1
|
Diak M, Flak D, Jarek M, Przysiecka Ł, Nowaczyk G. Aqueous phase transfer of near-infrared ZnCuInS 2/ZnS quantum dots: Synthesis and characterization. BIOMATERIALS ADVANCES 2024; 166:214083. [PMID: 39454414 DOI: 10.1016/j.bioadv.2024.214083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Cadmium-free and NIR fluorescent QDs are promising candidates for bio-application. Thus, we present the synthesis of ternary ZnCuInS2/ZnS (ZCIS/ZnS) quantum dots (QDs) where the molar variation of Cu/Zn of the precursors was used to tune the optical and structural properties. QDs with Cu/Zn molar ratio of 2/1 passivated with ZnS exhibited the best optical properties. They showed dominant near-infrared photoluminescence (approx. 850 nm) and highest quantum yield (approx. 52 %, λexc = 500 nm). Therefore, they were further subject to modification to ensure their transfer to the aqueous phase and improve biocompatibility. For this, different functionalization approaches were used. The first method relied on encapsulation with polymers like PSMA (poly(styrene co-maleic anhydride)) and PMAO (poly(maleic anhydride-alt-1-octadecene) coupled with polyetheramine (JEFF; Jeffamine M-1000), and the second relied on hydrophilization with PMAO. Furthermore, we also applied a surface ligand exchange process using DHLA (dihydrolipoic acid) and polyethylene glycol (PEG)-appended DHLA. The comprehensive study indicated that ZnCuInS2/ZnS QDs functionalized with PMAO (ZnCuInS2/ZnS@PMO) exhibited the highest photoluminescence (PL QY) along with ensured high colloidal stability in aqueous media. Moreover, no noticeable deterioration of the photoluminescence profile was observed for all used functionalization approaches. However, a significant decrease in QY was observed for almost all functionalized QDs except those that were PMO-capped. The synthesized QDs were systematically characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), UV-Vis absorption spectroscopy, and fluorescence spectroscopy. Biological studies indicate that the obtained hydrophilic ZCIS QDs are biocompatible and localized intracellularly inside endosomes.
Collapse
Affiliation(s)
- Magdalena Diak
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznań, Poland; The Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Dorota Flak
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Marcin Jarek
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Łucja Przysiecka
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznań, Poland.
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Abrishami A, Bahrami AR, Nekooei S, Sh Saljooghi A, Matin MM. Hybridized quantum dot, silica, and gold nanoparticles for targeted chemo-radiotherapy in colorectal cancer theranostics. Commun Biol 2024; 7:393. [PMID: 38561432 PMCID: PMC10984983 DOI: 10.1038/s42003-024-06043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Multimodal nanoparticles, utilizing quantum dots (QDs), mesoporous silica nanoparticles (MSNs), and gold nanoparticles (Au NPs), offer substantial potential as a smart and targeted drug delivery system for simultaneous cancer therapy and imaging. This method entails coating magnetic GZCIS/ZnS QDs with mesoporous silica, loading epirubicin into the pores, capping with Au NPs, PEGylation, and conjugating with epithelial cell adhesion molecule (EpCAM) aptamers to actively target colorectal cancer (CRC) cells. This study showcases the hybrid QD@MSN-EPI-Au-PEG-Apt nanocarriers (size ~65 nm) with comprehensive characterizations post-synthesis. In vitro studies demonstrate the selective cytotoxicity of these targeted nanocarriers towards HT-29 cells compared to CHO cells, leading to a significant reduction in HT-29 cell survival when combined with irradiation. Targeted delivery of nanocarriers in vivo is validated by enhanced anti-tumor effects with reduced side effects following chemo-radiotherapy, along with imaging in a CRC mouse model. This approach holds promise for improved CRC theranostics.
Collapse
Affiliation(s)
- Amir Abrishami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
3
|
Tozawa M, Miyamae C, Akiyoshi K, Kameyama T, Yamamoto T, Motomura G, Fujisaki Y, Uematsu T, Kuwabata S, Torimoto T. One-pot synthesis of Ag-In-Ga-S nanocrystals embedded in a Ga 2O 3 matrix and enhancement of band-edge emission by Na + doping. NANOSCALE ADVANCES 2023; 5:7057-7066. [PMID: 38059040 PMCID: PMC10696949 DOI: 10.1039/d3na00755c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
I-III-VI-based semiconductor quantum dots (QDs) have been intensively explored because of their unique controllable optoelectronic properties. Here we report one-pot synthesis of Na-doped Ag-In-Ga-S (AIGS) QDs incorporated in a Ga2O3 matrix. The obtained QDs showed a sharp band-edge photoluminescence peak at 557 nm without a broad-defect site emission. The PL quantum yield (QY) of such QDs was 58%, being much higher than that of AIGS QDs without Na+ doping, 29%. The obtained Na-doped AIGS/Ga2O3 composite particles were used as an emitting layer of green QD light-emitted diodes. A sharp electroluminescence (EL) peak was observed at 563 nm, being similar to that in the PL spectrum of the QDs used. The external quantum efficiency of the device was 0.6%.
Collapse
Affiliation(s)
- Makoto Tozawa
- Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Chie Miyamae
- Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Kazutaka Akiyoshi
- Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Tatsuya Kameyama
- Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Takahisa Yamamoto
- Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Genichi Motomura
- Science & Technology Research Laboratories, Japan Broadcasting Corporation (NHK) 1-10-11 Kinuta, Setagaya-ku Tokyo 157-8510 Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Yoshihide Fujisaki
- Science & Technology Research Laboratories, Japan Broadcasting Corporation (NHK) 1-10-11 Kinuta, Setagaya-ku Tokyo 157-8510 Japan
| | - Taro Uematsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| | - Susumu Kuwabata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| | - Tsukasa Torimoto
- Graduate School of Engineering, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
4
|
Copper indium sulfide quantum dots in photocatalysis. J Colloid Interface Sci 2023; 638:193-219. [PMID: 36738544 DOI: 10.1016/j.jcis.2023.01.107] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Since the advent of photocatalytic technology, scientists have been searching for semiconductor materials with high efficiency in solar energy utilization and conversion to chemical energy. Recently, the development of quantum dot (QD) photocatalysts has attracted much attention because of their unique characteristics: small size, quantum effects, strong surface activity, and wide photoresponse range. Among ternary chalcogenide semiconductors, CuInS2 QDs are increasingly examined in the field of photocatalysis due to their high absorption coefficients, good matching of the absorption range with sunlight spectrum, long lifetimes of photogenerated electron-hole pairs and environmental sustainability. In this review paper, the structural and electronic properties, synthesis methods and various photocatalytic applications of CuInS2 QDs are systematically expounded. The current research status on the photocatalytic properties of materials based on CuInS2 QD is discussed combined with the existing modification approaches for the enhancement of their performances. Future challenges and new development opportunities of CuInS2 QDs in the field of photocatalysis are then prospected.
Collapse
|
5
|
Liu L, Bai B, Yang X, Du Z, Jia G. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chem Rev 2023; 123:3625-3692. [PMID: 36946890 DOI: 10.1021/acs.chemrev.2c00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.
Collapse
Affiliation(s)
- Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
6
|
Li T, Liu C, Li R, Huang X, Qi X, Mi X, Bai T, Xing S. Luminescent AgGaSe 2/ZnSe nanocrystals: rapid synthesis, color tunability, aqueous phase transfer, and bio-labeling application. Dalton Trans 2023; 52:4554-4561. [PMID: 36938844 DOI: 10.1039/d2dt03979f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The unique optoelectronic properties of I-III-VI2 nanocrystals (NCs) have attracted extensive attention. Herein, element Se in oleylamine reduced by alkythiol, which has been demonstrated to generate highly reactive alkylammonium selenide, was selected as the Se precursor by us to successfully synthesize high-quality tetragonal AgGaSe2 NCs via a facile colloidal method in just 2 minutes. Further, the photoluminescence (PL) properties of the as-synthesized AgGaSe2 NCs were systematically optimized through utilizing one Zn precursor to integrate shell coating and anionic/cationic alloying strategies into our reactive system, resulting in not only the obvious improvement of PL intensity but also tunable PL color from blue to red. Furthermore, the ligand exchange approach was adopted for the aqueous phase transfer of the oleophilic AgGaSe2/ZnSe NCs. Our data suggest that either metalated mercaptopropionic acid (Zn-MPA) short- or 11-mercaptoundecanoic acid long-chain ligand exchanged NCs all could maintain the original high crystallinity, present good water solubility, and retain up to nearly 95% and 70% of the initial PL intensity, respectively. Benefiting from the low cytotoxicity, the water-soluble AgGaSe2/ZnSe NCs can be applied as a fluorescent probe in cell imaging and signal labels for the fluoroimmunoassay of prostate-specific antigen, implying their potential in biological application.
Collapse
Affiliation(s)
- Tong Li
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China. .,Department of Laboratory, Xi'an No. 3 Hospital, the Affiliate Hospital of Northwest University, Xi'an 710018, P. R. China
| | - Cong Liu
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Ruyi Li
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Xiaohua Huang
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Xiaofei Qi
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Xiaohan Mi
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Tianyu Bai
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, P. R. China.
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| |
Collapse
|
7
|
Mbaz GIM, Parani S, Oluwafemi OS. Controlled synthesis of silver-based ternary quantum dots with outstanding luminescence. J Fluoresc 2022; 32:1769-1777. [PMID: 35678901 DOI: 10.1007/s10895-022-02988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Quantum dots (QDs) have attracted much attention over the past decades due to their outstanding properties. However, obtaining QDs with excellent photoluminescence and quantum yields (QYs) from their aqueous synthesis is still a big concern. We herein present a green and facile synthesis of AgInS (AIS) QDs and AgInS-ZnS (AIS-ZnS) core-shell QDs using a combination of two capping agents (glutathione and sodium citrate). The temporal evolution of the optical properties is investigated by varying the reaction time and pH of the solution. The results show that the fluorescence intensity of the QDs increases as the reaction time increase, while the emission position blue-shift as the pH of the solution increase. An outstanding photoluminescence quantum yield (PLQY) of 90% is obtained at optimized synthetic conditions. The Fourier transform Infrared studies confirm efficient passivation of the QDs by the capping agents. The XRD analysis reveals that all the materials crystallize in the tetragonal crystalline phase, while the TEM micrographs of AIS-ZnS QDs reveal a spherical shape. The EDS analysis confirms the presence of Silver, Indium, Sulphide, and Zinc elements. The reported synthetic route is facile and eco-friendly.
Collapse
Affiliation(s)
- Gracia It Mwad Mbaz
- Department of Chemical Sciences, University of Johannesburg, 2028, Doornfontein, Johannesburg, South Africa.,Center for Nanomaterials Science Research, University of Johannesburg, 2028, Doornfontein, Johannesburg, South Africa
| | - Sundararajan Parani
- Department of Chemical Sciences, University of Johannesburg, 2028, Doornfontein, Johannesburg, South Africa.,Center for Nanomaterials Science Research, University of Johannesburg, 2028, Doornfontein, Johannesburg, South Africa
| | - Oluwatobi Samuel Oluwafemi
- Department of Chemical Sciences, University of Johannesburg, 2028, Doornfontein, Johannesburg, South Africa. .,Center for Nanomaterials Science Research, University of Johannesburg, 2028, Doornfontein, Johannesburg, South Africa.
| |
Collapse
|
8
|
Diana R, Caruso U, Gentile FS, Di Costanzo L, Musto P, Panunzi B. Thermo-Induced Fluorochromism in Two AIE Zinc Complexes: A Deep Insight into the Structure-Property Relationship. Molecules 2022; 27:molecules27082551. [PMID: 35458748 PMCID: PMC9025698 DOI: 10.3390/molecules27082551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Solid-state emitters exhibiting mechano-fluorochromic or thermo-fluorochromic responses represent the foundation of smart tools for novel technological applications. Among fluorochromic (FC) materials, solid-state emissive coordination complexes offer a variety of fluorescence responses related to the dynamic of noncovalent metal-ligand coordination bonds. Relevant FC behaviour can result from the targeted choice of metal cation and ligands. Herein, we report the synthesis and characterization of two different colour emitters consisting of zinc complexes obtained from N,O bidentate ligands with different electron-withdrawing substituents. The two complexes are blue and orange solid-state fluorophores, respectively, highly responsive to thermal and mechanical stress. These emitters show a very different photoluminescent (PL) pattern as recorded before and after the annealing treatment. Through X-ray structural analysis combined with thermal analysis, infrared (IR) spectroscopy, PL, and DFT simulation we provide a comprehensive analysis of the structural feature involved in the fluorochromic response. Notably, we were able to correlate the on-off thermo-fluorochromism of the complexes with the structural rearrangement at the zinc coordination core.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agriculture, University of Napoli Federico II, Via Università, 100, 80055 Portici, NA, Italy; (R.D.); (L.D.C.)
| | - Ugo Caruso
- Department of Chemical Sciences, University of Napoli Federico II, Strada Comunale Cinthia, 26, 80126 Napoli, Italy; (U.C.); (F.S.G.)
| | - Francesco Silvio Gentile
- Department of Chemical Sciences, University of Napoli Federico II, Strada Comunale Cinthia, 26, 80126 Napoli, Italy; (U.C.); (F.S.G.)
| | - Luigi Di Costanzo
- Department of Agriculture, University of Napoli Federico II, Via Università, 100, 80055 Portici, NA, Italy; (R.D.); (L.D.C.)
| | - Pellegrino Musto
- Institute on Polymers Composites and Biomaterials, National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy;
| | - Barbara Panunzi
- Department of Agriculture, University of Napoli Federico II, Via Università, 100, 80055 Portici, NA, Italy; (R.D.); (L.D.C.)
- Correspondence:
| |
Collapse
|
9
|
May BM, Bambo MF, Hosseini SS, Sidwaba U, Nxumalo EN, Mishra AK. A review on I-III-VI ternary quantum dots for fluorescence detection of heavy metals ions in water: optical properties, synthesis and application. RSC Adv 2022; 12:11216-11232. [PMID: 35425084 PMCID: PMC8996947 DOI: 10.1039/d1ra08660j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
Heavy metal contamination remains a major threat to the environment. Evaluating the concentrations of heavy metals in water environments is a crucial step towards a viable treatment strategy. Non-cadmium photo-luminescent I-III-VI ternary QDs have attracted increasing attention due to their low toxicity and extraordinary optical properties, which have made them popular in biological applications. Recently, ternary I-III-VI-QDs have gained growing interest as fluorescent detectors of heavy metal ions in water. Here, we review the research progress of ternary I-III-VI QDs for the fluorescence detection of heavy metal ions in water. First, we summarize the optical properties and synthesis methodologies of ternary I-III-VI QDs. Then, we present various detection mechanisms involved in the fluorescence detection of heavy metal ions, which are mostly attributed to direct interaction between these unique QDs and the metal ions, seen in the form of fluorescence quenching and fluorescence enhancement. We also display the potential applications in environmental remediation such as water treatment and associated challenges of I-III-VI QDs in the fluorescence detection of Cu2+ and other metal ions.
Collapse
Affiliation(s)
- Bambesiwe M May
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus Johannesburg South Africa
- Mintek Analytical Chemistry Division Private Bag X3015 Randburg 2125 South Africa
| | - Mokae F Bambo
- DSI/Mintek Nanotechnology Innovation Centre, Advanced Materials Division Private Bag X3015 Randburg 2125 South Africa
| | - Seyed Saeid Hosseini
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus Johannesburg South Africa
- Department of Chemical Engineering, Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
| | - Unathi Sidwaba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus Johannesburg South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus Johannesburg South Africa
| | - Ajay K Mishra
- Department of Medicine and Chemical Engineering, Hebei University of Science and Technology Shijiazhuang 050018 China
- Academy of Nanotechnology and Waste Water Innovations Johannesburg South Africa
- Department of Chemistry, School of Applied Sciences, KIIT Deemed University Odisha India
| |
Collapse
|
10
|
Stefan M, Leostean C, Toloman D, Popa A, Pana O, Barbu-Tudoran L. Spectroscopic and Morpho-Structural Characterization of Copper Indium Disulfide–Zinc Oxide Nanocomposites with Photocatalytic Properties. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2043887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- M. Stefan
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - C. Leostean
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - D. Toloman
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - A. Popa
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - O. Pana
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - L. Barbu-Tudoran
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- Electron Microscopy Center, Faculty of Biology and Geology, “Babes-Bolyai” University, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Kowalik P, Bujak P, Penkala M, Pron A. Organic-to-Aqueous Phase Transfer of Alloyed AgInS 2-ZnS Nanocrystals Using Simple Hydrophilic Ligands: Comparison of 11-Mercaptoundecanoic Acid, Dihydrolipoic Acid and Cysteine. NANOMATERIALS 2021; 11:nano11040843. [PMID: 33806242 PMCID: PMC8066034 DOI: 10.3390/nano11040843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/05/2023]
Abstract
The exchange of primary hydrophobic ligands for hydrophilic ones was studied for two types of alloyed AgInS2-ZnS nanocrystals differing in composition and by consequence exhibiting two different emission colors: red (R) and green (G). Three simple hydrophilic ligands were tested, namely, 11-mercaptoundecanoic acid, dihydrolipoic acid and cysteine. In all cases, stable aqueous colloidal dispersions were obtained. Detailed characterization of the nanocrystal surface before and after the ligand exchange by NMR spectroscopy unequivocally showed that the exchange process was the most efficient in the case of dihydrolipoic acid, leading to the complete removal of the primary ligands with a relatively small photoluminescence quantum yield drop from 68% to 40% for nanocrystals of the R type and from 48% to 28% for the G ones.
Collapse
Affiliation(s)
- Patrycja Kowalik
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (P.K.); (A.P.)
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL-02-093 Warsaw, Poland
| | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (P.K.); (A.P.)
- Correspondence:
| | - Mateusz Penkala
- Institute of Chemistry, Faculty of Mathematics, Physics and Chemistry, University of Silesia, Szkolna 9, 40-007 Katowice, Poland;
| | - Adam Pron
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (P.K.); (A.P.)
| |
Collapse
|
12
|
Marin R, Jaque D. Doping Lanthanide Ions in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence. Chem Rev 2020; 121:1425-1462. [DOI: 10.1021/acs.chemrev.0c00692] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Riccardo Marin
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación, Sanitaria Hospital Ramón y Cajal, Ctra. De Colmenar Viejo, Km. 9100, 28034 Madrid, Spain
| |
Collapse
|
13
|
The Photoluminescence and Biocompatibility of CuInS2-Based Ternary Quantum Dots and Their Biological Applications. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8040101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Semiconductor quantum dots (QDs) have become a unique class of materials with great potential for applications in biomedical and optoelectronic devices. However, conventional QDs contains toxic heavy metals such as Pb, Cd and Hg. Hence, it is imperative to find an alternative material with similar optical properties and low cytotoxicity. Among these materials, CuInS2 (CIS) QDs have attracted a lot of interest due to their direct band gap in the infrared region, large optical absorption coefficient and low toxic composition. These factors make them a good material for biomedical application. This review starts with the origin and photophysical characteristics of CIS QDs. This is followed by various synthetic strategies, including synthesis in organic and aqueous solvents, and the tuning of their optical properties. Lastly, their significance in various biological applications is presented with their prospects in clinical applications.
Collapse
|
14
|
Palchoudhury S, Ramasamy K, Gupta A. Multinary copper-based chalcogenide nanocrystal systems from the perspective of device applications. NANOSCALE ADVANCES 2020; 2:3069-3082. [PMID: 36134292 PMCID: PMC9418475 DOI: 10.1039/d0na00399a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/18/2020] [Indexed: 05/17/2023]
Abstract
Multinary chalcogenide semiconductor nanocrystals are a unique class of materials as they offer flexibility in composition, structure, and morphology for controlled band gap and optical properties. They offer a vast selection of materials for energy conversion, storage, and harvesting applications. Among the multinary chalcogenides, Cu-based compounds are the most attractive in terms of sustainability as many of them consist of earth-abundant elements. There has been immense progress in the field of Cu-based chalcogenides for device applications in the recent years. This paper reviews the state of the art synthetic strategies and application of multinary Cu-chalcogenide nanocrystals in photovoltaics, photocatalysis, light emitting diodes, supercapacitors, and luminescent solar concentrators. This includes the synthesis of ternary, quaternary, and quinary Cu-chalcogenide nanocrystals. The review also highlights some emerging experimental and computational characterization approaches for multinary Cu-chalcogenide semiconductor nanocrystals. It discusses the use of different multinary Cu-chalcogenide compounds, achievements in device performance, and the recent progress made with multinary Cu-chalcogenide nanocrystals in various energy conversion and energy storage devices. The review concludes with an outlook on some emerging and future device applications for multinary Cu-chalcogenides, such as scalable luminescent solar concentrators and wearable biomedical electronics.
Collapse
Affiliation(s)
| | | | - Arunava Gupta
- Department of Chemistry and Biochemistry, The University of Alabama AL USA
| |
Collapse
|
15
|
Bai T, Wang X, Dong Y, Xing S, Shi Z, Feng S. One-Pot Synthesis of High-Quality AgGaS 2/ZnS-based Photoluminescent Nanocrystals with Widely Tunable Band Gap. Inorg Chem 2020; 59:5975-5982. [PMID: 32286807 DOI: 10.1021/acs.inorgchem.9b03768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we present a facile colloidal method to synthesize the high-quality AgGaS2 nanocrystals (NCs) within 2 min via exploiting the high-reactivity S precursor and then extend this synthetic strategy to the preparation of AgGaS2/ZnS core-shell NCs by a one-pot method without prior purification of AgGaS2 core. The as-synthesized samples were structurally characterized to confrim the formation of AgGaS2/ZnS core-shell NCs. The energy band gap of the AgGaS2/ZnS NCs can be effectively tunable from 2.98 to 2.83 eV by the control of their nonstoichiometry and further continuously decreases to 1.90 eV by the preparation of alloyed AgGaxIn1-xS2/ZnS NCs (1 ≤ x ≤ 0). Benefitting from the efficient band gap modulations, the photoluminescence (PL) colors of the AgGaS2-based NCs can cover almost the whole visible region from blue (460 nm) to red (671 nm). Our work demonstrates the one-pot synthesis of AgGaS2/ZnS core-shell NCs and their band gap engineering, which is of crucial in scalability toward industrial application and in tailoring optical characteristics of I-III-VI2 materials.
Collapse
Affiliation(s)
- Tianyu Bai
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Xuemin Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, PR China
| | - Yanyu Dong
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Shanghua Xing
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China
| |
Collapse
|
16
|
Shahbazi S, Boseley R, Grant B, Chen D, Becker T, Adegoke O, Nic Daéid N, Jia G, Lewis SW. Luminescence detection of latent fingermarks on non-porous surfaces with heavy-metal-free quantum dots. Forensic Chem 2020. [DOI: 10.1016/j.forc.2020.100222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Wang H, Qian H, Luo Z, Zhang K, Shen X, Zhang Y, Zhang M, Liebner F. ZCIS/ZnS QDs fluorescent aerogels with tunable emission prepared from porous 3D nanofibrillar bacterial cellulose. Carbohydr Polym 2019; 224:115173. [PMID: 31472861 DOI: 10.1016/j.carbpol.2019.115173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/15/2019] [Accepted: 08/05/2019] [Indexed: 11/18/2022]
Abstract
Bacterial cellulose (BC) features a nanofibrillar network structure that can provide a good template for quantum dots (QDs), to overcome the fluorescence quenching-effect of QDs in polymer composites. Here, we fabricated novel fluorescent aerogels with tunable emission by covalently binding environmentally-friendly ZnS(CuInS2)/ZnS core-shell quantum dots along the nanofibrillar BC. A new ligand of 3-(mercaptopropyl)trimethoxysilane allows QDs to transfer from toluene to alcohol solvent and stably bind to the BC. After supercritical CO2 drying, the resulting BC-QDs aerogels maintain the porous nanofibrillar morphology of BC with ultra-light-weight, the QDs are well-distributed along the BC fiber surfaces without aggregation. The emission wavelength can be tuned in a wide range from 470 to 750 nm by simply adjusting the QDs core component or shell layers. This work provides a new approach for fabricating QDs-polymer hydrogels and aerogels with well distributed QDs via chemical binding that potential as smart sensor, catalysis, and 3D display applications.
Collapse
Affiliation(s)
- Huiqing Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui 230009, China.
| | - Hao Qian
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui 230009, China
| | - Zhixin Luo
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui 230009, China
| | - Kaiyuan Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui 230009, China
| | - Xiaofei Shen
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui 230009, China
| | - Yan Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui 230009, China
| | - Mingtao Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Hefei University of Technology, Anhui 230009, China
| | - Falk Liebner
- Division of Chemistry of Renewables, Department of Chemistry, University of Natural Resources and Life Sciences, Tulln3430, Austria
| |
Collapse
|
18
|
Wang H, Hu J, Zhu M, Li Y, Qian H, Shen X, Liebner F, Rosenau T. Full-color-emitting (CuInS 2)ZnS-alloyed core/shell quantum dots with trimethoxysilyl end-capped ligands soluble in an ionic liquid. RSC Adv 2019; 9:25576-25582. [PMID: 35530065 PMCID: PMC9070397 DOI: 10.1039/c9ra03066b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/24/2019] [Indexed: 11/21/2022] Open
Abstract
Zinc-copper-indium sulfide (ZCIS)-alloyed quantum dots are emerging as a new family of low toxic I-III-VI semiconductors due to their broad and color-tunable emissions as well as large Stokes shifts. Here, we fabricated a series of ZCIS QDs with tunable PL wavelengths and band-gap energies via a facile strategy by varying the ratio of A1-3 stock (Cu+/In3+) to the B stock (Zn2+) content. The ZnS shell was formed to improve the PL emission efficiency of the core nanoparticles and the PL emission wavelength of the resulting ZCIS/ZnS NCs gradually blue-shifted with an increase in the number of shell layers, resulting in a wide range of emissions from 800 nm to 518 nm that can be tuned by the core compositions or shell layer numbers for ZCIS/ZnS. Finally, the long-chain ligands dodecanethiol/octadecylamine on the quantum dots' surface were efficiently replaced by (3-mercaptopropyl)trimethoxysilane, thus enabling their solubility in an ionic liquid, which was confirmed via GC-MS. It also benefited for the co-dissolution of the polymers and chemical binding with other materials through the reactive silanol group, which provide stable and well-distributed ZCIS/ZnS QDs composites or surface coating by the QDs.
Collapse
Affiliation(s)
- Huiqing Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology Anhui 230009 China
- Division of Chemistry of Renewables, Department of Chemistry, University of Natural Resources and Life Sciences Tulln 3430 Austria
| | - Jiayuan Hu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology Anhui 230009 China
| | - Min Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology Anhui 230009 China
| | - Yucheng Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology Anhui 230009 China
| | - Hao Qian
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology Anhui 230009 China
| | - Xiaofei Shen
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology Anhui 230009 China
| | - Falk Liebner
- Division of Chemistry of Renewables, Department of Chemistry, University of Natural Resources and Life Sciences Tulln 3430 Austria
| | - Thomas Rosenau
- Division of Chemistry of Renewables, Department of Chemistry, University of Natural Resources and Life Sciences Tulln 3430 Austria
| |
Collapse
|
19
|
Tavker N, Gaur UK, Sharma M. Highly Active Agro-Waste-Extracted Cellulose-Supported CuInS 2 Nanocomposite for Visible-Light-Induced Photocatalysis. ACS OMEGA 2019; 4:11777-11784. [PMID: 31460285 PMCID: PMC6682033 DOI: 10.1021/acsomega.9b01054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/10/2019] [Indexed: 05/09/2023]
Abstract
Agro-waste-extracted cellulose-supported CuInS2 nanocomposites were hydrothermally synthesized with significant photocatalytic activity under the influence of cellulose as a polymeric natural support that offers delay in electron-hole life. Delayed recombination process of electrons and holes was perceived by parting of cellulose as a barrier or edge during photochemical reaction, which overall enhances the lifetime of photocatalyst. The photodegradation efficiency over five consecutive cycles along with scavenging studies have been examined for RhB dye under visible light. The boosted photodegradation rate was observed at an optimum amount of cellulose (200 mg), which is ∼10 times higher than pristine CuInS2.
Collapse
Affiliation(s)
- Neha Tavker
- School
of Nano Sciences, Central University of
Gujarat, Sector 30, Gandhinagar 382030, India
| | - Umesh Kumar Gaur
- Department
of Physics, National Institute of Technology, Jalandhar, Punjab 144011, India
| | - Manu Sharma
- School
of Nano Sciences, Central University of
Gujarat, Sector 30, Gandhinagar 382030, India
- E-mail:
| |
Collapse
|
20
|
Zhang C, Wang W, Zhao M, Zhang J, Zha Z, Cheng S, Zheng H, Qian H. Construction of ZnxCd1−xS/Bi2S3 composite nanospheres with photothermal effect for enhanced photocatalytic activities. J Colloid Interface Sci 2019; 546:303-311. [DOI: 10.1016/j.jcis.2019.03.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 12/14/2022]
|
21
|
Chetty SS, Praneetha S, Govarthanan K, Verma RS, Vadivel Murugan A. Noninvasive Tracking and Regenerative Capabilities of Transplanted Human Umbilical Cord-Derived Mesenchymal Stem Cells Labeled with I-III-IV Semiconducting Nanocrystals in Liver-Injured Living Mice. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8763-8778. [PMID: 30741534 DOI: 10.1021/acsami.8b19953] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Acute liver injury is a critical syndrome ascribed to prevalent death of hepatocytes and imperatively requires liver transplantation. Such a methodology is certainly hampered due to the deficit of healthy donors. In this regard, stem cell-based regenerative therapies are attractive in repairing injured tissues and organs for medical applications. However, it is crucial to understand the migration, engraftment, and regeneration capabilities of transplanted stem cells in the living animal models. For the first time, we demonstrate rapid labeling of umbilical cord-derived mesenchymal stem cells (MSCs) with near-infrared (NIR)-fluorescent CuInS2-ZnS nanocrystals (CIZS-NCs) to develop innovative nanobioconjugates (MSCs-CIZS-NBCs) that exhibit 98% labeling efficiency. Before nanobioconjugate synthesis, the pristine CIZS-NCs were prepared via a two-step, hot-injection, rapid and low-cost domestic-microwave-refluxing (MW-R) method within 6 min. The as-synthesized CIZS-NCs display high photoluminescence quantum yield (∼88%) and long-lived lifetime (23.4 μs). In contrast to unlabeled MSCs, the MSCs-CIZS nanobioconjugates show excellent biocompatibility without affecting the stemness, as confirmed by cell viability, immunophenotyping (CD44+, CD105+, CD90+), multi-lineage-specific gene expressions, and differentiation into adipocytes, osteocytes, and chondrocytes. The in vivo fluorescence tracking analyses revealed that the MSCs-CIZS-NBCs after tail-vein injection were initially trapped in the lungs and gradually engrafted in the injured liver within 2 h. The regeneration potential of MSCs-CIZS-NBCs was confirmed via renewal of the portal tract composed of portal veins, bile ducts, and hepatic arteries around the hepatocytes. Consequently, no apparent inflammations, necrosis, or apoptosis was observed in the acetaminophen (APAP)-induced liver-injured BALB/c mice model over 3 days after transplantation, as corroborated using laser-scanning confocal microscopy and histopathological and hematological analyses. Hence, our innovative NIR-fluorescent MSCs-CIZS-NBCs offer an off-the-self technology for noninvasive tracking of transplanted MSCs in an acute-liver-injured animal model for future image-guided cell-therapies.
Collapse
Affiliation(s)
- Shashank Shankar Chetty
- Advanced Functional Nanostructured Materials Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies , Pondicherry University (A Central University) , Puducherry 605 014 , India
| | - Selvarasu Praneetha
- Advanced Functional Nanostructured Materials Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies , Pondicherry University (A Central University) , Puducherry 605 014 , India
| | - Kavitha Govarthanan
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology , Indian Institute of Technology-Madras (IIT-M) , Chennai 600 036 , India
| | - Rama Shanker Verma
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology , Indian Institute of Technology-Madras (IIT-M) , Chennai 600 036 , India
| | - Arumugam Vadivel Murugan
- Advanced Functional Nanostructured Materials Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies , Pondicherry University (A Central University) , Puducherry 605 014 , India
| |
Collapse
|
22
|
Kim JH, Kim KH, Yoon SY, Kim Y, Lee SH, Kim HS, Yang H. Tunable Emission of Bluish Zn-Cu-Ga-S Quantum Dots by Mn Doping and Their Electroluminescence. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8250-8257. [PMID: 30698949 DOI: 10.1021/acsami.8b20894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
On the basis of bluish-emitting double-shelled quantum dots (QDs) of Zn-Cu-Ga-S (ZCGS)/ZnS/ZnS, Mn doping into ZCGS host with different Mn/Cu concentrations is implemented via surface adsorption and lattice diffusion. The resulting double-shelled Mn-doped ZCGS (ZCGS/Mn) QDs exhibit a distinct Mn2+ 4T1-6A1 emission as a consequence of effective lattice incorporation simultaneously with host intragap states-involving emissions of free-to-bound and donor-acceptor pair recombinations. The relative contribution of Mn emission to the overall photoluminescence (PL) is consistently proportional to its concentration, resulting in tunable PL from bluish, white, to reddish white. Regardless of Mn doping and its concentration, all QDs possess high PL quantum yield levels of 74-79%. Those undoped and doped QDs are then employed as an emitting layer (EML) of all-solution-processed QD-light-emitting diodes (QLEDs) with hybrid charge transport layers and their electroluminescence (EL) is compared. Compared to undoped QDs, doped analogues give rise to a huge spectral disparity of EL versus PL, specifically showing a near-complete quenching of Mn2+ EL. This unexpected observation is rationalized primarily by considering unbalanced carrier injection to QD EML on the basis of energetic alignment of the present QLED and rapid trapping of holes injected at intragap states of QDs.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Department of Materials Science and Engineering , Hongik University , Seoul 04066 , Korea
| | - Kyung-Hye Kim
- Department of Materials Science and Engineering , Hongik University , Seoul 04066 , Korea
| | - Suk-Young Yoon
- Department of Materials Science and Engineering , Hongik University , Seoul 04066 , Korea
| | - Yuri Kim
- Department of Materials Science and Engineering , Hongik University , Seoul 04066 , Korea
| | - Sun-Hyoung Lee
- Department of Materials Science and Engineering , Hongik University , Seoul 04066 , Korea
| | - Hyun-Sik Kim
- Department of Materials Science and Engineering , Hongik University , Seoul 04066 , Korea
| | - Heesun Yang
- Department of Materials Science and Engineering , Hongik University , Seoul 04066 , Korea
| |
Collapse
|
23
|
Ma H, Pan L, Wang J, Zhang L, Zhang Z. Synthesis of AgInS2 QDs in droplet microreactors: Online fluorescence regulating through temperature control. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.04.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Jiao M, Huang X, Ma L, Li Y, Zhang P, Wei X, Jing L, Luo X, Rogach AL, Gao M. Biocompatible off-stoichiometric copper indium sulfide quantum dots with tunable near-infrared emission via aqueous based synthesis. Chem Commun (Camb) 2019; 55:15053-15056. [DOI: 10.1039/c9cc07674c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Off-stoichiometry effects on the near-infrared emission of the aqueous based biocompatible copper indium sulfide quantum dots are revealed.
Collapse
Affiliation(s)
- Mingxia Jiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Xiaodan Huang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Linzheng Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Yun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Peisen Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xiaojun Wei
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Andrey L. Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP)
- City University of Hong Kong
- Kowloon
- Hong Kong SAR
| | - Mingyuan Gao
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
25
|
Chen T, Xu Y, Wang L, Jiang W, Jiang W, Xie Z. Room-Temperature Ionic-Liquid-Assisted Microwave Preparation of Tunable Photoluminescent Copper-Indium-Zinc-Sulfide Quantum Dots. Chemistry 2018; 24:16407-16417. [PMID: 30136426 DOI: 10.1002/chem.201803548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/18/2018] [Indexed: 01/07/2023]
Abstract
A facile approach towards photoluminescent (PL) Cu-In-Zn-S quantum dots (CIZS QDs) has been developed, comprising microwave treatment with the assist of room-temperature ionic liquid (RTIL). Because of its high polarizability, RTIL served as a microwave absorbent, which resulted in the increase of the instantaneous nucleation rate and the rapid synthesis of CIZS QDs at low temperature. Moreover, the surface decoration of QDs with RTIL can passivate the surface defects greatly. The PL intensity of the CIZS QDs depends on the anion species, alkyl chain length of the RTIL, and the metal element ratios of the QDs. On the basis of the variable PL peak position and extended luminescence lifetime of the CIZS QDs, the superior emission behavior of the QDs was confirmed by surface etching with fluoride produced by the hydrolysis of RTIL 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4 ). Moreover, the intermediate alkyl chain length of the RTIL can avoid aggregation, which results in the construction of CIZS QDs with homogenous size distribution. The shape-controlled CIZS QDs show a broadened tunable emission peak from 677 to 579 nm compared with that of QDs prepared by a conventional one-pot method by mixing the raw materials. CIZS QDs also exhibit a high quantum yield (QY) of 24.1 % after coating with a ZnS shell. This method is expected to be a useful technique for the rapid synthesis of multiple QDs with a wider range of emission wavelengths and higher QY for a variety of applications.
Collapse
Affiliation(s)
- Ting Chen
- School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333001, P. R. China
| | - Yanqiao Xu
- School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333001, P. R. China
| | - Lianjun Wang
- School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333001, P. R. China.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Weihui Jiang
- School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333001, P. R. China
| | - Wan Jiang
- School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333001, P. R. China.,State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhixiang Xie
- School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333001, P. R. China
| |
Collapse
|
26
|
Chetty SS, Praneetha S, Vadivel Murugan A, Govarthanan K, Verma RS. Microwave‐Assisted Synthesis of Quasi‐Pyramidal CuInS
2
–ZnS Nanocrystals for Enhanced Near‐Infrared Targeted Fluorescent Imaging of Subcutaneous Melanoma. ACTA ACUST UNITED AC 2018; 3:e1800127. [DOI: 10.1002/adbi.201800127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/24/2018] [Indexed: 01/22/2023]
Affiliation(s)
- S. Shashank Chetty
- Advanced Functional Nanostructured Materials LaboratoryCentre for Nanoscience and TechnologyMadanjeet School of Green Energy TechnologiesPondicherry University (A Central University) Puducherry 605014 India
| | - S. Praneetha
- Advanced Functional Nanostructured Materials LaboratoryCentre for Nanoscience and TechnologyMadanjeet School of Green Energy TechnologiesPondicherry University (A Central University) Puducherry 605014 India
| | - A. Vadivel Murugan
- Advanced Functional Nanostructured Materials LaboratoryCentre for Nanoscience and TechnologyMadanjeet School of Green Energy TechnologiesPondicherry University (A Central University) Puducherry 605014 India
| | - Kavitha Govarthanan
- Stem Cell and Molecular Biology LaboratoryBhupat and Jyoti Mehta School of BiosciencesDepartment of BiotechnologyIndian Institute of Technology‐Madras (IIT‐M) Chennai 600036 India
| | - Rama S. Verma
- Stem Cell and Molecular Biology LaboratoryBhupat and Jyoti Mehta School of BiosciencesDepartment of BiotechnologyIndian Institute of Technology‐Madras (IIT‐M) Chennai 600036 India
| |
Collapse
|
27
|
Uddin MA, Calabro RL, Kim DY, Graham KR. Halide exchange and surface modification of metal halide perovskite nanocrystals with alkyltrichlorosilanes. NANOSCALE 2018; 10:16919-16927. [PMID: 30178805 DOI: 10.1039/c8nr04763d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal halide perovskite nanocrystals have recently emerged as promising materials for light emitting displays and lasing applications due to their narrow emission wavelengths, high photoluminescence quantum yields, and readily adjustable emission wavelengths. For these metal halide perovskite nanocrystals to be useful in commercial applications, their stability must be increased and the photoluminescence quantum yields of the iodide (red emitting) and chloride (blue emitting) containing derivatives must also be increased. The photoluminescence quantum yields of blue emitting CsPbCl3 nanoparticles lag behind those of green emitting CsPbBr3 nanoparticles, with maximum photoluminescence quantum yields of 1-10% previously reported for CsPbCl3 as compared to 80-100% for CsPbBr3. Herein, we show that alkyltrichlorosilanes (R-SiCl3) can be used as Cl-sources for rapid anion exchange with host CsPbBr3 nanocrystals. This anion exchange reaction is advantageous in that it can be performed at room temperature and results in highly dispersible nanoparticles coated with siloxane shells. CsPbCl3 nanoparticles produced through Cl-exchange with R-SiCl3 show significantly improved long-term stability and high photoluminescence quantum yields of up to 12%. These siloxane coated nanocrystals are even stable in the presence of water, whereas CsPbCl3 nanoparticles synthesized through other routes rapidly degrade in the presence of water.
Collapse
Affiliation(s)
- Md Aslam Uddin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA.
| | | | | | | |
Collapse
|
28
|
Stroyuk O, Raevskaya A, Gaponik N. Solar light harvesting with multinary metal chalcogenide nanocrystals. Chem Soc Rev 2018; 47:5354-5422. [PMID: 29799031 DOI: 10.1039/c8cs00029h] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The paper reviews the state of the art in the synthesis of multinary (ternary, quaternary and more complex) metal chalcogenide nanocrystals (NCs) and their applications as a light absorbing or an auxiliary component of light-harvesting systems. This includes solid-state and liquid-junction solar cells and photocatalytic/photoelectrochemical systems designed for the conversion of solar light into the electric current or the accumulation of solar energy in the form of products of various chemical reactions. The review discusses general aspects of the light absorption and photophysical properties of multinary metal chalcogenide NCs, the modern state of the synthetic strategies applied to produce the multinary metal chalcogenide NCs and related nanoheterostructures, and recent achievements in the metal chalcogenide NC-based solar cells and the photocatalytic/photoelectrochemical systems. The review is concluded by an outlook with a critical discussion of the most promising ways and challenging aspects of further progress in the metal chalcogenide NC-based solar photovoltaics and photochemistry.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- L.V. Pysarzhevsky Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine.
| | | | | |
Collapse
|
29
|
Yu K, Yang Y, Wang J, Tang X, Xu QH, Wang GP. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS 2/ZnS nanocrystals. NANOTECHNOLOGY 2018; 29:255703. [PMID: 29595519 DOI: 10.1088/1361-6528/aabab7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I-III-VI semiconductor nanocrystals (NCs), such as CuInS2 and AgInS2. However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS2 and AgInS2/ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS2 and AgInS2/ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility [Formula: see text] of AgInS2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.
Collapse
Affiliation(s)
- Kuai Yu
- College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Kaur M, Sharma A, Olutas M, Erdem O, Kumar A, Sharma M, Demir HV. Cd-free Cu-doped ZnInS/ZnS Core/Shell Nanocrystals: Controlled Synthesis And Photophysical Properties. NANOSCALE RESEARCH LETTERS 2018; 13:182. [PMID: 29916083 PMCID: PMC6006007 DOI: 10.1186/s11671-018-2599-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Here, we report efficient composition-tunable Cu-doped ZnInS/ZnS (core and core/shell) colloidal nanocrystals (CNCs) synthesized by using a colloidal non-injection method. The initial precursors for the synthesis were used in oleate form rather than in powder form, resulting in a nearly defect-free photoluminescence (PL) emission. The change in Zn/In ratio tunes the percentage incorporation of Cu in CNCs. These highly monodisperse Cu-doped ZnInS CNCs having variable Zn/In ratios possess peak emission wavelength tunable from 550 to 650 nm in the visible spectrum. The quantum yield (QY) of these synthesized Cd-free CNCs increases from 6.0 to 65.0% after coating with a ZnS shell. The CNCs possessing emission from a mixed contribution of deep trap and dopant states to only dominant dopant-related Stokes-shifted emission are realized by a careful control of stoichiometric ratio of different reactant precursors during synthesis. The origin of this shift in emission was understood by using steady state and time-resolved fluorescence (TRF) spectroscopy studies. As a proof-of-concept demonstration, these blue excitable Cu-doped ZnInS/ZnS CNCs have been integrated with commercial blue LEDs to generate white-light emission (WLE). The suitable combination of these highly efficient doped CNCs results led to a Commission Internationale de l'Enclairage (CIE) color coordinates of (0.33, 0.31) at a color coordinate temperature (CCT) of 3694 K, with a luminous efficacy of optical radiation (LER) of 170 lm/Wopt and a color rendering index (CRI) of 88.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Punjab, 140406 India
- Department of Electrical and Electronics Engineering, Department of Physics, and UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Ashma Sharma
- Department of Electrical and Electronics Engineering, Department of Physics, and UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronics Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798 Singapore
| | - Murat Olutas
- Department of Electrical and Electronics Engineering, Department of Physics, and UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Abant Izzet Baysal University, 14030 Bolu, Turkey
| | - Onur Erdem
- Department of Electrical and Electronics Engineering, Department of Physics, and UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Akshay Kumar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Punjab, 140406 India
| | - Manoj Sharma
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Punjab, 140406 India
- Department of Electrical and Electronics Engineering, Department of Physics, and UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronics Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798 Singapore
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, and UNAM–Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronics Engineering, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798 Singapore
| |
Collapse
|
31
|
Selvaraj J, Mahesh A, Baskaralingam V, Dhayalan A, Paramasivam T. Colloidal Gradated Alloyed (Cu)ZnInS/ZnS Core/Shell Nanocrystals with Tunable Optical Properties for Live Cell Optical Imaging. ChemistrySelect 2018. [DOI: 10.1002/slct.201800742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Joicy Selvaraj
- Centre for Nanoscience and TechnologyPondicherry University Puducherry - 605 014 India
| | - Arun Mahesh
- Department of BiotechnologyPondicherry University Puducherry - 605 014 India
| | - Vaseeharan Baskaralingam
- Department of Animal Health and ManagementAlagappa University Karaikudi – 630 003, Tamil Nadu India
| | - Arunkumar Dhayalan
- Department of BiotechnologyPondicherry University Puducherry - 605 014 India
| | | |
Collapse
|
32
|
Chen J, Li Y, Wang L, Zhou T, Xie RJ. Achieving deep-red-to-near-infrared emissions in Sn-doped Cu-In-S/ZnS quantum dots for red-enhanced white LEDs and near-infrared LEDs. NANOSCALE 2018; 10:9788-9795. [PMID: 29767202 DOI: 10.1039/c8nr01981a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Semiconductor quantum dots (QDs) are promising luminescent materials for use in lighting, display and bio-imaging, and the color tuning is a necessity for such applications. In this work, we report tunable colors and deep-red or near infrared (NIR) emissions in Cu-In-S and Cu-In-S/ZnS QDs by incorporating Sn. These QDs (with a size of 5 nm) with varying Sn concentrations and/or Cu/In ratios were synthesized by a non-injection method, and characterized by a variety of analytical techniques (i.e., XRD, TEM, XPS, absorption, photoluminescence, decay time, etc.). The Cu-Sn-In-S and Cu-Sn-In-S/ZnS QDs with Cu/In = 1/2 show the emission maximum in the ranges of 701-894 nm and 628-785 nm, respectively. The red-shift in emission is ascribed to the decrease of the band gap with the Sn doping. The highest quantum yield of 75% is achieved in Cu-Sn-In-S/ZnS with 0.1 mmol Sn and Cu/In = 1/2. Both the white and NIR LEDs were fabricated by using Cu-Sn-In-S/ZnS QDs and a 365 nm LED chip. The white LED exhibits superhigh color rendering indices of Ra = 97.2 and R9 = 91 and a warm color temperature of 2700 K. And the NIR LED shows an interesting broadband near-infrared emission centered at 741 nm, allowing for applications in optical communication, sensing and medical devices.
Collapse
Affiliation(s)
- Jixin Chen
- College of Materials, Xiamen University, Simingnan-Road 422, Xiamen 361005, P. R. China.
| | | | | | | | | |
Collapse
|
33
|
Zhang WJ, Pan CY, Cao F, Wang H, Yang X. Bright violet-to-aqua-emitting cadmium-free Ag-doped Zn-Ga-S quantum dots with high stability. Chem Commun (Camb) 2018; 54:4176-4179. [PMID: 29629448 DOI: 10.1039/c8cc01293h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a new series of ultra-stable Cd-free Ag:Zn-Ga-S/ZnS quantum dots (QDs) with an overall short emission wavelength tunable from 370 to 540 nm via a facile one-pot non-injection method. The highest PL quantum yield of the resultant core/shell QDs could be up to 85%, and the exceptional luminescence could be maintained not only at 300 °C but also after phase transfer.
Collapse
Affiliation(s)
- Wen-Jin Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | | | | | | | | |
Collapse
|
34
|
I-III-VI chalcogenide semiconductor nanocrystals: Synthesis, properties, and applications. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63052-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Abstract
Abstract
In the past decades cadmium-free quantum dots (QDs), among which are quaternary colloidal Cu-Zn-In-S/ZnS (CZIS/ZnS) core/shell nanocrystals (NCs), have attracted great scientific interest. Particularly, their low toxicity and the possibility to tune their photoluminescence (PL) properties by varying the composition in the multicomponent system make them highly attractive for applications in light-emitting diodes (LEDs). Thus, the demands for high quality CZIS/ZnS QDs and methods to process them into bulk materials stimulate investigations of these nanomaterials. Herein, we demonstrate the synthesis of CZIS/ZnS core/shell NCs via a surfactant induced nucleation process, which emit in various colors covering the range from 520 nm to 620 nm possessing high photoluminescence quantum yields (PLQYs) up to 47%. Furthermore, the as synthesized NCs were successfully integrated into two different salt matrices [Na2B4O7 (Borax) and LiCl] using two different approaches. The commonly used incorporation of the NCs into Borax salt led to salt crystals emitting from 540 nm to 600 nm with PLQYs up to 24%. By encapsulating the QDs into LiCl, brightly emitting NCs-in-LiCl powders with the PL covering a range from 520 nm to 650 nm with PLQYs of up to 14% were obtained. As a proof of concept, the fabrication of a color conversion LED using NCs encapsulated into LiCl demonstrated the applicability of the encapsulated NCs.
Collapse
|
36
|
Chen B, Pradhan N, Zhong H. From Large-Scale Synthesis to Lighting Device Applications of Ternary I-III-VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters. J Phys Chem Lett 2018; 9:435-445. [PMID: 29303589 DOI: 10.1021/acs.jpclett.7b03037] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Quantum dots with fabulous size-dependent and color-tunable emissions remained as one of the most exciting inventories in nanomaterials for the last 3 decades. Even though a large number of such dot nanocrystals were developed, CdSe still remained as unbeatable and highly trusted lighting nanocrystals. Beyond these, the ternary I-III-VI family of nanocrystals emerged as the most widely accepted greener materials with efficient emissions tunable in visible as well as NIR spectral windows. These bring the high possibility of their implementation as lighting materials acceptable to the community and also to the environment. Keeping these in mind, in this Perspective, the latest developments of ternary I-III-VI nanocrystals from their large-scale synthesis to device applications are presented. Incorporating ZnS, tuning the composition, mixing with other nanocrystals, and doping with Mn ions, light-emitting devices of single color as well as for generating white light emissions are also discussed. In addition, the future prospects of these materials in lighting applications are also proposed.
Collapse
Affiliation(s)
- Bingkun Chen
- Beijing Engineering Research Centre of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology , Beijing 100081, China
| | - Narayan Pradhan
- Department of Materials Science, Indian Association for the Cultivation of Science , Kolkata, India 700032
| | - Haizheng Zhong
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science & Engineering, Beijing Institute of Technology , Beijing 100081, China
| |
Collapse
|
37
|
Ye Y, Zang Z, Zhou T, Dong F, Lu S, Tang X, Wei W, Zhang Y. Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas. J Catal 2018. [DOI: 10.1016/j.jcat.2017.11.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Efficient photo-catalytic oxidative degradation of organic dyes using CuInSe2/TiO2 hybrid hetero-nanostructures. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.08.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Xu Y, Chen T, Hu X, Jiang W, Wang L, Jiang W, Liu J. The off-stoichiometry effect on the optical properties of water-soluble copper indium zinc sulfide quantum dots. J Colloid Interface Sci 2017; 496:479-486. [DOI: 10.1016/j.jcis.2017.02.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 11/26/2022]
|
40
|
Donat F, Corbel S, Alem H, Pontvianne S, Balan L, Medjahdi G, Schneider R. ZnO nanoparticles sensitized by CuInZn x S 2+x quantum dots as highly efficient solar light driven photocatalysts. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1080-1093. [PMID: 28685109 PMCID: PMC5480363 DOI: 10.3762/bjnano.8.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/11/2017] [Indexed: 05/27/2023]
Abstract
Alloyed CuInZn x S2+x (ZCIS) quantum dots (QDs) were successfully associated to ZnO nanoparticles by a thermal treatment at 400 °C for 15 min. The ZnO/ZCIS composite was characterized by TEM, SEM, XRD, XPS and UV-vis absorption spectroscopy. ZCIS QDs, with an average diameter of ≈4.5 nm, were found to be homogeneously distributed at the surface of ZnO nanoparticles. ZCIS-sensitized ZnO nanoparticles exhibit a high photocatalytic activity under simulated solar light irradiation for the degradation of Orange II dye (>95% degradation after 180 min of irradiation at an intensity of 5 mW/cm2). The heterojunction built between the ZnO nanoparticle and ZCIS QDs not only extends the light adsorption range by the photocatalyst but also acts to decrease electron/hole recombination. Interestingly, the ZnO/ZCIS composite was found to produce increased amounts of H2O2 and singlet oxygen 1O2 compared to ZnO, suggesting that these reactive oxygen species play a key role in the photodegradation mechanism. The activity of the ZnO/ZCIS composite is retained at over 90% of its original value after ten successive photocatalytic runs, indicating its high stability and its potential for practical photocatalytic applications.
Collapse
Affiliation(s)
- Florian Donat
- CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville 54001 Nancy, France
| | - Serge Corbel
- CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville 54001 Nancy, France
| | - Halima Alem
- CNRS and Université de Lorraine, Institut Jean Lamour (IJL), UMR CNRS 7198, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Steve Pontvianne
- CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville 54001 Nancy, France
| | - Lavinia Balan
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, 15 rue Jean Starcky, 68093 Mulhouse, France
| | - Ghouti Medjahdi
- CNRS and Université de Lorraine, Institut Jean Lamour (IJL), UMR CNRS 7198, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Raphaël Schneider
- CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville 54001 Nancy, France
| |
Collapse
|
41
|
Tee SY, Win KY, Teo WS, Koh L, Liu S, Teng CP, Han M. Recent Progress in Energy-Driven Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600337. [PMID: 28546906 PMCID: PMC5441509 DOI: 10.1002/advs.201600337] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/30/2016] [Indexed: 05/12/2023]
Abstract
Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost-effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic-integrated solar-driven water electrolysis.
Collapse
Affiliation(s)
- Si Yin Tee
- Institute of Materials Research and EngineeringAgency for ScienceTechnology and Research2 Fusionopolis WaySingapore138634
- Department of Biomedical EngineeringNational University of Singapore9 Engineering DriveSingapore117576
| | - Khin Yin Win
- Institute of Materials Research and EngineeringAgency for ScienceTechnology and Research2 Fusionopolis WaySingapore138634
| | - Wee Siang Teo
- School of Material Science and EngineeringNanyang Technological UniversitySingapore639798
| | - Leng‐Duei Koh
- Institute of Materials Research and EngineeringAgency for ScienceTechnology and Research2 Fusionopolis WaySingapore138634
- Department of Biomedical EngineeringNational University of Singapore9 Engineering DriveSingapore117576
| | - Shuhua Liu
- Institute of Materials Research and EngineeringAgency for ScienceTechnology and Research2 Fusionopolis WaySingapore138634
| | - Choon Peng Teng
- Institute of Materials Research and EngineeringAgency for ScienceTechnology and Research2 Fusionopolis WaySingapore138634
- Department of Biomedical EngineeringNational University of Singapore9 Engineering DriveSingapore117576
| | - Ming‐Yong Han
- Institute of Materials Research and EngineeringAgency for ScienceTechnology and Research2 Fusionopolis WaySingapore138634
- Department of Biomedical EngineeringNational University of Singapore9 Engineering DriveSingapore117576
| |
Collapse
|
42
|
Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Compound Copper Chalcogenide Nanocrystals. Chem Rev 2017; 117:5865-6109. [PMID: 28394585 DOI: 10.1021/acs.chemrev.6b00376] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility. The outstanding functional properties of these materials stems from the relationship between their band structure and defect concentration, including charge carrier concentration and electronic conductivity character, which consequently affects their optoelectronic, optical, and plasmonic properties. This, combined with several metastable crystal phases and stoichiometries and the low energy of formation of defects, makes the reproducible synthesis of these materials, with tunable parameters, remarkable. Further to this, the review captures the progress of the hierarchical assembly of these NCs, which bridges the link between their discrete and collective properties. Their ubiquitous application set has cross-cut energy conversion (photovoltaics, photocatalysis, thermoelectrics), energy storage (lithium-ion batteries, hydrogen generation), emissive materials (plasmonics, LEDs, biolabelling), sensors (electrochemical, biochemical), biomedical devices (magnetic resonance imaging, X-ray computer tomography), and medical therapies (photochemothermal therapies, immunotherapy, radiotherapy, and drug delivery). The confluence of advances in the synthesis, assembly, and application of these NCs in the past decade has the potential to significantly impact society, both economically and environmentally.
Collapse
Affiliation(s)
- Claudia Coughlan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| | - Maria Ibáñez
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain
| | - Oleksandr Dobrozhan
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,Department of Electronics and Computing, Sumy State University , 2 Rymskogo-Korsakova st., 40007 Sumy, Ukraine
| | - Ajay Singh
- Materials Physics & Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Andreu Cabot
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Kevin M Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| |
Collapse
|
43
|
Girma WM, Fahmi MZ, Permadi A, Abate MA, Chang JY. Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. J Mater Chem B 2017; 5:6193-6216. [DOI: 10.1039/c7tb01156c] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, we discuss recent advances of I–III–VI QDs with a major focus on synthesis and biomedical applications; advantages include low toxicity and fluorescent tuning in the biological window.
Collapse
Affiliation(s)
- Wubshet Mekonnen Girma
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | | | - Adi Permadi
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Mulu Alemayehu Abate
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei
- Republic of China
| |
Collapse
|
44
|
Wada C, Iso Y, Isobe T, Sasaki H. Preparation and photoluminescence properties of yellow-emitting CuInS2/ZnS quantum dots embedded in TMAS-derived silica. RSC Adv 2017. [DOI: 10.1039/c7ra00081b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Photostable silica composites containing CuInS2/ZnS/ZnS quantum dots were fabricated using a sol–gel method. Their photoluminescence quantum yields were 43–47%.
Collapse
Affiliation(s)
- Chikako Wada
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Yoshiki Iso
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Tetsuhiko Isobe
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | | |
Collapse
|
45
|
Wu Q, Cai C, Zhai L, Wang J, Kong F, Yang Y, Zhang L, Zou C, Huang S. Zinc dopant inspired enhancement of electron injection for CuInS2quantum dot-sensitized solar cells. RSC Adv 2017. [DOI: 10.1039/c7ra06659g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The PCE of doped CuInS2QDSCs increased from 5.21% to 5.90%, due to broadened optoelectronic response range and accelerated electron injection.
Collapse
Affiliation(s)
- Qinqin Wu
- Zhejiang Key Laboratory of Carbon Materials
- College of Chemistry and Material Engineering
- Wenzhou University
- Wenzhou 325027
- People's Republic of China
| | - Chunqi Cai
- Zhejiang Key Laboratory of Carbon Materials
- College of Chemistry and Material Engineering
- Wenzhou University
- Wenzhou 325027
- People's Republic of China
| | - Lanlan Zhai
- Zhejiang Key Laboratory of Carbon Materials
- College of Chemistry and Material Engineering
- Wenzhou University
- Wenzhou 325027
- People's Republic of China
| | - Jiantao Wang
- Zhejiang Key Laboratory of Carbon Materials
- College of Chemistry and Material Engineering
- Wenzhou University
- Wenzhou 325027
- People's Republic of China
| | - Fantai Kong
- Key Laboratory of Novel Thin Film Solar Cells
- Hefei Institute of Physics Science
- Chinese Academy of Sciences
- Hefei 230088
- People's Republic of China
| | - Yun Yang
- Zhejiang Key Laboratory of Carbon Materials
- College of Chemistry and Material Engineering
- Wenzhou University
- Wenzhou 325027
- People's Republic of China
| | - Lijie Zhang
- Zhejiang Key Laboratory of Carbon Materials
- College of Chemistry and Material Engineering
- Wenzhou University
- Wenzhou 325027
- People's Republic of China
| | - Chao Zou
- Zhejiang Key Laboratory of Carbon Materials
- College of Chemistry and Material Engineering
- Wenzhou University
- Wenzhou 325027
- People's Republic of China
| | - Shaoming Huang
- Zhejiang Key Laboratory of Carbon Materials
- College of Chemistry and Material Engineering
- Wenzhou University
- Wenzhou 325027
- People's Republic of China
| |
Collapse
|
46
|
Ji WQ, Zhang QH, Wang CF, Chen S. Cu–In–S/ZnS Quantum Dots Embedded in Polyvinylpyrrolidone (PVP) Solids for White Light-Emitting Diodes (LEDs). Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02698] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen-Qing Ji
- State Key Laboratory of Materials-Oriented
Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, People’s Republic of China
| | - Qiu-Hong Zhang
- State Key Laboratory of Materials-Oriented
Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, People’s Republic of China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented
Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, People’s Republic of China
| | - Su Chen
- State Key Laboratory of Materials-Oriented
Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, People’s Republic of China
| |
Collapse
|
47
|
Song J, Ma C, Zhang W, Li X, Zhang W, Wu R, Cheng X, Ali A, Yang M, Zhu L, Xia R, Xu X. Bandgap and Structure Engineering via Cation Exchange: From Binary Ag2S to Ternary AgInS2, Quaternary AgZnInS alloy and AgZnInS/ZnS Core/Shell Fluorescent Nanocrystals for Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24826-24836. [PMID: 27575872 DOI: 10.1021/acsami.6b07768] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Attention on semiconductor nanocrystals have been largely focused because of their unique optical and electrical properties, which can be applied as light absorber and luminophore. However, the band gap and structure engineering of nanomaterials is not so easy because of their finite size. Here we demonstrate an approach for preparing ternary AgInS2 (AIS), quaternary AgZnInS (AZIS), AgInS2/ZnS and AgZnInS/ZnS nanocompounds based on cation exchange. First, pristine Ag2S quantum dots (QDs) with different sizes were synthesized in one-pot, followed by the partial cation exchange between In(3+) and Ag(+). Changing the initial ratio of In(3+) to Ag(+), reaction time and temperature can control the components of the obtained AIS QDs. Under the optimized conditions, AIS QDs were obtained for the first time with a cation disordered cubic phase and high photoluminescence (PL) quantum yield (QY) up to 32% in aqueous solution, demonstrating the great potential of cation exchange in the synthesis for nanocrystals with excellent optical properties. Sequentially, Zn(2+) ions were incorporated in situ through a second exchange of Zn(2+) to Ag(+)/In(3+), leading to distinct results under different reaction temperature. Addition of Zn(2+) precursor at room temperature produced AIS/ZnS core/shell NCs with successively enhancement of QY, while subsequent heating could obtain AZIS homogeneous alloy QDs with a successively blue-shift of PL emission. This allow us to tune the PL emission of the products from 483 to 675 nm and fabricate the chemically stable QDs core/ZnS shell structure. Based on the above results, a mechanism about the cation exchange for the ternary nanocrystals of different structures was proposed that the balance between cation exchange and diffusion is the key factor of controlling the band gap and structure of the final products. Furthermore, photostability and in vitro experiment demonstrated quite low cytotoxicity and remarkably promising applications in the field of clinical diagnosis.
Collapse
Affiliation(s)
- Jiangluqi Song
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences , Hefei, Anhui 230026, China
- Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Chao Ma
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences , Hefei, Anhui 230026, China
- Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Wenzhe Zhang
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences , Hefei, Anhui 230026, China
- Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Xiaodong Li
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences , Hefei, Anhui 230026, China
- Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Wenting Zhang
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences , Hefei, Anhui 230026, China
- Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Rongbo Wu
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences , Hefei, Anhui 230026, China
- Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Xiangcan Cheng
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences , Hefei, Anhui 230026, China
- Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Asad Ali
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences , Hefei, Anhui 230026, China
- Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| | | | | | | | - Xiaoliang Xu
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences , Hefei, Anhui 230026, China
- Department of Physics, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
48
|
Zhou P, Zhang X, Liu X, Xu J, Li L. Temperature-dependent photoluminescence properties of quaternary ZnAgInS quantum dots. OPTICS EXPRESS 2016; 24:19506-19516. [PMID: 27557228 DOI: 10.1364/oe.24.019506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A series of ZnAgInS (ZAIS) quantum dots were synthesized and their optical properties were tuned by adjusting the reaction times from 5 to 30 min. The emission spectra were observed ranging from 619 to 667 nm. The temperature-dependent photoluminescence properties of ZAIS QDs were investigated from 10 K to 300 K that show a blue shift of spectra line with increasing intensity as well as broadening of spectral line owing to the coupling of the carrier to acoustic phonon. We have also discussed and investigated the internal luminescence mechanism of ZAIS QDs.
Collapse
|
49
|
Yan L, Li Z, Sun M, Shen G, Li L. Stable and Flexible CuInS2/ZnS:Al-TiO2 Film for Solar-Light-Driven Photodegradation of Soil Fumigant. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20048-20056. [PMID: 27414776 DOI: 10.1021/acsami.6b05587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Semiconductor quantum dots (QDs) are suitable light absorbers for photocatalysis because of their unique properties. However, QDs generally suffer from poor photochemical stability against air, limiting their applications in photocatalysis. In this study, a stable solar-light-driven QDs-containing photocatalytic film was developed to facilitate photocatalytic degradation of the soil fumigant 1,3-dichloropropene (1,3-D). Highly stable CuInS2/ZnS:Al core/shell QDs (CIS/ZnS:Al QDs) were synthesized by doping Al into the ZnS shell and controlling ZnS:Al shell thickness; the CIS/ZnS:Al QDs were subsequently combined with TiO2 to form a CIS/ZnS:Al-TiO2 photocatalyst. The optimized ZnS:Al shell thickness for 1,3-D photodegradation was approximately 1.3 nm, which guaranteed and balanced the good photocatalytic activity and stability of the CIS/ZnS:Al-TiO2 photocatalyst. The photodegradation efficiency of 1,3-D can be maintained up to more than 80% after five cycles during recycling experiment. When CIS/ZnS:Al-TiO2 was deposited as photocatalytic film on a flexible polyethylene terephthalate substrate, over 99% of cis-1,3-D and 98% of trans-1,3-D were depleted as they passed through the film during 15 h of irradiation under natural solar light. This study demonstrated that the stable CIS/ZnS:Al-TiO2 photocatalyst both in powder and film form is a promising agent for photodegradation and emission reduction of soil fumigants.
Collapse
Affiliation(s)
- Lili Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Zhichun Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Mingxing Sun
- Shanghai Entry-Exit Inspection and Quarantine Bureau , 1208 Minsheng Road, Shanghai 200135, China
| | - Guoqing Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
50
|
Reiss P, Carrière M, Lincheneau C, Vaure L, Tamang S. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chem Rev 2016; 116:10731-819. [DOI: 10.1021/acs.chemrev.6b00116] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peter Reiss
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-STEP/LEMOH, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
- CNRS, SPrAM, F-38054 Grenoble Cedex 9, France
| | - Marie Carrière
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-CIBEST/LAN, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - Christophe Lincheneau
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-STEP/LEMOH, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
- CNRS, SPrAM, F-38054 Grenoble Cedex 9, France
| | - Louis Vaure
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-STEP/LEMOH, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
- CNRS, SPrAM, F-38054 Grenoble Cedex 9, France
| | - Sudarsan Tamang
- Department
of Chemistry, Sikkim University, Sikkim 737102, India
| |
Collapse
|