyst is applied for the click [3+2] Huisgen cycloadditions of various azides and alkynes, employing water as environmentally benign solvent. In comparison to earlier reported methods, our method requires lowest catalyst loading, less reaction time, excellent yields and have wide substrate scope. Additionally, the catalyst was easily recovered by simple filtration and recycled at least ten consecutive times without any appreciable loss of efficiency and selectivity. The effect of mannose and galactose (Man/Gal) ratio of Cassia fistula galactomannan on the catalytic activity were also investigated.
Collapse
Affiliation(s)
- Jyoti Pandey
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India.
| | - Bal Dev Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Huda Khanam
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India; Department of Chemistry, University of Lucknow, Lucknow 226007, India
| | - Bhoopendra Tiwari
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Tazeen Azaz
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Ruchi Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| |
Collapse
|
20
|
Vice A, Langer N, Reinhart B, Kedem O. Surface-Modified Pd/CeO 2 Single-Atom Catalyst Shows Increased Activity for Suzuki Cross-Coupling. Inorg Chem 2023; 62:21479-21486. [PMID: 38054605 DOI: 10.1021/acs.inorgchem.3c03649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Single-atom catalysts (SACs) comprise catalytically active atoms dispersed on supports; they combine the high activity and site uniformity of homogeneous catalysts with the ease of separability of heterogeneous catalysts. However, SACs lack fine control over the active site, provided by ligands in homogeneous catalysts. In this work, we demonstrate that modification of the support with an organic monolayer is a viable approach to improving the catalytic performance. The addition of catechol-type monolayers to a Pd/CeO2 SAC increases its catalytic activity for Suzuki cross-coupling, a central reaction in the synthesis of fine chemicals and pharmaceuticals. Kinetic trials reveal that the coating reduces the activation energy from 49 ± 9 to 22 ± 5 kJ/mol and produces a 4-fold rate enhancement at 25 °C, an effect we attribute to π-π interactions between the reactant and the catechol coating. Further development of this approach could vastly increase the utility of SACs in organic synthesis.
Collapse
Affiliation(s)
- Audrey Vice
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Nicholas Langer
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Benjamin Reinhart
- X-ray Science Division, Argonne National Laboratory, Argonne, Lemont, Illinois 60439, United States
| | - Ofer Kedem
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
21
|
Daka M, Montini T, Pengo P, Marussi G, Crosera M, Adami G, Delgado JJ, Giambastiani G, Fertey P, Fonda E, Pasquato L, Fornasiero P. Reduced Tiara-like Palladium Complex for Suzuki Cross-Coupling Reactions. Chemistry 2023; 29:e202301740. [PMID: 37522641 DOI: 10.1002/chem.202301740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
The design of highly active and structurally well-defined catalysts has become a crucial issue for heterogeneous catalysed reactions while reducing the amount of catalyst employed. Beside conventional synthetic routes, the employment of polynuclear transition metal complexes as catalysts or catalyst precursors has progressively intercepted a growing interest. These well-defined species promise to deliver catalytic systems where a strict control on the nuclearity allows to improve the catalytic performance while reducing the active phase loading. This study describes the development of a highly active and reusable palladium-based catalyst on alumina (Pd8 /Al2 O3 ) for Suzuki cross-coupling reactions. An octanuclear tiara-like palladium complex was selected as active phase precursor to give isolated Pd-clusters of ca. 1 nm in size on Al2 O3 . The catalyst was thoroughly characterised by several complementary techniques to assess its structural and chemical nature. The high specific activity of the catalyst has allowed to carry out the cross-coupling reaction in 30 min using only 0.12 mol % of Pd loading under very mild and green reaction conditions. Screening of various substrates and selectivity tests, combined with recycling and benchmarking experiments, have been used to highlight the great potentialities of this new Pd8 /Al2 O3 catalyst.
Collapse
Affiliation(s)
- Mario Daka
- Department of Chemical and Pharmaceutical Sciences, INSTM, UdR Trieste, University of Trieste, Trieste, 34127, Italy
| | - Tiziano Montini
- Department of Chemical and Pharmaceutical Sciences, INSTM, UdR Trieste, University of Trieste, Trieste, 34127, Italy
- Center for Energy, Environment and, Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit, University of Trieste, Trieste, 34127, Italy
| | - Paolo Pengo
- Department of Chemical and Pharmaceutical Sciences, INSTM, UdR Trieste, University of Trieste, Trieste, 34127, Italy
| | - Giovanna Marussi
- Department of Chemical and Pharmaceutical Sciences, INSTM, UdR Trieste, University of Trieste, Trieste, 34127, Italy
| | - Matteo Crosera
- Department of Chemical and Pharmaceutical Sciences, INSTM, UdR Trieste, University of Trieste, Trieste, 34127, Italy
| | - Gianpiero Adami
- Department of Chemical and Pharmaceutical Sciences, INSTM, UdR Trieste, University of Trieste, Trieste, 34127, Italy
| | - Juan Jose Delgado
- Departamento de Ciencia de los Materiales, Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz, 11510, Spain
- Instituto Universitario de Investigación en, Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cádiz, Campus Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Giuliano Giambastiani
- Institute of Chemistry of OrganoMetallic Compounds, ICCOM-CNR and Consorzio INSTM, 50019, Sesto F.no, Florence, Italy
| | - Pierre Fertey
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif sur Yvette Cedex, France
| | - Emiliano Fonda
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91192, Gif sur Yvette Cedex, France
| | - Lucia Pasquato
- Department of Chemical and Pharmaceutical Sciences, INSTM, UdR Trieste, University of Trieste, Trieste, 34127, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, INSTM, UdR Trieste, University of Trieste, Trieste, 34127, Italy
- Center for Energy, Environment and, Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit, University of Trieste, Trieste, 34127, Italy
| |
Collapse
|
22
|
Chen F, Zheng L, Li C, Wang B, Wu Q, Dai Z, Wang S, Sun Q, Meng X, Xiao FS. Porous Supramolecular Assemblies for Efficient Suzuki Coupling of Aryl Chlorides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301875. [PMID: 37116082 DOI: 10.1002/smll.202301875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The development of catalytic systems that can activate aryl chlorides for palladium-catalyzed cross-coupling reactions is at the forefront of ongoing efforts to synthesize fine chemicals. In this study, a facile ligand-template approach is adopted to achieve active-site encapsulation by forming supramolecular assemblies; this bestowed the pristine inert counterparts with reactivity, which is further increased upon the construction of a porous framework. Experimental results indicated that the isolation of ligands by the surrounding template units is key to the formation of catalytically active monoligated palladium complexes. Additionally, the construction of porous frameworks using the resulting supramolecular assemblies prevented the decomposition of the Pd complexes into nanoparticles, which drastically increased the catalyst lifetime. These findings, along with the simplicity and generality of the synthesis scheme, suggest that the strategy can be leveraged to achieve unique reactivity and potentially enable fine-chemical synthesis.
Collapse
Affiliation(s)
- Fang Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, 310027, China
| | - Liping Zheng
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, 310018, China
| | - Chen Li
- CenerTech Tianjin Chemical Research and Design Institute Co., Ltd., Tianjing, 300131, China
| | - Benlei Wang
- CenerTech Tianjin Chemical Research and Design Institute Co., Ltd., Tianjing, 300131, China
| | - Qing Wu
- CNOOC Institute of Chemicals & Advanced Materials, Beijing, 100028, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, 310018, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, 310027, China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, 310027, China
| | - Xiangju Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, 310027, China
| | - Feng-Shou Xiao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
23
|
Chen Z, Ayinde OR, Fuchs JR, Sun H, Ning X. G 2Retro as a two-step graph generative models for retrosynthesis prediction. Commun Chem 2023; 6:102. [PMID: 37253928 DOI: 10.1038/s42004-023-00897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Retrosynthesis is a procedure where a target molecule is transformed into potential reactants and thus the synthesis routes can be identified. Recently, computational approaches have been developed to accelerate the design of synthesis routes. In this paper,we develop a generative framework G2Retro for one-step retrosynthesis prediction. G2Retro imitates the reversed logic of synthetic reactions. It first predicts the reaction centers in the target molecules (products), identifies the synthons needed to assemble the products, and transforms these synthons into reactants. G2Retro defines a comprehensive set of reaction center types, and learns from the molecular graphs of the products to predict potential reaction centers. To complete synthons into reactants, G2Retro considers all the involved synthon structures and the product structures to identify the optimal completion paths, and accordingly attaches small substructures sequentially to the synthons. Here we show that G2Retro is able to better predict the reactants for given products in the benchmark dataset than the state-of-the-art methods.
Collapse
Affiliation(s)
- Ziqi Chen
- Computer Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Oluwatosin R Ayinde
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - James R Fuchs
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Huan Sun
- Computer Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Xia Ning
- Computer Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA.
- Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Bera K, Mukherjee A. Chemoselective α-Alkylation of Nitriles with Primary Alcohols by Manganese(I)-Catalysis. Chem Asian J 2023:e202300157. [PMID: 37156742 DOI: 10.1002/asia.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Indexed: 05/10/2023]
Abstract
A sustainable and easy-to-use protocol for the alkylation of aryl nitriles with the earth-abundant manganese(I) catalyst is presented. The alkylation reaction employs readily available nitriles and naturally abundant alcohols as the coupling partners. The reaction proceeds chemoselectively and encompasses a broad substrate scope with good to excellent yields. The catalytic reaction yields selectively α-branched nitriles and water as the sole byproduct. Experimental studies were executed to understand the mechanism of the catalytic reaction.
Collapse
Affiliation(s)
- Krishanu Bera
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, 492015, Chhattisgarh, India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur, 492015, Chhattisgarh, India
| |
Collapse
|
25
|
Çalışkan M, Güzel HD, Baran T. Pd nanoparticles decorated on Schiff base-modified chitosan/CeO 2 as a heterogeneous and retriable nanocatalyst for Heck reactions and remediation of environmental pollutants. Int J Biol Macromol 2023; 240:124453. [PMID: 37068540 DOI: 10.1016/j.ijbiomac.2023.124453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
In this paper, we have developed a novel, highly active, eco-friendly, and versatile heterogeneous catalyst system in which Pd nanoparticles are decorated on Schiff base-modified chitosan‑cerium oxide particles (Pd@CS-CeO2). In order to confirm the successful fabrication of Pd@CS-CeO2, FTIR, XRD, SEM, TEM, BET, TG/DTG, and EDS analyses were performed, and its performance was evaluated as a heterogeneous nanocatalyst in Heck coupling reaction and reduction of nitro compounds. The catalytic tests showed that the desired Heck products were readily produced by Pd@CS-CeO2 without being contaminated with the aryl iodides, bromides, and chlorides. Moreover, different nitro compounds were efficiently reduced to corresponding amino compounds by Pd@CS-CeO2 within 95-160 s. Thanks to the heterogeneous nature of Pd@CS-CeO2 catalyst, it was easily recovered via simple filtration and reused up to 5 successive runs by giving 88 % yield. Due to its good catalytic and reusability performance together with stability/durability, Pd@CS-CeO2 is promising candidate as a catalyst for various catalytic or organic reactions.
Collapse
Affiliation(s)
- Melike Çalışkan
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Huri Dilruba Güzel
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey.
| |
Collapse
|
26
|
Malik A, Singh UP. Pd(II) Schiff base complex anchored on MCM-41, a reusable catalyst for the Heck reaction. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
27
|
Soto M, Pérez‐Ramos P, Soengas RG, Rodríguez‐Solla H. Substrate‐Controlled Hydrogenation of Flavanones: Selective Synthesis of 2′‐Hydroxy‐1,3‐Diarylpropanes and Flavans. European J Org Chem 2023. [DOI: 10.1002/ejoc.202300139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
28
|
Scarabelli L, Sun M, Zhuo X, Yoo S, Millstone JE, Jones MR, Liz-Marzán LM. Plate-Like Colloidal Metal Nanoparticles. Chem Rev 2023; 123:3493-3542. [PMID: 36948214 PMCID: PMC10103137 DOI: 10.1021/acs.chemrev.3c00033] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- NANOPTO Group, Institue of Materials Science of Barcelona, Bellaterra, 08193, Spain
| | - Muhua Sun
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, Department of Chemical and Petroleum Engineering, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, 43009 Bilbao, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
29
|
Wang Q, Shang Z, Wang H, Wei A. Electro- and photoactivation of silver-iron oxide particles as magnetically recyclable catalysts for cross-coupling reactions. NANOSCALE 2023; 15:5074-5082. [PMID: 36806420 PMCID: PMC10057351 DOI: 10.1039/d2nr04629f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Colloidal Ag particles decorated with Fe3O4 islands can be electrochemically or photochemically activated as inverse catalysts for C(sp2)-H heteroarylation. The silver-iron oxide (SIO) particles are reduced into redox-active forms by cathodic charging at mild potentials or by short-term light exposure, and can be reused multiple times by magnetic cycling without further activation. A negative shift in the reduction peak is attributed to an overpotential produced by surface Fe3O4 which separates residual Ag ions or clusters from bulk silver. The catalytic efficiency of SIO is maintained even with acid degradation, which can be countered simply by adding water to the reaction medium.
Collapse
Affiliation(s)
- Qi Wang
- Dept. of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, USA.
| | - Zhongxia Shang
- Dept. of Materials Science and Engineering, Purdue University, 525 Northwestern Ave, West Lafayette, IN, USA
| | - Haiyan Wang
- Dept. of Materials Science and Engineering, Purdue University, 525 Northwestern Ave, West Lafayette, IN, USA
| | - Alexander Wei
- Dept. of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, USA.
- Dept. of Materials Science and Engineering, Purdue University, 525 Northwestern Ave, West Lafayette, IN, USA
| |
Collapse
|
30
|
Wilson KA, Picinich LA, Siamaki AR. Nickel-palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes; versatile catalyst for Sonogashira cross-coupling reactions. RSC Adv 2023; 13:7818-7827. [PMID: 36909771 PMCID: PMC9996231 DOI: 10.1039/d3ra00027c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
We have developed an efficient method to generate highly active nickel-palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes (Ni-Pd/MWCNTs) by dry mixing of the nickel and palladium salts utilizing the mechanical energy of a ball-mill. These nanoparticles were successfully employed in Sonogashira cross-coupling reactions with a wide array of functionalized aryl halides and terminal alkynes under ligand and copper free conditions using a Monowave 50 heating reactor. Notably, the concentration of palladium can be lowered to a minimum amount of 0.81% and replaced by more abundant and less expensive nickel nanoparticles while effectively catalyzing the reaction. The remarkable reactivity of the Ni-Pd/MWCNTs catalyst toward Sonogashira cross-coupling reactions is attributed to the high degree of the dispersion of Ni-Pd nanoparticles with small particle size of 5-10 nm due to an efficient grinding method. The catalyst was easily removed from the reaction mixture by centrifugation and reused several times with minimal loss of catalytic activity. Furthermore, the concentration of catalyst in Sonogashira reactions can be reduced to a minimum amount of 0.01 mol% while still providing a high conversion of the Sonogashira product with a remarkable turnover number (TON) of 7200 and turnover frequency (TOF) of 21 600 h-1. The catalyst was fully characterized by a variety of spectroscopic techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).
Collapse
Affiliation(s)
- Katherine A Wilson
- Department of Chemistry, Physics, and Materials Science, Fayetteville State University Fayetteville NC USA 28301
| | - Lacey A Picinich
- Department of Chemistry, Physics, and Materials Science, Fayetteville State University Fayetteville NC USA 28301
| | - Ali R Siamaki
- Department of Chemistry, Physics, and Materials Science, Fayetteville State University Fayetteville NC USA 28301
| |
Collapse
|
31
|
Sruthi PR, Roopak R, Anas S. An Efficient Recyclable Polymer Supported Palladium Catalyst for Suzuki Reaction in Water. ChemistrySelect 2023. [DOI: 10.1002/slct.202204374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
| | - Ramakrishnan Roopak
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India- 686560
| | - Saithalavi Anas
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India- 686560
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam Kerala India- 686560
| |
Collapse
|
32
|
Mastalir Á, Molnár Á. A Novel Insight into the Ullmann Homocoupling Reactions Performed in Heterogeneous Catalytic Systems. Molecules 2023; 28:molecules28041769. [PMID: 36838755 PMCID: PMC9960315 DOI: 10.3390/molecules28041769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
The Ullmann reaction has been reported to be the first cross-coupling reaction performed by using a transition metal catalyst. This reaction has been initially considered as the copper-catalyzed homocoupling of aryl halides, leading to the formation of symmetrical biaryl compounds via the generation of novel C-C bonds. Although this reaction has been extensively studied in recent decades and valuable results have been achieved, there are still considerable efforts focused on the development of novel catalytic systems, mild reaction conditions, and extended substrate scope. The mechanistic aspects of the Ullmann homocoupling reaction have also been investigated, as related to the introduction of new sustainable strategies and green procedures. The application of recyclable heterogeneous catalysts has been found to overcome most of the limitations associated with the harsh reaction conditions of the original Ullmann reaction. More recently, copper-based catalytic systems have also been replaced by palladium nanoparticles, ionic palladium species, gold nanoparticles, and palladium-gold bimetallic systems. In this review, current results reported on the Ullmann homocoupling reaction are discussed, with an emphasis on the development of novel catalytic systems, which can be efficiently used under heterogeneous conditions.
Collapse
|
33
|
Pakpour F, Safaei E, Azami SM, Wojtczak A, Kaldunska K. The role of a redox-active non-innocent ligand in additive-free C-C Glaser-Hay and Suzuki coupling reactions by an o-aminophenol palladium(ii) complex. RSC Adv 2023; 13:3278-3289. [PMID: 36756395 PMCID: PMC9855615 DOI: 10.1039/d2ra07252a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/01/2023] [Indexed: 01/21/2023] Open
Abstract
A novel mononuclear palladium complex with 2-(3,5-di-tert-butyl-2-hydroxyphenyl amino) benzonitrile as a non-innocent ligand (abbreviated as PdIIL2 NIS) was synthesized, and characterized by IR, UV-Vis, 1H and 13C NMR spectroscopies and elemental analysis. The crystal structure clearly showed that the metal center was in a square planar environment. The bond lengths obtained from X-ray structure analysis revealed that both ligands are in the o-iminobenzosemiquinone radical form. The neutral complex showed strong absorptions in the NIR region, corresponding to the ILCT (intra-ligand charge transfer). Catalytic tests performed for the coupling reaction of terminal alkynes showed that the palladium PdIIL2 NIS complex acts as a highly effective catalyst for the base-free C-C coupling reactions, leading to diyne derivatives with excellent yields. The PdIIL2 NIS complex in ethanol, as a green solvent, is demonstrated to be an exceptionally active phosphine-free catalyst for the Suzuki reaction of aryl iodides and bromides. The reaction can be carried out under mild conditions (room temperature) with high yields without using a microwave or phosphine ligands. This catalyst exhibits an interesting application of redox non-innocent ligands, the electron reservoir behavior, which makes it needless to use additional reagents. The theoretical calculation provides more details about the complex structure, molecular orbitals, and electronic state.
Collapse
Affiliation(s)
- Fatemeh Pakpour
- Department of Chemistry, College of Sciences, Shirazu University Shiraz 71454 Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shirazu University Shiraz 71454 Iran
| | - S Mohammad Azami
- Department of Chemistry, College of Sciences, Yasouj University Yasouj 75918-74934 Iran
| | - Andrzej Wojtczak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun 87-100 Torun Poland
| | - Karolina Kaldunska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun 87-100 Torun Poland
| |
Collapse
|
34
|
Liu C, Zhu X, Liu Y, Yang H, Fu H. Base-Controlled Palladium-Catalyzed Intramolecular 'One Substrate - Five Reactions' of 5-Benzyl-1-(2-halobenzyl)-2-phenyl-1H-pyrazol-3(2H)-ones. Chemistry 2023; 29:e202203974. [PMID: 36653308 DOI: 10.1002/chem.202203974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Achieving site-selectivity and chemoselectivity is enormously challenging for substrates with multi-reactive sites in organic reactions. One kind of model substrates, 5-benzyl-1-(2-halobenzyl)-2-phenyl-1H-pyrazol-3(2H)-ones with six reactive sites were chosen as the examples to probe their intramolecular four kinds of five reactions including C(sp3 )-H arylation, C(sp2 )-H arylation, reductive Heck reaction, and domino Heck reaction/alkylation of aryl C(sp2 )-H bonds through variation of the reaction conditions. Screening of the reaction conditions showed that the different bases controlled the palladium-catalyzed intramolecular site-selectivity and chemoselectivity of the substrates: (i) Cesium carbonate (Cs2 CO3 ) promoted the benzyl C(sp3 )-H arylation of the substrates providing dihydropyrazolo[1,5-b]isoquinolin-2(1H)-ones at 100 °C, and isomerization of the dihydropyrazolo[1,5-b]isoquinolin-2(1H)-ones gave isoquinoline derivatives at a higher temperature (140 °C); (ii) Sodium acetate (NaOAc) mediated the aryl C(sp2 )-H arylation of the substrates affording seven-membered biphenyl N-heterocycles; (iii) Sodium dichloroacetate (Cl2 HCCO2 Na) facilitated occurrence of the reductive Heck reaction of the substrates affording 1H-pyrazolo[5,1-a]isoindol-2(8H)-ones; (iv) Sodium trifluoroacetate (F3 CCO2 Na) assisted performance of the domino Heck reaction/aryl C(sp2 )-H alkylation of the substrates leading to the spiro heterocycles. The 'one substrate - multiple reactions - multiple products' strategy greatly reduces cost, increases diversity of products, provides more opportunity for screening of pharmaceutical molecules, and enriches modern organic synthetic chemistry.
Collapse
Affiliation(s)
- Can Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and, Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xianjin Zhu
- Key Laboratory of Bioorganic Phosphorus Chemistry and, Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yong Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and, Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haijun Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry and, Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hua Fu
- Key Laboratory of Bioorganic Phosphorus Chemistry and, Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
35
|
Ganesan V, Moon S, Yoon S. Heterogenized Phenanthroline-Pd (2+)-Catalyzed Alkoxycarbonylation of Aryl Iodides in Base-Free Conditions. J Org Chem 2023; 88:5127-5134. [PMID: 36649592 DOI: 10.1021/acs.joc.2c02359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A phenanthroline-based porous organic polymer-supported heterogeneous Pd catalyst (Pd@Phen-POP) is facilely synthesized by the solvent knitting of a Phen scaffold via the Lewis-acid-catalyzed Friedel-Crafts reaction using dichloromethane as a source for linker in the presence of AlCl3. The catalyst very effectively catalyzes the alkoxycarbonylation of various substituted aryl iodides with various alcohols to give corresponding products in good to excellent yields. Owing to the heterotic nature of the catalyst, it can be easily separated by simple filtration from the reaction mixture and recycled.
Collapse
Affiliation(s)
- Vinothkumar Ganesan
- Department of Chemistry, Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Seokyeong Moon
- Department of Chemistry, Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Sungho Yoon
- Department of Chemistry, Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
36
|
Asad M, Arshad MN, Asiri AM, Rahman MM, Kumaran S, Thorakkattil Neerankuzhiyil MM. Chitosan-Cu Catalyzed Novel Ferrocenated Spiropyrrolidines: Green Synthesis, Single Crystal X-ray Diffraction, Hirshfeld Surface and Antibacterial Studies. Polymers (Basel) 2023; 15:polym15020429. [PMID: 36679308 PMCID: PMC9867216 DOI: 10.3390/polym15020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Chitosan-bounded copper (chitosan-Cu) was introduced for green synthesis of novel ferrocenated spiropyrrolidine hybrids, namely 3'-(4-.bromobenzoyl)-5'-(4-hydroxybenzyl)-4'-ferrocenylspiro[indoline-3,2'-pyrrolidin]-2-one and 3'-(4-bromobenzoyl)-4'-ferrocenylspiro[indoline-3,2'-pyrrolidin]-2-one, in good yield. A one-pot three-component 1,3-dipolar cycloaddition reaction was employed for the formation of spiropyrrolidines from 1-(4-bromophenyl)-ferrocene-prop-2-en-1-one and azomethine ylides, which were developed in situ from tyrosine, glycine, and isatin, respectively. Various spectroscopic methods were used to establish the structures of spiropyrrolidines, and a single crystal X-ray diffraction study of a spiropyrrolidine provided additional confirmation. The crystallographic study revealed that compound 3a has one independent molecule in its unit cell, which is correlated with Hirshfeld surface analysis, and describes intramolecular contacts adversely. The highly yielded products in green conditions were determined for their antibacterial significance and were found to have good activity against Gram-positive and Gram-negative bacterial strains.
Collapse
Affiliation(s)
- Mohammad Asad
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddauh 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (M.A.); (M.M.T.N.)
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddauh 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddauh 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddauh 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Snigdha Kumaran
- Research & Postgraduate Department of Chemistry, MES Kalladi College, Mannarkkad 678583, India
| | | |
Collapse
|
37
|
Park D, Osuji CO, Kim JW. Multi-Compartmentalized Cellulose Macrobead Catalysts for In Situ Organic Reaction in Aqueous Media. SMALL METHODS 2023; 7:e2201195. [PMID: 36538725 DOI: 10.1002/smtd.202201195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/03/2022] [Indexed: 06/17/2023]
Abstract
This study reports a promising approach to fabricate bacterial cellulose (BC)-based macrobead catalysts with improved catalytic activities and recyclability for organic reactions in aqueous media. To this end, the consecutive extrusion and gelation of BC precursor fluids is conducted using a combined micronozzle device to compartmentalize the resulting BC macrobeads in a programmed manner. The use of BCs laden with Au and Pd nanoparticles (NPs), and Fe3 O4 NPs led to the production of catalytically and magnetically compartmentalized BC macrobeads, respectively. Through the model reduction reaction of 4-nitrophenol to 4-aminophenol using NaBH4 , it is finally demonstrated that the BC macrobead catalysts not only enhance catalytic activities while exhibiting high reaction yields (>99%) in aqueous media, but also repeatedly retrieve the products with ease in response to the applied magnetic field, enabling the establishment of a useful green catalyst platform.
Collapse
Affiliation(s)
- Daehwan Park
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Precision Biology Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
38
|
Sutar DJ, Zende SN, Kadam AN, Mali M, Mhaldar PM, Tapase A, Bathula C, Lee SW, Gokavi GS. Magnetically separable mixed metal oxide nanocomposite (Pd/MnFe2O4) for Suzuki cross-coupling in aqueous medium. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2022.122541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Bis(phosphine) Pd(II) and Pt(II) Ethylene Glycol Carboxylates: Synthesis, Nanoparticle Formation, Catalysis. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Mohammad Ghadiri A, Farhang M, Hassani P, Salek A, Talesh Ramezani A, Reza Akbarzadeh A. Recent advancements review Suzuki and Heck reactions catalyzed by metalloporphyrins. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Konwar D, Bora P, Chetia B, Bora U. Heterogeneous Pd/C‐Catalyzed Ligand‐Free Direct C‐2 Functionalization of Indoles with Aryl Iodides. ChemistrySelect 2022. [DOI: 10.1002/slct.202203009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Dipika Konwar
- Department of Chemical Sciences Tezpur University, Napaam Tezpur 784028 Assam India
| | - Porag Bora
- Department of Chemical Sciences Tezpur University, Napaam Tezpur 784028 Assam India
| | - Bolin Chetia
- Department of Chemistry Dibrugarh University Dibrugarh 786004 Assam India
| | - Utpal Bora
- Department of Chemical Sciences Tezpur University, Napaam Tezpur 784028 Assam India
| |
Collapse
|
42
|
Zetzsche LE, Chakrabarty S, Narayan ARH. Development of a P450 Fusion Enzyme for Biaryl Coupling in Yeast. ACS Chem Biol 2022; 17:2986-2992. [PMID: 36315613 PMCID: PMC10082971 DOI: 10.1021/acschembio.2c00690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite the diverse and potent bioactivities displayed by axially chiral biaryl natural products, their application in drug discovery is limited by restricted access to these complex molecular scaffolds. In particular, fundamental challenges remain in controlling the site- and atroposelectivity in biaryl coupling reactions. In contrast, Nature has a wealth of biosynthetic enzymes that catalyze biaryl coupling reactions with catalyst-controlled selectivity. In particular, a growing subset of fungal P450s have been identified to catalyze site- and atroposelective biaryl couplings. Herein, we optimize a whole-cell biocatalytic platform in Pichia pastoris to synthesize biaryl molecules through the recombinant production of the fungal P450 KtnC. Moreover, engineering redox self-sufficient fusion enzymes further improves the efficiency of the system. Altogether, this work provides a platform for biaryl coupling reactions in yeast that can be applied to engineering a currently underexplored pool of fungal P450s into selective biocatalysts for the synthesis of complex biaryl compounds.
Collapse
Affiliation(s)
- Lara E. Zetzsche
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Suman Chakrabarty
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alison R. H. Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
43
|
Roy S, Anoop A. Insights into the Active Catalyst Formation from Dinuclear Palladium Acetate in Pd-Catalyzed Coupling Reactions: A DFT Study. J Phys Chem A 2022; 126:8562-8576. [DOI: 10.1021/acs.jpca.2c03762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Saikat Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| |
Collapse
|
44
|
Abrishami F, Soufi A, Mahyari M. Cu(I)@g-C3N4/PEI: A New Heterogeneous Catalyst for Glaser Reaction in Deep Eutectic Solvent. Catal Letters 2022. [DOI: 10.1007/s10562-022-04188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Zhou Y, Ma C, Luo D, Hu L, Zhang X, Dong X, Xiong Y. Synthesis of aryl [5]helicenes through Suzuki-Miyaura reaction and their optical properties. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Pan S, Gao C, Gui J, Hu B, Gai L, Qiao C, Liu C. Hierarchical TiO2 Microspheres Supported Ultrasmall Palladium Nanocrystals: a Highly Efficient Catalyst for Suzuki Reaction. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Single‐Atomic Pd Embedded 2D g‐C
3
N
4
Homogeneous Catalyst Analogues for Efficient LMCT Induced Full‐Visible‐Light Photocatalytic Suzuki Coupling**. ChemistrySelect 2022. [DOI: 10.1002/slct.202202973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
|
49
|
Nakaya Y, Furukawa S. Catalysis of Alloys: Classification, Principles, and Design for a Variety of Materials and Reactions. Chem Rev 2022; 123:5859-5947. [PMID: 36170063 DOI: 10.1021/acs.chemrev.2c00356] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alloying has long been used as a promising methodology to improve the catalytic performance of metallic materials. In recent years, the field of alloy catalysis has made remarkable progress with the emergence of a variety of novel alloy materials and their functions. Therefore, a comprehensive disciplinary framework for catalytic chemistry of alloys that provides a cross-sectional understanding of the broad research field is in high demand. In this review, we provide a comprehensive classification of various alloy materials based on metallurgy, thermodynamics, and inorganic chemistry and summarize the roles of alloying in catalysis and its principles with a brief introduction of the historical background of this research field. Furthermore, we explain how each type of alloy can be used as a catalyst material and how to design a functional catalyst for the target reaction by introducing representative case studies. This review includes two approaches, namely, from materials and reactions, to provide a better understanding of the catalytic chemistry of alloys. Our review offers a perspective on this research field and can be used encyclopedically according to the readers' individual interests.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
50
|
Transition Metal Catalyzed Hiyama Cross-Coupling: Recent Methodology Developments and Synthetic Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175654. [PMID: 36080422 PMCID: PMC9458230 DOI: 10.3390/molecules27175654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Hiyama cross-coupling is a versatile reaction in synthetic organic chemistry for the construction of carbon-carbon bonds. It involves the coupling of organosilicons with organic halides using transition metal catalysts in good yields and high enantioselectivities. In recent years, hectic progress has been made by researchers toward the synthesis of diversified natural products and pharmaceutical drugs using the Hiyama coupling reaction. This review emphasizes the recent synthetic developments and applications of Hiyama cross-coupling.
Collapse
|