1
|
Fajardo-Despaigne JE, Lombard-Vadnais F, Pelletier AN, Olazabal A, Boutin L, Pasquin S, Janelle V, Legault L, Delisle JS, Hillhouse EE, Coderre L, Lesage S. Characterization and effective expansion of CD4 -CD8 - TCRαβ + T cells from individuals living with type 1 diabetes. Mol Ther Methods Clin Dev 2025; 33:101400. [PMID: 39877593 PMCID: PMC11772147 DOI: 10.1016/j.omtm.2024.101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025]
Abstract
CD4-CD8- TCRαβ+ (double-negative [DN]) T cells represent a rare T cell population that promotes immunological tolerance through various cytotoxic mechanisms. In mice, autologous transfer of DN T cells has shown protective effects against autoimmune diabetes and graft-versus-host disease. Here, we characterized human DN T cells from people living with type 1 diabetes (PWT1D) and healthy controls. We found that while DN T cells and CD8+ T cells share many similarities, DN T cells are a unique T cell population, both at the transcriptomic and protein levels. We also show that by using various cytokine combinations, human DN T cells can be expanded in vitro up to 1,000-fold (mean >250-fold) and remain functional post-expansion. In addition, we report that DN T cells from PWT1D display a phenotype comparable to that of healthy controls, efficiently expand, and are highly functional. As DN T cells are immunoregulatory and can prevent T1D in various mouse models, these observations suggest that autologous DN T cells may be amenable to therapy for the prevention or treatment of T1D.
Collapse
Affiliation(s)
| | - Félix Lombard-Vadnais
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | | | - Aïnhoa Olazabal
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Lucie Boutin
- Département de Recherche Clinique, CIUSSS de l’Est-de-l’Île-de-Montréal, Montréal, QC, Canada
| | - Sarah Pasquin
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Valérie Janelle
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Laurent Legault
- Département de Recherche Clinique, CIUSSS de l’Est-de-l’Île-de-Montréal, Montréal, QC, Canada
- Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Jean-Sébastien Delisle
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Erin E. Hillhouse
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Lise Coderre
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Lesage
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Galdo-Torres D, Andreu S, Caballero O, Hernández-Ruiz I, Ripa I, Bello-Morales R, López-Guerrero JA. Immune Modulatory Effects of Vitamin D on Herpesvirus Infections. Int J Mol Sci 2025; 26:1767. [PMID: 40004230 PMCID: PMC11855552 DOI: 10.3390/ijms26041767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
In addition to its classical role in calcium and phosphate metabolism regulation, vitamin D also has an important impact on immunity modulation. Vitamin D regulates the immune response, shifting from a proinflammatory state to a more tolerogenic one by increasing the release of anti-inflammatory cytokines while downregulating proinflammatory cytokines. Thus, low levels of vitamin D have been associated with an increased risk of developing autoimmune diseases like multiple sclerosis and type 1 diabetes. Furthermore, this prohormone also enhances the release of well-known antimicrobial peptides, like cathelicidin LL-37 and β-defensins; therefore, it has been proposed that vitamin D serum levels might be related to the risk of well-known pathogen infections, including herpesviruses. These are a group of widely spread viral pathogens that can cause severe encephalitis or tumors like Kaposi's sarcoma and Burkitt lymphoma. However, there is no consensus on the minimum levels of vitamin D or the recommended daily dose, making it difficult to establish a possible association between these two factors. This narrative non-systematic review will analyze the mechanisms by which vitamin D regulates the immune system and recent studies about whether there is an association between vitamin D serum levels and herpesvirus infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (D.G.-T.); (O.C.); (I.R.); (J.A.L.-G.)
| | | |
Collapse
|
3
|
Palacios PA, Santibañez Á, Aguirre-Muñoz F, Gutiérrez-Vera C, Niño de Zepeda-Carrizo V, Góngora-Pimentel M, Müller M, Cáceres M, Kalergis AM, Carreño LJ. Can invariant Natural Killer T cells drive B cell fate? a look at the humoral response. Front Immunol 2025; 16:1505883. [PMID: 40040714 PMCID: PMC11876049 DOI: 10.3389/fimmu.2025.1505883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Invariant Natural Killer T (NKT) cells represent a unique subset of innate-like T cells that express both NK cell and T cell receptors. These cells are rapidly activated by glycolipid antigens presented via CD1d molecules on antigen-presenting cells (APCs), including B cells, dendritic cells (DCs), and macrophages, or through cytokine-dependent mechanisms. Their ability to produce a wide range of cytokines and express costimulatory molecules underscores their critical role in bridging innate and adaptive immunity. B cells, traditionally recognized for their role in antibody production, also act as potent APCs due to their high expression of CD1d, enabling direct interactions with iNKT cells. This interaction has significant implications for humoral immunity, influencing B cell activation, class-switch recombination (CSR), germinal center formation, and memory B cell differentiation, thus expanding the conventional paradigm of T cell-B cell interactions. While the influence of iNKT cells on B cell biology and humoral responses is well-supported, many aspects of their interaction remain unresolved. Key questions include the roles of different iNKT cell subsets, the diversity of APCs, the spatiotemporal dynamics of these interactions, especially during early activation, and the potential for distinct glycolipid ligands to modulate immune outcomes. Understanding these factors could provide valuable insights into how iNKT cells regulate B cell-mediated immunity and offer opportunities to harness these interactions in immunotherapeutic applications, such as vaccine development. In this review, we examine these unresolved aspects and propose a novel perspective on the regulatory potential of iNKT cells in humoral immunity, emphasizing their promise as a target for innovative vaccine strategies.
Collapse
Affiliation(s)
- Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Álvaro Santibañez
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernanda Aguirre-Muñoz
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Valentina Niño de Zepeda-Carrizo
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Martín Góngora-Pimentel
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Hosono Y, Tomiyasu N, Kasai H, Ishikawa E, Takahashi M, Imamura A, Ishida H, Compostella F, Kida H, Kumanogoh A, Bamba T, Izumi Y, Yamasaki S. Identification of α-galactosylceramide as an endogenous mammalian antigen for iNKT cells. J Exp Med 2025; 222:e20240728. [PMID: 39704712 DOI: 10.1084/jem.20240728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/08/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are unconventional T cells recognizing lipid antigens in a CD1d-restricted manner. Among these lipid antigens, α-galactosylceramide (α-GalCer), which was originally identified in marine sponges, is the most potent antigen. Although the presence of α-anomeric hexosylceramide and microbiota-derived branched α-GalCer is reported, antigenic α-GalCer has not been identified in mammals. Here, we developed a high-resolution separation and detection system, supercritical fluid chromatography tandem mass spectrometry (SFC/MS/MS), that can discriminate hexosylceramide diastereomers (α-GalCer, α-GlcCer, β-GalCer, or β-GlcCer). The B16 melanoma tumor cell line does not activate iNKT cells; however, ectopic expression of CD1d was sufficient to activate iNKT cells without adding antigens. B16 melanoma was unlikely to generate iNKT cell antigens; instead, antigen activity was detected in cell culture serum. Activity-based purification and SFC/MS/MS identified dihydrosphingosine-based saturated α-GalCer as an antigenic component in serum, bile, and lymphoid tissues. These results show the first evidence for the presence of potent antigenic α-GalCer in mammals.
Collapse
Affiliation(s)
- Yuki Hosono
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University , Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyuki Tomiyasu
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Hayato Kasai
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University , Suita, Japan
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University , Suita, Japan
| | - Masatomo Takahashi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan
- Institute for Glyco-core Research, Gifu University , Gifu, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan
- Institute for Glyco-core Research, Gifu University , Gifu, Japan
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Hiroshi Kida
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Immunopathology, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University , Suita, Japan
- Center for Advanced Modalities and DDS, Osaka University , Suita, Japan
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University , Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University , Suita, Japan
- Center for Advanced Modalities and DDS, Osaka University , Suita, Japan
| |
Collapse
|
5
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Sun J, Xu H, Li B, Deng W, Han X, Zhong X, Zhu J, Jiang Y, Wang Z, Zhang D, Sun G. IFITM1 aggravates ConA-Induced autoimmune hepatitis by promoting NKT cell activation through increased AMPK-Dependent mitochondrial function. Int Immunopharmacol 2025; 144:113692. [PMID: 39602958 DOI: 10.1016/j.intimp.2024.113692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Although interferon-induced transmembrane 1 (IFITM1) is known for its crucial role in antiviral immunity, its involvement in autoimmune hepatitis (AIH) remains largely unexplored. In this study, we observed that IFITM1 expression is markedly upregulated in a Concanavalin A (ConA)-induced AIH model, with particularly high and markedly elevated expression in natural killer T (NKT) cells. To further understand the role of IFITM1, we examined the responses of IFITM1-/- mice in a model of ConA-induced liver injury. In comparison to wild-type mice, IFITM1-/- mice exhibited reduced sensitivity in this model, as evidenced by significantly ameliorated necrosis areas, lower serum aminotransferase levels, a reduced number of intrahepatic NKT cells, and decreased expression of inflammatory factors, such as IL-1β, IL-6, IFN-γ and TNF-α. Notably, by using IFITM1-GFP mice and IFITM1-/- mice, we demonstrated that IFITM1 expression in NKT cells is crucial for their proliferation, proinflammatory cytokine production, and cytotoxic functions. Furthermore, analysis of single-cell RNA sequencingdata revealed that IFITM1 is essential for mitochondrial function, which is mediated by the AMP-activated protein kinase (AMPK) pathway. We also validated the importance of IFITM1 for the AMPK pathway and mitochondrial ATP synthesis in vivo. Together, our findings elucidate that IFITM1 could regulate NKT cell activation and survival by promoting mitochondrial function during AIH.
Collapse
Affiliation(s)
- Jie Sun
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Haozhe Xu
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Buer Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wanqing Deng
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaotong Han
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xinjie Zhong
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jingjing Zhu
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yuan Jiang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zeyu Wang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Dong Zhang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Guangyong Sun
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 10020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
7
|
Prosser AC, Klenerman P, Lucas M. Understanding Liver Transplantation Outcomes Through the Lens of Its Tissue-resident Immunobiome. Transplantation 2025:00007890-990000000-00973. [PMID: 39780303 DOI: 10.1097/tp.0000000000005303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tissue-resident lymphocytes (TRLs) provide a front-line immunological defense mechanism uniquely placed to detect perturbations in tissue homeostasis. The heterogeneous TRL population spans the innate to adaptive immune continuum, with roles during normal physiology in homeostatic maintenance, tissue repair, pathogen detection, and rapid mounting of immune responses. TRLs are especially enriched in the liver, with every TRL subset represented, including liver-resident natural killer cells; tissue-resident memory B cells; conventional tissue-resident memory CD8, CD4, and regulatory T cells; and unconventional gamma-delta, natural killer, and mucosal-associated invariant T cells. The importance of donor- and recipient-derived TRLs after transplantation is becoming increasingly recognized, although it has not been examined in detail after liver transplantation. This review summarizes the evidence for the roles of TRLs in liver transplant immunology, focusing on their features, functions, and potential for their harnessing to improve transplant outcomes.
Collapse
Affiliation(s)
- Amy C Prosser
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Paul Klenerman
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Michaela Lucas
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Immunology, PathWest Laboratory Medicine, Perth, WA, Australia
- Department of Immunology, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Department of Immunology, Perth Children's Hospital, Perth, WA, Australia
| |
Collapse
|
8
|
Wang Z, Zhang G. CAR-iNKT cell therapy: mechanisms, advantages, and challenges. Curr Res Transl Med 2024; 73:103488. [PMID: 39662251 DOI: 10.1016/j.retram.2024.103488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
In recent years, chimeric antigen receptor (CAR) T-cell therapy has emerged as a groundbreaking approach in cancer immunotherapy. Particularly in hematologic malignancies, such as B-cell acute lymphoblastic leukemia (B-ALL), B cell lymphomas and multiple myeloma. CAR-T therapy has demonstrated remarkable clinical efficacy, leading to the approval of several CAR-T cell products and offering significant benefits to numerous leukemia patients. Despite these successes, the application of CAR-T cells in solid tumors remains limited due to significant challenges, including immunosuppressive tumor microenvironments, heterogeneous antigen expression, and treatment-associated toxicities. In parallel with CAR-T development, researchers are investigating other immune cell platforms to overcome these obstacles. Among these, invariant natural killer T (iNKT) cells have garnered increasing attention for their unique immunological properties. Unlike conventional T cells, iNKT cells are a subset of T lymphocytes characterized by the expression of a semi-invariant T-cell receptor (TCR) that recognizes lipid antigens presented by CD1d molecules. This distinctive antigen recognition mechanism enables iNKT cells to bridge innate and adaptive immunity, granting them potent antitumor activity and the ability to modulate the tumor microenvironment. Additionally, iNKT cells exhibit intrinsic resistance to exhaustion and an enhanced ability to infiltrate solid tumors compared to traditional T cells. Building on these properties, researchers are leveraging CAR technology to enhance iNKT cell tumor-targeting capabilities, aiming to overcome barriers encountered in solid tumor therapy. This review provides an in-depth discussion of the application and therapeutic potential of CAR-iNKT cells in cancer immunotherapy, with a focus on their advantages over conventional CAR-T cells and their role in addressing the challenges of solid tumor treatment.
Collapse
Affiliation(s)
- Zixuan Wang
- Beijing Institute of Biological Products Co., Ltd, Beijing 101149, China
| | - Guangji Zhang
- Beijing Rongai Biotechnology Co., Ltd, 1st Floor, Building 29, No. 5 Kechuang East 2nd Street, Tongzhou District, Beijing 101100, China.
| |
Collapse
|
9
|
Xu C, Obers A, Qin M, Brandli A, Wong J, Huang X, Clatch A, Fayed A, Starkey G, D’Costa R, Gordon CL, Mak JY, Fairlie DP, Beattie L, Mackay LK, Godfrey DI, Koay HF. Selective regulation of IFN-γ and IL-4 co-producing unconventional T cells by purinergic signaling. J Exp Med 2024; 221:e20240354. [PMID: 39560665 PMCID: PMC11577439 DOI: 10.1084/jem.20240354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/01/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024] Open
Abstract
Unconventional T cells, including mucosal-associated invariant T (MAIT), natural killer T (NKT), and gamma-delta T (γδT) cells, comprise distinct T-bet+, IFN-γ+ and RORγt+, IL-17+ subsets which play differential roles in health and disease. NKT1 cells are susceptible to ARTC2-mediated P2X7 receptor (P2RX7) activation, but the effects on other unconventional T-cell types are unknown. Here, we show that MAIT, γδT, and NKT cells express P2RX7 and are sensitive to P2RX7-mediated cell death. Mouse peripheral T-bet+ MAIT1, γδT1, and NKT1 cells, especially in liver, co-express ARTC2 and P2RX7. These markers could be further upregulated upon exposure to retinoic acid. Blocking ARTC2 or inhibiting P2RX7 protected MAIT1, γδT1, and NKT1 cells from cell death, enhanced their survival in vivo, and increased the number of IFN-γ-secreting cells without affecting IL-17 production. Importantly, this revealed the existence of IFN-γ and IL-4 co-producing unconventional T-cell populations normally lost upon isolation due to ARTC2/P2RX7-induced death. Administering extracellular NAD in vivo activated this pathway, depleting P2RX7-sensitive unconventional T cells. Our study reveals ARTC2/P2RX7 as a common regulatory axis modulating the unconventional T-cell compartment, affecting the viability of IFN-γ- and IL-4-producing T cells, offering important insights to facilitate future studies into how these cells can be regulated in health and disease.
Collapse
Affiliation(s)
- Calvin Xu
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Minyi Qin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Alice Brandli
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Joelyn Wong
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Xin Huang
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Allison Clatch
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Aly Fayed
- Liver and Intestinal Transplant Unit, Austin Health, Melbourne, Australia
- Department of Surgery, The University of Melbourne, Austin Health, Melbourne, Australia
| | - Graham Starkey
- Liver and Intestinal Transplant Unit, Austin Health, Melbourne, Australia
- Department of Surgery, The University of Melbourne, Austin Health, Melbourne, Australia
| | - Rohit D’Costa
- DonateLife Victoria, Carlton, Australia
- Department of Intensive Care Medicine, Melbourne Health, Melbourne, Australia
| | - Claire L. Gordon
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Austin Health, Melbourne, Australia
- North Eastern Public Health Unit, Austin Health, Melbourne, Australia
| | - Jeffrey Y.W. Mak
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David P. Fairlie
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Laura K. Mackay
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
10
|
Shyanti RK, Haque M, Singh R, Mishra M. Optimizing iNKT-driven immune responses against cancer by modulating CD1d in tumor and antigen presenting cells. Clin Immunol 2024; 269:110402. [PMID: 39561929 DOI: 10.1016/j.clim.2024.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Two major antigen processing pathways represent protein Ags through major histocompatibility complexes (MHC class I and II) or lipid Ags through CD1 molecules influence the tumor immune response. Invariant Natural Killer T cells (iNKT) manage a significant role in cancer immunotherapy. CD1d, found on antigen-presenting cells (APCs), presents lipid Ags to iNKT cells. In many cancers, the number and function of iNKT cell are compromised, leading to immune evasion. Additionally impaired motility of iNKT cells may contribute to poor tumor prognosis. Emerging evidences suggest that CD1d, itself also influences cancer progression. Patient databases further highlight the importance of CD1d expression in different cancers and its correlation with patient survival outcomes. The ability of iNKT cells to activate and enhance the immune response renders them an attractive target for cancer immunotherapy. This review discusses all the possible ways of cancer immune evasion and restoration of immune responses mediated by CD1d-iNKT interactions.
Collapse
Affiliation(s)
- Ritis Kumar Shyanti
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Mazharul Haque
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Rajesh Singh
- Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State University, AL 36104, USA.
| |
Collapse
|
11
|
Corkish C, Aguiar CF, Finlay DK. Approaches to investigate tissue-resident innate lymphocytes metabolism at the single-cell level. Nat Commun 2024; 15:10424. [PMID: 39613733 PMCID: PMC11607443 DOI: 10.1038/s41467-024-54516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Tissue-resident innate immune cells have important functions in both homeostasis and pathological states. Despite advances in the field, analyzing the metabolism of tissue-resident innate lymphocytes is still challenging. The small number of tissue-resident innate lymphocytes such as ILC, NK, iNKT and γδ T cells poses additional obstacles in their metabolic studies. In this review, we summarize the current understanding of innate lymphocyte metabolism and discuss potential pitfalls associated with the current methodology relying predominantly on in vitro cultured cells or bulk-level comparison. Meanwhile, we also summarize and advocate for the development and adoption of single-cell metabolic assays to accurately profile the metabolism of tissue-resident immune cells directly ex vivo.
Collapse
Affiliation(s)
- Carrie Corkish
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Cristhiane Favero Aguiar
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
12
|
Yasuma T, Fujimoto H, D’Alessandro-Gabazza CN, Gabazza EC, Hataji O, Kobayashi T. Inhibiting Invariant Natural Killer T-Cell Activation: A Promising Strategy against Pulmonary Fibrosis. Am J Respir Crit Care Med 2024; 210:1278. [PMID: 39270214 PMCID: PMC11568448 DOI: 10.1164/rccm.202408-1513le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024] Open
Affiliation(s)
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Faculty of Medicine, Graduate School of Medicine, Mie University, Tsu, Japan; and
| | | | - Esteban C. Gabazza
- Department of Immunology and
- Department of Pulmonary and Critical Care Medicine, Faculty of Medicine, Graduate School of Medicine, Mie University, Tsu, Japan; and
- Respiratory Center, Matsusaka Municipal Hospital, Matsusaka, Japan
| | - Osamu Hataji
- Respiratory Center, Matsusaka Municipal Hospital, Matsusaka, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Faculty of Medicine, Graduate School of Medicine, Mie University, Tsu, Japan; and
| |
Collapse
|
13
|
Wang MY, Yi MX, Mo XY, Wei SJ, Qiao Y, Zhang Z, Su ZL, Lu HY. Over-activation of iNKT cells aggravate lung injury in bronchopulmonary dysplasia mice. Redox Biol 2024; 77:103370. [PMID: 39342744 PMCID: PMC11470607 DOI: 10.1016/j.redox.2024.103370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe lung disease in preterm infants, the abnormal proliferate and differentiate ability of type II epithelial cells (AEC II) is the key to the pathological basis of BPD. Mechanisms regarding abnormal AEC II in BPD remain unclear. The present work investigated the role and mechanisms of invariant natural killer T (iNKT) cells in lung disorder in BPD using public datasets, clinical samples, a hyperoxia-induced BPD mouse model and AEC II-iNKT cells transwell co-culture system. Firstly, we found that the NKT cells development factor IL-15 increased over time in patients with BPD in public databases, and clinically collected peripheral blood NKT cells in patients with BPD were increased. Subsequently, the percentage of iNKT cells increased in hyperoxia group compared with normoxia group, with the highest at P7, accompanied by increased activation with abnormal lung development. The administration of anti-CD1d neutralizing antibody to inhibit iNKT cells could alleviate the abnormal lung development of hyperoxia group mice, while α-GalCer administration could aggravate lung injury in hyperoxia group mice, and adoptive transfer of iNKT cells could aggravate the abnormal lung development in hyperoxia group mice. In addition, to further verify the role of iNKT cells on AEC II, AEC II-iNKT cells co-culture system was established. The presence of iNKT cells could aggravate the abnormal expression of SP-C and T1α under hyperoxia. Meanwhile, RNA-seq analysis showed that ferroptosis-related genes were highly expressed in AEC II co-cultured with iNKT cells under hyperoxia. We further validated the effect of the presence of iNKT cells under hyperoxia environment on AEC II ferroptosis levels, suggested that iNKT cells promote AEC II ferroptosis under hyperoxia, accompanied by decreased expression of SP-C and T1α. Our study found that the recruitment of iNKT cells in the lung may be an important cause of alveolarization disorder in BPD.
Collapse
Affiliation(s)
- Ming-Yan Wang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Meng-Xu Yi
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Xing-Yu Mo
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Shan-Jie Wei
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Yu Qiao
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
| | - Zheng Zhang
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Zhao-Liang Su
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Institute for Medical Immunology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
| | - Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China.
| |
Collapse
|
14
|
Wilkin C, Piette J, Legrand-Poels S. Unravelling metabolic factors impacting iNKT cell biology in obesity. Biochem Pharmacol 2024; 228:116436. [PMID: 39029630 DOI: 10.1016/j.bcp.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Obesity and related diseases have reached epidemic proportions and continue to rise. Beyond creating an economical burden, obesity and its co-morbidities are associated with shortened human life expectancy. Despite major advances, the underlying mechanisms of obesity remain not fully elucidated. Recently, several studies have highlighted that various immune cells are metabolically reprogrammed in obesity, thereby profoundly affecting the immune system. This sheds light on a new field of interest: the impact of obesity-related systemic metabolic changes affecting immune system that could lead to immunosurveillance loss. Among immune cells altered by obesity, invariant Natural Killer T (iNKT) cells have recently garnered intense focus due to their ability to recognize lipid antigen. While iNKT cells are well-described to be affected by obesity, how and to what extent immunometabolic factors (e.g., lipids, glucose, cytokines, adipokines, insulin and free fatty acids) can drive iNKT cells alterations remains unclear, but represent an emerging field of research. Here, we review the current knowledge on iNKT cells in obesity and discuss the immunometabolic factors that could modulate their phenotype and activity.
Collapse
Affiliation(s)
- Chloé Wilkin
- Laboratory of Immunometabolism and Nutrition, GIGA, ULiège, Liège, Belgium.
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA, ULiège, Liège, Belgium
| | | |
Collapse
|
15
|
Gao W, Kim MW, Dykstra T, Du S, Boskovic P, Lichti CF, Ruiz-Cardozo MA, Gu X, Weizman Shapira T, Rustenhoven J, Molina C, Smirnov I, Merbl Y, Ray WZ, Kipnis J. Engineered T cell therapy for central nervous system injury. Nature 2024; 634:693-701. [PMID: 39232158 DOI: 10.1038/s41586-024-07906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Traumatic injuries to the central nervous system (CNS) afflict millions of individuals worldwide1, yet an effective treatment remains elusive. Following such injuries, the site is populated by a multitude of peripheral immune cells, including T cells, but a comprehensive understanding of the roles and antigen specificity of these endogenous T cells at the injury site has been lacking. This gap has impeded the development of immune-mediated cellular therapies for CNS injuries. Here, using single-cell RNA sequencing, we demonstrated the clonal expansion of mouse and human spinal cord injury-associated T cells and identified that CD4+ T cell clones in mice exhibit antigen specificity towards self-peptides of myelin and neuronal proteins. Leveraging mRNA-based T cell receptor (TCR) reconstitution, a strategy aimed to minimize potential adverse effects from prolonged activation of self-reactive T cells, we generated engineered transiently autoimmune T cells. These cells demonstrated notable neuroprotective efficacy in CNS injury models, in part by modulating myeloid cells via IFNγ. Our findings elucidate mechanistic insight underlying the neuroprotective function of injury-responsive T cells and pave the way for the future development of T cell therapies for CNS injuries.
Collapse
Affiliation(s)
- Wenqing Gao
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| | - Min Woo Kim
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Immunology Program, School of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, School of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Taitea Dykstra
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Siling Du
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Immunology Program, School of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Pavle Boskovic
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Miguel A Ruiz-Cardozo
- Department of Neurological Surgery, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Xingxing Gu
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Tal Weizman Shapira
- Systems Immunology Department, The Weizmann Institute of Science, Rehovot, Israel
| | - Justin Rustenhoven
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Camilo Molina
- Department of Neurological Surgery, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Igor Smirnov
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Yifat Merbl
- Systems Immunology Department, The Weizmann Institute of Science, Rehovot, Israel
| | - Wilson Z Ray
- Department of Neurological Surgery, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
- Immunology Program, School of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
- Medical Scientist Training Program, School of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
16
|
Qiu D, Sun S. Causal relationships between immunophenotypes, plasma metabolites, and temporomandibular disorders based on Mendelian randomization. Sci Rep 2024; 14:22262. [PMID: 39333658 PMCID: PMC11436868 DOI: 10.1038/s41598-024-73330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
While numerous studies have underscored the implication of immune cells and metabolites in temporomandibular disorders (TMD), conclusive evidence for causality remains elusive. Consequently, our aim is to explore the causal connections between immunophenotypes and plasma metabolites in relation to TMD employing a bidirectional Mendelian randomization (MR) approach. Summary statistics data on 731 immunophenotypes (n = 3757) and 1091 plasma metabolites (n = 8299) were obtained from comprehensive genome-wide association studies (GWAS), while TMD data (5668 cases and 205,355 controls) were acquired from the FinnGen Consortium. Bidirectional MR analyses and a two-step MR approach assessed causal relationships and potential intermediaries. Various corrections and sensitivity analyses were utilized to assess the robustness of the findings. Two immunophenotypes and seven metabolites were significantly associated with TMD risk. Specifically, Alpha-hydroxyisovalerate mediated the link between CD33 on CD33dim HLA DR + CD11b + and TMD (β = 0.034, P = 5.95 × 10-5), while CD8 on NKT cells mediated the causal relationship between 5-acetylamino-6-formylamino-3-methyluracil levels and TMD (β = 0.069, P = 5.11 × 10-5). Our findings revealed the causal relationships between immunophenotypes and plasma metabolites on TMD from a genetic perspective, potentially aiding in TMD prevention.
Collapse
Affiliation(s)
- Danqi Qiu
- Department of Stomatology, Hangzhou Children's Hospital, Hangzhou, Zhejiang, China.
| | - Shuntao Sun
- Department of Stomatology, Hangzhou Children's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Gioulbasani M, Äijö T, Valenzuela JE, Bettes JB, Tsagaratou A. TET proteins regulate Drosha expression and impact microRNAs in iNKT cells. Front Immunol 2024; 15:1440044. [PMID: 39364402 PMCID: PMC11446755 DOI: 10.3389/fimmu.2024.1440044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
DNA demethylases TET2 and TET3 play a fundamental role in thymic invariant natural killer T (iNKT) cell differentiation by mediating DNA demethylation of genes encoding for lineage specifying factors. Paradoxically, differential gene expression analysis revealed that significant number of genes were upregulated upon TET2 and TET3 loss in iNKT cells. This unexpected finding could be potentially explained if loss of TET proteins was reducing the expression of proteins that suppress gene expression. In this study, we discover that TET2 and TET3 synergistically regulate Drosha expression, by generating 5hmC across the gene body and by impacting chromatin accessibility. As DROSHA is involved in microRNA biogenesis, we proceed to investigate the impact of TET2/3 loss on microRNAs in iNKT cells. We report that among the downregulated microRNAs are members of the Let-7 family that downregulate in vivo the expression of the iNKT cell lineage specifying factor PLZF. Our data link TET proteins with microRNA expression and reveal an additional layer of TET mediated regulation of gene expression.
Collapse
Affiliation(s)
- Marianthi Gioulbasani
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Tarmo Äijö
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jair E. Valenzuela
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Julia Buquera Bettes
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
18
|
Ju R, Gao X, Zhang C, Tang W, Tian W, He M. Exogenous MSC based tissue regeneration: a review of immuno-protection strategies from biomaterial scaffolds. J Mater Chem B 2024; 12:8868-8882. [PMID: 39171946 DOI: 10.1039/d4tb00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Mesenchymal stem cell (MSC)-based tissue engineering holds great potential for regenerative medicine as a means of replacing damaged or lost tissues to restore their structure and function. However, the efficacy of MSC-based regeneration is frequently limited by the low survival rate and limited survival time of transplanted MSCs. Despite the inherent immune privileges of MSCs, such as low expression of major histocompatibility complex antigens, tolerogenic properties, local immunosuppressive microenvironment creation, and induction of immune tolerance, immune rejection remains a major obstacle to their survival and regenerative potential. Evidence suggests that immune protection strategies can enhance MSC therapeutic efficacy by prolonging their survival and maintaining their biological functions. Among various immune protection strategies, biomaterial-based scaffolds or cell encapsulation systems that mediate the interaction between transplanted MSCs and the host immune system or spatially isolate MSCs from the immune system for a specific time period have shown great promise. In this review, we provide a comprehensive overview of these biomaterial-based immune protection strategies employed for exogenous MSCs, highlighting the crucial role of modulating the immune microenvironment. Each strategy is critically examined, discussing its strengths, limitations, and potential applications in MSC-based tissue engineering. By elucidating the mechanisms behind immune rejection and exploring immune protection strategies, we aim to address the challenges faced by MSC-based tissue engineering and pave the way for enhancing the therapeutic outcomes of MSC therapies. The insights gained from this review will contribute to the development of more effective strategies to protect transplanted MSCs from immune rejection and enable their successful application in regenerative medicine.
Collapse
Affiliation(s)
- Rongbai Ju
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinhui Gao
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chi Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min He
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
19
|
Wei P, Romanò C, Li C, Clergeaud G, Andresen TL, Henriksen JR, Hansen AE, Clausen MH. An intranasal cationic liposomal polysaccharide vaccine elicits humoral immune responses against Streptococcus pneumoniae. Commun Biol 2024; 7:1158. [PMID: 39284859 PMCID: PMC11405767 DOI: 10.1038/s42003-024-06806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Diseases caused by S. pneumoniae are the leading cause of child mortality. As antibiotic resistance of S. pneumoniae is rising, vaccination remains the most recommended solution. However, the existing pneumococcal polysaccharides vaccine (Pneumovax® 23) proved only to induce T-independent immunity, and strict cold chain dependence of the protein conjugate vaccine impedes its promotion in developing countries, where infections are most problematic. Affordable and efficient vaccines against pneumococcus are therefore in high demand. Here, we present an intranasal vaccine Lipo+CPS12F&αGC, containing the capsular polysaccharides of S. pneumoniae 12F and the iNKT agonist α-galactosylceramide in cationic liposomes. In BALB/cJRj mice, the vaccine effectively activates iNKT cells and promotes B cells maturation, stimulates affinity-matured IgA and IgG production in both the respiratory tract and systemic blood, and displays sufficient protection both in vivo and in vitro. The designed vaccine is a promising, cost-effective solution against pneumococcus, which can be expanded to cover more serotypes and pathogens.
Collapse
Affiliation(s)
- Peng Wei
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Cecilia Romanò
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Chengxin Li
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Gael Clergeaud
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Thomas L Andresen
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Jonas R Henriksen
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Anders E Hansen
- Section for Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
20
|
Wang Y, Wang Y, Ge Y, Wu Z, Yue X, Li C, Liang X, Ma C, Wang P, Gao L. Tim-4 alleviates acute hepatic injury by modulating homeostasis and function of NKT cells. Clin Exp Immunol 2024; 218:101-110. [PMID: 39036980 PMCID: PMC11404119 DOI: 10.1093/cei/uxae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/29/2024] [Accepted: 07/20/2024] [Indexed: 07/23/2024] Open
Abstract
T-cell immunoglobulin and mucin domain-containing molecule 4 (Tim-4) is an immune checkpoint molecule, which involves in numerous inflammatory diseases. Tim-4 is mainly expressed on antigen-presenting cells. However, increasing evidence has shown that Tim-4 is also expressed on natural killer T (NKT) cells. The role of Tim-4 in maintaining NKT cell homeostasis and function remains unknown. In this study, we explored the effect of Tim-4 on NKT cells in acute liver injury. This study found that Tim-4 expression on hepatic NKT cells was elevated during acute liver injury. Tim-4 deficiency enhanced IFN-γ, TNF-α expression while impaired IL-4 production in NKT cells. Loss of Tim-4 drove NKT-cell effector lineages to be skewed to NKT1 subset. Furthermore, Tim-4 KO mice were more susceptible to α-Galactosylceramide (α-GalCer) challenge. In conclusion, our findings indicate that Tim-4 plays an important role in regulating homeostasis and function of NKT cells in acute liver injury. Therefore, Tim-4 might become a new regulator of NKT cells and a potential target for the therapy of acute hepatitis.
Collapse
Affiliation(s)
- Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Yuzhen Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Yutong Ge
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Xuetian Yue
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Pin Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University. Jinan, Shandong 250033, PR China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| |
Collapse
|
21
|
Montaño J, Garnica J, Yamanouchi J, Moro J, Solé P, Mondal D, Serra P, Yang Y, Santamaria P. Transcriptional re-programming of liver-resident iNKT cells into T-regulatory type-1-like liver iNKT cells involves extensive gene de-methylation. Front Immunol 2024; 15:1454314. [PMID: 39315110 PMCID: PMC11416961 DOI: 10.3389/fimmu.2024.1454314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Unlike conventional CD4+ T cells, which are phenotypically and functionally plastic, invariant NKT (iNKT) cells generally exist in a terminally differentiated state. Naïve CD4+ T cells can acquire alternative epigenetic states in response to different cues, but it remains unclear whether peripheral iNKT cells are epigenetically stable or malleable. Repetitive encounters of liver-resident iNKT cells (LiNKTs) with alpha-galactosylceramide (αGalCer)/CD1d-coated nanoparticles (NPs) can trigger their differentiation into a LiNKT cell subset expressing a T regulatory type 1 (TR1)-like (LiNKTR1) transcriptional signature. Here we dissect the epigenetic underpinnings of the LiNKT-LiNKTR1 conversion as compared to those underlying the peptide-major histocompatibility complex (pMHC)-NP-induced T-follicular helper (TFH)-to-TR1 transdifferentiation process. We show that gene upregulation during the LINKT-to-LiNKTR1 cell conversion is associated with demethylation of gene bodies, inter-genic regions, promoters and distal gene regulatory elements, in the absence of major changes in chromatin exposure or deposition of expression-promoting histone marks. In contrast, the naïve CD4+ T cell-to-TFH differentiation process involves extensive remodeling of the chromatin and the acquisition of a broad repertoire of epigenetic modifications that are then largely inherited by TFH cell-derived TR1 cell progeny. These observations indicate that LiNKT cells are epigenetically malleable and particularly susceptible to gene de-methylation.
Collapse
Affiliation(s)
- Javier Montaño
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Josep Garnica
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Jun Yamanouchi
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joel Moro
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Patricia Solé
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Debajyoti Mondal
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pau Serra
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Yang Yang
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pere Santamaria
- Institut D’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Stiel L, Gaudet A, Thietart S, Vallet H, Bastard P, Voiriot G, Oualha M, Sarton B, Kallel H, Brechot N, Kreitmann L, Benghanem S, Joffre J, Jouan Y. Innate immune response in acute critical illness: a narrative review. Ann Intensive Care 2024; 14:137. [PMID: 39227416 PMCID: PMC11371990 DOI: 10.1186/s13613-024-01355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Activation of innate immunity is a first line of host defense during acute critical illness (ACI) that aims to contain injury and avoid tissue damages. Aberrant activation of innate immunity may also participate in the occurrence of organ failures during critical illness. This review aims to provide a narrative overview of recent advances in the field of innate immunity in critical illness, and to consider future potential therapeutic strategies. MAIN TEXT Understanding the underlying biological concepts supporting therapeutic strategies modulating immune response is essential in decision-making. We will develop the multiple facets of innate immune response, especially its cellular aspects, and its interaction with other defense mechanisms. We will first describe the pathophysiological mechanisms of initiation of innate immune response and its implication during ACI. We will then develop the amplification of innate immunity mediated by multiple effectors. Our review will mainly focus on myeloid and lymphoid cellular effectors, the major actors involved in innate immune-mediated organ failure. We will third discuss the interaction and integration of innate immune response in a global view of host defense, thus considering interaction with non-immune cells through immunothrombosis, immunometabolism and long-term reprogramming via trained immunity. The last part of this review will focus on the specificities of the immune response in children and the older population. CONCLUSIONS Recent understanding of the innate immune response integrates immunity in a highly dynamic global vision of host response. A better knowledge of the implicated mechanisms and their tissue-compartmentalization allows to characterize the individual immune profile, and one day eventually, to develop individualized bench-to-bedside immunomodulation approaches as an adjuvant resuscitation strategy.
Collapse
Affiliation(s)
- Laure Stiel
- Department of Intensive Care Medicine, Groupe Hospitalier de la Région Mulhouse Sud Alsace, Mulhouse, France.
- Lipness Team, INSERM Research Team, LNC UMR 1231 and LabEx LipSTIC, University of Burgundy, Dijon, France.
| | - Alexandre Gaudet
- CHU Lille, Department of Intensive Care Medicine, Critical Care Center, Univ. Lille, 59000, Lille, France
- CIIL (Centre d'Infection et d'Immunité de Lille), Institut Pasteur de Lille, U1019-UMR9017, 59000, Lille, France
| | - Sara Thietart
- Département de Gériatrie, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
- Inserm, PARCC U970, F75, Université Paris Cité, Paris, France
| | - Hélène Vallet
- Department of Geriatric Medicine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Saint Antoine, Paris, France
- INSERM UMR1135, Centre d'immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Guillaume Voiriot
- Service de Médecine Intensive Réanimation, Hôpital Tenon, Hôpitaux de Paris, Paris, France
- Centre de Recherche, Saint-Antoine UMRS_938, INSERM, Sorbonne Université, Assistance Publique, Paris, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker Hospital, APHP, Centre-Paris University, Paris, France
| | - Benjamine Sarton
- Service de Réanimation Polyvalente Purpan, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- ToNIC Lab (Toulouse NeuroImaging Center) INSERM/UPS UMR 1214, 31300, Toulouse, France
| | - Hatem Kallel
- Service de Réanimation, Centre Hospitalier de Cayenne, Guyane, France
| | - Nicolas Brechot
- Service de Médecine Intensive Réanimation, Sorbonne Université, Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Center for Interdisciplinary Research in Biology (CIRB)-UMRS, INSERM U1050-CNRS 7241, College de France, Paris, France
| | - Louis Kreitmann
- Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
- ICU West, The Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Sarah Benghanem
- Service de Médecine Intensive Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jérémie Joffre
- Service de Réanimation Médicale, Hôpital de Saint Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Centre de Recherche Saint Antoine INSERM, U938, Sorbonne University, Paris, France
| | - Youenn Jouan
- Service de Médecine Intensive Réanimation, CHRU Tours, Tours, France
- Services de Réanimation Chirurgicale Cardiovasculaire et de Chirurgie Cardiaque, CHRU Tours, Tours, France
- INSERM, U1100 Centre d'Etudes des Pathologies Respiratoires, Faculté de Médecine de Tours, Tours, France
| |
Collapse
|
23
|
Kim TC, Park HJ, Lee SW, Park YH, Van Kaer L, Hong S. Alpha-galactosylceramide pre-treatment attenuates clinical symptoms of LPS-induced acute neuroinflammation by converting pathogenic iNKT cells to anti-inflammatory iNKT10 cells in the brain. Inflamm Res 2024; 73:1511-1527. [PMID: 39028491 DOI: 10.1007/s00011-024-01915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Invariant natural killer T (iNKT) cells play protective or pathogenic roles in a variety of immune and inflammatory diseases. However, whether iNKT cells contribute to the progression of acute neuroinflammation remains unclear. Thus, we addressed this question with a mouse model of lipopolysaccharide (LPS)-induced acute neuroinflammation. METHODS For induction of acute neuroinflammation, wild-type (WT) C57BL/6 (B6) mice were injected intraperitoneally (i.p.) with LPS for either three or five consecutive days, and then these mice were analyzed for brain-infiltrating leukocytes or mouse behaviors, respectively. To examine the role of iNKT cell activation in LPS-induced neuroinflammation, mice were injected i.p. with the iNKT cell agonist α-galactosylceramide (α-GalCer) seven days prior to LPS treatment. Immune cells infiltrated into the brain during LPS-induced neuroinflammation were determined by flow cytometry. In addition, LPS-induced clinical behavior symptoms such as depressive-like behavior and memory impairment in mice were evaluated by the open field and Y-maze tests, respectively. RESULTS We found that iNKT cell-deficient Jα18 mutant mice display delayed disease progression and decreased leukocyte infiltration into the brain compared with WT mice, indicating that iNKT cells contribute to the pathogenesis of LPS-induced neuroinflammation. Since it has been reported that pre-treatment with α-GalCer, an iNKT cell agonist, can convert iNKT cells towards anti-inflammatory phenotypes, we next explored whether pre-activation of iNKT cells with α-GalCer can regulate LPS-induced neuroinflammation. Strikingly, we found that α-GalCer pre-treatment significantly delays the onset of clinical symptoms, including depression-like behavior and memory impairment, while decreasing brain infiltration of pro-inflammatory natural killer cells and neutrophils, in this model of LPS-induced neuroinflammation. Such anti-inflammatory effects of α-GalCer pre-treatment closely correlated with iNKT cell polarization towards IL4- and IL10-producing phenotypes. Furthermore, α-GalCer pre-treatment restored the expression of suppressive markers on brain regulatory T cells during LPS-induced neuroinflammation. CONCLUSION Our findings provide strong evidence that α-GalCer-induced pre-activation of iNKT cells expands iNKT10 cells, mitigating depressive-like behaviors and brain infiltration of inflammatory immune cells induced by LPS-induced acute neuroinflammation. Thus, we suggest the prophylactic potential of iNKT cells and α-GalCer against acute neuroinflammation.
Collapse
Affiliation(s)
- Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju, 26339, South Korea
| | - Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea.
| |
Collapse
|
24
|
Park KJ, Kim TO, Cho YN, Jin HM, Jo YG, Shin HJ, Kho BG, Kee SJ, Park YW. Deficiency and dysfunctional roles of natural killer T cells in patients with ARDS. Front Immunol 2024; 15:1433028. [PMID: 39281681 PMCID: PMC11392733 DOI: 10.3389/fimmu.2024.1433028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Objective Acute respiratory distress syndrome (ARDS) presents a global health challenge, characterized by significant morbidity and mortality. However, the role of natural killer T (NKT) cells in human ARDS remains poorly understood. Therefore, this study explored the numerical and functional status of NKT cells in patients with ARDS, examining their clinical relevance and interactions with macrophages and fibroblasts during various stages of the syndrome. Methods Peripheral blood from 40 ARDS patients and 30 healthy controls was analyzed, with paired samples of peripheral blood and bronchoalveolar lavage fluid (BALF) from seven ARDS patients. We measured levels of NKT cells, cytokines, CD69, programmed death-1 (PD-1), and annexin-V using flow cytometry, and extracellular matrix (ECM) protein expression using real-time PCR. Results ARDS patients exhibited decreased circulating NKT cells with elevated CD69 expression and enhanced IL-17 production. The reduction in NKT cells correlated with PaO2/FiO2 ratio, albumin, and C-reactive protein levels. Proliferative responses to α-galactosylceramide (α-GalCer) were impaired, and co-culturing NKT cells with monocytes or T cells from ARDS patients resulted in a reduced α-GalCer response. Increased and activated NKT cells in BALF induced proinflammatory cytokine release by macrophages and ECM protein expression in fibroblasts. Conclusion ARDS is associated with a numerical deficiency but functional activation of circulating NKT cells, showing impaired responses to α-GalCer and altered interactions with immune cells. The increase in NKT cells within BALF suggests their role in inducing inflammation and remodeling/fibrosis, highlighting the potential of targeting NKT cells as a therapeutic approach for ARDS.
Collapse
Affiliation(s)
- Ki-Jeong Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Tae-Ok Kim
- Department of Pulmonology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Goun Jo
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hong-Joon Shin
- Department of Pulmonology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Bo Gun Kho
- Department of Pulmonology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| |
Collapse
|
25
|
Luo M, Li Q, Gu Q, Zhang C. Fusobacterium nucleatum: a novel regulator of antitumor immune checkpoint blockade therapy in colorectal cancer. Am J Cancer Res 2024; 14:3962-3975. [PMID: 39267665 PMCID: PMC11387864 DOI: 10.62347/myza2640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Neoadjuvant immune checkpoint blockade (ICB) has achieved significant success in treating various cancers, leading to improved therapeutic responses and survival rates among patients. However, in colorectal cancer (CRC), ICB has yielded poor results in tumors that are mismatch repair proficient, microsatellite-stable, or have low levels of microsatellite instability (MSI-L), which account for up to 95% of CRC cases. The underlying mechanisms behind the lack of immune response in MSI-negative CRC to immune checkpoint inhibitors remain an open conundrum. Consequently, there is an urgent need to explore the intrinsic mechanisms and related biomarkers to enhance the intratumoral immune response and render the tumor "immune-reactive". Intestinal microbes, such as the oral microbiome member Fusobacterium nucleatum (F. nucleatum), have recently been thought to play a crucial role in regulating effective immunotherapeutic responses. Herein, we advocate the idea that a complex interplay involving F. nucleatum, the local immune system, and the tumor microenvironment (TME) significantly influences ICB responses. Several mechanisms have been proposed, including the regulation of immune cell proliferation, inhibition of T lymphocyte, natural killer (NK) cell function, and invariant natural killer T (iNKT) cell function, as well as modification of the TME. This review aims to summarize the latest potential roles and mechanisms of F. nucleatum in antitumor immunotherapies for CRC. Additionally, it discusses the clinical application value of F. nucleatum as a biomarker for CRC and explores novel strategies, such as nano-delivery systems, for modulating F. nucleatum to enhance the efficacy of ICB therapy.
Collapse
Affiliation(s)
- Mengjie Luo
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| | - Qi Li
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| | - Qingdan Gu
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| | - Chunlei Zhang
- Department of Clinical Laboratory Science, Shenzhen Yantian District People's Hospital Shenzhen 518081, Guangdong, China
| |
Collapse
|
26
|
Gioulbasani M, Äijö T, Valenzuela JE, Bettes JB, Tsagaratou A. TET proteins regulate Drosha expression and impact microRNAs in iNKT cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605991. [PMID: 39131272 PMCID: PMC11312547 DOI: 10.1101/2024.07.31.605991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
DNA demethylases TET2 and TET3 play a fundamental role in thymic invariant natural killer T (iNKT) cell differentiation by mediating DNA demethylation of genes encoding for lineage specifying factors. Paradoxically, differential gene expression analysis revealed that significant number of genes were upregulated upon TET2 and TET3 loss in iNKT cells. This unexpected finding could be potentially explained if loss of TET proteins was reducing the expression of proteins that suppress gene expression. In this study, we discover that TET2 and TET3 synergistically regulate Drosha expression, by generating 5hmC across the gene body and by impacting chromatin accessibility. As DROSHA is involved in microRNA biogenesis, we proceed to investigate the impact of TET2/3 loss on microRNAs in iNKT cells. We report that among the downregulated microRNAs are members of the Let-7 family that downregulate in vivo the expression of the iNKT cell lineage specifying factor PLZF. Our data link TET proteins with microRNA expression and reveal an additional layer of TET mediated regulation of gene expression.
Collapse
Affiliation(s)
- Marianthi Gioulbasani
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Tarmo Äijö
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jair E. Valenzuela
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Julia Buquera Bettes
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Yang X, Tang H, Sun X, Gui Q. M6A modification and T cells in adipose tissue inflammation. Cell Biochem Funct 2024; 42:e4089. [PMID: 38978329 DOI: 10.1002/cbf.4089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/11/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Adipose tissue in the obese state can lead to low-grade chronic inflammation while inducing or exacerbating obesity-related metabolic diseases and impairing overall health.T cells, which are essential immune cells similar to macrophages, are widely distributed in adipose tissue and perform their immunomodulatory function; they also cross-talk with other cells in the vascular stromal fraction. Based on a large number of studies, it has been found that N6 methyl adenine (m6A) is one of the most representative of epigenetic modifications, which affects the crosstalk between T cells, as well as other immune cells, in several ways and plays an important role in the development of adipose tissue inflammation and related metabolic diseases. In this review, we first provide an overview of the widespread presence of T cells in adipose tissue and summarize the key role of T cells in adipose tissue inflammation. Next, we explored the effects of m6A modifications on T cells in adipose tissue from the perspective of adipose tissue inflammation. Finally, we discuss the impact of m6a-regulated crosstalk between T cells and immune cells on the prospects for improving adipose tissue inflammation research, providing additional new ideas for the treatment of obesity.
Collapse
Affiliation(s)
- Xiaoting Yang
- Institute of Translational Medicine, Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Haojun Tang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xuan Sun
- Institute of Translational Medicine, Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Qingjun Gui
- Institute of Translational Medicine, Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
28
|
Qu J, Li Y, Wu B, Shen Q, Chen L, Sun W, Wang B, Ying L, Wu L, Zhou H, Zhou J, Zhou J. CD161 +CD127 +CD8 + T cell subsets can predict the efficacy of anti-PD-1 immunotherapy in non-small cell lung cancer with diabetes mellitus. Oncoimmunology 2024; 13:2371575. [PMID: 38952673 PMCID: PMC11216103 DOI: 10.1080/2162402x.2024.2371575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
The role of CD161+CD127+CD8+ T cells in non-small cell lung cancer (NSCLC) patients with diabetes remains unexplored. This study determined the prevalence, phenotype, and function of CD8+ T cell subsets in NSCLC with diabetes. We recruited NSCLC patients (n = 436) treated with anti-PD-1 immunotherapy as first-line treatment. The progression-free survival (PFS), overall survival (OS), T cells infiltration, and peripheral blood immunological characteristics were analyzed in NSCLC patients with or without diabetes. NSCLC patients with diabetes exhibited shorter PFS and OS (p = 0.0069 and p = 0.012, respectively) and significantly lower CD8+ T cells infiltration. Mass cytometry by time-of-flight (CyTOF) showed a higher percentage of CD161+CD127+CD8+ T cells among CD8+T cells in NSCLC with diabetes before anti-PD-1 treatment (p = 0.0071) than that in NSCLC without diabetes and this trend continued after anti-PD-1 treatment (p = 0.0393). Flow cytometry and multiple-immunofluorescence confirmed that NSCLC with diabetes had significantly higher CD161+CD127+CD8+ T cells to CD8+T cells ratios than NSCLC patients without diabetes. The RNA-sequencing analysis revealed immune-cytotoxic genes were reduced in the CD161+CD127+CD8+ T cell subset compared to CD161+CD127-CD8+ T cells in NSCLC with diabetes. CD161+CD127+CD8+ T cells exhibited more T cell-exhausted phenotypes in NSCLC with diabetes. NSCLC patients with diabetes with ≥ 6.3% CD161+CD127+CD8+ T cells to CD8+T cells ratios showed worse PFS. These findings indicate that diabetes is a risk factor for NSCLC patients who undergo anti-PD-1 immunotherapy.CD161+CD127+CD8+ T cells could be a key indicator of a poor prognosis in NSCLC with diabetes. Our findings would help in advancing anti-PD-1 therapy in NSCLC patients with diabetes.
Collapse
Affiliation(s)
- Jingjing Qu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
| | - Yuekang Li
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
| | - Binggen Wu
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
| | - Qian Shen
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
| | - Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Wenjia Sun
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
| | - Bo Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Lixiong Ying
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Li Wu
- Department of Endocrinology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Hong Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Jianya Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
- The Clinical Research Center for Respiratory Diseases of Zhejiang Province, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
29
|
Roshan-Zamir M, Khademolhosseini A, Rajalingam K, Ghaderi A, Rajalingam R. The genomic landscape of the immune system in lung cancer: present insights and continuing investigations. Front Genet 2024; 15:1414487. [PMID: 38983267 PMCID: PMC11231382 DOI: 10.3389/fgene.2024.1414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide, contributing to over a million cancer-related deaths annually. Despite extensive research investigating the genetic factors associated with lung cancer susceptibility and prognosis, few studies have explored genetic predispositions regarding the immune system. This review discusses the most recent genomic findings related to the susceptibility to or protection against lung cancer, patient survival, and therapeutic responses. The results demonstrated the effect of immunogenetic variations in immune system-related genes associated with innate and adaptive immune responses, cytokine, and chemokine secretions, and signaling pathways. These genetic diversities may affect the crosstalk between tumor and immune cells within the tumor microenvironment, influencing cancer progression, invasion, and prognosis. Given the considerable variability in the individual immunegenomics profiles, future studies should prioritize large-scale analyses to identify potential genetic variations associated with lung cancer using highthroughput technologies across different populations. This approach will provide further information for predicting response to targeted therapy and promotes the development of new measures for individualized cancer treatment.
Collapse
Affiliation(s)
- Mina Roshan-Zamir
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kavi Rajalingam
- Cowell College, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
30
|
Bitterer F, Kupke P, Adenugba A, Evert K, Glehr G, Riquelme P, Scheibert L, Preverin G, Böhm C, Hornung M, Schlitt HJ, Wenzel JJ, Geissler EK, Safinia N, Hutchinson JA, Werner JM. Soluble CD46 as a diagnostic marker of hepatic steatosis. EBioMedicine 2024; 104:105184. [PMID: 38838471 PMCID: PMC11179574 DOI: 10.1016/j.ebiom.2024.105184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The increasing prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) incurs substantial morbidity, mortality and healthcare costs. Detection and clinical intervention at early stages of disease improves prognosis; however, we are currently limited by a lack of reliable diagnostic tests for population screening and monitoring responses to therapy. To address this unmet need, we investigated human invariant Natural Killer T cell (iNKT) activation by fat-loaded hepatocytes, leading to the discovery that circulating soluble CD46 (sCD46) levels accurately predict hepatic steatosis. METHODS sCD46 in plasma was measured using a newly developed immuno-competition assay in two independent cohorts: Prospective living liver donors (n = 156; male = 66, female = 90) and patients with liver tumours (n = 91; male = 58, female = 33). sCD46 levels were statistically evaluated as a predictor of hepatic steatosis. FINDINGS Interleukin-4-secreting (IL-4+) iNKT cells were over-represented amongst intrahepatic lymphocytes isolated from resected human liver samples. IL-4+ iNKT cells preferentially developed in cocultures with a fat-loaded, hepatocyte-like cell line, HepaRG. This was attributed to induction of matrix metalloproteases (MMP) in fat-loaded HepaRG cells and primary human liver organoids, which led to indiscriminate cleavage of immune receptors. Loss of cell-surface CD46 resulted in unrepressed differentiation of IL-4+ iNKT cells. sCD46 levels were elevated in patients with hepatic steatosis. Discriminatory cut-off values for plasma sCD46 were found that accurately classified patients according to histological steatosis grade. INTERPRETATION sCD46 is a reliable clinical marker of hepatic steatosis, which can be conveniently and non-invasively measured in serum and plasma samples, raising the possibility of using sCD46 levels as a diagnostic method for detecting or grading hepatic steatosis. FUNDING F.B. was supported by the Else Kröner Foundation (Award 2016_kolleg.14). G.G. was supported by the Bristol Myers Squibb Foundation for Immuno-Oncology (Award FA-19-009). N.S. was supported by a Wellcome Trust Fellowship (211113/A/18/Z). J.A.H. received funding from the European Union's Horizon 2020 research and innovation programme (Award 860003). J.M.W. received funding from the Else Kröner Foundation (Award 2015_A10).
Collapse
Affiliation(s)
- Florian Bitterer
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Paul Kupke
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Akinbami Adenugba
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg 93053, Germany
| | - Gunther Glehr
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Paloma Riquelme
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Lena Scheibert
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Giulia Preverin
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Christina Böhm
- Oxford Nanopore Technologies PLC, Oxford Science Park, Oxford OX4 4DQ, United Kingdom
| | - Matthias Hornung
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Hans J Schlitt
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Jürgen J Wenzel
- Institute of Clinical Microbiology and Hygiene, University of Regensburg, Regensburg 93053, Germany
| | - Edward K Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany
| | - Niloufar Safinia
- Department of Hepatology, King's College London, London SE5 8AF, United Kingdom
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany.
| | - Jens M Werner
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany.
| |
Collapse
|
31
|
Taheri MM, Javan F, Poudineh M, Athari SS. CAR-NKT Cells in Asthma: Use of NKT as a Promising Cell for CAR Therapy. Clin Rev Allergy Immunol 2024; 66:328-362. [PMID: 38995478 DOI: 10.1007/s12016-024-08998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
NKT cells, unique lymphocytes bridging innate and adaptive immunity, offer significant potential for managing inflammatory disorders like asthma. Activating iNKT induces increasing IFN-γ, TGF-β, IL-2, and IL-10 potentially suppressing allergic asthma. However, their immunomodulatory effects, including granzyme-perforin-mediated cytotoxicity, and expression of TIM-3 and TRAIL warrant careful consideration and targeted approaches. Although CAR-T cell therapy has achieved remarkable success in treating certain cancers, its limitations necessitate exploring alternative approaches. In this context, CAR-NKT cells emerge as a promising approach for overcoming these challenges, potentially achieving safer and more effective immunotherapies. Strategies involve targeting distinct IgE-receptors and their interactions with CAR-NKT cells, potentially disrupting allergen-mast cell/basophil interactions and preventing inflammatory cytokine release. Additionally, targeting immune checkpoints like PDL-2, inducible ICOS, FASL, CTLA-4, and CD137 or dectin-1 for fungal asthma could further modulate immune responses. Furthermore, artificial intelligence and machine learning hold immense promise for revolutionizing NKT cell-based asthma therapy. AI can optimize CAR-NKT cell functionalities, design personalized treatment strategies, and unlock a future of precise and effective care. This review discusses various approaches to enhancing CAR-NKT cell efficacy and longevity, along with the challenges and opportunities they present in the treatment of allergic asthma.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyyed Shamsadin Athari
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
32
|
Diddeniya G, Ghaffari MH, Hernandez-Sanabria E, Guan LL, Malmuthuge N. INVITED REVIEW: Impact of Maternal Health and Nutrition on the Microbiome and Immune Development of Neonatal Calves. J Dairy Sci 2024:S0022-0302(24)00869-5. [PMID: 38825126 DOI: 10.3168/jds.2024-24835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
This comprehensive review highlights the intricate interplay between maternal factors and the co-development of the microbiome and immune system in neonatal calves. Based on human and mouse studies, multiple prenatal and postnatal factors influence this process by altering the host-associated microbiomes (gut, respiratory tract, skin), microbial colonization trajectories, and priming of the immune systems (mucosal and systemic). This review emphasizes the importance of early life exposure, highlighting postnatal factors that work in synergy with maternal factors in further finetuning the co-development of the neonatal microbiome and immunity. In cattle, there is a general lack of research to identify the maternal effect on the early colonization process of neonatal calves (gut, respiratory tract) and its impact on the priming of the immune system. Past studies have primarily investigated the maternal effects on the passive transfer of immunity at birth. The co-development process of the microbiome and immune system is vital for lifelong health and production in cattle. Therefore, comprehensive research beyond the traditional focus on passive immunity is an essential step in this endeavor. Calf microbiome research reports the colonization of diverse bacterial communities in newborns, which is affected by the colostrum feeding method immediately after birth. In contrast to human studies reporting a strong link between maternal and infant bacterial communities, there is a lack of evidence to clearly define cow-to-calf transmission in cattle. Maternal exposure has been shown to promote the colonization of beneficial bacteria in neonatal calves. Nonetheless, calf microbiome research lacks links to early development of the immune system. An in-depth understanding of the impact of maternal factors on microbiomes and immunity will improve the management of pregnant cows to raise immune-fit neonatal calves. It is essential to investigate the diverse effects of maternal health conditions and nutrition during pregnancy on the gut microbiome and immunity of neonatal calves through collaboration among researchers from diverse fields such as microbiology, immunology, nutrition, veterinary science, and epidemiology.
Collapse
Affiliation(s)
| | | | - Emma Hernandez-Sanabria
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven 3000, Belgium
| | - Le Luo Guan
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Nilusha Malmuthuge
- Lethbridge Research and Development Center, Agriculture Agri-Food Canada, Lethbridge, Canada.
| |
Collapse
|
33
|
Hayashizaki K, Kamii Y, Kinjo Y. Glycolipid antigen recognition by invariant natural killer T cells and its role in homeostasis and antimicrobial responses. Front Immunol 2024; 15:1402412. [PMID: 38863694 PMCID: PMC11165115 DOI: 10.3389/fimmu.2024.1402412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Due to the COVID-19 pandemic, the importance of developing effective vaccines has received more attention than ever before. To maximize the effects of vaccines, it is important to select adjuvants that induce strong and rapid innate and acquired immune responses. Invariant natural killer T (iNKT) cells, which constitute a small population among lymphocytes, bypass the innate and acquired immune systems through the rapid production of cytokines after glycolipid recognition; hence, their activation could be used as a vaccine strategy against emerging infectious diseases. Additionally, the diverse functions of iNKT cells, including enhancing antibody production, are becoming more understood in recent years. In this review, we briefly describe the functional subset of iNKT cells and introduce the glycolipid antigens recognized by them. Furthermore, we also introduce novel vaccine development taking advantages of iNKT cell activation against infectious diseases.
Collapse
Affiliation(s)
- Koji Hayashizaki
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuhiro Kamii
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Kinjo
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Ribeiro C, Ferreirinha P, Landry JJM, Macedo F, Sousa LG, Pinto R, Benes V, Alves NL. Foxo3 regulates cortical and medullary thymic epithelial cell homeostasis with implications in T cell development. Cell Death Dis 2024; 15:352. [PMID: 38773063 PMCID: PMC11109193 DOI: 10.1038/s41419-024-06728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
Within the thymus, thymic epithelial cells (TECs) create dedicated microenvironments for T cell development and selection. Considering that TECs are sensitive to distinct pathophysiological conditions, uncovering the molecular elements that coordinate their thymopoietic role has important fundamental and clinical implications. Particularly, medullary thymic epithelial cells (mTECs) play a crucial role in central tolerance. Our previous studies, along with others, suggest that mTECs depend on molecular factors linked to genome-protecting pathways, but the precise mechanisms underlying their function remain unknown. These observations led us to examine the role of Foxo3, as it is expressed in TECs and involved in DNA damage response. Our findings show that mice with TEC-specific deletion of Foxo3 (Foxo3cKO) displayed a disrupted mTEC compartment, with a more profound impact on the numbers of CCL21+ and thymic tuft mTEClo subsets. At the molecular level, Foxo3 controls distinct functional modules in the transcriptome of cTECs and mTECs under normal conditions, which includes the regulation of ribosomal biogenesis and DNA damage response, respectively. These changes in the TEC compartment resulted in a reduced total thymocyte cellularity and specific changes in regulatory T cell and iNKT cell development in the Foxo3cKO thymus. Lastly, the thymic defects observed in adulthood correlated with mild signs of altered peripheral immunotolerance in aged Foxo3cKO mice. Moreover, the deficiency in Foxo3 moderately aggravated the autoimmune predisposition observed in Aire-deficient mice. Our findings highlight the importance of Foxo3 in preserving the homeostasis of TECs and in supporting their role in T cell development and tolerance.
Collapse
Affiliation(s)
- Camila Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Pedro Ferreirinha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Fátima Macedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Laura G Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rute Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nuno L Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
35
|
Mohammed AD, Ball RAW, Jolly A, Nagarkatti P, Nagarkatti M, Kubinak JL. Studying the cellular basis of small bowel enteropathy using high-parameter flow cytometry in mouse models of primary antibody deficiency. Front Immunol 2024; 15:1278197. [PMID: 38803492 PMCID: PMC11128607 DOI: 10.3389/fimmu.2024.1278197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/28/2024] [Indexed: 05/29/2024] Open
Abstract
Background Primary immunodeficiencies are heritable defects in immune system function. Antibody deficiency is the most common form of primary immunodeficiency in humans, can be caused by abnormalities in both the development and activation of B cells, and may result from B-cell-intrinsic defects or defective responses by other cells relevant to humoral immunity. Inflammatory gastrointestinal complications are commonly observed in antibody-deficient patients, but the underlying immune mechanisms driving this are largely undefined. Methods In this study, several mouse strains reflecting a spectrum of primary antibody deficiency (IgA-/-, Aicda-/-, CD19-/- and JH -/-) were used to generate a functional small-bowel-specific cellular atlas using a novel high-parameter flow cytometry approach that allows for the enumeration of 59 unique cell subsets. Using this cellular atlas, we generated a direct and quantifiable estimate of immune dysregulation. This estimate was then used to identify specific immune factors most predictive of the severity of inflammatory disease of the small bowel (small bowel enteropathy). Results Results from our experiments indicate that the severity of primary antibody deficiency positively correlates with the degree of immune dysregulation that can be expected to develop in an individual. In the SI of mice, immune dysregulation is primarily explained by defective homeostatic responses in T cell and invariant natural killer-like T (iNKT) cell subsets. These defects are strongly correlated with abnormalities in the balance between protein (MHCII-mediated) versus lipid (CD1d-mediated) antigen presentation by intestinal epithelial cells (IECs) and intestinal stem cells (ISCs), respectively. Conclusions Multivariate statistical approaches can be used to obtain quantifiable estimates of immune dysregulation based on high-parameter flow cytometry readouts of immune function. Using one such estimate, we reveal a previously unrecognized tradeoff between iNKT cell activation and type 1 immunity that underlies disease in the small bowel. The balance between protein/lipid antigen presentation by ISCs may play a crucial role in regulating this balance and thereby suppressing inflammatory disease in the small bowel.
Collapse
Affiliation(s)
| | | | | | | | | | - Jason L. Kubinak
- Pathology, Microbiology, and Immunology Department, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
36
|
Lin H, Li C, Zhang W, Wu B, Wang Y, Wang S, Wang D, Li X, Huang H. Synthetic Cells and Molecules in Cellular Immunotherapy. Int J Biol Sci 2024; 20:2833-2859. [PMID: 38904025 PMCID: PMC11186374 DOI: 10.7150/ijbs.94346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/25/2024] [Indexed: 06/22/2024] Open
Abstract
Cellular immunotherapy has emerged as an exciting strategy for cancer treatment, as it aims to enhance the body's immune response to tumor cells by engineering immune cells and designing synthetic molecules from scratch. Because of the cytotoxic nature, abundance in peripheral blood, and maturation of genetic engineering techniques, T cells have become the most commonly engineered immune cells to date. Represented by chimeric antigen receptor (CAR)-T therapy, T cell-based immunotherapy has revolutionized the clinical treatment of hematological malignancies. However, serious side effects and limited efficacy in solid tumors have hindered the clinical application of cellular immunotherapy. To address these limitations, various innovative strategies regarding synthetic cells and molecules have been developed. On one hand, some cytotoxic immune cells other than T cells have been engineered to explore the potential of targeted elimination of tumor cells, while some adjuvant cells have also been engineered to enhance the therapeutic effect. On the other hand, diverse synthetic cellular components and molecules are added to engineered immune cells to regulate their functions, promoting cytotoxic activity and restricting side effects. Moreover, novel bioactive materials such as hydrogels facilitating the delivery of therapeutic immune cells have also been applied to improve the efficacy of cellular immunotherapy. This review summarizes the innovative strategies of synthetic cells and molecules currently available in cellular immunotherapies, discusses the limitations, and provides insights into the next generation of cellular immunotherapies.
Collapse
Affiliation(s)
- Haikun Lin
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Chentao Li
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Wanying Zhang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - Boxiang Wu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yanan Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - Shimin Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - Xia Li
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - He Huang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| |
Collapse
|
37
|
Boonchalermvichian C, Yan H, Gupta B, Rubin A, Baker J, Negrin RS. invariant Natural Killer T cell therapy as a novel therapeutic approach in hematological malignancies. FRONTIERS IN TRANSPLANTATION 2024; 3:1353803. [PMID: 38993780 PMCID: PMC11235242 DOI: 10.3389/frtra.2024.1353803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/04/2024] [Indexed: 07/13/2024]
Abstract
Invariant Natural Killer T cell therapy is an emerging platform of immunotherapy for cancer treatment. This unique cell population is a promising candidate for cell therapy for cancer treatment because of its inherent cytotoxicity against CD1d positive cancers as well as its ability to induce host CD8 T cell cross priming. Substantial evidence supports that iNKT cells can modulate myelomonocytic populations in the tumor microenvironment to ameliorate immune dysregulation to antagonize tumor progression. iNKT cells can also protect from graft-versus-host disease (GVHD) through several mechanisms, including the expansion of regulatory T cells (Treg). Ultimately, iNKT cell-based therapy can retain antitumor activity while providing protection against GVHD simultaneously. Therefore, these biological properties render iNKT cells as a promising "off-the-shelf" therapy for diverse hematological malignancies and possible solid tumors. Further the introduction of a chimeric antigen recetor (CAR) can further target iNKT cells and enhance function. We foresee that improved vector design and other strategies such as combinatorial treatments with small molecules or immune checkpoint inhibitors could improve CAR iNKT in vivo persistence, functionality and leverage anti-tumor activity along with the abatement of iNKT cell dysfunction or exhaustion.
Collapse
|
38
|
Kashimura M. Blood defense system - Proposal for a new concept of an immune system against blood borne pathogens comprising the liver, spleen and bone marrow. Scand J Immunol 2024; 99:e13363. [PMID: 38605529 DOI: 10.1111/sji.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 04/13/2024]
Abstract
Blood-borne pathogen (BBP) infections can rapidly progress to life-threatening sepsis and must therefore be promptly eliminated by the host's immune system. Intravascular macrophages of the liver sinusoid, splenic marginal zone and red pulp and perisinusoidal macrophage protrusions in the bone marrow (BM) directly phagocytose BBPs in the blood as an innate immune response. The liver, spleen and BM thereby work together as the blood defence system (BDS) in response to BBPs by exerting their different immunological roles. The liver removes the vast majority of these invading organisms via innate immunity, but their complete elimination is not possible without the actions of antibodies. Splenic marginal zone B cells promptly produce IgM and IgG antibodies against BBPs. The splenic marginal zone transports antigenic information from the innate to the adaptive immune systems. The white pulp of the spleen functions as adaptive immune tissue and produces specific and high-affinity antibodies with an immune memory against BBPs. The BM works to maintain immune memory by supporting the survival of memory B cells, memory T cells and long-lived plasma cells (LLPCs), all of which have dedicated niches. Furthermore, BM perisinusoidal naïve follicular B cells promptly produce IgM antibodies against BBPs in the BM sinusoid and the IgG memory B cells residing in the BM rapidly transform to plasma cells which produce high-affinity IgG antibodies upon reinfection. This review describes the complete immune defence characteristics of the BDS against BBPs through the collaboration of the liver, spleen and BM with combined different immunological roles.
Collapse
Affiliation(s)
- Makoto Kashimura
- Department of Hematology, Shinmatsudo Central General Hospital, Matsudo, Japan
| |
Collapse
|
39
|
Saavedra-Avila NA, Pigni NB, Caldwell DR, Chena-Becerra F, Intano J, Ng TW, Chennamadhavuni D, Porcelli SA, Gascón JA, Howell AR. A Humanized Mouse Model Coupled with Computational Analysis Identifies Potent Glycolipid Agonist of Invariant NKT Cells. ACS Chem Biol 2024; 19:926-937. [PMID: 38477945 PMCID: PMC11075374 DOI: 10.1021/acschembio.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Invariant natural killer T (iNKT) cells play an important role in many innate and adaptive immune responses, with potential applications in cancer immunotherapy. The glycolipid KRN7000, an α-galactosylceramide, potently activates iNKT cells but has shown limited anticancer effects in human clinical trials conducted so far. In spite of almost three decades of structure-activity relationship studies, no alternative glycolipid has yet emerged as a superior clinical candidate. One reason for the slow progress in this area is that standard mouse models do not accurately reflect the specific ligand recognition by human iNKT cells and their requirements for activation. Here we evaluated a series of KRN7000 analogues using a recently developed humanized mouse model that expresses a human αTCR chain sequence and human CD1d. In this process, a more stimulatory, previously reported but largely overlooked glycolipid was identified, and its activity was probed and rationalized via molecular simulations.
Collapse
Affiliation(s)
- Noemi A. Saavedra-Avila
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA 10461
| | - Natalia B. Pigni
- Department of Chemistry, University of Connecticut, Storrs CT USA 06269
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC CONICET-UNC), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | | | - Florencia Chena-Becerra
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA 10461
| | - Jose Intano
- Department of Chemistry, University of Connecticut, Storrs CT USA 06269
| | - Tony W. Ng
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA 10461
| | | | - Steven A. Porcelli
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY USA 10461
| | - José A. Gascón
- Department of Chemistry, University of Connecticut, Storrs CT USA 06269
| | - Amy R. Howell
- Department of Chemistry, University of Connecticut, Storrs CT USA 06269
| |
Collapse
|
40
|
Zhou J, Li L, Wu B, Feng Z, Lu Y, Wang Z. MST1/2: Important regulators of Hippo pathway in immune system associated diseases. Cancer Lett 2024; 587:216736. [PMID: 38369002 DOI: 10.1016/j.canlet.2024.216736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
The Hippo signaling pathway is first found in Drosophila and is highly conserved in evolution. Previous studies on this pathway in mammals have revealed its key role in cell proliferation and differentiation, organ size control, and carcinogenesis. Apart from these, recent findings indicate that mammalian Ste20-like kinases 1 and 2 (MST1/2) have significant effects on immune regulation. In this review, we summarize the updated understanding of how MST1/2 affect the regulation of the immune system and the specific mechanism. The effect of MST1/2 on immune cells and its role in the tumor immune microenvironment can alter the body's response to tumor cells. The relationship between MST1/2 and the immune system suggests new directions in the manipulation of immune responses for clinical immunotherapy, especially for tumor treatment.
Collapse
Affiliation(s)
- Jingjing Zhou
- Department of Gastroenterology, Shanghai Xuhui Central Hospital and Department of Anatomy and Histoembrvology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lanfang Li
- Department of Gastroenterology, Shanghai Xuhui Central Hospital and Department of Anatomy and Histoembrvology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Baojin Wu
- Department of Plastic Surgery, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Jing'an District, Shanghai, 200040, China
| | - Zhen Feng
- Department of Gastroenterology, Shanghai Xuhui Central Hospital and Department of Anatomy and Histoembrvology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Zuoyun Wang
- Department of Gastroenterology, Shanghai Xuhui Central Hospital and Department of Anatomy and Histoembrvology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
41
|
Gutiérrez-Vera C, García-Betancourt R, Palacios PA, Müller M, Montero DA, Verdugo C, Ortiz F, Simon F, Kalergis AM, González PA, Saavedra-Avila NA, Porcelli SA, Carreño LJ. Natural killer T cells in allergic asthma: implications for the development of novel immunotherapeutical strategies. Front Immunol 2024; 15:1364774. [PMID: 38629075 PMCID: PMC11018981 DOI: 10.3389/fimmu.2024.1364774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Allergic asthma has emerged as a prevalent allergic disease worldwide, affecting most prominently both young individuals and lower-income populations in developing and developed countries. To devise effective and curative immunotherapy, it is crucial to comprehend the intricate nature of this condition, characterized by an immune response imbalance that favors a proinflammatory profile orchestrated by diverse subsets of immune cells. Although the involvement of Natural Killer T (NKT) cells in asthma pathology is frequently implied, their specific contributions to disease onset and progression remain incompletely understood. Given their remarkable ability to modulate the immune response through the rapid secretion of various cytokines, NKT cells represent a promising target for the development of effective immunotherapy against allergic asthma. This review provides a comprehensive summary of the current understanding of NKT cells in the context of allergic asthma, along with novel therapeutic approaches that leverage the functional response of these cells.
Collapse
Affiliation(s)
- Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David A. Montero
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Verdugo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisca Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noemi A. Saavedra-Avila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
42
|
Lin Q, Kuypers M, Baglaenko Y, Cao E, Hezaveh K, Despot T, de Amat Herbozo C, Cruz Tleugabulova M, Umaña JM, McGaha TL, Philpott DJ, Mallevaey T. The intestinal microbiota modulates the transcriptional landscape of iNKT cells at steady-state and following antigen exposure. Mucosal Immunol 2024; 17:226-237. [PMID: 38331095 DOI: 10.1016/j.mucimm.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Invariant Natural Killer T (iNKT) cells are unconventional T cells that respond to microbe-derived glycolipid antigens. iNKT cells exert fast innate effector functions that regulate immune responses in a variety of contexts, including during infection, cancer, or inflammation. The roles these unconventional T cells play in intestinal inflammation remain poorly defined and vary based on the disease model and species. Our previous work suggested that the gut microbiota influenced iNKT cell functions during dextran sulfate sodium-induced colitis in mice. This study, shows that iNKT cell homeostasis and response following activation are altered in germ-free mice. Using prenatal fecal transplant in specific pathogen-free mice, we show that the transcriptional signatures of iNKT cells at steady state and following αGC-mediated activation in vivo are modulated by the microbiota. Our data suggest that iNKT cells sense the microbiota at homeostasis independently of their T cell receptors. Finally, iNKT cell transcriptional signatures are different in male and female mice. Collectively, our findings suggest that sex and the intestinal microbiota are important factors that regulate iNKT cell homeostasis and responses. A deeper understanding of microbiota-iNKT cell interactions and the impact of sex could improve the development of iNKT cell-based immunotherapies.
Collapse
Affiliation(s)
- Qiaochu Lin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Meggie Kuypers
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yuriy Baglaenko
- Center for Autoimmune Genomics and Etiology, Division of Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Eric Cao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kebria Hezaveh
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tijana Despot
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Tracy L McGaha
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
43
|
Li X, Liang X, Gu X, Zou M, Cao W, Liu C, Wang X. Ursodeoxycholic acid and 18β-glycyrrhetinic acid alleviate ethinylestradiol-induced cholestasis via downregulating RORγt and CXCR3 signaling pathway in iNKT cells. Toxicol In Vitro 2024; 96:105782. [PMID: 38244730 DOI: 10.1016/j.tiv.2024.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/04/2023] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Estrogen-induced intrahepatic cholestasis (IHC) is a mild but potentially serious risk and urges for new therapeutic targets and effective treatment. Our previous study demonstrated that RORγt and CXCR3 signaling pathway of invariant natural killer T (iNKT) 17 cells play pathogenic roles in 17α-ethinylestradiol (EE)-induced IHC. Ursodeoxycholic acid (UDCA) and 18β-glycyrrhetinic acid (GA) present a protective effect on IHC partially due to their immunomodulatory properties. Hence in present study, we aim to investigate the effectiveness of UDCA and 18β-GA in vitro and verify the accessibility of the above targets. Biochemical index measurement indicated that UDCA and 18β-GA presented efficacy to alleviate EE-induced cholestatic cytotoxicity. Both UDCA and 18β-GA exhibited suppression on the CXCL9/10-CXCR3 axis, and significantly restrained the expression of RORγt in vitro. In conclusion, our observations provide new therapeutic targets of UDCA and 18β-GA, and 18β-GA as an alternative treatment for EE-induced cholestasis.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaojing Liang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoxia Gu
- Department of Obstetrics and Gynecology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Mengzhi Zou
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Weiping Cao
- Departments of Obstetrics, Maternity and Child Health Hospital of Zhenjiang, Zhenjiang 212001, China.
| | - Chunhui Liu
- Physics and Chemistry Test Center of Jiangsu Province, 210042 Nanjing, China.
| | - Xinzhi Wang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
44
|
Peng S, Lin A, Jiang A, Zhang C, Zhang J, Cheng Q, Luo P, Bai Y. CTLs heterogeneity and plasticity: implications for cancer immunotherapy. Mol Cancer 2024; 23:58. [PMID: 38515134 PMCID: PMC10956324 DOI: 10.1186/s12943-024-01972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play critical antitumor roles, encompassing diverse subsets including CD4+, NK, and γδ T cells beyond conventional CD8+ CTLs. However, definitive CTLs biomarkers remain elusive, as cytotoxicity-molecule expression does not necessarily confer cytotoxic capacity. CTLs differentiation involves transcriptional regulation by factors such as T-bet and Blimp-1, although epigenetic regulation of CTLs is less clear. CTLs promote tumor killing through cytotoxic granules and death receptor pathways, but may also stimulate tumorigenesis in some contexts. Given that CTLs cytotoxicity varies across tumors, enhancing this function is critical. This review summarizes current knowledge on CTLs subsets, biomarkers, differentiation mechanisms, cancer-related functions, and strategies for improving cytotoxicity. Key outstanding questions include refining the CTLs definition, characterizing subtype diversity, elucidating differentiation and senescence pathways, delineating CTL-microbe relationships, and enabling multi-omics profiling. A more comprehensive understanding of CTLs biology will facilitate optimization of their immunotherapy applications. Overall, this review synthesizes the heterogeneity, regulation, functional roles, and enhancement strategies of CTLs in antitumor immunity, highlighting gaps in our knowledge of subtype diversity, definitive biomarkers, epigenetic control, microbial interactions, and multi-omics characterization. Addressing these questions will refine our understanding of CTLs immunology to better leverage cytotoxic functions against cancer.
Collapse
Affiliation(s)
- Shengkun Peng
- Department of Radiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and ImmunologySchool of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South University, Hunan, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Yifeng Bai
- Department of Oncology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
45
|
Cui G, Abe S, Kato R, Ikuta K. Insights into the heterogeneity of iNKT cells: tissue-resident and circulating subsets shaped by local microenvironmental cues. Front Immunol 2024; 15:1349184. [PMID: 38440725 PMCID: PMC10910067 DOI: 10.3389/fimmu.2024.1349184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/06/2024] [Indexed: 03/06/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are a distinct subpopulation of innate-like T lymphocytes. They are characterized by semi-invariant T cell receptors (TCRs) that recognize both self and foreign lipid antigens presented by CD1d, a non-polymorphic MHC class I-like molecule. iNKT cells play a critical role in stimulating innate and adaptive immune responses, providing an effective defense against infections and cancers, while also contributing to chronic inflammation. The functions of iNKT cells are specific to their location, ranging from lymphoid to non-lymphoid tissues, such as the thymus, lung, liver, intestine, and adipose tissue. This review aims to provide insights into the heterogeneity of development and function in iNKT cells. First, we will review the expression of master transcription factors that define subsets of iNKT cells and their production of effector molecules such as cytokines and granzymes. In this article, we describe the gene expression profiles contributing to the kinetics, distribution, and cytotoxicity of iNKT cells across different tissue types. We also review the impact of cytokine production in distinct immune microenvironments on iNKT cell heterogeneity, highlighting a recently identified circulating iNKT cell subset. Additionally, we explore the potential of exploiting iNKT cell heterogeneity to create potent immunotherapies for human cancers in the future.
Collapse
Affiliation(s)
- Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryoma Kato
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
46
|
Hebbandi Nanjundappa R, Shao K, Krishnamurthy P, Gershwin ME, Leung PSC, Sokke Umeshappa C. Invariant natural killer T cells in autoimmune cholangiopathies: Mechanistic insights and therapeutic implications. Autoimmun Rev 2024; 23:103485. [PMID: 38040101 DOI: 10.1016/j.autrev.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Invariant natural killer T cells (iNKT cells) constitute a specialized subset of lymphocytes that bridges innate and adaptive immunity through a combination of traits characteristic of both conventional T cells and innate immune cells. iNKT cells are characterized by their invariant T cell receptors and discerning recognition of lipid antigens, which are presented by the non-classical MHC molecule, CD1d. Within the hepatic milieu, iNKT cells hold heightened prominence, contributing significantly to the orchestration of organ homeostasis. Their unique positioning to interact with diverse cellular entities, ranging from epithelial constituents like hepatocytes and cholangiocytes to immunocytes including Kupffer cells, B cells, T cells, and dendritic cells, imparts them with potent immunoregulatory abilities. Emergering knowledge of liver iNKT cells subsets enable to explore their therapeutic potential in autoimmne liver diseases. This comprehensive review navigates the landscape of iNKT cell investigations in immune-mediated cholangiopathies, with a particular focus on primary biliary cholangitis and primary sclerosing cholangitis, across murine models and human subjects to unravel the intricate involvements of iNKT cells in liver autoimmunity. Additionally, we also highlight the prospectives of iNKT cells as therapeutic targets in cholangiopathies. Modulation of the equilibrium between regulatory and proinflammatory iNKT subsets can be defining determinant in the dynamics of hepatic autoimmunity. This discernment not only enriches our foundational comprehension but also lays the groundwork for pioneering strategies to navigate the multifaceted landscape of liver autoimmunity.
Collapse
Affiliation(s)
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, IWK Research Center, Halifax, NS, Canada.
| |
Collapse
|
47
|
Abstract
The thymus is an evolutionarily conserved organ that supports the development of T cells. Not only does the thymic environment support the rearrangement and expression of diverse T cell receptors but also provides a unique niche for the selection of appropriate T cell clones. Thymic selection ensures that the repertoire of available T cells is both useful (being MHC-restricted) and safe (being self-tolerant). The unique antigen-presentation features of the thymus ensure that the display of self-antigens is optimal to induce tolerance to all types of self-tissue. MHC class-specific functions of CD4+ T helper cells, CD8+ killer T cells and CD4+ regulatory T cells are also established in the thymus. Finally, the thymus provides signals for the development of several minor T cell subsets that promote immune and tissue homeostasis. This Review provides an introductory-level overview of our current understanding of the sophisticated thymic selection mechanisms that ensure T cells are useful and safe.
Collapse
Affiliation(s)
- K Maude Ashby
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
48
|
Mohammed AD, Ball RAW, Jolly A, Nagarkatti P, Nagarkatti M, Kubinak JL. Studying the cellular basis of small bowel enteropathy using high-parameter flow cytometry in mouse models of primary antibody deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577009. [PMID: 38352330 PMCID: PMC10862736 DOI: 10.1101/2024.01.25.577009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Background Primary immunodeficiencies are heritable defects in immune system function. Antibody deficiency is the most common form of primary immunodeficiency in humans, can be caused by abnormalities in both the development and activation of B cells, and may result from B-cell-intrinsic defects or defective responses by other cells relevant to humoral immunity. Inflammatory gastrointestinal complications are commonly observed in antibody-deficient patients, but the underlying immune mechanisms driving this are largely undefined. Methods In this study, several mouse strains reflecting a spectrum of primary antibody deficiency (IgA -/- , Aicda -/- , CD19 -/- and J H -/- ) were used to generate a functional small-bowel-specific cellular atlas using a novel high-parameter flow cytometry approach that allows for the enumeration of 59 unique cell subsets. Using this cellular atlas, we generated a direct and quantifiable estimate of immune dysregulation. This estimate was then used to identify specific immune factors most predictive of the severity of inflammatory disease of the small bowel (small bowel enteropathy). Results Results from our experiments indicate that the severity of primary antibody deficiency positively correlates with the degree of immune dysregulation that can be expected to develop in an individual. In the SI of mice, immune dysregulation is primarily explained by defective homeostatic responses in T cell and invariant natural killer-like T (iNKT) cell subsets. These defects are strongly correlated with abnormalities in the balance between protein (MHCII-mediated) versus lipid (CD1d-mediated) antigen presentation by intestinal epithelial cells (IECs) and intestinal stem cells (ISCs), respectively. Conclusions Multivariate statistical approaches can be used to obtain quantifiable estimates of immune dysregulation based on high-parameter flow cytometry readouts of immune function. Using one such estimate, we reveal a previously unrecognized tradeoff between iNKT cell activation and type 1 immunity that underlies disease in the small bowel. The balance between protein/lipid antigen presentation by ISCs may play a crucial role in regulating this balance and thereby suppressing inflammatory disease in the small bowel.
Collapse
|
49
|
Su W, Che L, Liao W, Huang H. The RNA m 6A writer METTL3 in tumor microenvironment: emerging roles and therapeutic implications. Front Immunol 2024; 15:1335774. [PMID: 38322265 PMCID: PMC10845340 DOI: 10.3389/fimmu.2024.1335774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
The tumor microenvironment (TME) is a heterogeneous ecosystem comprising cancer cells, immune cells, stromal cells, and various non-cellular components, all of which play critical roles in controlling tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), the core component of N 6-methyladenosine (m6A) writer, is frequently associated with abnormalities in the m6A epitranscriptome in different cancer types, impacting both cancer cells and the surrounding TME. While the impact of METTL3 on cancer cells has been extensively reviewed, its roles in TME and anti-cancer immunity have not been comprehensively summarized. This review aims to systematically summarize the functions of METTL3 in TME, particularly its effects on tumor-infiltrating immune cells. We also elaborate on the underlying m6A-dependent mechanism. Additionally, we discuss ongoing endeavors towards developing METTL3 inhibitors, as well as the potential of targeting METTL3 to bolster the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Weiqi Su
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lin Che
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenting Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
50
|
Maas-Bauer K, Köhler N, Stell AV, Zwick M, Acharya S, Rensing-Ehl A, König C, Kroll J, Baker J, Koßmann S, Pradier A, Wang S, Docquier M, Lewis DB, Negrin RS, Simonetta F. Single-cell transcriptomics reveal different maturation stages and sublineage commitment of human thymic invariant natural killer T cells. J Leukoc Biol 2024; 115:401-409. [PMID: 37742056 PMCID: PMC10799303 DOI: 10.1093/jleuko/qiad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/08/2023] [Accepted: 08/29/2023] [Indexed: 09/25/2023] Open
Abstract
Invariant natural killer T cells are a rare, heterogeneous T-cell subset with cytotoxic and immunomodulatory properties. During thymic development, murine invariant natural killer T cells go through different maturation stages differentiating into distinct sublineages, namely, invariant natural killer T1, 2, and 17 cells. Recent reports indicate that invariant natural killer T2 cells display immature properties and give rise to other subsets, whereas invariant natural killer T1 cells seem to be terminally differentiated. Whether human invariant natural killer T cells follow a similar differentiation model is still unknown. To define the maturation stages and assess the sublineage commitment of human invariant natural killer T cells during thymic development, in this study, we performed single-cell RNA sequencing analysis on human Vα24+Vβ11+ invariant natural killer T cells isolated from thymocytes. We show that these invariant natural killer T cells displayed heterogeneity, and our unsupervised analysis identified 5 clusters representing different maturation stages, from an immature profile with high expression of genes important for invariant natural killer T cell development and proliferation to a mature, fully differentiated profile with high levels of cytotoxic effector molecules. Evaluation of expression of sublineage-defining gene sets revealed mainly cells with an invariant natural killer T2 signature in the most immature cluster, whereas the more differentiated ones displayed an invariant natural killer T1 signature. Combined analysis with a publicly available single-cell RNA sequencing data set of human invariant natural killer T cells from peripheral blood suggested that the 2 main subsets exist both in thymus and in the periphery, while a third more immature one was restricted to the thymus. Our data point to the existence of different maturation stages of human thymic invariant natural killer T cells and provide evidence for sublineage commitment of invariant natural killer T cells in the human thymus.
Collapse
Affiliation(s)
- Kristina Maas-Bauer
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Center for Clinical Sciences Research Building, 269 W. Campus Drive, Stanford, CA 94305, United States
- Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center—University of Freiburg, Faculty of Medicine, Hugstetter Str. 55, Freiburg 79106, Germany
| | - Natalie Köhler
- Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center—University of Freiburg, Faculty of Medicine, Hugstetter Str. 55, Freiburg 79106, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, Freiburg 79104, Germany
| | - Anna-Verena Stell
- Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center—University of Freiburg, Faculty of Medicine, Hugstetter Str. 55, Freiburg 79106, Germany
| | - Melissa Zwick
- Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center—University of Freiburg, Faculty of Medicine, Hugstetter Str. 55, Freiburg 79106, Germany
| | - Swati Acharya
- Sean N. Parker Center for Asthma and Allergy Research, Department of Medicine, Stanford University, 240 Pasteur Dr, Stanford, CA 94304, United States
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, Breisacher Str. 115, Freiburg 79106, Germany
| | - Christoph König
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, Breisacher Str. 115, Freiburg 79106, Germany
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg 79104, Germany
| | - Johannes Kroll
- Department of Cardiovascular Surgery, Heart Center Freiburg University, Hugstetter Straße 55, Freiburg 79106, Germany
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Center for Clinical Sciences Research Building, 269 W. Campus Drive, Stanford, CA 94305, United States
| | - Stefanie Koßmann
- Department of Hematology, Oncology, and Stem Cell Transplantation, Medical Center—University of Freiburg, Faculty of Medicine, Hugstetter Str. 55, Freiburg 79106, Germany
| | - Amandine Pradier
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland
| | - Sisi Wang
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland
| | - Mylène Docquier
- iGE3 Genomics Platform, University of Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland
- Department of Genetics & Evolution, University of Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland
| | - David B Lewis
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, 240 Pasteur Dr, Stanford, CA 94304, United States
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Center for Clinical Sciences Research Building, 269 W. Campus Drive, Stanford, CA 94305, United States
| | - Federico Simonetta
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Center for Clinical Sciences Research Building, 269 W. Campus Drive, Stanford, CA 94305, United States
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, Geneva 1205, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland
| |
Collapse
|