1
|
Wu J, Liu W, Tang S, Wei S, He H, Ma M, Shi Y, Zhu Y, Chen S, Wang X. Light-Responsive Smart Nanoliposomes: Harnessing the Azobenzene Moiety for Controlled Drug Release under Near-Infrared Irradiation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56850-56861. [PMID: 39380427 DOI: 10.1021/acsami.4c13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The azobenzene moiety is an intriguing structure that deforms under UV and visible light, indicating a high potential for biomedical applications. However, its reaction to UV radiation is problematic because of its high energy and low tissue penetration. Unlike previous research on azobenzene structures in photoresponsive materials, this study presents a novel method for imparting photostimulation-responsive properties to liposomes by incorporating the azobenzene moiety and extending the light wavelength with up-conversion nanoparticles. First, the azobenzene structure was incorporated into a phospholipid molecule to create Azo-PSG, which could spontaneously form vesicle assemblies in aqueous solutions and isomerizes within 1 h of light exposure. Furthermore, orthogonal up-conversion nanoparticles with a core-shell structure were created by sequentially growing lanthanide rare earths in the shell layer, which efficiently converts near-infrared light into ultraviolet (400 nm) and blue-green (540 nm) light. Combining these core-shell structured up-conversion nanomaterials with Azo-PSG molecules resulted in the creation of a near-infrared light-responsive smart nanoliposome system. Under near-infrared light irradiation, UCNPs emit UV and blue-green light, causing conformational changes in Azo-PSG molecules that allow drug release within 6 h. The reversible structural shift of Azo-PSG in response to light stimulation holds enormous promise for improving drug release techniques. This novel technique also expands the usage of UV-responsive compounds beyond their constraints of low penetration and high biotoxicity, allowing for rapid medication release under NIR light.
Collapse
Affiliation(s)
- Jiangjie Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wenjing Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Shuangying Tang
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Sailong Wei
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yulu Zhu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
2
|
Chemla Y, Kaufman F, Amiram M, Alfonta L. Expanding the Genetic Code of Bioelectrocatalysis and Biomaterials. Chem Rev 2024; 124:11187-11241. [PMID: 39377473 DOI: 10.1021/acs.chemrev.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.
Collapse
|
3
|
Gelabert R, Moreno M, Lluch JM. Effect of Leaving Centrosymmetric Character on Spectral Properties in Mono-, Bi-, and Triphotonic Absorption Spectroscopies. ACS OMEGA 2024; 9:41968-41977. [PMID: 39398148 PMCID: PMC11465556 DOI: 10.1021/acsomega.4c06922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024]
Abstract
Numerical simulations of the absorption bands of photoswitch E-o-tetrafluoroazobenzene in DMSO solution under one-, two-, and three-photon absorption conditions combined with the analysis of the behavior of transition probability under distortion of planarity reveal many similarities between the mono- and triphoton spectroscopic behaviors with a two-photon spectrum being set apart. The position of the absorption peak for the studied nπ* and ππ* transitions appears shifted to lower energies (longer wavelengths) than the conventional estimate based on vertical excitation from the ground-state potential energy minimum.
Collapse
Affiliation(s)
- Ricard Gelabert
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Miquel Moreno
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - José M. Lluch
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Vesamäki S, Meteling H, Nasare R, Siiskonen A, Patrakka J, Roas-Escalona N, Linder M, Virkki M, Priimagi A. Strategies to control humidity sensitivity of azobenzene isomerisation kinetics in polymer thin films. COMMUNICATIONS MATERIALS 2024; 5:209. [PMID: 39371916 PMCID: PMC11446815 DOI: 10.1038/s43246-024-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
Azobenzenes are versatile photoswitches that garner interest in applications ranging from photobiology to energy storage. Despite their great potential, transforming azobenzene-based discoveries and proof-of-concept demonstrations from the lab to the market is highly challenging. Herein we give an overview of a journey that started from a discovery of hydroxyazobenzene's humidity sensitive isomerisation kinetics, developed into commercialization efforts of azobenzene-containing thin film sensors for optical monitoring of the relative humidity of air, and arrives to the present work aiming for better design of such sensors by understanding the different factors affecting the humidity sensitivity. Our concept is based on thermal isomerisation kinetics of tautomerizable azobenzenes in polymer matrices which, using pre-defined calibration curves, can be converted to relative humidity at known temperature. We present a small library of tautomerizable azobenzenes exhibiting humidity sensitive isomerisation kinetics in hygroscopic polymer films. We also investigate how water absorption properties of the polymer used, and the isomerisation kinetics are linked and how the azobenzene content in the thin film affects both properties. Based on our findings we propose simple strategies for further development of azobenzene-based optical humidity sensors.
Collapse
Affiliation(s)
- Sami Vesamäki
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Henning Meteling
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Roshan Nasare
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Antti Siiskonen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Jani Patrakka
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | | | - Markus Linder
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Matti Virkki
- VTT Technical Research Centre of Finland Ltd, Oulu, Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
5
|
Matsuo K, Ogawa H, Yamaoka S, Waku T, Kobori A. A chemical platform for the efficient screening of arylazopyrazole-based photoswitchable CENP-E inhibitors using mild cyclization reactions. Bioorg Med Chem Lett 2024; 111:129892. [PMID: 39029538 DOI: 10.1016/j.bmcl.2024.129892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
A set of arylazopyrazole-based inhibitors targeting the mitotic motor protein CENP-E was discovered through the chemical platform using the quantitative cyclization of 1,3-diketone intermediate with various hydrazines under mild conditions. Through this efficient platform, the structure-activity relationship pertaining to the pyrazole photoswitch in photoswitchable CENP-E inhibitors not only in vitro but also in cells was successfully clarified.
Collapse
Affiliation(s)
- Kazuya Matsuo
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Honoka Ogawa
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shusuke Yamaoka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Akio Kobori
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
6
|
Chen Y. Recent Progress in Regulating the Activity of Enzymes with Photoswitchable Inhibitors. Molecules 2024; 29:4523. [PMID: 39407453 PMCID: PMC11477607 DOI: 10.3390/molecules29194523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Photoregulation of biomolecules has become crucial tools in chemical biology, because light enables access under mild conditions and with delicate spatiotemporal control. The control of enzyme activity in a reversible way is a challenge. To achieve it, a facile approach is to use photoswitchable inhibitors. This review highlights recent progress in photoswitchable inhibitors based on azobenzenes units. The progress suggests that the incorporation of an azobenzene unit to a known inhibitor is an effective method for preparing a photoswitchable inhibitor, and with these photoswitchable inhibitors, the activity of enzymes can be regulated by optical control, which is valuable in both basic science and therapeutic applications.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Tang Z, Jarupula R, Yong H. Pushing the limits of ultrafast diffraction: Imaging quantum coherences in isolated molecules. iScience 2024; 27:110705. [PMID: 39262780 PMCID: PMC11388184 DOI: 10.1016/j.isci.2024.110705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Quantum coherence governs the outcome and efficiency of photochemical reactions and ultrafast molecular dynamics. Recent ultrafast gas-phase X-ray scattering and electron diffraction have enabled the observation of femtosecond nuclear dynamics driven by vibrational coherence. However, probing attosecond electron dynamics and coupled electron-nuclear dynamics remains challenging. This article discusses advances in ultrafast X-ray scattering and electron diffraction, highlighting their potential to resolve attosecond charge migration and vibronic coupling at conical intersections. Novel techniques, such as X-ray scattering with orbital angular momentum beams and combined X-ray and electron diffraction, promise to selectively probe coherence contributions and visualize charge migration in real-space. These emerging methods could further our understanding of coherence effects in chemical reactions.
Collapse
Affiliation(s)
- Zilong Tang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ramesh Jarupula
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haiwang Yong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Fu Y, Simeth NA, Szymanski W, Feringa BL. Visible and near-infrared light-induced photoclick reactions. Nat Rev Chem 2024; 8:665-685. [PMID: 39112717 DOI: 10.1038/s41570-024-00633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Photoclick reactions combine the advantages offered by light-driven processes, that is, non-invasive and high spatiotemporal control, with classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photocrosslinking, protein labelling and bioimaging. Despite these advances, most photoclick reactions typically require near-ultraviolet (UV) and mid-UV light to proceed. UV light can trigger undesirable responses, including cellular apoptosis, and therefore, visible and near-infrared light-induced photoclick reaction systems are highly desirable. Shifting to a longer wavelength can also reduce degradation of the photoclick reagents and products. Several strategies have been used to induce a bathochromic shift in the wavelength of irradiation-initiating photoclick reactions. For instance, the extension of the conjugated π-system, triplet-triplet energy transfer, multi-photon excitation, upconversion technology, photocatalytic and photoinitiation approaches, and designs involving photocages have all been used to achieve this goal. Current design strategies, recent advances and the outlook for long wavelength-driven photoclick reactions are presented.
Collapse
Affiliation(s)
- Youxin Fu
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Göttingen, Germany.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Huang KY, Li GY, Liang X, Li K, Li L, Cui G, Liu XY. "On-the-Fly" Nonadiabatic Dynamics Simulation on the Ultrafast Photoisomerization of a Molecular Photoswitch Iminothioindoxyl: An RMS-CASPT2 Investigation. J Phys Chem A 2024; 128:7145-7157. [PMID: 39145596 DOI: 10.1021/acs.jpca.4c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Iminothioindoxyl (ITI) is a new class of photoswitch that exhibits many excellent properties including well-separated absorption bands in the visible region for both conformers, ultrafast Z to E photoisomerization as well as the millisecond reisomerization at room temperature for the E isomer, and switchable ability in both solids and various solvents. However, the underlying ultrafast photoisomerization mechanism at the atomic level remains unclear. In this work, we have employed a combination of high-level RMS-CASPT2-based static electronic structure calculations and nonadiabatic dynamics simulations to investigate the ultrafast photoisomerization dynamics of ITI. Based on the minimum-energy structures, minimum-energy conical intersections, linear interpolation internal coordinate paths, and nonadiabatic dynamics simulations, the overall photoisomerization scenario of ITI upon excitation is established. Upon excitation around 416 nm, the molecule will be excited to the S2 state considering its close energy to the experimentally measured absorption maximum and larger oscillator strength, from which ultrafast decay of S2 to S1 state can take place efficiently with a time constant of 62 fs. However, the photoisomerization is not likely to complete in the S2 state since the dihedral associated with the Z to E isomerization changes little during the relaxation. Upon relaxing to the S1 state, the molecule will decay to the S0 state ultrafast with a time constant of 232 fs. In contrast, the decay of the S1 state is important for the isomerization considering that the dihedral related to the isomerization of the hopping structures is close to 90°. Therefore, the S1/S0 intersection region should be important for the isomerization of ITI. Arriving at the S0 state, the molecule can either go back to the original Z reactant or isomerize to the E products. At the end of the 500 fs simulation time, the E configuration accounts for nearly 37% of the final structures. Moreover, the photoisomerization mechanism is different from the isomerization mechanism in the ground state; i.e., instead of the inversion mechanism in the ground state, the photoisomerization prefers the rotation mechanism. Our results not only agree well with previous experimental studies but also provide some novel insights that could be helpful for future improvements in the performance of the ITI photoswitches.
Collapse
Affiliation(s)
- Kai-Yue Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Gao-Yi Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiaoqin Liang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Kai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
10
|
Matsuo K, Kikukawa T, Waku T, Kobori A, Tamaoki N. A photoswitchable CENP-E inhibitor with single blue-green light to control chromosome positioning in mitotic cells. RSC Med Chem 2024:d4md00458b. [PMID: 39290378 PMCID: PMC11403824 DOI: 10.1039/d4md00458b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Reversibly photoswitchable chemical tools have aided in the development of novel approaches in the biomedical field. The visible region of light should be ideal for the biological application of this approach because of its low phototoxicity and deep penetration depth compared to ultraviolet light. Herein, we report a photoswitchable centromere-associated protein E (CENP-E) inhibitor, which is controllable with low-energy blue-green light (around 500 nm) illumination. This photoswitchable tool enabled us to control CENP-E-driven chromosome movements and positioning at subcellular resolutions with low phototoxic effects. This study can contribute to the development of a unique technique for chromosome engineering.
Collapse
Affiliation(s)
- Kazuya Matsuo
- Research Institute for Electronic Science, Hokkaido University Kita 20, Nishi 10, Kita-ku Sapporo 001-0020 Japan
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University Kita 10, Nishi 8, Kita-ku Sapporo 060-0810 Japan
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Akio Kobori
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University Kita 20, Nishi 10, Kita-ku Sapporo 001-0020 Japan
| |
Collapse
|
11
|
Tobin CM, Gordon R, Tochikura SK, Chmelka BF, Morse DE, Read de Alaniz J. Reversible and size-controlled assembly of reflectin proteins using a charged azobenzene photoswitch. Chem Sci 2024; 15:13279-13289. [PMID: 39183923 PMCID: PMC11339800 DOI: 10.1039/d4sc03299c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
Disordered proteins often undergo a stimuli-responsive, disorder-to-order transition which facilitates dynamic processes that modulate the physiological activities and material properties of cells, such as strength, chemical composition, and reflectance. It remains challenging to gain rapid and spatiotemporal control over such disorder-to-order transitions, which limits the incorporation of these proteins into novel materials. The reflectin protein is a cationic, disordered protein whose assembly is responsible for dynamic color camouflage in cephalopods. Stimuli-responsive control of reflectin's assembly would enable the design of biophotonic materials with tunable color. Herein, a novel, multivalent azobenzene photoswitch is shown to be an effective and non-invasive strategy for co-assembling with reflectin molecules and reversibly controlling assembly size. Photoisomerization between the trans and cis (E and Z) photoisomers promotes or reduces Coulombic interactions, respectively, with reflectin proteins to repeatedly cycle the sizes of the photoswitch-reflectin assemblies between 70 nm and 40 nm. The protein assemblies formed with the trans and cis isomers show differences in interaction stoichiometry and secondary structure, which indicate that photoisomerization modulates the photoswitch-protein interactions to change assembly size. Our results highlight the utility of photoswitchable interactions to control reflectin assembly and provide a tunable synthetic platform that can be adapted to the structure, assembly, and function of other disordered proteins.
Collapse
Affiliation(s)
- Cassidy M Tobin
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
| | - Reid Gordon
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara California 93106 USA
| | - Seren K Tochikura
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara California 93106 USA
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California Santa Barbara California 93106 USA
| | - Daniel E Morse
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara California 93106 USA
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| |
Collapse
|
12
|
Jaiswal AK, Saha P, Jiang J, Suzuki K, Jasny A, Schmidt BM, Maeda S, Hecht S, Huang CYD. Accessing a Diverse Set of Functional Red-Light Photoswitches by Selective Copper-Catalyzed Indigo N-Arylation. J Am Chem Soc 2024; 146:21367-21376. [PMID: 39058407 DOI: 10.1021/jacs.4c03543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The ability to correlate the structure of a molecule with its properties is the key to the rational and accelerated design of new functional compounds and materials. Taking photoswitches as an example, the thermal stability of the metastable state is a crucial property that dictates their application in molecular systems. Indigos have recently emerged as an attractive motif for designing photoswitchable molecules due to their red-light addressability, which can be advantageous in biomedical and material applications. The lack of synthetic techniques to derivatize the abundant parent dye and a thorough understanding of the impact of structural factors on the photochemical and thermal properties hinder broad applications of this emerging photoswitch class. Herein, we report an efficient copper-catalyzed indigo N-arylation that enables the installation of a wide variety of aryl moieties carrying useful functional groups. The exclusive selectivity for monoarylation likely originates from a bimetallic cooperative mechanism through a binuclear copper-indigo intermediate. Functional N-aryl-N'-alkylindigos were prepared and shown to photoisomerize efficiently under red light. Moreover, this design allows for the modulation of thermal half-lives through N-aryl substituents, while the N'-alkyl groups enable the independent attachment of functional moieties without affecting the photochromic properties. A strong correlation between the structure of the N-aryl moiety and the thermal stability of the photogenerated Z-isomers was achieved by multivariate linear regression models obtained through a data-science workflow. This work thus builds an avenue leading to versatile red-light photoswitches and a general method for structure-property correlation that is expected to be broadly applicable to the design of photoresponsive molecules.
Collapse
Affiliation(s)
- Amit K Jaiswal
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Priya Saha
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Julong Jiang
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-8628, Japan
| | - Kimichi Suzuki
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Anna Jasny
- DWI-Leibniz Institute for Interactive Materials, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Bernd M Schmidt
- Institute for Organic Chemistry and Macromolecular Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-8628, Japan
| | - Stefan Hecht
- Department of Chemistry, IRIS Adlershof and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Chung-Yang Dennis Huang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
13
|
Shi S, Zheng Y, Goulding J, Marri S, Lucarini L, Konecny B, Sgambellone S, Villano S, Bosma R, Wijtmans M, Briddon SJ, Zarzycka BA, Vischer HF, Leurs R. A high-affinity, cis-on photoswitchable beta blocker to optically control β 2-adrenergic receptors in vitro and in vivo. Biochem Pharmacol 2024; 226:116396. [PMID: 38942089 DOI: 10.1016/j.bcp.2024.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
This study introduces (S)-Opto-prop-2, a second-generation photoswitchable ligand designed for precise modulation of β2-adrenoceptor (β2AR). Synthesised by incorporating an azobenzene moiety with propranolol, (S)-Opto-prop-2 exhibited a high PSScis (photostationary state for cis isomer) percentage (∼90 %) and a favourable half-life (>10 days), facilitating diverse bioassay measurements. In vitro, the cis-isomer displayed substantially higher β2AR binding affinity than the trans-isomer (1000-fold), making (S)-Opto-prop-2 one of the best photoswitchable GPCR (G protein-coupled receptor) ligands reported so far. Molecular docking of (S)-Opto-prop-2 in the X-ray structure of propranolol-bound β2AR followed by site-directed mutagenesis studies, identified D1133.32, N3127.39 and F2896.51 as crucial residues that contribute to ligand-receptor interactions at the molecular level. In vivo efficacy was assessed using a rabbit ocular hypertension model, revealing that the cis isomer mimicked propranolol's effects in reducing intraocular pressure, while the trans isomer was inactive. Dynamic optical modulation of β2AR by (S)-Opto-prop-2 was demonstrated in two different cAMP bioassays and using live-cell confocal imaging, indicating reversible and dynamic control of β2AR activity using the new photopharmacology tool. In conclusion, (S)-Opto-prop-2 emerges as a promising photoswitchable ligand for precise and reversible β2AR modulation with light. The new tool shows superior cis-on binding affinity, one of the largest reported differences in affinity (1000-fold) between its two configurations, in vivo efficacy, and dynamic modulation. This study contributes valuable insights into the evolving field of photopharmacology, offering a potential avenue for targeted therapy in β2AR-associated pathologies.
Collapse
Affiliation(s)
- Shuang Shi
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Yang Zheng
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Joëlle Goulding
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K; Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Silvia Marri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, 50139, Italy
| | - Laura Lucarini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, 50139, Italy
| | - Benjamin Konecny
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Silvia Sgambellone
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, 50139, Italy
| | - Serafina Villano
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, 50139, Italy
| | - Reggie Bosma
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Maikel Wijtmans
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Stephen J Briddon
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands NG7 2UH, U.K; Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Barbara A Zarzycka
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Henry F Vischer
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081HZ Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Kuntze K, Isokuortti J, van der Wal JJ, Laaksonen T, Crespi S, Durandin NA, Priimagi A. Detour to success: photoswitching via indirect excitation. Chem Sci 2024; 15:11684-11698. [PMID: 39092110 PMCID: PMC11290455 DOI: 10.1039/d4sc02538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Photoswitchable molecules that undergo nanoscopic changes upon photoisomerisation can be harnessed to control macroscopic properties such as colour, solubility, shape, and motion of the systems they are incorporated into. These molecules find applications in various fields of chemistry, physics, biology, and materials science. Until recently, research efforts have focused on the design of efficient photoswitches responsive to low-energy (red or near-infrared) irradiation, which however may compromise other molecular properties such as thermal stability and robustness. Indirect isomerisation methods enable photoisomerisation with low-energy photons without altering the photoswitch core, and also open up new avenues in controlling the thermal switching mechanism. In this perspective, we present the state of the art of five indirect excitation methods: two-photon excitation, triplet sensitisation, photon upconversion, photoinduced electron transfer, and indirect thermal methods. Each impacts our understanding of the fundamental physicochemical properties of photochemical switches, and offers unique application prospects in biomedical technologies and beyond.
Collapse
Affiliation(s)
- Kim Kuntze
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| | - Jussi Isokuortti
- Department of Chemistry, University of Texas at Austin Austin TX USA
| | - Jacob J van der Wal
- Department of Chemistry, Ångström Laboratory, Uppsala University Uppsala Sweden
| | - Timo Laaksonen
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
- Faculty of Pharmacy, University of Helsinki Helsinki Finland
| | - Stefano Crespi
- Department of Chemistry, Ångström Laboratory, Uppsala University Uppsala Sweden
| | - Nikita A Durandin
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| |
Collapse
|
15
|
Zhang ZY, Dong D, Bösking T, Dang T, Liu C, Sun W, Xie M, Hecht S, Li T. Solar Azo-Switches for Effective E→Z Photoisomerization by Sunlight. Angew Chem Int Ed Engl 2024; 63:e202404528. [PMID: 38722260 DOI: 10.1002/anie.202404528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 07/02/2024]
Abstract
Natural photoactive systems have evolved to harness broad-spectrum light from solar radiation for critical functions such as light perception and photosynthetic energy conversion. Molecular photoswitches, which undergo structural changes upon light absorption, are artificial photoactive tools widely used for developing photoresponsive systems and converting light energy. However, photoswitches generally need to be activated by light of specific narrow wavelength ranges for effective photoconversion, which limits their ability to directly work under sunlight and to efficiently harvest solar energy. Here, focusing on azo-switches-the most extensively studied photoswitches, we demonstrate effective solar E→Z photoisomerization with photoconversions exceeding 80 % under unfiltered sunlight. These sunlight-driven azo-switches are developed by rendering the absorption of E isomers overwhelmingly stronger than that of Z isomers across a broad ultraviolet to visible spectrum. This unusual type of spectral profile is realized by a simple yet highly adjustable molecular design strategy, enabling the fine-tuning of spectral window that extends light absorption beyond 600 nm. Notably, back-photoconversion can be achieved without impairing the forward solar isomerization, resulting in unique light-reversible solar switches. Such exceptional solar chemistry of photoswitches provides unprecedented opportunities for developing sustainable light-driven systems and efficient solar energy technologies.
Collapse
Affiliation(s)
- Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongfang Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tom Bösking
- Department of Chemistry & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
- DWI - Leibniz Institute for Interactive Materials, 52056, Aachen, Germany
| | - Tongtong Dang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhao Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjin Sun
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingchen Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Stefan Hecht
- Department of Chemistry & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
- DWI - Leibniz Institute for Interactive Materials, 52056, Aachen, Germany
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
16
|
Boëtius ME, Hoorens MWH, Ošťadnický M, Laurent AD, di Donato M, van Wingaarden ACA, Hilbers MF, Feringa BL, Buma WJ, Medveď M, Szymanski W. Getting a molecular grip on the half-lives of iminothioindoxyl photoswitches. Chem Sci 2024:d4sc01457j. [PMID: 39165728 PMCID: PMC11331343 DOI: 10.1039/d4sc01457j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Visible-light-operated photoswitches are of growing interest in reversibly controlling molecular processes, enabling for example the precise spatiotemporal focusing of drug activity and manipulating the properties of materials. Therefore, many research efforts have been spent on seeking control over the (photo)physical properties of photoswitches, in particular the absorption maxima and the half-life. For photopharmacological applications, photoswitches should ideally be operated by visible light in at least one direction, and feature a metastable isomer with a half-life of 0.1-10 seconds. Here we present our efforts towards the engineering of the half-life of iminothioindoxyl (ITI) photoswitches, a recently discovered class of visible-light-responsive photochromes, whose applicability was hitherto limited by half-lives in the low millisecond range. Through the synthesis and characterization of a library of ITI photoswitches, we discovered variants with a substantially increased thermal stability, reaching half-lives of up to 0.2 seconds. Based on spectroscopic and computational analyses, we demonstrate how different substituent positions on the ITI molecule can be used to tune its photophysical properties independently to fit the desired application. Additionally, the unique reactivity of the ITI derivative that featured a perfluoro-aromatic ring and had the most long-lived metastable state was shown to be useful for labeling of nucleophilic functional groups. The present research thus paves the way for using ITI photoswitches in photopharmacology and chemical biology.
Collapse
Affiliation(s)
- Melody E Boëtius
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Hanzeplein 1 9713GZ Groningen The Netherlands
- Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 Groningen The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Mark W H Hoorens
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Hanzeplein 1 9713GZ Groningen The Netherlands
- Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 Groningen The Netherlands
| | - Martin Ošťadnický
- Faculty of Natural Sciences, Comenius University Ilkovičova 6 SK-842 15 Bratislava Slovak Republic
| | - Adèle D Laurent
- Nantes Université, CNRS CEISAM UMR 6230 F-44000 Nantes France
| | - Mariangela di Donato
- LENS, European Laboratory for Non-Linear Spectroscopy 50019 Sesto Fiorentino FI Italy
- CNR-ICCOM via Madonna del Piano 10 50019 Sesto Fiorentino (FI) Italy
| | - Aldo C A van Wingaarden
- Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 Groningen The Netherlands
| | - Michiel F Hilbers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Ben L Feringa
- Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 Groningen The Netherlands
| | - Wybren Jan Buma
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University Toernooiveld 7c 6525 ED Nijmegen The Netherlands
| | - Miroslav Medveď
- Faculty of Natural Sciences, Department of Chemistry, Matej Bel University Tajovského 40 SK-97400 Banská Bystrica Slovak Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc Křížkovského 511/8 77900 Olomouc Czech Republic
| | - Wiktor Szymanski
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Hanzeplein 1 9713GZ Groningen The Netherlands
- Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 Groningen The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen A. Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
17
|
Paschold A, Schäffler M, Miao X, Gardon L, Krüger S, Heise H, Röhr MIS, Ott M, Strodel B, Binder WH. Photocontrolled Reversible Amyloid Fibril Formation of Parathyroid Hormone-Derived Peptides. Bioconjug Chem 2024; 35:981-995. [PMID: 38865349 PMCID: PMC11261605 DOI: 10.1021/acs.bioconjchem.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
Peptide fibrillization is crucial in biological processes such as amyloid-related diseases and hormone storage, involving complex transitions between folded, unfolded, and aggregated states. We here employ light to induce reversible transitions between aggregated and nonaggregated states of a peptide, linked to the parathyroid hormone (PTH). The artificial light-switch 3-{[(4-aminomethyl)phenyl]diazenyl}benzoic acid (AMPB) is embedded into a segment of PTH, the peptide PTH25-37, to control aggregation, revealing position-dependent effects. Through in silico design, synthesis, and experimental validation of 11 novel PTH25-37-derived peptides, we predict and confirm the amyloid-forming capabilities of the AMPB-containing peptides. Quantum-chemical studies shed light on the photoswitching mechanism. Solid-state NMR studies suggest that β-strands are aligned parallel in fibrils of PTH25-37, while in one of the AMPB-containing peptides, β-strands are antiparallel. Simulations further highlight the significance of π-π interactions in the latter. This multifaceted approach enabled the identification of a peptide that can undergo repeated phototriggered transitions between fibrillated and defibrillated states, as demonstrated by different spectroscopic techniques. With this strategy, we unlock the potential to manipulate PTH to reversibly switch between active and inactive aggregated states, representing the first observation of a photostimulus-responsive hormone.
Collapse
Affiliation(s)
- André Paschold
- Macromolecular
Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle Wittenberg, von-Danckelmann-Platz 4, Halle 06120, Germany
| | - Moritz Schäffler
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Xincheng Miao
- Center
for Nanosystems Chemistry (CNC), Theodor-Boveri Weg, Universität Würzburg, Würzburg 97074, Germany
| | - Luis Gardon
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Stephanie Krüger
- Biozentrum,
Martin Luther University Halle-Wittenberg, Weinberweg 22, Halle 06120, Germany
| | - Henrike Heise
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Merle I. S. Röhr
- Center
for Nanosystems Chemistry (CNC), Theodor-Boveri Weg, Universität Würzburg, Würzburg 97074, Germany
| | - Maria Ott
- Institute
of Biophysics, Faculty of Natural Science I, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle 06120, Germany
| | - Birgit Strodel
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Wolfgang H. Binder
- Macromolecular
Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle Wittenberg, von-Danckelmann-Platz 4, Halle 06120, Germany
| |
Collapse
|
18
|
Cholasseri R, De S. Deciphering the shape selective conformational equilibrium of E- and Z-locked azobenzene-tetraethylammonium ion in regulating photo-switchable K +-ion channel blocking. Phys Chem Chem Phys 2024; 26:19161-19175. [PMID: 38973424 DOI: 10.1039/d4cp01604a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The search for photo-switchable optopharmacological agents that can block ion channels has been a prevalent area owing to its prime advantages of reversibility and specificity over the traditional blockers. However, the quest for a higher blocking ability shown by a less stable photo-isomer to perfectly suit the requirement of the optopharmacological agents is still ongoing. To date, only a marginal improvement in terms of blocking ability is observed by the less stable E-isomer of para-substituted locked azobenzene with TEA (LAB-TEA) for the K+-ion channel. Thus, rationalization of the limitation for achieving high activity by the E-isomer is rather essential to aid the improvement of the efficiency of photoswitchable blocker drugs. Herein, we report a molecular-level analysis on the mechanism of blocking by E- and Z-LAB-TEA with the bacterial KcsA K+-ion channel using Molecular Dynamics (MD) simulation and Quantum Mechanical (QM) calculations. The positively charged TEA fragment engages in stronger electrostatic interactions, while the neutral LAB fragment engages in weaker dispersive interactions. The binding free energy calculated by Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) for E-LAB-TEA (-22.3 kcal mol-1) shows less thermodynamic preference for binding with K+-ion channels than Z-LAB-TEA (-21.6 kcal mol-1) corroborating the experimental observation. The correlation between the structure and the binding ability of E- and Z-isomers of LAB-TEA indicates that the channel gate is narrow and acts as a bottleneck for the entry of the binder molecule inside the large cavity. Upon irradiation, the Z-isomer converts into a less stable but long and planar E-isomer (ΔE of photoisomerism = 7.0 kcal mol-1, at SA2-CASPT2(6,4)/6-31+G(d)//CASSCF(6,4)/6-31+G(d)), which is structurally more suitable to fit into the narrow channel gate rather than the curved and non-planar Z-LAB-TEA. Thus, a reduction in the ionic current is observed owing to the preferential entry and subsequent blocking by E-LAB-TEA. Discontinuing the irradiation leads to conversion to the Z-isomer, the curved nature of which hinders its spontaneous release outside the cavity, thereby contributing only a small increase in the ionic current.
Collapse
Affiliation(s)
- Rinsha Cholasseri
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673 601, India
| | - Susmita De
- Department of Chemistry, University of Calicut, Calicut University P. O, Malappuram, Kerala, 673 635, India.
| |
Collapse
|
19
|
Ziani Z, Bellatreccia C, Battaglia FP, Morselli G, Gradone A, Ceroni P, Villa M. Copper indium sulfide quantum dots enabling quantitative visible light photoisomerisation of ( E)-azobenzene chromophores. NANOSCALE 2024; 16:12947-12956. [PMID: 38912567 DOI: 10.1039/d4nr01997k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Azobenzene derivatives have long been studied for their photochromic behaviour. One of the greatest challenges in this field is the quantitative (E) to (Z) photoconversion triggered by visible light irradiation. In this work, the synthesis and characterization of CuInS2 quantum dots (CIS-QDs) appended with azobenzene units are reported: quantitative (E) → (Z) isomerisation is obtained by visible light (e.g., λex = 533 nm). Interestingly, catalytic amounts of CIS-QDs allow the full photoconversion of ungrafted (E)-azobenzene derivatives into the corresponding (Z)-isomers using visible light. This peculiar behaviour is associated with the direct complexation of the (Z)-isomer on the QD surface.
Collapse
Affiliation(s)
- Zakaria Ziani
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Caterina Bellatreccia
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Filippo Piero Battaglia
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Giacomo Morselli
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Alessandro Gradone
- Istituto per la Microelettronica ed i Microsistemi (IMM) - CNR Sede di Bologna, via Gobetti 101, 40129 Bologna, Italy
| | - Paola Ceroni
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Marco Villa
- Department of Chemistry Ciamician, University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
20
|
Zhao Z, Rudman NA, Dmochowski IJ. A Site-Specific Cross-Linker for Visible-Light Control of Proteins. ACS OMEGA 2024; 9:29331-29338. [PMID: 39005769 PMCID: PMC11238208 DOI: 10.1021/acsomega.4c00968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 07/16/2024]
Abstract
There is a need for photochemical tools that allow precise control of protein structure and function with visible light. We focus here on the s-tetrazine moiety, which can be installed at a specific protein site via the reaction between dichlorotetrazine and two adjacent sulfhydryl groups. Tetrazine's compact size enables structural mimicry of native amino acid linkages, such as an intramolecular salt bridge or disulfide bond. In this study, we investigated tetrazine installation in three different proteins, where it was confirmed that the cross-linking reaction is highly efficient in aqueous conditions and site-specific when two cysteines are located proximally: the S-S distance was 4-10 Å. As shown in maltose binding protein, the tetrazine cross-linker can replace an interdomain salt bridge crucial for xenon binding and serve as a visible-light photoswitch to modulate 129Xe NMR contrast. This work highlights the ease of aqueous tetrazine bioconjugation and its applications for protein photoregulation.
Collapse
Affiliation(s)
- Zhuangyu Zhao
- Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Nathan A Rudman
- Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
21
|
Nishibe N, Maruta S. Photocontrol of small GTPase Ras fused with a photoresponsive protein. J Biochem 2024; 176:11-21. [PMID: 38366640 DOI: 10.1093/jb/mvae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
The small GTPase Ras plays an important role in intracellular signal transduction and functions as a molecular switch. In this study, we used a photoresponsive protein as the molecular regulatory device to photoregulate Ras GTPase activity. Photo zipper (PZ), a variant of the photoresponsive protein Aureochrome1 developed by Hisatomi et al. was incorporated into the C-terminus of Ras as a fusion protein. The three constructs of the Ras-PZ fusion protein had spacers of different lengths between Ras and PZ. They were designed using an Escherichia coli expression system. The Ras-PZ fusion proteins exhibited photoisomerization upon blue light irradiation and in the dark. Ras-PZ dimerized upon light irradiation. Moreover, Ras GTPase activity, which is accelerated by the Ras regulators guanine nucleotide exchange factors and GTPase-activating proteins, is controlled by photoisomerization. It has been suggested that light-responsive proteins are applicable to the photoswitching of the enzymatic activity of small GTPases as photoregulatory molecular devices.
Collapse
Affiliation(s)
- Nobuyuki Nishibe
- Department of Biosciences, Graduate School of Science and Engineering Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shinsaku Maruta
- Department of Biosciences, Graduate School of Science and Engineering Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
22
|
Chen X, Hou XF, Chen XM, Li Q. An ultrawide-range photochromic molecular fluorescence emitter. Nat Commun 2024; 15:5401. [PMID: 38926352 PMCID: PMC11208420 DOI: 10.1038/s41467-024-49670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Photocontrollable luminescent molecular switches capable of changing emitting color have been regarded as the ideal integration between intelligent and luminescent materials. A remaining challenge is to combine good luminescence properties with wide range of wavelength transformation, especially when confined in a single molecular system that forms well-defined nanostructures. Here, we report a π-expanded photochromic molecular photoswitch, which allows for the comprehensive achievements including wide emission wavelength variation (240 nm wide, 400-640 nm), high photoisomerization extent (95%), and pure emission color (<100 nm of full width at half maximum). We take the advantageous mechanism of modulating self-assembly and intramolecular charge transfer in the synthesis and construction, and further realize the full color emission by simple photocontrol. Based on this, both photoactivated anti-counterfeiting function and self-erasing photowriting films are achieved of fluorescence. This work will provide insight into the design of intelligent optical materials.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiao-Fang Hou
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
23
|
Abodja O, Touati N, Morel M, Rudiuk S, Baigl D. ATP/azobenzene-guanidinium self-assembly into fluorescent and multi-stimuli-responsive supramolecular aggregates. Commun Chem 2024; 7:142. [PMID: 38918507 PMCID: PMC11199595 DOI: 10.1038/s42004-024-01226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Building stimuli-responsive supramolecular systems is a way for chemists to achieve spatio-temporal control over complex systems as well as a promising strategy for applications ranging from sensing to drug-delivery. For its large spectrum of biological and biomedical implications, adenosine 5'-triphosphate (ATP) is a particularly interesting target for such a purpose but photoresponsive ATP-based systems have mainly been relying on covalent modification of ATP. Here, we show that simply mixing ATP with AzoDiGua, an azobenzene-guanidium compound with photodependent nucleotide binding affinity, results in the spontaneous self-assembly of the two non-fluorescent compounds into photoreversible, micrometer-sized and fluorescent aggregates. Obtained in water at room temperature and physiological pH, these supramolecular structures are dynamic and respond to several chemical, physical and biological stimuli. The presence of azobenzene allows a fast and photoreversible control of their assembly. ATP chelating properties to metal dications enable ion-triggered disassembly and fluorescence control with valence-selectivity. Finally, the supramolecular aggregates are disassembled by alkaline phosphatase in a few minutes at room temperature, resulting in enzymatic control of fluorescence. These results highlight the interest of using a photoswitchable nucleotide binding partner as a self-assembly brick to build highly responsive supramolecular entities involving biological targets without the need to covalently modify them.
Collapse
Affiliation(s)
- Olivier Abodja
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Nadia Touati
- Chimie ParisTech, Université PSL, CNRS, Institut de Recherche de Chimie-Paris, PCMTH, 75005, Paris, France
| | - Mathieu Morel
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Sergii Rudiuk
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
24
|
Panarello S, González-Díez A, Berizzi AE, Malhaire F, Borràs-Tudurí R, Rovira X, Serra C, Prézeau L, Pin JP, Goudet C, Llebaria A, Gómez-Santacana X. Photoswitchable positive allosteric modulators of metabotropic glutamate receptor 4 to improve selectivity. iScience 2024; 27:110123. [PMID: 38966572 PMCID: PMC11223089 DOI: 10.1016/j.isci.2024.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024] Open
Abstract
Metabotropic glutamate receptors (mGlu) regulate multiple functions in the nervous systems and are involved in several neurological disorders. However, selectively targeting individual mGlu subtypes with spatiotemporal precision is still an unmet need. Photopharmacology can address this concern through the utilization of photoswitchable compounds such as optogluram, which is a positive allosteric modulator (PAM) of mGlu4 that enables the precise control of physiological responses using light but does not have an optimal selectivity profile. Optogluram analogs were developed to obtain photoswitchable PAMs of mGlu4 receptor with an improved selectivity. Among them, optogluram-2 emerged as a photoswitchable ligand for mGlu4 receptor with activity as both PAM and allosteric agonists. It presents a higher selectivity and offers improved photoswitching of mGlu4 activity. These improved properties make optogluram-2 an excellent candidate to study the role of mGlu4 with a high spatiotemporal precision in systems where mGlu4 can be co-expressed with other mGlu receptors.
Collapse
Affiliation(s)
- Silvia Panarello
- MCS, Institute for Advanced Chemistry of Catalonia – CSIC, Barcelona, Spain
- PhD Program in Organic Chemistry of the University of Barcelona, Barcelona, Spain
| | - Aleix González-Díez
- MCS, Institute for Advanced Chemistry of Catalonia – CSIC, Barcelona, Spain
- PhD Program in Organic Chemistry of the University of Barcelona, Barcelona, Spain
| | - Alice E. Berizzi
- Institut de Génomique Fonctionnelle, Université de Montpellier, UMR 5203 CNRS and U 1191 INSERM, Montpellier, France
| | - Fanny Malhaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, UMR 5203 CNRS and U 1191 INSERM, Montpellier, France
| | | | - Xavier Rovira
- MCS, Institute for Advanced Chemistry of Catalonia – CSIC, Barcelona, Spain
| | - Carme Serra
- MCS, Institute for Advanced Chemistry of Catalonia – CSIC, Barcelona, Spain
| | - Laurent Prézeau
- Institut de Génomique Fonctionnelle, Université de Montpellier, UMR 5203 CNRS and U 1191 INSERM, Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université de Montpellier, UMR 5203 CNRS and U 1191 INSERM, Montpellier, France
| | - Cyril Goudet
- Institut de Génomique Fonctionnelle, Université de Montpellier, UMR 5203 CNRS and U 1191 INSERM, Montpellier, France
| | - Amadeu Llebaria
- MCS, Institute for Advanced Chemistry of Catalonia – CSIC, Barcelona, Spain
| | - Xavier Gómez-Santacana
- MCS, Institute for Advanced Chemistry of Catalonia – CSIC, Barcelona, Spain
- Institut de Génomique Fonctionnelle, Université de Montpellier, UMR 5203 CNRS and U 1191 INSERM, Montpellier, France
| |
Collapse
|
25
|
Ghasemi S, Shamsabadi M, Olesund A, Najera F, Erbs Hillers-Bendtsen A, Edhborg F, Aslam AS, Larsson W, Wang Z, Amombo Noa FM, Salthouse RJ, Öhrström L, Hölzel H, Perez-Inestrosa E, Mikkelsen KV, Hanrieder J, Albinsson B, Dreos A, Moth-Poulsen K. Pyrene Functionalized Norbornadiene-Quadricyclane Fluorescent Photoswitches: Characterization of their Spectral Properties and Application in Imaging of Amyloid Beta Plaques. Chemistry 2024; 30:e202400322. [PMID: 38629212 DOI: 10.1002/chem.202400322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 05/23/2024]
Abstract
This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aβ) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aβ plaques in situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.
Collapse
Affiliation(s)
- Shima Ghasemi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Monika Shamsabadi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Axel Olesund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Francisco Najera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590, Malaga, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | | | - Fredrik Edhborg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Adil S Aslam
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Wera Larsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Zhihang Wang
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, U.K
| | - Francoise M Amombo Noa
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Rebecca Jane Salthouse
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - Lars Öhrström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Helen Hölzel
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - E Perez-Inestrosa
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590, Malaga, Spain
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, Denmark
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Ambra Dreos
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590, Malaga, Spain
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, 43180, Mölndal, Sweden
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
- The Institute of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research & Advanced Studies, ICREA, Pg. Llu'ıs Companys 23, 08010, Barcelona, Spain
- Department of Chemical Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
| |
Collapse
|
26
|
Zhao Z, Cai Y, Zhang Q, Li A, Zhu T, Chen X, Yuan WZ. Photochromic luminescence of organic crystals arising from subtle molecular rearrangement. Nat Commun 2024; 15:5054. [PMID: 38871698 DOI: 10.1038/s41467-024-48728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Photoluminescence (PL) colour-changing materials in response to photostimulus play an increasingly significant role in intelligent applications for their programmability. Nevertheless, current research mainly focuses on photochemical processes, with less attention to PL transformation through uniform aggregation mode adjustment. Here we show photochromic luminescence in organic crystals (e.g. dimethyl terephthalate) with PL varying from dark blue to purple, then to bright orange-red, and finally to red. This change is attributed to the emergence of clusters with red emission, which is barely achieved in single-benzene-based structures, thanks to the subtle molecular rearrangements prompted by light. Crucial to this process are the through-space electron interactions among molecules and moderate short contacts between ester groups. The irradiated crystals exhibit reversible PL transformation upon sufficient relaxation, showing promising applications in information storage and smart optoelectronic devices. This research contributes to the development of smart photochromic luminescent materials with significant PL colour transformations through molecular rearrangement.
Collapse
Affiliation(s)
- Zihao Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Yusong Cai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Anze Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Tianwen Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohong Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
27
|
Cheng Y, Hyodo T, Yamaguchi K, Ohwada T, Otani Y. Complete amide cis- trans switching synchronized with disulfide bond formation and cleavage in a proline-mimicking system. Chem Commun (Camb) 2024; 60:6158-6161. [PMID: 38804552 DOI: 10.1039/d4cc01096e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
A typical naturally occurring disulfide structure in proteins is an 8-membered disulfide ring formed between two adjacent cysteine (Cys-Cys) residues. Based on this structure, we designed 7- to 9-membered disulfide ring molecules, embedded in the 7-azabicyclo[2.2.1]heptane skeleton, that switch their conformation from exclusively trans-amide to exclusively cis-amide upon redox transformation from dithiol to disulfide, and vice versa. Constrained shape of disulfide rings is rare in nature, and the present molecular structure is expected to be a useful fundamental component for the construction of new conformation-switching systems.
Collapse
Affiliation(s)
- Yuhe Cheng
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Tadashi Hyodo
- School of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Kentaro Yamaguchi
- School of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Yuko Otani
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
28
|
Fu W, Sheng Z, Qiao Z, Xu Z, Li M, Guan Y, Li Z, Shao X. Optical Control of Insect Behavior and Receptors with Azobenzene-Bridged Fipronil and Imidacloprid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12469-12477. [PMID: 38771932 DOI: 10.1021/acs.jafc.4c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Photopharmacology can be implemented in a way of regulating drug activities by light-controlling the molecular configuations. Three photochromic ligands (PCLs) that bind on one or two sites of GABARs and nAChRs were reported here. These multiphoton PCLs, including FIP-AB-FIP, IMI-AB-FIP, and IMI-AB-IMI, are constructed with an azobenzene (AB) bridge that covalently connects two fipronil (FIP) and imidacloprid (IMI) molecules. Interestingly, the three PCLs as well as FIP and IMI showed great insecticidal activities against Aedes albopictus larvae and Aphis craccivora. IMI-AB-FIP in both trans/cis isomers can be reversibly interconverted depending on light, accompanied by insecticidal activity decrease or increase by 1.5-2.3 folds. In addition, IMI-AB-FIP displayed synergistic effects against A. craccivora (LC50, IMI-AB-FIP = 14.84-22.10 μM, LC50, IMI-AB-IMI = 210.52-266.63 μM, LC50, and FIP-AB-FIP = 36.25-51.04 μM), mainly resulting from a conceivable reason for simultaneous targeting on both GABARs and nAChRs. Furthermore, modulations of wiggler-swimming behaviors and cockroach neuron function were conducted and the results indirectly demonstrated the ligand-receptor interactions. In other words, real-time regulations of receptors and insect behaviors can be spatiotemporally achieved by our two-photon PCLs using light.
Collapse
Affiliation(s)
- Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhubo Sheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi Qiao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Meng Li
- Joint Institute of Tobacco and Health, Kunming, Yunnan 650202, China
| | - Ying Guan
- Joint Institute of Tobacco and Health, Kunming, Yunnan 650202, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
29
|
Liu Y, Wu Z, Shan JR, Yan H, Hao EJ, Shi L. Titanium catalyzed [2σ + 2π] cycloaddition of bicyclo[1.1.0]-butanes with 1,3-dienes for efficient synthesis of stilbene bioisosteres. Nat Commun 2024; 15:4374. [PMID: 38782978 PMCID: PMC11116475 DOI: 10.1038/s41467-024-48494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Natural stilbenes have shown significant potential in the prevention and treatment of diseases due to their diverse pharmacological activities. Here we present a mild and effective Ti-catalyzed intermolecular radical-relay [2σ + 2π] cycloaddition of bicyclo[1.1.0]-butanes and 1,3-dienes. This transformation enables the synthesis of bicyclo[2.1.1]hexane (BCH) scaffolds containing aryl vinyl groups with excellent regio- and trans-selectivity and broad functional group tolerance, thus offering rapid access to structurally diverse stilbene bioisosteres.
Collapse
Affiliation(s)
- Yonghong Liu
- Cancer Hospital of Dalian University of Technology, 116024, Dalian, China
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Zhixian Wu
- Cancer Hospital of Dalian University of Technology, 116024, Dalian, China
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Jing-Ran Shan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Huaipu Yan
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Er-Jun Hao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Lei Shi
- Cancer Hospital of Dalian University of Technology, 116024, Dalian, China.
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
30
|
Fu Y, Alachouzos G, Simeth NA, Di Donato M, Hilbers MF, Buma WJ, Szymanski W, Feringa BL. Triplet-Triplet Energy Transfer: A Simple Strategy for an Efficient Visible Light-Induced Photoclick Reaction. Angew Chem Int Ed Engl 2024; 63:e202319321. [PMID: 38511339 DOI: 10.1002/anie.202319321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Photoclick reactions combine the advantages offered by light-driven processes and classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photo-crosslinking, and protein labeling. Despite these advances, the dependency of most of the photoclick reactions on UV light poses a severe obstacle for their general implementation, as this light can be absorbed by other molecules in the system resulting in their degradation or unwanted reactivity. However, the development of a simple and efficient system to achieve bathochromically shifted photoclick transformations remains challenging. Here, we introduce triplet-triplet energy transfer as a fast and selective way to enable visible light-induced photoclick reactions. Specifically, we show that 9,10-phenanthrenequinones (PQs) can efficiently react with electron-rich alkenes (ERAs) in the presence of a catalytic amount (as little as 5 mol %) of photosensitizers. The photocycloaddition reaction can be achieved under green (530 nm) or orange (590 nm) light irradiation, representing a bathochromic shift of over 100 nm as compared to the classical PQ-ERAs system. Furthermore, by combining appropriate reactants, we establish an orthogonal, blue and green light-induced photoclick reaction system in which the product distribution can be precisely controlled by the choice of the color of light.
Collapse
Affiliation(s)
- Youxin Fu
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019, Sesto Fiorentino (FI), Italy
- ICCOM-CNR, via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Michiel F Hilbers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Wybren Jan Buma
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
31
|
Kauth AM, Niebuhr R, Ravoo BJ. Arylazopyrazoles for Conjugation by CuAAC Click Chemistry. J Org Chem 2024; 89:6371-6376. [PMID: 38619381 DOI: 10.1021/acs.joc.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Molecular photoswitches are increasingly being implemented in bioactive compounds and responsive materials. For this purpose, photoswitches must be coupled to a wide variety of substrates and scaffolds. We present a library of "clickable" arylazopyrazoles (AAPs), which can be conjugated by Cu-catalyzed alkyne azide cycloaddition (CuAAC). All synthesized AAP alkynes show good photostationary states (at least 88%) and long half-life times of the Z-isomer (18 to 108 h). The AAP azides decompose upon exposure to ultraviolet (UV) irradiation, but after CuAAC, all AAPs exhibit good photophysical properties.
Collapse
Affiliation(s)
- Alisa-Maite Kauth
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
| | - Rebecca Niebuhr
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
| |
Collapse
|
32
|
Sanna AL, Pachova T, Catellani A, Calzolari A, Sforazzini G. Meta-Substituted Asymmetric Azobenzenes: Insights into Structure-Property Relationship. Molecules 2024; 29:1929. [PMID: 38731420 PMCID: PMC11085191 DOI: 10.3390/molecules29091929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This article presents a comprehensive investigation into the functionalization of methoxyphenylazobenzene using electron-directing groups located at the meta position relative to the azo group. Spectroscopic analysis of meta-functionalized azobenzenes reveals that the incorporation of electron-withdrawing units significantly influences the absorption spectra of both E and Z isomers, while electron-donating functionalities lead to more subtle changes. The thermal relaxation process from Z to E result in almost twice as prolonged for electron-withdrawing functionalized azobenzenes compared to their electron-rich counterparts. Computational analysis contributes a theoretical understanding of the electronic structure and properties of meta-substituted azobenzenes. This combined approach, integrating experimental and computational techniques, yields significant insights into the structure-property relationship of meta-substituted asymmetrical phenolazobenzenes.
Collapse
Affiliation(s)
- Anna Laura Sanna
- Department of Chemical and Geological Sciences, Università degli Studi di Cagliari, SS 554, Bivio per Sestu, 09042 Cagliari, Italy
| | - Tatiana Pachova
- Laboratory of Macromolecular and Organic Materials, Institute of Material Science and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | - Arrigo Calzolari
- CNR-NANO, Istituto Nanoscienze, Via Giuseppe Campi, 213, 41125 Modena, Italy
| | - Giuseppe Sforazzini
- Department of Chemical and Geological Sciences, Università degli Studi di Cagliari, SS 554, Bivio per Sestu, 09042 Cagliari, Italy
- Laboratory of Macromolecular and Organic Materials, Institute of Material Science and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
33
|
Breton-Patient C, Billotte S, Duchambon P, Fontaine G, Bombard S, Piguel S. Light-Activatable Photocaged UNC2025 for Triggering TAM Kinase Inhibition in Bladder Cancer. Chembiochem 2024; 25:e202300855. [PMID: 38363151 DOI: 10.1002/cbic.202300855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Photopharmacology is an emerging field that utilizes photo-responsive molecules to enable control over the activity of a drug using light. The aim is to limit the therapeutic action of a drug at the level of diseased tissues and organs. Considering the well-known implications of protein kinases in cancer and the therapeutic issues associated with protein kinase inhibitors, the photopharmacology is seen as an innovative and alternative solution with great potential in oncology. In this context, we developed the first photocaged TAM kinase inhibitors based on UNC2025, a first-in-class small molecule kinase inhibitor. These prodrugs showed good stability in biologically relevant buffer and rapid photorelease of the photoremovable protecting group upon UV-light irradiation (<10 min.). These light-activatable prodrugs led to a 16-fold decrease to a complete loss of kinase inhibition, depending on the protein and the position at which the coumarin-type phototrigger was introduced. The most promising candidate was the N,O-dicaged compound, showing the superiority of having two photolabile protecting groups on UNC2025 for being entirely inactive on TAM kinases. Under UV-light irradiation, the N,O-dicaged compound recovered its inhibitory potency in enzymatic assays and displayed excellent antiproliferative activity in RT112 cell lines.
Collapse
Affiliation(s)
- Chloé Breton-Patient
- Institut Curie, Université PSL CNRS UMR9187, Inserm U119, 91400, Orsay, France
- Université Paris-Saclay CNRS UMR9187, Inserm U119, 91400, Orsay, France
| | - Sébastien Billotte
- Université Paris-Saclay, Faculté de Pharmacie CNRS UMR 8076, 91400, Orsay, France
| | - Patricia Duchambon
- Institut Curie, Université PSL CNRS UMR9187, Inserm U119, 91400, Orsay, France
- Université Paris-Saclay CNRS UMR9187, Inserm U119, 91400, Orsay, France
| | - Gaëlle Fontaine
- Institut Curie, Université PSL CNRS UMR9187, Inserm U119, 91400, Orsay, France
- Université Paris-Saclay CNRS UMR9187, Inserm U119, 91400, Orsay, France
| | - Sophie Bombard
- Institut Curie, Université PSL CNRS UMR9187, Inserm U119, 91400, Orsay, France
- Université Paris-Saclay CNRS UMR9187, Inserm U119, 91400, Orsay, France
| | - Sandrine Piguel
- Université Paris-Saclay, Faculté de Pharmacie CNRS UMR 8076, 91400, Orsay, France
| |
Collapse
|
34
|
Losantos R, Prampolini G, Monari A. A Portrait of the Chromophore as a Young System-Quantum-Derived Force Field Unraveling Solvent Reorganization upon Optical Excitation of Cyclocurcumin Derivatives. Molecules 2024; 29:1752. [PMID: 38675572 PMCID: PMC11052401 DOI: 10.3390/molecules29081752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The study of fast non-equilibrium solvent relaxation in organic chromophores is still challenging for molecular modeling and simulation approaches, and is often overlooked, even in the case of non-adiabatic dynamics simulations. Yet, especially in the case of photoswitches, the interaction with the environment can strongly modulate the photophysical outcomes. To unravel such a delicate interplay, in the present contribution we resorted to a mixed quantum-classical approach, based on quantum mechanically derived force fields. The main task is to rationalize the solvent reorganization pathways in chromophores derived from cyclocurcumin, which are suitable for light-activated chemotherapy to destabilize cellular lipid membranes. The accurate and reliable decryption delivered by the quantum-derived force fields points to important differences in the solvent's reorganization, in terms of both structure and time scale evolution.
Collapse
Affiliation(s)
- Raúl Losantos
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
- ITODYS, Université Paris Cité and CNRS, F-75006 Paris, France
| | - Giacomo Prampolini
- Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy;
| | - Antonio Monari
- ITODYS, Université Paris Cité and CNRS, F-75006 Paris, France
| |
Collapse
|
35
|
Martínez-Orts M, Pujals S. Responsive Supramolecular Polymers for Diagnosis and Treatment. Int J Mol Sci 2024; 25:4077. [PMID: 38612886 PMCID: PMC11012635 DOI: 10.3390/ijms25074077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Stimuli-responsive supramolecular polymers are ordered nanosized materials that are held together by non-covalent interactions (hydrogen-bonding, metal-ligand coordination, π-stacking and, host-guest interactions) and can reversibly undergo self-assembly. Their non-covalent nature endows supramolecular polymers with the ability to respond to external stimuli (temperature, light, ultrasound, electric/magnetic field) or environmental changes (temperature, pH, redox potential, enzyme activity), making them attractive candidates for a variety of biomedical applications. To date, supramolecular research has largely evolved in the development of smart water-soluble self-assemblies with the aim of mimicking the biological function of natural supramolecular systems. Indeed, there is a wide variety of synthetic biomaterials formulated with responsiveness to control and trigger, or not to trigger, aqueous self-assembly. The design of responsive supramolecular polymers ranges from the use of hydrophobic cores (i.e., benzene-1,3,5-tricarboxamide) to the introduction of macrocyclic hosts (i.e., cyclodextrins). In this review, we summarize the most relevant advances achieved in the design of stimuli-responsive supramolecular systems used to control transport and release of both diagnosis agents and therapeutic drugs in order to prevent, diagnose, and treat human diseases.
Collapse
Affiliation(s)
| | - Silvia Pujals
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain;
| |
Collapse
|
36
|
Pham TL, Thomas F. Design of Functional Globular β-Sheet Miniproteins. Chembiochem 2024; 25:e202300745. [PMID: 38275210 DOI: 10.1002/cbic.202300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/27/2024]
Abstract
The design of discrete β-sheet peptides is far less advanced than e. g. the design of α-helical peptides. The reputation of β-sheet peptides as being poorly soluble and aggregation-prone often hinders active design efforts. Here, we show that this reputation is unfounded. We demonstrate this by looking at the β-hairpin and WW domain. Their structure and folding have been extensively studied and they have long served as model systems to investigate protein folding and folding kinetics. The resulting fundamental understanding has led to the development of hyperstable β-sheet scaffolds that fold at temperatures of 100 °C or high concentrations of denaturants. These have been used to design functional miniproteins with protein or nucleic acid binding properties, in some cases with such success that medical applications are conceivable. The β-sheet scaffolds are not always completely rigid, but can be specifically designed to respond to changes in pH, redox potential or presence of metal ions. Some engineered β-sheet peptides also exhibit catalytic properties, although not comparable to those of natural proteins. Previous reviews have focused on the design of stably folded and non-aggregating β-sheet sequences. In our review, we now also address design strategies to obtain functional miniproteins from β-sheet folding motifs.
Collapse
Affiliation(s)
- Truc Lam Pham
- Truc Lam Pham, Prof. Dr. Franziska Thomas, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Truc Lam Pham, Prof. Dr. Franziska Thomas, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
37
|
Avagliano D, Skreta M, Arellano-Rubach S, Aspuru-Guzik A. DELFI: a computer oracle for recommending density functionals for excited states calculations. Chem Sci 2024; 15:4489-4503. [PMID: 38516092 PMCID: PMC10952086 DOI: 10.1039/d3sc06440a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Density functional theory (DFT) is the workhorse of computational quantum chemistry. One of its main limitations is that choosing the right functional is a non-trivial task left for human experts. The choice is particularly hard for excited state calculations when using its time-dependent formulation (TD-DFT). This is due to the approximations of the method, but also because the photophysical properties of a molecule are defined by a manifold of states that all need to be properly described. This includes not only the relative energy of the states, but also capturing the correct character, order, and intensity of the transitions. In this work, we developed a neural network to recommend functionals to be used on molecules for TD-DFT calculations, by simultaneously considering all these properties for a manifold of states. This was possible by developing a scoring system to define the accuracy of an excited state's calculation against a higher-accuracy reference. The scoring system is generalizable to any level of theory; we here applied it to evaluate the performance of common functionals of different rungs against a higher accuracy method on a large set of organic molecules. The results are collected in a database that we released and made open, providing four million data points to the community for future applications. The scoring system assigns a value between zero and one hundred to each functional for each molecule, transforming the complicated task of learning photophysical properties into a simpler regression task. We used the dataset to train a graph attention neural network to predict the scores for unseen molecules. We call this oracle DELFI (Data-driven EvaLuation of Functionals by Inference), which can be used to quickly screen and predict the ranking of functionals to calculate the optical properties of organic molecules. We validated DELFI in two in silico experiments: choosing a common functional for a series of spiropyran-merocyanine isomers and a unique functional to screen a large dataset of over 50 000 organic photovoltaic molecules, for which an extensive benchmark would be unfeasible. A corresponding web application allows DELFI to be easily run and the results to be analyzed, alleviating the hurdle of choosing the right functional for TD-DFT calculations.
Collapse
Affiliation(s)
- Davide Avagliano
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George Street Toronto ON M5S 2E4 Canada
| | - Marta Skreta
- Department of Computer Science, University of Toronto 40 St. George Street Toronto ON M5S 2E4 Canada
- Vector Institute for Artificial Intelligence 661 University Ave. Suite 710 ON M5G 1M1 Toronto Canada
| | | | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George Street Toronto ON M5S 2E4 Canada
- Vector Institute for Artificial Intelligence 661 University Ave. Suite 710 ON M5G 1M1 Toronto Canada
- Department of Materials Science & Engineering, University of Toronto 184 College St Toronto M5S 3E4 Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto 200 College St ON M5S 3E5 Toronto Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR) 66118 University Ave. M5G 1M1 Toronto Canada
- Acceleration Consortium 80 St George St M5S 3H6 Toronto Canada
| |
Collapse
|
38
|
Cheng Y, Wu J, Cui Y, Zhai J, Wu M, Xie X. Photoswitchable Temperature Nanosensors Based on the Chemical Kinetics of Photochromic Naphthopyran for Live Cell Imaging. Anal Chem 2024; 96:4605-4611. [PMID: 38457774 DOI: 10.1021/acs.analchem.3c05568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Microscopic temperature imaging holds significant importance in various fields, particularly in the development of nanomaterials for photothermal therapy (PTT). In this study, we present an analytical method to probe cellular temperature based on chemical kinetics and additional luminescence quenching by photoswitchable naphthopyrans. Taking advantage of the rapid ring-closing reaction of naphthopyran, temperature sensing was realized with a linear relationship between the logarithmic decay time constant (ln τ) and the reciprocal temperature (T-1). To create luminescent temperature nanosensors, we harnessed the ability of ring-opened naphthopyran to quench the luminescence of a semiconducting polymer, resulting in a diverse array of probes. Structural modifications on the naphthopyran also provided a way to fine-tune the sensitivity and response window of the nanosensors. The method allowed cellular temperature imaging on a cost-effective fluorescence microscopic setup. As an application, the temperature increase induced by gold nanorods (AuNRs) in cell lysosomes was successfully monitored, laying the foundation for a new class of photoswitchable nanosensors with promising biological applications.
Collapse
Affiliation(s)
- Yu Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianhong Wu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yunxin Cui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingying Zhai
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghui Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
39
|
Guo J, Wang S, Yu Z, Heng X, Zhou N, Chen G. Well-Defined Oligo(azobenzene- graft-mannose): Photostimuli Supramolecular Self-Assembly and Immune Effect Regulation. ACS Macro Lett 2024; 13:273-279. [PMID: 38345474 DOI: 10.1021/acsmacrolett.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The immune system can recognize and respond to pathogens of various shapes. Synthetic materials that can change their shape have the potential to be used in vaccines and immune regulation. The ability of supramolecular assemblies to undergo reversible transformations in response to environmental stimuli allows for dynamic changes in their shapes and functionalities. A meticulously designed oligo(azobenzene-graft-mannose) was synthesized using a stepwise iterative method and "click" chemistry. This involved integrating hydrophobic and photoresponsive azobenzene units with hydrophilic and bioactive mannose units. The resulting oligomer, with its precise structure, displayed versatile assembly morphologies and chiralities that were responsive to light. These varying assembly morphologies demonstrated distinct capabilities in terms of inhibiting the proliferation of cancer cells and stimulating the maturation of dendritic cells. These discoveries contribute to the theoretical comprehension and advancement of photoswitchable bioactive materials.
Collapse
Affiliation(s)
- Jiangping Guo
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Shuyuan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhihong Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xingyu Heng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
40
|
Bacsa B, Hopl V, Derler I. Synthetic Biology Meets Ca 2+ Release-Activated Ca 2+ Channel-Dependent Immunomodulation. Cells 2024; 13:468. [PMID: 38534312 DOI: 10.3390/cells13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Division of Medical Physics und Biophysics, Medical University of Graz, A-8010 Graz, Austria
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
41
|
Bargstedt J, Reinschmidt M, Tydecks L, Kolmar T, Hendrich CM, Jäschke A. Photochromic Nucleosides and Oligonucleotides. Angew Chem Int Ed Engl 2024; 63:e202310797. [PMID: 37966433 DOI: 10.1002/anie.202310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Photochromism is a reversible phenomenon wherein a material undergoes a change in color upon exposure to light. In organic photochromes, this effect often results from light-induced isomerization reactions, leading to alterations in either the spatial orientation or electronic properties of the photochrome. The incorporation of photochromic moieties into biomolecules, such as proteins or nucleic acids, has become a prevalent approach to render these biomolecules responsive to light stimuli. Utilizing light as a trigger for the manipulation of biomolecular structure and function offers numerous advantages compared to other stimuli, such as chemical or electrical treatments, due to its non-invasive nature. Consequently, light proves particularly advantageous in cellular and tissue applications. In this review, we emphasize recent advancements in the field of photochromic nucleosides and oligonucleotides. We provide an overview of the design principles of different classes of photochromes, synthetic strategies, critical analytical challenges, as well as structure-property relationships. The applications of photochromic nucleic acid derivatives encompass diverse domains, ranging from the precise photoregulation of gene expression to the controlled modulation of the three-dimensional structures of oligonucleotides and the development of DNA-based fluorescence modulators. Moreover, we present a future perspective on potential modifications and applications.
Collapse
Affiliation(s)
- Jörn Bargstedt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Martin Reinschmidt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Leon Tydecks
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christoph M Hendrich
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
42
|
Hong P, Liu J, Qin KX, Tian R, Peng LY, Su YS, Gan Z, Yu XX, Ye L, Zhu MQ, Li C. Towards Optical Information Recording: A Robust Visible-Light-Driven Molecular Photoswitch with the Ring-Closure Reaction Yield Exceeding 96.3 . Angew Chem Int Ed Engl 2024; 63:e202316706. [PMID: 38126129 DOI: 10.1002/anie.202316706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Diarylethene molecular photoswitches hold great fascination as optical information materials due to their unique bistability and exceptional reversible photoswitching properties. Conventional diarylethenes, however, rely on UV light for ring-closure reactions, typically with modest yields. For practical application, diarylethenes driven by visible lights are preferred but achieving high ring-closure reaction yield remains a significant challenge. Herein, we synthesized a novel all-visible-light-driven photoswitch, TPAP-DTE, by facilely endcapping the dithienylethene (DTE) core with triphenylamine phenyl (TPAP) groups. Owing to the electron-donating conjugation effect of TPAP, the open-form TPAP-DTE responds strongly to short-wavelength visible lights with considerable photocyclization quantum yields and molar absorption coefficient. Upon 405 nm visible-light irradiation, TPAP-DTE achieves a ring-closure reaction yield exceeding 96.3 % (confirmed by both nuclear magnetic resonance spectroscopy and high-performance liquid chromatography). Its ring-opening reaction yield is 100 % upon irradiation with long-wavelength visible light. TPAP-DTE could be regarded as a bidirectional "quasi"-quantitative conversion molecular switch. Furthermore, TPAP-DTE exhibits robust fatigue resistance over 100 full photoswitching cycles and great anti-aging property under 85 °C and 85 % humidity for at least 1000 h. Consequently, its rewritable QR-code, multilevel data storage, and anti-counterfeiting/encryption applications are successfully demonstrated exclusively using visible lights, positioning TPAP-DTE as a highly promising medium for information recording.
Collapse
Affiliation(s)
- Pan Hong
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Jing Liu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Kai-Xuan Qin
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Rui Tian
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Ling-Yan Peng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Yun-Shu Su
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Zongsong Gan
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Xiang-Xiang Yu
- School of Integrated Circuits, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Lei Ye
- School of Integrated Circuits, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| |
Collapse
|
43
|
Zhao Y, Huang Q, Li Q, Chen Z, Liu Y. Bidirectional Regulation of Intracellular Enzyme Activity Using Light-Driven Nano-Inhibitors. Angew Chem Int Ed Engl 2024; 63:e202318533. [PMID: 38196066 DOI: 10.1002/anie.202318533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Photochemical regulation provides precise control over enzyme activities with high spatiotemporal resolution. A promising approach involves anchoring "photoswitches" at enzyme active sites to modulate substrate recognition. However, current methods often require genetic mutations and irreversible enzyme modifications for the site-specific anchoring of "photoswitches", potentially compromising the enzyme activities. Herein, we present a pioneering reversible nano-inhibitor based on molecular imprinting technique for bidirectional regulation of intracellular enzyme activity. The nano-inhibitor employs a molecularly imprinted polymer nanoparticle as its body and azobenzene-modified inhibitors ("photoswitches") as the arms. By using a target enzyme as the molecular template, the nano-inhibitor acquires oriented binding sites on its surface, resulting in a high affinity for the target enzyme and non-covalently firm anchoring of the azobenzene-modified inhibitor to the enzyme active site. Harnessing the reversible isomerization of azobenzene units upon exposure to ultraviolet and visible light, the nano-inhibitor achieves bidirectional enzyme activity regulation by precisely docking and undocking inhibitor at the active site. Notably, this innovative approach enables the facile in situ regulation of intracellular endogenous enzymes, such as carbonic anhydrase. Our results represent a practical and versatile tool for precise enzyme activity regulation in complex intracellular environments.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Qingqing Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zihan Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
44
|
Volarić J, van der Heide NJ, Mutter NL, Samplonius DF, Helfrich W, Maglia G, Szymanski W, Feringa BL. Visible Light Control over the Cytolytic Activity of a Toxic Pore-Forming Protein. ACS Chem Biol 2024; 19:451-461. [PMID: 38318850 PMCID: PMC10877574 DOI: 10.1021/acschembio.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Enabling control over the bioactivity of proteins with light, along with the principles of photopharmacology, has the potential to generate safe and targeted medical treatments. Installing light sensitivity in a protein can be achieved through its covalent modification with a molecular photoswitch. The general challenge in this approach is the need for the use of low energy visible light for the regulation of bioactivity. In this study, we report visible light control over the cytolytic activity of a protein. A water-soluble visible-light-operated tetra-ortho-fluoro-azobenzene photoswitch was synthesized by utilizing the nucleophilic aromatic substitution reaction for installing a solubilizing sulfonate group onto the electron-poor photoswitch structure. The azobenzene was attached to two cysteine mutants of the pore-forming protein fragaceatoxin C (FraC), and their respective activities were evaluated on red blood cells. For both mutants, the green-light-irradiated sample, containing predominantly the cis-azobenzene isomer, was more active compared to the blue-light-irradiated sample. Ultimately, the same modulation of the cytolytic activity pattern was observed toward a hypopharyngeal squamous cell carcinoma. These results constitute the first case of using low energy visible light to control the biological activity of a toxic protein.
Collapse
Affiliation(s)
- Jana Volarić
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Nieck J. van der Heide
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Natalie L. Mutter
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Douwe F. Samplonius
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wijnand Helfrich
- Department
of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Wiktor Szymanski
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
- Department
of Radiology, Medical Imaging Center, University
of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Organic Chemistry, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
45
|
Ding K, Gong Q, Wang G, Cui C, Liu F. What Happens to a Pyrrole Hemithioindigo Photoswitch Trapped in a Fluorescent Protein? J Phys Chem B 2024; 128:1161-1169. [PMID: 38279080 DOI: 10.1021/acs.jpcb.3c05894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Artificial molecular photoswitches that can be reversibly controlled into different configurations by external light stimulation have broad application prospects in various fields, such as materials and chemical biology. Among them, the pyrrole hemithioindigo (PHT) photoswitch has a geometric structure similar to that of the fluorescent protein chromophore. What happens when the chromophore is replaced by PHT, and does it achieve similar functions to the original one? To answer these questions, we carried out ONIOM(QM/MM) and classical molecular dynamics studies on the photoisomerization mechanism and spectroscopic properties of PHT in the fluorescent protein. The results showed that in the protein environment, the fate of excited PHT is governed by the competition between fluorescence emission and hula-twist isomerization. Due to the strong steric hindrance effects caused by the interlacing residues in the protein that restrict the PHT conformation transformation, the cis-to-trans isomerization process of PHT needs to overcome a barrier of at least 4.9 kcal/mol; thus, fluorescence emission is more dominant in competition. It is also found that the intermolecular interaction between LYS67 and the carbonyl oxygen of PHT has a significant effect on the fluorescence emission. These results revealed the photochemical reaction mechanism of a light-driven molecular switch in the fluorescent protein and provided further theoretical support for the field of chemical biology.
Collapse
Affiliation(s)
- Kaiyue Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Qianqian Gong
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Chengxing Cui
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| | - Fengyi Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, P. R. China
| |
Collapse
|
46
|
Hao Y, Han R, Li S, Liu L, Fang WH. A Complete Unveiling of the Mechanism and Chirality in Photoisomerization of Arylazopyrazole 3pzH: Combined Electronic Structure Calculations and AIMS Dynamic Simulations. J Phys Chem A 2024; 128:528-538. [PMID: 38215031 DOI: 10.1021/acs.jpca.3c03477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The arylazopyrazole 3pzH as a novel photoswitch exhibits quantitative switching and high thermal stability. In this work, combined electronic structure calculations and ab initio multiple spawning (AIMS) dynamic simulations were performed to systemically investigate the cis ↔ trans photoisomerization mechanism and the chiral preference after photoexcitation of 3pzH to the first excited singlet state (S1). Unlike most of the azoheteroarene photoswitches reported previously, many twisted and T-shaped cis isomers were found to be stable for 3pzH in the S0 state, owing to the moderate interaction between the hydrogen atom and π electrons of the aromatic ring. Two twisted cis isomers with different chirality ((M)-Z1 and (P)-Z1), the most stable T-shaped cis isomer ((T)-Z2), and the most stable planar trans isomer (E2) were selected as the initial structures to carry out the AIMS nonadiabatic dynamic simulations. Following excitation to the S1 state, all of the cis isomers decayed to conical intersection (CI) regions via the same bicycle pedal mechanism, while the evolution of the trans isomers to their CI regions was achieved via rotation around the N═N bond. More importantly, chiral preferences were found for the twisted cis isomers in the S1 state through the AIMS dynamic simulations due to the steric effect and static electronic repulsion. Notably, chirality was also observed in S1 isomerization starting from the planar E2 isomer because of the dynamic effect. After the nonadiabatic transition to the S0 state, the bicycle pedal mechanism was found to play a crucial role in cis ↔ trans photoisomerization. The simulated photoisomerization productivities were generally consistent with past experimental observations. Our calculations not only uncover the underlying reason for the excellent photoswitching properties of 3pzH but also enrich the knowledge of photoisomerization for azoheteroarene photoswitches, which will surely benefit their rational design.
Collapse
Affiliation(s)
- Yuxia Hao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruinong Han
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shuai Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lihong Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
47
|
Bykov VN, Ukhanev SA, Ushakov IA, Vologzhanina AV, Antsiferov EA, Klimenko LS, Lvov AG. Activation of Anthraquinone's Electrophilicity by Light for a Dynamic C-O Bond. J Am Chem Soc 2024; 146:1799-1805. [PMID: 38207214 DOI: 10.1021/jacs.3c12461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Coupling of photoswitching with dynamic covalent chemistry enables control of the formation and cleavage of covalent bonds by light irradiation. peri-Aryloxyanthraquinones feature an exclusive ability to switch electrophilicity by interconversion between para- and ana-quinone isomers, which was used for the first time for the implementation of a dynamic C-O bond. Photogenerated ana-isomers undergo a concerted oxa-Michael addition of phenols to give hitherto unknown 4-hydroxy-10,10-diaryloxyanthracen-9-ones. These species were found to be in equilibrium with the corresponding ana-quinones, thus forming a dynamic covalent system of a new type. Withdrawal of the colored ana-quinones from the equilibria by visible light irradiation resulted in two para-quinones with "locked" aryloxy groups.
Collapse
Affiliation(s)
- Vasily N Bykov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, Irkutsk, 664033, Russia
- Irkutsk National Research Technical University, 83 Lermontov Street, Irkutsk, 664074, Russia
| | - Stepan A Ukhanev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, Irkutsk, 664033, Russia
| | - Igor A Ushakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, Irkutsk, 664033, Russia
| | - Anna V Vologzhanina
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Science, 28 Vavilova Street, Moscow, 119991, Russia
| | - Evgenii A Antsiferov
- Irkutsk National Research Technical University, 83 Lermontov Street, Irkutsk, 664074, Russia
| | - Lyubov S Klimenko
- Yugra State University, 16 Chekhov Street, Khanty-Mansiysk, 628012, Russia
| | - Andrey G Lvov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, Irkutsk, 664033, Russia
- Irkutsk National Research Technical University, 83 Lermontov Street, Irkutsk, 664074, Russia
| |
Collapse
|
48
|
Parlato R, Volarić J, Lasorsa A, Bagherpoor Helabad M, Kobauri P, Jain G, Miettinen MS, Feringa BL, Szymanski W, van der Wel PCA. Photocontrol of the β-Hairpin Polypeptide Structure through an Optimized Azobenzene-Based Amino Acid Analogue. J Am Chem Soc 2024; 146:2062-2071. [PMID: 38226790 PMCID: PMC10811659 DOI: 10.1021/jacs.3c11155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024]
Abstract
A family of neurodegenerative diseases, including Huntington's disease (HD) and spinocerebellar ataxias, are associated with an abnormal polyglutamine (polyQ) expansion in mutant proteins that become prone to form amyloid-like aggregates. Prior studies have suggested a key role for β-hairpin formation as a driver of nucleation and aggregation, but direct experimental studies have been challenging. Toward such research, we set out to enable spatiotemporal control over β-hairpin formation by the introduction of a photosensitive β-turn mimic in the polypeptide backbone, consisting of a newly designed azobenzene derivative. The reported derivative overcomes the limitations of prior approaches associated with poor photochemical properties and imperfect structural compatibility with the desired β-turn structure. A new azobenzene-based β-turn mimic was designed, synthesized, and found to display improved photochemical properties, both prior and after incorporation into the backbone of a polyQ polypeptide. The two isomers of the azobenzene-polyQ peptide showed different aggregate structures of the polyQ peptide fibrils, as demonstrated by electron microscopy and solid-state NMR (ssNMR). Notably, only peptides in which the β-turn structure was stabilized (azobenzene in the cis configuration) closely reproduced the spectral fingerprints of toxic, β-hairpin-containing fibrils formed by mutant huntingtin protein fragments implicated in HD. These approaches and findings will enable better deciphering of the roles of β-hairpin structures in protein aggregation processes in HD and other amyloid-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Raffaella Parlato
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jana Volarić
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The
Netherlands
| | - Alessia Lasorsa
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Mahdi Bagherpoor Helabad
- Department
of Theory and Bio-Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Piermichele Kobauri
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The
Netherlands
| | - Greeshma Jain
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Markus S. Miettinen
- Computational
Biology Unit, Departments of Chemistry and Informatics, University of Bergen, 5020 Bergen, Norway
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The
Netherlands
| | - Wiktor Szymanski
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The
Netherlands
- Medical
Imaging Center, University Medical Center
Groningen, Hanzeplein
1, 9713 GZ Groningen, The Netherlands
| | - Patrick C. A. van der Wel
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
49
|
Ziani Z, Cobo S, Berthet N, Royal G. Optical modulation of cell nucleus penetration and singlet oxygen release of a switchable platinum complex. iScience 2024; 27:108704. [PMID: 38299025 PMCID: PMC10829881 DOI: 10.1016/j.isci.2023.108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/06/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024] Open
Abstract
The activation of anticancer molecules with visible light constitutes an elegant strategy to target tumors and to improve the selectivity of treatments. In this context, we report here a visible-light activatable bis-platinum complex (DHP-Pt2) incorporating an organic photo-switchable ligand based on the dimethyldihydropyrene moiety. Illumination of this metal complex with red light (660 nm) under air readily produces the corresponding endoperoxide form (CPDO2-Pt2). These two metal complexes exhibit different DNA binding properties and, more importantly, we show that only the photogenerated CPDO2-Pt2 is able to penetrate into cancer cell nuclei, where it is then capable of releasing cytotoxic singlet oxygen. This study represents the first proof-of-concept showing that dimethyldihydropyrene derivatives can be used to transport and deliver singlet oxygen into cancer cell nuclei upon visible-light activation.
Collapse
Affiliation(s)
- Zakaria Ziani
- University Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Saioa Cobo
- University Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | | - Guy Royal
- University Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|
50
|
Taruno K, Ikariko I, Taniguchi T, Kim S, Fukaminato T. Internal Heavy-Atom Effect on Visible-Light-Induced Cyclization Reaction in Diarylethene-Perylenebisimide Dyads. J Phys Chem B 2024; 128:273-279. [PMID: 38118147 DOI: 10.1021/acs.jpcb.3c06746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
All-visible-light switchable diarylethene-perylenebisimide (DAE-PBI) dyads having bromine heavy atoms in the molecule were designed and synthesized. Very recently, we found a unique visible-light-induced cyclization reaction in a DAE-PBI dyad. The dyad exhibited reversible cyclization and cycloreversion reactions upon alternate irradiation with green (500-550 nm) and red (>600 nm) light. From the experimental results, it was suggested that the triplet state of DAE unit was generated via multiplicity conversion based on intramolecular energy transfer from the singlet excited state of PBI unit and that the cyclization reaction of DAE unit proceeded from the triplet state. In addition, it was revealed that the reactivity remarkably increased in a solvent containing heavy atoms such as carbon tetrachloride and iodoethane (i.e., external heavy-atom effect). Based on such results, in this study, we attempted to design and synthesize novel DAE-PBI dyads introducing bromine heavy atoms at different positions in the molecule. The synthesized dyads exhibited higher quantum yields of photocyclization reaction under visible-light irradiation even in a heavy-atom-free solvent compared to the previous dyad having no heavy atoms. The magnitude of enhancement well correlated to the contribution ratio of atomic orbital of bromine to the molecular orbital in LUMOs. These results indicated that the internal heavy atom effectively contributed to the visible-light-induced cyclization reaction in DAE-PBI dyads. Such an internal heavy-atom effect will pave the way for new molecular design to develop all-visible-light-activatable molecular switches.
Collapse
Affiliation(s)
- Koya Taruno
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Issei Ikariko
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Taku Taniguchi
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Sunnam Kim
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tsuyoshi Fukaminato
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|