1
|
Lu H, Wise SS, Toyoda JH, Speer RM, Croom-Perez TJ, Meaza I, Kouokam JC, Wise JY, Hoyle G, Chen N, Wise JP, Kondo K, Toba H, Takizawa H, Wise JP. Particulate hexavalent chromium exposure induces DNA double-strand breaks and inhibits homologous recombination repair in rat and human lung tissues. CHEMOSPHERE 2025; 370:143982. [PMID: 39701314 PMCID: PMC11750071 DOI: 10.1016/j.chemosphere.2024.143982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Lung cancer is an important human health concern because of its high mortality rate, with many cases caused by environmental chemicals other than tobacco. Particulate hexavalent chromium [Cr(VI)] is a well-established human lung carcinogen, but how Cr(VI) induces lung cancer is poorly understood. Chromosome instability, a hallmark of lung cancer, is considered a major driving factor in Cr(VI)-induced lung cancer. Our previous studies in cultured human lung cells showed that particulate Cr(VI) induces DNA double-strand breaks during the late S and G2 phases of the cell cycle, which are repaired by homologous recombination, one of the main repair pathways of DNA double-strand breaks. Our previous data showed that prolonged exposure to Cr(VI) inhibits homologous recombination repair by targeting RAD51, a key protein that mediates homologous recombination. Therefore, particulate Cr(VI)-induced DNA damage combined with failure of DNA repair can lead to chromosome instability. In this study we translated these results to rat lung tissue and lung tumor tissue from Cr(VI)-exposed workers. Wistar rats were exposed to zinc chromate in a saline solution or saline alone by oropharyngeal aspiration with a single dose repeated weekly for 90 days. We observed DNA double-strand breaks increased in a concentration-dependent manner, but homologous recombination repair decreased in rat lungs after 90 days of exposure. Notably, these effects were more pronounced in bronchioles than alveoli. We also considered these effects in Cr(VI)-associated human lung tumors and observed increased DNA double-strand breaks and reduced RAD51 levels in lung tumor tissue compared with adjacent normal lung tissue. Thus, Cr(VI)-induced induction of DNA double-strand breaks, and inhibition of homologous recombination repair translates from cultured cells to experimental animals, normal lung tissue adjacent to the tumor, and Cr(VI)-associated human lung tumors.
Collapse
Affiliation(s)
- Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, Kentucky 40292
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292
| | - Sandra S. Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, Kentucky 40292
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292
| | - Jennifer H. Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, Kentucky 40292
| | - Rachel M. Speer
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, Kentucky 40292
| | - Tayler J Croom-Perez
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, Kentucky 40292
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, Kentucky 40292
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292
| | - J. Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, Kentucky 40292
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292
| | - Jamie Young Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, Kentucky 40292
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292
| | - Gary Hoyle
- Environmental and Occupational Health Sciences, University of Louisville, Louisville, Kentucky 40292
| | - Ning Chen
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky 40292
| | - John Pierce Wise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292
- Pediatric Research Institute, University of Louisville, Louisville, Kentucky 40292
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University Tokushima, Japan
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University Tokushima, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University Tokushima, Japan
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Louisville, Louisville, Kentucky 40292
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
2
|
Fu H, Mo X, Ivanov AA. Decoding the functional impact of the cancer genome through protein-protein interactions. Nat Rev Cancer 2025:10.1038/s41568-024-00784-6. [PMID: 39810024 DOI: 10.1038/s41568-024-00784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Acquisition of genomic mutations enables cancer cells to gain fitness advantages under selective pressure and, ultimately, leads to oncogenic transformation. Interestingly, driver mutations, even within the same gene, can yield distinct phenotypes and clinical outcomes, necessitating a mutation-focused approach. Conversely, cellular functions are governed by molecular machines and signalling networks that are mostly controlled by protein-protein interactions (PPIs). The functional impact of individual genomic alterations could be transmitted through regulated nodes and hubs of PPIs. Oncogenic mutations may lead to modified residues of proteins, enabling interactions with other proteins that the wild-type protein does not typically interact with, or preventing interactions with proteins that the wild-type protein usually interacts with. This can result in the rewiring of molecular signalling cascades and the acquisition of an oncogenic phenotype. Here, we review the altered PPIs driven by oncogenic mutations, discuss technologies for monitoring PPIs and provide a functional analysis of mutation-directed PPIs. These driver mutation-enabled PPIs and mutation-perturbed PPIs present a new paradigm for the development of tumour-specific therapeutics. The intersection of cancer variants and altered PPI interfaces represents a new frontier for understanding oncogenic rewiring and developing tumour-selective therapeutic strategies.
Collapse
Affiliation(s)
- Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Emory University, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Rezano A, Gondo N, Sakai Y, Nakamura Y, Phimsen S, Tani T, Ito A, Okada S, Kuwahara K. Tumorigenesis Caused by Aberrant Expression of GANP, a Central Component in the Mammalian TREX-2 Complex-Lessons from Transcription-Coupled DNA Damages. Int J Mol Sci 2024; 25:13612. [PMID: 39769375 PMCID: PMC11727803 DOI: 10.3390/ijms252413612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
DNA is frequently damaged by genotoxic stresses such as ionizing radiation, reactive oxygen species, and nitrogen species. DNA damage is a key contributor to cancer initiation and progression, and thus the precise and timely repair of these harmful lesions is required. Recent studies revealed transcription as a source of genome instability, and transcription-coupled DNA damage has been a focus in cancer research. Impaired mRNA export is closely related to DNA damage through R-loop formation. The molecular machineries of transcription-coupled DNA damage have been extensively analyzed in Saccharomyces cerevisiae. However, the molecular basis of these phenomena in higher eukaryotes remains elusive. In this review, we focus on the relationship between deregulated mRNA export through the transcription-export-2 (TREX-2) complex and cancer development. Particularly, the expression of germinal center-associated nuclear protein (GANP), a molecular scaffold in the TREX-2 complex, is highly associated with tumorigenesis in mice and humans. Although the deregulated expression of other components in the TREX-2 complex might affect cancer development, we have directly demonstrated the significance of GANP in tumorigenesis using genetically modified mice. Additionally, we describe recent evidence for medical applications demonstrating that the downregulation of the other components may be a good candidate for a chemotherapeutic target in terms of reducing the side effects.
Collapse
Affiliation(s)
- Andri Rezano
- Department of Biomedical Sciences, Division of Cell Biology, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia;
| | - Naomi Gondo
- Department of Breast and Thyroid Surgical Oncology, Sagara Hospital, Kagoshima 892-0833, Kagoshima, Japan;
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Yuko Nakamura
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka-sayama 589-8511, Osaka, Japan;
| | - Suchada Phimsen
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Tokio Tani
- International Research Center for Agricultural and Environmental Biology (IRCAEB), Kumamoto University, Kumamoto 860-8555, Kumamoto, Japan;
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-sayama 589-8511, Osaka, Japan;
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Retroviral Infection, Kumamoto University, Kumamoto 860-0811, Kumamoto, Japan;
| | - Kazuhiko Kuwahara
- Department of Diagnostic Pathology and Genome Medical Center, Kindai University Hospital, Osaka-sayama 589-8511, Osaka, Japan
| |
Collapse
|
4
|
Huang Y, Li W, Foo T, Ji JH, Wu B, Tomimatsu N, Fang Q, Gao B, Long M, Xu J, Maqbool R, Mukherjee B, Ni T, Alejo S, He Y, Burma S, Lan L, Xia B, Zhao W. DSS1 restrains BRCA2's engagement with dsDNA for homologous recombination, replication fork protection, and R-loop homeostasis. Nat Commun 2024; 15:7081. [PMID: 39152168 PMCID: PMC11329725 DOI: 10.1038/s41467-024-51557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
DSS1, essential for BRCA2-RAD51 dependent homologous recombination (HR), associates with the helical domain (HD) and OB fold 1 (OB1) of the BRCA2 DSS1/DNA-binding domain (DBD) which is frequently targeted by cancer-associated pathogenic variants. Herein, we reveal robust ss/dsDNA binding abilities in HD-OB1 subdomains and find that DSS1 shuts down HD-OB1's DNA binding to enable ssDNA targeting of the BRCA2-RAD51 complex. We show that C-terminal helix mutations of DSS1, including the cancer-associated R57Q mutation, disrupt this DSS1 regulation and permit dsDNA binding of HD-OB1/BRCA2-DBD. Importantly, these DSS1 mutations impair BRCA2/RAD51 ssDNA loading and focus formation and cause decreased HR efficiency, destabilization of stalled forks and R-loop accumulation, and hypersensitize cells to DNA-damaging agents. We propose that DSS1 restrains the intrinsic dsDNA binding of BRCA2-DBD to ensure BRCA2/RAD51 targeting to ssDNA, thereby promoting optimal execution of HR, and potentially replication fork protection and R-loop suppression.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Wenjing Li
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Tzeh Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Bo Wu
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Nozomi Tomimatsu
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Qingming Fang
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Boya Gao
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Melissa Long
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Jingfei Xu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Rouf Maqbool
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Bipasha Mukherjee
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Tengyang Ni
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
| | - Salvador Alejo
- Department of Obstetrics & Gynecology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Li Lan
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health and Science Center, San Antonio, TX, 78229, USA.
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Alvaro-Aranda L, Petitalot A, Djeghmoum Y, Panigada D, Singh J, Ehlén Å, Vugic D, Martin C, Miron S, Contreras-Perez A, Nhiri N, Boucherit V, Lafitte P, Dumoulin I, Quiles F, Rouleau E, Jacquet E, Feliubadaló L, del Valle J, Sharan SK, Stoppa-Lyonnet D, Zinn-Justin S, Lázaro C, Caputo S, Carreira A. The BRCA2 R2645G variant increases DNA binding and induces hyper-recombination. Nucleic Acids Res 2024; 52:6964-6976. [PMID: 38142462 PMCID: PMC11229362 DOI: 10.1093/nar/gkad1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
BRCA2 tumor suppressor protein ensures genome integrity by mediating DNA repair via homologous recombination (HR). This function is executed in part by its canonical DNA binding domain located at the C-terminus (BRCA2CTD), the only folded domain of the protein. Most germline pathogenic missense variants are located in this highly conserved region which binds to single-stranded DNA (ssDNA) and to the acidic protein DSS1. These interactions are essential for the HR function of BRCA2. Here, we report that the variant R2645G, identified in breast cancer and located at the DSS1 interface, unexpectedly increases the ssDNA binding activity of BRCA2CTDin vitro. Human cells expressing this variant display a hyper-recombination phenotype, chromosomal instability in the form of chromatid gaps when exposed to DNA damage, and increased PARP inhibitor sensitivity. In mouse embryonic stem cells (mES), this variant alters viability and confers sensitivity to cisplatin and Mitomycin C. These results suggest that BRCA2 interaction with ssDNA needs to be tightly regulated to limit HR and prevent chromosomal instability and we propose that this control mechanism involves DSS1. Given that several missense variants located within this region have been identified in breast cancer patients, these findings might have clinical implications for carriers.
Collapse
Affiliation(s)
- Lucia Alvaro-Aranda
- Genome Instability and Cancer Predisposition Laboratory, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid 28049, Spain
| | - Ambre Petitalot
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Yasmina Djeghmoum
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Davide Panigada
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Jenny Kaur Singh
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Åsa Ehlén
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Domagoj Vugic
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Charlotte Martin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, 91190 Gif-sur-Yvette, France
| | - Aida Contreras-Perez
- Genome Instability and Cancer Predisposition Laboratory, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid 28049, Spain
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, Paris-Saclay University, CNRS, 91190 Gif-sur-Yvette, France
| | - Virginie Boucherit
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Philippe Lafitte
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Isaac Dumoulin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Francisco Quiles
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Etienne Rouleau
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, Paris-Saclay University, CNRS, 91190 Gif-sur-Yvette, France
| | - Lidia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Jesús del Valle
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris 75005, France
- Paris-Cité University, Paris, France
- INSERM U830, Institut Curie, Paris 75005, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, 91190 Gif-sur-Yvette, France
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Sandrine M Caputo
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Aura Carreira
- Genome Instability and Cancer Predisposition Laboratory, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid 28049, Spain
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| |
Collapse
|
6
|
Nicoletti P, Zafer S, Matok L, Irron I, Patrick M, Haklai R, Evangelista JE, Marino GB, Ma’ayan A, Sewda A, Holmes G, Britton SR, Lee WJ, Wu M, Ru Y, Arnaud E, Botto L, Brody LC, Byren JC, Caggana M, Carmichael SL, Cilliers D, Conway K, Crawford K, Cuellar A, Di Rocco F, Engel M, Fearon J, Feldkamp ML, Finnell R, Fisher S, Freudlsperger C, Garcia-Fructuoso G, Hagge R, Heuzé Y, Harshbarger RJ, Hobbs C, Howley M, Jenkins MM, Johnson D, Justice CM, Kane A, Kay D, Gosain AK, Langlois P, Legal-Mallet L, Lin AE, Mills JL, Morton JE, Noons P, Olshan A, Persing J, Phipps JM, Redett R, Reefhuis J, Rizk E, Samson TD, Shaw GM, Sicko R, Smith N, Staffenberg D, Stoler J, Sweeney E, Taub PJ, Timberlake AT, Topczewska J, Wall SA, Wilson AF, Wilson LC, Boyadjiev SA, Wilkie AO, Richtsmeier JT, Jabs EW, Romitti PA, Karasik D, Birnbaum RY, Peter I. Regulatory elements in SEM1-DLX5-DLX6 (7q21.3) locus contribute to genetic control of coronal nonsyndromic craniosynostosis and bone density-related traits. GENETICS IN MEDICINE OPEN 2024; 2:101851. [PMID: 39345948 PMCID: PMC11434253 DOI: 10.1016/j.gimo.2024.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Purpose The etiopathogenesis of coronal nonsyndromic craniosynostosis (cNCS), a congenital condition defined by premature fusion of 1 or both coronal sutures, remains largely unknown. Methods We conducted the largest genome-wide association study of cNCS followed by replication, fine mapping, and functional validation of the most significant region using zebrafish animal model. Results Genome-wide association study identified 6 independent genome-wide-significant risk alleles, 4 on chromosome 7q21.3 SEM1-DLX5-DLX6 locus, and their combination conferred over 7-fold increased risk of cNCS. The top variants were replicated in an independent cohort and showed pleiotropic effects on brain and facial morphology and bone mineral density. Fine mapping of 7q21.3 identified a craniofacial transcriptional enhancer (eDlx36) within the linkage region of the top variant (rs4727341; odds ratio [95% confidence interval], 0.48[0.39-0.59]; P = 1.2E-12) that was located in SEM1 intron and enriched in 4 rare risk variants. In zebrafish, the activity of the transfected human eDlx36 enhancer was observed in the frontonasal prominence and calvaria during skull development and was reduced when the 4 rare risk variants were introduced into the sequence. Conclusion Our findings support a polygenic nature of cNCS risk and functional role of craniofacial enhancers in cNCS susceptibility with potential broader implications for bone health.
Collapse
Affiliation(s)
- Paola Nicoletti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Samreen Zafer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lital Matok
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Inbar Irron
- Department of Life Sciences, Faculty of Natural Sciences and The Center for Evolutionarily Genomics and Medicine, Ben Gurion University, Beer Sheva, Israel
| | - Meidva Patrick
- Department of Life Sciences, Faculty of Natural Sciences and The Center for Evolutionarily Genomics and Medicine, Ben Gurion University, Beer Sheva, Israel
| | - Rotem Haklai
- Department of Life Sciences, Faculty of Natural Sciences and The Center for Evolutionarily Genomics and Medicine, Ben Gurion University, Beer Sheva, Israel
| | - John Erol Evangelista
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Giacomo B. Marino
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Avi Ma’ayan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anshuman Sewda
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sierra R. Britton
- Department of Population Health Sciences, Weill Cornell Medical College of Cornell University New York, NY
| | - Won Jun Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ying Ru
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eric Arnaud
- Department of Neurosurgery, Necker Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lorenzo Botto
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah
| | - Lawrence C. Brody
- Social and Behavioral Research Branch, National Human Genome Research Institute, Bethesda, MD
| | - Jo C. Byren
- Craniofacial Unit, Department of Plastic Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Michele Caggana
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY
| | - Suzan L. Carmichael
- Department of Pediatrics, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA
| | - Deirdre Cilliers
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kristin Conway
- Department of Epidemiology, University of Iowa, Iowa City, IA
| | - Karen Crawford
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Araceli Cuellar
- Department of Pediatrics, University of California, Davis, CA
| | - Federico Di Rocco
- Hôpital Femme Mère Enfant Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Michael Engel
- Department of Oral and Cranio-Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Jeffrey Fearon
- The Craniofacial Center, Medical City Children’s Hospital Dallas, Dallas, TX
| | - Marcia L. Feldkamp
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah
| | - Richard Finnell
- Center for Precision Environmental Health, Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
| | - Sarah Fisher
- Birth Defects Registry, New York State Department of Health, Albany, NY
| | - Christian Freudlsperger
- Department of Oral and Cranio-Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Rhinda Hagge
- Department of Epidemiology, University of Iowa, Iowa City, IA
| | - Yann Heuzé
- Université de Bordeaux, CNRS, Ministère de la Culture, PACEA, Pessac, France
| | | | - Charlotte Hobbs
- Rady Children’s Institute for Genomic Medicine, San Diego, CA
| | - Meredith Howley
- Birth Defects Registry, New York State Department of Health, Albany, NY
| | - Mary M. Jenkins
- Division of Birth Defects and Infant Disorders, Centers for Disease Control and Prevention, Atlanta, GA
| | - David Johnson
- Craniofacial Unit, Department of Plastic Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Cristina M. Justice
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Baltimore, MD
| | - Alex Kane
- Department of Plastic Surgery, UT Southwestern Medical Center, Dallas, TX
| | - Denise Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY
| | - Arun Kumar Gosain
- Department of Surgery, Division of Pediatric Plastic Surgery, Children’s Hospital of Chicago, Northwestern University, Chicago, IL
| | - Peter Langlois
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Austin Campus, Austin, TX
| | - Laurence Legal-Mallet
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Université de Paris Cité, Imagine Institute, INSERM U1163, Paris, France
| | - Angela E. Lin
- Medical Genetics, Mass General Hospital for Children, Harvard Medical School, Boston, MA
| | - James L. Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| | - Jenny E.V. Morton
- Birmingham Health Partners, Birmingham Women’s and Children’s Hospitals NHS Foundation Trust, Birmingham, United Kingdom
| | - Peter Noons
- Birmingham Craniofacial Unit, Birmingham Women’s and Children’s Hospitals NHS Foundation Trust, Birmingham, United Kingdom
| | - Andrew Olshan
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
| | - John Persing
- Division of Plastic and Reconstructive Surgery, Yale School of Medicine, New Haven, CT
| | - Julie M. Phipps
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Richard Redett
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD
| | - Jennita Reefhuis
- Division of Birth Defects and Infant Disorders, Centers for Disease Control and Prevention, Atlanta, GA
| | - Elias Rizk
- Department of Neurosurgery, Pennsylvania State University Medical Center, Hershey, PA
| | - Thomas D. Samson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Pennsylvania State University Medical Center, Hershey, PA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University, Stanford, CA
| | - Robert Sicko
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY
| | - Nataliya Smith
- Neuroscience Institute, Pennsylvania State University, College of Medicine, Hershey Medical Center, Hershey, PA
| | - David Staffenberg
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Medical Center, Hassenfeld Children’s Hospital, New York, NY
| | - Joan Stoler
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
| | - Elizabeth Sweeney
- Department of Clinical Genetics, Liverpool Women’s Hospital NHS Trust, Liverpool, United Kingdom
| | - Peter J. Taub
- Division of Plastic and Reconstructive Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Andrew T. Timberlake
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Medical Center, Hassenfeld Children’s Hospital, New York, NY
| | - Jolanta Topczewska
- Department of Surgery, Division of Pediatric Plastic Surgery, Children’s Hospital of Chicago, Northwestern University, Chicago, IL
| | - Steven A. Wall
- Craniofacial Unit, Department of Plastic Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Alexander F. Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Baltimore, MD
| | - Louise C. Wilson
- Clinical Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | | | - Andrew O.M. Wilkie
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Joan T. Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paul A. Romitti
- Department of Epidemiology, University of Iowa, Iowa City, IA
| | - David Karasik
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Ramon Y. Birnbaum
- Department of Life Sciences, Faculty of Natural Sciences and The Center for Evolutionarily Genomics and Medicine, Ben Gurion University, Beer Sheva, Israel
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
7
|
McConville BM, Thomas T, Beckner R, Valadez C, Chook Y, Chung S, Liszczak G. Enigmatic missense mutations can cause disease via creation of de novo nuclear export signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590854. [PMID: 38712034 PMCID: PMC11071533 DOI: 10.1101/2024.04.24.590854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Disease-causing missense mutations that occur within structurally and functionally unannotated protein regions can guide researchers to new mechanisms of protein regulation and dysfunction. Here, we report that the thrombocytopenia-, myelodysplastic syndromes-, and leukemia-associated P214L mutation in the transcriptional regulator ETV6 creates an XPO1-dependent nuclear export signal to cause protein mislocalization. Strategies to disrupt XPO1 activity fully restore ETV6 P214L protein nuclear localization and transcription regulation activity. Mechanistic insight inspired the design of a 'humanized' ETV6 mice, which we employ to demonstrate that the germline P214L mutation is sufficient to elicit severe defects in thrombopoiesis and hematopoietic stem cell maintenance. Beyond ETV6, we employed computational methods to uncover rare disease-associated missense mutations in unrelated proteins that create a nuclear export signal to disrupt protein function. Thus, missense mutations that operate through this mechanism should be predictable and may suggest rational therapeutic strategies for associated diseases.
Collapse
|
8
|
Wang YY, Cheng KH, Hung AC, Lo S, Chen PY, Wu YC, Hou MF, Yuan SSF. Differential impact of cytoplasmic vs. nuclear RAD51 expression on breast cancer progression and patient prognosis. Int J Oncol 2024; 64:12. [PMID: 38063232 PMCID: PMC10734667 DOI: 10.3892/ijo.2023.5600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
RAD51 recombinase is one of the DNA damage repair proteins associated with breast cancer risk. Apart from its function to maintain genomic integrity within the cell nucleus, RAD51 localized to the cytoplasm has also been implicated in breast malignancy. However, limited information exists on the roles of cytoplasmic vs. nuclear RAD51 in breast cancer progression and patient prognosis. In the present study, the association of cytoplasmic and nuclear RAD51 with clinical outcomes of patients with breast cancer was analyzed, revealing that elevated cytoplasmic RAD51 expression was associated with breast cancer progression, including increased cancer stage, grade, tumor size, lymph node metastasis and chemoresistance, along with reduced patient survival. By contrast, elevated nuclear RAD51 expression largely had the inverse effect. Results from in vitro investigations supported the cancer‑promoting effect of RAD51, showing that overexpression of RAD51 promoted breast cancer cell growth, chemoresistance and metastatic ability, while knockdown of RAD51 repressed these malignant behaviors. The current data suggest that differential expression of subcellular RAD51 had a distinct impact on breast cancer progression and patient survival. Specifically, cytoplasmic RAD51 in contrast to nuclear RAD51 was potentially an adverse marker in breast cancer.
Collapse
Affiliation(s)
- Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807
- Drug Development and Value Creation Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R.O.C
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Amos C. Hung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Steven Lo
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Pang-Yu Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Yi-Chia Wu
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Shyng-Shiou F. Yuan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, R.O.C
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
9
|
Mishra AP, Hartford S, Chittela RK, Sahu S, Kharat SS, Alvaro-Aranda L, Contreras-Perez A, Sullivan T, Martin BK, Albaugh M, Southon E, Burkett S, Karim B, Carreira A, Tessarollo L, Sharan SK. Characterization of BRCA2 R3052Q variant in mice supports its functional impact as a low-risk variant. Cell Death Dis 2023; 14:753. [PMID: 37980415 PMCID: PMC10657400 DOI: 10.1038/s41419-023-06289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Pathogenic variants in BRCA2 are known to significantly increase the lifetime risk of developing breast and ovarian cancers. Sequencing-based genetic testing has resulted in the identification of thousands of BRCA2 variants that are considered to be variants of uncertain significance (VUS) because the disease risk associated with them is unknown. One such variant is p.Arg3052Gln, which has conflicting interpretations of pathogenicity in the ClinVar variant database. Arginine at position 3052 in BRCA2 plays an important role in stabilizing its C-terminal DNA binding domain. We have generated a knock-in mouse model expressing this variant to examine its role on growth and survival in vivo. Homozygous as well as hemizygous mutant mice are viable, fertile and exhibit no overt phenotype. While we did not observe any hematopoietic defects in adults, we did observe a marked reduction in the in vitro proliferative ability of fetal liver cells that were also hypersensitive to PARP inhibitor, olaparib. In vitro studies performed on embryonic and adult fibroblasts derived from the mutant mice showed significant reduction in radiation induced RAD51 foci formation as well as increased genomic instability after mitomycin C treatment. We observed mis-localization of a fraction of R3052Q BRCA2 protein to the cytoplasm which may explain the observed in vitro phenotypes. Our findings suggest that BRCA2 R3052Q should be considered as a hypomorphic variant.
Collapse
Affiliation(s)
- Arun Prakash Mishra
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suzanne Hartford
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Rajani Kant Chittela
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Applied Genomics Section, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India
| | - Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suhas S Kharat
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Lucia Alvaro-Aranda
- Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Aida Contreras-Perez
- Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Betty K Martin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mary Albaugh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histotechnology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Aura Carreira
- Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid, Spain
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
10
|
Meaza I, Williams AR, Lu H, Kouokam JC, Toyoda JH, Croom-Perez TJ, Wise SS, Aboueissa AEM, Wise JP. Prolonged particulate hexavalent chromium exposure induces RAD51 foci inhibition and cytoplasmic accumulation in immortalized and primary human lung bronchial epithelial cells. Toxicol Appl Pharmacol 2023; 479:116711. [PMID: 37805091 PMCID: PMC10841504 DOI: 10.1016/j.taap.2023.116711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a human lung carcinogen with widespread exposure risks. Cr(VI) causes DNA double strand breaks that if unrepaired, progress into chromosomal instability (CIN), a key driving outcome in Cr(VI)-induced tumors. The ability of Cr(VI) to cause DNA breaks and inhibit repair is poorly understood in human lung epithelial cells, which are extremely relevant since pathology data show Cr(VI)-induced tumors originate from bronchial epithelial cells. In the present study, we considered immortalized and primary human bronchial epithelial cells. Cells were treated with zinc chromate at concentrations ranging 0.05 to 0.4μg/cm2 for acute (24 h) and prolonged (120 h) exposures. DNA double strand breaks (DSBs) were measured by neutral comet assay and the status of homologous recombination repair, the main pathway to fix Cr(VI)-induced DSBs, was measured by RAD51 foci formation with immunofluorescence, RAD51 localization with confocal microscopy and sister chromatid exchanges. We found acute and prolonged Cr(VI) exposure induced DSBs. Acute exposure induced homologous recombination repair, but prolonged exposure inhibited it resulting in chromosome instability in immortalized and primary human bronchial epithelial cells.
Collapse
Affiliation(s)
- Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | - Aggie R Williams
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | - Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | - J Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | - Tayler J Croom-Perez
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd., Orlando, FL 32827, United States of America
| | - Sandra S Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America
| | | | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston Street, Building 55A, Room 1422, Louisville, KY 40292, United States of America.
| |
Collapse
|
11
|
Nikolić I, Samardžić J, Stevanović S, Miljuš-Đukić J, Milisavljević M, Timotijević G. CRISPR/Cas9-Targeted Disruption of Two Highly Homologous Arabidopsis thaliana DSS1 Genes with Roles in Development and the Oxidative Stress Response. Int J Mol Sci 2023; 24:ijms24032442. [PMID: 36768765 PMCID: PMC9916663 DOI: 10.3390/ijms24032442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023] Open
Abstract
Global climate change has a detrimental effect on plant growth and health, causing serious losses in agriculture. Investigation of the molecular mechanisms of plant responses to various environmental pressures and the generation of plants tolerant to abiotic stress are imperative to modern plant science. In this paper, we focus on the application of the well-established technology CRISPR/Cas9 genome editing to better understand the functioning of the intrinsically disordered protein DSS1 in plant response to oxidative stress. The Arabidopsis genome contains two highly homologous DSS1 genes, AtDSS1(I) and AtDSS1(V). This study was designed to identify the functional differences between AtDSS1s, focusing on their potential roles in oxidative stress. We generated single dss1(I) and dss1(V) mutant lines of both Arabidopsis DSS1 genes using CRISPR/Cas9 technology. The homozygous mutant lines with large indels (dss1(I)del25 and dss1(V)ins18) were phenotypically characterized during plant development and their sensitivity to oxidative stress was analyzed. The characterization of mutant lines revealed differences in root and stem lengths, and rosette area size. Plants with a disrupted AtDSS1(V) gene exhibited lower survival rates and increased levels of oxidized proteins in comparison to WT plants exposed to oxidative stress induced by hydrogen peroxide. In this work, the dss1 double mutant was not obtained due to embryonic lethality. These results suggest that the DSS1(V) protein could be an important molecular component in plant abiotic stress response.
Collapse
|
12
|
Maxwell KN, Patel V, Nead KT, Merrill S, Clark D, Jiang Q, Wubbenhorst B, D’Andrea K, Cohen RB, Domchek SM, Morrissette JJ, Greenberg RA, Babushok DV, Nathanson KL. Fanconi anemia caused by biallelic inactivation of BRCA2 can present with an atypical cancer phenotype in adulthood. Clin Genet 2023; 103:119-124. [PMID: 36089892 PMCID: PMC9742260 DOI: 10.1111/cge.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022]
Abstract
Inherited biallelic pathogenic variants (PVs) in BRCA2 cause Fanconi Anemia complementation group D1 (FA-D1), a severe pediatric bone marrow failure and high-risk cancer syndrome. We identified biallelic BRCA2 PVs in a young adult with multiple basal cell carcinomas, adult-onset colorectal cancer and small cell neuroendocrine carcinoma, without bone marrow failure. No PVs were identified in any other known cancer susceptibility gene, and there was no evidence of reversion mosaicism. The proband's deceased sister had a classic FA-D1 presentation and was shown to carry the same biallelic BRCA2 PVs. A lymphoblastoid cell line derived from the proband demonstrated hypersensitivity to DNA damaging agents, and bone marrow showed aberrant RAD51 staining. Family expansion demonstrated the presence of BRCA2 related cancers in heterozygous family members. Our data highlight the striking phenotypic differences which can be observed within FA-D1 families and expands the clinical spectrum of FA-D1 to include adult presentation with a constellation of solid tumors not previously thought of as characteristic of Fanconi Anemia. Early recognition of this syndrome in a family could prevent further morbidity and mortality by implementation of hereditary breast and ovarian cancer screening and treatment strategies for heterozygous family members.
Collapse
Affiliation(s)
- Kara N. Maxwell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Vishal Patel
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kevin T. Nead
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Shana Merrill
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Dana Clark
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Qinqin Jiang
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kurt D’Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Roger B. Cohen
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Susan M. Domchek
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jennifer J.D. Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Roger A. Greenberg
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Daria V. Babushok
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Katherine L. Nathanson
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Kachkin DV, Volkov KV, Sopova JV, Bobylev AG, Fedotov SA, Inge-Vechtomov SG, Galzitskaya OV, Chernoff YO, Rubel AA, Aksenova AY. Human RAD51 Protein Forms Amyloid-like Aggregates In Vitro. Int J Mol Sci 2022; 23:ijms231911657. [PMID: 36232958 PMCID: PMC9570251 DOI: 10.3390/ijms231911657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 12/30/2022] Open
Abstract
RAD51 is a central protein of homologous recombination and DNA repair processes that maintains genome stability and ensures the accurate repair of double-stranded breaks (DSBs). In this work, we assessed amyloid properties of RAD51 in vitro and in the bacterial curli-dependent amyloid generator (C-DAG) system. Resistance to ionic detergents, staining with amyloid-specific dyes, polarized microscopy, transmission electron microscopy (TEM), X-ray diffraction and other methods were used to evaluate the properties and structure of RAD51 aggregates. The purified human RAD51 protein formed detergent-resistant aggregates in vitro that had an unbranched cross-β fibrillar structure, which is typical for amyloids, and were stained with amyloid-specific dyes. Congo-red-stained RAD51 aggregates demonstrated birefringence under polarized light. RAD51 fibrils produced sharp circular X-ray reflections at 4.7 Å and 10 Å, demonstrating that they had a cross-β structure. Cytoplasmic aggregates of RAD51 were observed in cell cultures overexpressing RAD51. We demonstrated that a key protein that maintains genome stability, RAD51, has amyloid properties in vitro and in the C-DAG system and discussed the possible biological relevance of this observation.
Collapse
Affiliation(s)
- Daniel V. Kachkin
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill V. Volkov
- Research Resource Center “Molecular and Cell Technologies”, Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Julia V. Sopova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Moscow, Russia
| | - Sergei A. Fedotov
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Sergei G. Inge-Vechtomov
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Oxana V. Galzitskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Moscow, Russia
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence: (A.A.R.); (A.Y.A.)
| | - Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence: (A.A.R.); (A.Y.A.)
| |
Collapse
|
14
|
Jimenez-Sainz J, Mathew J, Moore G, Lahiri S, Garbarino J, Eder JP, Rothenberg E, Jensen RB. BRCA2 BRC missense variants disrupt RAD51-dependent DNA repair. eLife 2022; 11:e79183. [PMID: 36098506 PMCID: PMC9545528 DOI: 10.7554/elife.79183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Pathogenic mutations in the BRCA2 tumor suppressor gene predispose to breast, ovarian, pancreatic, prostate, and other cancers. BRCA2 maintains genome stability through homology-directed repair (HDR) of DNA double-strand breaks (DSBs) and replication fork protection. Nonsense or frameshift mutations leading to truncation of the BRCA2 protein are typically considered pathogenic; however, missense mutations resulting in single amino acid substitutions can be challenging to functionally interpret. The majority of missense mutations in BRCA2 have been classified as Variants of Uncertain Significance (VUS) with unknown functional consequences. In this study, we identified three BRCA2 VUS located within the BRC repeat region to determine their impact on canonical HDR and fork protection functions. We provide evidence that S1221P and T1980I, which map to conserved residues in the BRC2 and BRC7 repeats, compromise the cellular response to chemotherapeutics and ionizing radiation, and display deficits in fork protection. We further demonstrate biochemically that S1221P and T1980I disrupt RAD51 binding and diminish the ability of BRCA2 to stabilize RAD51-ssDNA complexes. The third variant, T1346I, located within the spacer region between BRC2 and BRC3 repeats, is fully functional. We conclude that T1346I is a benign allele, whereas S1221P and T1980I are hypomorphic disrupting the ability of BRCA2 to fully engage and stabilize RAD51 nucleoprotein filaments. Our results underscore the importance of correctly classifying BRCA2 VUS as pathogenic variants can impact both future cancer risk and guide therapy selection during cancer treatment.
Collapse
Affiliation(s)
| | - Joshua Mathew
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Gemma Moore
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Sudipta Lahiri
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Jennifer Garbarino
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Joseph P Eder
- Department of Medical Oncology, Yale University School of Medicine, Yale Cancer CenterNew HavenUnited States
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York UniversityNew YorkUnited States
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| |
Collapse
|
15
|
The Mechanistic Understanding of RAD51 Defibrillation: A Critical Step in BRCA2-Mediated DNA Repair by Homologous Recombination. Int J Mol Sci 2022; 23:ijms23158338. [PMID: 35955488 PMCID: PMC9368738 DOI: 10.3390/ijms23158338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
The cytotoxic action of anticancer drugs can be potentiated by inhibiting DNA repair mechanisms. RAD51 is a crucial protein for genomic stability due to its critical role in the homologous recombination (HR) pathway. BRCA2 assists RAD51 fibrillation and defibrillation in the cytoplasm and nucleus and assists its nuclear transport. BRC4 is a peptide derived from the fourth BRC repeat of BRCA2, and it lacks the nuclear localization sequence. Here, we used BRC4 to (i) reverse RAD51 fibrillation; (ii) avoid the nuclear transport of RAD51; and (iii) inhibit HR and enhance the efficacy of chemotherapeutic treatments. Specifically, using static and dynamic light scattering, transmission electron microscopy, and microscale thermophoresis, we show that BRC4 eroded RAD51 fibrils from their termini through a “domino” mechanism and yielded monomeric RAD51 with a cumulative nanomolar affinity. Using cellular assays (BxPC-3, pancreatic cancer), we show that a myristoylated BRC4 (designed for a more efficient cell entry) abolished the formation of nuclear RAD51 foci. The present study provides a molecular description of RAD51 defibrillation, an essential step in BRCA2-mediated homologous recombination and DNA repair.
Collapse
|
16
|
Lee J, Sung K, Joo SY, Jeong JH, Kim SK, Lee H. Dynamic interaction of BRCA2 with telomeric G-quadruplexes underlies telomere replication homeostasis. Nat Commun 2022; 13:3396. [PMID: 35697743 PMCID: PMC9192595 DOI: 10.1038/s41467-022-31156-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
BRCA2-deficient cells precipitate telomere shortening upon collapse of stalled replication forks. Here, we report that the dynamic interaction between BRCA2 and telomeric G-quadruplex (G4), the non-canonical four-stranded secondary structure, underlies telomere replication homeostasis. We find that the OB-folds of BRCA2 binds to telomeric G4, which can be an obstacle during replication. We further demonstrate that BRCA2 associates with G-triplex (G3)-derived intermediates, which are likely to form during direct interconversion between parallel and non-parallel G4. Intriguingly, BRCA2 binding to G3 intermediates promoted RAD51 recruitment to the telomere G4. Furthermore, MRE11 resected G4-telomere, which was inhibited by BRCA2. Pathogenic mutations at the OB-folds abrogated the binding with telomere G4, indicating that the way BRCA2 associates with telomere is innate to its tumor suppressor activity. Collectively, we propose that BRCA2 binding to telomeric G4 remodels it and allows RAD51-mediated restart of the G4-driven replication fork stalling, simultaneously preventing MRE11-mediated breakdown of telomere. G-quadruplex (G4) can be formed in telomeric DNA. Here the authors show that BRCA2 interacts with telomere G4 structure generated during telomere replication, protecting telomere from nuclease attack.
Collapse
Affiliation(s)
- Junyeop Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Keewon Sung
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - So Young Joo
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Hyeon Jeong
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea.
| | - Hyunsook Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
17
|
Jimenez-Sainz J, Krysztofiak A, Garbarino J, Rogers F, Jensen RB. The Pathogenic R3052W BRCA2 Variant Disrupts Homology-Directed Repair by Failing to Localize to the Nucleus. Front Genet 2022; 13:884210. [PMID: 35711920 PMCID: PMC9197106 DOI: 10.3389/fgene.2022.884210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
The BRCA2 germline missense variant, R3052W, resides in the DNA binding domain and has been previously classified as a pathogenic allele. In this study, we sought to determine how R3052W alters the cellular functions of BRCA2 in the DNA damage response. The BRCA2 R3052W mutated protein exacerbates genome instability, is unable to rescue homology-directed repair, and fails to complement cell survival following exposure to PARP inhibitors and crosslinking drugs. Surprisingly, despite anticipated defects in DNA binding or RAD51-mediated DNA strand exchange, the BRCA2 R3052W protein mislocalizes to the cytoplasm precluding its ability to perform any DNA repair functions. Rather than acting as a simple loss-of-function mutation, R3052W behaves as a dominant negative allele, likely by sequestering RAD51 in the cytoplasm.
Collapse
Affiliation(s)
| | | | | | | | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
18
|
Huang J, Zhong Y, Makohon-Moore AP, White T, Jasin M, Norell MA, Wheeler WC, Iacobuzio-Donahue CA. Evidence for reduced BRCA2 functional activity in Homo sapiens after divergence from the chimpanzee-human last common ancestor. Cell Rep 2022; 39:110771. [PMID: 35508134 PMCID: PMC11740715 DOI: 10.1016/j.celrep.2022.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/12/2021] [Accepted: 04/12/2022] [Indexed: 11/03/2022] Open
Abstract
We performed a comparative analysis of human and 12 non-human primates to identify sequence variations in known cancer genes. We identified 395 human-specific fixed non-silent substitutions that emerged during evolution of human. Using bioinformatics analyses for functional consequences, we identified a number of substitutions that are predicted to alter protein function; one of these mutations is located at the most evolutionarily conserved domain of human BRCA2.
Collapse
Affiliation(s)
- Jinlong Huang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yi Zhong
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alvin P Makohon-Moore
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Travis White
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
19
|
Semmelink MFW, Steen A, Veenhoff LM. Measuring and Interpreting Nuclear Transport in Neurodegenerative Disease-The Example of C9orf72 ALS. Int J Mol Sci 2021; 22:9217. [PMID: 34502125 PMCID: PMC8431710 DOI: 10.3390/ijms22179217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research.
Collapse
Affiliation(s)
| | | | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (M.F.W.S.); (A.S.)
| |
Collapse
|
20
|
Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021; 12:genes12081229. [PMID: 34440403 PMCID: PMC8394001 DOI: 10.3390/genes12081229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Correspondence: ; Tel.: +1-530-752-3016
| |
Collapse
|
21
|
Sun H, Zhou R, Zheng Y, Wen Z, Zhang D, Zeng D, Wu J, Huang Z, Rong X, Huang N, Sun L, Bin J, Liao Y, Shi M, Liao W. CRIP1 cooperates with BRCA2 to drive the nuclear enrichment of RAD51 and to facilitate homologous repair upon DNA damage induced by chemotherapy. Oncogene 2021; 40:5342-5355. [PMID: 34262130 PMCID: PMC8390368 DOI: 10.1038/s41388-021-01932-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/09/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR) repair is an important determinant of chemosensitivity. However, the mechanisms underlying HR regulation remain largely unknown. Cysteine-rich intestinal protein 1 (CRIP1) is a member of the LIM/double-zinc finger protein family and is overexpressed and associated with prognosis in several tumor types. However, to date, the functional role of CRIP1 in cancer biology is poorly understood. Here we found that CRIP1 downregulation causes HR repair deficiency with concomitant increase in cell sensitivity to cisplatin, epirubicin, and the poly ADP-ribose polymerase (PARP) inhibitor olaparib in gastric cancer cells. Mechanistically, upon DNA damage, CRIP1 is deubiquitinated and upregulated by activated AKT signaling. CRIP1, in turn, promotes nuclear enrichment of RAD51, which is a prerequisite step for HR commencement, by stabilizing BRCA2 to counteract FBXO5-targeted RAD51 degradation and by binding to the core domain of RAD51 (RAD51184-257) in coordination with BRCA2, to facilitate nuclear export signal masking interactions between BRCA2 and RAD51. Moreover, through mass spectrometry screening, we found that KPNA4 is at least one of the carriers controlling the nucleo-cytoplasmic distribution of the CRIP1-BRCA2-RAD51 complex in response to chemotherapy. Consistent with these findings, RAD51 inhibitors block the CRIP1-mediated HR process, thereby restoring chemotherapy sensitivity of gastric cancer cells with high CRIP1 expression. Analysis of patient specimens revealed an abnormally high level of CRIP1 expression in GC tissues compared to that in the adjacent normal mucosa and a significant negative association between CRIP1 expression and survival time in patient cohorts with different types of solid tumors undergoing genotoxic treatments. In conclusion, our study suggests an essential function of CRIP1 in promoting HR repair and facilitating gastric cancer cell adaptation to genotoxic therapy.
Collapse
Affiliation(s)
- Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| | - Yannan Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhaowei Wen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Dingling Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhenhua Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Li Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
22
|
Lee M, Shorthouse D, Mahen R, Hall BA, Venkitaraman AR. Cancer-causing BRCA2 missense mutations disrupt an intracellular protein assembly mechanism to disable genome maintenance. Nucleic Acids Res 2021; 49:5588-5604. [PMID: 33978741 PMCID: PMC8191791 DOI: 10.1093/nar/gkab308] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/11/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer-causing missense mutations in the 3418 amino acid BRCA2 breast and ovarian cancer suppressor protein frequently affect a short (∼340 residue) segment in its carboxyl-terminal domain (DBD). Here, we identify a shared molecular mechanism underlying their pathogenicity. Pathogenic BRCA2 missense mutations cluster in the DBD’s helical domain (HD) and OB1-fold motifs, which engage the partner protein DSS1. Pathogenic - but not benign – DBD mutations weaken or abolish DSS1-BRCA2 assembly, provoking mutant BRCA2 oligomers that are excluded from the cell nucleus, and disable DNA repair by homologous DNA recombination (HDR). DSS1 inhibits the intracellular oligomerization of wildtype, but not mutant, forms of BRCA2. Remarkably, DSS1 expression corrects defective HDR in cells bearing pathogenic BRCA2 missense mutants with weakened, but not absent, DSS1 binding. Our findings identify a DSS1-mediated intracellular protein assembly mechanism that is disrupted by cancer-causing BRCA2 missense mutations, and suggest an approach for its therapeutic correction.
Collapse
Affiliation(s)
- Miyoung Lee
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - David Shorthouse
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Robert Mahen
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Benjamin A Hall
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.,The Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore 117599 & Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove 138648, Singapore
| |
Collapse
|
23
|
Chang A, Liu L, Ashby JM, Wu D, Chen Y, O'Neill SS, Huang S, Wang J, Wang G, Cheng D, Tan X, Petty WJ, Pasche BC, Xiang R, Zhang W, Sun P. Recruitment of KMT2C/MLL3 to DNA Damage Sites Mediates DNA Damage Responses and Regulates PARP Inhibitor Sensitivity in Cancer. Cancer Res 2021; 81:3358-3373. [PMID: 33853832 PMCID: PMC8260460 DOI: 10.1158/0008-5472.can-21-0688] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
When recruited to promoters, histone 3 lysine 4 (H3K4) methyltransferases KMT2 (KMT2A-D) activate transcription by opening chromatin through H3K4 methylation. Here, we report that KMT2 mutations occur frequently in non-small cell lung cancer (NSCLC) and are associated with high mutation loads and poor survival. KMT2C regulated DNA damage responses (DDR) through direct recruitment to DNA damage sites by Ago2 and small noncoding DNA damage response RNA, where it mediates H3K4 methylation, chromatin relaxation, secondary recruitment of DDR factors, and amplification of DDR signals along chromatin. Furthermore, by disrupting homologous recombination (HR)-mediated DNA repair, KMT2C/D mutations sensitized NSCLC to Poly(ADP-ribose) polymerase inhibitors (PARPi), whose efficacy is unclear in NSCLC due to low BRCA1/2 mutation rates. These results demonstrate a novel, transcription-independent role of KMT2C in DDR and identify high-frequency KMT2C/D mutations as much-needed biomarkers for PARPi therapies in NSCLC and other cancers with infrequent BRCA1/2 mutations. SIGNIFICANCE: This study uncovers a critical role for KMT2C in DDR via direct recruitment to DNA damage sites, identifying high-frequency KMT2C/D mutations as biomarkers for response to PARP inhibition in cancer.
Collapse
MESH Headings
- Animals
- Apoptosis
- Argonaute Proteins/genetics
- Argonaute Proteins/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- DNA Damage
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Homologous Recombination
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Nude
- Mutation
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Prognosis
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Antao Chang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Nankai University School of Medicine, Tianjin, China
| | - Liang Liu
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Justin M Ashby
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Dan Wu
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Yanan Chen
- Nankai University School of Medicine, Tianjin, China
| | - Stacey S O'Neill
- Department of Pathology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Shan Huang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Nankai University School of Medicine, Tianjin, China
| | - Juan Wang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Nankai University School of Medicine, Tianjin, China
| | - Guanwen Wang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Nankai University School of Medicine, Tianjin, China
| | - Dongmei Cheng
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Xiaoming Tan
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
- Department of Respiratory Disease, South Campus, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - W J Petty
- Department of Internal Medicine, Division of Hematology and Oncology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Boris C Pasche
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Rong Xiang
- Nankai University School of Medicine, Tianjin, China
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina.
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Medical Center Blvd, Winston-Salem, North Carolina.
| |
Collapse
|
24
|
Jimenez-Sainz J, Jensen RB. Imprecise Medicine: BRCA2 Variants of Uncertain Significance (VUS), the Challenges and Benefits to Integrate a Functional Assay Workflow with Clinical Decision Rules. Genes (Basel) 2021; 12:genes12050780. [PMID: 34065235 PMCID: PMC8161351 DOI: 10.3390/genes12050780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Pathological mutations in homology-directed repair (HDR) genes impact both future cancer risk and therapeutic options for patients. HDR is a high-fidelity DNA repair pathway for resolving DNA double-strand breaks throughout the genome. BRCA2 is an essential protein that mediates the loading of RAD51 onto resected DNA breaks, a key step in HDR. Germline mutations in BRCA2 are associated with an increased risk for breast, ovarian, prostate, and pancreatic cancer. Clinical findings of germline or somatic BRCA2 mutations in tumors suggest treatment with platinum agents or PARP inhibitors. However, when genetic analysis reveals a variant of uncertain significance (VUS) in the BRCA2 gene, precision medicine-based decisions become complex. VUS are genetic changes with unknown pathological impact. Current statistics indicate that between 10–20% of BRCA sequencing results are VUS, and of these, more than 50% are missense mutations. Functional assays to determine the pathological outcome of VUS are urgently needed to provide clinical guidance regarding cancer risk and treatment options. In this review, we provide a brief overview of BRCA2 functions in HDR, describe how BRCA2 VUS are currently assessed in the clinic, and how genetic and biochemical functional assays could be integrated into the clinical decision process. We suggest a multi-step workflow composed of robust and accurate functional assays to correctly evaluate the potential pathogenic or benign nature of BRCA2 VUS. Success in this precision medicine endeavor will offer actionable information to patients and their physicians.
Collapse
Affiliation(s)
- Judit Jimenez-Sainz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: (J.J.-S.); (R.B.J.); Tel.:+1-203-737-6456 (R.B.J.)
| | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: (J.J.-S.); (R.B.J.); Tel.:+1-203-737-6456 (R.B.J.)
| |
Collapse
|
25
|
Scott DE, Francis-Newton NJ, Marsh ME, Coyne AG, Fischer G, Moschetti T, Bayly AR, Sharpe TD, Haas KT, Barber L, Valenzano CR, Srinivasan R, Huggins DJ, Lee M, Emery A, Hardwick B, Ehebauer M, Dagostin C, Esposito A, Pellegrini L, Perrior T, McKenzie G, Blundell TL, Hyvönen M, Skidmore J, Venkitaraman AR, Abell C. A small-molecule inhibitor of the BRCA2-RAD51 interaction modulates RAD51 assembly and potentiates DNA damage-induced cell death. Cell Chem Biol 2021; 28:835-847.e5. [PMID: 33662256 PMCID: PMC8219027 DOI: 10.1016/j.chembiol.2021.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/18/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
BRCA2 controls RAD51 recombinase during homologous DNA recombination (HDR) through eight evolutionarily conserved BRC repeats, which individually engage RAD51 via the motif Phe-x-x-Ala. Using structure-guided molecular design, templated on a monomeric thermostable chimera between human RAD51 and archaeal RadA, we identify CAM833, a 529 Da orthosteric inhibitor of RAD51:BRC with a Kd of 366 nM. The quinoline of CAM833 occupies a hotspot, the Phe-binding pocket on RAD51 and the methyl of the substituted α-methylbenzyl group occupies the Ala-binding pocket. In cells, CAM833 diminishes formation of damage-induced RAD51 nuclear foci; inhibits RAD51 molecular clustering, suppressing extended RAD51 filament assembly; potentiates cytotoxicity by ionizing radiation, augmenting 4N cell-cycle arrest and apoptotic cell death and works with poly-ADP ribose polymerase (PARP)1 inhibitors to suppress growth in BRCA2-wildtype cells. Thus, chemical inhibition of the protein-protein interaction between BRCA2 and RAD51 disrupts HDR and potentiates DNA damage-induced cell death, with implications for cancer therapy.
Collapse
Affiliation(s)
- Duncan E Scott
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Nicola J Francis-Newton
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - May E Marsh
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Anthony G Coyne
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Tommaso Moschetti
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Andrew R Bayly
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Timothy D Sharpe
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Kalina T Haas
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Lorraine Barber
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Chiara R Valenzano
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Rajavel Srinivasan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David J Huggins
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Miyoung Lee
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Amy Emery
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Bryn Hardwick
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Matthias Ehebauer
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Claudio Dagostin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Alessandro Esposito
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Trevor Perrior
- Excellium Consulting, Brook Farm Barn, Lackford, Bury St Edmunds IP28 6HL, UK
| | - Grahame McKenzie
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - John Skidmore
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK.
| | - Chris Abell
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
26
|
Mehmood R, Jibiki K, Shibazaki N, Yasuhara N. Molecular profiling of nucleocytoplasmic transport factor genes in breast cancer. Heliyon 2021; 7:e06039. [PMID: 33553736 PMCID: PMC7851789 DOI: 10.1016/j.heliyon.2021.e06039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/14/2020] [Accepted: 01/14/2021] [Indexed: 11/24/2022] Open
Abstract
Transport of functional molecules across the nuclear membrane of a eukaryotic cell is regulated by a dedicated set of transporter proteins that carry molecules into the nucleus or out of the nucleus to the cytoplasm for homeostasis of the cell. One of the categories of cargo molecules these transporters carry are the molecules for cell cycle regulation. Therefore, their role is critical in terms of cancer development. Any misregulation of the transport factors would means aberrant abundance of cell cycle regulators and might have consequences in cell cycle progression. While earlier studies have focussed on individual transport related molecules, a collective overview of how these molecules may be dysregulated in breast cancer is lacking. Using genomic and transcriptomic datasets from TCGA (The Cancer Genome Atlas) and microarray platforms, we carried out bioinformatic analysis and provide a genetic and molecular profile of all the molecules directly related to nucleocytoplasmic shuttling of proteins and RNAs. Interestingly, we identified that many of these molecules are either mutated or have dysregulated expression in breast cancer. Strikingly, some of the molecules, namely, KPNA2, KPNA3, KPNA5, IPO8, TNPO1, XPOT, XPO7 and CSE1L were correlated with poor patient survival. This study provides a comprehensive genetic and molecular landscape of nucleocytoplasmic factors in breast cancer and points to the important roles of various nucleocytoplasmic factors in cancer progression. This data might have implications in prognosis and therapeutic targeting in breast cancer.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Noriko Shibazaki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
27
|
Baughan S, Tainsky MA. K3326X and Other C-Terminal BRCA2 Variants Implicated in Hereditary Cancer Syndromes: A Review. Cancers (Basel) 2021; 13:447. [PMID: 33503928 PMCID: PMC7865497 DOI: 10.3390/cancers13030447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Whole genome analysis and the search for mutations in germline and tumor DNAs is becoming a major tool in the evaluation of risk as well as the management of hereditary cancer syndromes. Because of the identification of cancer predisposition gene panels, thousands of such variants have been catalogued yet many remain unclassified, presenting a clinical challenge for the management of hereditary cancer syndromes. Although algorithms exist to estimate the likelihood of a variant being deleterious, these tools are rarely used for clinical decision-making. Here, we review the progress in classifying K3326X, a rare truncating variant on the C-terminus of BRCA2 and review recent literature on other novel single nucleotide polymorphisms, SNPs, on the C-terminus of the protein, defined in this review as the portion after the final BRC repeat (amino acids 2058-3418).
Collapse
Affiliation(s)
- Scott Baughan
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael A. Tainsky
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
28
|
Le HP, Ma X, Vaquero J, Brinkmeyer M, Guo F, Heyer WD, Liu J. DSS1 and ssDNA regulate oligomerization of BRCA2. Nucleic Acids Res 2020; 48:7818-7833. [PMID: 32609828 PMCID: PMC7641332 DOI: 10.1093/nar/gkaa555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 01/27/2023] Open
Abstract
The tumor suppressor BRCA2 plays a key role in initiating homologous recombination by facilitating RAD51 filament formation on single-stranded DNA. The small acidic protein DSS1 is a crucial partner to BRCA2 in this process. In vitro and in cells (1,2), BRCA2 associates into oligomeric complexes besides also existing as monomers. A dimeric structure was further characterized by electron microscopic analysis (3), but the functional significance of the different BRCA2 assemblies remains to be determined. Here, we used biochemistry and electron microscopic imaging to demonstrate that the multimerization of BRCA2 is counteracted by DSS1 and ssDNA. When validating the findings, we identified three self-interacting regions and two types of self-association, the N-to-C terminal and the N-to-N terminal interactions. The N-to-C terminal self-interaction of BRCA2 is sensitive to DSS1 and ssDNA. The N-to-N terminal self-interaction is modulated by ssDNA. Our results define a novel role of DSS1 to regulate BRCA2 in an RPA-independent fashion. Since DSS1 is required for BRCA2 function in recombination, we speculate that the monomeric and oligomeric forms of BRCA2 might be active for different cellular events in recombinational DNA repair and replication fork stabilization.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Xiaoyan Ma
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Jorge Vaquero
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Megan Brinkmeyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Fei Guo
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616-8665, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| |
Collapse
|
29
|
Nguyen DD, Kim EY, Sang PB, Chai W. Roles of OB-Fold Proteins in Replication Stress. Front Cell Dev Biol 2020; 8:574466. [PMID: 33043007 PMCID: PMC7517361 DOI: 10.3389/fcell.2020.574466] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
Accurate DNA replication is essential for maintaining genome stability. However, this stability becomes vulnerable when replication fork progression is stalled or slowed - a condition known as replication stress. Prolonged fork stalling can cause DNA damage, leading to genome instabilities. Thus, cells have developed several pathways and a complex set of proteins to overcome the challenge at stalled replication forks. Oligonucleotide/oligosaccharide binding (OB)-fold containing proteins are a group of proteins that play a crucial role in fork protection and fork restart. These proteins bind to single-stranded DNA with high affinity and prevent premature annealing and unwanted nuclease digestion. Among these OB-fold containing proteins, the best studied in eukaryotic cells are replication protein A (RPA) and breast cancer susceptibility protein 2 (BRCA2). Recently, another RPA-like protein complex CTC1-STN1-TEN1 (CST) complex has been found to counter replication perturbation. In this review, we discuss the latest findings on how these OB-fold containing proteins (RPA, BRCA2, CST) cooperate to safeguard DNA replication and maintain genome stability.
Collapse
Affiliation(s)
| | | | | | - Weihang Chai
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| |
Collapse
|
30
|
Le Page C, Amuzu S, Rahimi K, Gotlieb W, Ragoussis J, Tonin PN. Lessons learned from understanding chemotherapy resistance in epithelial tubo-ovarian carcinoma from BRCA1and BRCA2mutation carriers. Semin Cancer Biol 2020; 77:110-126. [PMID: 32827632 DOI: 10.1016/j.semcancer.2020.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
BRCA1 and BRCA2 are multi-functional proteins and key factors for maintaining genomic stability through their roles in DNA double strand break repair by homologous recombination, rescuing stalled or damaged DNA replication forks, and regulation of cell cycle DNA damage checkpoints. Impairment of any of these critical roles results in genomic instability, a phenotypic hallmark of many cancers including breast and epithelial ovarian carcinomas (EOC). Damaging, usually loss of function germline and somatic variants in BRCA1 and BRCA2, are important drivers of the development, progression, and management of high-grade serous tubo-ovarian carcinoma (HGSOC). However, mutations in these genes render patients particularly sensitive to platinum-based chemotherapy, and to the more innovative targeted therapies with poly-(ADP-ribose) polymerase inhibitors (PARPis) that are targeted to BRCA1/BRCA2 mutation carriers. Here, we reviewed the literature on the responsiveness of BRCA1/2-associated HGSOC to platinum-based chemotherapy and PARPis, and propose mechanisms underlying the frequent development of resistance to these therapeutic agents.
Collapse
Affiliation(s)
- Cécile Le Page
- McGill Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| | - Setor Amuzu
- McGill Genome Centre, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Kurosh Rahimi
- Department of Pathology du Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Walter Gotlieb
- Laboratory of Gynecologic Oncology, Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Patricia N Tonin
- Departments of Medicine and Human Genetics, McGill University, Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
31
|
Petridis C, Arora I, Shah V, Moss CL, Mera A, Clifford A, Gillett C, Pinder SE, Tomlinson I, Roylance R, Simpson MA, Sawyer EJ. Frequency of Pathogenic Germline Variants in CDH1, BRCA2, CHEK2, PALB2, BRCA1, and TP53 in Sporadic Lobular Breast Cancer. Cancer Epidemiol Biomarkers Prev 2020; 28:1162-1168. [PMID: 31263054 DOI: 10.1158/1055-9965.epi-18-1102] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/07/2018] [Accepted: 04/03/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Invasive lobular breast cancer (ILC) accounts for approximately 15% of invasive breast carcinomas and is commonly associated with lobular carcinoma in situ (LCIS). Both have been shown to have higher familial risks than the more common ductal cancers. However, there are little data on the prevalence of the known high and moderate penetrance breast cancer predisposition genes in ILC. The aim of this study was to assess the frequency of germline variants in CDH1, BRCA2, BRCA1, CHEK2, PALB2, and TP53 in sporadic ILC and LCIS diagnosed in women ages ≤60 years. METHODS Access Array technology (Fluidigm) was used to amplify all exons of CDH1, BRCA2, BRCA1, TP53, CHEK2, and PALB2 using a custom-made targeted sequencing panel in 1,434 cases of ILC and 368 cases of pure LCIS together with 1,611 controls. RESULTS Case-control analysis revealed an excess of pathogenic variants in BRCA2, CHEK2, PALB2, and CDH1 in women with ILC. CHEK2 was the only gene that showed an association with pure LCIS [OR = 9.90; 95% confidence interval (CI), 3.42-28.66, P = 1.4 × 10-5] with a larger effect size seen in LCIS compared with ILC (OR = 4.31; 95% CI, 1.61-11.58, P = 1.7 × 10-3). CONCLUSIONS Eleven percent of patients with ILC ages ≤40 years carried germline variants in known breast cancer susceptibility genes. IMPACT Women with ILC ages ≤40 years should be offered genetic screening using a panel of genes that includes BRCA2, CHEK2, PALB2, and CDH1.
Collapse
Affiliation(s)
- Christos Petridis
- School of Cancer and Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom.,Medical and Molecular Genetics, Guy's Hospital, King's College London, London, United Kingdom
| | - Iteeka Arora
- School of Cancer and Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Vandna Shah
- School of Cancer and Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Charlotte L Moss
- School of Cancer and Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Anca Mera
- School of Cancer and Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Angela Clifford
- School of Cancer and Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Cheryl Gillett
- School of Cancer and Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Sarah E Pinder
- School of Cancer and Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Rebecca Roylance
- Department of Oncology, UCLH Foundation Trust, London, United Kingdom
| | - Michael A Simpson
- Medical and Molecular Genetics, Guy's Hospital, King's College London, London, United Kingdom
| | - Elinor J Sawyer
- School of Cancer and Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom.
| |
Collapse
|
32
|
Labib M, Wang Z, Ahmed SU, Mohamadi RM, Duong B, Green B, Sargent EH, Kelley SO. Tracking the expression of therapeutic protein targets in rare cells by antibody-mediated nanoparticle labelling and magnetic sorting. Nat Biomed Eng 2020; 5:41-52. [PMID: 32719513 DOI: 10.1038/s41551-020-0590-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/23/2020] [Indexed: 12/20/2022]
Abstract
Molecular-level features of tumours can be tracked using single-cell analyses of circulating tumour cells (CTCs). However, single-cell measurements of protein expression for rare CTCs are hampered by the presence of a large number of non-target cells. Here, we show that antibody-mediated labelling of intracellular proteins in the nucleus, mitochondria and cytoplasm of human cells with magnetic nanoparticles enables analysis of target proteins at the single-cell level by sorting the cells according to their nanoparticle content in a microfluidic device with cell-capture zones sandwiched between arrays of magnets. We used the magnetic labelling and cell-sorting approach to track the expression of therapeutic protein targets in CTCs isolated from blood samples of mice with orthotopic prostate xenografts and from patients with metastatic castration-resistant prostate cancer. We also show that mutated proteins that are drug targets or markers of therapeutic response can be directly identified in CTCs, analysed at the single-cell level and used to predict how mice with drug-susceptible and drug-resistant pancreatic tumour xenografts respond to therapy.
Collapse
Affiliation(s)
- Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Zongjie Wang
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sharif U Ahmed
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Reza M Mohamadi
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Bill Duong
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Brenda Green
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada. .,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada. .,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Stefanovie B, Hengel SR, Mlcouskova J, Prochazkova J, Spirek M, Nikulenkov F, Nemecek D, Koch BG, Bain FE, Yu L, Spies M, Krejci L. DSS1 interacts with and stimulates RAD52 to promote the repair of DSBs. Nucleic Acids Res 2020; 48:694-708. [PMID: 31799622 PMCID: PMC6954417 DOI: 10.1093/nar/gkz1052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
The proper repair of deleterious DNA lesions such as double strand breaks prevents genomic instability and carcinogenesis. In yeast, the Rad52 protein mediates DSB repair via homologous recombination. In mammalian cells, despite the presence of the RAD52 protein, the tumour suppressor protein BRCA2 acts as the predominant mediator during homologous recombination. For decades, it has been believed that the RAD52 protein played only a back-up role in the repair of DSBs performing an error-prone single strand annealing (SSA). Recent studies have identified several new functions of the RAD52 protein and have drawn attention to its important role in genome maintenance. Here, we show that RAD52 activities are enhanced by interacting with a small and highly acidic protein called DSS1. Binding of DSS1 to RAD52 changes the RAD52 oligomeric conformation, modulates its DNA binding properties, stimulates SSA activity and promotes strand invasion. Our work introduces for the first time RAD52 as another interacting partner of DSS1 and shows that both proteins are important players in the SSA and BIR pathways of DSB repair.
Collapse
Affiliation(s)
- Barbora Stefanovie
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
| | - Sarah R Hengel
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - Jarmila Mlcouskova
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
| | - Jana Prochazkova
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
| | - Mario Spirek
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
| | - Fedor Nikulenkov
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
| | | | - Brandon G Koch
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - Fletcher E Bain
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - Liping Yu
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
- NMR Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - Lumir Krejci
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
34
|
Taylor J, Sendino M, Gorelick AN, Pastore A, Chang MT, Penson AV, Gavrila EI, Stewart C, Melnik EM, Herrejon Chavez F, Bitner L, Yoshimi A, Lee SCW, Inoue D, Liu B, Zhang XJ, Mato AR, Dogan A, Kharas MG, Chen Y, Wang D, Soni RK, Hendrickson RC, Prieto G, Rodriguez JA, Taylor BS, Abdel-Wahab O. Altered Nuclear Export Signal Recognition as a Driver of Oncogenesis. Cancer Discov 2019; 9:1452-1467. [PMID: 31285298 PMCID: PMC6774834 DOI: 10.1158/2159-8290.cd-19-0298] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022]
Abstract
Altered expression of XPO1, the main nuclear export receptor in eukaryotic cells, has been observed in cancer, and XPO1 has been a focus of anticancer drug development. However, mechanistic evidence for cancer-specific alterations in XPO1 function is lacking. Here, genomic analysis of 42,793 cancers identified recurrent and previously unrecognized mutational hotspots in XPO1. XPO1 mutations exhibited striking lineage specificity, with enrichment in a variety of B-cell malignancies, and introduction of single amino acid substitutions in XPO1 initiated clonal, B-cell malignancy in vivo. Proteomic characterization identified that mutant XPO1 altered the nucleocytoplasmic distribution of hundreds of proteins in a sequence-specific manner that promoted oncogenesis. XPO1 mutations preferentially sensitized cells to inhibitors of nuclear export, providing a biomarker of response to this family of drugs. These data reveal a new class of oncogenic alteration based on change-of-function mutations in nuclear export signal recognition and identify therapeutic targets based on altered nucleocytoplasmic trafficking. SIGNIFICANCE: Here, we identify that heterozygous mutations in the main nuclear exporter in eukaryotic cells, XPO1, are positively selected in cancer and promote the initiation of clonal B-cell malignancies. XPO1 mutations alter nuclear export signal recognition in a sequence-specific manner and sensitize cells to compounds in clinical development inhibiting XPO1 function.This article is highlighted in the In This Issue feature, p. 1325.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Cell Proliferation
- Cell Transformation, Neoplastic
- Disease Models, Animal
- Gene Expression
- Genes, bcl-2
- Genes, myc
- Humans
- Karyopherins/chemistry
- Karyopherins/genetics
- Karyopherins/metabolism
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/metabolism
- Leukemia, B-Cell/mortality
- Leukemia, B-Cell/pathology
- Mice
- Mutation
- Nuclear Export Signals
- Organ Specificity/genetics
- Protein Binding
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Structure-Activity Relationship
- Exportin 1 Protein
Collapse
Affiliation(s)
- Justin Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Barrio Sarriena s/n, Leioa, Spain
| | - Alexander N Gorelick
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alessandro Pastore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew T Chang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander V Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elena I Gavrila
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Connor Stewart
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ella M Melnik
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Lillian Bitner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Akihide Yoshimi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stanley Chun-Wei Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daichi Inoue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bo Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xiao J Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anthony R Mato
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael G Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuhong Chen
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Demin Wang
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Rajesh K Soni
- Microchemistry and Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gorka Prieto
- Department of Communications Engineering, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Jose A Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Barrio Sarriena s/n, Leioa, Spain
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
35
|
Esposito MV, Minopoli G, Esposito L, D'Argenio V, Di Maggio F, Sasso E, D'Aiuto M, Zambrano N, Salvatore F. A Functional Analysis of the Unclassified Pro2767Ser BRCA2 Variant Reveals Its Potential Pathogenicity that Acts by Hampering DNA Binding and Homology-Mediated DNA Repair. Cancers (Basel) 2019; 11:E1454. [PMID: 31569370 PMCID: PMC6826418 DOI: 10.3390/cancers11101454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
BRCA1 and BRCA2 are the genes most frequently associated with hereditary breast and ovarian cancer (HBOC). They are crucial for the maintenance of genome stability, particularly in the homologous recombination-mediated repair pathway of DNA double-strand breaks (HR-DSBR). Widespread BRCA1/2 next-generation sequencing (NGS) screening has revealed numerous variants of uncertain significance. Assessing the clinical significance of these variants is challenging, particularly regarding the clinical management of patients. Here, we report the functional characterization of the unclassified BRCA2 c.8299C > T variant, identified in a young breast cancer patient during BRCA1/2 NGS screening. This variant causes the change of Proline 2767 to Serine in the DNA binding domain (DBD) of the BRCA2 protein, necessary for the loading of RAD51 on ssDNA during the HR-DSBR. Our in silico analysis and 3D-structure modeling predicted that the p.Pro2767Ser substitution is likely to alter the BRCA2 DBD structure and function. Therefore, to evaluate the functional impact of the p.Pro2767Ser variant, we used a minigene encoding a truncated protein that contains the BRCA2 DBD and the nearby nuclear localization sequence. We found that the ectopically expressed truncated protein carrying the normal DBD, which retains the DNA binding function and lacks the central RAD51 binding domain, interferes with endogenous wild-type BRCA2 mediator functions in the HR-DSBR. We also demonstrated that the BRCA2 Pro2767Ser DBD is unable to compete with endogenous BRCA2 DNA binding, thereby suggesting that the p.Pro2767Ser substitution in the full-length protein causes the functional loss of BRCA2. Consequently, our data suggest that the p.Pro2767Ser variant should be considered pathogenic, thus supporting a revision of the ClinVar interpretation. Moreover, our experimental strategy could be a valid method with which to preliminarily evaluate the pathogenicity of the unclassified BRCA2 germline variants in the DBD and their risk of predisposing to HBOC.
Collapse
Affiliation(s)
- Maria Valeria Esposito
- CEINGE-Biotecnologie Avanzate, 8014 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy.
| | - Giuseppina Minopoli
- CEINGE-Biotecnologie Avanzate, 8014 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy.
| | - Luciana Esposito
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate, 8014 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy.
| | - Federica Di Maggio
- CEINGE-Biotecnologie Avanzate, 8014 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy.
| | - Emanuele Sasso
- CEINGE-Biotecnologie Avanzate, 8014 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy.
| | - Massimiliano D'Aiuto
- Department of Senology, Istituto Nazionale Tumori-IRCCS Fondazione Pascale, 80131 Naples, Italy.
| | - Nicola Zambrano
- CEINGE-Biotecnologie Avanzate, 8014 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy.
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate, 8014 Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
36
|
Haas KT, Lee M, Esposito A, Venkitaraman AR. Single-molecule localization microscopy reveals molecular transactions during RAD51 filament assembly at cellular DNA damage sites. Nucleic Acids Res 2019; 46:2398-2416. [PMID: 29309696 PMCID: PMC5861458 DOI: 10.1093/nar/gkx1303] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 11/14/2022] Open
Abstract
RAD51 recombinase assembles on single-stranded (ss)DNA substrates exposed by DNA end-resection to initiate homologous recombination (HR), a process fundamental to genome integrity. RAD51 assembly has been characterized using purified proteins, but its ultrastructural topography in the cell nucleus is unexplored. Here, we combine cell genetics with single-molecule localization microscopy and a palette of bespoke analytical tools, to visualize molecular transactions during RAD51 assembly in the cellular milieu at resolutions approaching 30-40 nm. In several human cell types, RAD51 focalizes in clusters that progressively extend into long filaments, which abut-but do not overlap-with globular bundles of replication protein A (RPA). Extended filaments alter topographically over time, suggestive of succeeding steps in HR. In cells depleted of the tumor suppressor protein BRCA2, or overexpressing its RAD51-binding BRC repeats, RAD51 fails to assemble at damage sites, although RPA accumulates unhindered. By contrast, in cells lacking a BRCA2 carboxyl (C)-terminal region targeted by cancer-causing mutations, damage-induced RAD51 assemblies initiate but do not extend into filaments. We suggest a model wherein RAD51 assembly proceeds concurrently with end-resection at adjacent sites, via an initiation step dependent on the BRC repeats, followed by filament extension through the C-terminal region of BRCA2.
Collapse
Affiliation(s)
- Kalina T Haas
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - MiYoung Lee
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Alessandro Esposito
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Ashok R Venkitaraman
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
37
|
Son MY, Hasty P. Homologous recombination defects and how they affect replication fork maintenance. AIMS GENETICS 2019; 5:192-211. [PMID: 31435521 PMCID: PMC6690234 DOI: 10.3934/genet.2018.4.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023]
Abstract
Homologous recombination (HR) repairs DNA double strand breaks (DSBs) and stabilizes replication forks (RFs). RAD51 is the recombinase for the HR pathway. To preserve genomic integrity, RAD51 forms a filament on the 3' end of a DSB and on a single-stranded DNA (ssDNA) gap. But unregulated HR results in undesirable chromosomal rearrangements. This review describes the multiple mechanisms that regulate HR with a focus on those mechanisms that promote and contain RAD51 filaments to limit chromosomal rearrangements. If any of these pathways break down and HR becomes unregulated then disease, primarily cancer, can result.
Collapse
Affiliation(s)
- Mi Young Son
- Department of Molecular Medicine and Institute of Biotechnology, UT Health San Antonio, 15355 Lambda Drive, San Antonio, USA
| | - Paul Hasty
- Department of Molecular Medicine and Institute of Biotechnology, UT Health San Antonio, 15355 Lambda Drive, San Antonio, USA
- The Mays Cancer Center, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, USA
| |
Collapse
|
38
|
Zhao W, Wiese C, Kwon Y, Hromas R, Sung P. The BRCA Tumor Suppressor Network in Chromosome Damage Repair by Homologous Recombination. Annu Rev Biochem 2019; 88:221-245. [PMID: 30917004 DOI: 10.1146/annurev-biochem-013118-111058] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutations in the BRCA1 and BRCA2 genes predispose afflicted individuals to breast, ovarian, and other cancers. The BRCA-encoded products form complexes with other tumor suppressor proteins and with the recombinase enzyme RAD51 to mediate chromosome damage repair by homologous recombination and also to protect stressed DNA replication forks against spurious nucleolytic attrition. Understanding how the BRCA tumor suppressor network executes its biological functions would provide the foundation for developing targeted cancer therapeutics, but progress in this area has been greatly hampered by the challenge of obtaining purified BRCA complexes for mechanistic studies. In this article, we review how recent effort begins to overcome this technical challenge, leading to functional and structural insights into the biochemical attributes of these complexes and the multifaceted roles that they fulfill in genome maintenance. We also highlight the major mechanistic questions that remain.
Collapse
Affiliation(s)
- Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA; ,
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA; ,
| | - Robert Hromas
- Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA; ,
| |
Collapse
|
39
|
Long C, Liu J, Hu G, Feng H, Zhou D, Wang J, Zhai X, Zhao Z, Yu S, Wang T, Jia G. Modulation of homologous recombination repair gene polymorphisms on genetic damage in chromate exposed workers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 66:126-132. [PMID: 30677706 DOI: 10.1016/j.etap.2019.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/29/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Hexavalent chromium [Cr(VI)] is one of the most common environmental carcinogens, which is associated with DNA damage, genetic instability and increase the risk of cancer development. However, the mechanisms of genetic damage induced by Cr(VI) remains to be thoroughly illustrated. A molecular epidemiological study was conducted on 120 chromate exposed workers and 97 controls. Results indicated that,the rs12432907 of XRCC3 carrying T allele, the rs144848 of BRCA2 with C allele and the rs1805800 of NBS1 with genotype(TT) of individuals were associated with lower genetic damage, while the rs2295152 of XRCC3 carrying T allele, the rs13312986 (CC and CT genotypes) and the rs2697679 of NBS1 with A allele were associated with higher genetic damage in workers exposed to chromate. The interaction of chromate exposure with rs2295152 of XRCC3 had a significant effect on micronuclei frequency (MNF). The gene polymorphisms in homologous recombination repair pathway could modulate chromate-induced genetic damage.
Collapse
Affiliation(s)
- Changmao Long
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Jiaxing Liu
- Department of Medical Record, Third Hospital of Peking University, Beijing, 100191, PR China
| | - Guiping Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Huimin Feng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Di Zhou
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, PR China
| | - Jing Wang
- Yima Center for Disease Control and Prevention, Sanmenxia City, Henan Province, 472300, PR China
| | - Xinxia Zhai
- Yima Center for Disease Control and Prevention, Sanmenxia City, Henan Province, 472300, PR China
| | - Zuchang Zhao
- Sanmenxia Municipal Center for Disease Control and Prevention, Sanmenxia, Henan Province, 472000, PR China
| | - Shanfa Yu
- Institute of Occupational Disease Prevention, Zhengzhou City, Henan Province, 450052, PR China
| | - Tiancheng Wang
- Department of Clinical Laboratories, Third Hospital of Peking University, Beijing 100191, PR China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
40
|
Caleca L, Colombo M, van Overeem Hansen T, Lázaro C, Manoukian S, Parsons MT, Spurdle AB, Radice P. GFP-Fragment Reassembly Screens for the Functional Characterization of Variants of Uncertain Significance in Protein Interaction Domains of the BRCA1 and BRCA2 Genes. Cancers (Basel) 2019; 11:E151. [PMID: 30696104 PMCID: PMC6406614 DOI: 10.3390/cancers11020151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 01/14/2023] Open
Abstract
Genetic testing for BRCA1 and BRCA2 genes has led to the identification of many unique variants of uncertain significance (VUS). Multifactorial likelihood models that predict the odds ratio for VUS in favor or against cancer causality, have been developed, but their use is conditioned by the amount of necessary data, which are difficult to obtain if a variant is rare. As an alternative, variants mapping to the coding regions can be examined using in vitro functional assays. BRCA1 and BRCA2 proteins promote genome protection by interacting with different proteins. In this study, we assessed the functional effect of two sets of variants in BRCA genes by exploiting the green fluorescent protein (GFP)-reassembly in vitro assay, which was set-up to test the BRCA1/BARD1, BRCA1/UbcH5a, and BRCA2/DSS1 interactions. Based on the findings observed for the validation panels of previously classified variants, BRCA1/UbcH5a and BRCA2/DSS1 binding assays showed 100% sensitivity and specificity in identifying pathogenic and non-pathogenic variants. While the actual efficiency of these assays in assessing the clinical significance of BRCA VUS has to be verified using larger validation panels, our results suggest that the GFP-reassembly assay is a robust method to identify variants affecting normal protein functioning and contributes to the classification of VUS.
Collapse
Affiliation(s)
- Laura Caleca
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Thomas van Overeem Hansen
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
- Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology. Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, 08900 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain.
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia.
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia.
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|
41
|
Saenz-Ponce N, Pillay R, de Long LM, Kashyap T, Argueta C, Landesman Y, Hazar-Rethinam M, Boros S, Panizza B, Jacquemyn M, Daelemans D, Gannon OM, Saunders NA. Targeting the XPO1-dependent nuclear export of E2F7 reverses anthracycline resistance in head and neck squamous cell carcinomas. Sci Transl Med 2018; 10:eaar7223. [PMID: 29950445 DOI: 10.1126/scitranslmed.aar7223] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/18/2018] [Indexed: 12/17/2022]
Abstract
Patient mortality rates have remained stubbornly high (40%) for the past 35 years in head and neck squamous cell carcinoma (HNSCC) due to inherent or acquired drug resistance. Thus, a critical issue in advanced SCC is to identify and target the mechanisms that contribute to therapy resistance. We report that the transcriptional inhibitor, E2F7, is mislocalized to the cytoplasm in >80% of human HNSCCs, whereas the transcriptional activator, E2F1, retains localization to the nucleus in SCC. This results in an imbalance in the control of E2F-dependent targets such as SPHK1, which is derepressed and drives resistance to anthracyclines in HNSCC. Specifically, we show that (i) E2F7 is subject to exportin 1 (XPO1)-dependent nuclear export, (ii) E2F7 is selectively mislocalized in most of SCC and multiple other tumor types, (iii) mislocalization of E2F7 in HNSCC causes derepression of Sphk1 and drives anthracycline resistance, and (iv) anthracycline resistance can be reversed with a clinically available inhibitor of XPO1, selinexor, in xenotransplant models of HNSCC. Thus, we have identified a strategy to repurpose anthracyclines for use in SCC. More generally, we provide a strategy to restore the balance of E2F1 (activator) and E2F7 (inhibitor) activity in cancer.
Collapse
Affiliation(s)
- Natalia Saenz-Ponce
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Rachael Pillay
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Lilia Merida de Long
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | | | | | | | | | - Samuel Boros
- Department of Pathology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Benedict Panizza
- Department of Ear Nose and Throat, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
- School of Medicine, University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Maarten Jacquemyn
- Katholieke Universiteit Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Dirk Daelemans
- Katholieke Universiteit Leuven, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat 49, 3000 Leuven, Belgium
| | - Orla M Gannon
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Nicholas A Saunders
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Translational Research Institute, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
42
|
Electrostatic Interactions between Hendra Virus Matrix Proteins Are Required for Efficient Virus-Like-Particle Assembly. J Virol 2018; 92:JVI.00143-18. [PMID: 29695428 DOI: 10.1128/jvi.00143-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/17/2018] [Indexed: 01/22/2023] Open
Abstract
Hendra virus (HeV) is a zoonotic paramyxovirus belonging to the genus Henipavirus HeV is highly pathogenic, and it can cause severe neurological and respiratory illnesses in both humans and animals, with an extremely high mortality rate of up to 70%. Among the genes that HeV encodes, the matrix (M) protein forms an integral part of the virion structure and plays critical roles in coordinating viral assembly and budding. Nevertheless, the molecular mechanism of this process is not fully elucidated. Here, we determined the crystal structure of HeV M to 2.5-Å resolution. The dimeric structural configuration of HeV M is similar to that of Newcastle disease virus (NDV) M and is fundamental to protein stability and effective virus-like-particle (VLP) formation. Analysis of the crystal packing revealed a notable interface between the α1 and α2 helices of neighboring HeV M dimers, with key residues sharing degrees of sequence conservation among henipavirus M proteins. Structurally, a network of electrostatic interactions dominates the α1-α2 interactions, involving residues Arg57 from the α1 helix and Asp105 and Glu108 from the α2 helix. The disruption of the α1-α2 interactions using engineered charge reversal substitutions (R57E, R57D, and E108R) resulted in significant reduction or abrogation of VLP production. This phenotype was reversible with an R57E E108R mutant that was designed to partly restore salt bridge contacts. Collectively, our results define and validate previously underappreciated regions of henipavirus M proteins that are crucial for productive VLP assembly.IMPORTANCE Hendra virus is a henipavirus associated with lethal infections in humans. It is classified as a biosafety level 4 (BSL4) agent, and there are currently no preventive or therapeutic treatments available against HeV. Vital to henipavirus pathogenesis, the structural protein M has been implicated in viral assembly and budding, as well as host-virus interactions. However, there is no structural information available for henipavirus M, and the basis of M-driven viral assembly is not fully elucidated. We demonstrate the first three-dimensional structure of a henipavirus M protein. We show the dimeric organization of HeV M as a basic unit for higher-order oligomerization. Additionally, we define key regions/residues of HeV M that are required for productive virus-like-particle formation. These findings provide the first insight into the mechanism of M-driven assembly in henipavirus.
Collapse
|
43
|
β1-Integrin Impacts Rad51 Stability and DNA Double-Strand Break Repair by Homologous Recombination. Mol Cell Biol 2018; 38:MCB.00672-17. [PMID: 29463647 DOI: 10.1128/mcb.00672-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/15/2018] [Indexed: 01/04/2023] Open
Abstract
The molecular mechanisms underlying resistance to radiotherapy in breast cancer cells remain elusive. Previously, we reported that elevated β1-integrin is associated with enhanced breast cancer cell survival postirradiation, but how β1-integrin conferred radioresistance was unclear. Ionizing radiation (IR) induced cell killing correlates with the efficiency of DNA double-strand break (DSB) repair, and we found that nonmalignant breast epithelial (S1) cells with low β1-integrin expression have a higher frequency of S-phase-specific IR-induced chromosomal aberrations than the derivative malignant breast (T4-2) cells with high β1-integrin expression. In addition, there was an increased frequency of IR-induced homologous recombination (HR) repairosome focus formation in T4-2 cells compared with that of S1 cells. Cellular levels of Rad51 in T4-2 cells, a critical factor in HR-mediated DSB repair, were significantly higher. Blocking or depleting β1-integrin activity in T4-2 cells reduced Rad51 levels, while ectopic expression of β1-integrin in S1 cells correspondingly increased Rad51 levels, suggesting that Rad51 is regulated by β1-integrin. The low level of Rad51 protein in S1 cells was found to be due to rapid degradation by the ubiquitin proteasome pathway (UPP). Furthermore, the E3 ubiquitin ligase RING1 was highly upregulated in S1 cells compared to T4-2 cells. Ectopic β1-integrin expression in S1 cells reduced RING1 levels and increased Rad51 accumulation. In contrast, β1-integrin depletion in T4-2 cells significantly increased RING1 protein levels and potentiated Rad51 ubiquitination. These data suggest for the first time that elevated levels of the extracellular matrix receptor β1-integrin can increase tumor cell radioresistance by decreasing Rad51 degradation through a RING1-mediated proteasomal pathway.
Collapse
|
44
|
Vuorinen EM, Rajala NK, Ihalainen TO, Kallioniemi A. Depletion of nuclear import protein karyopherin alpha 7 (KPNA7) induces mitotic defects and deformation of nuclei in cancer cells. BMC Cancer 2018; 18:325. [PMID: 29580221 PMCID: PMC5870926 DOI: 10.1186/s12885-018-4261-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/20/2018] [Indexed: 01/08/2023] Open
Abstract
Background Nucleocytoplasmic transport is a tightly regulated process carried out by specific transport machinery, the defects of which may lead to a number of diseases including cancer. Karyopherin alpha 7 (KPNA7), the newest member of the karyopherin alpha nuclear importer family, is expressed at a high level during embryogenesis, reduced to very low or absent levels in most adult tissues but re-expressed in cancer cells. Methods We used siRNA-based knock-down of KPNA7 in cancer cell lines, followed by functional assays (proliferation and cell cycle) and immunofluorescent stainings to determine the role of KPNA7 in regulation of cancer cell growth, proper mitosis and nuclear morphology. Results In the present study, we show that the silencing of KPNA7 results in a dramatic reduction in pancreatic and breast cancer cell growth, irrespective of the endogenous KPNA7 expression level. This growth inhibition is accompanied by a decrease in the fraction of S-phase cells as well as aberrant number of centrosomes and severe distortion of the mitotic spindles. In addition, KPNA7 depletion leads to reorganization of lamin A/C and B1, the main nuclear lamina proteins, and drastic alterations in nuclear morphology with lobulated and elongated nuclei. Conclusions Taken together, our data provide new important evidence on the contribution of KPNA7 to the regulation of cancer cell growth and the maintenance of nuclear envelope environment, and thus deepens our understanding on the impact of nuclear transfer proteins in cancer pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12885-018-4261-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa M Vuorinen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland
| | - Nina K Rajala
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland
| | - Teemu O Ihalainen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland.,BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, University of Tampere, PL 100, 33014, Tampere, Finland.,Tampere Imaging Facility, BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland
| | - Anne Kallioniemi
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, PL 100, 33014, Tampere, Finland. .,Fimlab Laboratories, Biokatu 4, 33520, Tampere, Finland.
| |
Collapse
|
45
|
Zhou Q, Holloman WK, Kojic M. Approaches to Understanding the Mediator Function of Brh2 in Ustilago maydis. Methods Enzymol 2018; 600:513-525. [PMID: 29458772 DOI: 10.1016/bs.mie.2017.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Primary components of the homologous recombination pathway in eukaryotes include Rad51 whose function is to search for DNA sequence homology and promote strand exchange, its mediator BRCA2, and Dss1, a key regulator of BRCA2. We seek to understand the role of BRCA2 in governing the activity of Rad51 and to learn how BRCA2 function is regulated by Dss1. We use the microbe Ustilago maydis as a model system for experimentation because it has a well-conserved BRCA2-homolog, Brh2, and is amenable to biochemical and molecular genetic manipulations and analysis. The powerful attributes of this system open the way for gaining insight into BRCA2's molecular mechanism through avenues not immediately approachable in the vertebrate systems. Here we provide protocols for preparing Brh2, Dss1, and Rad51 as reagents for use in biochemical assays to monitor function and present methods for transposon-based mutational analysis of Brh2 for use in genetic dissection of function.
Collapse
Affiliation(s)
- Qingwen Zhou
- Weill Cornell Medical College, New York, NY, United States
| | | | - Milorad Kojic
- Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
46
|
Browning CL, Wise JP. Prolonged exposure to particulate chromate inhibits RAD51 nuclear import mediator proteins. Toxicol Appl Pharmacol 2017; 331:101-107. [PMID: 28554658 PMCID: PMC5568470 DOI: 10.1016/j.taap.2017.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
Particulate hexavalent chromium (Cr(VI)) is a human lung carcinogen and a human health concern. The induction of structural chromosome instability is considered to be a driving mechanism of Cr(VI)-induced carcinogenesis. Homologous recombination repair protects against Cr(VI)-induced chromosome damage, due to its highly accurate repair of Cr(VI)-induced DNA double strand breaks. However, recent studies demonstrate Cr(VI) inhibits homologous recombination repair through the misregulation of RAD51. RAD51 is an essential protein in HR repair that facilitates the search for a homologous sequence. Recent studies show prolonged Cr(VI) exposure prevents proper RAD51 subcellular localization, causing it to accumulate in the cytoplasm. Since nuclear import of RAD51 is crucial to its function, this study investigated the effect of Cr(VI) on the RAD51 nuclear import mediators, RAD51C and BRCA2. We show acute (24h) Cr(VI) exposure induces the proper localization of RAD51C and BRCA2. In contrast, prolonged (120h) exposure increased the cytoplasmic localization of both proteins, although RAD51C localization was more severely impaired. These results correlate temporally with the previously reported Cr(VI)-induced RAD51 cytoplasmic accumulation. In addition, we found Cr(VI) does not inhibit interaction between RAD51 and its nuclear import mediators. Altogether, our results suggest prolonged Cr(VI) exposure inhibits the nuclear import of RAD51C, and to a lesser extent, BRCA2, which results in the cytoplasmic accumulation of RAD51. Cr(VI)-induced inhibition of nuclear import may play a key role in its carcinogenic mechanism since the nuclear import of many tumor suppressor proteins and DNA repair proteins is crucial to their function.
Collapse
Affiliation(s)
- Cynthia L Browning
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, United States; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, United States.
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, United States; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
47
|
Ubiquitin-specific protease 21 stabilizes BRCA2 to control DNA repair and tumor growth. Nat Commun 2017; 8:137. [PMID: 28743957 PMCID: PMC5526993 DOI: 10.1038/s41467-017-00206-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 06/13/2017] [Indexed: 01/23/2023] Open
Abstract
Tumor growth relies on efficient DNA repair to mitigate the detrimental impact of DNA damage associated with excessive cell division. Modulating repair factor function, thus, provides a promising strategy to manipulate malignant growth. Here, we identify the ubiquitin-specific protease USP21 as a positive regulator of BRCA2, a key mediator of DNA repair by homologous recombination. USP21 interacts with, deubiquitinates and stabilizes BRCA2 to promote efficient RAD51 loading at DNA double-strand breaks. As a result, depletion of USP21 decreases homologous recombination efficiency, causes an increase in DNA damage load and impairs tumor cell survival. Importantly, BRCA2 overexpression partially restores the USP21-associated survival defect. Moreover, we show that USP21 is overexpressed in hepatocellular carcinoma, where it promotes BRCA2 stability and inversely correlates with patient survival. Together, our findings identify deubiquitination as a means to regulate BRCA2 function and point to USP21 as a potential therapeutic target in BRCA2-proficient tumors.BRCA2 is essential for the repair of DNA damage; therefore, defects in BRCA2 are associated with tumorigenesis but also with increased susceptibility to genotoxic stress. Here the authors show that USP21 regulates the ability of tumor cells to repair damaged DNA by regulating BRCA2 stability.
Collapse
|
48
|
Abstract
Brh2, the BRCA2 ortholog in the fungus Ustilago maydis, mediates delivery of Rad51 to DNA during the course of homology-directed DNA repair. Rad51 interacts with Brh2 through the highly conserved BRC element and through a second region termed CRE located at the extreme carboxy terminus. Dss1, a small intrinsically unstructured protein that interacts with Brh2, is crucial for its activity in DNA repair, but the mechanism of this regulation is uncertain. In previous studies, we found that interaction of Brh2 with DNA was strongly modulated by association with Dss1. Here we report that CRE influences interaction of Dss1 with Brh2 and that Dss1 status markedly alters interaction of Brh2 with Rad51. While it appears that a single Rad51 protomer associates with Brh2 in complex with Dss1, loss of Dss1 is accompanied by a large increase in the number of Rad51 protomers that can associate with Brh2. Concomitant with this buildup of Rad51, Brh2 loses its ability to bind DNA. These observations suggest a feedback circuit in which release of Dss1 from Brh2 as it binds DNA triggers nucleation of a short Rad51 oligomer on Brh2, which in turn promotes dissociation of Brh2 from the DNA.
Collapse
Affiliation(s)
- Qingwen Zhou
- Department of Microbiology and Immunology, Weill Cornell Medical College , New York, New York 10065, United States
| | - William K Holloman
- Department of Microbiology and Immunology, Weill Cornell Medical College , New York, New York 10065, United States
| |
Collapse
|
49
|
Meyer S, Stevens A, Paredes R, Schneider M, Walker MJ, Williamson AJK, Gonzalez-Sanchez MB, Smetsers S, Dalal V, Teng HY, White DJ, Taylor S, Muter J, Pierce A, de Leonibus C, Rockx DAP, Rooimans MA, Spooncer E, Stauffer S, Biswas K, Godthelp B, Dorsman J, Clayton PE, Sharan SK, Whetton AD. Acquired cross-linker resistance associated with a novel spliced BRCA2 protein variant for molecular phenotyping of BRCA2 disruption. Cell Death Dis 2017; 8:e2875. [PMID: 28617445 PMCID: PMC5520920 DOI: 10.1038/cddis.2017.264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/29/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022]
Abstract
BRCA2 encodes a protein with a fundamental role in homologous recombination that is essential for normal development. Carrier status of mutations in BRCA2 is associated with familial breast and ovarian cancer, while bi-allelic BRCA2 mutations can cause Fanconi anemia (FA), a cancer predisposition syndrome with cellular cross-linker hypersensitivity. Cancers associated with BRCA2 mutations can acquire chemo-resistance on relapse. We modeled acquired cross-linker resistance with an FA-derived BRCA2-mutated acute myeloid leukemia (AML) platform. Associated with acquired cross-linker resistance was the expression of a functional BRCA2 protein variant lacking exon 5 and exon 7 (BRCA2ΔE5+7), implying a role for BRCA2 splicing for acquired chemo-resistance. Integrated network analysis of transcriptomic and proteomic differences for phenotyping of BRCA2 disruption infers impact on transcription and chromatin remodeling in addition to the DNA damage response. The striking overlap with transcriptional profiles of FA patient hematopoiesis and BRCA mutation associated ovarian cancer helps define and explicate the ‘BRCAness’ profile.
Collapse
Affiliation(s)
- Stefan Meyer
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric and Adolescent Oncology, Royal Manchester Children's Hospital, Manchester, UK.,Young Oncology Unit, Christie Hospital, Manchester, UK
| | - Adam Stevens
- Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric Endocrinology, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK
| | - Roberto Paredes
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Marion Schneider
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Walker
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew J K Williamson
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Maria-Belen Gonzalez-Sanchez
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Stephanie Smetsers
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Vineet Dalal
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Hsiang Ying Teng
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Daniel J White
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Sam Taylor
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Joanne Muter
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew Pierce
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Chiara de Leonibus
- Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric Endocrinology, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK
| | - Davy A P Rockx
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Martin A Rooimans
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Elaine Spooncer
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Stacey Stauffer
- Mouse Cancer Genetics Program; Center for Cancer Research; Frederick National Laboratory for Cancer Research; National Cancer Institute, Frederick, MD, USA
| | - Kajal Biswas
- Mouse Cancer Genetics Program; Center for Cancer Research; Frederick National Laboratory for Cancer Research; National Cancer Institute, Frederick, MD, USA
| | - Barbara Godthelp
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Josephine Dorsman
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Peter E Clayton
- Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric Endocrinology, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK
| | - Shyam K Sharan
- Mouse Cancer Genetics Program; Center for Cancer Research; Frederick National Laboratory for Cancer Research; National Cancer Institute, Frederick, MD, USA
| | - Anthony D Whetton
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK.,Stoller Biomarker Discovery Centre, University of Manchester, Manchester, UK
| |
Collapse
|
50
|
A Class of Environmental and Endogenous Toxins Induces BRCA2 Haploinsufficiency and Genome Instability. Cell 2017; 169:1105-1118.e15. [PMID: 28575672 PMCID: PMC5457488 DOI: 10.1016/j.cell.2017.05.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 02/02/2023]
Abstract
Mutations truncating a single copy of the tumor suppressor, BRCA2, cause cancer susceptibility. In cells bearing such heterozygous mutations, we find that a cellular metabolite and ubiquitous environmental toxin, formaldehyde, stalls and destabilizes DNA replication forks, engendering structural chromosomal aberrations. Formaldehyde selectively depletes BRCA2 via proteasomal degradation, a mechanism of toxicity that affects very few additional cellular proteins. Heterozygous BRCA2 truncations, by lowering pre-existing BRCA2 expression, sensitize to BRCA2 haploinsufficiency induced by transient exposure to natural concentrations of formaldehyde. Acetaldehyde, an alcohol catabolite detoxified by ALDH2, precipitates similar effects. Ribonuclease H1 ameliorates replication fork instability and chromosomal aberrations provoked by aldehyde-induced BRCA2 haploinsufficiency, suggesting that BRCA2 inactivation triggers spontaneous mutagenesis during DNA replication via aberrant RNA-DNA hybrids (R-loops). These findings suggest a model wherein carcinogenesis in BRCA2 mutation carriers can be incited by compounds found pervasively in the environment and generated endogenously in certain tissues with implications for public health.
Collapse
|