1
|
Hybel TE, Sørensen EF, Enemark MH, Hemmingsen JK, Simonsen AT, Lauridsen KL, Møller MB, Pedersen C, Pedersen G, Obel N, Larsen CS, d'Amore F, Hamilton-Dutoit S, Stougaard M, Vase MØ, Ludvigsen M. Characterization of the genomic landscape of HIV-associated lymphoma reveals heterogeneity across histological subtypes. AIDS 2024; 38:1897-1906. [PMID: 39178160 DOI: 10.1097/qad.0000000000003996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/18/2024] [Indexed: 08/25/2024]
Abstract
OBJECTIVE Individuals with HIV experience an increased risk of lymphoma, making this an important cause of death among people with HIV. Nevertheless, little is known regarding the underlying genetic aberrations, which we therefore set out to characterize. DESIGN We conducted next-generation panel sequencing to explore the mutational status of diagnostic lymphoma biopsies from 18 patients diagnosed with lymphoma secondary to HIV infection. METHODS Ion Torrent next-generation sequencing was performed with an AmpliSeq panel on diagnostic lymphoma biopsies from HIV-associated B-cell lymphomas ( n = 18), comprising diffuse large B-cell lymphoma ( n = 9), classic Hodgkin lymphoma ( n = 6), Burkitt lymphoma ( n = 2), follicular lymphoma ( n = 1), and marginal zone lymphoma ( n = 1). The panel comprised 69 lymphoid and/or myeloid-relevant genes, in which either the entire coding sequence or a hotspot region was sequenced. RESULTS Among the 18 lymphomas, we detected 213 variants. The number of detected mutations ranged from 4 to 41 per tumor distributed among 42 genes, including both exonic and intronic regions. The most frequently mutated genes included KMT2D (67%), TNFAIP3 (50%), and TP53 (61%). Notably, no gene was found to harbor variants across all the HIV-associated lymphomas, nor did we find subtype-specific variants. While some variants were shared among patients, most were unique to the individual patient and were often not reported as malignant genetic variants in databases. CONCLUSION Our findings demonstrate genetic heterogeneity across histological subtypes of HIV-associated lymphomas and thus help elucidate the genetics and pathophysiological mechanisms underlying the disease.
Collapse
Affiliation(s)
- Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
| | | | - Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
| | | | | | | | | | - Court Pedersen
- Department of Infectious Diseases, Odense University Hospital, Odense
| | - Gitte Pedersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg
| | - Niels Obel
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen
| | | | | | | | - Magnus Stougaard
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
| |
Collapse
|
2
|
Chen Q, Zheng X, Cheng W, Li J. Landscape of targeted therapies for lung squamous cell carcinoma. Front Oncol 2024; 14:1467898. [PMID: 39544292 PMCID: PMC11560903 DOI: 10.3389/fonc.2024.1467898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
Lung cancer, a common type of malignant neoplasm, has seen significant advancements in the treatment of lung adenocarcinoma (LUAD). However, the management of lung squamous cell carcinoma (LSCC) continues to pose challenges. Traditional treatment methods for LSCC encompass surgical resection, chemotherapy, and radiotherapy. The introduction of targeted therapy and immunotherapy has greatly benefited LSCC patients, but issues such as limited immune response rates and adverse reactions persist. Therefore, gaining a deeper comprehension of the underlying mechanisms holds immense importance. This review provides an in-depth overview of classical signaling pathways and therapeutic targets, including the PI3K signaling pathway, CDK4/6 pathway, FGFR1 pathway and EGFR pathway. Additionally, we delve into alternative signaling pathways and potential targets that could offer new therapeutic avenues for LSCC. Lastly, we summarize the latest advancements in targeted therapy combined with immune checkpoint blockade (ICB) therapy for LSCC and discuss the prospects and challenges in this field.
Collapse
Affiliation(s)
- Qiuxuan Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoshuo Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weiting Cheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian Li
- Institude of Experimental Immunology, University Clinic of Rheinische Friedrich-Wihelms-University, Bonn, Germany
| |
Collapse
|
3
|
Collin M, Gagey G, Shanmugam V, Louissaint A, Okosun J, Sarkozy C, Nadel B. Follicular lymphoma research: an open dialogue for a collaborative roadmap. Histopathology 2024. [PMID: 39468961 DOI: 10.1111/his.15344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Follicular lymphoma (FL) is the second most common type of lymphoma (20% of all non-Hodgkin lymphomas), derived from germinal centre (GC) B cells, and is characterised by its significant clinical, prognostic and biological heterogeneity, leading to complexity in management. Despite significant biological investigation and indisputable clinical progress since the advent of the immunotherapy era more than 20 years ago, much remains to be done to understand and cure this lymphoma. Today, FL is metaphorically a giant puzzle on the table with patches of sky, landscape and foliage clearly appearing. However, many of the remaining pieces are held by various stakeholders (e.g. clinicians, pathologists, researchers, drug developers) without global agreement on what the gaps are, or any clear blueprint on how to solve the puzzle of understanding the heterogeneity of this disease and create curative and tailored therapies. With the advent of new investigation and drug technologies, together with recent advances in our capacity to manage big data, the time seems ripe for a change of scale. More than ever, this will require collaboration between and within all stakeholders to overcome the current bottlenecks in the field. As for every investigator, we acknowledge that this first draft is necessarily biased, incomplete and some FL expert readers might recognise some remaining gaps not addressed. We hope they will reply to make this effort a collaborative one to assemble all the pieces in the most ideal fashion. As such, this review intends to be a first step and an interactive platform to a collaborative roadmap towards better understanding and care of FL.
Collapse
Affiliation(s)
- Mélanie Collin
- Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Guillemette Gagey
- Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Vignesh Shanmugam
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Abner Louissaint
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica Okosun
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Clementine Sarkozy
- Hematology Department, Institut Curie, Saint Cloud, France and LITO, U1288, Université Versailles Saint Quentin en Yveline, Saint Quentin en Yveline, France
| | - Bertrand Nadel
- Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
4
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
5
|
Fu R, Dong H, Gu W, Meng K, Sun T, Liu X, Qu X, Chen J, Xue F, Liu W, Chen Y, Ju M, Dai X, Chi Y, Wang W, Pei X, Zhu X, Yang R, Li H, Zhang L. Childhood and adolescent essential thrombocythemia and prefibrotic primary myelofibrosis: insights into diagnosis, outcomes, and treatment from a large Chinese cohort. Leukemia 2024:10.1038/s41375-024-02432-2. [PMID: 39375514 DOI: 10.1038/s41375-024-02432-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
The paucity of essential thrombocythemia (ET) and prefibrotic primary myelofibrosis (pre-PMF) in individuals younger than 18 years highlights several unresolved issues in diagnosis, clinical outcomes, and treatment strategies. To address these knowledge gaps, we analyzed a large bidirectional cohort consisting of childhood and adolescent ET (CAA-ET, n = 156) and pre-PMF (CAA-preMF, n = 13), as well as adult ET (n = 349). We introduced immunophenotypic abnormalities as novel clonal markers in CAA-ET and CAA-preMF, establishing a comprehensive method for clonal marker detection that integrated driver and non-driver mutations, positive endogenous erythroid colony formation, immunophenotypic abnormalities, and chromosomal aberrations. Next-generation sequencing revealed distinct mutational profiles between CAA-ET and adult ET, along with different age-related trends in the distribution of driver mutations. Venous thrombosis was more prevalent in CAA-ET, with JAK2 V617F emerging as a potential risk factor (P = 0.018). Immunophenotypic abnormalities were identified as risk factors for disease progression (P = 0.027). Significant differences between expected and actual treatment practices were identified. Compared to CAA-ET, CAA-preMF demonstrated poorer progression-free survival (P < 0.001) and faster disease progression (P = 0.019). This study provides a critical foundation for refining diagnostic, prognostic, and therapeutic approaches for CAA-ET and CAA-preMF.
Collapse
Affiliation(s)
- Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Huan Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenjing Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ke Meng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ting Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xinmiao Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Jia Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yunfei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Mankai Ju
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xinyue Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaolei Pei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Gene Therapy for Blood Diseases, CAMS Key Laboratory of Gene Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Portelinha A, Wang S, Parsa S, Jiang M, Gorelick AN, Mohanty S, Sharma S, de Stanchina E, Berishaj M, Zhao C, Heward J, Aryal NK, Tavana O, Wen J, Fitzgibbon J, Dogan A, Younes A, Melnick AM, Wendel HG. SETD1B mutations confer apoptosis resistance and BCL2 independence in B cell lymphoma. J Exp Med 2024; 221:e20231143. [PMID: 39235528 PMCID: PMC11380151 DOI: 10.1084/jem.20231143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/05/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
The translocation t(14;18) activates BCL2 and is considered the initiating genetic lesion in most follicular lymphomas (FL). Surprisingly, FL patients fail to respond to the BCL2 inhibitor, Venetoclax. We show that mutations and deletions affecting the histone lysine methyltransferase SETD1B (KMT2G) occur in 7% of FLs and 16% of diffuse large B cell lymphomas (DLBCL). Deficiency in SETD1B confers striking resistance to Venetoclax and an experimental MCL-1 inhibitor. SETD1B also acts as a tumor suppressor and cooperates with the loss of KMT2D in lymphoma development in vivo. Consistently, loss of SETD1B in human lymphomas typically coincides with loss of KMT2D. Mechanistically, SETD1B is required for the expression of several proapoptotic BCL2 family proteins. Conversely, inhibitors of the KDM5 histone H3K4 demethylases restore BIM and BIK expression and synergize with Venetoclax in SETD1B-deficient lymphomas. These results establish SETD1B as an epigenetic regulator of cell death and reveal a pharmacological strategy to augment Venetoclax sensitivity in lymphoma.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Apoptosis/genetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Ana Portelinha
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Shenqiu Wang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Sara Parsa
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Man Jiang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Alexander N Gorelick
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sagarajit Mohanty
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Soumya Sharma
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Marjan Berishaj
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Chunying Zhao
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | | | - Neeraj K Aryal
- Bioscience, Early Oncology R&D, AstraZeneca , Waltham, MA, USA
| | - Omid Tavana
- Bioscience, Early Oncology R&D, AstraZeneca , Waltham, MA, USA
| | - Jiayu Wen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University and Australian Research Council Centre of Excellence for the Mathematical Analysis of Cellular Systems, Canberra, Australia
| | | | - Ahmet Dogan
- Departments of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anas Younes
- Haematology R&D, AstraZeneca , New York, NY, USA
| | - Ari M Melnick
- Hematology and Oncology Division, Medicine Department, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| |
Collapse
|
7
|
Ivanova VS, Menter T, Zaino J, Mertz KD, Hamelin B, Dirnhofer S, Kloboves-Prevodnik V, Tzankov A, Gašljević G. The Genetic Landscape of Primary Breast Marginal Zone Lymphoma Identifies a Mutational-driven Disease With Similarities to Ocular Adnexal Lymphoma. Am J Surg Pathol 2024; 48:1259-1269. [PMID: 38864239 DOI: 10.1097/pas.0000000000002257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Extranodal marginal zone lymphomas (eMZL) can occur in any organ and site of the body. Recent research has shown that they differ from organ to organ in terms of their mutational profile. In this study, we investigated a cohort of primary breast marginal zone lymphomas (PBMZL) to get a better insight into their morphologic and molecular profile. A cohort of 15 cases (14 female and 1 male) was characterized by immunohistochemistry (IHC) for 19 markers, fluorescence in situ hybridization (FISH), and high throughput sequencing (HTS) using a lymphoma panel comprising 172 genes. In addition, PCR for the specific detection of Borrelia spp. and metagenomics whole genome sequencing were performed for infectious agent profiling. Follicular colonization was observed in most cases, while lymphoepithelial lesions, though seen in many cases, were not striking. All 15 cases were negative for CD5, CD11c, and CD21 and positive for BCL2 and pan B-cell markers. There were no cases with BCL2 , BCL10 , IRF4 , MALT1 , or MYC translocation; only 1 had a BCL6 rearrangement. HTS highlighted TNFAIP3 (n=4), KMT2D (n=2), and SPEN (n=2) as the most frequently mutated genes. There were no Borrelia spp. , and no other pathogens detected in our cohort. One patient had a clinical history of erythema chronicum migrans affecting the same breast. PBMZL is a mutation-driven disease rather than fusion-driven. It exhibits mutations in genes encoding components affecting the NF-κB pathway, chromatin modifier-encoding genes, and NOTCH pathway-related genes. Its mutational profile shares similarities with ocular adnexal and nodal MZL.
Collapse
MESH Headings
- Humans
- Female
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/microbiology
- Lymphoma, B-Cell, Marginal Zone/pathology
- Middle Aged
- Mutation
- Male
- Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
- Adult
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Eye Neoplasms/genetics
- Eye Neoplasms/pathology
- Eye Neoplasms/microbiology
- DNA Mutational Analysis
- Aged, 80 and over
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Genetic Predisposition to Disease
- High-Throughput Nucleotide Sequencing
Collapse
Affiliation(s)
- Vanesa-Sindi Ivanova
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel
| | - Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel
| | - Joel Zaino
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel
| | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Baptiste Hamelin
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel
| | | | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel
| | - Gorana Gašljević
- Department of Pathology, Institute of Oncology Ljubljana, Ljubljana
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
8
|
Park S, Cho JH, Kim JH, Kim JA. Histone lysine methylation modifiers controlled by protein stability. Exp Mol Med 2024; 56:2127-2144. [PMID: 39394462 PMCID: PMC11541785 DOI: 10.1038/s12276-024-01329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/13/2024] Open
Abstract
Histone lysine methylation is pivotal in shaping the epigenetic landscape and is linked to cell physiology. Coordination of the activities of multiple histone lysine methylation modifiers, namely, methyltransferases and demethylases, modulates chromatin structure and dynamically alters the epigenetic landscape, orchestrating almost all DNA-templated processes, such as transcription, DNA replication, and DNA repair. The stability of modifier proteins, which is regulated by protein degradation, is crucial for their activity. Here, we review the current knowledge of modifier-protein degradation via specific pathways and its subsequent impact on cell physiology through epigenetic changes. By summarizing the functional links between the aberrant stability of modifier proteins and human diseases and highlighting efforts to target protein stability for therapeutic purposes, we aim to promote interest in defining novel pathways that regulate the degradation of modifiers and ultimately increase the potential for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sungryul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jin Hwa Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
- Department of Bioscience, University of Science and Technology, Daejeon, South Korea.
| | - Jung-Ae Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
- Department of Bioscience, University of Science and Technology, Daejeon, South Korea.
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
| |
Collapse
|
9
|
Monika F, Sabri A, Cantu D, Vail E, Siref A. Molecular characterization of a rare case of high-grade B-cell lymphoma with MYC, BCL2, BCL6, and CCND1 rearrangements. J Hematop 2024; 17:155-161. [PMID: 38914869 PMCID: PMC11324669 DOI: 10.1007/s12308-024-00593-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
Quadruple-hit lymphomas are extremely rare non-Hodgkin lymphomas with a reported dismal prognosis in the few reported cases. A "quadruple hit" has been defined by the presence of concurrent MYC, BCL2, BCL6, and CCND1 chromosomal rearrangements. We report a new case of a quadruple hit lymphoma in a 73-year-old Hispanic man who presented with an enlarging left-sided neck mass. Computed tomography showed a 1.9-cm mass in left the tonsil with bulky cervical lymphadenopathy. The presence of all four chromosomal rearrangements can reportedly occur with disease progression in both diffuse large B-cell lymphomas and mantle cell lymphomas. Further characterization of the tumor by next-generation sequencing may be of benefit to delineate between these two possibilities. Immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and next-generation sequencing were used to confirm and classify the diagnosis. Histologic sections of the cervical lymph node demonstrated an atypical lymphoid infiltrate with large and pleomorphic cells, which were positive for CD20, CD10, BCL1 (Cyclin D1), BCL2, BCL6, and cMYC and negative for CD5 and SOX11 on immunohistochemistry with a Ki-67 proliferative index of 70%. FISH demonstrated MYC, BCL2, BCL6, and CCND1 rearrangements and the diagnosis of high-grade B-cell lymphoma with MYC, BCL2, BCL6, and CCND1 was rendered. Our patient was treated with dose adjusted etoposide, doxorubicin, cyclophosphamide, prednisone, and rituximab chemotherapy and has been in remission for 20 months.
Collapse
MESH Headings
- Humans
- Male
- Proto-Oncogene Proteins c-bcl-6/genetics
- Aged
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-myc/genetics
- Gene Rearrangement
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/diagnosis
- Cyclophosphamide/therapeutic use
- Cyclophosphamide/administration & dosage
- Doxorubicin/therapeutic use
- Prednisone/therapeutic use
- Neoplasm Grading
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/diagnostic imaging
- Rituximab/therapeutic use
- In Situ Hybridization, Fluorescence
- Etoposide/therapeutic use
- Etoposide/administration & dosage
Collapse
Affiliation(s)
- Fnu Monika
- Department of Pathology, Creighton University, Omaha, NE, 68124, USA.
| | - Ahmed Sabri
- Department of Pathology, Creighton University, Omaha, NE, 68124, USA
| | - David Cantu
- Department of Pathology, CHI Health Creighton University, Omaha, NE, 68124, USA
| | - Eric Vail
- Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Andrew Siref
- Department of Pathology, CHI Health Creighton University, Omaha, NE, 68124, USA
| |
Collapse
|
10
|
Bai B, Wise JF, Vodák D, Nakken S, Sharma A, Blaker YN, Brodtkorb M, Hilden V, Trøen G, Ren W, Lorenz S, Lawrence MS, Myklebost O, Kimby E, Pan-Hammarström Q, Steen CB, Meza-Zepeda LA, Beiske K, Smeland EB, Hovig E, Lingjærde OC, Holte H, Myklebust JH. Multi-omics profiling of longitudinal samples reveals early genomic changes in follicular lymphoma. Blood Cancer J 2024; 14:147. [PMID: 39191762 PMCID: PMC11350178 DOI: 10.1038/s41408-024-01124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Follicular lymphoma (FL) is the most common indolent type of B-cell non-Hodgkin lymphoma. Advances in treatment have improved overall survival, but early relapse or transformation to aggressive disease is associated with inferior outcome. To identify early genetic events and track tumor clonal evolution, we performed multi-omics analysis of 94 longitudinal biopsies from 44 FL patients; 22 with transformation (tFL) and 22 with relapse without transformation (nFL). Deep whole-exome sequencing confirmed recurrent mutations in genes encoding epigenetic regulators (CREBBP, KMT2D, EZH2, EP300), with similar mutational landscape in nFL and tFL patients. Calculation of genomic distances between longitudinal samples revealed complex evolutionary patterns in both subgroups. CREBBP and KMT2D mutations were identified as genetic events that occur early in the disease course, and cases with CREBBP KAT domain mutations had low risk of transformation. Gains in chromosomes 12 and 18 (TCF4), and loss in 6q were identified as early and stable copy number alterations. Identification of such early and stable genetic events may provide opportunities for early disease detection and disease monitoring. Integrative analysis revealed that tumors with EZH2 mutations exhibited reduced gene expression of numerous histone genes, including histone linker genes. This might contribute to the epigenetic dysregulation in FL.
Collapse
Affiliation(s)
- Baoyan Bai
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Molecular Biology (EpiGen),, Akershus University Hospital, Lørenskog, Norway
| | - Jillian F Wise
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway
- Massachusetts General Hospital Cancer Center and Department of Pathology, Harvard Medical School, Charlestown, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Daniel Vodák
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sigve Nakken
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Ankush Sharma
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Yngvild Nuvin Blaker
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marianne Brodtkorb
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Vera Hilden
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Gunhild Trøen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Weicheng Ren
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Lorenz
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center and Department of Pathology, Harvard Medical School, Charlestown, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ola Myklebost
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department for Clinical Science, University of Bergen, Bergen, Norway
| | - Eva Kimby
- Unit for Hematology and Department of Medicine at Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Chloé B Steen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Klaus Beiske
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Erlend B Smeland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eivind Hovig
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Ole Christian Lingjærde
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Harald Holte
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
- Norwegian Cancer Genomics Consortium, CancerGenomics.no, Oslo, Norway.
- Department of Oncology, Division for Cancer Medicine, Oslo University Hospital, Oslo, Norway.
| | - June Helen Myklebust
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Yu C, Shen Q, Holmes AB, Mo T, Tosato A, Soni RK, Corinaldesi C, Koul S, Pasqualucci L, Hussein S, Forouhar F, Dalla-Favera R, Basso K. MEF2B C-terminal mutations enhance transcriptional activity and stability to drive B cell lymphomagenesis. Nat Commun 2024; 15:7195. [PMID: 39179580 PMCID: PMC11343756 DOI: 10.1038/s41467-024-51644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The myocyte enhancer factor 2B (MEF2B) transcription factor is frequently mutated in germinal center (GC)-derived B-cell lymphomas. Its ammino (N)-terminal mutations drive lymphomagenesis by escaping interaction with transcriptional repressors, while the function of carboxy (C)-terminal mutations remains to be elucidated. Here, we show that MEF2B C-tail is physiologically phosphorylated at specific residues and phosphorylation at serine (S)324 is impaired by lymphoma-associated mutations. Lack of phosphorylation at S324 enhances the interaction of MEF2B with the SWI/SNF chromatin remodeling complex, leading to higher transcriptional activity. In addition, these mutants show an increased protein stability due to impaired interaction with the CUL3/KLHL12 ubiquitin complex. Mice expressing a phosphorylation-deficient lymphoma-associated MEF2B mutant display GC enlargement and develop GC-derived lymphomas, when crossed with Bcl2 transgenic mice. These results unveil converging mechanisms of action for a diverse spectrum of MEF2B mutations, all leading to its dysregulation and GC B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Chuanjiang Yu
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Qiong Shen
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Tongwei Mo
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Anna Tosato
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Sanjay Koul
- Department of Biological Sciences & Geology, Queensborough Community College, City University of New York, Bayside, New York, NY, USA
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Shafinaz Hussein
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farhad Forouhar
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY, USA
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.
- Departments of Microbiology & Immunology, Genetics & Development, Columbia University, New York, NY, USA.
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Ramirez CA, Becker-Hapak M, Singhal K, Russler-Germain DA, Frenkel F, Barnell EK, McClain ED, Desai S, Schappe T, Onyeador OC, Kudryashova O, Belousov V, Bagaev A, Ocheredko E, Kiwala S, Hundal J, Skidmore ZL, Watkins MP, Mooney TB, Walker JR, Krysiak K, Gomez F, Fronick CC, Fulton RS, Schreiber RD, Mehta-Shah N, Cashen AF, Kahl BS, Ataullakhanov R, Bartlett NL, Griffith M, Griffith OL, Fehniger TA. Neoantigen landscape supports feasibility of personalized cancer vaccine for follicular lymphoma. Blood Adv 2024; 8:4035-4049. [PMID: 38713894 PMCID: PMC11339042 DOI: 10.1182/bloodadvances.2022007792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
ABSTRACT Personalized cancer vaccines designed to target neoantigens represent a promising new treatment paradigm in oncology. In contrast to classical idiotype vaccines, we hypothesized that "polyvalent" vaccines could be engineered for the personalized treatment of follicular lymphoma (FL) using neoantigen discovery by combined whole-exome sequencing (WES) and RNA sequencing (RNA-seq). Fifty-eight tumor samples from 57 patients with FL underwent WES and RNA-seq. Somatic and B-cell clonotype neoantigens were predicted and filtered to identify high-quality neoantigens. B-cell clonality was determined by the alignment of B-cell receptor (BCR) CDR3 regions from RNA-seq data, grouping at the protein level, and comparison with the BCR repertoire from healthy individuals using RNA-seq data. An average of 52 somatic mutations per patient (range, 2-172) were identified, and ≥2 (median, 15) high-quality neoantigens were predicted for 56 of 58 FL samples. The predicted neoantigen peptides were composed of missense mutations (77%), indels (9%), gene fusions (3%), and BCR sequences (11%). Building off of these preclinical analyses, we initiated a pilot clinical trial using personalized neoantigen vaccination combined with PD-1 blockade in patients with relapsed or refractory FL (#NCT03121677). Synthetic long peptide vaccines targeting predicted high-quality neoantigens were successfully synthesized for and administered to all 4 patients enrolled. Initial results demonstrate feasibility, safety, and potential immunologic and clinical responses. Our study suggests that a genomics-driven personalized cancer vaccine strategy is feasible for patients with FL, and this may overcome prior challenges in the field. This trial was registered at www.ClinicalTrials.gov as #NCT03121677.
Collapse
Affiliation(s)
- Cody A. Ramirez
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | | | - Kartik Singhal
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - David A. Russler-Germain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | | | - Erica K. Barnell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Ethan D. McClain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Sweta Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Timothy Schappe
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | - Susanna Kiwala
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Jasreet Hundal
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Zachary L. Skidmore
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Marcus P. Watkins
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Thomas B. Mooney
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Jason R. Walker
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Kilannin Krysiak
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Felicia Gomez
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Catrina C. Fronick
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Robert S. Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Robert D. Schreiber
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Neha Mehta-Shah
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Amanda F. Cashen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Brad S. Kahl
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | | | - Nancy L. Bartlett
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Obi L. Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Todd A. Fehniger
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
13
|
Liu W, Cao H, Wang J, Elmusrati A, Han B, Chen W, Zhou P, Li X, Keysar S, Jimeno A, Wang CY. Histone-methyltransferase KMT2D deficiency impairs the Fanconi anemia/BRCA pathway upon glycolytic inhibition in squamous cell carcinoma. Nat Commun 2024; 15:6755. [PMID: 39117659 PMCID: PMC11310337 DOI: 10.1038/s41467-024-50861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Histone lysine methyltransferase 2D (KMT2D) is the most frequently mutated epigenetic modifier in head and neck squamous cell carcinoma (HNSCC). However, the role of KMT2D in HNSCC tumorigenesis and whether its mutations confer any therapeutic vulnerabilities remain unknown. Here we show that KMT2D deficiency promotes HNSCC growth through increasing glycolysis. Additionally, KMT2D loss decreases the expression of Fanconi Anemia (FA)/BRCA pathway genes under glycolytic inhibition. Mechanistically, glycolytic inhibition facilitates the occupancy of KMT2D to the promoter/enhancer regions of FA genes. KMT2D loss reprograms the epigenomic landscapes of FA genes by transiting their promoter/enhancer states from active to inactive under glycolytic inhibition. Therefore, combining the glycolysis inhibitor 2-DG with DNA crosslinking agents or poly (ADP-ribose) polymerase (PARP) inhibitors preferentially inhibits tumor growth of KMT2D-deficient mouse HNSCC and patient-derived xenografts (PDXs) harboring KMT2D-inactivating mutations. These findings provide an epigenomic basis for developing targeted therapies for HNSCC patients with KMT2D-inactivating mutations.
Collapse
Affiliation(s)
- Wei Liu
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hongchao Cao
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jing Wang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Areeg Elmusrati
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bing Han
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wei Chen
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ping Zhou
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiyao Li
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephen Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cun-Yu Wang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Laboratory of Molecular Signaling, Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Ramberger E, Sapozhnikova V, Ng YLD, Dolnik A, Ziehm M, Popp O, Sträng E, Kull M, Grünschläger F, Krüger J, Benary M, Müller S, Gao X, Murgai A, Haji M, Schmidt A, Lutz R, Nogai A, Braune J, Laue D, Langer C, Khandanpour C, Bassermann F, Döhner H, Engelhardt M, Straka C, Hundemer M, Beule D, Haas S, Keller U, Einsele H, Bullinger L, Knop S, Mertins P, Krönke J. The proteogenomic landscape of multiple myeloma reveals insights into disease biology and therapeutic opportunities. NATURE CANCER 2024; 5:1267-1284. [PMID: 38942927 PMCID: PMC11358022 DOI: 10.1038/s43018-024-00784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/15/2024] [Indexed: 06/30/2024]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy of the bone marrow. Despite therapeutic advances, MM remains incurable, and better risk stratification as well as new therapies are therefore highly needed. The proteome of MM has not been systematically assessed before and holds the potential to uncover insight into disease biology and improved prognostication in addition to genetic and transcriptomic studies. Here we provide a comprehensive multiomics analysis including deep tandem mass tag-based quantitative global (phospho)proteomics, RNA sequencing, and nanopore DNA sequencing of 138 primary patient-derived plasma cell malignancies encompassing treatment-naive MM, plasma cell leukemia and the premalignancy monoclonal gammopathy of undetermined significance, as well as healthy controls. We found that the (phospho)proteome of malignant plasma cells are highly deregulated as compared with healthy plasma cells and is both defined by chromosomal alterations as well as posttranscriptional regulation. A prognostic protein signature was identified that is associated with aggressive disease independent of established risk factors in MM. Integration with functional genetics and single-cell RNA sequencing revealed general and genetic subtype-specific deregulated proteins and pathways in plasma cell malignancies that include potential targets for (immuno)therapies. Our study demonstrates the potential of proteogenomics in cancer and provides an easily accessible resource for investigating protein regulation and new therapeutic approaches in MM.
Collapse
Affiliation(s)
- Evelyn Ramberger
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Valeriia Sapozhnikova
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Yuen Lam Dora Ng
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Dolnik
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Ziehm
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Eric Sträng
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miriam Kull
- Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Florian Grünschläger
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Josefine Krüger
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Sina Müller
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xiang Gao
- Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Arunima Murgai
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mohamed Haji
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Annika Schmidt
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raphael Lutz
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Axel Nogai
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Braune
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik Laue
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Florian Bassermann
- Department of Medicine III, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Hartmut Döhner
- Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | | | - Michael Hundemer
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Simon Haas
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Heidelberg, Germany
| | - Ulrich Keller
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Lars Bullinger
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Knop
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
- Nuremberg General Hospital, Nuremberg, Germany.
- Paracelsus Medical School, Nuremberg, Germany.
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
- Berlin Institute of Health, Berlin, Germany.
| | - Jan Krönke
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), partner site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
15
|
Wu CJ, Livak F, Ashwell JD. The histone methyltransferase KMT2D maintains cellular glucocorticoid responsiveness by shielding the glucocorticoid receptor from degradation. J Biol Chem 2024; 300:107581. [PMID: 39025450 PMCID: PMC11350265 DOI: 10.1016/j.jbc.2024.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Because of their ability to induce lymphocyte apoptosis, glucocorticoids (GC) are widely used to treat hematological malignancies such as lymphomas and multiple myeloma. Their effectiveness is often limited, however, due to the development of glucocorticoid resistance by a variety of molecular mechanisms. Here we performed an unbiased genome-wide CRISPR screen with the human T-cell leukemia cell line Jurkat to find previously unidentified genes required for GC-induced apoptosis. One such gene was KMT2D (also known as MLL2 or MLL4), which encodes a histone lysine methyltransferase whose mutations are associated with a variety of cancers, blood malignancies in particular, and are considered markers of poor prognosis. Knockout of KMT2D by CRISPR/Cas9 gene editing in Jurkat and several multiple myeloma cell lines downregulated GR protein expression. Surprisingly, this was not due to a reduction in GR transcripts, but rather to a decrease in the protein's half-life, primarily due to proteasomal degradation. Reconstitution of KMT2D expression restored GR levels. In contrast to the known ability of KMT2D to control gene transcription through covalent histone methylation, KMT2D-mediated upregulation of GR levels did not require its methyltransferase activity. Co-immunoprecipitation and proximity ligation assays found constitutive binding of KMT2D to the GR, which was enhanced in the presence of GC. These observations reveal KMT2D to be essential for the stabilization of cellular GR levels, and suggest a possible mechanism by which KMT2D mutations may lead to GC resistance in some malignancies.
Collapse
Affiliation(s)
- Chuan-Jin Wu
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ferenc Livak
- Laboratory of Genome Integrity Flow Cytometry Core, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
16
|
Mirandari A, Parker H, Ashton-Key M, Stevens B, Walewska R, Stamatopoulos K, Bryant D, Oscier DG, Gibson J, Strefford JC. The genomic and molecular landscape of splenic marginal zone lymphoma, biological and clinical implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:877-901. [PMID: 39280243 PMCID: PMC11390296 DOI: 10.37349/etat.2024.00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/08/2024] [Indexed: 09/18/2024] Open
Abstract
Splenic marginal zone lymphoma (SMZL) is a rare, predominantly indolent B-cell lymphoma constituting fewer than 2% of lymphoid neoplasms. However, around 30% of patients have a shorter survival despite currently available treatments and the prognosis is especially poor for the 5-15% of cases that transform to a large cell lymphoma. Mounting evidence suggests that the molecular pathogenesis of SMZL is critically shaped by microenvironmental triggering and cell-intrinsic aberrations. Immunogenetic investigations have revealed biases in the immunoglobulin gene repertoire, indicating a role of antigen selection. Furthermore, cytogenetic studies have identified recurrent chromosomal abnormalities such as deletion of the long arm of chromosome 7, though specific disease-associated genes remain elusive. Our knowledge of SMZL's mutational landscape, based on a limited number of cases, has identified recurring mutations in KLF2, NOTCH2, and TP53, as well as genes clustering within vital B-cell differentiation pathways. These mutations can be clustered within patient subgroups with different patterns of chromosomal lesions, immunogenetic features, transcriptional signatures, immune microenvironments, and clinical outcomes. Regarding SMZL epigenetics, initial DNA methylation profiling has unveiled epigenetically distinct patient subgroups, including one characterized by elevated expression of Polycomb repressor complex 2 (PRC2) components. Furthermore, it has also demonstrated that patients with evidence of high historical cell division, inferred from methylation data, exhibit inferior treatment-free survival. This review provides an overview of our current understanding of SMZL's molecular basis and its implications for patient outcomes. Additionally, it addresses existing knowledge gaps, proposes future research directions, and discusses how a comprehensive molecular understanding of the disease will lead to improved management and treatment choices for patients.
Collapse
Affiliation(s)
- Amatta Mirandari
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Helen Parker
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Margaret Ashton-Key
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
- Department of Pathology, University Hospital Southampton NHS Foundation Trust, SO16 6YD Southampton, UK
| | - Benjamin Stevens
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Renata Walewska
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
| | - Dean Bryant
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - David G Oscier
- Department of Molecular Pathology, University Hospitals Dorset, SO16 6YD Bournemouth, UK
| | - Jane Gibson
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Jonathan C Strefford
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| |
Collapse
|
17
|
Liu QX, Zhu Y, Yi HM, Shen YG, Wang L, Cheng S, Xu PP, Xu HM, Zhou LT, Huang YH, Huang CX, Fu D, Ji MM, Wang CF, Zhao WL. KMT2D mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-induced regulatory T cell trafficking via FBXW7-NOTCH-MYC/TGF-β1 axis. Int J Biol Sci 2024; 20:3972-3985. [PMID: 39113693 PMCID: PMC11302885 DOI: 10.7150/ijbs.93349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/06/2024] [Indexed: 08/10/2024] Open
Abstract
Histone methyltransferase KMT2D is one of the most frequently mutated genes in diffuse large B-cell lymphoma (DLBCL) and has been identified as an important pathogenic factor and prognostic marker. However, the biological relevance of KMT2D mutations on tumor microenvironment remains to be determined. KMT2D mutations were assessed by whole-genome/exome sequencing (WGS/WES) in 334 patients and by targeted sequencing in 427 patients with newly diagnosed DLBCL. Among all 761 DLBCL patients, somatic mutations in KMT2D were observed in 143 (18.79%) patients and significantly associated with advanced Ann Arbor stage and MYC expression ≥ 40%, as well as inferior progression-free survival and overall survival. In B-lymphoma cells, the mutation or knockdown of KMT2D inhibited methylation of lysine 4 on histone H3 (H3K4), downregulated FBXW7 expression, activated NOTCH signaling pathway and downstream MYC/TGF-β1, resulting in alterations of tumor-induced regulatory T cell trafficking. In B-lymphoma murine models established with subcutaneous injection of SU-DHL-4 cells, xenografted tumors bearing KMT2D mutation presented lower H3K4 methylation, higher regulatory T cell recruitment, thereby provoking rapid tumor growth compared with wild-type KMT2D via FBXW7-NOTCH-MYC/TGF-β1 axis.
Collapse
Affiliation(s)
- Qing-Xiao Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong-Mei Yi
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-Ge Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai-Min Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lu-Ting Zhou
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yao-Hui Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chuan-Xin Huang
- Department of Immunobiology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Meng-Meng Ji
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chao-Fu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai 200025, China
| |
Collapse
|
18
|
Fernández-Miranda I, Pedrosa L, González-Rincón J, Espinet B, de la Cruz Vicente F, Climent F, Gómez S, Royuela A, Camacho FI, Martín-Acosta P, Yanguas-Casás N, Domínguez M, Méndez M, Colomo L, Salar A, Horcajo B, Navarro M, García-Cosío M, Piris-Villaespesa M, Llanos M, García JF, Sequero S, Mercadal S, García-Hernández S, Navarro B, Mollejo M, Provencio M, Sánchez-Beato M. Generation and External Validation of a Histologic Transformation Risk Model for Patients with Follicular Lymphoma. Mod Pathol 2024; 37:100516. [PMID: 38763418 DOI: 10.1016/j.modpat.2024.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
Follicular lymphoma (FL) is the most frequent indolent lymphoma. Some patients (10%-15%) experience histologic transformation (HT) to a more aggressive lymphoma, usually diffuse large B-cell lymphoma (DLBCL). This study aimed to validate and improve a genetic risk model to predict HT at diagnosis.We collected mutational data from diagnosis biopsies of 64 FL patients. We combined them with the data from a previously published cohort (total n = 104; 62 from nontransformed and 42 from patients who did transform to DLBCL). This combined cohort was used to develop a nomogram to estimate the risk of HT. Prognostic mutated genes and clinical variables were assessed using Cox regression analysis to generate a risk model. The model was internally validated by bootstrapping and externally validated in an independent cohort. Its performance was evaluated using a concordance index and a calibration curve. The clinicogenetic nomogram included the mutational status of 3 genes (HIST1HE1, KMT2D, and TNFSR14) and high-risk Follicular Lymphoma International Prognostic Index and predicted HT with a concordance index of 0.746. Patients were classified as being at low or high risk of transformation. The probability HT function at 24 months was 0.90 in the low-risk group vs 0.51 in the high-risk group and, at 60 months, 0.71 vs 0.15, respectively. In the external validation cohort, the probability HT function in the low-risk group was 0.86 vs 0.54 in the high-risk group at 24 months, and 0.71 vs 0.32 at 60 months. The concordance index in the external cohort was 0.552. In conclusion, we propose a clinicogenetic risk model to predict FL HT to DLBLC, combining genetic alterations in HIST1H1E, KMT2D, and TNFRSF14 genes and clinical features (Follicular Lymphoma International Prognostic Index) at diagnosis. This model could improve the management of FL patients and allow treatment strategies that would prevent or delay transformation.
Collapse
MESH Headings
- Humans
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Female
- Male
- Middle Aged
- Aged
- Nomograms
- Adult
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Risk Assessment
- Aged, 80 and over
- Mutation
- Risk Factors
- Prognosis
- Biomarkers, Tumor/genetics
Collapse
Affiliation(s)
- Ismael Fernández-Miranda
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Lucía Pedrosa
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Julia González-Rincón
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain; CoE Data Intelligence, Fujitsu Technology Solutions S.A., Pozuelo de Alarcón, Madrid, Spain
| | - Blanca Espinet
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Department of Pathology, Hospital del Mar, Barcelona, Spain
| | - Fátima de la Cruz Vicente
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Seville, Spain
| | - Fina Climent
- Department of Pathology, Hospital Universitari de Bellvitge-IDIBELL, Barcelona, Spain
| | - Sagrario Gómez
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Ana Royuela
- Biostatistics Unit, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA. CIBERESP, ISCIII. Madrid, Spain
| | | | - Paloma Martín-Acosta
- Department of Pathology, Cancer Molecular Pathology Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Natalia Yanguas-Casás
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Marina Domínguez
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Miriam Méndez
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain; Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Luis Colomo
- Translational Research on Hematological Neoplasms Group, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Antonio Salar
- Department of Hematology, Hospital del Mar, Barcelona, Spain
| | - Beatriz Horcajo
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Marta Navarro
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Mónica García-Cosío
- Department of Pathology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Marta Llanos
- Department of Oncology, Hospital Universitario de Canarias, Tenerife, Spain
| | - Juan F García
- Department of Pathology, Hospital MD Anderson Cancer Center, Madrid, Spain
| | - Silvia Sequero
- Department of Oncology, Hospital Universitario San Cecilio, Granada, Spain
| | - Santiago Mercadal
- Department of Hematology, ICO-Hospital Duran I Reynals, Barcelona, Spain
| | | | - Belén Navarro
- Department of Hematology, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Manuela Mollejo
- Department of Pathology, Complejo Hospitalario de Toledo, Spain
| | - Mariano Provencio
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain; Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, Facultad de Medicina, Universidad Autónoma de Madrid, IDIPHISA, Madrid, Spain
| | - Margarita Sánchez-Beato
- Department of Medical Oncology, Lymphoma Research Group, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain.
| |
Collapse
|
19
|
Zhou Y, Yang F, Zhou H, Lv S. Alginate/Carboxymethyl Chitosan Core-Shell Microspheres Coloaded with Doxorubicin/Docetaxel Reverse Chemotherapy Resistance in Anaplastic Thyroid Carcinoma. Thyroid 2024; 34:856-870. [PMID: 38661518 DOI: 10.1089/thy.2024.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Affiliation(s)
- Yili Zhou
- Department of Thyroid Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fan Yang
- Department of Thyroid Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongzhong Zhou
- Department of Thyroid Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shixu Lv
- Department of Thyroid Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
20
|
Boukas L, Luperchio TR, Razi A, Hansen KD, Bjornsson HT. Neuron-specific chromatin disruption at CpG islands and aging-related regions in Kabuki syndrome mice. Genome Res 2024; 34:696-710. [PMID: 38702196 PMCID: PMC11216309 DOI: 10.1101/gr.278416.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
Many Mendelian developmental disorders caused by coding variants in epigenetic regulators have now been discovered. Epigenetic regulators are broadly expressed, and each of these disorders typically shows phenotypic manifestations from many different organ systems. An open question is whether the chromatin disruption-the root of the pathogenesis-is similar in the different disease-relevant cell types. This is possible in principle, because all these cell types are subject to effects from the same causative gene, which has the same kind of function (e.g., methylates histones) and is disrupted by the same germline variant. We focus on mouse models for Kabuki syndrome types 1 and 2 and find that the chromatin accessibility changes in neurons are mostly distinct from changes in B or T cells. This is not because the neuronal accessibility changes occur at regulatory elements that are only active in neurons. Neurons, but not B or T cells, show preferential chromatin disruption at CpG islands and at regulatory elements linked to aging. A sensitive analysis reveals that regulatory elements disrupted in B/T cells do show chromatin accessibility changes in neurons, but these are very subtle and of uncertain functional significance. Finally, we are able to identify a small set of regulatory elements disrupted in all three cell types. Our findings reveal the cellular-context-specific effect of variants in epigenetic regulators and suggest that blood-derived episignatures, although useful diagnostically, may not be well suited for understanding the mechanistic basis of neurodevelopment in Mendelian disorders of the epigenetic machinery.
Collapse
Affiliation(s)
- Leandros Boukas
- Department of Pediatrics, Children's National Hospital, Washington, DC 20010, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Teresa Romeo Luperchio
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Afrooz Razi
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kasper D Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, USA
| | - Hans T Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
- Landspitali University Hospital, 101 Reykjavík, Iceland
| |
Collapse
|
21
|
Fang Z, Wu X, Xiao L, Wang C, Zhao Y, Zhang Q, Jablonska PA, La Rosa A, Dempke WCM, Furqan M, Fan H. Somatic KMT2D loss-of-function mutations in lung squamous cell carcinoma: a single-center cohort study. J Thorac Dis 2024; 16:3338-3349. [PMID: 38883659 PMCID: PMC11170359 DOI: 10.21037/jtd-24-134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024]
Abstract
Background The significant progress has been made in targeted therapy for lung adenocarcinoma (LUAD) in the past decade. Only few targeted therapeutics have yet been approved for the treatment of lung squamous cell carcinoma (LUSC). Several higher frequency of gene alterations are identified as potentially actionable in LUSC. Our work aimed to explore the complex interplay of multiple genetic alterations and pathways contributing to the pathogenesis of LUSC, with a very low frequency of a single driver molecular alterations to develop more effective therapeutic strategies in the future. Methods We retrospectively analyzed the targeted next-generation sequencing (NGS) data (approximately 600 genes) of 335 patients initially diagnosed with non-small cell lung cancer (NSCLC) at our institution between January 2019 and March 2023 and explored the somatic genome alteration difference between LUSC and LUAD. Results We analyzed that the presence of loss-of-function (LoF) mutations (nonsense, frameshift, and splice-site variants) in histone-lysine N-methyltransferase 2D (KMT2D) was much more prevalent in LUSC (11/53, 20.8%) than in LUAD (6/282, 2.1%). Moreover, our data indicated TP53 co-mutated with KMT2D LoF in 90.9% (10/11) LUSC and 33.3% (2/6) LUAD. Notably, the mutation allele fraction (MAF) of KMT2D was very similar to that of TP53 in the co-mutated cases. Genomic profiling of driver gene mutations of NSCLC showed that 81.8% (9/11) of the patients with LUSC with KMT2D LoF mutations had PIK3CA amplification and/or FGFR1 amplification. Conclusions Our results prompted that somatic LoF mutations of KMT2D occur frequently in LUSC, but are less frequent in LUAD and therefore may potentially contribute to the pathogenesis of LUSC. Concurrent TP53 mutations, FGFR1 amplification, and PIK3CA amplification are very common in LUSC cases with KMT2D LoF mutations. It needs more deeper investigation on the interplay of the genes and pathways and uses larger cohorts in the future.
Collapse
Affiliation(s)
- Zekui Fang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiping Wu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xiao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunli Wang
- Mygene Diagnostics Co., Ltd., Guangzhou, China
- Guangdong Engineering Technology Research Center of Multiplex PCR & Tumor Diagnostics, Guangzhou, China
| | - Yanyan Zhao
- Mygene Diagnostics Co., Ltd., Guangzhou, China
- Guangdong Engineering Technology Research Center of Multiplex PCR & Tumor Diagnostics, Guangzhou, China
| | - Qingchao Zhang
- Mygene Diagnostics Co., Ltd., Guangzhou, China
- Guangdong Engineering Technology Research Center of Multiplex PCR & Tumor Diagnostics, Guangzhou, China
| | - Paola Anna Jablonska
- Radiation Oncology Department, Hospital Universitario de Navarra, Pamplona, Spain
| | - Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Wolfram C M Dempke
- Department of Haematology and Oncology, University of Munich, Munich, Germany
| | - Muhammad Furqan
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Huizhen Fan
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Blawski R, Vokshi BH, Guo X, Kittane S, Sallaku M, Chen W, Gjyzari M, Cheung T, Zhang Y, Simpkins C, Zhou W, Kulick A, Zhao P, Wei M, Shivashankar P, Prioleau T, Razavi P, Koche R, Rebecca VW, de Stanchina E, Castel P, Chan HM, Scaltriti M, Cocco E, Ji H, Luo M, Toska E. Methylation of the chromatin modifier KMT2D by SMYD2 contributes to therapeutic response in hormone-dependent breast cancer. Cell Rep 2024; 43:114174. [PMID: 38700982 PMCID: PMC11265541 DOI: 10.1016/j.celrep.2024.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Activating mutations in PIK3CA are frequently found in estrogen-receptor-positive (ER+) breast cancer, and the combination of the phosphatidylinositol 3-kinase (PI3K) inhibitor alpelisib with anti-ER inhibitors is approved for therapy. We have previously demonstrated that the PI3K pathway regulates ER activity through phosphorylation of the chromatin modifier KMT2D. Here, we discovered a methylation site on KMT2D, at K1330 directly adjacent to S1331, catalyzed by the lysine methyltransferase SMYD2. SMYD2 loss attenuates alpelisib-induced KMT2D chromatin binding and alpelisib-mediated changes in gene expression, including ER-dependent transcription. Knockdown or pharmacological inhibition of SMYD2 sensitizes breast cancer cells, patient-derived organoids, and tumors to PI3K/AKT inhibition and endocrine therapy in part through KMT2D K1330 methylation. Together, our findings uncover a regulatory crosstalk between post-translational modifications that fine-tunes KMT2D function at the chromatin. This provides a rationale for the use of SMYD2 inhibitors in combination with PI3Kα/AKT inhibitors in the treatment of ER+/PIK3CA mutant breast cancer.
Collapse
Affiliation(s)
- Ryan Blawski
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | - Bujamin H Vokshi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | - Xinyu Guo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Srushti Kittane
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Mirna Sallaku
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wanlu Chen
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Martina Gjyzari
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | | | - Yuhan Zhang
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Christopher Simpkins
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Amanda Kulick
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peihua Zhao
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Meihan Wei
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Pranavkrishna Shivashankar
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Tatiana Prioleau
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vito W Rebecca
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | | | - Emiliano Cocco
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eneda Toska
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Anselmino N, Labanca E, Shepherd PD, Dong J, Yang J, Song X, Nandakumar S, Kundra R, Lee C, Schultz N, Zhang J, Araujo JC, Aparicio AM, Subudhi SK, Corn PG, Pisters LL, Ward JF, Davis JW, Vazquez ES, Gueron G, Logothetis CJ, Futreal A, Troncoso P, Chen Y, Navone NM. Integrative Molecular Analyses of the MD Anderson Prostate Cancer Patient-derived Xenograft (MDA PCa PDX) Series. Clin Cancer Res 2024; 30:2272-2285. [PMID: 38488813 PMCID: PMC11094415 DOI: 10.1158/1078-0432.ccr-23-2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE Develop and deploy a robust discovery platform that encompasses heterogeneity, clinical annotation, and molecular characterization and overcomes the limited availability of prostate cancer models. This initiative builds on the rich MD Anderson (MDA) prostate cancer (PCa) patient-derived xenograft (PDX) resource to complement existing publicly available databases by addressing gaps in clinically annotated models reflecting the heterogeneity of potentially lethal and lethal prostate cancer. EXPERIMENTAL DESIGN We performed whole-genome, targeted, and RNA sequencing in representative samples of the same tumor from 44 PDXs derived from 38 patients linked to donor tumor metadata and corresponding organoids. The cohort includes models derived from different morphologic groups, disease states, and involved organ sites (including circulating tumor cells), as well as paired samples representing heterogeneity or stages before and after therapy. RESULTS The cohort recapitulates clinically reported alterations in prostate cancer genes, providing a data resource for clinical and molecular interrogation of suitable experimental models. Paired samples displayed conserved molecular alteration profiles, suggesting the relevance of other regulatory mechanisms (e.g., epigenomic) influenced by the microenvironment and/or treatment. Transcriptomically, models were grouped on the basis of morphologic classification. DNA damage response-associated mechanisms emerged as differentially regulated between adenocarcinoma and neuroendocrine prostate cancer in a cross-interrogation of PDX/patient datasets. CONCLUSIONS We addressed the gap in clinically relevant prostate cancer models through comprehensive molecular characterization of MDA PCa PDXs, providing a discovery platform that integrates with patient data and benchmarked to therapeutically relevant consensus clinical groupings. This unique resource supports robust hypothesis generation and testing from basic, translational, and clinical perspectives.
Collapse
Affiliation(s)
- Nicolas Anselmino
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter D.A. Shepherd
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiabin Dong
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Yang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaofei Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Subhiksha Nandakumar
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ritika Kundra
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cindy Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John C. Araujo
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana M. Aparicio
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sumit K. Subudhi
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Louis L. Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John F. Ward
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John W. Davis
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elba S. Vazquez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Inflamación y Cáncer, Buenos Aires, Argentina
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Geraldine Gueron
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Inflamación y Cáncer, Buenos Aires, Argentina
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nora M. Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
Potter SJ, Zhang L, Kotliar M, Wu Y, Schafer C, Stefan K, Boukas L, Qu’d D, Bodamer O, Simpson BN, Barski A, Lindsley AW, Bjornsson HT. KMT2D regulates activation, localization, and integrin expression by T-cells. Front Immunol 2024; 15:1341745. [PMID: 38765012 PMCID: PMC11099208 DOI: 10.3389/fimmu.2024.1341745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 05/21/2024] Open
Abstract
Individuals with Kabuki syndrome present with immunodeficiency; however, how pathogenic variants in the gene encoding the histone-modifying enzyme lysine methyltransferase 2D (KMT2D) lead to immune alterations remain poorly understood. Following up on our prior report of KMT2D-altered integrin expression in B-cells, we performed targeted analyses of KMT2D's influence on integrin expression in T-cells throughout development (thymocytes through peripheral T-cells) in murine cells with constitutive- and conditional-targeted Kmt2d deletion. Using high-throughput RNA-sequencing and flow cytometry, we reveal decreased expression (both at the transcriptional and translational levels) of a cluster of leukocyte-specific integrins, which perturb aspects of T-cell activation, maturation, adhesion/localization, and effector function. H3K4me3 ChIP-PCR suggests that these evolutionary similar integrins are under direct control of KMT2D. KMT2D loss also alters multiple downstream programming/signaling pathways, including integrin-based localization, which can influence T-cell populations. We further demonstrated that KMT2D deficiency is associated with the accumulation of murine CD8+ single-positive (SP) thymocytes and shifts in both human and murine peripheral T-cell populations, including the reduction of the CD4+ recent thymic emigrant (RTE) population. Together, these data show that the targeted loss of Kmt2d in the T-cell lineage recapitulates several distinct features of Kabuki syndrome-associated immune deficiency and implicates epigenetic mechanisms in the regulation of integrin signaling.
Collapse
Affiliation(s)
- Sarah J. Potter
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Li Zhang
- McKusick-Nathans Department of Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Kotliar
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Yuehong Wu
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Caitlin Schafer
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Kurtis Stefan
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Leandros Boukas
- McKusick-Nathans Department of Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dima Qu’d
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, United States
- The Roya Kabuki Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Genetics and Genomics, Broad Institute of MIT and Harvard University, Cambridge, MA, United States
| | - Brittany N. Simpson
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew W. Lindsley
- Division of Allergy & Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hans T. Bjornsson
- McKusick-Nathans Department of Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Faculty of Medicine, The University of Iceland, Reykjavik, Iceland
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
25
|
Zhuang S, Yang Z, Cui Z, Zhang Y, Che F. Epigenetic alterations and advancement of lymphoma treatment. Ann Hematol 2024; 103:1435-1454. [PMID: 37581713 DOI: 10.1007/s00277-023-05395-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023]
Abstract
Lymphomas, complex and heterogeneous malignant tumors, originate from the lymphopoietic system. These tumors are notorious for their high recurrence rates and resistance to treatment, which leads to poor prognoses. As ongoing research has shown, epigenetic modifications like DNA methylation, histone modifications, non-coding RNA regulation, and RNA modifications play crucial roles in lymphoma pathogenesis. Epigenetic modification-targeting drugs have exhibited therapeutic efficacy and tolerability in both monotherapy and combination lymphoma therapy. This review discusses pathogenic mechanisms and potential epigenetic therapeutic targets in common lymphomas, offering new avenues for lymphoma diagnosis and treatment. We also discuss the shortcomings of current lymphoma treatments, while suggesting potential areas for future research, in order to improve the prediction and prognosis of lymphoma.
Collapse
Affiliation(s)
- Shuhui Zhuang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhaobo Yang
- Spine Surgery, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhuangzhuang Cui
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China.
- Department of Hematology, Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Fengyuan Che
- Department of Neurology, Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, 276000, China.
| |
Collapse
|
26
|
Cao B, Sun C, Bi R, Liu Z, Jia Y, Cui W, Sun M, Yu B, Li X, Zhou X. Mutation landscape in Chinese nodal diffuse large B-cell lymphoma by targeted next generation sequencing and their relationship with clinicopathological characteristics. BMC Med Genomics 2024; 17:84. [PMID: 38609996 PMCID: PMC11015559 DOI: 10.1186/s12920-024-01866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL), an aggressive and heterogenic malignant entity, is still a challenging clinical problem, since around one-third of patients are not cured with primary treatment. Next-generation sequencing (NGS) technologies have revealed common genetic mutations in DLBCL. We devised an NGS multi-gene panel to discover genetic features of Chinese nodal DLBCL patients and provide reference information for panel-based NGS detection in clinical laboratories. METHODS A panel of 116 DLBCL genes was designed based on the literature and related databases. We analyzed 96 Chinese nodal DLBCL biopsy specimens through targeted sequencing. RESULTS The most frequently mutated genes were KMT2D (30%), PIM1 (26%), SOCS1 (24%), MYD88 (21%), BTG1 (20%), HIST1H1E (18%), CD79B (18%), SPEN (17%), and KMT2C (16%). SPEN (17%) and DDX3X (6%) mutations were highly prevalent in our study than in Western studies. Thirty-three patients (34%) were assigned as genetic classification by the LymphGen algorithm, including 12 cases MCD, five BN2, seven EZB, seven ST2, and two EZB/ST2 complex. MYD88 L265P mutation, TP53 and BCL2 pathogenic mutations were unfavorable prognostic biomarkers in DLBCL. CONCLUSIONS This study presents the mutation landscape in Chinese nodal DLBCL, highlights the genetic heterogeneity of DLBCL and shows the role of panel-based NGS to prediction of prognosis and potential molecular targeted therapy in DLBCL. More precise genetic classification needs further investigations.
Collapse
Affiliation(s)
- Bing Cao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
- Fudan University Medical Library, Shanghai, China
| | - Chenbo Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Rui Bi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Zebing Liu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yijun Jia
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Wenli Cui
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Menghong Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Baohua Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Xiaoqiu Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Pathology, Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Deng Q, Lakra P, Gou P, Yang H, Meydan C, Teater M, Chin C, Zhang W, Dinh T, Hussein U, Li X, Rojas E, Liu W, Reville PK, Kizhakeyil A, Barisic D, Parsons S, Wilson A, Henderson J, Scull B, Gurumurthy C, Vega F, Chadburn A, Cuglievan B, El-Mallawany NK, Allen C, Mason C, Melnick A, Green MR. SMARCA4 is a haploinsufficient B cell lymphoma tumor suppressor that fine-tunes centrocyte cell fate decisions. Cancer Cell 2024; 42:605-622.e11. [PMID: 38458188 PMCID: PMC11003852 DOI: 10.1016/j.ccell.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/30/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024]
Abstract
SMARCA4 encodes one of two mutually exclusive ATPase subunits in the BRG/BRM associated factor (BAF) complex that is recruited by transcription factors (TFs) to drive chromatin accessibility and transcriptional activation. SMARCA4 is among the most recurrently mutated genes in human cancer, including ∼30% of germinal center (GC)-derived Burkitt lymphomas. In mice, GC-specific Smarca4 haploinsufficiency cooperated with MYC over-expression to drive lymphomagenesis. Furthermore, monoallelic Smarca4 deletion drove GC hyperplasia with centroblast polarization via significantly increased rates of centrocyte recycling to the dark zone. Mechanistically, Smarca4 loss reduced the activity of TFs that are activated in centrocytes to drive GC-exit, including SPI1 (PU.1), IRF family, and NF-κB. Loss of activity for these factors phenocopied aberrant BCL6 activity within murine centrocytes and human Burkitt lymphoma cells. SMARCA4 therefore facilitates chromatin accessibility for TFs that shape centrocyte trajectories, and loss of fine-control of these programs biases toward centroblast cell-fate, GC hyperplasia and lymphoma.
Collapse
Affiliation(s)
- Qing Deng
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priya Lakra
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Panhong Gou
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haopeng Yang
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cem Meydan
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Matthew Teater
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Christopher Chin
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Wenchao Zhang
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tommy Dinh
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Usama Hussein
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xubin Li
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Estela Rojas
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiguang Liu
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick K Reville
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Atish Kizhakeyil
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Darko Barisic
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sydney Parsons
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashley Wilson
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared Henderson
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brooks Scull
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX, USA
| | | | - Francisco Vega
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Branko Cuglievan
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nader Kim El-Mallawany
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX, USA
| | - Carl Allen
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX, USA
| | - Christopher Mason
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ari Melnick
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Michael R Green
- Department of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
28
|
Li J, Chin CR, Ying HY, Meydan C, Teater MR, Xia M, Farinha P, Takata K, Chu CS, Jiang Y, Eagles J, Passerini V, Tang Z, Rivas MA, Weigert O, Pugh TJ, Chadburn A, Steidl C, Scott DW, Roeder RG, Mason CE, Zappasodi R, Béguelin W, Melnick AM. Loss of CREBBP and KMT2D cooperate to accelerate lymphomagenesis and shape the lymphoma immune microenvironment. Nat Commun 2024; 15:2879. [PMID: 38570506 PMCID: PMC10991284 DOI: 10.1038/s41467-024-47012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Despite regulating overlapping gene enhancers and pathways, CREBBP and KMT2D mutations recurrently co-occur in germinal center (GC) B cell-derived lymphomas, suggesting potential oncogenic cooperation. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d induces a more severe mouse lymphoma phenotype (vs either allele alone) and unexpectedly confers an immune evasive microenvironment manifesting as CD8+ T-cell exhaustion and reduced infiltration. This is linked to profound repression of immune synapse genes that mediate crosstalk with T-cells, resulting in aberrant GC B cell fate decisions. From the epigenetic perspective, we observe interaction and mutually dependent binding and function of CREBBP and KMT2D on chromatin. Their combined deficiency preferentially impairs activation of immune synapse-responsive super-enhancers, pointing to a particular dependency for both co-activators at these specialized regulatory elements. Together, our data provide an example where chromatin modifier mutations cooperatively shape and induce an immune-evasive microenvironment to facilitate lymphomagenesis.
Collapse
Affiliation(s)
- Jie Li
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christopher R Chin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Hsia-Yuan Ying
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew R Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Min Xia
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pedro Farinha
- BC Cancer Centre for Lymphoid Cancer, Department of Pathology and Laboratorial Medicine, University of British Columbia, Vancouver, Canada
| | - Katsuyoshi Takata
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, Canada
| | - Chi-Shuen Chu
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Yiyue Jiang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jenna Eagles
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Verena Passerini
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Ludwig-Maximilians University (LMU) Hospital, Munich, Germany
| | - Zhanyun Tang
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Martin A Rivas
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Oliver Weigert
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Ludwig-Maximilians University (LMU) Hospital, Munich, Germany
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, Canada
| | - David W Scott
- BC Cancer Centre for Lymphoid Cancer, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Robert G Roeder
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Roberta Zappasodi
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
29
|
Shangguan H, Huang X, Lin J, Chen R. Knockdown of Kmt2d leads to growth impairment by activating the Akt/β-catenin signaling pathway. G3 (BETHESDA, MD.) 2024; 14:jkad298. [PMID: 38263533 PMCID: PMC10917512 DOI: 10.1093/g3journal/jkad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
The KMT2D variant-caused Kabuki syndrome (KS) is characterized by short stature as a prominent clinical characteristic. The initiation and progression of body growth are fundamentally influenced by chondrocyte proliferation. Uncertainty persists regarding the possibility that KMT2D deficiency affects growth by impairing chondrocyte proliferation. In this study, we used the CRISPR/Cas13d technique to knockdown kmt2d in zebrafish embryos and lentivirus to create a stable Kmt2d gene knockdown cell line in chondrocytes (ATDC5 cells). We also used CCK8 and flow cytometric studies, respectively, to determine proliferation and cell cycle state. The relative concentrations of phosphorylated Akt (ser473), phosphorylated β-catenin (ser552), and cyclin D1 proteins in chondrocytes and zebrafish embryos were determined by using western blots. In addition, Akt inhibition was used to rescue the phenotypes caused by kmt2d deficiency in chondrocytes, as well as a zebrafish model that was generated. The results showed that a knockdown of kmt2d significantly decreased body length and resulted in aberrant cartilage development in zebrafish embryos. Furthermore, the knockdown of Kmt2d in ATDC5 cells markedly increased proliferation and accelerated the G1/S transition. In addition, the knockdown of Kmt2d resulted in the activation of the Akt/β-catenin signaling pathway in ATDC5 cells. Finally, Akt inhibition could partly rescue body length and chondrocyte development in the zebrafish model. Our study demonstrated that KMT2D modulates bone growth conceivably via regulation of the Akt/β-catenin pathway.
Collapse
Affiliation(s)
- Huakun Shangguan
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Xiaozhen Huang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Jinduan Lin
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Ruimin Chen
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| |
Collapse
|
30
|
Xu D, Bewicke-Copley F, Close K, Okosun J, Gale RP, Apperley J, Weinstock DM, Wendel HG, Fitzgibbon J. Targeting lysine demethylase 5 (KDM5) in mantle cell lymphoma. Blood Cancer J 2024; 14:29. [PMID: 38351059 PMCID: PMC10864367 DOI: 10.1038/s41408-024-00999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
- Danmei Xu
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK.
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK.
- Centre for Haematology, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK.
- Oxford Cancer and Haematology centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK.
| | - Findlay Bewicke-Copley
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | - Karina Close
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| | - Robert Peter Gale
- Centre for Haematology, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Jane Apperley
- Centre for Haematology, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Merck and Co., Rahway, NJ, USA
| | - Hans-Guido Wendel
- Memorial Sloan-Kettering Cancer Center, Cancer Biology & Genetics, New York, NY, 10065, USA
| | - Jude Fitzgibbon
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Sq, London, UK
| |
Collapse
|
31
|
Zhang YH, Tao Q, Zhang WY, Zhao S, Liu WP, Gao LM. Histone methyltransferase KMT2D inhibits ENKTL carcinogenesis by epigenetically activating SGK1 and SOCS1. Genes Genomics 2024; 46:203-212. [PMID: 37523130 DOI: 10.1007/s13258-023-01434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Epigenetic alteration plays an essential role in the occurrence and development of extranodal natural killer/T cell lymphoma (ENKTL). Histone methyltransferase (HMT) KMT2D is an epigenetic regulator that plays different roles in different tumors, but its role and mechanism in ENKTL are still unclear. METHODS We performed immunohistochemical staining of 112 ENKTL formalin-fixed paraffin-embedded (FFPE) samples. Then, we constructed KMT2D knockdown cell lines and conducted research on cell biological behavior. Finally, to further investigate KMT2D-mediated downstream genes, ChIP-seq and ChIP -qPCR was performed. RESULTS The low expression of KMT2D was related to a decreased abundance in histone H3 lysine 4 mono- and trimethylation (H3K4me1/3). In KMT2D knockdown YT and NK-YS cells, cell proliferation was faster (P < 0.05), apoptosis was decreased (P < 0.05), the abundance of S phase cells was increased (P < 0.05), and the level of H3K4me1 was decreased. Notably, ChIP-seq revealed two crucial genes and pathways downregulated by KMT2D. CONCLUSIONS KMT2D is a tumor suppressor gene that mediates H3K4me1 and influences ENKTL proliferation and apoptosis by regulating the cell cycle. Moreover, in ENKTL, serum- and glucocorticoid-inducible kinase-1 (SGK1) and suppressor of cytokine signaling-1 (SOCS1) are downstream genes of KMT2D.
Collapse
Affiliation(s)
- Yue-Hua Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qing Tao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Wen-Yan Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Sha Zhao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Wei-Ping Liu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China.
| | - Li-Min Gao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Terzi Çizmecioğlu N. Roles and Regulation of H3K4 Methylation During Mammalian Early Embryogenesis and Embryonic Stem Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:73-96. [PMID: 38231346 DOI: 10.1007/5584_2023_794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
From generation of germ cells, fertilization, and throughout early mammalian embryonic development, the chromatin undergoes significant alterations to enable precise regulation of gene expression and genome use. Methylation of histone 3 lysine 4 (H3K4) correlates with active regions of the genome, and it has emerged as a dynamic mark throughout this timeline. The pattern and the level of H3K4 methylation are regulated by methyltransferases and demethylases. These enzymes, as well as their protein partners, play important roles in early embryonic development and show phenotypes in embryonic stem cell self-renewal and differentiation. The various roles of H3K4 methylation are interpreted by dedicated chromatin reader proteins, linking this modification to broader molecular and cellular phenotypes. In this review, we discuss the regulation of different levels of H3K4 methylation, their distinct accumulation pattern, and downstream molecular roles with an early embryogenesis perspective.
Collapse
|
33
|
Yao B, Xing M, Meng S, Li S, Zhou J, Zhang M, Yang C, Qu S, Jin Y, Yuan H, Zen K, Ma C. EBF2 Links KMT2D-Mediated H3K4me1 to Suppress Pancreatic Cancer Progression via Upregulating KLLN. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302037. [PMID: 38015024 PMCID: PMC10787067 DOI: 10.1002/advs.202302037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/09/2023] [Indexed: 11/29/2023]
Abstract
Mono-methylation of histone H3 on Lys 4 (H3K4me1), which is catalyzed by histone-lysine N-methyltransferase 2D (KMT2D), serves as an important epigenetic regulator in transcriptional control. In this study, the authors identify early B-cell factor 2 (EBF2) as a binding protein of H3K4me1. Combining analyses of RNA-seq and ChIP-seq data, the authors further identify killin (KLLN) as a transcriptional target of KMT2D and EBF2 in pancreatic ductal adenocarcinoma (PDAC) cells. KMT2D-dependent H3K4me1 and EBF2 are predominantly over-lapped proximal to the transcription start site (TSS) of KLLN gene. Comprehensive functional assays show that KMT2D and EBF2 cooperatively inhibit PDAC cells proliferation, migration, and invasion through upregulating KLLN. Such inhibition on PDAC progression is also achieved through increasing H3K4me1 level by GSK-LSD1, a selective inhibitor of lysine-specific demethylase 1 (LSD1). Taken together, these findings reveal a new mechanism underlying PDAC progression and provide potential therapeutic targets for PDAC treatment.
Collapse
Affiliation(s)
- Bing Yao
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Mengying Xing
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Shixin Meng
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Shang Li
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Jingwan Zhou
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Ming Zhang
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Chen Yang
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Shuang Qu
- School of Life Science and TechnologyChina Pharmaceutical University639 Longmian AvenueNanjingJiangsu211198China
| | - Yucui Jin
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Hongyan Yuan
- Department of Oncology and Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDC20007USA
| | - Ke Zen
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Changyan Ma
- Department of Medical GeneticsNanjing Medical University101 Longmian AvenueNanjing211166China
- Jiangsu Key Laboratory of XenotransplantationNanjing Medical University101 Longmian AvenueNanjing211166China
| |
Collapse
|
34
|
Watanabe T. Gene targeted and immune therapies for nodal and gastrointestinal follicular lymphomas. World J Gastroenterol 2023; 29:6179-6197. [PMID: 38186866 PMCID: PMC10768399 DOI: 10.3748/wjg.v29.i48.6179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023] Open
Abstract
Follicular lymphoma (FL) is the most common indolent B-cell lymphoma (BCL) globally. Recently, its incidence has increased in Europe, the United States, and Asia, with the number of gastrointestinal FL cases expected to increase. Genetic abnormalities related to t(14;18) translocation, BCL2 overexpression, NF-κB pathway-related factors, histone acetylases, and histone methyltransferases cause FL and enhance its proliferation. Meanwhile, microRNAs are commonly used in diagnosing FL and predicting patient prognosis. Many clinical trials on novel therapeutics targeting these genetic abnormalities and immunomodulatory mechanisms have been conducted, resulting in a marked improvement in therapeutic outcomes for FL. Although developing these innovative therapeutic agents targeting specific genetic mutations and immune pathways has provided hope for curative options, FL treatment has become more complex, requiring combinatorial therapeutic regimens. However, optimal treatment combinations have not yet been achieved, highlighting the importance of a complete under-standing regarding the pathogenesis of gastrointestinal FL. Accordingly, this article reviews key research on the molecular pathogenesis of nodal FL and novel therapies targeting the causative genetic mutations. Moreover, the results of clinical trials are summarized, with a particular focus on treating nodal and gastrointestinal FLs.
Collapse
Affiliation(s)
- Takuya Watanabe
- Department of Internal Medicine and Gastroenterology, Watanabe Internal Medicine Aoyama Clinic, Niigata 9502002, Japan
| |
Collapse
|
35
|
Zhao Z, Aoi Y, Philips CN, Meghani KA, Gold SR, Yu Y, John LS, Qian J, Zeidner JM, Meeks JJ, Shilatifard A. Somatic mutations of MLL4/COMPASS induce cytoplasmic localization providing molecular insight into cancer prognosis and treatment. Proc Natl Acad Sci U S A 2023; 120:e2310063120. [PMID: 38113256 PMCID: PMC10756272 DOI: 10.1073/pnas.2310063120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
Cancer genome sequencing consortiums have recently catalogued an abundance of somatic mutations, across a wide range of human cancers, in the chromatin-modifying enzymes that regulate gene expression. Defining the molecular mechanisms underlying the potentially oncogenic functions of these epigenetic mutations could serve as the basis for precision medicine approaches to cancer therapy. MLL4 encoded by the KMT2D gene highly mutated in a large number of human cancers, is a key histone lysine monomethyltransferase within the Complex of Proteins Associated with Set1 (COMPASS) family that regulates gene expression through enhancer function, potentially functioning as a tumor suppressor. We report that the KMT2D mutations which cause MLL4 protein truncation also alter MLL4's subcellular localization, resulting in loss-of-function in the nucleus and gain-of-function in the cytoplasm. We demonstrate that isogenic correction of KMT2D truncation mutation rescues the aberrant localization phenotype and restores multiple regulatory functions of MLL4, including COMPASS integrity/stabilization, histone H3K4 mono-methylation, enhancer activation, and therefore transcriptional regulation. Moreover, isogenic correction diminishes the sensitivity of KMT2D-mutated cancer cells to targeted metabolic inhibition. Using immunohistochemistry, we identified that cytoplasmic MLL4 is unique to the tissue of bladder cancer patients with KMT2D truncation mutations. Using a preclinical carcinogen model of bladder cancer in mouse, we demonstrate that truncated cytoplasmic MLL4 predicts response to targeted metabolic inhibition therapy for bladder cancer and could be developed as a biomarker for KMT2D-mutated cancers. We also highlight the broader potential for prognosis, patient stratification and treatment decision-making based on KMT2D mutation status in MLL4 truncation-relevant diseases, including human cancers and Kabuki Syndrome.
Collapse
Affiliation(s)
- Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Yuki Aoi
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Cassandra N. Philips
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Khyati A. Meghani
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Sarah R. Gold
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Yanni Yu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Luke St John
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Jun Qian
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Jacob M. Zeidner
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Joshua J. Meeks
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
36
|
Tabatabai A, Arora A, Höfmann S, Jauch M, von Tresckow B, Hansen J, Flümann R, Jachimowicz RD, Klein S, Reinhardt HC, Knittel G. Mouse models of diffuse large B cell lymphoma. Front Immunol 2023; 14:1313371. [PMID: 38124747 PMCID: PMC10731046 DOI: 10.3389/fimmu.2023.1313371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a genetically highly heterogeneous disease. Yet, to date, the vast majority of patients receive standardized frontline chemo-immune-therapy consisting of an anthracycline backbone. Using these regimens, approximately 65% of patients can be cured, whereas the remaining 35% of patients will face relapsed or refractory disease, which, even in the era of CAR-T cells, is difficult to treat. To systematically tackle this high medical need, it is important to design, generate and deploy suitable in vivo model systems that capture disease biology, heterogeneity and drug response. Recently published, large comprehensive genomic characterization studies, which defined molecular sub-groups of DLBCL, provide an ideal framework for the generation of autochthonous mouse models, as well as an ideal benchmark for cell line-derived or patient-derived mouse models of DLBCL. Here we discuss the current state of the art in the field of mouse modelling of human DLBCL, with a particular focus on disease biology and genetically defined molecular vulnerabilities, as well as potential targeting strategies.
Collapse
Affiliation(s)
- Areya Tabatabai
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Aastha Arora
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Svenja Höfmann
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Maximilian Jauch
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Julia Hansen
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ruth Flümann
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ron D. Jachimowicz
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sebastian Klein
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Gero Knittel
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
37
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
38
|
Dhar SS, Brown C, Rizvi A, Reed L, Kotla S, Zod C, Abraham J, Abe JI, Rajaram V, Chen K, Lee M. Heterozygous Kmt2d loss diminishes enhancers to render medulloblastoma cells vulnerable to combinatory inhibition of lysine demethylation and oxidative phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564587. [PMID: 37961118 PMCID: PMC10634931 DOI: 10.1101/2023.10.29.564587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The histone H3 lysine 4 (H3K4) methyltransferase KMT2D (also called MLL4) is one of the most frequently mutated epigenetic modifiers in medulloblastoma (MB) and other types of cancer. Notably, heterozygous loss of KMT2D is prevalent in MB and other cancer types. However, what role heterozygous KMT2D loss plays in tumorigenesis has not been well characterized. Here, we show that heterozygous Kmt2d loss highly promotes MB driven by heterozygous loss of the MB suppressor gene Ptch in mice. Heterozygous Kmt2d loss upregulated tumor-promoting programs, including oxidative phosphorylation and G-protein-coupled receptor signaling, in Ptch-mutant-driven MB genesis. Mechanistically, both downregulation of the transcription-repressive tumor suppressor gene NCOR2 by heterozygous Kmt2d loss and upregulation of the oncogene MycN by heterozygous Ptch loss increased the expression of tumor-promoting genes. Moreover, heterozygous Kmt2d loss extensively diminished enhancer signals (e.g., H3K27ac) and H3K4me3 signature, including those for tumor suppressor genes (e.g., Ncor2). Combinatory pharmacological inhibition of oxidative phosphorylation and the H3K4 demethylase LSD1 drastically reduced tumorigenicity of MB cells bearing heterozygous Kmt2d loss. These findings reveal the mechanistic basis underlying the MB-promoting effect of heterozygous KMT2D loss, provide a rationale for a therapeutic strategy for treatment of KMT2D-deficient MB, and have mechanistic implications for the molecular pathogenesis of other types of cancer bearing heterozygous KMT2D loss.
Collapse
|
39
|
Brauge B, Dessauge E, Creusat F, Tarte K. Modeling the crosstalk between malignant B cells and their microenvironment in B-cell lymphomas: challenges and opportunities. Front Immunol 2023; 14:1288110. [PMID: 38022603 PMCID: PMC10652758 DOI: 10.3389/fimmu.2023.1288110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
B-cell lymphomas are a group of heterogeneous neoplasms resulting from the clonal expansion of mature B cells arrested at various stages of differentiation. Specifically, two lymphoma subtypes arise from germinal centers (GCs), namely follicular lymphoma (FL) and GC B-cell diffuse large B-cell lymphoma (GCB-DLBCL). In addition to recent advances in describing the genetic landscape of FL and GCB-DLBCL, tumor microenvironment (TME) has progressively emerged as a central determinant of early lymphomagenesis, subclonal evolution, and late progression/transformation. The lymphoma-supportive niche integrates a dynamic and coordinated network of immune and stromal cells defining microarchitecture and mechanical constraints and regulating tumor cell migration, survival, proliferation, and immune escape. Several questions are still unsolved regarding the interplay between lymphoma B cells and their TME, including the mechanisms supporting these bidirectional interactions, the impact of the kinetic and spatial heterogeneity of the tumor niche on B-cell heterogeneity, and how individual genetic alterations can trigger both B-cell intrinsic and B-cell extrinsic signals driving the reprogramming of non-malignant cells. Finally, it is not clear whether these interactions might promote resistance to treatment or, conversely, offer valuable therapeutic opportunities. A major challenge in addressing these questions is the lack of relevant models integrating tumor cells with specific genetic hits, non-malignant cells with adequate functional properties and organization, extracellular matrix, and biomechanical forces. We propose here an overview of the 3D in vitro models, xenograft approaches, and genetically-engineered mouse models recently developed to study GC B-cell lymphomas with a specific focus on the pros and cons of each strategy in understanding B-cell lymphomagenesis and evaluating new therapeutic strategies.
Collapse
Affiliation(s)
- Baptiste Brauge
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Elise Dessauge
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Florent Creusat
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Karin Tarte
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
- SITI Laboratory, Centre Hospitalier Universitaire (CHU) Rennes, Etablissement Français du sang, Univ Rennes, Rennes, France
| |
Collapse
|
40
|
Hilton LK, Scott DW, Morin RD. Biological heterogeneity in diffuse large B-cell lymphoma. Semin Hematol 2023; 60:267-276. [PMID: 38151380 DOI: 10.1053/j.seminhematol.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is heterogeneous both in clinical outcomes and the underlying disease biology. Over the last 2 decades, several different approaches for dissecting biological heterogeneity have emerged. Gene expression profiling (GEP) stratifies DLBCL into 3 broad groups (ABC, GCB, and DZsig/MHG), each with parallels to different normal mature B cell developmental states and prognostic implications. More recently, several different genomic approaches have been developed to categorize DLBCL based on the co-occurrence of tumor somatic mutations, identifying more granular biologically unified subgroups that complement GEP-based approaches. We review the molecular approaches and clinical evidence supporting the stratification of DLBCL patients based on tumor biology. By offering a platform for subtype-guided therapy, these divisions remain a promising avenue for improving patient outcomes, especially in subgroups with inferior outcomes with current standard-of-care therapy.
Collapse
Affiliation(s)
- Laura K Hilton
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada.; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| | - David W Scott
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada.; Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ryan D Morin
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada.; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada; Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
41
|
Wen JY, Li X, Chen JN, Chen J, Zhang JY, Du Y, Zhu WH, Chen YJ, Yang RH, Shao CK. CD45 - erythroid progenitor cells promote lymph node metastasis in gastric cancer by inducing a hybrid epithelial/mesenchymal state in lymphatic endothelial cells. Gastric Cancer 2023; 26:918-933. [PMID: 37676622 DOI: 10.1007/s10120-023-01425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND AND AIMS Specific mechanisms of lymph node (LN) metastasis in early-stage gastric cancer (GC) have not been elucidated. The role of anemia, a vital clinical feature of GC, in LN metastasis is also unclear. Since the number of erythroid progenitor cells (EPCs) is increased in chronic anemia, we investigated its association with LN metastasis in GC. METHODS Flow cytometry and immunofluorescence analyses were performed to sort and study EPCs from the circulation and tumors of patients with stage I-III GC. The effect of these EPCs on the activation of T and B cells and on the functions of lymphatic endothelial cells (LECs) was determined, and their ability to promote LN metastasis was evaluated using a footpad-popliteal LN metastasis model based on two human adenocarcinoma GC cell lines in nude mice. The prognostic value of EPCs was also analyzed. RESULTS The proportion of CD45- EPCs was higher in the mononuclear cells in the circulation, tumors, and LNs of GC patients with LN metastasis (N+) than in those of GC patients without LN metastasis (N0). In N+ patients, CD45- EPCs were more abundant in metastatic LNs than in non-metastatic LNs. Lymphatic vessel endothelial hyaluronan receptor 1 immunoreactivity in tumors revealed that CD45- EPCs were positively associated with nodal stages and lymph vessel density. Furthermore, CD45- EPCs increased LEC proliferation and migration through their S100A8/A9 heterodimer-induced hybrid epithelial/mesenchymal (E/M) state; however, they did not influence the invasion and tubulogenesis of LECs or T and B cell proliferation. CD45- EPCs promoted LN metastasis in vivo; the S100A8/A9 heterodimer mimicked this phenomenon. Finally, CD45- EPCs predicted the overall and disease-free survival of stage I-III GC patients after radical resection. CONCLUSIONS The CD45- EPCs accumulated in GC tissues and metastatic LNs and promoted LN metastasis via the S100A8/9-induced hybrid E/M state of LECs, which was the specific mechanism of LN metastasis in the early stages of GC.
Collapse
Affiliation(s)
- Jing-Yun Wen
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Xing Li
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Jie Chen
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Jing-Yue Zhang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Yu Du
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Wei-Hang Zhu
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Yong-Jian Chen
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Ri-Hong Yang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
42
|
Briest F, Noerenberg D, Hennch C, Yoshida K, Hablesreiter R, Nimo J, Sasca D, Kirchner M, Mansouri L, Inoue Y, Wiegand L, Staiger AM, Casadei B, Korkolopoulou P, Weiner J, Lopez-Guillermo A, Warth A, Schneider T, Nagy Á, Klapper W, Hummel M, Kanellis G, Anagnostopoulos I, Mertins P, Bullinger L, Rosenquist R, Vassilakopoulos TP, Ott G, Ogawa S, Damm F. Frequent ZNF217 mutations lead to transcriptional deregulation of interferon signal transduction via altered chromatin accessibility in B cell lymphoma. Leukemia 2023; 37:2237-2249. [PMID: 37648814 PMCID: PMC10624633 DOI: 10.1038/s41375-023-02013-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Recent exome-wide studies discovered frequent somatic mutations in the epigenetic modifier ZNF217 in primary mediastinal B cell lymphoma (PMBCL) and related disorders. As functional consequences of ZNF217 alterations remain unknown, we comprehensively evaluated their impact in PMBCL. Targeted sequencing identified genetic lesions affecting ZNF217 in 33% of 157 PMBCL patients. Subsequent gene expression profiling (n = 120) revealed changes in cytokine and interferon signal transduction in ZNF217-aberrant PMBCL cases. In vitro, knockout of ZNF217 led to changes in chromatin accessibility interfering with binding motifs for crucial lymphoma-associated transcription factors. This led to disturbed expression of interferon-responsive and inflammation-associated genes, altered cell behavior, and aberrant differentiation. Mass spectrometry demonstrates that ZNF217 acts within a histone modifier complex containing LSD1, CoREST and HDAC and interferes with H3K4 methylation and H3K27 acetylation. Concluding, our data suggest non-catalytic activity of ZNF217, which directs histone modifier complex function and controls B cell differentiation-associated patterns of chromatin structure.
Collapse
Affiliation(s)
- Franziska Briest
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Noerenberg
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelius Hennch
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Cancer Genome Project Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Raphael Hablesreiter
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jose Nimo
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Sasca
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Yoshikage Inoue
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Laura Wiegand
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology Stuttgart, and University of Tuebingen, Stuttgart, Germany
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Penelope Korkolopoulou
- First Department of Pathology, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - January Weiner
- Core Unit Bioinformatics Berlin, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Arne Warth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Ákos Nagy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Michael Hummel
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - George Kanellis
- Department of Hematopathology, Evangelismos General Hospital, Athens, Greece
| | - Ioannis Anagnostopoulos
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros P Vassilakopoulos
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Frederik Damm
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
43
|
Mohamed AH, Obeid RA, Fadhil AA, Amir AA, Adhab ZH, Jabouri EA, Ahmad I, Alshahrani MY. BTLA and HVEM: Emerging players in the tumor microenvironment and cancer progression. Cytokine 2023; 172:156412. [PMID: 39492110 DOI: 10.1016/j.cyto.2023.156412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Immunotherapy has emerged as a revolutionary cancer treatment, particularly with the introduction of immune checkpoint inhibitors (ICIs). ICIs target specific proteins that restrain the immune system from attacking cancer cells. Prominent examples of checkpoint proteins that ICIs block include PD-1, PD-L1, and CTLA-4. The success of PD-1/L1 and CTLA-4 blockade has prompted further research on other inhibitory mechanisms that could aid in the treatment of cancer. One such mechanism is the BTLA/HVEM checkpoint, which regulates immune responses in a similar manner to CTLA-4 and PD-1. BTLA, a member of the Ig superfamily, binds to HVEM, a member of the TNF receptor superfamily. While BTLA is essential for maintaining immunological self-tolerance and preventing autoimmune diseases, overexpression of BTLA and HVEM has been observed in various malignancies such as lung, ovarian, glioblastoma, gastric cancer, and non-Hodgkin's lymphoma. The function of the BTLA/HVEM checkpoint in various malignancies has been extensively studied, revealing its significant role in immunotherapy for cancer. This review study aims to explain the BTLA/HVEM checkpoint and its functions in different types of cancers. In conclusion, the development of new immunotherapies such as ICIs has revolutionized cancer treatment. The discovery of the BTLA/HVEM checkpoint and its role in various malignancies provides opportunities for advancing cancer treatment through immunotherapy.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Intelligent Medical Systems Department, Al-Mustaqbal University College, 51001 Hilla, Babylon, Iraq
| | - Ruaa Ali Obeid
- College of Pharmacy, Department of Pharmaceutics, University of Al-Ameed, Iraq
| | | | - Ahmed Ali Amir
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Zainab H Adhab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Enaam Anad Jabouri
- Department of Medical Laboratory Technics, AlNoor University College, Nineveh, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
44
|
Goodman SJ, Luperchio TR, Ellegood J, Chater-Diehl E, Lerch JP, Bjornsson HT, Weksberg R. Peripheral blood DNA methylation and neuroanatomical responses to HDACi treatment that rescues neurological deficits in a Kabuki syndrome mouse model. Clin Epigenetics 2023; 15:172. [PMID: 37884963 PMCID: PMC10605417 DOI: 10.1186/s13148-023-01582-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Recent findings from studies of mouse models of Mendelian disorders of epigenetic machinery strongly support the potential for postnatal therapies to improve neurobehavioral and cognitive deficits. As several of these therapies move into human clinical trials, the search for biomarkers of treatment efficacy is a priority. A potential postnatal treatment of Kabuki syndrome type 1 (KS1), caused by pathogenic variants in KMT2D encoding a histone-lysine methyltransferase, has emerged using a mouse model of KS1 (Kmt2d+/βGeo). In this mouse model, hippocampal memory deficits are ameliorated following treatment with the histone deacetylase inhibitor (HDACi), AR-42. Here, we investigate the effect of both Kmt2d+/βGeo genotype and AR-42 treatment on neuroanatomy and on DNA methylation (DNAm) in peripheral blood. While peripheral blood may not be considered a "primary tissue" with respect to understanding the pathophysiology of neurodevelopmental disorders, it has the potential to serve as an accessible biomarker of disease- and treatment-related changes in the brain. METHODS Half of the KS1 and wildtype mice were treated with 14 days of AR-42. Following treatment, fixed brain samples were imaged using MRI to calculate regional volumes. Blood was assayed for genome-wide DNAm at over 285,000 CpG sites using the Illumina Infinium Mouse Methylation array. DNAm patterns and brain volumes were analyzed in the four groups of animals: wildtype untreated, wildtype AR-42 treated, KS1 untreated and KS1 AR-42 treated. RESULTS We defined a DNAm signature in the blood of KS1 mice, that overlapped with the human KS1 DNAm signature. We also found a striking 10% decrease in total brain volume in untreated KS1 mice compared to untreated wildtype, which correlated with DNAm levels in a subset KS1 signature sites, suggesting that disease severity may be reflected in blood DNAm. Treatment with AR-42 ameliorated DNAm aberrations in KS1 mice at a small number of signature sites. CONCLUSIONS As this treatment impacts both neurological deficits and blood DNAm in mice, future KS clinical trials in humans could be used to assess blood DNAm as an early biomarker of therapeutic efficacy.
Collapse
Affiliation(s)
| | - Teresa Romeo Luperchio
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Canada
| | - Eric Chater-Diehl
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
| | - Jason P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| | - Hans Tomas Bjornsson
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, USA
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Landspitali University Hospital, Reykjavík, Iceland
| | - Rosanna Weksberg
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada.
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
45
|
Xu Y, He Z, Du J, Chen Z, Creemers JWM, Wang B, Li F, Wang Y. Epigenetic modulations of immune cells: from normal development to tumor progression. Int J Biol Sci 2023; 19:5120-5144. [PMID: 37928272 PMCID: PMC10620821 DOI: 10.7150/ijbs.88327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
The dysfunction of immune cell development often impairs immunological homeostasis, thus causing various human diseases. Accumulating evidence shows that the development of different immune cells from hematopoietic stem cells are highly fine-tuned by different epigenetic mechanisms including DNA methylation, histone modifications, chromatin remodeling and RNA-related regulations. Understanding how epigenetic regulators modulate normal development of immune cells contributes to the identification of new strategies for various diseases. Here, we review recent advances suggesting that epigenetic modulations can orchestrate immune cell development and functions through their impact on critical gene expression. We also discuss the aberrations of epigenetic modulations in immune cells that influence tumor progression, and the fact that underlying mechanisms affect how epigenetic drugs interfere with tumor progression in the clinic.
Collapse
Affiliation(s)
- Yuanchun Xu
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Department of nursing, Daping Hospital, Army Medical University, Chongqing, China
| | - Zongsheng He
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Du
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziqiang Chen
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | | | - Bin Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Fan Li
- Department of General Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yaling Wang
- Department of nursing, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
46
|
Wright NE, Mandal M, Clark MR. Molecular mechanisms insulating proliferation from genotoxic stress in B lymphocytes. Trends Immunol 2023; 44:668-677. [PMID: 37573227 PMCID: PMC10530527 DOI: 10.1016/j.it.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 08/14/2023]
Abstract
In mammals, B cells strictly segregate proliferation from somatic mutation as they develop within the bone marrow and then mature through germinal centers (GCs) in the periphery. Failure to do so risks autoimmunity and neoplastic transformation. Recent work has described how B cell progenitors transition between proliferation and mutation via cytokine signaling pathways, epigenetic chromatin regulation, and remodeling of 3D chromatin conformation. We propose a three-zone model of the GC that describes how proliferation and mutation are regulated. Using this model, we consider how recent mechanistic discoveries in B cell progenitors inform models of GC B cell function and reveal fundamental mechanisms underpinning humoral immunity, autoimmunity, and lymphomagenesis.
Collapse
Affiliation(s)
- Nathaniel E Wright
- Department of Medicine, Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Malay Mandal
- Department of Medicine, Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology, and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
47
|
Boukas L, Luperchio TR, Razi A, Hansen KD, Bjornsson HT. Neuron-specific chromatin disruption at CpG islands and aging-related regions in Kabuki syndrome mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551456. [PMID: 37577516 PMCID: PMC10418197 DOI: 10.1101/2023.08.01.551456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Many Mendelian developmental disorders caused by coding variants in epigenetic regulators have now been discovered. Epigenetic regulators are broadly expressed, and each of these disorders typically exhibits phenotypic manifestations from many different organ systems. An open question is whether the chromatin disruption - the root of the pathogenesis - is similar in the different disease-relevant cell types. This is possible in principle, since all these cell-types are subject to effects from the same causative gene, that has the same kind of function (e.g. methylates histones) and is disrupted by the same germline variant. We focus on mouse models for Kabuki syndrome types 1 and 2, and find that the chromatin accessibility abnormalities in neurons are mostly distinct from those in B or T cells. This is not because the neuronal abnormalities occur at regulatory elements that are only active in neurons. Neurons, but not B or T cells, show preferential chromatin disruption at CpG islands and at regulatory elements linked to aging. A sensitive analysis reveals that the regions disrupted in B/T cells do exhibit chromatin accessibility changes in neurons, but these are very subtle and of uncertain functional significance. Finally, we are able to identify a small set of regulatory elements disrupted in all three cell types. Our findings reveal the cellular-context-specific effect of variants in epigenetic regulators, and suggest that blood-derived "episignatures" may not be well-suited for understanding the mechanistic basis of neurodevelopment in Mendelian disorders of the epigenetic machinery.
Collapse
Affiliation(s)
- Leandros Boukas
- Department of Pediatrics, Children’s National Hospital
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | | | - Afrooz Razi
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
| | - Kasper D. Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
- Department of Biomedical Engineering, Johns Hopkins School of Medicine
| | - Hans T. Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine
- Faculty of Medicine, University of Iceland
- Landspitali University Hospital
| |
Collapse
|
48
|
Lu S, Kim HS, Cao Y, Bedi K, Zhao L, Narayanan IV, Magnuson B, Gu Y, Yang J, Yi Z, Babaniamansour S, Shameon S, Xu C, Paulsen MT, Qiu P, Jeyarajan S, Ljungman M, Thomas D, Dou Y, Crawford H, di Magliano MP, Ge K, Yang B, Shi J. KMT2D links TGF-β signaling to noncanonical activin pathway and regulates pancreatic cancer cell plasticity. Int J Cancer 2023; 153:552-570. [PMID: 37140208 PMCID: PMC10330100 DOI: 10.1002/ijc.34528] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
Although KMT2D, also known as MLL2, is known to play an essential role in development, differentiation, and tumor suppression, its role in pancreatic cancer development is not well understood. Here, we discovered a novel signaling axis mediated by KMT2D, which links TGF-β to the activin A pathway. We found that TGF-β upregulates a microRNA, miR-147b, which in turn leads to post-transcriptional silencing of KMT2D. Loss of KMT2D induces the expression and secretion of activin A, which activates a noncanonical p38 MAPK-mediated pathway to modulate cancer cell plasticity, promote a mesenchymal phenotype, and enhance tumor invasion and metastasis in mice. We observed a decreased KMT2D expression in human primary and metastatic pancreatic cancer. Furthermore, inhibition or knockdown of activin A reversed the protumoral role of KMT2D loss. These findings support a tumor-suppressive role of KMT2D in pancreatic cancer and identify miR-147b and activin A as novel therapeutic targets.
Collapse
Affiliation(s)
- Shuang Lu
- Department of Pathology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
- Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Hong Sun Kim
- Department of Pathology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yubo Cao
- Department of Pathology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karan Bedi
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ishwarya Venkata Narayanan
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Magnuson
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yumei Gu
- Department of Pathology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jing Yang
- Department of Pathology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhujun Yi
- Department of Pathology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sepideh Babaniamansour
- Department of Pathology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sargis Shameon
- Department of Pathology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chang Xu
- Department of Pathology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michelle T. Paulsen
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping Qiu
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sivakumar Jeyarajan
- Department of Pathology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dafydd Thomas
- Department of Pathology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yali Dou
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiaqi Shi
- Department of Pathology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
49
|
Tatarczuch M, Waltham M, Shortt J, Polekhina G, Hawkes EA, Ho SJ, Trotman J, Brasacchio D, Co M, Li J, Ramakrishnan V, Dunne K, Opat SS, Gregory GP. Molecular associations of response to the new-generation BTK inhibitor zanubrutinib in marginal zone lymphoma. Blood Adv 2023; 7:3531-3539. [PMID: 36947202 PMCID: PMC10368859 DOI: 10.1182/bloodadvances.2022009412] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023] Open
Abstract
Using tissue whole exome sequencing (WES) and circulating tumor cell-free DNA (ctDNA), this Australasian Leukaemia & Lymphoma Group translational study sought to characterize primary and acquired molecular determinants of response and resistance of marginal zone lymphoma (MZL) to zanubrutinib for patients treated in the MAGNOLIA clinical trial. WES was performed on baseline tumor samples obtained from 18 patients. For 7 patients, ctDNA sequence was interrogated using a bespoke hybrid-capture next-generation sequencing assay for 48 targeted genes. Somatic mutations were correlated with objective response data and survival analysis using Fisher exact test and Kaplan-Meier (log-rank) method, respectively. Baseline WES identified mutations in 33 of 48 (69%) prioritized genes. NF-κB, NOTCH, or B-cell receptor (BCR) pathway genes were implicated in samples from 16 of 18 patients (89%). KMT2D mutations (n = 11) were most common, followed by FAT1 (n = 9), NOTCH1, NOTCH2, TNFAIP3 (n = 5), and MYD88 (n = 4) mutations. MYD88 or TNFAIP3 mutations correlated with improved progression-free survival (PFS). KMT2D mutations trended to worse PFS. Acquired resistance mutations PLCG2 (R665W/R742P) and BTK (C481Y/C481F) were detected in 2 patients whose disease progressed. A BTK E41K noncatalytic activating mutation was identified before treatment in 1 patient who was zanubrutinib-refractory. MYD88, TNFAIP3, and KMT2D mutations correlate with PFS in patients with relapsed/refractory MZL treated with zanubrutinib. Detection of acquired BTK and PLCG2 mutations in ctDNA while on therapy is feasible and may herald clinical disease progression. This trial was registered at https://anzctr.org.au/ as #ACTRN12619000024145.
Collapse
Affiliation(s)
- Maciej Tatarczuch
- Monash Hematology, Monash Health, Melbourne, VIC, Australia
- Blood Cancer Therapeutics Laboratory, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC, Australia
| | - Mark Waltham
- Monash Hematology, Monash Health, Melbourne, VIC, Australia
- Blood Cancer Therapeutics Laboratory, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC, Australia
| | - Jake Shortt
- Monash Hematology, Monash Health, Melbourne, VIC, Australia
- Blood Cancer Therapeutics Laboratory, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC, Australia
| | - Galina Polekhina
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Eliza A. Hawkes
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Eastern Health, Melbourne, VIC, Australia
- Olivia Newton John Cancer Research Institute at Austin Health, Melbourne, VIC, Australia
| | - Shir-Jing Ho
- St George Hospital, Sydney, NSW, Australia
- St George & Sutherland Clinical School, University of NSW, Sydney, Australia
| | - Judith Trotman
- Department of Hematology, Concord Repatriation General Hospital, Sydney, NSW, Australia
- Concord Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Daniella Brasacchio
- Monash Hematology, Monash Health, Melbourne, VIC, Australia
- Blood Cancer Therapeutics Laboratory, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC, Australia
| | | | | | | | - Karin Dunne
- Australasian Leukaemia & Lymphoma Group, Melbourne, VIC, Australia
| | - Stephen S. Opat
- Monash Hematology, Monash Health, Melbourne, VIC, Australia
- Blood Cancer Therapeutics Laboratory, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC, Australia
| | - Gareth P. Gregory
- Monash Hematology, Monash Health, Melbourne, VIC, Australia
- Blood Cancer Therapeutics Laboratory, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC, Australia
| | - Australasian Leukaemia and Lymphoma Group
- Monash Hematology, Monash Health, Melbourne, VIC, Australia
- Blood Cancer Therapeutics Laboratory, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, VIC, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Eastern Health, Melbourne, VIC, Australia
- Olivia Newton John Cancer Research Institute at Austin Health, Melbourne, VIC, Australia
- St George Hospital, Sydney, NSW, Australia
- St George & Sutherland Clinical School, University of NSW, Sydney, Australia
- Department of Hematology, Concord Repatriation General Hospital, Sydney, NSW, Australia
- Concord Clinical School, University of Sydney, Sydney, NSW, Australia
- BeiGene Co Ltd, USA Inc, San Mateo, CA
- Australasian Leukaemia & Lymphoma Group, Melbourne, VIC, Australia
| |
Collapse
|
50
|
Zhao Z, Cao K, Watanabe J, Philips CN, Zeidner JM, Ishi Y, Wang Q, Gold SR, Junkins K, Bartom ET, Yue F, Chandel NS, Hashizume R, Ben-Sahra I, Shilatifard A. Therapeutic targeting of metabolic vulnerabilities in cancers with MLL3/4-COMPASS epigenetic regulator mutations. J Clin Invest 2023; 133:e169993. [PMID: 37252797 PMCID: PMC10313365 DOI: 10.1172/jci169993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Abstract
Epigenetic status-altering mutations in chromatin-modifying enzymes are a feature of human diseases, including many cancers. However, the functional outcomes and cellular dependencies arising from these mutations remain unresolved. In this study, we investigated cellular dependencies, or vulnerabilities, that arise when enhancer function is compromised by loss of the frequently mutated COMPASS family members MLL3 and MLL4. CRISPR dropout screens in MLL3/4-depleted mouse embryonic stem cells (mESCs) revealed synthetic lethality upon suppression of purine and pyrimidine nucleotide synthesis pathways. Consistently, we observed a shift in metabolic activity toward increased purine synthesis in MLL3/4-KO mESCs. These cells also exhibited enhanced sensitivity to the purine synthesis inhibitor lometrexol, which induced a unique gene expression signature. RNA-Seq identified the top MLL3/4 target genes coinciding with suppression of purine metabolism, and tandem mass tag proteomic profiling further confirmed upregulation of purine synthesis in MLL3/4-KO cells. Mechanistically, we demonstrated that compensation by MLL1/COMPASS was underlying these effects. Finally, we demonstrated that tumors with MLL3 and/or MLL4 mutations were highly sensitive to lometrexol in vitro and in vivo, both in culture and in animal models of cancer. Our results depicted a targetable metabolic dependency arising from epigenetic factor deficiency, providing molecular insight to inform therapy for cancers with epigenetic alterations secondary to MLL3/4 COMPASS dysfunction.
Collapse
Affiliation(s)
- Zibo Zhao
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Kaixiang Cao
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Jun Watanabe
- Department of Biochemistry and Molecular Genetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
| | - Cassandra N. Philips
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Jacob M. Zeidner
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Yukitomo Ishi
- Department of Biochemistry and Molecular Genetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Sarah R. Gold
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Katherine Junkins
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Navdeep S. Chandel
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rintaro Hashizume
- Department of Biochemistry and Molecular Genetics
- Robert H. Lurie NCI Comprehensive Cancer Center, and
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics
- Simpson Querrey Center for Epigenetics
| |
Collapse
|