1
|
Lesourd M, Martin J, Hague S, Laroze M, Clément G, Comte A, Medeiros de Bustos E, Fargeix G, Magnin E, Moulin T. Organization of conceptual tool knowledge following left and right brain lesions: Evidence from neuropsychological dissociations and multivariate disconnectome symptom mapping. Brain Cogn 2024; 181:106210. [PMID: 39217817 DOI: 10.1016/j.bandc.2024.106210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The aim of this work was to better understand the organization of conceptual tool knowledge following stroke. We explored specifically the link between manipulation kinematics and manipulation hand posture; and the link between manipulation kinematics and function relations in left brain-damaged (n = 30) and right brain-damaged (n = 30) patients. We examined the performance of brain-damaged patients in conceptual tool tasks using neuropsychological dissociations and disconnectome symptom mapping. Our results suggest that manipulation kinematics is more impaired than function relations, following left or right brain lesions. We also observed that manipulation kinematics and manipulation hand posture are dissociable dimensions but are still highly interrelated, particularly in left brain-damaged patients. We also found that the corpus callosum and bilateral superior longitudinal fasciculus are involved in action and semantic tool knowledge following left brain lesions. Our results provide evidence that the right hemisphere contains conceptual tool representations. Further studies are needed to better understand the mechanisms supporting the cognitive recovery of conceptual tool knowledge. An emerging hypothesis is that the right hemisphere may support functional recovery through interhemispheric transfer following a left hemisphere stroke.
Collapse
Affiliation(s)
- Mathieu Lesourd
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France; Université de Franche-Comté, CNRS, UAR 3124 MSHE, Besançon, France; Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France.
| | - Julie Martin
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France; Centre Mémoire Ressources et Recherche (CMRR), Service de Neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Sébastien Hague
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| | - Margolise Laroze
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| | - Gautier Clément
- Centre Mémoire Ressources et Recherche (CMRR), Service de Neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Alexandre Comte
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France
| | | | - Guillaume Fargeix
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| | - Eloi Magnin
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France; Centre Mémoire Ressources et Recherche (CMRR), Service de Neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Thierry Moulin
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France; Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| |
Collapse
|
2
|
Arias-Trejo N, Angulo-Chavira AQ, Plunkett K. The effects of phonological and semantic similarity on early referent identification. J Exp Child Psychol 2024; 249:106112. [PMID: 39471729 DOI: 10.1016/j.jecp.2024.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 11/01/2024]
Abstract
Language processing encompasses a sophisticated interplay of phonological (sound-based) and semantic (meaning-based) processes. This intricate interaction develops progressively during early language acquisition. It involves not only the addition of new words to the child's vocabulary but also the evolving organization of lexico-semantic networks. The aim of the current research was to investigate how young children navigate the complexities of word relationships, with a focus on the interplay between phonological similarity and semantic relatedness. A preferential looking experiment was conducted involving 73 participants divided into two age groups, with 39 aged 18 months and 34 aged 24 months. The experimental design involved auditory presentation of target words together with pairs of target and distractor images that systematically varied the phonological and semantic similarity between the pairs. The results showed a significant developmental progression in young children's phonological and semantic processing abilities. At 18 months, children predominantly responded to phonological cues, displaying challenges in distinguishing between phonologically similar words regardless of semantic context. By 24 months, there was an evident sensitivity to both phonological and semantic cues. This age group especially showed processing difficulties with words that were both phonologically similar and semantically related, suggesting a more complex integration of lexico-semantic networks. These findings underscore the pivotal role of phonological processing in early language acquisition and point to the gradual integration of semantic relationships into children's lexicons.
Collapse
Affiliation(s)
- Natalia Arias-Trejo
- Laboratorio de Psicolingüística, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, CDMX, México.
| | - Armando Q Angulo-Chavira
- Laboratorio de Psicolingüística, Facultad de Psicología, Universidad Nacional Autónoma de México, 04510, CDMX, México
| | - Kim Plunkett
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
3
|
Zhang J, Li H, Qu J, Liu X, Feng X, Fu X, Mei L. Language proficiency is associated with neural representational dimensionality of semantic concepts. BRAIN AND LANGUAGE 2024; 258:105485. [PMID: 39388908 DOI: 10.1016/j.bandl.2024.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Previous studies suggest that semantic concepts are characterized by high-dimensional neural representations and that language proficiency affects semantic processing. However, it is not clear whether language proficiency modulates the dimensional representations of semantic concepts at the neural level. To address this question, the present study adopted principal component analysis (PCA) and representational similarity analysis (RSA) to examine the differences in representational dimensionalities (RDs) and in semantic representations between words in highly proficient (Chinese) and less proficient (English) language. PCA results revealed that language proficiency increased the dimensions of lexical representations in the left inferior frontal gyrus, temporal pole, inferior temporal gyrus, supramarginal gyrus, angular gyrus, and fusiform gyrus. RSA results further showed that these regions represented semantic information and that higher semantic representations were observed in highly proficient language relative to less proficient language. These results suggest that language proficiency is associated with the neural representational dimensionality of semantic concepts.
Collapse
Affiliation(s)
- Jingxian Zhang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Huiling Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Xiaoyu Liu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Xiaoxue Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Xin Fu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
4
|
Liu CY, Qin L, Tao R, Deng W, Jiang T, Wang N, Matthews S, Siok WT. Delineating Region-Specific contributions and connectivity patterns for semantic association and categorization through ROI and Granger causality analysis. BRAIN AND LANGUAGE 2024; 258:105476. [PMID: 39357106 DOI: 10.1016/j.bandl.2024.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The neural mechanisms supporting semantic association and categorization are examined in this study. Semantic association involves linking concepts through shared themes, events, or scenes, while semantic categorization organizes meanings hierarchically based on defining features. Twenty-three adults participated in an fMRI study performing categorization and association judgment tasks. Results showed stronger activation in the inferior frontal gyrus during association and marginally weaker activation in the posterior middle temporal gyrus (pMTG) during categorization. Granger causality analysis revealed bottom-up connectivity from the visual cortex to the hippocampus during semantic association, whereas semantic categorization exhibited strong reciprocal connections between the pMTG and frontal semantic control regions, together with information flow from the visual association area and hippocampus to the pars triangularis. We propose that demands on semantic retrieval, precision of semantic representation, perceptual experiences and world knowledge result in observable differences between these two semantic relations.
Collapse
Affiliation(s)
- Chun Yin Liu
- Department of Medical Biophysics, University of Western Ontario, Canada
| | - Lang Qin
- School of Chinese as a Second Language, Peking University, Beijing 100871, PR China
| | - Ran Tao
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR 999077, PR China; Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR 999077, PR China
| | - Wenxiyuan Deng
- Department of Linguistics, The University of Hong Kong, Hong Kong SAR 999077, PR China
| | - Tian Jiang
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR 999077, PR China
| | - Nizhuan Wang
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR 999077, PR China
| | - Stephen Matthews
- Department of Linguistics, The University of Hong Kong, Hong Kong SAR 999077, PR China
| | - Wai Ting Siok
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR 999077, PR China.
| |
Collapse
|
5
|
Riccardi N, Schwen Blackett D, Broadhead A, den Ouden D, Rorden C, Fridriksson J, Bonilha L, Desai RH. A Rose by Any Other Name: Mapping Taxonomic and Thematic Naming Errors Poststroke. J Cogn Neurosci 2024; 36:2251-2267. [PMID: 39106171 DOI: 10.1162/jocn_a_02236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Understanding the neurobiology of semantic knowledge is a major goal of cognitive neuroscience. Taxonomic and thematic semantic knowledge are represented differently within the brain's conceptual networks, but the specific neural mechanisms remain unclear. Some neurobiological models propose that the anterior temporal lobe is an important hub for taxonomic knowledge, whereas the TPJ is especially involved in the representation of thematic knowledge. However, recent studies have provided divergent evidence. In this context, we investigated the neural correlates of taxonomic and thematic confrontation naming errors in 79 people with aphasia. We used three complementary lesion-symptom mapping (LSM) methods to investigate how structure and function in both spared and impaired brain regions relate to taxonomic and thematic naming errors. Voxel-based LSM mapped brain damage, activation-based LSM mapped BOLD signal in surviving tissue, and network-based LSM mapped white matter subnetwork integrity to error type. Voxel- and network-based lesion symptom mapping provided converging evidence that damage/disruption of the left mid-to-anterior temporal lobe was associated with a greater proportion of thematic naming errors. Activation-based lesion symptom mapping revealed that higher BOLD signal in the left anterior temporal lobe during an in-house naming task was associated with a greater proportion of taxonomic errors on the Philadelphia Naming Test administered outside of the scanner. A lower BOLD signal in the bilateral angular gyrus, precuneus, and right inferior frontal cortex was associated with a greater proportion of taxonomic errors. These findings provide novel evidence that damage to the anterior temporal lobe is especially related to thematic naming errors.
Collapse
|
6
|
Zhai M, Feng C, Qu Q, Fischer-Baum S. The primacy of taxonomic semantic organization over thematic semantic organization during picture naming. Cognition 2024; 254:105951. [PMID: 39276726 DOI: 10.1016/j.cognition.2024.105951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Different organizational structures have been argued to underlie semantic knowledge about concepts; taxonomic organization, based on shared features, and thematic organization based on co-occurrence in common scenes and scenarios. The goal of the current study is to examine which of the two organizational systems are more engaged in the semantic context of a picture naming task. To address this question, we examined the representational structure underlying the semantic space in different picture naming tasks by applying representational similarity analysis (RSA) to electroencephalography (EEG) datasets. In a series of experiments, EEG signals were collected while participants named pictures under different semantic contexts. Study 1 reanalyzes existing data from semantic contexts directing attention to taxonomic organization and semantic contexts that are not biased towards either taxonomic or thematic organization. In Study 2 we keep the stimuli the same and vary semantic contexts to draw attention to either taxonomic or thematic organization. The RSA approach allows us to examine the pairwise similarity in scalp-recorded amplitude patterns at each time point following the onset of the picture and relate it to theoretical taxonomic and thematic measures derived from computational models of semantics. Across all tasks, the similarity structure of scalp-recorded neural activity correlated better with taxonomic than thematic measures, in time windows associated with semantic processing. Most strikingly, we found that the scalp-recorded patterns of neural activity between taxonomically related items were more similar to each other than the scalp-recorded patterns of neural activity for thematically related or unrelated items, even in tasks that makes thematic information more salient. These results suggest that the principle semantic organization of these concepts during picture naming is taxonomic, at least in the context of picture naming.
Collapse
Affiliation(s)
- Mingjun Zhai
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Chen Feng
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Qingqing Qu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Simon Fischer-Baum
- Department of Psychological Sciences, Rice University, Houston, TX, USA.
| |
Collapse
|
7
|
Shi K, Li J. High-level construal mindset promotes categorizing information based on thematic associate relations. Mem Cognit 2024:10.3758/s13421-024-01624-6. [PMID: 39192140 DOI: 10.3758/s13421-024-01624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
The present study examined whether a high-level construal mindset promotes categorizing information according to thematic relations. In three experiments, the construal-level priming task was used to initiate a high-level versus low-level construal mindset, and then all participants were asked to complete the triad task, which is a task measuring the preference to classify. The results of Experiments 1 and 2 have shown that regardless of whether it was a set of artificially produced objects (Experiment 1) or a set of natural objects (Experiment 2), the high-level construal mindset group exhibited a higher proportion of thematic responses in the triad task. Experiment 3 transformed the stimulus set of the triad task into a set that consisted of many, larger, published, and controlled/optimized stimuli. The results of the experiment still showed that the high-level construal mindset group exhibited a higher proportion of thematic responses in the triad task. The findings suggest that a high-level construal mindset promotes categorizing information based on thematic relations.
Collapse
Affiliation(s)
- Kai Shi
- Department of Psychology, Northwest Normal University, Lanzhou, 730050, People's Republic of China
- Gansu Provincial Key Laboratory of Behavior and Mental Health, Lanzhou, People's Republic of China
| | - Jiansheng Li
- Department of Psychology, Northwest Normal University, Lanzhou, 730050, People's Republic of China.
- Gansu Provincial Key Laboratory of Behavior and Mental Health, Lanzhou, People's Republic of China.
| |
Collapse
|
8
|
Gillen N, Angulo-Chavira AQ, Plunkett K. Prime saliency in semantic priming with 18-month-olds. Cognition 2024; 246:105764. [PMID: 38457951 DOI: 10.1016/j.cognition.2024.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/17/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
This study investigated semantic priming in 18-month-old infants using the inter-modal priming technique, focusing on the effects of prime repetition on saliency. Our findings showed that prime repetition led to longer looking times at target referents for related primes compared to unrelated primes, supporting the existence of a structured semantic system in infants as young as 18 months. The results are consistent with both Spreading Activation and Distributed models of semantic priming. Additionally, our findings highlighted the impact of prime-target stimulus onset asynchronies (SOAs) on priming effects, revealing positive, negative, or no priming effects depending on the chosen SOA. A post-hoc explanation of this finding points to negative priming as a possible mechanism. The study also demonstrated the utility of the inter-modal priming task in studying lexical-semantic structure in younger infants with its diverse measures of infant behaviour.
Collapse
|
9
|
Leger KR, Snyder HR, Boduroglu A, Gutchess A. The role of culture and semantic organization in working memory updating. Memory 2024; 32:576-586. [PMID: 38727557 PMCID: PMC11262971 DOI: 10.1080/09658211.2024.2351062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/27/2024] [Indexed: 05/24/2024]
Abstract
Westerners tend to relate items in a categorical manner, whereas Easterners focus more on functional relationships. The present study extended research on semantic organization in long-term memory to working memory. First, Americans' and Turks' preferences for categorical versus functional relationships were tested. Second, working memory interference was assessed using a 2-back working memory paradigm in which lure items were categorically and functionally related to targets. Next, a mediation model tested direct effects of culture and semantic organization on working memory task behaviour, and the indirect effect, whether semantic organization mediated the relationship between culture and working memory interference. Whereas Americans had slower response times to correctly rejecting functional lures compared to categorical lures, conditions did not differ for Turks. However, semantic organization did not mediate cultural difference in working memory interference. Across cultures, there was evidence that semantic organization affected working memory errors, with individuals who endorsed categorical more than functional pairings committing more categorical than functional errors on the 2-back task. Results align with prior research suggesting individual differences in use of different types of semantic relationships, and further that literature by indicating effects on interference in working memory. However, these individual differences may not be culture-dependent.
Collapse
Affiliation(s)
| | | | | | - Angela Gutchess
- Department of Psychology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
10
|
Xu S, Wang H, Li S, Ouyang G. Neural manifestation of L2 novel concept acquisition from multi-contexts via both episodic memory and semantic memory systems. Front Psychol 2024; 15:1320675. [PMID: 38384355 PMCID: PMC10879312 DOI: 10.3389/fpsyg.2024.1320675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
This study aims to examine the process of L2 novel word learning through the combination of episodic and semantic memory, and how the process differs between the formation of thematic and taxonomic relations. The major approach adopted was observing the neural effects of word learning, which is manifested in the N400 from event-related potentials (ERPs). Eighty-eight participants were recruited for the experiment. In the learning session, L2 contextual discourses related to novel words were learned by participants. In the testing session, discourses embedded with incongruous and congruous novel words in the final position were used for participants to judge the congruency which affected the N400 neural activity. The results showed that both recurrent and new-theme discourses elicited significant N400 effects, while taxonomic sentences did not. These results confirmed the formation of episodic and semantic memory during L2 new word learning, in which semantic memory was mainly supported by thematic relations.
Collapse
Affiliation(s)
- Shuang Xu
- Faculty of Education, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hailing Wang
- School of Psychology, Shandong Normal University, Jinan, China
| | - Shouxin Li
- School of Psychology, Shandong Normal University, Jinan, China
| | - Guang Ouyang
- Faculty of Education, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
11
|
Adezati E, Liu X, Ding J, Thye M, Szaflarski JP, Mirman D. Phase synchronization during the processing of taxonomic and thematic relations. BRAIN AND LANGUAGE 2024; 249:105379. [PMID: 38241856 DOI: 10.1016/j.bandl.2024.105379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 01/21/2024]
Abstract
Semantic relations include "taxonomic" relations based on shared features and "thematic" relations based on co-occurrence in events. The "dual-hub" account proposes that the anterior temporal lobe (ATL) is functionally specialized for taxonomic relations and the inferior parietal lobule (IPL) for thematic relations. This study examined this claim by analyzing the intra- and inter-region phase synchronization of intracranial EEG data from electrodes in the ATL, IPL, and two subregions of the semantic control network: left inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG). Ten participants with epilepsy completed a semantic relatedness judgment task during intracranial EEG recording and had electrodes in at least one hub and at least one semantic control region. Theta band phase synchronization was partially consistent with the dual-hub account: synchronization between the ATL and IFG/pMTG increased when processing taxonomic relations, and synchronization within the IPL and between IPL and pMTG increased when processing thematic relations.
Collapse
Affiliation(s)
- Erica Adezati
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Xianqing Liu
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Junhua Ding
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Melissa Thye
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Jerzy P Szaflarski
- Department of Neurology and the University of Alabama at Birmingham (UAB) Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel Mirman
- Department of Psychology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Zheng XY, Hebart MN, Grill F, Dolan RJ, Doeller CF, Cools R, Garvert MM. Parallel cognitive maps for multiple knowledge structures in the hippocampal formation. Cereb Cortex 2024; 34:bhad485. [PMID: 38204296 PMCID: PMC10839836 DOI: 10.1093/cercor/bhad485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
The hippocampal-entorhinal system uses cognitive maps to represent spatial knowledge and other types of relational information. However, objects can often be characterized by different types of relations simultaneously. How does the hippocampal formation handle the embedding of stimuli in multiple relational structures that differ vastly in their mode and timescale of acquisition? Does the hippocampal formation integrate different stimulus dimensions into one conjunctive map or is each dimension represented in a parallel map? Here, we reanalyzed human functional magnetic resonance imaging data from Garvert et al. (2017) that had previously revealed a map in the hippocampal formation coding for a newly learnt transition structure. Using functional magnetic resonance imaging adaptation analysis, we found that the degree of representational similarity in the bilateral hippocampus also decreased as a function of the semantic distance between presented objects. Importantly, while both map-like structures localized to the hippocampal formation, the semantic map was located in more posterior regions of the hippocampal formation than the transition structure and thus anatomically distinct. This finding supports the idea that the hippocampal-entorhinal system forms parallel cognitive maps that reflect the embedding of objects in diverse relational structures.
Collapse
Affiliation(s)
- Xiaochen Y Zheng
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, the Netherlands
| | - Martin N Hebart
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Department of Medicine, Justus Liebig University, 35390, Giessen, Germany
| | - Filip Grill
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, the Netherlands
- Radboud University Medical Center, Department of Neurology, 6525 GA, Nijmegen, the Netherlands
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, United Kingdom
| | - Christian F Doeller
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU, 7491, Trondheim, Norway
- Wilhelm Wundt Institute of Psychology, Leipzig University, 04109, Leipzig, Germany
| | - Roshan Cools
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, the Netherlands
- Radboud University Medical Center, Department of Psychiatry, 6525 GA, Nijmegen, the Netherlands
| | - Mona M Garvert
- Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Faculty of Human Sciences, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Zhang Y, Wu W, Mirman D, Hoffman P. Representation of event and object concepts in ventral anterior temporal lobe and angular gyrus. Cereb Cortex 2024; 34:bhad519. [PMID: 38185997 PMCID: PMC10839851 DOI: 10.1093/cercor/bhad519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Semantic knowledge includes understanding of objects and their features and also understanding of the characteristics of events. The hub-and-spoke theory holds that these conceptual representations rely on multiple information sources that are integrated in a central hub in the ventral anterior temporal lobes. The dual-hub theory expands this framework with the claim that the ventral anterior temporal lobe hub is specialized for object representation, while a second hub in angular gyrus is specialized for event representation. To test these ideas, we used representational similarity analysis, univariate and psychophysiological interaction analyses of fMRI data collected while participants processed object and event concepts (e.g. "an apple," "a wedding") presented as images and written words. Representational similarity analysis showed that angular gyrus encoded event concept similarity more than object similarity, although the left angular gyrus also encoded object similarity. Bilateral ventral anterior temporal lobes encoded both object and event concept structure, and left ventral anterior temporal lobe exhibited stronger coding for events. Psychophysiological interaction analysis revealed greater connectivity between left ventral anterior temporal lobe and right pMTG, and between right angular gyrus and bilateral ITG and middle occipital gyrus, for event concepts compared to object concepts. These findings support the specialization of angular gyrus for event semantics, though with some involvement in object coding, but do not support ventral anterior temporal lobe specialization for object concepts.
Collapse
Affiliation(s)
- Yueyang Zhang
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Wei Wu
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Daniel Mirman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
14
|
Li J, Shi K, Wei X, Xia Y. Generating solutions to far analogies makes individuals tend to categorize information based on thematic relations. Cogn Process 2023; 24:471-480. [PMID: 37338643 DOI: 10.1007/s10339-023-01148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
This study aimed to explore whether solving distant analogies makes individuals tend to categorize information based on either taxonomic or thematic relations. In the study, one group of participants solved far analogies (far analogy group), while another group solved near analogies (near analogy group). Then, all participants completed the triad task which is the task of measuring the propensity to classify. The research findings revealed that, regardless of whether the object of classification was the artifact or natural object, the far analogy group exhibited a higher percentage of thematic responses than the near analogy and control group in the triad task. The present study demonstrated that solving far analogies could make individuals tend to categorize information based on thematic relations.
Collapse
Affiliation(s)
- Jiansheng Li
- Department of Psychology, Northwest Normal University, Lanzhou, 730050, People's Republic of China
| | - Kai Shi
- Department of Psychology, Northwest Normal University, Lanzhou, 730050, People's Republic of China.
| | - Xuejiao Wei
- Department of Psychology, Northwest Normal University, Lanzhou, 730050, People's Republic of China
| | - Yidai Xia
- Department of Psychology, Northwest Normal University, Lanzhou, 730050, People's Republic of China
| |
Collapse
|
15
|
Desai RH, Hackett CT, Johari K, Lai VT, Riccardi N. Spatiotemporal characteristics of the neural representation of event concepts. BRAIN AND LANGUAGE 2023; 246:105328. [PMID: 37847931 PMCID: PMC10873121 DOI: 10.1016/j.bandl.2023.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
Events are a fundamentally important part of our understanding of the world. How lexical concepts denoting events are represented in the brain remains controversial. We conducted two experiments using event and object nouns matched on a range of psycholinguistic variables, including concreteness, to examine spatial and temporal characteristics of event concepts. Both experiments used magnitude and valence tasks on event and object nouns. The fMRI experiment revealed a distributed set of regions for events, including the angular gyrus, anterior temporal lobe, and posterior cingulate across tasks. In the EEG experiment, events and objects differed in amplitude within the 300-500 ms window. Together these results shed light into the spatiotemporal characteristics of event concept representation and show that event concepts are represented in the putative hubs of the semantic system. While these hubs are typically associated with object semantics, they also represent events, and have a likely role in temporal integration.
Collapse
Affiliation(s)
- Rutvik H Desai
- Department of Psychology, University of South Carolina, United States; Institute for Mind and Brain, University of South Carolina, United States.
| | | | - Karim Johari
- Department of Communication Sciences & Disorders, Louisiana State University, United States
| | - Vicky T Lai
- Department of Psychology, University of Arizona, United States
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, United States
| |
Collapse
|
16
|
Magri C, Elmoznino E, Bonner MF. Scene context is predictive of unconstrained object similarity judgments. Cognition 2023; 239:105535. [PMID: 37481806 DOI: 10.1016/j.cognition.2023.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
Abstract
What makes objects alike in the human mind? Computational approaches for characterizing object similarity have largely focused on the visual forms of objects or their linguistic associations. However, intuitive notions of object similarity may depend heavily on contextual reasoning-that is, objects may be grouped together in the mind if they occur in the context of similar scenes or events. Using large-scale analyses of natural scene statistics and human behavior, we found that a computational model of the associations between objects and their scene contexts is strongly predictive of how humans spontaneously group objects by similarity. Specifically, we learned contextual prototypes for a diverse set of object categories by taking the average response of a convolutional neural network (CNN) to the scene contexts in which the objects typically occurred. In behavioral experiments, we found that contextual prototypes were strongly predictive of human similarity judgments for a large set of objects and rivaled the performance of models based on CNN representations of the objects themselves or word embeddings for their names. Together, our findings reveal the remarkable degree to which the natural statistics of context predict commonsense notions of object similarity.
Collapse
Affiliation(s)
- Caterina Magri
- Department of Cognitive Science, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States of America
| | - Eric Elmoznino
- Department of Cognitive Science, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States of America
| | - Michael F Bonner
- Department of Cognitive Science, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States of America.
| |
Collapse
|
17
|
Marko M, Michalko D, Dragašek J, Vančová Z, Jarčušková D, Riečanský I. Assessment of Automatic and Controlled Retrieval Using Verbal Fluency Tasks. Assessment 2023; 30:2198-2211. [PMID: 35979927 PMCID: PMC10478347 DOI: 10.1177/10731911221117512] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Category and letter verbal fluency assessment is widely used in basic and clinical research. Yet, the nature of the processes measured by such means remains a matter of debate. To delineate automatic (free-associative) versus controlled (dissociative) retrieval processes involved in verbal fluency tasks, we carried out a psychometric study combining a novel lexical-semantic retrieval paradigm and structural equation modeling. We show that category fluency primarily engages a free-associative retrieval, whereas letter fluency exerts executive suppression of habitual semantic associates. Importantly, the models demonstrated that this dissociation is parametric rather than absolute, exhibiting a degree of unity as well as diversity among the retrieval measures. These findings and further exploratory analyses validate that category and letter fluency tasks reflect partially distinct forms of memory search and retrieval control, warranting different application in basic research and clinical assessment. Finally, we conclude that the novel associative-dissociative paradigm provides straightforward and useful behavioral measures for the assessment and differentiation of automatic versus controlled retrieval ability.
Collapse
Affiliation(s)
- Martin Marko
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Comenius University in Bratislava, Slovakia
| | - Drahomír Michalko
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | - Igor Riečanský
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- University of Vienna, Austria
- Slovak Medical University in Bratislava, Slovakia
| |
Collapse
|
18
|
Patel T, Morales M, Pickering MJ, Hoffman P. A common neural code for meaning in discourse production and comprehension. Neuroimage 2023; 279:120295. [PMID: 37536526 DOI: 10.1016/j.neuroimage.2023.120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023] Open
Abstract
How does the brain code the meanings conveyed by language? Neuroimaging studies have investigated this by linking neural activity patterns during discourse comprehension to semantic models of language content. Here, we applied this approach to the production of discourse for the first time. Participants underwent fMRI while producing and listening to discourse on a range of topics. We used a distributional semantic model to quantify the similarity between different speech passages and identified where similarity in neural activity was predicted by semantic similarity. When people produced discourse, speech on similar topics elicited similar activation patterns in a widely distributed and bilateral brain network. This network was overlapping with, but more extensive than, the regions that showed similarity effects during comprehension. Critically, cross-task neural similarities between comprehension and production were also predicted by similarities in semantic content. This result suggests that discourse semantics engages a common neural code that is shared between comprehension and production. Effects of semantic similarity were bilateral in all three RSA analyses, even while univariate activation contrasts in the same data indicated left-lateralised BOLD responses. This indicates that right-hemisphere regions encode semantic properties even when they are not activated above baseline. We suggest that right-hemisphere regions play a supporting role in processing the meaning of discourse during both comprehension and production.
Collapse
Affiliation(s)
- Tanvi Patel
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK
| | - Matías Morales
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK
| | - Martin J Pickering
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
19
|
Benn Y, Ivanova AA, Clark O, Mineroff Z, Seikus C, Silva JS, Varley R, Fedorenko E. The language network is not engaged in object categorization. Cereb Cortex 2023; 33:10380-10400. [PMID: 37557910 PMCID: PMC10545444 DOI: 10.1093/cercor/bhad289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
The relationship between language and thought is the subject of long-standing debate. One claim states that language facilitates categorization of objects based on a certain feature (e.g. color) through the use of category labels that reduce interference from other, irrelevant features. Therefore, language impairment is expected to affect categorization of items grouped by a single feature (low-dimensional categories, e.g. "Yellow Things") more than categorization of items that share many features (high-dimensional categories, e.g. "Animals"). To test this account, we conducted two behavioral studies with individuals with aphasia and an fMRI experiment with healthy adults. The aphasia studies showed that selective low-dimensional categorization impairment was present in some, but not all, individuals with severe anomia and was not characteristic of aphasia in general. fMRI results revealed little activity in language-responsive brain regions during both low- and high-dimensional categorization; instead, categorization recruited the domain-general multiple-demand network (involved in wide-ranging cognitive tasks). Combined, results demonstrate that the language system is not implicated in object categorization. Instead, selective low-dimensional categorization impairment might be caused by damage to brain regions responsible for cognitive control. Our work adds to the growing evidence of the dissociation between the language system and many cognitive tasks in adults.
Collapse
Affiliation(s)
- Yael Benn
- Department of Psychology, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
| | - Anna A Ivanova
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Oliver Clark
- Department of Psychology, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
| | - Zachary Mineroff
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Chloe Seikus
- Division of Psychology & Language Sciences, University College London, London WC1E 6BT, UK
| | - Jack Santos Silva
- Division of Psychology & Language Sciences, University College London, London WC1E 6BT, UK
| | - Rosemary Varley
- Division of Psychology & Language Sciences, University College London, London WC1E 6BT, UK
| | - Evelina Fedorenko
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
20
|
Reilly J, Finley AM, Litovsky CP, Kenett YN. Bigram semantic distance as an index of continuous semantic flow in natural language: Theory, tools, and applications. J Exp Psychol Gen 2023; 152:2578-2590. [PMID: 37079833 PMCID: PMC10790181 DOI: 10.1037/xge0001389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Much of our understanding of word meaning has been informed through studies of single words. High-dimensional semantic space models have recently proven instrumental in elucidating connections between words. Here we show how bigram semantic distance can yield novel insights into conceptual cohesion and topic flow when computed over continuous language samples. For example, "Cats drink milk" is comprised of an ordered vector of bigrams (cat-drink, drink-milk). Each of these bigrams has a unique semantic distance. These distances in turn may provide a metric of dispersion or the flow of concepts as language unfolds. We offer an R-package ("semdistflow") that transforms any user-specified language transcript into a vector of ordered bigrams, appending two metrics of semantic distance to each pair. We validated these distance metrics on a continuous stream of simulated verbal fluency data assigning predicted switch markers between alternating semantic clusters (animals, musical instruments, fruit). We then generated bigram distance norms on a large sample of text and demonstrated applications of the technique to a classic work of short fiction, To Build a Fire (London, 1908). In one application, we showed that bigrams spanning sentence boundaries are punctuated by jumps in the semantic distance. We discuss the promise of this technique for characterizing semantic processing in real-world narratives and for bridging findings at the single word level with macroscale discourse analyses. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Jamie Reilly
- Eleanor M. Saffran Center for Cognitive Neuroscience
- Department of Communication Sciences and Disorders, Temple University, Philadelphia, Pennsylvania USA
| | - Ann Marie Finley
- Eleanor M. Saffran Center for Cognitive Neuroscience
- Department of Communication Sciences and Disorders, Temple University, Philadelphia, Pennsylvania USA
| | - Celia P. Litovsky
- Eleanor M. Saffran Center for Cognitive Neuroscience
- Department of Communication Sciences and Disorders, Temple University, Philadelphia, Pennsylvania USA
| | - Yoed N. Kenett
- Faculty of Faculty of Data and Decision Sciences, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
21
|
Fan XR, Wang YS, Chang D, Yang N, Rong MJ, Zhang Z, He Y, Hou X, Zhou Q, Gong ZQ, Cao LZ, Dong HM, Nie JJ, Chen LZ, Zhang Q, Zhang JX, Zhang L, Li HJ, Bao M, Chen A, Chen J, Chen X, Ding J, Dong X, Du Y, Feng C, Feng T, Fu X, Ge LK, Hong B, Hu X, Huang W, Jiang C, Li L, Li Q, Li S, Liu X, Mo F, Qiu J, Su XQ, Wei GX, Wu Y, Xia H, Yan CG, Yan ZX, Yang X, Zhang W, Zhao K, Zhu L, Zuo XN. A longitudinal resource for population neuroscience of school-age children and adolescents in China. Sci Data 2023; 10:545. [PMID: 37604823 PMCID: PMC10442366 DOI: 10.1038/s41597-023-02377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
During the past decade, cognitive neuroscience has been calling for population diversity to address the challenge of validity and generalizability, ushering in a new era of population neuroscience. The developing Chinese Color Nest Project (devCCNP, 2013-2022), the first ten-year stage of the lifespan CCNP (2013-2032), is a two-stages project focusing on brain-mind development. The project aims to create and share a large-scale, longitudinal and multimodal dataset of typically developing children and adolescents (ages 6.0-17.9 at enrolment) in the Chinese population. The devCCNP houses not only phenotypes measured by demographic, biophysical, psychological and behavioural, cognitive, affective, and ocular-tracking assessments but also neurotypes measured with magnetic resonance imaging (MRI) of brain morphometry, resting-state function, naturalistic viewing function and diffusion structure. This Data Descriptor introduces the first data release of devCCNP including a total of 864 visits from 479 participants. Herein, we provided details of the experimental design, sampling strategies, and technical validation of the devCCNP resource. We demonstrate and discuss the potential of a multicohort longitudinal design to depict normative brain growth curves from the perspective of developmental population neuroscience. The devCCNP resource is shared as part of the "Chinese Data-sharing Warehouse for In-vivo Imaging Brain" in the Chinese Color Nest Project (CCNP) - Lifespan Brain-Mind Development Data Community ( https://ccnp.scidb.cn ) at the Science Data Bank.
Collapse
Affiliation(s)
- Xue-Ru Fan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yin-Shan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Da Chang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Ning Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Meng-Jie Rong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Zhe Zhang
- College of Education, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ye He
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Xiaohui Hou
- Laboratory of Cognitive Neuroscience and Education, School of Education Science, Nanning Normal University, Nanning, 530299, China
| | - Quan Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zhu-Qing Gong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Li-Zhi Cao
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Hao-Ming Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
- Changping Laboratory, Beijing, 102206, China
| | - Jing-Jing Nie
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Li-Zhen Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qing Zhang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Jia-Xin Zhang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Lei Zhang
- School of Government, Shanghai University of Political Science and Law, Shanghai, 201701, China
| | - Hui-Jie Li
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Min Bao
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Antao Chen
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200438, China
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Jing Chen
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200438, China
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xu Chen
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Jinfeng Ding
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Xue Dong
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Yi Du
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Chen Feng
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xiaolan Fu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Kun Ge
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Bao Hong
- NYU-ECNU Institute of Brain and Cognitive Science at New York University Shanghai, Shanghai, 200062, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Xiaomeng Hu
- Department of Psychology, Renmin University of China, Beijing, 100872, China
| | - Wenjun Huang
- NYU-ECNU Institute of Brain and Cognitive Science at New York University Shanghai, Shanghai, 200062, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Chao Jiang
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Li Li
- NYU-ECNU Institute of Brain and Cognitive Science at New York University Shanghai, Shanghai, 200062, China
- Faculty of Arts and Science, New York University Shanghai, Shanghai, 200122, China
| | - Qi Li
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Su Li
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Xun Liu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Fan Mo
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xue-Quan Su
- Laboratory of Cognitive Neuroscience and Education, School of Education Science, Nanning Normal University, Nanning, 530299, China
| | - Gao-Xia Wei
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Yiyang Wu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Haishuo Xia
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Chao-Gan Yan
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Zhi-Xiong Yan
- Laboratory of Cognitive Neuroscience and Education, School of Education Science, Nanning Normal University, Nanning, 530299, China
| | - Xiaohong Yang
- Department of Psychology, Renmin University of China, Beijing, 100872, China
| | - Wenfang Zhang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Ke Zhao
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Liqi Zhu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China.
- Laboratory of Cognitive Neuroscience and Education, School of Education Science, Nanning Normal University, Nanning, 530299, China.
- School of Education, Hunan University of Science and Technology, Hunan Xiangtan, 411201, China.
- National Basic Science Data Center, Beijing, 100190, China.
| |
Collapse
|
22
|
Thye M, Hoffman P, Mirman D. The words that little by little revealed everything: Neural response to lexical-semantic content during narrative comprehension. Neuroimage 2023; 276:120204. [PMID: 37257674 DOI: 10.1016/j.neuroimage.2023.120204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/19/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023] Open
Abstract
The ease with which narratives are understood belies the complexity of the information being conveyed and the cognitive processes that support comprehension. The meanings of the words must be rapidly accessed and integrated with the reader's mental representation of the overarching, unfolding scenario. A broad, bilateral brain network is engaged by this process, but it is not clear how words that vary on specific semantic dimensions, such as ambiguity, emotion, or socialness, engage the semantic, semantic control, or social cognition systems. In the present study, data from 48 participants who listened to The Little Prince audiobook during MRI scanning were selected from the Le Petit Prince dataset. The lexical and semantic content within the narrative was quantified from the transcript words with factor scores capturing Word Length, Semantic Flexibility, Emotional Strength, and Social Impact. These scores, along with word quantity variables, were used to investigate where these predictors co-vary with activation across the brain. In contrast to studies of isolated word processing, large networks were found to co-vary with the lexical and semantic content within the narrative. An increase in semantic content engaged the ventral portion of ventrolateral ATL, consistent with its role as a semantic hub. Decreased semantic content engaged temporal pole and inferior parietal lobule, which may reflect semantic integration. The semantic control network was engaged by words with low Semantic Flexibility, perhaps due to the demand required to process infrequent, less semantically diverse language. Activation in ATL co-varied with an increase in Social Impact, which is consistent with the claim that social knowledge is housed within the neural architecture of the semantic system. These results suggest that current models of language processing may present an impoverished estimate of the neural systems that coordinate to support narrative comprehension, and, by extension, real-world language processing.
Collapse
Affiliation(s)
- Melissa Thye
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom.
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Daniel Mirman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
23
|
Curtis PR, Estabrook R, Roberts MY, Weisleder A. Sensitivity to Semantic Relationships in U.S. Monolingual English-Speaking Typical Talkers and Late Talkers. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:2404-2420. [PMID: 37339002 PMCID: PMC10468120 DOI: 10.1044/2023_jslhr-22-00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 03/29/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE Late talkers (LTs) are a group of children who exhibit delays in language development without a known cause. Although a hallmark of LTs is a reduced expressive vocabulary, little is known about LTs' processing of semantic relations among words in their emerging vocabularies. This study uses an eye-tracking task to compare 2-year-old LTs' and typical talkers' (TTs') sensitivity to semantic relationships among early acquired words. METHOD U.S. monolingual English-speaking LTs (n = 21) and TTs (n = 24) completed a looking-while-listening task in which they viewed two images on a screen (e.g., a shirt and a pizza), while they heard words that referred to one of the images (e.g., Look! Shirt!; target-present condition) or a semantically related item (e.g., Look! Hat!; target-absent condition). Children's eye movements (i.e., looks to the target) were monitored to assess their sensitivity to these semantic relationships. RESULTS Both LTs and TTs looked longer at the semantically related image than the unrelated image on target-absent trials, demonstrating sensitivity to the taxonomic relationships used in the experiment. There was no significant group difference between LTs and TTs. Both groups also looked more to the target in the target-present condition than in the target-absent condition. CONCLUSIONS These results reveal that, despite possessing smaller expressive vocabularies, LTs have encoded semantic relationships in their receptive vocabularies and activate these during real-time language comprehension. This study furthers our understanding of LTs' emerging linguistic systems and language processing skills. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.23303987.
Collapse
Affiliation(s)
- Philip R. Curtis
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL
| | - Ryne Estabrook
- Department of Psychology, University of Illinois Chicago
| | - Megan Y. Roberts
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL
| | - Adriana Weisleder
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL
| |
Collapse
|
24
|
Bonnì S, Borghi I, Maiella M, Casula EP, Koch G, Caltagirone C, Gainotti G. Transcranial Direct Current Stimulation Effects on the Neural Substrate of Conceptual Representations. Brain Sci 2023; 13:1037. [PMID: 37508969 PMCID: PMC10376965 DOI: 10.3390/brainsci13071037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this study was to shed light on the neural substrate of conceptual representations starting from the construct of higher-order convergence zones and trying to evaluate the unitary or non-unitary nature of this construct. We used the 'Thematic and Taxonomic Semantic (TTS) task' to investigate (a) the neural substrate of stimuli belonging to biological and artifact categories, (b) the format of stimuli presentation, i.e., verbal or pictorial, and (c) the relation between stimuli, i.e., categorial or contextual. We administered anodal transcranial direct current stimulation (tDCS) to different brain structures during the execution of the TTS task. Twenty healthy participants were enrolled and divided into two groups, one investigating the role of the anterior temporal lobes (ATL) and the other the temporo-parietal junctions (TPJ). Each participant underwent three sessions of stimulation to facilitate a control condition and to investigate the role of both hemispheres. Results showed that ATL stimulation influenced all conceptual representations in relation to the format of presentation (i.e., left-verbal and right-pictorial). Moreover, ATL stimulation modulated living categories and taxonomic relations specifically, whereas TPJ stimulation did not influence semantic task performances.
Collapse
Affiliation(s)
- Sonia Bonnì
- Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | - Ilaria Borghi
- Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
- Section of Human Physiology, University of Ferrara, 44121 Ferrara, Italy
| | - Michele Maiella
- Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | - Elias Paolo Casula
- Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
- Section of Human Physiology, University of Ferrara, 44121 Ferrara, Italy
| | - Carlo Caltagirone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Clinical and Behavioral Neurology, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | - Guido Gainotti
- Department of Clinical and Behavioral Neurology, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
- Institute of Neurology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
25
|
Zhang Y, Mirman D, Hoffman P. Taxonomic and thematic relations rely on different types of semantic features: Evidence from an fMRI meta-analysis and a semantic priming study. BRAIN AND LANGUAGE 2023; 242:105287. [PMID: 37263104 DOI: 10.1016/j.bandl.2023.105287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Taxonomic and thematic relations are major components of semantic representation but their neurocognitive underpinnings are still debated. We hypothesised that taxonomic relations preferentially activate parts of anterior temporal lobe (ATL) because they rely more on colour and shape features, while thematic relations preferentially activate temporoparietal cortex (TPC) because they rely more on action and location knowledge. We first conducted activation likelihood estimation (ALE) meta-analysis to assess evidence for neural specialisation in the existing fMRI literature (Study 1), then used a primed semantic judgement task to examine if the two relations are primed by different feature types (Study 2). We find that taxonomic relations show minimal feature-based specialisation but preferentially activate the lingual gyrus. Thematic relations are more dependent on action and location features and preferentially engage TPC. The meta-analysis also showed that lateral ATL is preferentially engaged by Thematic relations, which may reflect their greater reliance on verbal associations.
Collapse
Affiliation(s)
- Yueyang Zhang
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| | - Daniel Mirman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK.
| |
Collapse
|
26
|
Xu Y, Vignali L, Sigismondi F, Crepaldi D, Bottini R, Collignon O. Similar object shape representation encoded in the inferolateral occipitotemporal cortex of sighted and early blind people. PLoS Biol 2023; 21:e3001930. [PMID: 37490508 PMCID: PMC10368275 DOI: 10.1371/journal.pbio.3001930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
We can sense an object's shape by vision or touch. Previous studies suggested that the inferolateral occipitotemporal cortex (ILOTC) implements supramodal shape representations as it responds more to seeing or touching objects than shapeless textures. However, such activation in the anterior portion of the ventral visual pathway could be due to the conceptual representation of an object or visual imagery triggered by touching an object. We addressed these possibilities by directly comparing shape and conceptual representations of objects in early blind (who lack visual experience/imagery) and sighted participants. We found that bilateral ILOTC in both groups showed stronger activation during a shape verification task than during a conceptual verification task made on the names of the same manmade objects. Moreover, the distributed activity in the ILOTC encoded shape similarity but not conceptual association among objects. Besides the ILOTC, we also found shape representation in both groups' bilateral ventral premotor cortices and intraparietal sulcus (IPS), a frontoparietal circuit relating to object grasping and haptic processing. In contrast, the conceptual verification task activated both groups' left perisylvian brain network relating to language processing and, interestingly, the cuneus in early blind participants only. The ILOTC had stronger functional connectivity to the frontoparietal circuit than to the left perisylvian network, forming a modular structure specialized in shape representation. Our results conclusively support that the ILOTC selectively implements shape representation independently of visual experience, and this unique functionality likely comes from its privileged connection to the frontoparietal haptic circuit.
Collapse
Affiliation(s)
- Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Lorenzo Vignali
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Davide Crepaldi
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Roberto Bottini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Olivier Collignon
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- Psychological Sciences Research Institute (IPSY) and Institute of NeuroScience (IoNS), University of Louvain, Louvain-la-Neuve, Belgium
- School of Health Sciences, HES-SO Valais-Wallis, The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
| |
Collapse
|
27
|
Lawrence A, Carvajal M, Ormsby J. Beyond Broca's and Wernicke's: Functional Mapping of Ancillary Language Centers Prior to Brain Tumor Surgery. Tomography 2023; 9:1254-1275. [PMID: 37489468 PMCID: PMC10366753 DOI: 10.3390/tomography9040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Functional MRI is a well-established tool used for pre-surgical planning to help the neurosurgeon have a roadmap of critical functional areas that should be avoided, if possible, during surgery to minimize morbidity for patients with brain tumors (though this also has applications for surgical resection of epileptogenic tissue and vascular lesions). This article reviews the locations of secondary language centers within the brain along with imaging findings to help improve our confidence in our knowledge on language lateralization. Brief overviews of these language centers and their contributions to the language networks will be discussed. These language centers include primary language centers of "Broca's Area" and "Wernicke's Area". However, there are multiple secondary language centers such as the dorsal lateral prefrontal cortex (DLPFC), frontal eye fields, pre- supplemental motor area (pre-SMA), Basal Temporal Language Area (BTLA), along with other areas of activation. Knowing these foci helps to increase self-assurance when discussing the nature of laterality with the neurosurgeon. By knowing secondary language centers for language lateralization, via fMRI, one can feel confident on providing neurosurgeon colleagues with appropriate information on the laterality of language in preparation for surgery.
Collapse
Affiliation(s)
- Ashley Lawrence
- Center for Neuropsychological Services, University of New Mexico, MSC 10 5530 1 University of New Mexico, Albuquerque, NM 87131-5001, USA
| | - Michael Carvajal
- Center for Neuropsychological Services, University of New Mexico, MSC 10 5530 1 University of New Mexico, Albuquerque, NM 87131-5001, USA
| | - Jacob Ormsby
- Department of Radiology, University of New Mexico, MSC 10 5530 1 University of New Mexico, Albuquerque, NM 87131-5001, USA
| |
Collapse
|
28
|
Ding J, Liang P, Guo X, Yang Y. The influence of conceptual concreteness on the reading acquisition and integration of novel words into semantic memory via thematic relations. Front Psychol 2023; 14:1132039. [PMID: 37251046 PMCID: PMC10211391 DOI: 10.3389/fpsyg.2023.1132039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Plenty of studies have been conducted to reveal neurocognitive underpinnings of conceptual representation. Compared with that of concrete concepts, the neurocognitive correlates of abstract concepts remain elusive. The current study aimed to investigate the influence of conceptual concreteness on the reading acquisition and integration of novel words into semantic memory. We constructed two-sentence contexts in which two-character pseudowords were embedded as novel words. Participants read the contexts to infer the meaning of novel words which were either concrete or abstract, and then performed a lexical decision task and a cued-recall memory task. In lexical decision task, primed by the learned novel words, their corresponding concepts, thematically related or unrelated words as well as unlearned pseudowords were judged whether they were words or not. In memory task, participants were presented with the novel words and asked to write down their meaning. The contextual reading and memory test can demonstrate the modulation of conceptual concreteness on novel word learning and the lexical decision task can reveal whether concrete and abstract novel words are integrated into semantic memory similarly or not. During contextual reading, abstract novel words presented for the first time elicited a larger N400 than concrete ones. In memory task, the meaning of concrete novel words was recollected better than abstract novel words. These results indicate that abstract novel words are more difficult to acquire during contextual reading, and to retain afterwards. For lexical decision task behavioral and ERPs were graded, with the longest reaction time, the lowest accuracy and the largest N400s for the unrelated words, then the thematically related words and finally the corresponding concepts of the novel words, regardless of conceptual concreteness. The results suggest that both concrete and abstract novel words can be integrated into semantic memory via thematic relations. These findings are discussed in terms of differential representational framework which posits that concrete words connect with each other via semantic similarities, and abstract ones via thematic relations.
Collapse
Affiliation(s)
- Jinfeng Ding
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Panpan Liang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Guo
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yufang Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Functional neuroanatomy of lexical access in contextually and visually guided spoken word production. Cortex 2023; 159:254-267. [PMID: 36641964 DOI: 10.1016/j.cortex.2022.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/09/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
Lexical access is commonly studied using bare picture naming, which is visually guided, but in real-life conversation, lexical access is more commonly contextually guided. In this fMRI study, we examined the underlying functional neuroanatomy of contextually and visually guided lexical access, and its consistency across sessions. We employed a context-driven picture naming task with fifteen healthy speakers reading incomplete sentences (word-by-word) and subsequently naming the picture depicting the final word. Sentences provided either a constrained or unconstrained lead-in setting for the picture to be named, thereby approximating lexical access in natural language use. The picture name could be planned either through sentence context (constrained) or picture appearance (unconstrained). This procedure was repeated in an equivalent second session two to four weeks later with the same sample to test for test-retest consistency. Picture naming times showed a strong context effect, confirming that constrained sentences speed up production of the final word depicted as an image. fMRI results showed that the areas common to contextually and visually guided lexical access were left fusiform and left inferior frontal gyrus (both consistently active across-sessions), and middle temporal gyrus. However, non-overlapping patterns were also found, notably in the left temporal and parietal cortices, suggesting a different neural circuit for contextually versus visually guided lexical access.
Collapse
|
30
|
Continuous cursor-captured conceptual competition: Investigating the spatiotemporal dynamics of spoken word comprehension. Mem Cognit 2023; 51:290-306. [PMID: 36180769 DOI: 10.3758/s13421-022-01358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/08/2022]
Abstract
Semantically related concepts are coactivated during spoken word comprehension. Two internet-mediated cursor-tracking experiments examined the spatiotemporal dynamics of this coactivation. Participants viewed visual arrays containing images of a target (e.g., accordion) and a semantically related (e.g., banjo) or unrelated (e.g., plum) distractor whilst hearing the target word (e.g., "accordion"). Participants were tasked with moving their cursor from the bottom of the visual array to the target in one of the upper corners. In contrast to Experiment 1, the onset of stimulus presentation was triggered by cursor movement in Experiment 2. Across both experiments, temporal (e.g., RT) and spatial (e.g., AUC) measures revealed significantly greater attraction to images of semantically related compared with unrelated distractors. These results reveal that online cursor-tracking methods are sensitive to semantic competition and suitable for studying the activation of semantic knowledge during language comprehension.
Collapse
|
31
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
32
|
Desai RH, Tadimeti U, Riccardi N. Proper and common names in the semantic system. Brain Struct Funct 2023; 228:239-254. [PMID: 36372812 PMCID: PMC10171918 DOI: 10.1007/s00429-022-02593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/23/2022] [Indexed: 11/14/2022]
Abstract
Proper names are an important part of language and communication. They are thought to have a special status due to their neuropsychological and psycholinguistic profile. To what extent proper names rely on the same semantic system as common names is not clear. In an fMRI study, we presented the same group of participants with both proper and common names to compare the associated activations. Both person and place names, as well as personally familiar and famous names were used, and compared with words representing concrete and abstract concepts. A whole-brain analysis was followed by a detailed analysis of subdivisions of four regions of interest known to play a central role in the semantic system: angular gyrus, anterior temporal lobe, posterior cingulate complex, and medial temporal lobe. We found that most subdivisions within these regions bilaterally were activated by both proper names and common names. The bilateral perirhinal and right entorhinal cortex showed a response specific to proper names, suggesting an item-specific role in retrieving person and place related information. While activation to person and place names overlapped greatly, place names were differentiated by activating areas associated with spatial memory and navigation. Person names showed greater right hemisphere involvement compared to places, suggesting a wider range of associations. Personally familiar names showed stronger activation bilaterally compared to famous names, indicating representations that are enhanced by autobiographic and episodic details. Both proper and common names are processed in the wider semantic system that contains associative, episodic, and spatial components. Processing of proper names is characterized by a somewhat stronger involvement these components, rather than by a fundamentally different system.
Collapse
Affiliation(s)
- Rutvik H Desai
- Department of Psychology, University of South Carolina, Columbia, SC, 29201, USA.
- Institute for Mind and Brain, University of South Carolina, Columbia, SC, 29201, USA.
| | - Usha Tadimeti
- Department of Psychology, University of South Carolina, Columbia, SC, 29201, USA
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC, 29201, USA
| |
Collapse
|
33
|
Correspondence between cognitive and neural representations for phonology, orthography, and semantics in supramarginal compared to angular gyrus. Brain Struct Funct 2023; 228:255-271. [PMID: 36326934 DOI: 10.1007/s00429-022-02590-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
The angular and supramarginal gyri (AG and SMG) together constitute the inferior parietal lobule (IPL) and have been associated with cognitive functions that support reading. How those functions are distributed across the AG and SMG is a matter of debate, the resolution of which is hampered by inconsistencies across stereotactic atlases provided by the major brain image analysis software packages. Schematic results from automated meta-analyses suggest primarily semantic (word meaning) processing in the left AG, with more spatial overlap among phonological (auditory word form), orthographic (visual word form), and semantic processing in the left SMG. To systematically test for correspondence between patterns of neural activation and phonological, orthographic, and semantic representations, we re-analyze a functional magnetic resonance imaging data set of participants reading aloud 465 words. Using representational similarity analysis, we test the hypothesis that within cytoarchitecture-defined subregions of the IPL, phonological representations are primarily associated with the SMG, while semantic representations are primarily associated with the AG. To the extent that orthographic representations can be de-correlated from phonological representations, they will be associated with cortex peripheral to the IPL, such as the intraparietal sulcus. Results largely confirmed these hypotheses, with some nuanced exceptions, which we discuss in terms of neurally inspired computational cognitive models of reading that learn mappings among distributed representations for orthography, phonology, and semantics. De-correlating constituent representations making up complex cognitive processes, such as reading, by careful selection of stimuli, representational formats, and analysis techniques, are promising approaches for bringing additional clarity to brain structure-function relationships.
Collapse
|
34
|
Merck C, Noël A, Jamet E, Robert M, Salmon A, Belliard S, Kalénine S. Nonspecific Effects of Normal Aging on Taxonomic and Thematic Semantic Processing. Exp Aging Res 2023; 49:18-40. [PMID: 35234091 DOI: 10.1080/0361073x.2022.2046948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study aimed to assess the effect of normal aging on the processing of taxonomic and thematic semantic relations. METHOD We used the Visual-World-Paradigm coupled with eye-movement recording. We compared performance of healthy younger and older adults on a word-to-picture matching task in which participants had to identify each target among semantically related (taxonomic or thematic) and unrelated distractors. RESULTS Younger and older participants exhibited similar patterns of gaze fixations in the two semantic conditions. The effect of aging took the form of an overall reduction in sensitivity to semantic competitors, with no difference between the taxonomic and thematic conditions. Moreover, comparison of the proportions of fixations between the younger and older participants indicated that targets were identified equally quickly in both age groups. This was not the case when mouse-click reaction times were analyzed. CONCLUSIONS Findings argue in favor of nonspecific effects of normal aging on semantic processing that similarly affect taxonomic and thematic processing. There are important clinical implications, as pathological aging has been repeatedly shown to selectively affect either taxonomic or thematic relations. Measuring eye-movements in a semantic task is also an interesting approach in the elderly, as these seem to be less impacted by aging than other motor responses.
Collapse
Affiliation(s)
- Catherine Merck
- Service de Neurologie, Cmrr Haute Bretagne, Chu Pontchaillou, Rennes, France.,Normandie Univ, Unicaen, Psl Research University, Ephe, Inserm, U1077, Chu de Caen, Neuropsychologie Et Imagerie de la Mémoire Humaine, Caen, France
| | - Audrey Noël
- Univ Rennes, LP3C (Psychology of Cognition, Behavior & Communication Laboratory) - Ea 1285, Rennes, France
| | - Eric Jamet
- Univ Rennes, LP3C (Psychology of Cognition, Behavior & Communication Laboratory) - Ea 1285, Rennes, France
| | - Maxime Robert
- Univ Rennes, LP3C (Psychology of Cognition, Behavior & Communication Laboratory) - Ea 1285, Rennes, France
| | - Anne Salmon
- Service de Neurologie, Cmrr Haute Bretagne, Chu Pontchaillou, Rennes, France
| | - Serge Belliard
- Service de Neurologie, Cmrr Haute Bretagne, Chu Pontchaillou, Rennes, France.,Normandie Univ, Unicaen, Psl Research University, Ephe, Inserm, U1077, Chu de Caen, Neuropsychologie Et Imagerie de la Mémoire Humaine, Caen, France
| | - Solène Kalénine
- Univ. Lille, Cnrs, Chu Lille, Umr 9193 - SCALab - Sciences Cognitives Et Sciences Affectives, Lille, France
| |
Collapse
|
35
|
Düzenli-Öztürk S, Hünerli-Gündüz D, Emek-Savaş DD, Olichney J, Yener GG, Ergenç Hİ. Taxonomically-related Word Pairs Evoke both N400 and LPC at Long SOA in Turkish. JOURNAL OF PSYCHOLINGUISTIC RESEARCH 2022; 51:1431-1451. [PMID: 35945467 DOI: 10.1007/s10936-022-09907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Semantic priming in Turkish was examined in 36 right-handed healthy participants in a delayed lexical decision task via taxonomic relations using EEG. Prime-target relations included related- unrelated- and pseudo-words. Taxonomically related words at long stimulus onset asynchrony (SOA) were shown to modulate N400 and late positive component (LPC) amplitudes. N400 semantic priming effect in the time window of 300-500 ms was the largest for pseudo-words, intermediate for semantically-unrelated targets, and smallest for semantically-related targets as a reflection of lexical-semantic retrieval. This finding contributes to the ERP literature showing how remarkably universal the N400 brain potential is, with similar effects across languages and orthography. The ERP data also revealed different influences of related, unrelated, and pseudo-word conditions on the amplitude of the LPC. Attention scores and mean LPC amplitudes of related words in parietal region showed a moderate correlation, indicating LPC may be related to "relationship-detection process".
Collapse
Affiliation(s)
- Seren Düzenli-Öztürk
- Department of Speech and Language Therapy, Faculty of Health Sciences, Izmir Bakırçay University, 35660, Izmir, Turkey
| | - Duygu Hünerli-Gündüz
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylül University, 35340, Izmir, Turkey
| | | | - John Olichney
- Department of Neurology, University of California Davis, 95618, Davis, CA, USA
| | - Görsev G Yener
- Faculty of Medicine, Izmir University of Economics, 35330, Izmir, Turkey.
- İzmir Biomedicine and Genome Center, 35340, Izmir, Turkey.
- Brain Dynamics Multidisciplinary Research Center, Dokuz Eylül University, 35340, Izmir, Turkey.
| | - H İclal Ergenç
- Department of Linguistics, Faculty of Languages, History and Geography, Ankara University, 06100, Ankara, Turkey
- Brain Research Center, Ankara University, 06340, Ankara, Turkey
| |
Collapse
|
36
|
Anderson EJ, Midgley KJ, Holcomb PJ, Riès SK. Taxonomic and thematic semantic relationships in picture naming as revealed by Laplacian-transformed event-related potentials. Psychophysiology 2022; 59:e14091. [PMID: 35554943 PMCID: PMC9788343 DOI: 10.1111/psyp.14091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/30/2022] [Accepted: 04/20/2022] [Indexed: 12/31/2022]
Abstract
Semantically related concepts co-activate when we speak. Prior research reported both behavioral interference and facilitation due to co-activation during picture naming. Different word relationships may account for some of this discrepancy. Taxonomically related words (e.g., WOLF-DOG) have been associated with semantic interference; thematically related words (e.g., BONE-DOG) have been associated with facilitation. Although these different semantic relationships have been associated with opposite behavioral outcomes, electrophysiological studies have found inconsistent effects on event-related potentials. We conducted a picture-word interference electroencephalography experiment to examine word retrieval dynamics in these different semantic relationships. Importantly, we used traditional monopolar analysis as well as Laplacian transformation allowing us to examine spatially deblurred event-related components. Both analyses revealed greater negativity (150-250 ms) for unrelated than related taxonomic pairs, though more restricted in space for thematic pairs. Critically, Laplacian analyses revealed a larger negative-going component in the 300 to 500 ms time window in taxonomically related versus unrelated pairs which were restricted to a left frontal recording site. In parallel, an opposite effect was found in the same time window but localized to a left parietal site. Finding these opposite effects in the same time window was feasible thanks to the use of the Laplacian transformation and suggests that frontal control processes are concurrently engaged with cascading effects of the spread of activation through semantically related representations.
Collapse
Affiliation(s)
- Elizabeth J. Anderson
- Joint Doctoral Program in Language and Communicative DisordersSan Diego State UniversitySan DiegoCaliforniaUSA
- Joint Doctoral Program in Language and Communicative DisordersUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Phillip J. Holcomb
- Department of PsychologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Stephanie K. Riès
- School of Speech, Language, and Hearing SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
37
|
Schwen Blackett D, Varkey J, Wilmskoetter J, Roth R, Andrews K, Busby N, Gleichgerrcht E, Desai RH, Riccardi N, Basilakos A, Johnson LP, Kristinsson S, Johnson L, Rorden C, Spell LA, Fridriksson J, Bonilha L. Neural network bases of thematic semantic processing in language production. Cortex 2022; 156:126-143. [PMID: 36244204 PMCID: PMC10041939 DOI: 10.1016/j.cortex.2022.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Semantic processing is a central component of language and cognition. The anterior temporal lobe is postulated to be a key hub for semantic processing, but the posterior temporoparietal cortex is also involved in thematic associations during language. It is possible that these regions act in concert and depend on an anteroposterior network linking the temporal pole with posterior structures to support thematic semantic processing during language production. We employed connectome-based lesion-symptom mapping to examine the causal relationship between lesioned white matter pathways and thematic processing language deficits among individuals with post-stroke aphasia. Seventy-nine adults with chronic aphasia completed the Philadelphia Naming Test, and semantic errors were coded as either thematic or taxonomic to control for taxonomic errors. Controlling for nonverbal conceptual-semantic knowledge as measured by the Pyramids and Palm Trees Test, lesion size, and the taxonomic error rate, thematic error rate was associated with loss of white matter connections from the temporal pole traversing in peri-Sylvian regions to the posterior cingulate and the insula. These findings support the existence of a distributed network underlying thematic relationship processing in language as opposed to discrete cortical areas.
Collapse
Affiliation(s)
- Deena Schwen Blackett
- Department of Otolaryngology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA; Division of Speech-Language Pathology, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA.
| | - Jesse Varkey
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Janina Wilmskoetter
- Division of Speech-Language Pathology, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA.
| | - Rebecca Roth
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Keeghan Andrews
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Natalie Busby
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Ezequiel Gleichgerrcht
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Rutvik H Desai
- Department of Psychology, University of South Carolina, Barnwell College, Columbia, SC, USA.
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, Barnwell College, Columbia, SC, USA.
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Lorelei P Johnson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Lisa Johnson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Barnwell College, Columbia, SC, USA.
| | - Leigh A Spell
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA.
| | - Leonardo Bonilha
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
38
|
Gao Z, Zheng L, Krieger-Redwood K, Halai A, Margulies DS, Smallwood J, Jefferies E. Flexing the principal gradient of the cerebral cortex to suit changing semantic task demands. eLife 2022; 11:e80368. [PMID: 36169281 PMCID: PMC9555860 DOI: 10.7554/elife.80368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding how thought emerges from the topographical structure of the cerebral cortex is a primary goal of cognitive neuroscience. Recent work has revealed a principal gradient of intrinsic connectivity capturing the separation of sensory-motor cortex from transmodal regions of the default mode network (DMN); this is thought to facilitate memory-guided cognition. However, studies have not explored how this dimension of connectivity changes when conceptual retrieval is controlled to suit the context. We used gradient decomposition of informational connectivity in a semantic association task to establish how the similarity in connectivity across brain regions changes during familiar and more original patterns of retrieval. Multivoxel activation patterns at opposite ends of the principal gradient were more divergent when participants retrieved stronger associations; therefore, when long-term semantic information is sufficient for ongoing cognition, regions supporting heteromodal memory are functionally separated from sensory-motor experience. In contrast, when less related concepts were linked, this dimension of connectivity was reduced in strength as semantic control regions separated from the DMN to generate more flexible and original responses. We also observed fewer dimensions within the neural response towards the apex of the principal gradient when strong associations were retrieved, reflecting less complex or varied neural coding across trials and participants. In this way, the principal gradient explains how semantic cognition is organised in the human cerebral cortex: the separation of DMN from sensory-motor systems is a hallmark of the retrieval of strong conceptual links that are culturally shared.
Collapse
Affiliation(s)
- Zhiyao Gao
- Department of Psychology, University of YorkNew YorkUnited Kingdom
| | - Li Zheng
- Department of Psychology, University of ArizonaTucsonUnited States
| | | | - Ajay Halai
- MRC Cognition and Brain Sciences Unit, University of CambridgeCambridgeUnited Kingdom
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche ScientifiqueParisFrance
| | | | | |
Collapse
|
39
|
Peterson DR, Pattie MW. Think Outside and Inside the Box:The Role of Dual-Pathway Divergent Thinking in Creative Idea Generation. CREATIVITY RESEARCH JOURNAL 2022. [DOI: 10.1080/10400419.2022.2110738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- David R. Peterson
- Department of Management, College of Business, James Madison University
| | | |
Collapse
|
40
|
Klein A, Badia T. Where Divergent Ideas Converge: Answers to AUT Found on Short List of Word Co-Occurrences Terms. CREATIVITY RESEARCH JOURNAL 2022. [DOI: 10.1080/10400419.2022.2103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Wu W, Morales M, Patel T, Pickering MJ, Hoffman P. Modulation of brain activity by psycholinguistic information during naturalistic speech comprehension and production. Cortex 2022; 155:287-306. [DOI: 10.1016/j.cortex.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022]
|
42
|
Unconscious thoughts tend to categorize information based on thematic relations. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Diaz MT, Zhang H, Cosgrove AL, Gertel VH, Troutman SBW, Karimi H. Neural sensitivity to semantic neighbors is stable across the adult lifespan. Neuropsychologia 2022; 171:108237. [PMID: 35413304 PMCID: PMC10022434 DOI: 10.1016/j.neuropsychologia.2022.108237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/04/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022]
Abstract
As we age, language reflects patterns of both stability and change. On the one hand, vocabulary and semantic abilities are largely stable across the adult lifespan, yet lexical retrieval is often slower and less successful (i.e., slower picture naming times, increased tip of the tongue incidents). Although the behavioral bases of these effects have been well established, less is known about the brain regions that support these age-related differences. We used functional Magnetic Resonance Imaging (fMRI) to examine the neural basis of picture naming. Specifically, we were interested in whether older adults would be equally sensitive to semantic characteristics, specifically the number of semantic near neighbors. Near neighbors, defined here as items with a high degree of semantic feature overlap, were of interest as these are thought to elicit competition among potential candidates and increase naming difficulty. Consistent with prior reports, pictures with more semantic near neighbors were named more slowly and less accurately for all adults. Additionally, this interference for naming times was larger as age increased, starting around 30 years old. In contrast to the age-related behavioral slowing, the neural basis of these effects was stable across adulthood. Across all adults, a number of language-relevant regions including left posterior middle temporal gyrus and left inferior frontal gyrus, pars triangularis were sensitive to the number of near neighbors. Our results suggest that although middle-aged and older adults' picture naming is more slowed by increased semantic competition, the brain regions supporting semantic processes remain stable across the adult lifespan.
Collapse
Affiliation(s)
- Michele T Diaz
- Department of Psychology, The Pennsylvania State University, USA; Social, Life, and Engineering Sciences Imaging Center, The Pennsylvania State University, USA.
| | - Haoyun Zhang
- Social, Life, and Engineering Sciences Imaging Center, The Pennsylvania State University, USA
| | | | | | | | - Hossein Karimi
- Department of Psychology, The Pennsylvania State University, USA
| |
Collapse
|
44
|
Sandberg CW, Exton E, Coburn KL, Chun S, Miller C. Event related potential exploration of the organizational structure of abstract versus concrete words in neurologically intact younger adults. BRAIN AND LANGUAGE 2022; 230:105138. [PMID: 35644106 DOI: 10.1016/j.bandl.2022.105138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to test the effects of concreteness and relationship type (similarity vs. association) on semantic processing using event-related potentials (ERP). Neurophysiological evidence has been found for the concreteness effect and for an effect of relationship type. This study replicated and extended these findings by investigating the interaction of concreteness and relationship type. Twenty-four neurologically healthy young adults performed lexical decision and semantic relatedness tasks while continuous scalp EEG was recorded. Larger N400 effects were found for concrete words in associative relationships than for concrete words in similarity relationships and abstract words in either type of relationship. The results are discussed in relation to the different representational frameworks account for abstract and concrete word processing.
Collapse
Affiliation(s)
- Chaleece W Sandberg
- Penn State University, Department of Communication Sciences and Disorders, United States.
| | - Erika Exton
- University of Maryland CollegePark, Department of Hearing and Speech Sciences, United States
| | - Kelly L Coburn
- Penn State University, Department of Communication Sciences and Disorders, United States
| | - Soyeon Chun
- Penn State University, Department of Communication Sciences and Disorders, United States
| | - Carol Miller
- Penn State University, Department of Communication Sciences and Disorders, United States
| |
Collapse
|
45
|
Fountas Z, Sylaidi A, Nikiforou K, Seth AK, Shanahan M, Roseboom W. A Predictive Processing Model of Episodic Memory and Time Perception. Neural Comput 2022; 34:1501-1544. [PMID: 35671462 DOI: 10.1162/neco_a_01514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/06/2022] [Indexed: 11/04/2022]
Abstract
Human perception and experience of time are strongly influenced by ongoing stimulation, memory of past experiences, and required task context. When paying attention to time, time experience seems to expand; when distracted, it seems to contract. When considering time based on memory, the experience may be different than what is in the moment, exemplified by sayings like "time flies when you're having fun." Experience of time also depends on the content of perceptual experience-rapidly changing or complex perceptual scenes seem longer in duration than less dynamic ones. The complexity of interactions among attention, memory, and perceptual stimulation is a likely reason that an overarching theory of time perception has been difficult to achieve. Here, we introduce a model of perceptual processing and episodic memory that makes use of hierarchical predictive coding, short-term plasticity, spatiotemporal attention, and episodic memory formation and recall, and apply this model to the problem of human time perception. In an experiment with approximately 13,000 human participants, we investigated the effects of memory, cognitive load, and stimulus content on duration reports of dynamic natural scenes up to about 1 minute long. Using our model to generate duration estimates, we compared human and model performance. Model-based estimates replicated key qualitative biases, including differences by cognitive load (attention), scene type (stimulation), and whether the judgment was made based on current or remembered experience (memory). Our work provides a comprehensive model of human time perception and a foundation for exploring the computational basis of episodic memory within a hierarchical predictive coding framework.
Collapse
Affiliation(s)
- Zafeirios Fountas
- Emotech Labs, London, N1 7EU U.K.,Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, U.K.
| | | | | | - Anil K Seth
- Department of Informatics and Sackler Centre for Consciousness Science, University of Sussex, Brighton, BN1 9RH, U.K.,Canadian Institute for Advanced Research Program on Brain, Mind, and Consciousness, Toronto, ON M5G 1M1, Canada
| | - Murray Shanahan
- Department of Computing, Imperial College London, London, SW7 2RH, U.K.
| | - Warrick Roseboom
- Department of Informatics and Sackler Centre for Consciousness Science, University of Sussex, Brighton BN1 9RH, U.K.
| |
Collapse
|
46
|
Litovsky CP, Finley AM, Zuckerman B, Sayers M, Schoenhard JA, Kenett YN, Reilly J. Semantic flow and its relation to controlled semantic retrieval deficits in the narrative production of people with aphasia. Neuropsychologia 2022; 170:108235. [PMID: 35430236 PMCID: PMC9978996 DOI: 10.1016/j.neuropsychologia.2022.108235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
Aphasia has had a profound influence on our understanding of how language is instantiated within the human brain. Historically, aphasia has yielded an in vivo model for elucidating the effects of impaired lexical-semantic access on language comprehension and production. Aphasiology has focused intensively on single word dissociations. Yet, less is known about the integrity of combinatorial semantic processes required to construct well-formed narratives. Here we addressed the question of how controlled lexical-semantic retrieval deficits (a hallmark of aphasia) might compound over the course of longer narratives. We specifically examined word-by-word flow of taxonomic vs. thematic semantic distance in the storytelling narratives of individuals with chronic post-stroke aphasia (n = 259) relative to age-matched controls (n = 203). We first parsed raw transcribed narratives into content words and computed inter-word semantic distances for every running pair of words in each narrative (N = 232,490 word transitions). The narratives of people with aphasia showed significant reductions in taxonomic and thematic semantic distance relative to controls. Both distance metrics were strongly predictive of offline measures of semantic impairment and aphasia severity. Since individuals with aphasia often exhibit perseverative language output (i.e., repetitions), we performed additional analyses with repetitions excluded. When repetitions were excluded, group differences in semantic distances persisted and thematic distance was still predictive of semantic impairment, although some findings changed. These results demonstrate the cumulative impact of deficits in controlled word retrieval over the course of narrative production. We discuss the nature of semantic flow between words as a novel metric of characterizing discourse and elucidating the nature of lexical-semantic access impairment in aphasia at multiword levels.
Collapse
Affiliation(s)
- Celia P Litovsky
- Eleanor M. Saffran Center for Cognitive Neuroscience, Temple University, Philadelphia, PA, USA; Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA.
| | - Ann Marie Finley
- Eleanor M. Saffran Center for Cognitive Neuroscience, Temple University, Philadelphia, PA, USA; Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA
| | - Bonnie Zuckerman
- Eleanor M. Saffran Center for Cognitive Neuroscience, Temple University, Philadelphia, PA, USA; Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA
| | - Matthew Sayers
- Eleanor M. Saffran Center for Cognitive Neuroscience, Temple University, Philadelphia, PA, USA; Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA
| | - Julie A Schoenhard
- Eleanor M. Saffran Center for Cognitive Neuroscience, Temple University, Philadelphia, PA, USA; Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA
| | - Yoed N Kenett
- Faculty of Industrial Engineering & Management, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jamie Reilly
- Eleanor M. Saffran Center for Cognitive Neuroscience, Temple University, Philadelphia, PA, USA; Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA, USA
| |
Collapse
|
47
|
Neural differences in social and figurative language processing on the autism spectrum. Neuropsychologia 2022; 171:108240. [DOI: 10.1016/j.neuropsychologia.2022.108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/20/2022]
|
48
|
Hofmann MJ, Kleemann MA, Roelke-Wellmann A, Vorstius C, Radach R. Semantic feature activation takes time: longer SOA elicits earlier priming effects during reading. Cogn Process 2022; 23:309-318. [PMID: 35254545 PMCID: PMC9072456 DOI: 10.1007/s10339-022-01084-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 02/03/2022] [Indexed: 11/03/2022]
Abstract
While most previous studies of "semantic" priming confound associative and semantic relations, here we use a simple co-occurrence-based approach to examine "pure" semantic priming, while experimentally controlling for associative relations. We define associative relations by the co-occurrence of words in the sentences of a large text corpus. Contextual-semantic feature overlap, in contrast, is defined by the number of common associates that the prime shares with the target. Then we revisit the spreading activation theory and examine whether a long vs. short time available for semantic feature activation leads to early vs. late viewing time effects on the target words of a sentence reading experiment. We independently manipulate contextual-semantic feature overlap of two primes with one target word in sentences of the form pronoun, verb prime, article, adjective prime and target noun, e. g., "She rides the gray elephant." The results showed that long-SOA (verb-noun) overlap reduces early single and first fixation durations of the target noun, and short-SOA (adjective-noun) overlap reduces late go-past durations. This result pattern can be explained by the spreading activation theory: The semantic features of the prime words need some time to become sufficiently active before they can reliably affect target processing. Therefore, the verb can act on the target noun's early eye-movement measures presented three words later, while the adjective is presented immediately prior to the target-thus a difficult adjective-noun semantic integration leads to a late sentence re-examination of the preceding words.
Collapse
Affiliation(s)
- Markus J Hofmann
- General and Biological Psychology, University of Wuppertal, Max-Horkheimer-Str. 20, 42119, Wuppertal, Germany.
| | - Mareike A Kleemann
- General and Biological Psychology, University of Wuppertal, Max-Horkheimer-Str. 20, 42119, Wuppertal, Germany
| | - André Roelke-Wellmann
- General and Biological Psychology, University of Wuppertal, Max-Horkheimer-Str. 20, 42119, Wuppertal, Germany
| | - Christian Vorstius
- General and Biological Psychology, University of Wuppertal, Max-Horkheimer-Str. 20, 42119, Wuppertal, Germany
| | - Ralph Radach
- General and Biological Psychology, University of Wuppertal, Max-Horkheimer-Str. 20, 42119, Wuppertal, Germany
| |
Collapse
|
49
|
Hornsby AN, Love BC. Sequential consumer choice as multi-cued retrieval. SCIENCE ADVANCES 2022; 8:eabl9754. [PMID: 35213230 PMCID: PMC8880769 DOI: 10.1126/sciadv.abl9754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Whether adding songs to a playlist or groceries during an online shop, how do we decide what to choose next? We develop a model that predicts such open-ended, sequential choices using a process of cued retrieval from long-term memory. Using the past choice to cue subsequent retrievals, this model predicts the sequential purchases and response times of nearly 5 million grocery purchases made by more than 100,000 online shoppers. Products can be associated in different ways, such as by their episodic association or semantic overlap, and we find that consumers query multiple forms of associative knowledge when retrieving options. Attending to certain knowledge sources, as estimated by our model, predicts important retrieval errors, such as the propensity to forget or add unwanted products. Our results demonstrate how basic memory retrieval mechanisms shape choices in real-world, goal-directed tasks.
Collapse
Affiliation(s)
- Adam N. Hornsby
- Dunnhumby, 184 Shepherds Bush Road, London W6 7NL, UK
- Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Bradley C. Love
- Department of Experimental Psychology, University College London, London WC1H 0AP, UK
- The Alan Turing Institute, London UK
| |
Collapse
|
50
|
Magnetoencephalography resting-state correlates of executive and language components of verbal fluency. Sci Rep 2022; 12:476. [PMID: 35013361 PMCID: PMC8748602 DOI: 10.1038/s41598-021-03829-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022] Open
Abstract
Verbal fluency (VF) is a heterogeneous cognitive function that requires executive as well as language abilities. The purpose of this study was to elucidate the specificity of the resting state MEG correlates of the executive and language components. To this end, we administered a VF test, another verbal test (Vocabulary), and another executive test (Trail Making Test), and we recorded 5-min eyes-open resting-state MEG data in 28 healthy participants. We used source-reconstructed spectral power estimates to compute correlation/anticorrelation MEG clusters with the performance at each test, as well as with the advantage in performance between tests, across individuals using cluster-level statistics in the standard frequency bands. By obtaining conjunction clusters between verbal fluency scores and factor loading obtained for verbal fluency and each of the two other tests, we showed a core of slow clusters (delta to beta) localized in the right hemisphere, in adjacent parts of the premotor, pre-central and post-central cortex in the mid-lateral regions related to executive monitoring. We also found slow parietal clusters bilaterally and a cluster in the gamma 2 and 3 bands in the left inferior frontal gyrus likely associated with phonological processing involved in verbal fluency.
Collapse
|