1
|
Azarmi M, Seyed Toutounchi N, Hogenkamp A, Thijssen S, Overbeek SA, Garssen J, Folkerts G, Van't Land B, Braber S. Human Milk Oligosaccharides in Combination with Galacto- and Long-Chain Fructo-Oligosaccharides Enhance Vaccination Efficacy in a Murine Influenza Vaccination Model. Nutrients 2024; 16:2858. [PMID: 39275175 PMCID: PMC11397401 DOI: 10.3390/nu16172858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Early-life nutrition significantly impacts vaccination efficacy in infants, whose immune response to vaccines is weaker compared to adults. This study investigated vaccination efficacy in female C57Bl/6JOlaHsd mice (6 weeks old) fed diets with 0.7% galacto-oligosaccharides (GOS)/long-chain fructo-oligosaccharides (lcFOS) (9:1), 0.3% human milk oligosaccharides (HMOS), or a combination (GFH) for 14 days prior to and during vaccination. Delayed-type hypersensitivity (DTH) was measured by assessing ear swelling following an intradermal challenge. Influvac-specific IgG1 and IgG2a levels were assessed using ELISAs, while splenic T and B lymphocytes were analyzed for frequency and activation via flow cytometry. Additionally, cytokine production was evaluated using murine splenocytes co-cultured with influenza-loaded dendritic cells. Mice on the GFH diet showed a significantly enhanced DTH response (p < 0.05), increased serological IgG1 levels, and a significant rise in memory B lymphocytes (CD27+ B220+ CD19+). GFH-fed mice also exhibited more activated splenic Th1 cells (CD69+ CXCR3+ CD4+) and higher IFN-γ production after ex vivo restimulation (p < 0.05). These findings suggest that GOS/lcFOS and HMOS, particularly in combination, enhance vaccine responses by improving memory B cells, IgG production, and Th1 cell activation, supporting the potential use of these prebiotics in infant formula for better early-life immune development.
Collapse
Affiliation(s)
- Mehrdad Azarmi
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Negisa Seyed Toutounchi
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Suzan Thijssen
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia A Overbeek
- Danone Global Research and Innovation Center B.V., 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone Global Research and Innovation Center B.V., 3584 CT Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Belinda Van't Land
- Danone Global Research and Innovation Center B.V., 3584 CT Utrecht, The Netherlands
- Department of Pediatric Immunology, Wilhelmina Children Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Science (UIPS), Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone Global Research and Innovation Center B.V., 3584 CT Utrecht, The Netherlands
| |
Collapse
|
2
|
Pourhashem Z, Nourani L, Pirahmadi S, Yousefi H, J. Sani J, Raz A, Zakeri S, Dinparast Djadid N, Abouie Mehrizi A. Malaria transmission blocking activity of Anopheles stephensi alanyl aminopeptidase N antigen formulated with MPL, CpG, and QS21 adjuvants. PLoS One 2024; 19:e0306664. [PMID: 38968270 PMCID: PMC11226095 DOI: 10.1371/journal.pone.0306664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/29/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUNDS Malaria, a preventive and treatable disease, is still responsible for annual deaths reported in most tropical regions, principally in sub-Saharan Africa. Subunit recombinant transmission-blocking vaccines (TBVs) have been proposed as promising vaccines to succeed in malaria elimination and eradication. Here, a provisional study was designed to assess the immunogenicity and functional activity of alanyl aminopeptidase N (APN1) of Anopheles stephensi, as a TBV candidate, administered with MPL, CpG, and QS21 adjuvants in the murine model. METHODOLOGY/PRINCIPAL FINDINGS The mouse groups were immunized with recombinant APN1 (rAPN1) alone or formulated with CpG, MPL, QS-21, or a combination of adjuvants (CMQ), and the elicited immune responses were evaluated after the third immunization. The standard membrane feeding assay (SMFA) measured the functional activity of antibodies against bacterial-expressed APN1 protein in adjuvanted vaccine groups on transmission of P. falciparum (NF54) to An. stephensi mosquitoes. Evaluation of mice vaccinated with rAPN1 formulated with distinct adjuvants manifested a significant increase in the high-avidity level of anti-APN1 IgG and IgG subclasses; however, rAPN1 induced the highest level of high-avidity anti-APN1 IgG1, IgG2a, and IgG2b antibodies in the immunized vaccine group 5 (APN1/CMQ). In addition, vaccine group 5 (receiving APN1/CMQ), had still the highest level of anti-APN1 IgG antibodies relative to other immunized groups after six months, on day 180. The SMFA data indicates a trend towards higher transmission-reducing activity in groups 2 and 5, which received the antigen formulated with CpG or a combination of three adjuvants. CONCLUSIONS/SIGNIFICANCE The results have shown the capability of admixture to stimulate high-affinity and long-lasting antibodies against the target antigen to hinder Plasmodium parasite development in the mid-gut of An. stephensi. The attained results authenticated APN1/CMQ and APN1/CpG as a potent APN1-based TBV formulation which will be helpful in designing a vaccine in the future.
Collapse
Affiliation(s)
- Zeinab Pourhashem
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Leila Nourani
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Sakineh Pirahmadi
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Hemn Yousefi
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Jafar J. Sani
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Abbasali Raz
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Sedigheh Zakeri
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Navid Dinparast Djadid
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Akram Abouie Mehrizi
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| |
Collapse
|
3
|
Lotspeich-Cole L, Parvathaneni S, Sakai J, Liu L, Takeda K, Lee RC, Akkoyunlu M. Sustained antigen delivery improves germinal center reaction and increases antibody responses in neonatal mice. NPJ Vaccines 2024; 9:92. [PMID: 38796539 PMCID: PMC11128021 DOI: 10.1038/s41541-024-00875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/17/2024] [Indexed: 05/28/2024] Open
Abstract
Neonates and young infants are known to have limited responses to pediatric vaccines due to reduced germinal center formation. Extended vaccine antigen dosing was previously shown to expand germinal center formation and improve humoral responses in adult mice. We report that sustained antigen delivery through sequential dosing overcomes neonatal limitations to form germinal center reactions and improves humoral immunity. Thus, vaccine strategies that extend the release of vaccine antigens may reduce the number of doses, and time needed, to achieve protective immunity in neonates and young infants.
Collapse
Affiliation(s)
| | | | - Jiro Sakai
- US FDA/CBER/OVRR/DBPAP, 10903 New Hampshire Avenue, Silver Spring, MD, USA
| | - Lunhua Liu
- US FDA/CBER/OVRR/DBPAP, 10903 New Hampshire Avenue, Silver Spring, MD, USA
| | - Kazuyo Takeda
- US FDA/CBER/OBRR/DBCD, 10903 New Hampshire Avenue, Silver Spring, MD, USA
| | - Robert C Lee
- US FDA/CBER/OVRR/DBPAP, 10903 New Hampshire Avenue, Silver Spring, MD, USA
| | - Mustafa Akkoyunlu
- US FDA/CBER/OVRR/DBPAP, 10903 New Hampshire Avenue, Silver Spring, MD, USA.
| |
Collapse
|
4
|
Ouaked N, Demoitié MA, Godfroid F, Mortier MC, Vanloubbeeck Y, Temmerman ST. Non-clinical evaluation of local and systemic immunity induced by different vaccination strategies of the candidate tuberculosis vaccine M72/AS01. Tuberculosis (Edinb) 2023; 143:102425. [PMID: 38180028 DOI: 10.1016/j.tube.2023.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 01/06/2024]
Abstract
A new efficacious tuberculosis vaccine targeting adolescents/adults represents an urgent medical need. The M72/AS01E vaccine candidate protected half of the latently-infected adults against progression to pulmonary tuberculosis in a Phase IIb trial (NCT01755598). We report that three immunizations of mice, two weeks apart, with AS01-adjuvanted M72 induced polyfunctional, Th1-cytokine-expressing M72-specific CD4+/CD8+ T cells in blood and lungs, with the highest frequencies in lungs. Antigen-dose reductions across the three vaccinations skewed pulmonary CD4+ T-cell profiles towards IL-17 expression. In blood, reducing antigen and adjuvant doses of only the third injection (to 1/5th or 1/25th of those of the first injections) did not significantly alter CD4+ T-cell/antibody responses; applying a 10-week delay for the fractional third dose enhanced antibody titers. Delaying a full-dose booster enhanced systemic CD4+ T-cell and antibody responses. Cross-reactivity with PPE and non-PPE proteins was assessed, as Mycobacterium tuberculosis (Mtb) virulence factors and evasion mechanisms are often associated with PE/PPE proteins, to which Mtb39a (contained in M72) belongs. In silico/in vivo analyses revealed that M72/AS01 induced cross-reactive systemic CD4+ T-cell responses to epitopes in a non-vaccine antigen (putative latency-associated Mtb protein PPE24/Rv1753c). These preclinical data describing novel mechanisms of M72/AS01-induced immunity could guide future clinical development of the vaccine.
Collapse
Affiliation(s)
- Nadia Ouaked
- GSK, Rue de l'Institut 89, 1330, Rixensart, Belgium
| | | | | | | | | | | |
Collapse
|
5
|
Lista F, Peragallo MS, Biselli R, De Santis R, Mariotti S, Nisini R, D'Amelio R. Have Diagnostics, Therapies, and Vaccines Made the Difference in the Pandemic Evolution of COVID-19 in Comparison with "Spanish Flu"? Pathogens 2023; 12:868. [PMID: 37513715 PMCID: PMC10384375 DOI: 10.3390/pathogens12070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
In 1918 many countries, but not Spain, were fighting World War I. Spanish press could report about the diffusion and severity of a new infection without censorship for the first-time, so that this pandemic is commonly defined as "Spanish flu", even though Spain was not its place of origin. "Spanish flu" was one of the deadliest pandemics in history and has been frequently compared with the coronavirus disease (COVID)-19 pandemic. These pandemics share similarities, being both caused by highly variable and transmissible respiratory RNA viruses, and diversity, represented by diagnostics, therapies, and especially vaccines, which were made rapidly available for COVID-19, but not for "Spanish flu". Most comparison studies have been carried out in the first period of COVID-19, when these resources were either not yet available or their use had not long started. Conversely, we wanted to analyze the role that the advanced diagnostics, anti-viral agents, including monoclonal antibodies, and innovative COVID-19 vaccines, may have had in the pandemic containment. Early diagnosis, therapies, and anti-COVID-19 vaccines have markedly reduced the pandemic severity and mortality, thus preventing the collapse of the public health services. However, their influence on the reduction of infections and re-infections, thus on the transition from pandemic to endemic condition, appears to be of minor relevance. The high viral variability of influenza and coronavirus may probably be contained by the development of universal vaccines, which are not easy to be obtained. The only effective weapon still remains the disease prevention, to be achieved with the reduction of promiscuity between the animal reservoirs of these zoonotic diseases and humans.
Collapse
Affiliation(s)
- Florigio Lista
- Istituto di Scienze Biomediche della Difesa, Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, 00184 Roma, Italy
| | - Mario Stefano Peragallo
- Centro Studi e Ricerche di Sanità e Veterinaria, Comando Logistico dell'Esercito, 00184 Roma, Italy
| | - Roberto Biselli
- Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, 00184 Roma, Italy
| | - Riccardo De Santis
- Istituto di Scienze Biomediche della Difesa, Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, 00184 Roma, Italy
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza, Università di Roma, 00161 Roma, Italy
| | - Sabrina Mariotti
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Roberto Nisini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Raffaele D'Amelio
- Dipartimento di Medicina Clinica e Molecolare, Sapienza, Università di Roma, 00198 Roma, Italy
| |
Collapse
|
6
|
King SM, Bryan SP, Hilchey SP, Wang J, Zand MS. First Impressions Matter: Immune Imprinting and Antibody Cross-Reactivity in Influenza and SARS-CoV-2. Pathogens 2023; 12:169. [PMID: 36839441 PMCID: PMC9967769 DOI: 10.3390/pathogens12020169] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Many rigorous studies have shown that early childhood infections leave a lasting imprint on the immune system. The understanding of this phenomenon has expanded significantly since 1960, when Dr. Thomas Francis Jr first coined the term "original antigenic sin", to account for all previous pathogen exposures, rather than only the first. Now more commonly referred to as "immune imprinting", this effect most often focuses on how memory B-cell responses are shaped by prior antigen exposure, and the resultant antibodies produced after subsequent exposure to antigenically similar pathogens. Although imprinting was originally observed within the context of influenza viral infection, it has since been applied to the pandemic coronavirus SARS-CoV-2. To fully comprehend how imprinting affects the evolution of antibody responses, it is necessary to compare responses elicited by pathogenic strains that are both antigenically similar and dissimilar to strains encountered previously. To accomplish this, we must be able to measure the antigenic distance between strains, which can be easily accomplished using data from multidimensional immunological assays. The knowledge of imprinting, combined with antigenic distance measures, may allow for improvements in vaccine design and development for both influenza and SARS-CoV-2 viruses.
Collapse
Affiliation(s)
- Samantha M. King
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shane P. Bryan
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shannon P. Hilchey
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jiong Wang
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Martin S. Zand
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, NY 14618, USA
| |
Collapse
|
7
|
Hinke DM, Andersen TK, Gopalakrishnan RP, Skullerud LM, Werninghaus IC, Grødeland G, Fossum E, Braathen R, Bogen B. Antigen bivalency of antigen-presenting cell-targeted vaccines increases B cell responses. Cell Rep 2022; 39:110901. [PMID: 35649357 DOI: 10.1016/j.celrep.2022.110901] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 04/09/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Antibodies are important for vaccine efficacy. Targeting antigens to antigen-presenting cells (APCs) increases antibody levels. Here, we explore the role of antigen valency in MHC class II (MHCII)-targeted vaccines delivered as DNA. We design heterodimeric proteins that carry either two identical (bivalent vaccines), or two different antigens (monovalent vaccines). Bivalent vaccines with two identical influenza hemagglutinins (HA) elicit higher amounts of anti-HA antibodies in mice than monovalent versions with two different HAs. Bivalent vaccines increase the levels of germinal center (GC) B cells and long-lived plasma cells. Only HA-bivalent vaccines completely protect mice against challenge with homologous influenza virus. Similar results are obtained with other antigens by targeting CD11c and Xcr1 on dendritic cells (DCs) or when administering the vaccine as protein with adjuvant. Bivalency probably increases B cell responses by cross-linking BCRs in readily observable DC-B cell synapses. These results are important for generating potent APC-targeted vaccines.
Collapse
Affiliation(s)
- Daniëla Maria Hinke
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | - Tor Kristian Andersen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | | | - Lise Madelene Skullerud
- Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | | | - Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | - Even Fossum
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway
| | - Ranveig Braathen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway.
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway; Department of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo 0372, Norway.
| |
Collapse
|
8
|
Lee JL, Linterman MA. Mechanisms underpinning poor antibody responses to vaccines in ageing. Immunol Lett 2022; 241:1-14. [PMID: 34767859 PMCID: PMC8765414 DOI: 10.1016/j.imlet.2021.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
Vaccines are a highly effective intervention for conferring protection against infections and reducing the associated morbidity and mortality in vaccinated individuals. However, ageing is often associated with a functional decline in the immune system that results in poor antibody production in older individuals after vaccination. A key contributing factor of this age-related decline in vaccine efficacy is the reduced size and function of the germinal centre (GC) response. GCs are specialised microstructures where B cells undergo affinity maturation and diversification of their antibody genes, before differentiating into long-lived antibody-secreting plasma cells and memory B cells. The GC response requires the coordinated interaction of many different cell types, including B cells, T follicular helper (Tfh) cells, T follicular regulatory (Tfr) cells and stromal cell subsets like follicular dendritic cells (FDCs). This review discusses how ageing affects different components of the GC reaction that contribute to its limited output and ultimately impaired antibody responses in older individuals after vaccination. An understanding of the mechanisms underpinning the age-related decline in the GC response is crucial in informing strategies to improve vaccine efficacy and extend the healthy lifespan amongst older people.
Collapse
Affiliation(s)
- Jia Le Lee
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Michelle A Linterman
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
9
|
Sedegah M, Hollingdale MR, Ganeshan H, Belmonte M, Huang J, Belmonte A, Inoue S, Velasco R, Hickey B, Teneza-Mora N, Lumsden J, Reyes S, Banania JG, Reyes A, Guzman I, Richie TL, Epstein JE, Villasante E. IMRAS-Immunization with radiation-attenuated Plasmodium falciparum sporozoites by mosquito bite: Cellular immunity to sporozoites, CSP, AMA1, TRAP and CelTOS. PLoS One 2021; 16:e0256396. [PMID: 34415964 PMCID: PMC8378721 DOI: 10.1371/journal.pone.0256396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/21/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Immunization with radiation-attenuated sporozoites (RAS) by mosquito bites provides >90% sterile protection against Plasmodium falciparum malaria in humans. We conducted a clinical trial based on data from previous RAS clinical trials that suggested that 800-1200 infected bites should induce ~50% protective vaccine efficacy (VE) against controlled human malaria infection (CHMI) administered three weeks after the final immunization. Two cohorts were immunized separately. VE was 55% in Cohort 1 but 90% in Cohort 2, the cohort that received a higher first dose and a reduced (fractional) fifth dose. Immune responses were better boosted by the fractional fifth dose in Cohort 2 and suggested the importance of the fractional fifth dose for increased protection in Cohort 2 responses. Three protected subjects were later boosted and were protected suggesting that protection could be extended to at least 67 weeks. METHODS The ex vivo FluoroSpot assay was used to measure peripheral IFN-γ, IL2, and IFN-γ+IL2 responses to PfNF54 sporozoites and malaria antigens CSP, AMA1, TRAP, and CelTOS using pools of synthetic overlapping 15mer peptides spanning each antigen. RESULTS There was no correlation between IFN-γ, IL2, and IFN-γ+IL2 responses to sporozoites and protection, but fold-increases between post-4th and post-5th responses greater than 1.0 occurred mostly in protected subjects. IFN-γ and IL2 responses to TRAP, CelTOS and CSP occurred only in protected subjects. Peripheral IFN-γ, IL2, and IFN-γ+IL2 responses were short-lived and low by 27 weeks post-CHMI but were restored by boosting. CONCLUSIONS These studies highlight the importance of vaccine dose and schedule for vaccine efficacy, and suggest that CSP, TRAP, AMA1 and CelTOS may be targets of protective immunity. The correlation between fold-increases in responses and protection should be explored in other vaccine trials. TRIAL REGISTRATION ClinicalTrials.gov NCT01994525.
Collapse
Affiliation(s)
- Martha Sedegah
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Michael R. Hollingdale
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Harini Ganeshan
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Maria Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Jun Huang
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Arnel Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Sandra Inoue
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Rachel Velasco
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Bradley Hickey
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Nimfa Teneza-Mora
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Joanne Lumsden
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Sharina Reyes
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Jo Glenna Banania
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Anatalio Reyes
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Ivelese Guzman
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Thomas L. Richie
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Judith E. Epstein
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| |
Collapse
|
10
|
Wan S, Cao S, Wang X, Zhou Y, Yan W, Gu X, Wu TC, Pang X. Evaluation of Vertebrate-Specific Replication-Defective Zika Virus, a Novel Single-Cycle Arbovirus Vaccine, in a Mouse Model. Vaccines (Basel) 2021; 9:vaccines9040338. [PMID: 33916109 PMCID: PMC8065927 DOI: 10.3390/vaccines9040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 11/16/2022] Open
Abstract
The flavivirus Zika (ZIKV) has emerged as a global threat, making the development of a ZIKV vaccine a priority. While live-attenuated vaccines are known to induce long-term immunity but reduced safety, inactivated vaccines exhibit a weaker immune response as a trade-off for increased safety margins. To overcome the trade-off between immunogenicity and safety, the concept of a third-generation flavivirus vaccine based on single-cycle flaviviruses has been developed. These third-generation flavivirus vaccines have demonstrated extreme potency with a high level of safety in animal models. However, the production of these single-cycle, encapsidation-defective flaviviruses requires a complicated virion packaging system. Here, we investigated a new single-cycle flavivirus vaccine, a vertebrate-specific replication-defective ZIKV (VSRD-ZIKV), in a mouse model. VSRD-ZIKV replicates to high titers in insect cells but can only initiate a single-round infection in vertebrate cells. During a single round of infection, VSRD-ZIKV can express all the authentic viral antigens in vertebrate hosts. VSRD-ZIKV immunization elicited a robust cellular and humoral immune response that protected against a lethal ZIKV challenge in AG129 mice. Additionally, VSRD-ZIKV-immunized pregnant mice were protected against vertically transferring a lethal ZIKV infection to their offspring. Immunized male mice were protected and prevented viral accumulation in the testes after being challenged with lethal ZIKV. Overall, our results indicate that VSRD-ZIKV induces a potent protective immunity against ZIKV in a mouse model and represents a promising approach to develop novel single-cycle arbovirus vaccines.
Collapse
Affiliation(s)
- Shengfeng Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (S.C.); (X.W.); (W.Y.)
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC 20059, USA;
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (S.C.); (X.W.); (W.Y.)
| | - Xugang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (S.C.); (X.W.); (W.Y.)
| | - Yanfei Zhou
- Tegen Biomedical Co., Rockville, MD 20851, USA;
| | - Weidong Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (S.C.); (X.W.); (W.Y.)
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC 20059, USA;
| | - Xinbin Gu
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC 20059, USA;
| | - Tzyy-Choou Wu
- Department of Molecular Microbiology & Immunology, Johns Hopkins Medical Institutes, Baltimore, MD 2128, USA;
| | - Xiaowu Pang
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC 20059, USA;
- Correspondence:
| |
Collapse
|
11
|
Rojas JM, Barba-Moreno D, Avia M, Sevilla N, Martín V. Vaccination With Recombinant Adenoviruses Expressing the Bluetongue Virus Subunits VP7 and VP2 Provides Protection Against Heterologous Virus Challenge. Front Vet Sci 2021; 8:645561. [PMID: 33778041 PMCID: PMC7987666 DOI: 10.3389/fvets.2021.645561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
Bluetongue virus (BTV) is the causative agent of a disease that affects domestic and wild ruminants and leads to critical economic losses. BTV is an arbovirus from the Reoviridae family that is typically transmitted by the bite of infected Culicoides midges. BTV possesses multiple serotypes (up to 28 have been described), and immunity to one serotype offers little cross-protection to other serotypes. The design of vaccines that provide protection across multiple serotypes is therefore highly desirable to control this disease. We previously reported that a recombinant replication-defective human adenovirus serotype 5 (Ad5) that expresses the VP7 inner core protein of BTV serotype 8 (Ad5VP7-8) induced T-cell responses and provided protection. In the present work, we evaluated as BTV vaccine the combination of Ad5VP7-8 with another recombinant Ad5 that expresses the outer core protein VP2 from BTV-1 (Ad5VP2-1). The combination of Ad5VP2-1 and Ad5VP7-8 protected against homologous BTV challenge (BTV-1 and BTV-8) and partially against heterologous BTV-4 in a murine model. Cross-reactive anti-BTV immunoglobulin G (IgG) were detected in immunized animals, but no significant titers of neutralizing antibodies were elicited. The Ad5VP7-8 immunization induced T-cell responses that recognized all three serotypes tested in this study and primed cytotoxic T lymphocytes specific for VP7. This study further confirms that targeting antigenic determinant shared by several BTV serotypes using cellular immunity could help develop multiserotype BTV vaccines.
Collapse
Affiliation(s)
- José Manuel Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Diego Barba-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
12
|
Wan S, Cao S, Wang X, Zhou Y, Yan W, Gu X, Wu TC, Pang X. Generation and preliminary characterization of vertebrate-specific replication-defective Zika virus. Virology 2021; 552:73-82. [PMID: 33075709 PMCID: PMC7733535 DOI: 10.1016/j.virol.2020.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 01/07/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that replicates in both vertebrate and insect cells, whereas insect-specific flaviviruses (ISF) replicate only in insect cells. We sought to convert ZIKV, from a dual-tropic flavivirus, into an insect-specific virus for the eventual development of a safe ZIKV vaccine. Reverse genetics was used to introduce specific mutations into the furin cleavage motif within the ZIKV pre-membrane protein (prM). Mutant clones were selected, which replicated well in C6/36 insect cells but exhibited reduced replication in non-human primate (Vero) cells. Further characterization of the furin cleavage site mutants indicated they replicated poorly in both human (HeLa, U251), and baby hamster kidney (BHK-21) cells. One clone with the induced mutation in the prM protein and at positions 291and 452 within the NS3 protein was totally and stably replication-defective in vertebrate cells (VSRD-ZIKV). Preliminary studies in ZIKV sensitive, immunodeficient mice demonstrated that VSRD-ZIKV-infected mice survived and were virus-negative. Our study indicates that a reverse genetic approach targeting the furin cleavage site in prM can be used to select an insect-specific ZIKV with the potential utility as a vaccine strain.
Collapse
Affiliation(s)
- Shengfeng Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA; Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, 450003, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xugang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | - Weidong Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA
| | - Xinbin Gu
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA
| | - Tzyy-Choou Wu
- Department of Molecular Microbiology & Immunology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Xiaowu Pang
- Department of Oral Pathology, College of Dentistry, Howard University, Washington, DC, 20059, USA.
| |
Collapse
|
13
|
Bakadia BM, He F, Souho T, Lamboni L, Ullah MW, Boni BO, Ahmed AAQ, Mukole BM, Yang G. Prevention and treatment of COVID-19: Focus on interferons, chloroquine/hydroxychloroquine, azithromycin, and vaccine. Biomed Pharmacother 2021; 133:111008. [PMID: 33227708 PMCID: PMC7831445 DOI: 10.1016/j.biopha.2020.111008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022] Open
Abstract
The ongoing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has drawn the attention of researchers and clinicians from several disciplines and sectors who are trying to find durable solutions both at preventive and treatment levels. To date, there is no approved effective treatment or vaccine available to control the coronavirus disease-2019 (COVID-19). The preliminary in vitro studies on viral infection models showed potential antiviral activities of type I and III interferons (IFNs), chloroquine (CQ)/hydroxychloroquine (HCQ), and azithromycin (AZM); however, the clinical studies on COVID-19 patients treated with CQ/HCQ and AZM led to controversies in different regions due to their adverse side effects, as well as their combined treatment could prolong the QT interval. Interestingly, the treatment with type I IFNs showed encouraging results. Moreover, the different preliminary reports of COVID-19 candidate vaccines showcase promising results by inducing the production of a high level of neutralizing antibodies (NAbs) and specific T cell-mediated immune response in almost all participants. The present review aims to summarize and analyze the recent progress evidence concerning the use of IFNs, CQ/HCQ, and AZM for the treatment of COVID-19. The available data on immunization options to prevent the COVID-19 are also analyzed with the aim to present the promising options which could be investigated in future for sustainable control of the pandemic.
Collapse
Affiliation(s)
- Bianza Moise Bakadia
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Institut Supérieur des Techniques Médicales de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 43800, PR China.
| | - Tiatou Souho
- Laboratoire de Biochimie des Aliments et Nutrition, Faculté des Sciences et Techniques, Université de Kara, Kara, Togo
| | - Lallepak Lamboni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Laboratoire de Biologie Moléculaire et Virologie, Institut National d'Hygiène-Togo, 26 Rue Nangbéto, Quartier Administratif- PO. Box 1396, Lomé, Togo
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Biaou Ode Boni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Abeer Ahmed Qaed Ahmed
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Biampata Mutu Mukole
- Institut National de Recherche Biomédicale, Ministère de la Santé, Democratic Republic of the Congo
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
14
|
Bakadia BM, Boni BOO, Ahmed AAQ, Yang G. The impact of oxidative stress damage induced by the environmental stressors on COVID-19. Life Sci 2021; 264:118653. [PMID: 33115606 PMCID: PMC7586125 DOI: 10.1016/j.lfs.2020.118653] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
The ongoing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a substantial stressor that is greatly impacting environmental sustainability. Besides, the different pre-existing environmental stressors and coronavirus disease-2019 (COVID-19)-related stressors are further worsening the effects of the viral disease by inducing the generation of oxidative stress. The generated oxidative stress results in nucleic acid damage associated with viral mutations, that could potentially reduce the effectiveness of COVID-19 management, including the vaccine approach. The current review is aimed to overview the impact of the oxidative stress damage induced by various environmental stressors on COVID-19. The available data regarding the COVID-19-related stressors and the effects of oxidative stress damage induced by the chronic stress, exposure to free radicals, and malnutrition are also analyzed to showcase the promising options, which could be investigated further for sustainable control of the pandemic.
Collapse
Affiliation(s)
- Bianza Moise Bakadia
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Biaou Oscar Ode Boni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Abeer Ahmed Qaed Ahmed
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
15
|
Subdominance in Antibody Responses: Implications for Vaccine Development. Microbiol Mol Biol Rev 2020; 85:85/1/e00078-20. [PMID: 33239435 DOI: 10.1128/mmbr.00078-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vaccines work primarily by eliciting antibodies, even when recovery from natural infection depends on cellular immunity. Large efforts have therefore been made to identify microbial antigens that elicit protective antibodies, but these endeavors have encountered major difficulties, as witnessed by the lack of vaccines against many pathogens. This review summarizes accumulating evidence that subdominant protein regions, i.e., surface-exposed regions that elicit relatively weak antibody responses, are of particular interest for vaccine development. This concept may seem counterintuitive, but subdominance may represent an immune evasion mechanism, implying that the corresponding region potentially is a key target for protective immunity. Following a presentation of the concepts of immunodominance and subdominance, the review will present work on subdominant regions in several major human pathogens: the protozoan Plasmodium falciparum, two species of pathogenic streptococci, and the dengue and influenza viruses. Later sections are devoted to the molecular basis of subdominance, its potential role in immune evasion, and general implications for vaccine development. Special emphasis will be placed on the fact that a whole surface-exposed protein domain can be subdominant, as demonstrated for all of the pathogens described here. Overall, the available data indicate that subdominant protein regions are of much interest for vaccine development, not least in bacterial and protozoal systems, for which antibody subdominance remains largely unexplored.
Collapse
|
16
|
Min YQ, Mo Q, Wang J, Deng F, Wang H, Ning YJ. SARS-CoV-2 nsp1: Bioinformatics, Potential Structural and Functional Features, and Implications for Drug/Vaccine Designs. Front Microbiol 2020; 11:587317. [PMID: 33133055 PMCID: PMC7550470 DOI: 10.3389/fmicb.2020.587317] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
The emerging coronavirus disease (COVID-19) caused by SARS-CoV-2 has led to social and economic disruption globally. It is urgently needed to understand the structure and function of the viral proteins for understanding of the viral infection and pathogenesis and development of prophylaxis and treatment strategies. Coronavirus non-structural protein 1 (nsp1) is a notable virulence factor with versatile roles in virus-host interactions and exhibits unique characteristics on sequence, structure, and function mode. However, the roles and characteristics of SARS-CoV-2 nsp1 are currently unclear. Here, we analyze the nsp1 of SARS-CoV-2 from the following perspectives: (1) bioinformatics analysis reveals that the novel nsp1 is conserved among SARS-CoV-2 strains and shares significant sequence identity with SARS-CoV nsp1; (2) structure modeling shows a 3D α/β-fold of SARS-CoV-2 nsp1 highly similar to that of the SARS-CoV homolog; (3) by detailed, functional review of nsp1 proteins from other coronaviruses (especially SARS-CoV) and comparison of the protein sequence and structure, we further analyzed the potential roles of SARS-CoV-2 nsp1 in manipulating host mRNA translation, antiviral innate immunity and inflammation response and thus likely promoting viral infection and pathogenesis, which are merited to be tested in the future. Finally, we discussed how understanding of the novel nsp1 may provide valuable insights into the designs of drugs and vaccines against the unprecedented coronavirus pandemic.
Collapse
Affiliation(s)
- Yuan-Qin Min
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Qiong Mo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
17
|
Techawiwattanaboon T, Barnier-Quer C, Palaga T, Jacquet A, Collin N, Sangjun N, Komanee P, Patarakul K. A Comparison of Intramuscular and Subcutaneous Administration of LigA Subunit Vaccine Adjuvanted with Neutral Liposomal Formulation Containing Monophosphoryl Lipid A and QS21. Vaccines (Basel) 2020; 8:E494. [PMID: 32882903 PMCID: PMC7565420 DOI: 10.3390/vaccines8030494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 01/04/2023] Open
Abstract
Leptospirosis vaccines with higher potency and reduced adverse effects are needed for human use. The carboxyl terminal domain of leptospiral immunoglobulin like protein A (LigAc) is currently the most promising candidate antigen for leptospirosis subunit vaccine. However, LigAc-based vaccines were unable to confer sterilizing immunity against Leptospira infection in animal models. Several factors including antigen properties, adjuvant, delivery system, and administration route need optimization to maximize vaccine efficacy. Our previous report demonstrated protective effects of the recombinant LigAc (rLigAc) formulated with liposome-based adjuvant, called LMQ (neutral liposome combined with monophosphoryl lipid A and Quillaja saponaria fraction 21) in hamsters. This study aimed to evaluate the impact of two commonly used administration routes, intramuscular (IM) and subcutaneous (SC), on immunogenicity and protective efficacy of rLigAc-LMQ administrated three times at 2-week interval. Two IM vaccinations triggered significantly higher levels of total anti-rLigAc IgG than two SC injections. However, comparable IgG titers and IgG2/IgG1 ratio was observed for both routes after the third immunization. The route of vaccine administration did not influence the survival rate (60%) and renal colonization against lethal Leptospira challenge. Importantly, the kidneys of IM group showed no pathological lesions while the SC group showed mild damage. In conclusion, IM vaccination with rLigAc-LMQ not only elicited faster antibody production but also protected from kidney damage following leptospiral infection better than SC immunization. However, both tested routes did not influence protective efficacy in terms of survival rate and the level of renal colonization.
Collapse
Affiliation(s)
- Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand;
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand;
| | - Christophe Barnier-Quer
- Vaccine Formulation Laboratory (VFL), University of Lausanne, 1066 Epalinges, Switzerland; (C.B.-Q.); (N.C.)
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Alain Jacquet
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand;
| | - Nicolas Collin
- Vaccine Formulation Laboratory (VFL), University of Lausanne, 1066 Epalinges, Switzerland; (C.B.-Q.); (N.C.)
| | - Noppadon Sangjun
- Armed Force Research Institute of Medical Sciences (AFRIMS), Ratchathewi, Bangkok 10400, Thailand; (N.S.); (P.K.)
| | - Pat Komanee
- Armed Force Research Institute of Medical Sciences (AFRIMS), Ratchathewi, Bangkok 10400, Thailand; (N.S.); (P.K.)
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand;
- Chula Vaccine Research Center (Chula VRC), Center of Excellence in Vaccine Research and Development, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand;
| |
Collapse
|
18
|
Nguyen A, David JK, Maden SK, Wood MA, Weeder BR, Nellore A, Thompson RF. Human Leukocyte Antigen Susceptibility Map for Severe Acute Respiratory Syndrome Coronavirus 2. J Virol 2020; 94:e00510-20. [PMID: 32303592 PMCID: PMC7307149 DOI: 10.1128/jvi.00510-20] [Citation(s) in RCA: 354] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Genetic variability across the three major histocompatibility complex (MHC) class I genes (human leukocyte antigen A [HLA-A], -B, and -C genes) may affect susceptibility to and severity of the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19). We performed a comprehensive in silico analysis of viral peptide-MHC class I binding affinity across 145 HLA-A, -B, and -C genotypes for all SARS-CoV-2 peptides. We further explored the potential for cross-protective immunity conferred by prior exposure to four common human coronaviruses. The SARS-CoV-2 proteome was successfully sampled and was represented by a diversity of HLA alleles. However, we found that HLA-B*46:01 had the fewest predicted binding peptides for SARS-CoV-2, suggesting that individuals with this allele may be particularly vulnerable to COVID-19, as they were previously shown to be for SARS (M. Lin, H.-T. Tseng, J. A. Trejaut, H.-L. Lee, et al., BMC Med Genet 4:9, 2003, https://bmcmedgenet.biomedcentral.com/articles/10.1186/1471-2350-4-9). Conversely, we found that HLA-B*15:03 showed the greatest capacity to present highly conserved SARS-CoV-2 peptides that are shared among common human coronaviruses, suggesting that it could enable cross-protective T-cell-based immunity. Finally, we reported global distributions of HLA types with potential epidemiological ramifications in the setting of the current pandemic.IMPORTANCE Individual genetic variation may help to explain different immune responses to a virus across a population. In particular, understanding how variation in HLA may affect the course of COVID-19 could help identify individuals at higher risk from the disease. HLA typing can be fast and inexpensive. Pairing HLA typing with COVID-19 testing where feasible could improve assessment of severity of viral disease in the population. Following the development of a vaccine against SARS-CoV-2, the virus that causes COVID-19, individuals with high-risk HLA types could be prioritized for vaccination.
Collapse
Affiliation(s)
- Austin Nguyen
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Julianne K David
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Sean K Maden
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Mary A Wood
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA
- Portland VA Research Foundation, Portland, Oregon, USA
| | - Benjamin R Weeder
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Abhinav Nellore
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Department of Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Reid F Thompson
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
- Division of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, Oregon, USA
| |
Collapse
|
19
|
Combined TLR4 and TLR9 agonists induce distinct phenotypic changes in innate immunity in vitro and in vivo. Cell Immunol 2020; 355:104149. [PMID: 32619809 DOI: 10.1016/j.cellimm.2020.104149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 01/04/2023]
Abstract
Toll-like receptor (TLR)4 and TLR9 agonists, MPL and CpG, are used as adjuvants in vaccines and have been investigated for their combined potential. However, how these two combined agonists regulate transcriptional changes in innate immune cells and cells at the site of vaccination has not been thoroughly investigated. Here, we utilized transcriptomics to investigate how CpG, MPL, and CpG + MPL impact gene expression in dendritic cells (DC) in vitro. Principal component analysis of transcriptional changes after single and combined treatment indicated that CpG, MPL, and CpG + MPL caused distinct gene signatures. CpG + MPL induced antiviral gene expression and activated the interferon regulatory factor pathway. In vitro changes were associated with lower in vivo morbidity upon viral challenge, elevated systemic cytokine protein production, local cytokine mRNA expression, and increased migratory monocyte derived DC populations in the draining lymph node following vaccination with CpG + MPL. This report suggests that CpG + MPL enhances transcription of antiviral and inflammatory genes and increases DC migration.
Collapse
|
20
|
Bufan B, Arsenović-Ranin N, Petrović R, Živković I, Stoiljković V, Leposavić G. Strain specificities in influence of ageing on germinal centre reaction to inactivated influenza virus antigens in mice: Sex-based differences. Exp Gerontol 2020; 133:110857. [PMID: 32006634 DOI: 10.1016/j.exger.2020.110857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Considering variability in vaccine responsiveness across human populations, in respect to magnitude and quality, and importance of vaccines in the elderly, the influence of recipient genetic background on the kinetics of age-related changes in the serum IgG antibody responses to seasonal trivalent inactivated split-virus influenza bulk (TIV) was studied in BALB/c and C57BL/6 mice showing quantitative and qualitative differences in this responses in young adult ages. With ageing the total serum IgG response to influenza viruses declined, in a strain-specific manner, so the strain disparity observed in young adult mice (the greater magnitude of IgG response in BALB/c mice) disappeared in aged mice. However, the sexual dimorphisms in this response (more prominent in females of both strains) remained in aged ones. The strain-specific differences in age-related decline in the magnitude of IgG response to TIV correlated with the number of germinal centre (GC) B splenocytes. The age-related decline in GC B cell number was consistent with the decrease in the proliferation of B cells and CD4+ cells in splenocyte cultures upon restimulation with TIV. Additionally, the age-related decrease in the magnitude of IgG response correlated with the increase in follicular T regulatory (fTreg)/follicular T helper (fTh) and fTreg/GC B splenocyte ratios (reflecting decrease in fTh and GC B numbers without changes in fTreg number), and the frequency of CD4+ splenocytes producing IL-21, a key factor in balancing the B cell and fTreg cell activity. With ageing the avidity of virus influenza-specific antibody increased in females of both strains. Moreover, ageing affected IgG2a/IgG1 and IgG2c/IgG1 ratios (reflecting Th1/Th2 balance) in male BALB/c mice and female C57BL/6 mice, respectively. Consequently, differently from young mice exhibiting the similar ratios in male and female mice, in aged female mice of both strains IgG2a(c)/IgG1 ratios were shifted towards a less effective IgG1 response (stimulated by IL-4 cytokines) compared with males. The age-related alterations in IgG subclass profiles in both strains correlated with those in IFN-γ/IL-4 production level ratio in splenocyte cultures restimulated with TIV. These findings stimulate further research to formulate sex-specific strategies to improve efficacy of influenza vaccine in the elderly.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Raisa Petrović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Irena Živković
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Vera Stoiljković
- Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
21
|
Kavian N, Hachim A, Li APY, Cohen CA, Chin AWH, Poon LLM, Fang VJ, Leung NHL, Cowling BJ, Valkenburg SA. Assessment of enhanced influenza vaccination finds that FluAd conveys an advantage in mice and older adults. Clin Transl Immunology 2020; 9:e1107. [PMID: 32025302 PMCID: PMC6997034 DOI: 10.1002/cti2.1107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Enhanced inactivated influenza vaccines (eIIV) aim to increase immunogenicity and protection compared with the widely used standard IIV (S-IIV). METHODS We tested four vaccines in parallel, FluZone high dose, FluBlok and FluAd versus S-IIV in a randomised controlled trial of older adults and in a mouse infection model to assess immunogenicity, protection from lethal challenge and mechanisms of action. RESULTS In older adults, FluAd vaccination stimulated a superior antibody profile, including H3-HA antibodies that were elevated for up to 1 year after vaccination, higher avidity H3HA IgG and larger HA stem IgG responses. In a mouse model, FluAd also elicited an earlier and larger induction of HA stem antibodies with increased germinal centre responses and upregulation and long-term expression of B-cell switch transcription factors. Long-term cross-reactive memory responses were sustained by FluAd following lethal heterosubtypic influenza challenge, with reduced lung damage and viral loads, coinciding with increased T- and B-cell recall. Advantages were also noted for the high-dose FluZone vaccine in both humans and mice. CONCLUSION The early, broadly reactive and long-lived antibody response of FluAd indicates a potential advantage of this vaccine, particularly in years when there is a mismatch between the vaccine strain and the circulating strain of influenza viruses.
Collapse
Affiliation(s)
- Niloufar Kavian
- HKU‐Pasteur Research PoleSchool of Public HealthThe University of Hong KongHong Kong
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
- Service d'Immunologie BiologiqueCentre Hospitalier Universitaire CochinFaculté de MédecineAssistance Publique–Hôpitaux de ParisHôpital Universitaire Paris CentreUniversité Paris DescartesSorbonne Paris CitéParisFrance
- Institut CochinINSERM U1016Université Paris DescartesSorbonne Paris CitéParisFrance
| | - Asmaa Hachim
- HKU‐Pasteur Research PoleSchool of Public HealthThe University of Hong KongHong Kong
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Athena PY Li
- HKU‐Pasteur Research PoleSchool of Public HealthThe University of Hong KongHong Kong
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Carolyn A Cohen
- HKU‐Pasteur Research PoleSchool of Public HealthThe University of Hong KongHong Kong
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Alex WH Chin
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Leo LM Poon
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Vicky J Fang
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Nancy HL Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| | - Sophie A Valkenburg
- HKU‐Pasteur Research PoleSchool of Public HealthThe University of Hong KongHong Kong
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and ControlSchool of Public HealthThe University of Hong KongHong Kong
| |
Collapse
|
22
|
Neukirch L, Fougeroux C, Andersson AMC, Holst PJ. The potential of adenoviral vaccine vectors with altered antigen presentation capabilities. Expert Rev Vaccines 2020; 19:25-41. [PMID: 31889453 DOI: 10.1080/14760584.2020.1711054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Despite their appeal as vaccine vectors, adenoviral vectors are yet unable to induce protective immune responses against some weakly immunogenic antigens. Additionally, the maximum doses of adenovirus-based vaccines are limited by vector-induced toxicity, causing vector elimination and diminished immune responses against the target antigen. In order to increase immune responses to the transgene, while maintaining a moderate vector dose, new technologies for improved transgene presentation have been developed for adenoviral vaccine vectors.Areas covered: This review provides an overview of different genetic-fusion adjuvants that aim to improve antigen presentation in the context of adenoviral vector-based vaccines. The influence on both T cell and B cell responses are discussed, with a main focus on two technologies: MHC class II-associated invariant chain and virus-like-vaccines.Expert opinion: Different strategies have been tested to improve adenovirus-based vaccinations with varying degrees of success. The reviewed genetic adjuvants were designed to increase antigen processing and MHC presentation, or promote humoral immune responses with an improved conformational antigen display. While none of the introduced technologies is universally applicable, this review shall give an overview to identify potential improvements for future vaccination approaches.
Collapse
Affiliation(s)
- Lasse Neukirch
- Clinical Cooperation Unit "Applied Tumor Immunity", National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Cyrielle Fougeroux
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Carola Andersson
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| |
Collapse
|
23
|
Establishment of a Standardized Vaccine Protocol for the Analysis of Protective Immune Responses During Experimental Trypanosome Infections in Mice. Methods Mol Biol 2020; 2116:721-738. [PMID: 32221951 DOI: 10.1007/978-1-0716-0294-2_42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To date, trypanosomosis control in humans and animals is achieved by a combination of parasitological screening and treatment. While this approach has successfully brought down the number of reported T. b. gambiense Human African Trypanosomosis (HAT) cases, the method does not offer a sustainable solution for animal trypanosomosis (AT). The main reasons for this are (i) the worldwide distribution of AT, (ii) the wide range of insect vectors involved in transmission of AT, and (iii) the existence of a wildlife parasite reservoir that can serve as a source for livestock reinfection. Hence, in order to control livestock trypanosomosis the only viable long-term solution is an effective antitrypanosome vaccination strategy. Over the last decades, multiple vaccine approaches have been proposed. Despite repeated reports of promising experimental approaches, none of those made it to a field applicable vaccine format. This failure can in part be attributed to flaws in the experimental design that favor a positive laboratory result. This chapter provides a vaccine protocol that should allow for a proper outcome prediction in experimental anti-AT vaccine approaches.
Collapse
|
24
|
Finney J, Watanabe A, Kelsoe G, Kuraoka M. Minding the gap: The impact of B-cell tolerance on the microbial antibody repertoire. Immunol Rev 2019; 292:24-36. [PMID: 31559648 PMCID: PMC6935408 DOI: 10.1111/imr.12805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022]
Abstract
B lymphocytes must respond to vast numbers of foreign antigens, including those of microbial pathogens. To do so, developing B cells use combinatorial joining of V-, D-, and J-gene segments to generate an extraordinarily diverse repertoire of B-cell antigen receptors (BCRs). Unsurprisingly, a large fraction of this initial BCR repertoire reacts to self-antigens, and these "forbidden" B cells are culled by immunological tolerance from mature B-cell populations. While culling of autoreactive BCRs mitigates the risk of autoimmunity, it also opens gaps in the BCR repertoire, which are exploited by pathogens that mimic the forbidden self-epitopes. Consequently, immunological tolerance, necessary for averting autoimmune disease, also acts to limit effective microbial immunity. In this brief review, we recount the evidence for the linkage of tolerance and impaired microbial immunity, consider the implications of this linkage for vaccine development, and discuss modulating tolerance as a potential strategy for strengthening humoral immune responses.
Collapse
Affiliation(s)
- Joel Finney
- Department of Immunology, Duke University, Durham, NC, USA
| | - Akiko Watanabe
- Department of Immunology, Duke University, Durham, NC, USA
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC, USA
- Duke University Human Vaccine Institute, Duke University, Durham, NC, USA
| | | |
Collapse
|
25
|
The effect of maternal antibodies on the cellular immune response after infant vaccination: A review. Vaccine 2019; 38:20-28. [PMID: 31672332 DOI: 10.1016/j.vaccine.2019.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023]
Abstract
During the last few decades, maternal immunization as a strategy to protect young infants from infectious diseases has been increasingly recommended, yet some issues have emerged. Studies have shown that for several vaccines, such as live attenuated, toxoid and conjugated vaccines, high maternal antibody titers inhibit the infant's humoral immune response after infant vaccination. However, it is not clear whether this decreased antibody titer has any clinical impact on the infant's protection, as the cellular immune responses are often equally important in providing disease protection and may therefore compensate for diminished antibody levels. Reports describing the effect of maternal antibodies on the cellular immune response after infant vaccination are scarce, probably because such studies are expensive, labor intensive and utilize poorly standardized laboratory techniques. Therefore, this review aims to shed light on what is currently known about the cellular immune responses after infant vaccination in the presence of high (maternal) antibody titers both in animal and human studies. Overall, the findings suggest that maternally derived antibodies do not interfere with the cellular immune responses after infant vaccination. However, more research in humans is clearly needed, as most data originate from animal studies.
Collapse
|
26
|
Shende P, Waghchaure M. Combined vaccines for prophylaxis of infectious conditions. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:696-705. [PMID: 30829068 DOI: 10.1080/21691401.2019.1576709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In recent years, the application of vaccines shows limitations, including the high number of vaccine administrations and the fear of safety and effectiveness. In this regard, advanced vaccine products have been developed, like the combined vaccines, or are under development, such as nucleic acid vaccines (DNA and RNA), polymer-based vaccines, etc. Moreover, the possible use of traditional, like aluminium hydroxide and aluminium phosphate, or innovative adjuvants, like monophosphoryl lipid A, polysaccharides and nanoparticulate system, may further increase vaccine effectiveness. This review article focuses on the combined vaccines, which, especially when they are associated with adjuvants, reduce the dosing frequency, and prolong the duration of action, thus providing better vaccine coverage. Marketed preparations, like Typhim Vi, Peda typh and Boostrix showed better vaccine coverage for diseases like typhoid, tetanus, diphtheria and acellular pertussis. The future aspect for the development of combined vaccines will protect not only against infectious diseases but likely even against various infectious conditions, like pneumonia, meningococcal infection and respiratory syncytial virus infection.
Collapse
Affiliation(s)
- Pravin Shende
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , Mumbai , India
| | - Mansi Waghchaure
- a Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management , SVKM's NMIMS , Mumbai , India
| |
Collapse
|
27
|
Combining Monophosphoryl Lipid A (MPL), CpG Oligodeoxynucleotide (ODN), and QS-21 Adjuvants Induces Strong and Persistent Functional Antibodies and T Cell Responses against Cell-Traversal Protein for Ookinetes and Sporozoites (CelTOS) of Plasmodium falciparum in BALB/c Mice. Infect Immun 2019; 87:IAI.00911-18. [PMID: 30936155 DOI: 10.1128/iai.00911-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/17/2019] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum cell-traversal protein for ookinetes and sporozoites (PfCelTOS) is an advanced vaccine candidate that has a crucial role in the traversal of the malaria parasite in both mosquito and mammalian hosts. As recombinant purified proteins are normally poor immunogens, they require to be admixed with an adjuvant(s); therefore, the objective of the present study was to evaluate the capacity of different vaccine adjuvants, monophosphoryl lipid A (MPL), CpG, and Quillaja saponaria Molina fraction 21 (QS-21), alone or in combination (MCQ [MPL/CpG/QS-21]), to enhance the immunogenicity of Escherichia coli-expressed PfCelTOS in BALB/c mice. This goal was achieved by the assessment of anti-PfCelTOS IgG antibodies (level, titer, IgG isotype profile, avidity, and persistence) and extracellular Th1 cytokines using an enzyme-linked immunosorbent assay (ELISA) on postimmunized BALB/c mouse sera and PfCelTOS-stimulated splenocytes, respectively. Also, an assessment of the transmission-reducing activity (TRA) of anti-PfCelTOS obtained from different vaccine groups was carried out in female Anopheles stephensi mosquitoes by using a standard membrane feeding assay (SMFA). In comparison to PfCelTOS alone, administration of PfCelTOS with three distinct potent Th1 adjuvants in vaccine mouse groups showed enhancement and improvement of PfCelTOS immunogenicity that generated more bias toward a Th1 response with significantly enhanced titers and avidity of the anti-PfCelTOS responses that could impair ookinete development in A. stephensi However, immunization of mice with PfCelTOS with MCQ mixture adjuvants resulted in the highest levels of induction of antibody titers, avidity, and inhibitory antibodies in oocyst development (88%/26.7% reductions in intensity/prevalence) in A. stephensi It could be suggested that adjuvant combinations with different mechanisms stimulate better functional antibody responses than adjuvants individually against challenging diseases such as malaria.
Collapse
|
28
|
Lee J, Arun Kumar S, Souery WN, Hinsdale T, Maitland KC, Bishop CJ. An ultraviolet-curable, core-shell vaccine formed via phase separation. J Biomed Mater Res A 2019; 107:2160-2173. [PMID: 31107571 DOI: 10.1002/jbm.a.36726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Abstract
One of the central challenges in the field of vaccine delivery is to develop a delivery method that maintains antigen stability while also enabling control over the system's release kinetics. Addressing these challenges would not only allow for expanded access to vaccines worldwide but would also help significantly reduce mortality rates in developing countries. In this article, we report the development of single-injection vaccine depots for achieving novel delayed burst release. Synthesized poly(ε-caprolactone) and poly(ε-caprolactone) triacrylate were used to form stationary bubbles within an aqueous solution of 10% carboxymethylcellulose. These polymeric bubbles (referred to as "polybubbles") can then be injected with an aqueous solution of cargo, resulting in the formation of a polymeric shell. The puncture resulting from cargo injection self-heals prior to ultraviolet (UV) curing. UV curing and lyophilization were shown to enhance the stability of the polybubbles. BSA- CF 488 and HIV1 gp120/41 were used as the antigen in the study as a proof-of-concept. Further endeavors to automate the production of polybubbles are underway.
Collapse
Affiliation(s)
- Jihui Lee
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Shreedevi Arun Kumar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Whitney N Souery
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Taylor Hinsdale
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Kristen C Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Corey J Bishop
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| |
Collapse
|
29
|
Gudjonsson A, Andersen TK, Sundvold-Gjerstad V, Bogen B, Fossum E. Endocytosis Deficient Murine Xcl1-Fusion Vaccine Enhances Protective Antibody Responses in Mice. Front Immunol 2019; 10:1086. [PMID: 31156636 PMCID: PMC6533920 DOI: 10.3389/fimmu.2019.01086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Targeting antigen to surface receptors on dendritic cells (DCs) can improve antibody response against subunit vaccines. We have previously observed that human XCL1-fusion vaccines target murine Xcr1+ DCs without actively inducing endocytosis of the antigen, resulting in enhanced antibody responses in mice. However, the use of foreign chemokines for targeting is undesirable when translating this observation to human or veterinary medicine due to potential cross-reactive responses against the endogenous chemokine. Here we have identified a mutant version of murine Xcl1, labeled Xcl1(Δ1) owing to removal of a conserved valine in position 1 of the mature chemokine, that retains specific binding to Xcr1+ DCs without inducing endocytosis of the receptor. DNA immunization with Xcl1(Δ1) conjugated to influenza hemagglutinin (HA) induced improved antibody responses, with higher end point titers of IgG compared to WT Xcl1-HA. The Xcl1(Δ1) fusion vaccine also resulted in an increased number of HA reactive germinal center B cells with higher avidity toward the antigen, and serum transfer experiments show that Xcl1(Δ1)-HA induced antibody responses provided better protection against influenza infection as compared to WT Xcl1-HA. In summary, our observations indicate that targeting antigen to Xcr1+ DCs in an endocytosis deficient manner enhances antibody responses. This effect was obtained by introducing a single mutation to Xcl1, suggesting our strategy may easily be translated to human or veterinary vaccine settings.
Collapse
Affiliation(s)
- Arnar Gudjonsson
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Tor Kristian Andersen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Vibeke Sundvold-Gjerstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway.,Centre for Immune Regulation, Institute of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Even Fossum
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Githang'a D, Wangia RN, Mureithi MW, Wandiga SO, Mutegi C, Ogutu B, Agweyu A, Wang JS, Anzala O. The effects of aflatoxin exposure on Hepatitis B-vaccine induced immunity in Kenyan children. Curr Probl Pediatr Adolesc Health Care 2019; 49:117-130. [PMID: 31103452 PMCID: PMC7116700 DOI: 10.1016/j.cppeds.2019.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Globally, approximately three million children die each year from vaccine preventable infectious diseases mainly in developing countries. Despite the success of the expanded immunization program, not all infants and children around the world develop the same protective immune response to the same vaccine. A vaccine must induce a response over the basal immune response that may be driven by population-specific, environmental or socio-economic factors. Mycotoxins like aflatoxins are immune suppressants that are confirmed to interfere with both cell-mediated and acquired immunity. The mechanism of aflatoxin toxicity is through the binding of the bio-activated AFB1-8, 9-epoxide to cellular macromolecules. METHODS We studied Hepatitis B surface antibodies [anti-HBs] levels to explore the immune modulation effects of dietary exposure to aflatoxins in children aged between one and fourteen years in Kenya. Hepatitis B vaccine was introduced for routine administration for Kenyan infants in November 2001. To assess the effects of aflatoxin on immunogenicity of childhood vaccines Aflatoxin B1-lysine in blood serum samples were determined using High Performance Liquid Chromatography with Fluorescence detection while anti-HBs were measured using Bio-ELISA anti-HBs kit. RESULTS The mean ± SD of AFB1-lysine adducts in our study population was 45.38 ± 87.03 pg/mg of albumin while the geometric mean was 20.40 pg/mg. The distribution of AFB1-lysine adducts was skewed to the right. Only 98/205 (47.8%) of the study population tested positive for Hepatitis B surface antibodies. From regression analysis, we noted that for every unit rise in serum aflatoxin level, anti-HBs dropped by 0.91 mIU/ml (-0.9110038; 95% C.I -1.604948, -0.21706). CONCLUSION Despite high coverage of routine immunization, less than half of the study population had developed immunity to HepB. Exposure to aflatoxin was high and weakly associated with low anti-HBs antibodies. These findings highlight a potentially significant role for environmental factors that may contribute to vaccine effectiveness warranting further research.
Collapse
Affiliation(s)
- D Githang'a
- KAVI - Institute of Clinical Research, University of Nairobi, Kenya; Department of Medical Microbiology, School of Medicine, College of Health Sciences, University of Nairobi, Kenya.
| | - R N Wangia
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - M W Mureithi
- KAVI - Institute of Clinical Research, University of Nairobi, Kenya; Department of Medical Microbiology, School of Medicine, College of Health Sciences, University of Nairobi, Kenya
| | - S O Wandiga
- Department of Chemistry, College of Biological and Physical Sciences, University of Nairobi, Kenya
| | - C Mutegi
- International Institute of Tropical Agriculture [IITA], P.O BOX 30772-00100, Nigeria
| | - B Ogutu
- Centre for Clinical Research-Kenya Medical Research Institute, Kenya
| | - A Agweyu
- KEMRI-Wellcome Trust Research Programme, P.O. Box 43640 - 00100, Nairobi, Kenya
| | - J-S Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - O Anzala
- KAVI - Institute of Clinical Research, University of Nairobi, Kenya; Department of Medical Microbiology, School of Medicine, College of Health Sciences, University of Nairobi, Kenya
| |
Collapse
|
31
|
Pirahmadi S, Zakeri S, A Mehrizi A, D Djadid N, Raz AA, J Sani J, Abbasi R, Ghorbanzadeh Z. Cell-traversal protein for ookinetes and sporozoites (CelTOS) formulated with potent TLR adjuvants induces high-affinity antibodies that inhibit Plasmodium falciparum infection in Anopheles stephensi. Malar J 2019; 18:146. [PMID: 31014347 PMCID: PMC6480871 DOI: 10.1186/s12936-019-2773-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/11/2019] [Indexed: 02/02/2023] Open
Abstract
Background Plasmodium falciparum parasite is the most deadly species of human malaria, and the development of an effective vaccine that prevents P. falciparum infection and transmission is a key target for malarial elimination and eradication programmes. P. falciparum cell-traversal protein for ookinetes and sporozoites (PfCelTOS) is an advanced vaccine candidate. A comparative study was performed to characterize the immune responses in BALB/c mouse immunized with Escherichia coli-expressed recombinant PfCelTOS (rPfCelTOS) in toll-like receptor (TLR)-based adjuvants, CpG and Poly I:C alone or in combination (CpG + Poly I:C), followed by the assessment of transmission-reducing activity (TRA) of anti-rPfCelTOS antibodies obtained from different vaccine groups in Anopheles stephensi. Methods The aim of the current work was achieved by head-to-head comparison of the vaccine groups using conventional and avidity enzyme-linked immunosorbent assay (ELISA), immunofluorescence test (IFAT), and standard membrane feeding assay (SMFA). Results Comparing to rPfCelTOS alone, administration of rPfCelTOS with two distinct TLR-based adjuvants in vaccine mouse groups showed a significant increase in responses (antibody level, IgG subclass analysis, avidity, and Th1 cytokines) and was able to induce reasonable transmission-reducing activity. Also, comparable functional activity of anti-rPfCelTOS antibodies was found in group that received antigen in either CpG or Poly I:C (69.9%/20% and 73.5%/24.4%, respectively, reductions in intensity/prevalence). However, the vaccine group receiving rPfCelTOS in combination with CpG + Poly I:C showed a significant induction in antibody titers and inhibitory antibodies in oocysts development (78.3%/19.6% reductions in intensity/prevalence) in An. stephensi. Conclusions A key finding in this investigation is that rPfCelTOS administered alone in BALB/c mouse is poorly immunogenic, with relatively low IgG level, avidity, inhibitory antibodies, and mixed Th1/Th2 responses. However, immunological characteristic (IgG level, cytophilic IgG2a and IgG2b, avidity, and Th1 cytokines) and TRA of anti-rPfCelTOS significantly enhanced in the presence of co-administration of TLR-based adjuvants, confirming that targeting TLRs would be an effective means for the enhancement of inducing TRA against rPfCelTOS. Electronic supplementary material The online version of this article (10.1186/s12936-019-2773-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran.
| | - Akram A Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Navid D Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Abbas-Ali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Jafar J Sani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Ronak Abbasi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| | - Zahra Ghorbanzadeh
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. Box 1316943551, Tehran, Iran
| |
Collapse
|
32
|
Nienen M, Stervbo U, Mölder F, Kaliszczyk S, Kuchenbecker L, Gayova L, Schweiger B, Jürchott K, Hecht J, Neumann AU, Rahmann S, Westhoff T, Reinke P, Thiel A, Babel N. The Role of Pre-existing Cross-Reactive Central Memory CD4 T-Cells in Vaccination With Previously Unseen Influenza Strains. Front Immunol 2019; 10:593. [PMID: 31019503 PMCID: PMC6458262 DOI: 10.3389/fimmu.2019.00593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/05/2019] [Indexed: 11/13/2022] Open
Abstract
Influenza vaccination is a common approach to prevent seasonal and pandemic influenza. Pre-existing antibodies against close viral strains might impair antibody formation against previously unseen strains-a process called original antigenic sin. The role of this pre-existing cellular immunity in this process is, despite some hints from animal models, not clear. Here, we analyzed cellular and humoral immunity in healthy individuals before and after vaccination with seasonal influenza vaccine. Based on influenza-specific hemagglutination inhibiting (HI) titers, vaccinees were grouped into HI-negative and -positive cohorts followed by in-depth cytometric and TCR repertoire analysis. Both serological groups revealed cross-reactive T-cell memory to the vaccine strains at baseline that gave rise to the majority of vaccine-specific T-cells post vaccination. On the contrary, very limited number of vaccine-specific T-cell clones was recruited from the naive pool. Furthermore, baseline quantity of vaccine-specific central memory helper T-cells and clonotype richness of this population directly correlated with the vaccination efficacy. Our findings suggest that the deliberate recruitment of pre-existing cross-reactive cellular memory might help to improve vaccination outcome.
Collapse
Affiliation(s)
- Mikalai Nienen
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine, Immunology and Transplantation, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Felix Mölder
- Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sviatlana Kaliszczyk
- Center for Translational Medicine, Immunology and Transplantation, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | | | | | | | - Karsten Jürchott
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Avidan U Neumann
- Institute of Environmental Medicine, German Research Center for Environmental Health, Helmholtz Zentrum München, Augsburg, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Timm Westhoff
- Department of Internal Medicine, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Petra Reinke
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Department of Nephrology and Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - Andreas Thiel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Nina Babel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Center for Translational Medicine, Immunology and Transplantation, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany.,Department of Nephrology and Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
33
|
Fougeroux C, Turner L, Bojesen AM, Lavstsen T, Holst PJ. Modified MHC Class II-Associated Invariant Chain Induces Increased Antibody Responses against Plasmodium falciparum Antigens after Adenoviral Vaccination. THE JOURNAL OF IMMUNOLOGY 2019; 202:2320-2331. [PMID: 30833346 DOI: 10.4049/jimmunol.1801210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/01/2019] [Indexed: 01/04/2023]
Abstract
Adenoviral vectors can induce T and B cell immune responses to Ags encoded in the recombinant vector. The MHC class II invariant chain (Ii) has been used as an adjuvant to enhance T cell responses to tethered Ag encoded in adenoviral vectors. In this study, we modified the Ii adjuvant by insertion of a furin recognition site (Ii-fur) to obtain a secreted version of the Ii. To test the capacity of this adjuvant to enhance immune responses, we recombined vectors to encode Plasmodium falciparum virulence factors: two cysteine-rich interdomain regions (CIDR) α1 (IT4var19 and PFCLINvar30 var genes), expressed as a dimeric Ag. These domains are members of a highly polymorphic protein family involved in the vascular sequestration and immune evasion of parasites in malaria. The Ii-fur molecule directed secretion of both Ags in African green monkey cells and functioned as an adjuvant for MHC class I and II presentation in T cell hybridomas. In mice, the Ii-fur adjuvant induced a similar T cell response, as previously demonstrated with Ii, accelerated and enhanced the specific Ab response against both CIDR Ags, with an increased binding capacity to the cognate endothelial protein C receptor, and enhanced the breadth of the response toward different CIDRs. We also demonstrate that the endosomal sorting signal, secretion, and the C-terminal part of Ii were needed for the full adjuvant effect for Ab responses. We conclude that engineered secretion of Ii adjuvant-tethered Ags establishes a single adjuvant and delivery vehicle platform for potent T and B cell-dependent immunity.
Collapse
Affiliation(s)
- Cyrielle Fougeroux
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| | - Louise Turner
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Thomas Lavstsen
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| |
Collapse
|
34
|
Andersen TK, Huszthy PC, Gopalakrishnan RP, Jacobsen JT, Fauskanger M, Tveita AA, Grødeland G, Bogen B. Enhanced germinal center reaction by targeting vaccine antigen to major histocompatibility complex class II molecules. NPJ Vaccines 2019; 4:9. [PMID: 30775000 PMCID: PMC6370881 DOI: 10.1038/s41541-019-0101-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023] Open
Abstract
Enhancing the germinal center (GC) reaction is a prime objective in vaccine development. Targeting of antigen to MHCII on APCs has previously been shown to increase antibody responses, but the underlying mechanism has been unclear. We have here investigated the GC reaction after targeting antigen to MHCII in (i) a defined model with T and B cells of known specificity using adjuvant-free vaccine proteins, and (ii) an infectious disease model using a DNA vaccine. MHCII-targeting enhanced presentation of peptide: MHCII on APCs, and increased the numbers of GC B cells, TFH, and plasma cells. Antibodies appeared earlier and levels were increased. BCR of GC B cells and serum antibodies had increased avidity for antigen. The improved responses required cross-linking of BCR and MHCII in either cis or trans. The enhanced GC reaction induced by MHCII-targeting of antigen has clear implications for design of more efficient subunit vaccines.
Collapse
Affiliation(s)
- Tor Kristian Andersen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, N-0027 Oslo, Norway
| | - Peter C. Huszthy
- Centre for Immune Regulation (CIR), University of Oslo, N-0027 Oslo, Norway
| | | | | | - Marte Fauskanger
- Centre for Immune Regulation (CIR), University of Oslo, N-0027 Oslo, Norway
| | - Anders A. Tveita
- Centre for Immune Regulation (CIR), University of Oslo, N-0027 Oslo, Norway
| | - Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, N-0027 Oslo, Norway
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo, N-0027 Oslo, Norway
- Centre for Immune Regulation (CIR), University of Oslo, N-0027 Oslo, Norway
- Department of Immunology, Oslo University Hospital, N-0424 Oslo, Norway
| |
Collapse
|
35
|
Argondizo-Correia C, Rodrigues AKS, de Brito CA. Neonatal Immunity to Bordetella pertussis Infection and Current Prevention Strategies. J Immunol Res 2019; 2019:7134168. [PMID: 30882004 PMCID: PMC6387735 DOI: 10.1155/2019/7134168] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/22/2018] [Accepted: 01/03/2019] [Indexed: 01/10/2023] Open
Abstract
Bordetella pertussis is the bacterial agent of whooping cough, an infectious disease that is reemerging despite high vaccine coverage. Newborn children are the most affected, not only because they are too young to be vaccinated but also due to qualitative and quantitative differences in their immune system, which makes them more susceptible to infection and severe manifestations, leading to a higher mortality rate comparing to other groups. Until recently, prevention consisted of vaccinating children in the first year of life and the herd vaccination of people directly in touch with them, but the increase in cases demands more effective strategies that can overcome the developing immune response in early life and induce protection while children are most vulnerable.
Collapse
Affiliation(s)
- Carolina Argondizo-Correia
- Institute of Tropical Medicine, University of São Paulo, Dr. Enéas de Carvalho Aguiar Avenue 470 Jardim América, São Paulo, SP 05403-000, Brazil
- Immunology Centre, Adolfo Lutz Institute, Dr. Arnaldo Avenue 351 Cerqueira César, São Paulo, SP 01246-000, Brazil
| | - Ana Kelly Sousa Rodrigues
- Immunology Centre, Adolfo Lutz Institute, Dr. Arnaldo Avenue 351 Cerqueira César, São Paulo, SP 01246-000, Brazil
| | - Cyro Alves de Brito
- Institute of Tropical Medicine, University of São Paulo, Dr. Enéas de Carvalho Aguiar Avenue 470 Jardim América, São Paulo, SP 05403-000, Brazil
- Immunology Centre, Adolfo Lutz Institute, Dr. Arnaldo Avenue 351 Cerqueira César, São Paulo, SP 01246-000, Brazil
| |
Collapse
|
36
|
Bhurani V, Mohankrishnan A, Morrot A, Dalai SK. Developing effective vaccines: Cues from natural infection. Int Rev Immunol 2018; 37:249-265. [PMID: 29927676 DOI: 10.1080/08830185.2018.1471479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ultimate goal of any vaccine is to generate a heterogeneous and stable pool of memory lymphocytes. Vaccine are designed with the hope to generate antigen specific long-lived T cell responses, as it may be the case in natural infection; however, inducing such response by sub-unit vaccine has been a challenge. Although significant progress has been made, there is lot of scope for designing novel vaccine strategies by taking cues from the natural infection. This review focuses upon the roadblocks and the possible ways to overcome them leading to developing effective vaccines. Here we propose that mimicking the natural course of infection as well as the inclusion of non-target antigens in vaccine formulations might generate heterogeneous pool of memory T cells to ensure long-lived protection.
Collapse
Affiliation(s)
- Vishakha Bhurani
- a Institute of Science , Nirma University , Ahmedabad , Gujarat , India
| | | | - Alexandre Morrot
- b Faculdade de Medicina , Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brazil.,c Instituto Oswaldo Cruz , Fiocruz , Rio de Janeiro , Brazil
| | - Sarat Kumar Dalai
- a Institute of Science , Nirma University , Ahmedabad , Gujarat , India
| |
Collapse
|
37
|
Labastida-Conde RG, Ramírez-Pliego O, Peleteiro-Olmedo M, Lopez-Guerrero DV, Badillo-Godinez OD, Gutiérrez-Xicoténcatl MDL, Rosas-Salgado G, González-Fernández Á, Esquivel-Guadarrama FR, Santana MA. Flagellin is a Th1 polarizing factor for human CD4 + T cells and induces protection in a murine neonatal vaccination model of rotavirus infection. Vaccine 2018; 36:4188-4197. [PMID: 29891347 DOI: 10.1016/j.vaccine.2018.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/29/2018] [Accepted: 06/03/2018] [Indexed: 02/07/2023]
Abstract
Neonates have an increased susceptibility to infections, particularly those caused by intracellular pathogens, leading to high morbidity and mortality rates. This is partly because of a poor response of neonatal CD4+ T cells, leading to deficient antibody production and a low production of IFN-γ, resulting in deficient elimination of intracellular pathogens. The poor memory response of human neonates has underpinned the need for improving vaccine formulations. Molecular adjuvants that improve the response of neonatal lymphocytes, such as the ligands of toll-like receptors (TLRs), are attractive candidates. Among them, flagellin, the TLR5 ligand, is effective at very low doses; prior immunity to flagellin does not impair its adjuvant activity. Human CD4+ and CD8+ T cells express TLR5. We found that flagellin induces the expression of IFN-γ, IL-1β and IL-12 in mononuclear cells from human neonate and adult donors. When human naïve CD4+ T cells were activated in the presence of flagellin, there was high level of expression of IFN-γ in both neonates and adults. Furthermore, flagellin induced IFN-γ production in Th1 cells obtained from adult donors; in the Th2 population, it inhibited IL-4 cytokine production. Flagellin also promoted expression of the IFN-γ receptor in naive CD4+ T cells from neonates and adults. To test the adjuvant capacity of flagellin in vivo, we used a murine neonate vaccination model for infection with rotavirus, a pathogen responsible for severe diarrhea in young infants. Using the conserved VP6 antigen, we observed an 80% protection against rotavirus infection in the presence of flagellin, but only in those mice previously primed in the neonatal period. Our data suggest that flagellin could be an attractive adjuvant for achieving a Th1 response.
Collapse
Affiliation(s)
| | - Oscar Ramírez-Pliego
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Mercedes Peleteiro-Olmedo
- Inmunología, Centro de Investigaciones Biomédicas (CINBIO), Centro Singular de Investigación de Galicia, Instituto de Investigación Sanitaria Galicia Sur, Universidad de Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain
| | | | | | | | - Gabriela Rosas-Salgado
- Facultad de Medicina, Universidad Autonoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - África González-Fernández
- Inmunología, Centro de Investigaciones Biomédicas (CINBIO), Centro Singular de Investigación de Galicia, Instituto de Investigación Sanitaria Galicia Sur, Universidad de Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain
| | | | - M Angélica Santana
- Centro de Investigación en Dinámica Celular (IICBA), Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
38
|
Malm M, Tamminen K, Heinimäki S, Vesikari T, Blazevic V. Functionality and avidity of norovirus-specific antibodies and T cells induced by GII.4 virus-like particles alone or co-administered with different genotypes. Vaccine 2018; 36:484-490. [PMID: 29246474 DOI: 10.1016/j.vaccine.2017.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/10/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Abstract
Norovirus (NoV) is the main cause of acute gastroenteritis worldwide across all age groups. Current NoV vaccine candidates are based on non-infectious highly immunogenic virus-like particles (VLPs) produced in cell cultures in vitro. As NoVs infecting human population are highly divergent, it is proposed that the vaccine should contain at least two different NoV genotypes, potentially affecting the immunogenicity of each other. We investigated the immunogenicity of NoV GII.4 VLPs administered by intramuscular (IM) or intradermal (ID) injections to BALB/c mice either alone or co-delivered with genogroup I (GI) and other genogroup GII VLPs. Serum NoV-specific IgG binding antibody titers and antibody functionality in terms of avidity and blocking potential were assessed. Furthermore, the specificity and functional avidity of CD4+ and CD8+ T cell responses were analyzed using synthetic peptides previously identified to contain NoV VP1 P2 domain-specific H-2d epitopes. The results showed that IM and ID immunization induced comparable GII.4-specific antibodies and T cell responses. Similar magnitude and functionality of antibodies and interferon-gamma producing T cells were developed using monovalent GII.4 VLPs or different genotype combinations. For the first time, degranulation assay using multicolor flow cytometry showed that NoV GII.4-specific CD8+ T cells had cytotoxic T lymphocyte phenotype. To conclude, our results demonstrate that there is no immunological interference even if up to five different NoV VLP genotypes were co-administered at the same time. Furthermore, no inhibition of NoV-specific antibody functionality or the magnitude, specificity and affinity of T cell responses was observed in any of the immunized animals, observations relevant for the development of a multivalent NoV VLP vaccine.
Collapse
Affiliation(s)
- Maria Malm
- Vaccine Research Center, University of Tampere, Biokatu 10, 33520 Tampere, Finland; University of Tampere, Faculty of Medicine and Life Sciences, Tampere, Finland
| | - Kirsi Tamminen
- Vaccine Research Center, University of Tampere, Biokatu 10, 33520 Tampere, Finland; University of Tampere, Faculty of Medicine and Life Sciences, Tampere, Finland
| | - Suvi Heinimäki
- Vaccine Research Center, University of Tampere, Biokatu 10, 33520 Tampere, Finland; University of Tampere, Faculty of Medicine and Life Sciences, Tampere, Finland
| | - Timo Vesikari
- Vaccine Research Center, University of Tampere, Biokatu 10, 33520 Tampere, Finland; University of Tampere, Faculty of Medicine and Life Sciences, Tampere, Finland
| | - Vesna Blazevic
- Vaccine Research Center, University of Tampere, Biokatu 10, 33520 Tampere, Finland; University of Tampere, Faculty of Medicine and Life Sciences, Tampere, Finland.
| |
Collapse
|
39
|
Vatti A, Monsalve DM, Pacheco Y, Chang C, Anaya JM, Gershwin ME. Original antigenic sin: A comprehensive review. J Autoimmun 2017; 83:12-21. [DOI: 10.1016/j.jaut.2017.04.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
|
40
|
Engineering intravaginal vaccines to overcome mucosal and epithelial barriers. Biomaterials 2017; 128:8-18. [PMID: 28285195 DOI: 10.1016/j.biomaterials.2017.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 11/22/2022]
Abstract
The mucosal surface of the vagina is a primary human immunodeficiency virus (HIV) entry portal, making it an attractive site for HIV vaccination. However, HIV vaccines based on recombinant adenovirus (rAd) do not efficiently cross the mucus layers or underlying epithelium of the vagina. Here we designed nanocomplexes of rAd particles coated with (1) the polyethylene glycol derivative APS to provide a hydrophilic surface that would prevent entrapment in the hydrophobic mucus, and (2) the cell-penetrating peptide TAT to improve transduction efficiency. The optimized rAd-TAT-APS nanocomplexes could achieve the balance of effective mucus-penetrating and cellular transduction. Intravaginal delivery of rAd-TAT-APS encoding HIVgag p24 into mice strongly enhanced HIVgag-specific systemic and mucosal immune responses. This rAd-TAT-APS system may allow effective vaginal delivery of vaccines against HIV and other infectious agents.
Collapse
|
41
|
Ahmad TA, Eweida AE, El-Sayed LH. T-cell epitope mapping for the design of powerful vaccines. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.vacrep.2016.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Hills T, Jakeman PG, Carlisle RC, Klenerman P, Seymour LW, Cawood R. A Rapid-Response Humoral Vaccine Platform Exploiting Pre-Existing Non-Cognate Populations of Anti-Vaccine or Anti-Viral CD4+ T Helper Cells to Confirm B Cell Activation. PLoS One 2016; 11:e0166383. [PMID: 27861512 PMCID: PMC5115735 DOI: 10.1371/journal.pone.0166383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
The need for CD4+ T cell responses to arise de novo following vaccination can limit the speed of B cell responses. Populations of pre-existing vaccine-induced or anti-viral CD4+ T cells recognising distinct antigens could be exploited to overcome this limitation. We hypothesise that liposomal vaccine particles encapsulating epitopes that are recognised, after processing and B cell MHCII presentation, by pre-existing CD4+ T cells will exploit this pre-existing T cell help and result in improved antibody responses to distinct target antigens displayed on the particle surface. Liposomal vaccine particles were engineered to display the malaria circumsporozoite (CSP) antigen on their surface, with helper CD4+ epitopes from distinct vaccine or viral antigens contained within the particle core, ensuring the B cell response is raised but focused against CSP. In vivo vaccination studies were then conducted in C57Bl/6 mice as models of either vaccine-induced pre-existing CD4+ T cell immunity (using ovalbumin-OVA) or virus-induced pre-existing CD4+ T cell immunity (murine cytomegalovirus-MCMV). Following the establishment of pre-existing by vaccination (OVA in the adjuvant TiterMax® Gold) or infection with MCMV, mice were administered CSP-coated liposomal vaccines containing the relevant OVA or MCMV core CD4+ T cell epitopes. In mice with pre-existing anti-OVA CD4+ T cell immunity, these vaccine particles elicited rapid, high-titre, isotype-switched CSP-specific antibody responses-consistent with the involvement of anti-OVA T helper cells in confirming activation of anti-CSP B cells. Responses were further improved by entrapping TLR9 agonists, combining humoral vaccination signals 'one', 'two' and 'three' within one particle. Herpes viruses can establish chronic infection and elicit significant, persistent cellular immune responses. We then demonstrate that this principle can be extended to re-purpose pre-existing anti-MCMV immunity to enhance anti-CSP vaccine responses-the first description of a strategy to specifically exploit anti-cytomegalovirus immunity to augment vaccination against a target antigen.
Collapse
Affiliation(s)
- Thomas Hills
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Robert C. Carlisle
- Department of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | | | - Ryan Cawood
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Grodeland G, Fredriksen AB, Løset GÅ, Vikse E, Fugger L, Bogen B. Antigen Targeting to Human HLA Class II Molecules Increases Efficacy of DNA Vaccination. THE JOURNAL OF IMMUNOLOGY 2016; 197:3575-3585. [PMID: 27671110 DOI: 10.4049/jimmunol.1600893] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022]
Abstract
It has been difficult to translate promising results from DNA vaccination in mice to larger animals and humans. Previously, DNA vaccines encoding proteins that target Ag to MHC class II (MHC-II) molecules on APCs have been shown to induce rapid, enhanced, and long-lasting Ag-specific Ab titers in mice. In this study, we describe two novel DNA vaccines that as proteins target HLA class II (HLA-II) molecules. These vaccine proteins cross-react with MHC-II molecules in several species of larger mammals. When tested in ferrets and pigs, a single DNA delivery with low doses of the HLA-II-targeted vaccines resulted in rapid and increased Ab responses. Importantly, painless intradermal jet delivery of DNA was as effective as delivery by needle injection followed by electroporation. As an indication that the vaccines could also be useful for human application, HLA-II-targeted vaccine proteins were found to increase human CD4+ T cell responses by a factor of ×103 in vitro. Thus, targeting of Ag to MHC-II molecules may represent an attractive strategy for increasing efficacy of DNA vaccines in larger animals and humans.
Collapse
Affiliation(s)
- Gunnveig Grodeland
- K.G. Jebsen Center for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway;
| | | | - Geir Åge Løset
- Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway.,Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Elisabeth Vikse
- K.G. Jebsen Center for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway
| | - Lars Fugger
- Institute of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; and.,Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Bjarne Bogen
- K.G. Jebsen Center for Influenza Vaccine Research, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway; .,Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, 0027 Oslo, Norway
| |
Collapse
|
44
|
Bruel T, Mouquet H, Schwartz O. [Antibodies that kill HIV-1-infected cells]. Med Sci (Paris) 2016; 32:671-4. [PMID: 27615165 DOI: 10.1051/medsci/20163208004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Timothée Bruel
- Institut Pasteur, Département de Virologie, Unité Virus et Immunité, CNRS URA 3015, 28, rue du Docteur Roux, 75015 Paris, France
| | - Hugo Mouquet
- Institut Pasteur, Département d'Immunologie, Laboratoire G5, Réponse humorale aux pathogènes, Inserm U1222, 28, rue du Docteur Roux, 75015 Paris, France - Vaccine Research Institute, Créteil, France
| | - Olivier Schwartz
- Institut Pasteur, Département de Virologie, Unité Virus et Immunité, CNRS URA 3015, 28, rue du Docteur Roux, 75015 Paris, France - Vaccine Research Institute, Créteil, France
| |
Collapse
|
45
|
Zhang X, Zheng Z, Liu X, Shu B, Mao P, Bai B, Hu Q, Luo M, Ma X, Cui Z, Wang H. Tick-borne encephalitis virus induces chemokine RANTES expression via activation of IRF-3 pathway. J Neuroinflammation 2016; 13:209. [PMID: 27576490 PMCID: PMC5004318 DOI: 10.1186/s12974-016-0665-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022] Open
Abstract
Background Tick-borne encephalitis virus (TBEV) is one of the most important flaviviruses that targets the central nervous system (CNS) and causes encephalitides in humans. Although neuroinflammatory mechanisms may contribute to brain tissue destruction, the induction pathways and potential roles of specific chemokines in TBEV-mediated neurological disease are poorly understood. Methods BALB/c mice were intracerebrally injected with TBEV, followed by evaluation of chemokine and cytokine profiles using protein array analysis. The virus-infected mice were treated with the CC chemokine antagonist Met-RANTES or anti-RANTES mAb to determine the role of RANTES in affecting TBEV-induced neurological disease. The underlying signaling mechanisms were delineated using RANTES promoter luciferase reporter assay, siRNA-mediated knockdown, and pharmacological inhibitors in human brain-derived cell culture models. Results In a mouse model, pathological features including marked inflammatory cell infiltrates were observed in brain sections, which correlated with a robust up-regulation of RANTES within the brain but not in peripheral tissues and sera. Antagonizing RANTES within CNS extended the survival of mice and reduced accumulation of infiltrating cells in the brain after TBEV infection. Through in vitro studies, we show that virus infection up-regulated RANTES production at both mRNA and protein levels in human brain-derived cell lines and primary progenitor-derived astrocytes. Furthermore, IRF-3 pathway appeared to be essential for TBEV-induced RANTES production. Site mutation of an IRF-3-binding motif abrogated the RANTES promoter activity in virus-infected brain cells. Moreover, IRF-3 was activated upon TBEV infection as evidenced by phosphorylation of TBK1 and IRF-3, while blockade of IRF-3 activation drastically reduced virus-induced RANTES expression. Conclusions Our findings together provide insights into the molecular mechanism underlying RANTES production induced by TBEV, highlighting its potential importance in the process of neuroinflammatory responses to TBEV infection. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0665-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China
| | - Xijuan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China
| | - Bo Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China
| | - Panyong Mao
- Beijing 302 Hospital, Beijing, 100039, China
| | - Bingke Bai
- Beijing 302 Hospital, Beijing, 100039, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China
| | - Minhua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China.,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Shanghai, China
| | - Xiaohe Ma
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China.
| | - Hanzhong Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China. .,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan No.44, Wuhan, 430071, China.
| |
Collapse
|
46
|
Regules JA, Cicatelli SB, Bennett JW, Paolino KM, Twomey PS, Moon JE, Kathcart AK, Hauns KD, Komisar JL, Qabar AN, Davidson SA, Dutta S, Griffith ME, Magee CD, Wojnarski M, Livezey JR, Kress AT, Waterman PE, Jongert E, Wille-Reece U, Volkmuth W, Emerling D, Robinson WH, Lievens M, Morelle D, Lee CK, Yassin-Rajkumar B, Weltzin R, Cohen J, Paris RM, Waters NC, Birkett AJ, Kaslow DC, Ballou WR, Ockenhouse CF, Vekemans J. Fractional Third and Fourth Dose of RTS,S/AS01 Malaria Candidate Vaccine: A Phase 2a Controlled Human Malaria Parasite Infection and Immunogenicity Study. J Infect Dis 2016; 214:762-71. [PMID: 27296848 DOI: 10.1093/infdis/jiw237] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/26/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses. METHODS In a phase 2a, controlled, open-label, study of healthy malaria-naive adults, 16 subjects vaccinated with a 0-, 1-, and 2-month full-dose regimen (012M) and 30 subjects who received a 0-, 1-, and 7-month regimen, including a fractional third dose (Fx017M), underwent CHMI 3 weeks after the last dose. Plasmablast heavy and light chain immunoglobulin messenger RNA sequencing and antibody avidity were evaluated. Protection against repeat CHMI was evaluated after 8 months. RESULTS A total of 26 of 30 subjects in the Fx017M group (vaccine efficacy [VE], 86.7% [95% confidence interval [CI], 66.8%-94.6%]; P < .0001) and 10 of 16 in the 012M group (VE, 62.5% [95% CI, 29.4%-80.1%]; P = .0009) were protected against infection, and protection differed between schedules (P = .040, by the log rank test). The fractional dose boosting increased antibody somatic hypermutation and avidity and sustained high protection upon rechallenge. DISCUSSIONS A delayed third fractional vaccine dose improved immunogenicity and protection against infection. Optimization of the RTS,S/AS01 immunization regimen may lead to improved approaches against malaria. CLINICAL TRIALS REGISTRATION NCT01857869.
Collapse
Affiliation(s)
- Jason A Regules
- Malaria Vaccine Branch Military Malaria Research Program Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Jason W Bennett
- Malaria Vaccine Branch Military Malaria Research Program Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Patrick S Twomey
- Experimental Therapeutics Branch Military Malaria Research Program
| | - James E Moon
- Malaria Vaccine Branch Military Malaria Research Program
| | | | - Kevin D Hauns
- Malaria Vaccine Branch Military Malaria Research Program
| | - Jack L Komisar
- Malaria Vaccine Branch Military Malaria Research Program
| | - Aziz N Qabar
- Malaria Vaccine Branch Military Malaria Research Program
| | - Silas A Davidson
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring
| | - Sheetij Dutta
- Malaria Vaccine Branch Military Malaria Research Program
| | - Matthew E Griffith
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Charles D Magee
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | - Adrian T Kress
- Experimental Therapeutics Branch Military Malaria Research Program
| | | | | | | | | | | | | | | | | | - Cynthia K Lee
- PATH Malaria Vaccine Initiative, Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Galson JD, Trück J, Fowler A, Clutterbuck EA, Münz M, Cerundolo V, Reinhard C, van der Most R, Pollard AJ, Lunter G, Kelly DF. Analysis of B Cell Repertoire Dynamics Following Hepatitis B Vaccination in Humans, and Enrichment of Vaccine-specific Antibody Sequences. EBioMedicine 2015; 2:2070-9. [PMID: 26844287 PMCID: PMC4703725 DOI: 10.1016/j.ebiom.2015.11.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022] Open
Abstract
Generating a diverse B cell immunoglobulin repertoire is essential for protection against infection. The repertoire in humans can now be comprehensively measured by high-throughput sequencing. Using hepatitis B vaccination as a model, we determined how the total immunoglobulin sequence repertoire changes following antigen exposure in humans, and compared this to sequences from vaccine-specific sorted cells. Clonal sequence expansions were seen 7 days after vaccination, which correlated with vaccine-specific plasma cell numbers. These expansions caused an increase in mutation, and a decrease in diversity and complementarity-determining region 3 sequence length in the repertoire. We also saw an increase in sequence convergence between participants 14 and 21 days after vaccination, coinciding with an increase of vaccine-specific memory cells. These features allowed development of a model for in silico enrichment of vaccine-specific sequences from the total repertoire. Identifying antigen-specific sequences from total repertoire data could aid our understanding B cell driven immunity, and be used for disease diagnostics and vaccine evaluation.
Collapse
Affiliation(s)
- Jacob D. Galson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford OX3 7LE, United Kingdom
- Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Johannes Trück
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford OX3 7LE, United Kingdom
- Paediatric Immunology, University Children's Hospital, Zürich, 8032, Switzerland
| | - Anna Fowler
- Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Elizabeth A. Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford OX3 7LE, United Kingdom
| | - Márton Münz
- Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom
| | | | | | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford OX3 7LE, United Kingdom
| | - Gerton Lunter
- Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Dominic F. Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford OX3 7LE, United Kingdom
| |
Collapse
|
48
|
Abstract
A brief history of vaccination is presented since the Jenner's observation, through the first golden age of vaccinology (from Pasteur's era to 1938), the second golden age (from 1940 to 1970), until the current period. In the first golden age, live, such as Bacille Calmette Guérin (BCG), and yellow fever, inactivated, such as typhoid, cholera, plague, and influenza, and subunit vaccines, such as tetanus and diphtheria toxoids, have been developed. In the second golden age, the cell culture technology enabled polio, measles, mumps, and rubella vaccines be developed. In the era of modern vaccines, in addition to the conjugate polysaccharide, hepatitis A, oral typhoid, and varicella vaccines, the advent of molecular biology enabled to develop hepatitis B, acellular pertussis, papillomavirus, and rotavirus recombinant vaccines. Great successes have been achieved in the fight against infectious diseases, including the smallpox global eradication, the nearly disappearance of polio, the control of tetanus, diphtheria, measles, rubella, yellow fever, and rabies. However, much work should still be done for improving old vaccines, such as BCG, anthrax, smallpox, plague, or for developing effective vaccines against old or emerging infectious threats, such as human-immunodeficiency-virus, malaria, hepatitis C, dengue, respiratory-syncytial-virus, cytomegalovirus, multiresistant bacteria, Clostridium difficile, Ebola virus. In addition to search for innovative and effective vaccines and global infant coverage, even risk categories should adequately be protected. Despite patients under immunosuppressive therapy are globally increasing, their vaccine coverage is lower than recommended, even in developed and affluent countries.
Collapse
Affiliation(s)
| | - Simonetta Salemi
- c S. Andrea University Hospital , Via di Grottarossa Rome, Italy
| | - Raffaele D'Amelio
- b Sapienza University of Rome , Department of Clinical and Molecular Medicine , Via di Grottarossa Rome, Italy.,c S. Andrea University Hospital , Via di Grottarossa Rome, Italy
| |
Collapse
|
49
|
Jimenez-Guardeño JM, Regla-Nava JA, Nieto-Torres JL, DeDiego ML, Castaño-Rodriguez C, Fernandez-Delgado R, Perlman S, Enjuanes L. Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine. PLoS Pathog 2015; 11:e1005215. [PMID: 26513244 PMCID: PMC4626112 DOI: 10.1371/journal.ppat.1005215] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/18/2015] [Indexed: 12/15/2022] Open
Abstract
A SARS-CoV lacking the full-length E gene (SARS-CoV-∆E) was attenuated and an effective vaccine. Here, we show that this mutant virus regained fitness after serial passages in cell culture or in vivo, resulting in the partial duplication of the membrane gene or in the insertion of a new sequence in gene 8a, respectively. The chimeric proteins generated in cell culture increased virus fitness in vitro but remained attenuated in mice. In contrast, during SARS-CoV-∆E passage in mice, the virus incorporated a mutated variant of 8a protein, resulting in reversion to a virulent phenotype. When the full-length E protein was deleted or its PDZ-binding motif (PBM) was mutated, the revertant viruses either incorporated a novel chimeric protein with a PBM or restored the sequence of the PBM on the E protein, respectively. Similarly, after passage in mice, SARS-CoV-∆E protein 8a mutated, to now encode a PBM, and also regained virulence. These data indicated that the virus requires a PBM on a transmembrane protein to compensate for removal of this motif from the E protein. To increase the genetic stability of the vaccine candidate, we introduced small attenuating deletions in E gene that did not affect the endogenous PBM, preventing the incorporation of novel chimeric proteins in the virus genome. In addition, to increase vaccine biosafety, we introduced additional attenuating mutations into the nsp1 protein. Deletions in the carboxy-terminal region of nsp1 protein led to higher host interferon responses and virus attenuation. Recombinant viruses including attenuating mutations in E and nsp1 genes maintained their attenuation after passage in vitro and in vivo. Further, these viruses fully protected mice against challenge with the lethal parental virus, and are therefore safe and stable vaccine candidates for protection against SARS-CoV. Zoonotic coronaviruses, including SARS-CoV, Middle East respiratory syndrome (MERS-CoV), porcine epidemic diarrhea virus (PEDV) and swine delta coronavirus (SDCoV) have recently emerged causing high morbidity and mortality in human or piglets. No fully protective therapy is still available for these CoVs. Therefore, the development of efficient vaccines is a high priority. Live attenuated vaccines are considered most effective compared to other types of vaccines, as they induce a long-lived, balanced immune response. However, safety is the main concern of this type of vaccines because attenuated viruses can eventually revert to a virulent phenotype. Therefore, an essential feature of any live attenuated vaccine candidate is its stability. In addition, introduction of several safety guards is advisable to increase vaccine safety. In this manuscript, we analyzed the mechanisms by which an attenuated SARS-CoV reverted to a virulent phenotype and describe the introduction of attenuating deletions that maintained virus stability. The virus, engineered with two safety guards, provided full protection against challenge with a lethal SARS-CoV. Understanding the molecular mechanisms leading to pathogenicity and the in vivo evaluation of vaccine genetic stability contributed to a rational design of a promising SARS-CoV vaccine.
Collapse
Affiliation(s)
- Jose M. Jimenez-Guardeño
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose A. Regla-Nava
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose L. Nieto-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
50
|
Faucette AN, Pawlitz MD, Pei B, Yao F, Chen K. Immunization of pregnant women: Future of early infant protection. Hum Vaccin Immunother 2015; 11:2549-55. [PMID: 26366844 PMCID: PMC4685701 DOI: 10.1080/21645515.2015.1070984] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/18/2015] [Accepted: 07/05/2015] [Indexed: 01/24/2023] Open
Abstract
Children in early infancy do not mount effective antibody responses to many vaccines against commons infectious pathogens, which results in a window of increased susceptibility or severity infections. In addition, vaccine-preventable infections are among the leading causes of morbidity in pregnant women. Immunization during pregnancy can generate maternal immune protection as well as elicit the production and transfer of antibodies cross the placenta and via breastfeeding to provide early infant protection. Several successful vaccines are now recommended to all pregnant women worldwide. However, significant gaps exist in our understanding of the efficacy and safety of other vaccines and in women with conditions associated with increased susceptible to high-risk pregnancies. Public acceptance of maternal immunization remained to be improved. Broader success of maternal immunization will rely on the integration of advances in basic science in vaccine design and evaluation and carefully planned clinical trials that are inclusive to pregnant women.
Collapse
Affiliation(s)
- Azure N Faucette
- Department of Obstetrics and Gynecology; Wayne State University; Detroit, MI USA
- Perinatology Research Branch; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Detroit, MI USA
| | - Michael D Pawlitz
- Department of Obstetrics and Gynecology; Wayne State University; Detroit, MI USA
- Perinatology Research Branch; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Detroit, MI USA
| | - Bo Pei
- Department of Obstetrics and Gynecology; Wayne State University; Detroit, MI USA
- Perinatology Research Branch; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Detroit, MI USA
| | - Fayi Yao
- Department of Obstetrics and Gynecology; Wayne State University; Detroit, MI USA
- Perinatology Research Branch; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Detroit, MI USA
| | - Kang Chen
- Department of Obstetrics and Gynecology; Wayne State University; Detroit, MI USA
- Perinatology Research Branch; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Detroit, MI USA
- Tumor Biology and Microenvironment Program; Barbara Ann Karmanos Cancer Institute; Detroit, MI USA
- Department of Immunology and Microbiology; Wayne State University; Detroit, MI USA
- Department of Oncology; Wayne State University; Detroit, MI USA
- Mucosal Immunology Studies Team; National Institute of Allergy and Infectious Diseases; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|