1
|
Fattori V, Zaninelli TH, Rasquel-Oliveira FS, Heintz OK, Jain A, Sun L, Seshan ML, Peterse D, Lindholm AE, Anchan RM, Verri WA, Rogers MS. Nociceptor-to-macrophage communication through CGRP/RAMP1 signaling drives endometriosis-associated pain and lesion growth in mice. Sci Transl Med 2024; 16:eadk8230. [PMID: 39504351 DOI: 10.1126/scitranslmed.adk8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Endometriosis is a debilitating and painful gynecological inflammatory disease affecting up to 15% of women and transgender men. Current treatments are ineffective for a substantial proportion of patients, underscoring the need for additional therapies with long-term benefits. Nociceptors release neuropeptides, such as calcitonin gene-related peptide (CGRP), which are known to shape immunity through neuroimmune communication. Given the comorbidity between endometriosis and migraine and the integral role of immune cells and inflammation in endometriosis, we investigated the role of CGRP-mediated neuroimmune communication in endometriosis. Using samples from eight patients with endometriosis and a nonsurgical mouse model of the disease, we found that mouse and human endometriosis lesions contain both CGRP and its coreceptor, receptor activity modifying protein 1 (RAMP1). In mice, nociceptor ablation reduced pain, monocyte recruitment, and lesion size, suggesting that nociceptor activation and neuropeptide release contribute to endometriosis lesion growth and pain. Mechanistically, CGRP changed the phenotype of macrophages to a pro-endometriosis phenotype. CGRP-stimulated macrophages demonstrated impaired efferocytosis and supported increased endometrial cell growth in a RAMP1-dependent manner. Treatment of lesion-bearing mice with US Food and Drug Administration-approved drugs that block CGRP-RAMP1 signaling reduced mechanical hyperalgesia, spontaneous pain, and lesion size. Together, our data demonstrated the effectiveness and underlying cellular mechanisms of nonhormonal and nonopioid CGRP/RAMP1 blockade in a mouse model of endometriosis, suggesting that targeting this axis may lead to clinical benefit for patients with endometriosis.
Collapse
Affiliation(s)
- Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Tiago H Zaninelli
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Fernanda S Rasquel-Oliveira
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Olivia K Heintz
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ashish Jain
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maya L Seshan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniëlle Peterse
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Anne E Lindholm
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Raymond M Anchan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Michael S Rogers
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Lin K, Stiles J, Tambo W, Ajmal E, Piao Q, Powell K, Li C. Bimodal functions of calcitonin gene-related peptide in the brain. Life Sci 2024; 359:123177. [PMID: 39486618 DOI: 10.1016/j.lfs.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
AIMS Calcitonin gene-related peptide (CGRP) is a pluripotent neuropeptide crucial for maintaining vascular homeostasis, yet its full therapeutic potential remains incompletely exploited. Within the brain, CGRP demonstrates a distinct bimodal effect, contributing to neuroprotection in ischemic conditions while inducing neuronal sensitization and inflammation in non-ischemic settings. Despite extensive research on CGRP, the absence of a definitive determinant for this observed dichotomy has limited its potential for therapeutic applications in the brain. This review examines the effects of CGRP in both physiological and pathological conditions, aiming to identify a unifying factor that could enhance its therapeutic applicability. MATERIALS AND METHODS This comprehensive literature review analyzes the molecular pathways associated with CGRP and the specific cellular responses observed in these contexts. Additionally, the review investigates the psychological implications of CGRP in relation to cerebral perfusion levels, aiming to elucidate its underlying factors. KEY FINDINGS Reviewing the literature reveals that, elevated levels of CGRP in non-ischemic conditions exert detrimental effects on brain function, while they confer protective effects in the context of ischemia. These encompass anti-oxidative, anti-inflammatory, anti-apoptotic, and angiogenic properties, along with behavioral normalization. Current findings indicate promising therapeutic avenues for CGRP beyond the acute phases of cerebral injury, extending to neurodegenerative and psychological disorders associated with cerebral hypoperfusion, as well as chronic recovery following acute cerebral injuries. SIGNIFICANCE Improved understanding of CGRP's bimodal properties, alongside advancements in CGRP delivery methodologies and brain ischemia detection technologies, paves the way for realizing its untapped potential and broad therapeutic benefits in diverse pathological conditions.
Collapse
Affiliation(s)
- Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Emory University, Atlanta, GA, USA
| | - Jacob Stiles
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; The College of William & Mary, Williamsburg, VA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Quanyu Piao
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
3
|
Pohl S, Akamp T, Smeda M, Uderhardt S, Besold D, Krastl G, Galler KM, Buchalla W, Widbiller M. Understanding dental pulp inflammation: from signaling to structure. Front Immunol 2024; 15:1474466. [PMID: 39534600 PMCID: PMC11554472 DOI: 10.3389/fimmu.2024.1474466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
The pulp is a unique tissue within each tooth that is susceptible to painful inflammation, known as pulpitis, triggered by microbial invasion from carious lesions or trauma that affect many individuals. The host response involves complex immunological processes for pathogen defense and dentin apposition at the site of infection. The interplay of signaling between the immune and non-immune cells via cytokines, chemokines, neuropeptides, proteases, and reactive nitrogen and oxygen species leads to tissue reactions and structural changes in the pulp that escalate beyond a certain threshold to irreversible tissue damage. If left untreated, the inflammation, which is initially localized, can progress to pulpal necrosis, requiring root canal treatment and adversely affecting the prognosis of the tooth. To preserve pulp vitality and dental health, a deeper understanding of the molecular and cellular mechanisms of pulpitis is imperative. In particular, elucidating the links between signaling pathways, clinical symptoms, and spatiotemporal spread is essential to develop novel therapeutic strategies and push the boundaries of vital pulp therapy.
Collapse
Affiliation(s)
- Sandra Pohl
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Akamp
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Martyna Smeda
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Uderhardt
- Medical Department 3, Rheumatology and Immunology, University Hospital Erlangen, Erlangen, Germany
| | - David Besold
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Gabriel Krastl
- Department of Conservative Dentistry and Periodontology, University Hospital Würzburg, Würzburg, Germany
| | - Kerstin M. Galler
- Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Erlangen, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Urata K, Oto T, Hayashi Y, Hitomi S, Ikeda T, Iwata K, Iinuma T, Shinoda M. Ageing-Related Macrophage Polarisation in the Trigeminal Ganglion Enhances Incisional Intraoral Pain. Oral Dis 2024. [PMID: 39467109 DOI: 10.1111/odi.15165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVE Although macrophage polarisation in the trigeminal ganglion (TG) is crucial in orofacial pain hypersensitivity, the effect of ageing-related changes and their involvement in intra-oral nociception remains unclear. We assessed the effect of ageing-related macrophage polarisation in TG on intra-oral mechanical pain hypersensitivity following palatal mucosal incision using senescence-accelerated mice (SAM)-prone8 (SAMP8) and SAM-resistant 1 (SAMR1). MATERIALS AND METHODS Mechanical head-withdrawal reflex threshold (MHWRT) of the palatal mucosa was measured for 21 days after palatal mucosal incision. On days 3 and 14, the abundance of Iba-1-immunoreactive (IR) cells, CD11c-IR cells (pro-inflammatory macrophages (M1)), C-C motif chemokine ligand 2 (CCL2)-IR M1-macrophages, CD206-IR cells (anti-inflammatory macrophages (M2)) and transforming growth factor-β (TGF-β)-IR M2-macrophages in the TG was analysed. The effect of continuous intra-TG administration of CCL2-neutralising antibody or recombinant-CCL2 on MHWRT was examined. RESULTS Incision-induced decrease in MHWRT was enhanced in SAMP8 compared with that in SAMR1. On days 3 and 14, the number of CCL2-IR M1-macrophages in TG was increased in SAMP8 compared with that in SAMR1. CCL2-neutralising antibody suppressed, whereas recombinant-CCL2 increased pain hypersensitivity in SAMP8. CONCLUSIONS Mechanical pain hypersensitivity after oral mucosal injury is potentiated and sustained by age-related enhancement of CCL2 signalling via M1-macrophage hyperactivation in TG.
Collapse
Affiliation(s)
- Kentaro Urata
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Tatsuki Oto
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Takayuki Ikeda
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
5
|
Kung CC, Dai SP, Yen CH, Lee YJ, Chang SL, Fang YT, Lin HL, Chen CL. Animal neuropathic pain aroused by conglutinating oxidative regenerative cellulose on dorsal root ganglion. J Neuropathol Exp Neurol 2024:nlae112. [PMID: 39441706 DOI: 10.1093/jnen/nlae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Neuropathic pain arises as a consequence of injury or disease in the peripheral or central nervous system. Clinical cases have shown that spine postoperative chronic neuropathic pain remains a troublesome issue in medical treatment due to the presence of various degrees of peridural fibrosis and different inflammatory factors after spinal surgery. To address this issue, we developed a new neuropathic mice model that successfully simulates the real clinical situation by applying oxidative regenerative cellulose to L5 DRG (dorsal root ganglion). Behavior tests were done by von Fray and thermal stimuli. ELISA and real-time PCR were employed to detect the expression of genes involved in neuropathic pain. This model not only successfully induces chronic pain but also causes membrane thickening, non-neuronal cell recruitment, and a local increase of TNFα and interleukin-6. Additionally, this model did not cause neuron loss in the affected DRG, which mimics the characteristics of sticky tissue-induced neuropathic pain after clinic surgery. Based on this model, we administrated a TNF inhibitor to mice and successfully reduced mechanical allodynia after DRG surgery. In this study, the developed animal model may be a novel platform for delivering neuropathic pain treatments, such as target-based drug discovery or personalized diagnostic approaches.
Collapse
Affiliation(s)
- Chia-Chi Kung
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Shih-Ping Dai
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Cheng-Han Yen
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Yi-Jui Lee
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Shih-Lun Chang
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Yi-Ting Fang
- Department of Anesthesiology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Heng-Liang Lin
- Center for Innovation, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| | - Chih-Li Chen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan (R.O.C.)
| |
Collapse
|
6
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
7
|
Gad H, Dauleh H, Chirayath S, Amin R, Pasha M, Elgassim E, Haris B, Mohamadsalih G, Jolkka S, Biglang-awa R, Cuatrona E, Inso G, Razon G, Hendaus MA, Wahbeh F, Sajjadi F, Al-Hashimi Y, AlNassr N, Petropoulos IN, Ponirakis G, Hussain K, Malik RA. Corneal nerve loss in adolescents with obesity and acanthosis nigricans. PLoS One 2024; 19:e0309761. [PMID: 39432507 PMCID: PMC11493272 DOI: 10.1371/journal.pone.0309761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/18/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND/AIM Obesity and related metabolic abnormalities in adults are associated with peripheral neuropathy. Acanthosis nigricans (AN) is associated with insulin resistance, fatty liver, hyperlipidemia and glucose intolerance, all of which are risk factors for neuropathy. The aim of this study was to investigate if obese adolescents with AN have evidence of small nerve fiber damage. MATERIAL AND METHODS Adolescents with obesity with and without AN underwent body composition analysis, assessment of vibration perception threshold (VPT), monofilament sensitivity and corneal confocal microscopy (CCM) to quantify corneal nerve fiber density (CNFD), branch density (CNBD), length (CNFL) and inferior whorl length (IWL). RESULTS Forty-six participants with obesity with (n = 31) and without (n = 15) AN aged 15(14-17) years were compared to 20 healthy controls aged 13(12-14) years. There was no difference in VPT, monofilament sensitivity and CCM measures between adolescents with obesity and controls. However, adolescents with AN had a significantly higher weight (P = 0.022), fat% (P = 0.029) and fat-muscle ratio (P = 0.012) with a lower CNFD (P = 0.045) compared to those with obesity without AN. CONCLUSION Adolescents with obesity and acanthosis nigricans have a higher fat mass and small nerve fibre loss, indicative of a sub-clinical neuropathy.
Collapse
Affiliation(s)
- Hoda Gad
- Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hajar Dauleh
- Endocrinology Department, Sidra Medicine, Doha, Qatar
| | | | - Rasha Amin
- Endocrinology Department, Sidra Medicine, Doha, Qatar
| | - Maheen Pasha
- Endocrinology Department, Sidra Medicine, Doha, Qatar
| | - Einas Elgassim
- Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Basma Haris
- Endocrinology Department, Sidra Medicine, Doha, Qatar
| | | | - Sari Jolkka
- Endocrinology Department, Sidra Medicine, Doha, Qatar
| | | | | | - Gina Inso
- Endocrinology Department, Sidra Medicine, Doha, Qatar
| | - Gerald Razon
- Endocrinology Department, Sidra Medicine, Doha, Qatar
| | | | - Farah Wahbeh
- Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Fatima Sajjadi
- Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Noor AlNassr
- Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | | | | | - Rayaz A. Malik
- Research Department, Weill Cornell Medicine-Qatar, Doha, Qatar
- Institute of Cardiovascular Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Dai SP, Yang CC, Chin Y, Sun WH. T cell death-associated gene 8-mediated distinct signaling pathways modulate the early and late phases of neuropathic pain. iScience 2024; 27:110955. [PMID: 39381739 PMCID: PMC11460492 DOI: 10.1016/j.isci.2024.110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/01/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Peripheral nerve injury alters the transduction of nociceptive signaling. The coordination of neurons, glia, and immune cells results in persistent pain and inflammation. T cell death-associated gene 8 (TDAG8), located at nociceptors and immune cells, is involved in inflammatory pain and arthritis-induced pain. Here, we employed TDAG8-deficient mice, pharmacological approaches, and calcium/sodium imaging to elucidate how TDAG8-mediated signaling modulates neuron activities in a mouse model of chronic constriction injury-induced neuropathic pain. We demonstrated that TDAG8 participated alone in mechanical allodynia induced by constriction injury. (1) TDAG8-Nav1.8 signaling in small-diameter isolectin B4-positive [IB4(+)] neurons initiates mechanical allodynia; it also modulated substance P release from IB4(-) neurons to facilitate the development of early mechanical allodynia. (2) TDAG8-mediated signaling increased medium-to large-diameter IB4(-) neuron activity to maintain late mechanical allodynia; it also modulated substance P release in soma to reduce satellite glial number and Nav1.7 expression, thus attenuating chronic mechanical allodynia.
Collapse
Affiliation(s)
- Shih-Ping Dai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Chieh Yang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yin Chin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Hsin Sun
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Schafer RM, Giancotti LA, Chrivia JC, Li Y, Mufti F, Kufer TA, Zhang J, Doyle TM, Salvemini D. CARTp/GPR160 mediates behavioral hypersensitivities in mice through NOD2. Pain 2024:00006396-990000000-00725. [PMID: 39356206 DOI: 10.1097/j.pain.0000000000003418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024]
Abstract
ABSTRACT Neuropathic pain is a debilitating chronic condition that remains difficult to treat. More efficacious and safer therapeutics are needed. A potential target for therapeutic intervention recently identified by our group is the G-protein coupled receptor 160 (GPR160) and the cocaine- and amphetamine-regulated transcript peptide (CARTp) as a ligand for GPR160. Intrathecal administration of CARTp in rodents causes GPR160-dependent behavioral hypersensitivities. However, the molecular and biochemical mechanisms underpinning GPR160/CARTp-induced behavioral hypersensitivities in the spinal cord remain poorly understood. Therefore, we performed an unbiased RNA transcriptomics screen of dorsal horn spinal cord (DH-SC) tissues harvested at the time of peak CARTp-induced hypersensitivities and identified nucleotide-binding oligomerization domain-containing protein 2 (Nod2) as a gene that is significantly upregulated. Nucleotide-binding oligomerization domain-containing protein 2 is a cytosolic pattern-recognition receptor involved in activating the immune system in response to bacterial pathogens. While NOD2 is well studied under pathogenic conditions, the role of NOD2-mediated responses in nonpathogenic settings is still not well characterized. Genetic and pharmacological approaches reveal that CARTp-induced behavioral hypersensitivities are driven by NOD2, with co-immunoprecipitation studies indicating an interaction between GPR160 and NOD2. Cocaine- and amphetamine-regulated transcript peptide-induced behavioral hypersensitivities are independent of receptor-interacting protein kinase 2 (RIPK2), a common adaptor protein to NOD2. Immunofluorescence studies found NOD2 co-expressed with endothelial cells rather than glial cells, implicating potential roles for CARTp/NOD2 signaling in these cells. While these findings are based only on studies with male mice, our results identify a novel pathway by which CARTp causes behavioral hypersensitivities in the DH-SC through NOD2 and highlights the importance of NOD2-mediated responses in nonpathogenic settings.
Collapse
Affiliation(s)
- Rachel M Schafer
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Luigino A Giancotti
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - John C Chrivia
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Ying Li
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Fatma Mufti
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
10
|
Hanč P, Messou MA, Ajit J, von Andrian UH. Setting the tone: nociceptors as conductors of immune responses. Trends Immunol 2024; 45:783-798. [PMID: 39307581 PMCID: PMC11493364 DOI: 10.1016/j.it.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
Nociceptors have emerged as master regulators of immune responses in both homeostatic and pathologic settings; however, their seemingly contradictory effects on the functions of different immune cell subsets have been a source of confusion. Nevertheless, work by many groups in recent years has begun to identify patterns of the modalities and consequences of nociceptor-immune system communication. Here, we review recent findings of how nociceptors affect immunity and propose an integrated concept whereby nociceptors are neither inherently pro- nor anti-inflammatory. Rather, we propose that nociceptors have the role of a rheostat that, in a context-dependent manner, favors tissue homeostasis and fine-tunes immunity by preventing excessive histotoxic inflammation, promoting tissue repair, and potentiating anticipatory and adaptive immune responses.
Collapse
Affiliation(s)
- Pavel Hanč
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Jainu Ajit
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, USA; The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| |
Collapse
|
11
|
Chiu IM, Sokol CL. Neuroimmune recognition of allergens. Curr Opin Immunol 2024; 90:102458. [PMID: 39213825 PMCID: PMC11423315 DOI: 10.1016/j.coi.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Interactions between the nervous system and the immune system play crucial roles in initiating and directing the type 2 immune response. Sensory neurons can initiate innate and adaptive type 2 immunity through their ability to detect allergens and promote dendritic cell and mast cell responses. Neurons also indirectly promote type 2 inflammation through suppression of type 1 immune responses. Type 2 cytokines promote neuronal function by directly activating or sensitizing neurons. This positive neuroimmune feedback loop may not only enhance allergic inflammation but also promote the system-wide responses of aversion, anaphylaxis, and allergen polysensitization that are characteristic of allergic immunity.
Collapse
Affiliation(s)
- Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Caroline L Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
12
|
Chen J, Sun W, Zhu Y, Zhao F, Deng S, Tian M, Wang Y, Gong Y. TRPV1: The key bridge in neuroimmune interactions. JOURNAL OF INTENSIVE MEDICINE 2024; 4:442-452. [PMID: 39310069 PMCID: PMC11411435 DOI: 10.1016/j.jointm.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 09/25/2024]
Abstract
The nervous and immune systems are crucial in fighting infections and inflammation and in maintaining immune homeostasis. The immune and nervous systems are independent, yet tightly integrated and coordinated organizations. Numerous molecules and receptors play key roles in enabling communication between the two systems. Transient receptor potential vanilloid subfamily member 1 (TRPV1) is a non-selective cation channel, recently shown to be widely expressed in the neuroimmune axis and implicated in neuropathic pain, autoimmune disorders, and immune cell function. TRPV1 is a key bridge in neuroimmune interactions, allowing for smooth and convenient communication between the two systems. Here, we discuss the coordinated cross-talking between the immune and nervous systems and the functional role and the functioning manner of the TRPV1 involved. We suggest that TRPV1 provides new insights into the collaborative relationship between the nervous and immune systems, highlighting exciting opportunities for advanced therapeutic approaches to treating neurogenic inflammation and immune-mediated diseases.
Collapse
Affiliation(s)
- Jianwei Chen
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenqian Sun
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Youjia Zhu
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feng Zhao
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuixiang Deng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yao Wang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
13
|
Crosson T, Bhat S, Wang JC, Salaun C, Fontaine E, Roversi K, Herzog H, Rafei M, Blunck R, Talbot S. Cytokines reprogram airway sensory neurons in asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525731. [PMID: 39345572 PMCID: PMC11429693 DOI: 10.1101/2023.01.26.525731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Nociceptor neurons play a crucial role in maintaining the body's homeostasis by detecting and responding to potential dangers in the environment. However, this function can be detrimental during allergic reactions, since vagal nociceptors can contribute to immune cell infiltration, bronchial hypersensitivity, and mucus imbalance, in addition to causing pain and coughing. Despite this, the specific mechanisms by which nociceptors acquire pro-inflammatory characteristics during allergic reactions are not yet fully understood. In this study, we aimed to investigate the molecular profile of airway nociceptor neurons during allergic airway inflammation and identify the signals driving such reprogramming. Using retrograde tracing and lineage reporting, we identified a unique class of inflammatory vagal nociceptor neurons that exclusively innervate the airways. In the ovalbumin mouse model of airway inflammation, these neurons undergo significant reprogramming characterized by the upregulation of the NPY receptor Npy1r. A screening of cytokines and neurotrophins revealed that IL-1β, IL-13 and BDNF drive part of this reprogramming. IL-13 triggered Npy1r overexpression in nociceptors via the JAK/STAT6 pathway. In parallel, sympathetic neurons and macrophages release NPY in the bronchoalveolar fluid of asthmatic mice, which limits the excitability of nociceptor neurons. Single-cell RNA sequencing of lung immune cells has revealed that a cell-specific knockout of Npy1r in nociceptor neurons in asthmatic mice leads to an increase in airway inflammation mediated by T cells. Opposite findings were observed in asthmatic mice in which nociceptor neurons were chemically ablated. In summary, allergic airway inflammation reprograms airway nociceptor neurons to acquire a pro-inflammatory phenotype, while a compensatory mechanism involving NPY1R limits nociceptor neurons' activity.
Collapse
Affiliation(s)
- Théo Crosson
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Shreyas Bhat
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Jo-Chiao Wang
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Clara Salaun
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Eleanne Fontaine
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Katiane Roversi
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | | | - Moutih Rafei
- Département de Pharmacologie et Physiologie, Université de Montréal, Canada
| | - Rikard Blunck
- Centre Interdisciplinaire sur le Cerveau et l’Apprentissage, Université de Montréal, Canada
- Département de Physique, Université de Montréal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet. Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University. Canada
| |
Collapse
|
14
|
Matatia PR, Christian E, Sokol CL. Sensory sentinels: Neuroimmune detection and food allergy. Immunol Rev 2024; 326:83-101. [PMID: 39092839 PMCID: PMC11436315 DOI: 10.1111/imr.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Food allergy is classically characterized by an inappropriate type-2 immune response to allergenic food antigens. However, how allergens are detected and how that detection leads to the initiation of allergic immunity is poorly understood. In addition to the gastrointestinal tract, the barrier epithelium of the skin may also act as a site of food allergen sensitization. These barrier epithelia are densely innervated by sensory neurons, which respond to diverse physical environmental stimuli. Recent findings suggest that sensory neurons can directly detect a broad array of immunogens, including allergens, triggering sensory responses and the release of neuropeptides that influence immune cell function. Reciprocally, immune mediators modulate the activation or responsiveness of sensory neurons, forming neuroimmune feedback loops that may impact allergic immune responses. By utilizing cutaneous allergen exposure as a model, this review explores the pivotal role of sensory neurons in allergen detection and their dynamic bidirectional communication with the immune system, which ultimately orchestrates the type-2 immune response. Furthermore, it sheds light on how peripheral signals are integrated within the central nervous system to coordinate hallmark features of allergic reactions. Drawing from this emerging evidence, we propose that atopy arises from a dysregulated neuroimmune circuit.
Collapse
Affiliation(s)
- Peri R. Matatia
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Elena Christian
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline L. Sokol
- Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
15
|
Jamil H, King B, Haddadin RR, Ul Haq MI, Pasha MT, Inam SHA, Ferguson P, Nolte J. Postictal Rash: A Rare Case Reporting to Neurology. Cureus 2024; 16:e69719. [PMID: 39429373 PMCID: PMC11490223 DOI: 10.7759/cureus.69719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Generalized epileptic seizures are usually followed by a postictal phase that is often characterized by drowsiness, lethargy, weakness, and confusion. In rare cases, it can present with cutaneous manifestations. Here, we present the case of a 45-year-old male who experienced a seizure and subsequently developed a pinpoint rash with non-blanchable petechiae on various parts of his body. The rash appeared during transport to the emergency department and was resolved after seven days once the seizures were controlled. Initial imaging and basic labs were unremarkable other than a slight increase in postictal markers. No other cause behind this new rash was identified. Our case emphasizes the importance of postictal skin manifestations to aid in diagnosing seizures and avoid unnecessary investigations. The possible pathophysiology behind these generalized non-blanchable petechiae has been attributed to hemodynamic changes and neurogenic inflammation triggered in response to the seizures. Further research into the underlying mechanism and prompt recognition of these symptoms can improve the management of epilepsy care.
Collapse
Affiliation(s)
- Hamza Jamil
- Neurology, Army Medical College, Rawalpindi, PAK
| | - Bridgette King
- Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Rund Radi Haddadin
- Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Muhammad Inam Ul Haq
- Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | | | - Syed Hashim Ali Inam
- Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Paul Ferguson
- Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Justin Nolte
- Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| |
Collapse
|
16
|
Wang JC, Crosson T, Nikpoor AR, Gupta S, Rafei M, Talbot S. NOCICEPTOR NEURONS CONTROL POLLUTION-MEDIATED NEUTROPHILIC ASTHMA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609202. [PMID: 39229121 PMCID: PMC11370576 DOI: 10.1101/2024.08.22.609202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The immune and sensory nervous systems, having evolved together, use a shared language of receptors and transmitters to maintain homeostasis by responding to external and internal disruptions. Although beneficial in many cases, neurons can exacerbate inflammation during allergic reactions, such as asthma. Our research modeled asthma aggravated by pollution, exposing mice to ambient PM2.5 particles and ovalbumin. This exposure significantly increased bronchoalveolar lavage fluid neutrophils and γδ T cells compared to exposure to ovalbumin alone. We normalized airway inflammation and lung neutrophil levels by silencing nociceptor neurons at inflammation's peak using intranasal QX-314 or ablating TRPV1-expressing neurons. Additionally, we observed heightened sensitivity in chemical-sensing TRPA1 channels in neurons from pollution-exacerbated asthmatic mice. Elevated levels of artemin were detected in the bronchoalveolar lavage fluid from pollution-exposed mice, with artemin levels normalizing in mice with ablated nociceptor neurons. Upon exposure PM2.5 particles, alveolar macrophages expressing pollution-sensing aryl hydrocarbon receptors, were identified as the source of artemin. This molecule enhanced TRPA1 responsiveness and increased neutrophil influx, providing a novel mechanism by which lung-innervating neurons respond to air pollution and suggesting a potential therapeutic target for controlling neutrophilic airway inflammation in asthma, a clinically intractable condition.
Collapse
Affiliation(s)
- Jo-Chiao Wang
- Department of Pharmacology and Physiology, University de Montreal, Canada
| | - Theo Crosson
- Department of Pharmacology and Physiology, University de Montreal, Canada
| | - Amin Reza Nikpoor
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
| | - Surbhi Gupta
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, University de Montreal, Canada
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Sweden
- Department of Biomedical and Molecular Sciences, Queen’s University, Canada
| |
Collapse
|
17
|
Kotewicz M, Krajewski PK, Jaworek AK, Szepietowski JC. Psychological Aspects of Cutaneous Pain in Psoriasis. J Clin Med 2024; 13:4890. [PMID: 39201033 PMCID: PMC11355655 DOI: 10.3390/jcm13164890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Introduction: Psoriasis is a chronic inflammatory disease that negatively impacts patients' quality of life (QoL) and mental health. Itch and pain are prevalent symptoms of psoriasis and contribute to the psychosocial burden of this disease. This study aimed to evaluate the impact of skin pain on the prevalence and severity of symptoms of anxiety and depression and on the QoL in psoriasis patients. Methods: The studied population comprised 106 adults with psoriasis (34% female; mean age 42.1 ± 13.0 years). Disease severity was measured with the Psoriasis Area and Severity Index (PASI). The intensity of skin pain was assessed with the NRS and the Short Form McGill Pain Questionnaire (SF-MPQ). The Generalized Anxiety Disorder-7 (GAD-7) and Patient Health Questionnaire-9 (PHQ-9) questionnaires were used to estimate the severity of depression and anxiety, respectively, as was the Hospital Anxiety and Depression Scale (HADS). Quality of life (QoL) was studied using the Dermatology Life Quality Index (DLQI). Results: Regarding anxiety assessment, females reported significantly higher scores with the HADS-A (8.42 ± 4.85 points vs. 5.14 ± 3.9 points; p < 0.001) and the GAD-7 compared to men (7.50 ± 5.58 points vs. 5.24 ± 4.79 points; p = 0.036). Similarly, the severity of depression was significantly higher in women, as measured with the PHQ-9 (7.50 ± 5.58 points vs. 5.24 ± 4.79 points, p = 0.021). Psoriasis patients with skin pain scored significantly higher in HADS Total score (p = 0.043), HADS-A (p = 0.022), PHQ-9 (p = 0.035), and DLQI (p < 0.001) than the rest of the studied group. The intensity of skin pain measured with the SF-MPQ correlated significantly with HADS Total score (p = 0.021), HADS-A (p < 0.001), HADS-D (p = 0.038), and PHQ-9 (p < 0.001). Additionally, there was a significant correlation between the intensity of cutaneous pain assessed using the VAS and the PHQ-9 (p = 0.022). Conclusions: Skin pain significantly influences the well-being of patients with psoriasis as well as the symptoms of anxiety and depression. In particular, women with psoriasis are at increased risk of developing anxiety and depression. Our findings underline the necessity for a multidisciplinary approach to the management of this dermatosis.
Collapse
Affiliation(s)
- Magdalena Kotewicz
- University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.); (P.K.K.)
| | - Piotr K. Krajewski
- University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.); (P.K.K.)
| | - Andrzej K. Jaworek
- Department of Dermatology, Jagiellonian University, 31-008 Kraków, Poland;
| | - Jacek C. Szepietowski
- University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.); (P.K.K.)
| |
Collapse
|
18
|
Jones MR, Jones J, Pandu P, Liu C, Carey CD, Falo LD, Albers KM. Neurturin GF Enhances the Acute Cytokine Response of Inflamed Skin. J Invest Dermatol 2024:S0022-202X(24)01978-X. [PMID: 39122143 DOI: 10.1016/j.jid.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Epidermal keratinocytes, immune cells, and sensory nerves all contribute to immune balance and skin homeostasis. Keratinocyte's release of GFs, neuromodulators, and immune activators is particularly important because each can evoke local (skin) and systemic (ie, immune and neural) responses that can initiate and exacerbate skin pathophysiology. From studies of skin and neural GFs, we hypothesized that neurturin (Nrtn), a member of the GDNF family that is expressed in the skin, has particular importance in this process. In this study, we examine how elevation of Nrtn in skin keratinocytes impacts early cytokine expression in response to complete Freund's adjuvant-mediated inflammation. Nrtn-overexpressing mice and wild-type mice injected with Nrtn exhibit an enhanced level of TNFα and IL-1β cytokines in the skin, a response previously shown to support healing. In vitro assays suggest that one source of the Nrtn-induced TNFα increase is keratinocytes, which are shown to express Nrtn and mRNAs encoding the Nrtn receptors GFRα2, Ret, ITGB1, and NCAM. These findings support the contribution of keratinocyte-derived Nrtn as an autocrine/paracrine factor that acts as a first-line defense molecule that regulates the initial cytokine response to inflammatory challenge.
Collapse
Affiliation(s)
- Marsha Ritter Jones
- Department of Anesthesia & Perioperative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James Jones
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Prathyusha Pandu
- Rutgers University School of Medicine, East Brunswick, New Jersey, USA
| | - Chunyan Liu
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Cara D Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kathryn M Albers
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
19
|
Costa YM, Herculiani CCF, Soares FFC, Azevedo MDCS, Conti PCR, Dionísio TJ, Oliveira GDM, Faria FACD, Santos CF, Garlet GP, Bonjardim LR. Impact of streptozotocin-induced diabetes on experimental masseter pain in rats. Braz Oral Res 2024; 38:e073. [PMID: 39109769 PMCID: PMC11376623 DOI: 10.1590/1807-3107bor-2024.vol38.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 04/02/2024] [Indexed: 09/20/2024] Open
Abstract
This study aimed to assess the influence of streptozotocin (STZ)-induced diabetes on the nociceptive behavior evoked by the injection of hypertonic saline (HS) into the masseter muscle of rats. Forty male rats were equally divided into four groups: a) isotonic saline control, which received 0.9% isotonic saline (IS), (Ctrl-IS); b) hypertonic saline control, which received 5% HS (Ctrl-HS); c) STZ-induced diabetic, which received IS, (STZ-IS); d) STZ-induced diabetic, which received HS (STZ-HS). Experimental diabetes was induced by a single intraperitoneal injection of STZ at dose of 60 mg/kg dissolved in 0.1 M citrate buffer, and 100 μL of HS or IS were injected into the left masseter to measure the nociceptive behavior. Later on, muscle RNA was extracted to measure the relative expression of the following cytokines: cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF-α), and interleukins (IL)-1β, -2, -6, and -10. One-way analysis of variance (ANOVA) was applied to the data (p < 0.050). We observed a main effect of group on the nociceptive response (ANOVA: F = 11.60, p < 0.001), where the Ctrl-HS group presented the highest response (p < 0.001). However, nociceptive response was similar among the Ctrl-IS, STZ-IS, and STZ-HS group (p > 0.050). In addition, the highest relative gene expression of TNF-α and IL-6 was found in the masseter of control rats following experimental muscle pain (p < 0.050). In conclusion, the loss of somatosensory function can be observed in deep orofacial tissues of STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Yuri Martins Costa
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Biosciences, Piracicaba, SP, Brazil
| | | | - Flávia Fonseca Carvalho Soares
- Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Biological Sciences, Bauru, São Paulo, SP, Brazil
| | | | | | - Thiago José Dionísio
- Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Biological Sciences, Bauru, São Paulo, SP, Brazil
| | | | | | - Carlos Ferreira Santos
- Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Biological Sciences, Bauru, São Paulo, SP, Brazil
| | - Gustavo Pompermaier Garlet
- Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Biological Sciences, Bauru, São Paulo, SP, Brazil
| | - Leonardo Rigoldi Bonjardim
- Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Biological Sciences, Bauru, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Zhu Y, Meerschaert KA, Galvan-Pena S, Bin NR, Yang D, Basu H, Kawamoto R, Shalaby A, Liberles SD, Mathis D, Benoist C, Chiu IM. A chemogenetic screen reveals that Trpv1-expressing neurons control regulatory T cells in the gut. Science 2024; 385:eadk1679. [PMID: 39088603 DOI: 10.1126/science.adk1679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/21/2024] [Accepted: 06/03/2024] [Indexed: 08/03/2024]
Abstract
Neuroimmune cross-talk participates in intestinal tissue homeostasis and host defense. However, the matrix of interactions between arrays of molecularly defined neuron subsets and of immunocyte lineages remains unclear. We used a chemogenetic approach to activate eight distinct neuronal subsets, assessing effects by deep immunophenotyping, microbiome profiling, and immunocyte transcriptomics in intestinal organs. Distinct immune perturbations followed neuronal activation: Nitrergic neurons regulated T helper 17 (TH17)-like cells, and cholinergic neurons regulated neutrophils. Nociceptor neurons, expressing Trpv1, elicited the broadest immunomodulation, inducing changes in innate lymphocytes, macrophages, and RORγ+ regulatory T (Treg) cells. Neuroanatomical, genetic, and pharmacological follow-up showed that Trpv1+ neurons in dorsal root ganglia decreased Treg cell numbers via the neuropeptide calcitonin gene-related peptide (CGRP). Given the role of these neurons in nociception, these data potentially link pain signaling with gut Treg cell function.
Collapse
Affiliation(s)
- Yangyang Zhu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kimberly A Meerschaert
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Silvia Galvan-Pena
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Na-Ryum Bin
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Daping Yang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Himanish Basu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ryo Kawamoto
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Amre Shalaby
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Diane Mathis
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Christophe Benoist
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Wyndaele M, Charrua A, Hervé F, Aronsson P, Grundy L, Khullar V, Wein A, Abrams P, Cruz F, Cruz CD. Beyond the urothelium: Interplay between autonomic nervous system and bladder inflammation in urinary tract infection, bladder pain syndrome with interstitial cystitis and neurogenic lower urinary tract dysfunction in spinal cord injury-ICI-RS 2023. Neurourol Urodyn 2024; 43:1283-1292. [PMID: 37876314 DOI: 10.1002/nau.25310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
INTRODUCTION Inflammation and neuronal hypersensitivity are reactive protective mechanisms after urothelial injury. In lower urinary tract dysfunctions (LUTD), such as urinary tract infection (UTI), bladder pain syndrome with interstitial cystitis (BPS/IC) and neurogenic LUTD after spinal cord injury (SCI), chronic inflammation can develop. It is unclear how the protective reactionary inflammation escalates into chronic disease in some patients. METHODS During its 2023 meeting in Bristol, the International Consultation on Incontinence-Research Society (ICI-RS) reviewed the urothelial and inflammatory changes after UTI, BPS/IC and SCI. Potential factors contributing to the evolution into chronic disease were explored in a think-tank. RESULTS Five topics were discussed. (1) Visceral fat metabolism participates in the systemic pro-inflammatory effect of noradrenalin in BPS/IC and SCI. Sympathetic nervous system-adipocyte-bladder crosstalk needs further investigation. (2) Sympathetic hyperactivity also potentiates immune depression in SCI and needs to be investigated in BPS/IC. Gabapentin and tumor necrosis factor-α are promising research targets. (3) The exact peripheral neurons involved in the integrative protective unit formed by nervous and immune systems need to be further identified. (4) Neurotransmitter changes in SCI and BPS/IC: Neurotransmitter crosstalk needs to be considered in identifying new therapeutic targets. (5) The change from eubiosis to dysbiosis in SCI can contribute to UTI susceptibility and needs to be unraveled. CONCLUSIONS The think-tank discussed whether visceral fat metabolism, immune depression through sympathetic hyperactivity, peripheral nerves and neurotransmitter crosstalk, and the change in microbiome could provide explanations in the heterogenic development of chronic inflammation in LUTD. High-priority research questions were identified.
Collapse
Affiliation(s)
- Michel Wyndaele
- Department of Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ana Charrua
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Translational Neurourology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC University of Porto, Porto, Portugal
| | - François Hervé
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Patrik Aronsson
- Department Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, Australia
| | - Vik Khullar
- Department of Urogynaecology, St Mary's Hospital, Imperial College, London, UK
| | - Alan Wein
- Department of Surgery, Division of Urology, Perelman School of Medicine, Penn Medicine, University of Pennsylvania Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Urology, Desai Sethi Institute of Urology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Paul Abrams
- Bristol Urological Institute, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - Francisco Cruz
- Translational Neurourology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC University of Porto, Porto, Portugal
- Department of Surgery and Physiology, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Department of Urology, Hospital São João, Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, Porto, Portugal
- Translational Neurourology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC University of Porto, Porto, Portugal
| |
Collapse
|
22
|
Salvador AFM, Abduljawad N, Kipnis J. Meningeal Lymphatics in Central Nervous System Diseases. Annu Rev Neurosci 2024; 47:323-344. [PMID: 38648267 DOI: 10.1146/annurev-neuro-113023-103045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Since its recent discovery, the meningeal lymphatic system has reshaped our understanding of central nervous system (CNS) fluid exchange, waste clearance, immune cell trafficking, and immune privilege. Meningeal lymphatics have also been demonstrated to functionally modify the outcome of neurological disorders and their responses to treatment, including brain tumors, inflammatory diseases such as multiple sclerosis, CNS injuries, and neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review, we discuss recent evidence of the contribution of meningeal lymphatics to neurological diseases, as well as the available experimental methods for manipulating meningeal lymphatics in these conditions. Finally, we also provide a discussion of the pressing questions and challenges in utilizing meningeal lymphatics as a prime target for CNS therapeutic intervention and possibly drug delivery for brain disorders.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Nora Abduljawad
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, Missouri, USA
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Jonathan Kipnis
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, Missouri, USA
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
23
|
Chen Y, Guo P, Chen L, He D. 5-aminolevulinic acid induced photodynamic reactions in diagnosis and therapy for female lower genital tract diseases. Front Med (Lausanne) 2024; 11:1370396. [PMID: 39076768 PMCID: PMC11284047 DOI: 10.3389/fmed.2024.1370396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/13/2024] [Indexed: 07/31/2024] Open
Abstract
Since the patients suffering from female lower genital tract diseases are getting younger and younger and the human papilloma virus (HPV) infection is becoming more widespread, the novel non-invasive precise modalities of diagnosis and therapy are required to remain structures of the organ and tissue, and fertility as well, by which the less damage to normal tissue and fewer adverse effects are able to be achieved. In all nucleated mammalian cells, 5-Aminolevulinic acid (5-ALA) is an amino acid that occurs spontaneously, which further synthesizes in the heme biosynthetic pathway into protoporphyrin IX (PpIX) as a porphyrin precursor and photosensitizing agent. Exogenous 5-ALA avoids the rate-limiting step in the process, causing PpIX buildup in tumor tissues. This tumor-selective PpIX distribution after 5-ALA application has been used successfully for tumor photodynamic diagnosis (PDD) and photodynamic therapy (PDT). Several ALA-based drugs have been used for ALA-PDD and ALA-PDT in treating many (pre)cancerous diseases, including the female lower genital tract diseases, yet the ALA-induced fluorescent theranostics is needed to be explored further. In this paper, we are going to review the studies of the mechanisms and applications mainly on ALA-mediated photodynamic reactions and its effectiveness in treating female lower genital tract diseases.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China
| | - Lihong Chen
- Department of Obstetrics and Gynecology, Shaanxi Provincial People’s Hospital, Xi'an, Shaanxi, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
24
|
Bustamante C, Pinilla Bonilla LB, Restrepo JC. Neurological symphony: post-acute COVID-19 syndrome, an innovative pathophysiological exploration from neuraltherapeutic medicine. Front Integr Neurosci 2024; 18:1417856. [PMID: 39070159 PMCID: PMC11275269 DOI: 10.3389/fnint.2024.1417856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
The SARS-CoV-2 pandemic has affected 771 million people and caused 6.9 million confirmed deaths as of November 2023. Beyond the adversity, a crucial and less-explored chapter unfolds: adaptive sequelae. These have altered social, mental, and emotional conditions, leaving an imprint on biological systems. While some cases fully resolve the pathological process post-acute infection, others persist with symptoms, posing a challenge that underscores the need to comprehend pathophysiology from innovative perspectives. The article delves into “Long COVID” or Post-Acute COVID-19 Syndrome (PACS), where symptoms persist for ≥4 weeks irrespective of initial severity. Risk factors include a history of severe illness, in-hospital management, and intensive care. This article also explores theories, derived from various experimental models, that have demonstrated the involvement of the nervous system in coordination with the psychoneuroimmunoendocrine axes in the expression of inflammation. It is posited that PACS involves processes of peripheral and central sensitization (corticalization), facilitating dishomeostasis and the chronicity of the inflammatory process. In this context, various therapeutic strategies grounded in modulating the inflammatory reflex are reviewed, primarily through the infiltration of local anesthetics via linear and non-linear approaches. Neural therapeutic use is considered to stimulate the regulatory inflammatory circuits coordinated by the neuroimmune-endocrine system.
Collapse
Affiliation(s)
- Carlos Bustamante
- Institute for Advanced Integrative Medicine, Medellin, Colombia
- Faculty of Medicine, National University of Colombia, Bogotá, Colombia
| | - Laura Bibiana Pinilla Bonilla
- Institute for Advanced Integrative Medicine, Medellin, Colombia
- Research and Innovation Center, Integrated Subnetwork of Health Services of South, Bogotá, Colombia
| | | |
Collapse
|
25
|
Anderson Z, Schoeller M, Witherell R. Transient Telangiectatic Purpura: A Rare Post-operative Phenomenon. J Community Hosp Intern Med Perspect 2024; 14:60-61. [PMID: 39391116 PMCID: PMC11464062 DOI: 10.55729/2000-9666.1361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 10/12/2024] Open
Abstract
Axillary lymph node dissection (ALND) is a surgical procedure for malignant disease with well known complications, that is less well known is its association with a painless dermatomal rash formally known as transient telangiectatic purpura. This is a case report describing a case of transient telangiectatic purpura, describing its natural history and inferring on its pathophysiology.
Collapse
|
26
|
Hawker P, Zhang L, Liu L. Mas-related G protein-coupled receptors in gastrointestinal dysfunction and inflammatory bowel disease: A review. Br J Pharmacol 2024; 181:2197-2211. [PMID: 36787888 DOI: 10.1111/bph.16059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/25/2022] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic debilitating condition, hallmarked by persistent inflammation of the gastrointestinal tract. Despite recent advances in clinical treatments, the aetiology of IBD is unknown, and a large proportion of patients are refractory to pharmacotherapy. Understanding IBD immunopathogenesis is crucial to discern the cause of IBD and optimise treatments. Mas-related G protein-coupled receptors (Mrgprs) are a family of approximately 50 G protein-coupled receptors that were first identified over 20 years ago. Originally known for their expression in skin nociceptors and their role in transmitting the sensation of itch in the periphery, new reports have described the presence of Mrgprs in the gastrointestinal tract. In this review, we consider the impact of these findings and assess the evidence that suggests that Mrgprs may be involved in the disrupted homeostatic processes that contribute to gastrointestinal disorders and IBD. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Patrick Hawker
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Cremin M, Ramirez VT, Sanchez K, Tay E, Murray K, Brust-Mascher I, Reardon C. Substance P receptor signaling contributes to host maladaptive responses during enteric bacterial infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.599421. [PMID: 38979288 PMCID: PMC11230291 DOI: 10.1101/2024.06.24.599421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Immune responses in the intestine are intricately balanced to prevent pathogen entry without inducing immunopathology. The nervous system is well-established to interface with the immune system to fine-tune immunity in various organ systems including the gastrointestinal tract. Specialized sensory neurons can detect bacteria, bacterial products, and the resulting inflammation, to coordinate the immune response in the gastrointestinal tract. These sensory neurons release peptide neurotransmitters such as Substance P (SP), to induce both neuronal signaling and localized responses in non-neuronal cells. With this in mind, we assessed the immunoregulatory roles of SP receptor signaling during enteric bacterial infection with the non-invasive pathogen Citrobacter rodentium. Pharmacological antagonism of the SP receptor significantly reduced bacterial burden and prevented colonic crypt hyperplasia. Mice with SP receptor signaling blockade had significantly reduced inflammation and recruitment of T-cells in the colon. Reduced colonic T-cell recruitment is due to reduced expression of adhesion molecules on colonic endothelial cells in SP receptor antagonist-treated mice. Using SP receptor T-cell conditional knockout mice, we further confirmed SP receptor signaling enhanced select aspects of T-cell responses. Our data demonstrates that SP receptor signaling can significantly reduce inflammation and prevent host-maladaptive responses without impinging upon host protection.
Collapse
Affiliation(s)
- Michael Cremin
- UC Davis, School of Veterinary Medicine, Anatomy, Physiology & Cell Biology
| | - Valerie T. Ramirez
- UC Davis, School of Veterinary Medicine, Anatomy, Physiology & Cell Biology
| | - Kristina Sanchez
- University of California, School of Veterinary Medicine, Anatomy, Physiology & Cell Biology
| | - Emmy Tay
- University of California, School of Veterinary Medicine, Anatomy, Physiology & Cell Biology
| | - Kaitlin Murray
- University of California, School of Veterinary Medicine, Anatomy, Physiology & Cell Biology
| | - Ingrid Brust-Mascher
- University of California, School of Veterinary Medicine, Anatomy, Physiology & Cell Biology
| | - Colin Reardon
- UC Davis, School of Veterinary Medicine, Anatomy, Physiology & Cell Biology
| |
Collapse
|
28
|
Kotewicz M, Krajewski PK, Jaworek AK, Szepietowski JC. Clinical Characteristics of Cutaneous Pain in Psoriasis. J Clin Med 2024; 13:3610. [PMID: 38930137 PMCID: PMC11204389 DOI: 10.3390/jcm13123610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Psoriasis is a common inflammatory disease that is often associated with itch and pain. This study aimed to evaluate the clinical characteristics of skin pain among patients with psoriasis. Materials: A total of 106 patients diagnosed with psoriasis were included in the study (34% female; mean age 42.1 ± 13.0 years). Disease severity was assessed using the Psoriasis Area and Severity Index (PASI). Itch severity was evaluated using the numeric rating scale (NRS) and 4-Item Itch Score (4IIS). The intensity of skin pain was measured through the NRS, short-form McGill pain questionnaire (SF-MPQ), visual analog scale (VAS), and Douleur Neuropathique-4 questionnaire (DN4). Results: In the past week, 84.9% of psoriasis patients reported itch, while 50% of them reported skin pain. The average NRS for itch was 4.52 ± 2.88 points, and the 4IIS yielded a mean score of 6.79 ± 4.37 points. In terms of the intensity of cutaneous pain, the mean NRS was 2.42 ± 2.96 points; the SF-MPQ score averaged 4.84 ± 7.51 points; and the VAS score was 1.92 ± 2.65 points. Furthermore, 17% of adult psoriasis patients reported neuropathic pain. In 84.9% of the participants, skin pain was concurrent with areas affected by itch, while 18.9% of patients exhibited cutaneous pain encompassing all itchy areas. The pain NRS demonstrated significant correlations with the SF-MPQ (r = 0.531, p < 0.001), VAS (r = 0.779, p < 0.001), itch NRS (r = 0.551, p < 0.001), and 4IIS (r = 0.569, p < 0.001). No association was found between the pain NRS and PASI or disease duration. Conclusions: Skin pain of mild intensity and itch of moderate intensity are prevalent symptoms in psoriasis patients. Strong correlations between skin pain and itch can be explained by the process of neurogenic inflammation.
Collapse
Affiliation(s)
- Magdalena Kotewicz
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland (P.K.K.)
| | - Piotr K. Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland (P.K.K.)
| | - Andrzej K. Jaworek
- Department of Dermatology, Jagiellonian University, 31-008 Kraków, Poland;
| | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland (P.K.K.)
| |
Collapse
|
29
|
Huang C, Sun PY, Jiang Y, Liu Y, Liu Z, Han SL, Wang BS, Huang YX, Ren AR, Lu JF, Jiang Q, Li Y, Zhu MX, Yao Z, Tian Y, Qi X, Li WG, Xu TL. Sensory ASIC3 channel exacerbates psoriatic inflammation via a neurogenic pathway in female mice. Nat Commun 2024; 15:5288. [PMID: 38902277 PMCID: PMC11190258 DOI: 10.1038/s41467-024-49577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Psoriasis is an immune-mediated skin disease associated with neurogenic inflammation, but the underlying molecular mechanism remains unclear. We demonstrate here that acid-sensing ion channel 3 (ASIC3) exacerbates psoriatic inflammation through a sensory neurogenic pathway. Global or nociceptor-specific Asic3 knockout (KO) in female mice alleviates imiquimod-induced psoriatic acanthosis and type 17 inflammation to the same extent as nociceptor ablation. However, ASIC3 is dispensable for IL-23-induced psoriatic inflammation that bypasses the need for nociceptors. Mechanistically, ASIC3 activation induces the activity-dependent release of calcitonin gene-related peptide (CGRP) from sensory neurons to promote neurogenic inflammation. Botulinum neurotoxin A and CGRP antagonists prevent sensory neuron-mediated exacerbation of psoriatic inflammation to similar extents as Asic3 KO. In contrast, replenishing CGRP in the skin of Asic3 KO mice restores the inflammatory response. These findings establish sensory ASIC3 as a critical constituent in psoriatic inflammation, and a promising target for neurogenic inflammation management.
Collapse
Affiliation(s)
- Chen Huang
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Basic Medicine Experimental Teaching Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Pei-Yi Sun
- Department of Dermatology, Xinhua Hospital, Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yiming Jiang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Otorhinolaryngology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Shao-Ling Han
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bao-Shan Wang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong-Xin Huang
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - An-Ran Ren
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jian-Fei Lu
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin Jiang
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Li
- Basic Medicine Experimental Teaching Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xin Qi
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei-Guang Li
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| | - Tian-Le Xu
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| |
Collapse
|
30
|
Cuffaro F, Russo E, Amedei A. Endometriosis, Pain, and Related Psychological Disorders: Unveiling the Interplay among the Microbiome, Inflammation, and Oxidative Stress as a Common Thread. Int J Mol Sci 2024; 25:6473. [PMID: 38928175 PMCID: PMC11203696 DOI: 10.3390/ijms25126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Endometriosis (EM), a chronic condition in endometrial tissue outside the uterus, affects around 10% of reproductive-age women, significantly affecting fertility. Its prevalence remains elusive due to the surgical confirmation needed for diagnosis. Manifesting with a range of symptoms, including dysmenorrhea, dyschezia, dysuria, dyspareunia, fatigue, and gastrointestinal discomfort, EM significantly impairs quality of life due to severe chronic pelvic pain (CPP). Psychological manifestations, notably depression and anxiety, frequently accompany the physical symptoms, with CPP serving as a key mediator. Pain stems from endometrial lesions, involving oxidative stress, neuroinflammation, angiogenesis, and sensitization processes. Microbial dysbiosis appears to be crucial in the inflammatory mechanisms underlying EM and associated CPP, as well as psychological symptoms. In this scenario, dietary interventions and nutritional supplements could help manage EM symptoms by targeting inflammation, oxidative stress, and the microbiome. Our manuscript starts by delving into the complex relationship between EM pain and psychological comorbidities. It subsequently addresses the emerging roles of the microbiome, inflammation, and oxidative stress as common links among these abovementioned conditions. Furthermore, the review explores how dietary and nutritional interventions may influence the composition and function of the microbiome, reduce inflammation and oxidative stress, alleviate pain, and potentially affect EM-associated psychological disorders.
Collapse
Affiliation(s)
- Francesca Cuffaro
- Division of Interdisciplinary Internal Medicine, Careggi University Hospital of Florence, 50134 Florence, Italy;
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
31
|
Li KS, Liu YH. Impact of Migraine and Vestibular Migraine on Audiometric Profiles and Quality of Life in Patients With Tinnitus. Otol Neurotol 2024; 45:e443-e449. [PMID: 38728562 DOI: 10.1097/mao.0000000000004196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
OBJECTIVE To investigate the clinical manifestations and complete auditory function in primary tinnitus patients with and without migraine or vestibular migraine. DESIGN Retrospective case-control study. SETTING A tertiary referral center. PARTICIPANTS This study enrolled 298 patients from the Kaohsiung Veterans General Hospital. All patients were diagnosed with primary tinnitus by a neurotologist between April 2020 and August 2021. Patients were excluded if they had histories of chronic otitis media, idiopathic sudden sensorineural hearing loss, Ménière's disease, skull base neoplasm, or temporal bone trauma. INTERVENTIONS Twenty-five-item Tinnitus Handicap Inventory (THI), speech audiometry including speech recognition threshold, most comfortable level, uncomfortable loudness levels, dynamic range, and pure-tone audiometry. MAIN OUTCOMES MEASURES Objective hearing loss is defined as a mean threshold greater than 25 dB. Extremely elevated THI is defined as a score greater than 1 standard deviation above the mean THI. RESULTS Among the 298 patients with tinnitus, 149 were women and 149 were men, with a mean age of 57.06 (range, 19.22-94.58) years.A total of 125 patients completed the THI questionnaire during their initial visit. The median THI score was 32 (95% confidence interval: 13.98-56.00), and the mean score was 34.99 with a standard deviation of 21.01. The sole contributing factor significantly associated with higher total THI score was the diagnosis of migraine or vestibular migraine (p < 0.001, odds ratio = 19.41).Tinnitus patients with migraine or vestibular migraine exhibited significantly lower mean pure-tone auditory thresholds (right 22.2 versus 29.5, p = 0.002; left 22.5 versus 30.4, p < 0.001), speech recognition threshold (right 20.0 versus 25.2, p = 0.016; left 20.2 versus 25.5, p = 0.019), and most comfortable levels values (right 46.1 versus 51.4, p = 0.007; left 46.9 versus 51.4, p = 0.021) compared with the tinnitus patients without migraine. CONCLUSIONS In this population-based study, patients with primary tinnitus experienced significantly higher THI scores and exhibited concurrent symptoms, including dizziness/vertigo, cervicalgia, and migraine or vestibular migraine. Among these parameters, the diagnosis of migraine or vestibular migraine was the sole contributor to significant higher THI score.
Collapse
Affiliation(s)
- Keng-Sheng Li
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital
| | | |
Collapse
|
32
|
Schafer RM, Giancotti LA, Davis DJ, Larrea IG, Farr SA, Salvemini D. Behavioral characterization of G-protein-coupled receptor 160 knockout mice. Pain 2024; 165:1361-1371. [PMID: 38198232 PMCID: PMC11090760 DOI: 10.1097/j.pain.0000000000003136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/23/2023] [Indexed: 01/12/2024]
Abstract
ABSTRACT Neuropathic pain is a devastating condition where current therapeutics offer little to no pain relief. Novel nonnarcotic therapeutic targets are needed to address this growing medical problem. Our work identified the G-protein-coupled receptor 160 (GPR160) as a potential target for therapeutic intervention. However, the lack of small-molecule ligands for GPR160 hampers our understanding of its role in health and disease. To address this void, we generated a global Gpr160 knockout (KO) mouse using CRISPR-Cas9 genome editing technology to validate the contributions of GPR160 in nociceptive behaviors in mice. Gpr160 KO mice are healthy and fertile, with no observable physical abnormalities. Gpr160 KO mice fail to develop behavioral hypersensitivities in a model of neuropathic pain caused by constriction of the sciatic nerve. On the other hand, responses of Gpr160 KO mice in the hot-plate and tail-flick assays are not affected. We recently deorphanized GPR160 and identified cocaine- and amphetamine-regulated transcript peptide (CARTp) as a potential ligand. Using Gpr160 KO mice, we now report that the development of behavioral hypersensitivities after intrathecal or intraplantar injections of CARTp are dependent on GPR160. Cocaine- and amphetamine-regulated transcript peptide plays a role in various affective behaviors, such as anxiety, depression, and cognition. There are no differences in learning, memory, and anxiety between Gpr160 KO mice and their age-matched and sex-matched control floxed mice. Results from these studies support the pronociceptive roles of CARTp/GPR160 and GPR160 as a potential therapeutic target for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Rachel M Schafer
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| | - Luigino A Giancotti
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| | - Daniel J Davis
- Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Ivonne G Larrea
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| | - Susan A Farr
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
- Department of Internal Medicine-Geriatrics, Saint Louis School of Medicine, St. Louis, MO, USA
- VA Medical Center, St Louis. MO 63106, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd. 63104, St. Louis, Missouri, USA
| |
Collapse
|
33
|
Tynan A, Tsaava T, Gunasekaran M, Bravo Iñiguez CE, Brines M, Chavan SS, Tracey KJ. TRPV1 nociceptors are required to optimize antigen-specific primary antibody responses to novel antigens. Bioelectron Med 2024; 10:14. [PMID: 38807193 PMCID: PMC11134756 DOI: 10.1186/s42234-024-00145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Key to the advancement of the field of bioelectronic medicine is the identification of novel pathways of neural regulation of immune function. Sensory neurons (termed nociceptors) recognize harmful stimuli and initiate a protective response by eliciting pain and defensive behavior. Nociceptors also interact with immune cells to regulate host defense and inflammatory responses. However, it is still unclear whether nociceptors participate in regulating primary IgG antibody responses to novel antigens. METHODS To understand the role of transient receptor potential vanilloid 1 (TRPV1)-expressing neurons in IgG responses, we generated TRPV1-Cre/Rosa-ChannelRhodopsin2 mice for precise optogenetic activation of TRPV1 + neurons and TRPV1-Cre/Lox-diphtheria toxin A mice for targeted ablation of TRPV1-expressing neurons. Antigen-specific antibody responses were longitudinally monitored for 28 days. RESULTS Here we show that TRPV1 expressing neurons are required to develop an antigen-specific immune response. We demonstrate that selective optogenetic stimulation of TRPV1+ nociceptors during immunization significantly enhances primary IgG antibody responses to novel antigens. Further, mice rendered deficient in TRPV1- expressing nociceptors fail to develop primary IgG antibody responses to keyhole limpet hemocyanin or haptenated antigen. CONCLUSION This functional and genetic evidence indicates a critical role for nociceptor TRPV1 in antigen-specific primary antibody responses to novel antigens. These results also support consideration of potential therapeutic manipulation of nociceptor pathways using bioelectronic devices to enhance immune responses to foreign antigens.
Collapse
Affiliation(s)
- Aisling Tynan
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Téa Tsaava
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Manojkumar Gunasekaran
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Carlos E Bravo Iñiguez
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Michael Brines
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sangeeta S Chavan
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA.
| | - Kevin J Tracey
- Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- The Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, USA.
| |
Collapse
|
34
|
Shi Y, Wan S, Song X. Role of neurogenic inflammation in the pathogenesis of alopecia areata. J Dermatol 2024; 51:621-631. [PMID: 38605467 DOI: 10.1111/1346-8138.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
Alopecia areata refers to an autoimmune illness indicated by persistent inflammation. The key requirement for alopecia areata occurrence is the disruption of immune-privileged regions within the hair follicles. Recent research has indicated that neuropeptides play a role in the damage to hair follicles by triggering neurogenic inflammation, stimulating mast cells ambient the follicles, and promoting apoptotic processes in keratinocytes. However, the exact pathogenesis of alopecia areata requires further investigation. Recently, there has been an increasing focus on understanding the mechanisms of immune diseases resulting from the interplay between the nervous and the immune system. Neurogenic inflammation due to neuroimmune disorders of the skin system may disrupt the inflammatory microenvironment of the hair follicle, which plays a crucial part in the progression of alopecia areata.
Collapse
Affiliation(s)
- Yetan Shi
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sheng Wan
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
35
|
Cook CE, Keter D, Cade WT, Winkelstein BA, Reed WR. Manual therapy and exercise effects on inflammatory cytokines: a narrative overview. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1305925. [PMID: 38745971 PMCID: PMC11091266 DOI: 10.3389/fresc.2024.1305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Background Matching disease and treatment mechanisms is a goal of the Precision Medicine Initiative. Pro- and anti-inflammatory cytokines (e.g., Tumor Necrosis Factor-alpha, Transforming Growth Factor-beta, and Interleukin-2, 10, and 12) have gained a significant amount of interest in their potential role in persistent pain for musculoskeletal (MSK) conditions. Manual therapy (MT) and exercise are two guideline-recommended approaches for treating MSK conditions. The objective of this narrative overview was to investigate of the effects of MT and exercise on pro- and anti-inflammatory cytokines and determine the factors that lead to variability in results. Methods Two reviewers evaluated the direction and variabilities of MT and exercise literature. A red, yellow, and green light scoring system was used to define consistencies. Results Consistencies in responses were seen with acute and chronic exercise and both pro- and anti-inflammatory cytokines. Chronic exercise is associated with a consistent shift towards a more anti-inflammatory cytokine profile (Transforming Growth Factor-beta, and Interleukin-2 and 13, whereas acute bouts of intense exercise can transiently increase pro-inflammatory cytokine levels. The influence of MT on cytokines was less commonly studied and yielded more variable results. Conclusion Variability in findings is likely related to the subject and their baseline condition or disease, when measurement occurs, and the exercise intensity, duration, and an individual's overall health and fitness.
Collapse
Affiliation(s)
- Chad E. Cook
- Doctor of Physical Therapy Division, Department of Orthopaedics, Duke University, Durham, NC, United States
- Department of Population Health Sciences, Duke University, Durham, NC, United States
- Duke Clinical Research Institute, Duke University, Durham, NC, United States
| | - Damian Keter
- Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - William Todd Cade
- Doctor of Physical Therapy Division, Department of Orthopaedics, Duke University, Durham, NC, United States
| | - Beth A. Winkelstein
- Departments of Bioengineering & Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - William R. Reed
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
36
|
Smith PA. BDNF in Neuropathic Pain; the Culprit that Cannot be Apprehended. Neuroscience 2024; 543:49-64. [PMID: 38417539 DOI: 10.1016/j.neuroscience.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
In males but not in females, brain derived neurotrophic factor (BDNF) plays an obligatory role in the onset and maintenance of neuropathic pain. Afferent terminals of injured peripheral nerves release colony stimulating factor (CSF-1) and other mediators into the dorsal horn. These transform the phenotype of dorsal horn microglia such that they express P2X4 purinoceptors. Activation of these receptors by neuron-derived ATP promotes BDNF release. This microglial-derived BDNF increases synaptic activation of excitatory dorsal horn neurons and decreases that of inhibitory neurons. It also alters the neuronal chloride gradient such the normal inhibitory effect of GABA is converted to excitation. By as yet undefined processes, this attenuated inhibition increases NMDA receptor function. BDNF also promotes the release of pro-inflammatory cytokines from astrocytes. All of these actions culminate in the increase dorsal horn excitability that underlies many forms of neuropathic pain. Peripheral nerve injury also alters excitability of structures in the thalamus, cortex and mesolimbic system that are responsible for pain perception and for the generation of co-morbidities such as anxiety and depression. The weight of evidence from male rodents suggests that this preferential modulation of excitably of supra-spinal pain processing structures also involves the action of microglial-derived BDNF. Possible mechanisms promoting the preferential release of BDNF in pain signaling structures are discussed. In females, invading T-lymphocytes increase dorsal horn excitability but it remains to be determined whether similar processes operate in supra-spinal structures. Despite its ubiquitous role in pain aetiology neither BDNF nor TrkB receptors represent potential therapeutic targets.
Collapse
Affiliation(s)
- Peter A Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
37
|
Gujar V, Pande RD, Das S. Nerve Growth Factor Shows Biphasic Expression during Adjuvant-Induced Neurogenic Inflammation. Int J Mol Sci 2024; 25:4029. [PMID: 38612839 PMCID: PMC11012393 DOI: 10.3390/ijms25074029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic inflammatory diseases are considered the most significant cause of death worldwide. Current treatments for inflammatory diseases are limited due to the lack of understanding of the biological factors involved in early-stage disease progression. Nerve growth factor (NGF) is a neurotrophic factor directly associated with inflammatory and autoimmune diseases like osteoarthritis, multiple sclerosis, and rheumatoid arthritis. It has been shown that NGF levels are significantly upregulated at the site of inflammation and play a crucial role in developing a robust inflammatory response. However, little is known about NGF's temporal expression profile during the initial progressive phase of inflammation. This study aimed to determine the temporal expression patterns of NGF in rat skin (epidermis) during adjuvant-induced arthritis (AIA). Sprague Dawley rats were randomly divided into control and complete Freund's adjuvant (CFA)-treated groups. Levels of NGF were evaluated following unilateral AIA at different time points, and it was found that peripheral inflammation due to AIA significantly upregulated the expression of NGF mRNA and protein in a biphasic pattern. These results suggest that NGF signaling is crucial for initiating and maintaining peripheral neurogenic inflammation in rats during AIA.
Collapse
Affiliation(s)
- Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Oklahoma State University, Center for Health Sciences, Tulsa, OK 74107, USA
| | - Radhika D. Pande
- Department of Biochemistry and Microbiology, Oklahoma State University, Center for Health Sciences, Tulsa, OK 74107, USA; (R.D.P.); (S.D.)
| | - Subhas Das
- Department of Biochemistry and Microbiology, Oklahoma State University, Center for Health Sciences, Tulsa, OK 74107, USA; (R.D.P.); (S.D.)
| |
Collapse
|
38
|
Goode DJ. Immunotherapy, a new approach for the treatment of human pain. Pain 2024; 165:725-726. [PMID: 37975869 DOI: 10.1097/j.pain.0000000000003107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Diana J Goode
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| |
Collapse
|
39
|
Bao C, Abraham SN. Mast cell-sensory neuron crosstalk in allergic diseases. J Allergy Clin Immunol 2024; 153:939-953. [PMID: 38373476 PMCID: PMC10999357 DOI: 10.1016/j.jaci.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mast cells (MCs) are tissue-resident immune cells, well-positioned at the host-environment interface for detecting external antigens and playing a critical role in mobilizing innate and adaptive immune responses. Sensory neurons are afferent neurons innervating most areas of the body but especially in the periphery, where they sense external and internal signals and relay information to the brain. The significance of MC-sensory neuron communication is now increasingly becoming recognized, especially because both cell types are in close physical proximity at the host-environment interface and around major organs of the body and produce specific mediators that can activate each other. In this review, we explore the roles of MC-sensory neuron crosstalk in allergic diseases, shedding light on how activated MCs trigger sensory neurons to initiate signaling in pruritus, shock, and potentially abdominal pain in allergy, and how activated sensory neurons regulate MCs in homeostasis and atopic dermatitis associated with contact hypersensitivity and type 2 inflammation. Throughout the review, we also discuss how these 2 sentinel cell types signal each other, potentially resulting in a positive feedback loop that can sustain inflammation. Unraveling the mysteries of MC-sensory neuron crosstalk is likely to unveil their critical roles in various disease conditions and enable the development of new therapeutic approaches to combat these maladies.
Collapse
Affiliation(s)
- Chunjing Bao
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC; Department of Immunology, Duke University Medical Center, Durham, NC; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC; Department of Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore.
| |
Collapse
|
40
|
Gupta S, Viotti A, Eichwald T, Roger A, Kaufmann E, Othman R, Ghasemlou N, Rafei M, Foster SL, Talbot S. Navigating the blurred path of mixed neuroimmune signaling. J Allergy Clin Immunol 2024; 153:924-938. [PMID: 38373475 DOI: 10.1016/j.jaci.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Evolution has created complex mechanisms to sense environmental danger and protect tissues, with the nervous and immune systems playing pivotal roles. These systems work together, coordinating local and systemic reflexes to restore homeostasis in response to tissue injury and infection. By sharing receptors and ligands, they influence the pathogenesis of various diseases. Recently, a less-explored aspect of neuroimmune communication has emerged: the release of neuropeptides from immune cells and cytokines/chemokines from sensory neurons. This article reviews evidence of this unique neuroimmune interplay and its impact on the development of allergy, inflammation, itch, and pain. We highlight the effects of this neuroimmune signaling on vital processes such as host defense, tissue repair, and inflammation resolution, providing avenues for exploration of the underlying mechanisms and therapeutic potential of this signaling.
Collapse
Affiliation(s)
- Surbhi Gupta
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Alice Viotti
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Tuany Eichwald
- Department of Pharmacology and Physiology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Anais Roger
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Aix-Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Eva Kaufmann
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Rahmeh Othman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, University of Montréal, Montréal, Québec, Canada
| | - Simmie L Foster
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Sebastien Talbot
- Department of Pharmacology and Physiology, Karolinska Institutet, Solna, Sweden; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
41
|
Chen J, Lai X, Song Y, Su X. Neuroimmune recognition and regulation in the respiratory system. Eur Respir Rev 2024; 33:240008. [PMID: 38925790 PMCID: PMC11216688 DOI: 10.1183/16000617.0008-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroimmune recognition and regulation in the respiratory system is a complex and highly coordinated process involving interactions between the nervous and immune systems to detect and respond to pathogens, pollutants and other potential hazards in the respiratory tract. This interaction helps maintain the health and integrity of the respiratory system. Therefore, understanding the complex interactions between the respiratory nervous system and immune system is critical to maintaining lung health and developing treatments for respiratory diseases. In this review, we summarise the projection distribution of different types of neurons (trigeminal nerve, glossopharyngeal nerve, vagus nerve, spinal dorsal root nerve, sympathetic nerve) in the respiratory tract. We also introduce several types of cells in the respiratory epithelium that closely interact with nerves (pulmonary neuroendocrine cells, brush cells, solitary chemosensory cells and tastebuds). These cells are primarily located at key positions in the respiratory tract, where nerves project to them, forming neuroepithelial recognition units, thus enhancing the ability of neural recognition. Furthermore, we summarise the roles played by these different neurons in sensing or responding to specific pathogens (influenza, severe acute respiratory syndrome coronavirus 2, respiratory syncytial virus, human metapneumovirus, herpes viruses, Sendai parainfluenza virus, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Staphylococcus aureus, amoebae), allergens, atmospheric pollutants (smoking, exhaust pollution), and their potential roles in regulating interactions among different pathogens. We also summarise the prospects of bioelectronic medicine as a third therapeutic approach following drugs and surgery, as well as the potential mechanisms of meditation breathing as an adjunct therapy.
Collapse
Affiliation(s)
- Jie Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- These authors contributed equally to this work
| | - Xiaoyun Lai
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- These authors contributed equally to this work
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
42
|
Ma L, Yang L, Wang X, Zhao L, Bai X, Qi X, Chen Q, Li Y, Zhou Q. CGRP Released by Corneal Sensory Nerve Maintains Tear Secretion of the Lacrimal Gland. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 38635244 PMCID: PMC11033596 DOI: 10.1167/iovs.65.4.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose This study aims to elucidate the calcitonin gene-related peptide (CGRP) mediation and primary mechanism of corneal sensory nerves on tear production of the lacrimal gland. Methods Mouse corneal denervation models were constructed through surgical axotomy, pharmacologic treatment with capsaicin or resiniferatoxin, and Trpv1-Cre/DTR mice with diphtheria toxin injection. The capsaicin-treated mice received subconjunctival injection of CGRP or substance P, while the normal C57BL/6J mice were administered with CGRP receptor antagonist BIBN-4096. Furthermore, double immunostaining of c-FOS+ and choline acetyltransferase was used to evaluate the activation of the superior salivatory nucleus (SSN). Mouse lacrimal glands were collected for transcriptomic sequencing and subsequent RNA and protein expression analysis. Results The corneal denervated mice exhibited a significant reduction in corneal sensitivity and tear secretion. In capsaicin-treated mice, tear secretion decreased to 2.5 ± 0.5 mm compared to 6.3 ± 0.9 mm in control mice (P < 0.0001). However, exogenous administration of CGRP in capsaicin-treated mice increased tear secretion from 2.6 ± 0.5 mm to 4.5 ± 0.5 mm (P = 0.0009), while BIBN-4096 treatment reduced tear secretion to 3.4 ± 0.5 mm when compared to 7.3 ± 0.7 mm in control mice (P = 0.0022). Furthermore, c-FOS+ cell number in the SSN increased by twofold (P = 0.0168) after CGRP administration compared with capsaicin-treated mice. In addition, the expressions of CCNA2, Ki67, PCNA, and CDK1 in acinar cells of the lacrimal gland were impaired by corneal denervation and alleviated by CGRP administration. Conclusions CGRP released by corneal sensory nerves mediates tear secretion of the lacrimal gland, providing a new strategy for improving tear secretion in patients with neurotrophic keratitis.
Collapse
Affiliation(s)
- Linyan Ma
- Medical College, Qingdao University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Leilei Zhao
- Medical College, Qingdao University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaofei Bai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qing Chen
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
43
|
Chen Y, Liu P, Zhang Z, Ye Y, Yi S, Fan C, Zhao W, Liu J. Genetic overlap and causality between COVID-19 and multi-site chronic pain: the importance of immunity. Front Immunol 2024; 15:1277720. [PMID: 38633255 PMCID: PMC11022998 DOI: 10.3389/fimmu.2024.1277720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/13/2024] [Indexed: 04/19/2024] Open
Abstract
Background The existence of chronic pain increases susceptibility to virus and is now widely acknowledged as a prominent feature recognized as a major manifestation of long-term coronavirus disease 2019 (COVID-19) infection. Given the ongoing COVID-19 pandemic, it is imperative to explore the genetic associations between chronic pain and predisposition to COVID-19. Methods We conducted genetic analysis at the single nucleotide polymorphism (SNP), gene, and molecular levels using summary statistics of genome-wide association study (GWAS) and analyzed the drug targets by summary data-based Mendelian randomization analysis (SMR) to alleviate the multi-site chronic pain in COVID-19. Additionally, we performed a latent causal variable (LCV) method to investigate the causal relationship between chronic pain and susceptibility to COVID-19. Results The cross-trait meta-analysis identified 19 significant SNPs shared between COVID-19 and chronic pain. Coloc analysis indicated that the posterior probability of association (PPH4) for three loci was above 70% in both critical COVID-19 and COVID-19, with the corresponding top three SNPs being rs13135092, rs7588831, and rs13135092. A total of 482 significant overlapped genes were detected from MAGMA and CPASSOC results. Additionally, the gene ANAPC4 was identified as a potential drug target for treating chronic pain (P=7.66E-05) in COVID-19 (P=8.23E-03). Tissue enrichment analysis highlighted that the amygdala (P=7.81E-04) and prefrontal cortex (P=8.19E-05) as pivotal in regulating chronic pain of critical COVID-19. KEGG pathway enrichment further revealed the enrichment of pleiotropic genes in both COVID-19 (P=3.20E-03,Padjust=4.77E-02,hsa05171) and neurotrophic pathways (P=9.03E-04,Padjust =2.55E-02,hsa04621). Finally, the latent causal variable (LCV) model was applied to find the genetic component of critical COVID-19 was causal for multi-site chronic pain (P=0.015), with a genetic causality proportion (GCP) of was 0.60. Conclusions In this study, we identified several functional genes and underscored the pivotal role of the inflammatory system in the correlation between the paired traits. Notably, heat shock proteins emerged as potential objective biomarkers for chronic pain symptoms in individuals with COVID-19. Additionally, the ubiquitin system might play a role in mediating the impact of COVID-19 on chronic pain. These findings contribute to a more comprehensive understanding of the pleiotropy between COVID-19 and chronic pain, offering insights for therapeutic trials.
Collapse
Affiliation(s)
- Yanjing Chen
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyi Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yingling Ye
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sijie Yi
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunhua Fan
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhao
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, China
| | - Jun Liu
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
44
|
Lou K, Luo H, Jiang X, Feng S. Applications of emerging extracellular vesicles technologies in the treatment of inflammatory diseases. Front Immunol 2024; 15:1364401. [PMID: 38545101 PMCID: PMC10965547 DOI: 10.3389/fimmu.2024.1364401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024] Open
Abstract
The emerging extracellular vesicles technologies is an advanced therapeutic approach showing promising potential for addressing inflammatory diseases. These techniques have been proven to have positive effects on immune modulation and anti-inflammatory responses. With these advancements, a comprehensive review and update on the role of extracellular vesicles in inflammatory diseases have become timely. This review aims to summarize the research progress of extracellular vesicle technologies such as plant-derived extracellular vesicles, milk-derived extracellular vesicles, mesenchymal stem cell-derived extracellular vesicles, macrophage-derived extracellular vesicles, etc., in the treatment of inflammatory diseases. It elucidates their potential significance in regulating inflammation, promoting tissue repair, and treating diseases. The goal is to provide insights for future research in this field, fostering the application and development of extracellular vesicle technology in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Kecheng Lou
- Department of Urology, Lanxi People’s Hospital, Jinhua, Zhejiang, China
| | - Hui Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinghua Jiang
- Department of Urology, Jingdezhen Second People’s Hospital, Jingdezhen, Jiangxi, China
| | - Shangzhi Feng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
45
|
Leech T, Peiris M. Mucosal neuroimmune mechanisms in gastro-oesophageal reflux disease (GORD) pathogenesis. J Gastroenterol 2024; 59:165-178. [PMID: 38221552 PMCID: PMC10904498 DOI: 10.1007/s00535-023-02065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Gastro-oesophageal reflux disease (GORD) is a chronic condition characterised by visceral pain in the distal oesophagus. The current first-line treatment for GORD is proton pump inhibitors (PPIs), however, PPIs are ineffective in a large cohort of patients and long-term use may have adverse effects. Emerging evidence suggests that nerve fibre number and location are likely to play interrelated roles in nociception in the oesophagus of GORD patients. Simultaneously, alterations in cells of the oesophageal mucosa, namely epithelial cells, mast cells, dendritic cells, and T lymphocytes, have been a focus of GORD research for several years. The oesophagus of GORD patients exhibits both macro- and micro-inflammation as a response to chronic acidic reflux at the epithelium. In other conditions of the GI tract, such as IBS and IBD, well-characterised bidirectional processes between immune cells and mucosal nerve fibres contribute to pathogenesis and symptom generation. Sensory alterations in these conditions such as nerve fibre outgrowth and hypersensitivity can be driven by inflammatory processes, which promote visceral pain signalling. This review will examine what is currently known of the molecular pathways linking inflammation and sensory perception leading to the development of GORD symptoms and explore potentially relevant mechanisms in other GI regions which may indicate new areas in GORD research.
Collapse
Affiliation(s)
- Tom Leech
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| |
Collapse
|
46
|
Kleinbeck S, Wolkoff P. Exposure limits for indoor volatile substances concerning the general population: The role of population-based differences in sensory irritation of the eyes and airways for assessment factors. Arch Toxicol 2024; 98:617-662. [PMID: 38243103 PMCID: PMC10861400 DOI: 10.1007/s00204-023-03642-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/21/2024]
Abstract
Assessment factors (AFs) are essential in the derivation of occupational exposure limits (OELs) and indoor air quality guidelines. The factors shall accommodate differences in sensitivity between subgroups, i.e., workers, healthy and sick people, and occupational exposure versus life-long exposure for the general population. Derivation of AFs itself is based on empirical knowledge from human and animal exposure studies with immanent uncertainty in the empirical evidence due to knowledge gaps and experimental reliability. Sensory irritation in the eyes and airways constitute about 30-40% of OELs and is an abundant symptom in non-industrial buildings characterizing the indoor air quality and general health. Intraspecies differences between subgroups of the general population should be quantified for the proposal of more 'empirical' based AFs. In this review, we focus on sensitivity differences in sensory irritation about gender, age, health status, and vulnerability in people, based solely on human exposure studies. Females are more sensitive to sensory irritation than males for few volatile substances. Older people appear less sensitive than younger ones. However, impaired defense mechanisms may increase vulnerability in the long term. Empirical evidence of sensory irritation in children is rare and limited to children down to the age of six years. Studies of the nervous system in children compared to adults suggest a higher sensitivity in children; however, some defense mechanisms are more efficient in children than in adults. Usually, exposure studies are performed with healthy subjects. Exposure studies with sick people are not representative due to the deselection of subjects with moderate or severe eye or airway diseases, which likely underestimates the sensitivity of the group of people with diseases. Psychological characterization like personality factors shows that concentrations of volatile substances far below their sensory irritation thresholds may influence the sensitivity, in part biased by odor perception. Thus, the protection of people with extreme personality traits is not feasible by an AF and other mitigation strategies are required. The available empirical evidence comprising age, lifestyle, and health supports an AF of not greater than up to 2 for sensory irritation. Further, general AFs are discouraged for derivation, rather substance-specific derivation of AFs is recommended based on the risk assessment of empirical data, deposition in the airways depending on the substance's water solubility and compensating for knowledge and experimental gaps. Modeling of sensory irritation would be a better 'empirical' starting point for derivation of AFs for children, older, and sick people, as human exposure studies are not possible (due to ethical reasons) or not generalizable (due to self-selection). Dedicated AFs may be derived for environments where dry air, high room temperature, and visually demanding tasks aggravate the eyes or airways than for places in which the workload is balanced, while indoor playgrounds might need other AFs due to physical workload and affected groups of the general population.
Collapse
Affiliation(s)
- Stefan Kleinbeck
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
| | - Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
47
|
Zhu X, Huang JY, Dong WY, Tang HD, Xu S, Wu Q, Zhang H, Cheng PK, Jin Y, Zhu MY, Zhao W, Mao Y, Wang H, Zhang Y, Wang H, Tao W, Tian Y, Bai L, Zhang Z. Somatosensory cortex and central amygdala regulate neuropathic pain-mediated peripheral immune response via vagal projections to the spleen. Nat Neurosci 2024; 27:471-483. [PMID: 38291284 DOI: 10.1038/s41593-023-01561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2023] [Indexed: 02/01/2024]
Abstract
Pain involves neuroimmune crosstalk, but the mechanisms of this remain unclear. Here we showed that the splenic T helper 2 (TH2) immune cell response is differentially regulated in male mice with acute versus chronic neuropathic pain and that acetylcholinergic neurons in the dorsal motor nucleus of the vagus (AChDMV) directly innervate the spleen. Combined in vivo recording and immune cell profiling revealed the following two distinct circuits involved in pain-mediated peripheral TH2 immune response: glutamatergic neurons in the primary somatosensory cortex (GluS1HL)→AChDMV→spleen circuit and GABAergic neurons in the central nucleus of the amygdala (GABACeA)→AChDMV→spleen circuit. The acute pain condition elicits increased excitation from GluS1HL neurons to spleen-projecting AChDMV neurons and increased the proportion of splenic TH2 immune cells. The chronic pain condition increased inhibition from GABACeA neurons to spleen-projecting AChDMV neurons and decreased splenic TH2 immune cells. Our study thus demonstrates how the brain encodes pain-state-specific immune responses in the spleen.
Collapse
Affiliation(s)
- Xia Zhu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Ji-Ye Huang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Wan-Ying Dong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Hao-Di Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Si Xu
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Qielan Wu
- Department of Oncology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Huimin Zhang
- Department of Oncology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Ping-Kai Cheng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Yuxin Jin
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Meng-Yu Zhu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, P. R. China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P. R. China
| | - Wan Zhao
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technique of China, Hefei, P. R. China
| | - Yu Mao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
- Department of Anesthesiology and Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Haitao Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Hao Wang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, P. R. China
| | - Wenjuan Tao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, P. R. China.
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P. R. China.
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, P. R. China.
| | - Li Bai
- Department of Oncology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
- Department of Biophysics and Neurobiology, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, P. R. China.
- The Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
48
|
Liu T, Wang H, Kutsovsky DY, Iskols M, Chen H, Ohn CYJ, Patel N, Yang J, Simon DJ. An axon-T cell feedback loop enhances inflammation and axon degeneration. Cell Rep 2024; 43:113721. [PMID: 38310514 PMCID: PMC11463236 DOI: 10.1016/j.celrep.2024.113721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/20/2023] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
Inflammation is closely associated with many neurodegenerative disorders. Yet, whether inflammation causes, exacerbates, or responds to neurodegeneration has been challenging to define because the two processes are so closely linked. Here, we disentangle inflammation from the axon damage it causes by individually blocking cytotoxic T cell function and axon degeneration. We model inflammatory damage in mouse skin, a barrier tissue that, despite frequent inflammation, must maintain proper functioning of a dense array of axon terminals. We show that sympathetic axons modulate skin inflammation through release of norepinephrine, which suppresses activation of γδ T cells via the β2 adrenergic receptor. Strong inflammatory stimulation-modeled by application of the Toll-like receptor 7 agonist imiquimod-causes progressive γδ T cell-mediated, Sarm1-dependent loss of these immunosuppressive sympathetic axons. This removes a physiological brake on T cells, initiating a positive feedback loop of enhanced inflammation and further axon damage.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Huanhuan Wang
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Daniel Y Kutsovsky
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael Iskols
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hongjie Chen
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Christine Y J Ohn
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nandan Patel
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jing Yang
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - David J Simon
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
49
|
McCoy R, Oldroyd S, Yang W, Wang K, Hoven D, Bulmer D, Zilbauer M, Owens RM. In Vitro Models for Investigating Intestinal Host-Pathogen Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306727. [PMID: 38155358 PMCID: PMC10885678 DOI: 10.1002/advs.202306727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Indexed: 12/30/2023]
Abstract
Infectious diseases are increasingly recognized as a major threat worldwide due to the rise of antimicrobial resistance and the emergence of novel pathogens. In vitro models that can adequately mimic in vivo gastrointestinal physiology are in high demand to elucidate mechanisms behind pathogen infectivity, and to aid the design of effective preventive and therapeutic interventions. There exists a trade-off between simple and high throughput models and those that are more complex and physiologically relevant. The complexity of the model used shall be guided by the biological question to be addressed. This review provides an overview of the structure and function of the intestine and the models that are developed to emulate this. Conventional models are discussed in addition to emerging models which employ engineering principles to equip them with necessary advanced monitoring capabilities for intestinal host-pathogen interrogation. Limitations of current models and future perspectives on the field are presented.
Collapse
Affiliation(s)
- Reece McCoy
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Sophie Oldroyd
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Woojin Yang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Kaixin Wang
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Darius Hoven
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - David Bulmer
- Department of PharmacologyUniversity of CambridgeCambridgeCB2 1PDUK
| | - Matthias Zilbauer
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| |
Collapse
|
50
|
Porter M, Griswold D, Gargano F, Ickert E, Learman K. Immediate effects of superficial dry needling of the trigeminal nerve innervation field for participants with cervicogenic headache. A randomized controlled trial. Physiother Theory Pract 2024; 40:253-261. [PMID: 36047014 DOI: 10.1080/09593985.2022.2118560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Cervicogenic headache (CGH) is a common condition with a neuroanatomical basis involving the trigeminal nerve. Dry needling (DN) is a safe and effective treatment for CGH but most studies involve deep DN to cervical musculature. OBJECTIVE The aim of this study was to investigate immediate effects of superficial DN of the trigeminal nerve innervation field on numeric pain rating scale (NPRS), flexion-rotation test (FRT), cervical range of motion (AROM), and pain-pressure threshold (PPT) of right (R) and left (L) supraorbital (SO), and right (R) and left (L) greater occipital (GO) nerves in participants with CGH. METHODS A parallel controlled randomized design involving 30 participants with CGH received either superficial DN (N = 17) or sham DN (N = 13). Participants and outcome assessors were blind to group assignment. Wilcoxon signed rank analyzed within-group effects and Mann-Whitney U analyzed between-group. RESULTS Statistically significant between-group differences were observed for NPRS (P < .001) and AROM (P < .006) favoring DN and were clinically meaningful. Right and left Flexion rotation tests (FRT) outcomes were non-significant (P = .137) but clinically meaningful. No differences were observed for PPT over: R SO (P = .187); L SO (P = .052); R GO (P = .187); or L GO (P = .052). Between-group effect sizes across variables were moderate to large (0.53-1.4) but confidence intervals were wide. CONCLUSION Superficial DN targeting the innervation field of the trigeminal nerve improves clinical outcomes in patients with CGH. Only the immediate effects were analyzed and the sample size was small. Larger, longer-term assessments are needed comparing superficial DN of the trigeminal innervation field and other conservative interventions for CGH.
Collapse
Affiliation(s)
- Megan Porter
- Department of Graduate Studies in Health and Rehabilitation Sciences, Youngstown State University, One University Plaza, Youngstown, OH, USA
| | - David Griswold
- Department of Graduate Studies in Health and Rehabilitation Sciences, Youngstown State University, One University Plaza, Youngstown, OH, USA
| | | | - Edmund Ickert
- Department of Graduate Studies in Health and Rehabilitation Sciences, Youngstown State University, One University Plaza, Youngstown, OH, USA
| | - Ken Learman
- Department of Graduate Studies in Health and Rehabilitation Sciences, Youngstown State University, One University Plaza, Youngstown, OH, USA
| |
Collapse
|