1
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
2
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
3
|
Haijer F, Koets-Shajari S, Heegsma J, Serna-Salas S, Blokzijl T, Buist-Homan M, Moshage H, Faber KN. Hydroxyurea attenuates hepatic stellate cell proliferation in vitro and liver fibrogenesis in vivo. FASEB J 2023; 37:e23124. [PMID: 37552464 DOI: 10.1096/fj.202300920r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
Liver fibrosis results from excessive proliferation of, and collagen production by hepatic stellate cells (HSCs) that is caused by chronic liver injury. No drugs are available to cure liver fibrosis. Hydroxyurea is an anti-proliferative drug that is used in benign and malignant disorders. Here, we studied the effect of hydroxyurea on primary HSCs and its anti-fibrotic effect in the CCl4 mouse model of liver fibrosis. Primary rat HSCs were cultured in the absence or presence of hydroxyurea (0.1-1.0 mmol/L). CCl4 or vehicle was administered to C57BL/6/J mice for 4 weeks, with or without hydroxyurea (100 mg/kg/day) co-treatment. We used real-time cell proliferation analysis, Oil Red O (lipid droplet) staining, immunohistochemistry, Acridine Orange staining (apoptosis), Sytox green staining (necrosis), RT-qPCR, ELISA, and Western Blotting for analysis. Hydroxyurea dose-dependently suppressed lipid droplet-loss and mRNA levels of Col1α1 and Acta2 in transdifferentiating HSCs. In fully-activated HSCs, hydroxyurea dose-dependently attenuated PCNA protein levels and BrdU incorporation, but did not reverse Col1α1 and Acta2 mRNA expression. Hydroxyurea did not induce apoptosis or necrosis in HSCs or hepatocytes. Hydroxyurea suppressed accumulation of desmin-positive HSCs and hepatic collagen deposition after CCl4 treatment. CCl4 -induced regenerative hepatocyte proliferation, Col1α1 and Acta2 mRNA expression and α-SMA protein levels were not affected. This study demonstrates that hydroxyurea inhibits HSC proliferation in vitro and attenuates early development of liver fibrosis in vivo, while preserving hepatocyte regeneration after toxic insults by CCl4. Thus, hydroxyurea may have therapeutic value against liver fibrosis.
Collapse
Affiliation(s)
- Floris Haijer
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Shiva Koets-Shajari
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janette Heegsma
- Department Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sandra Serna-Salas
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tjasso Blokzijl
- Department Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manon Buist-Homan
- Department Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department Laboratory Medicine, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Lo Presti S, Baruqui DL, Perez J, Vadasseril BJ, Escolar E, Horvath SA, Mihos CG. The Role of False Tendons in Left Ventricular Remodeling and Secondary Mitral Regurgitation After Acute Myocardial Infarction. J Cardiovasc Imaging 2021; 29:46-56. [PMID: 33511800 PMCID: PMC7847792 DOI: 10.4250/jcvi.2020.0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/20/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Left ventricular false tendons (LVFT) are common structures visualized on transthoracic echocardiography (TTE). The present study tested the hypothesis that LVFT, via a possible 'constraint' mechanism, attenuate left ventricular (LV) remodeling and secondary mitral regurgitation after acute myocardial infarction. METHODS Seventy-one patients admitted to the Coronary Care Unit following an ST-elevation (n = 63) or non-ST-elevation (n = 8) myocardial infarction were analyzed; 29 (41%) had LVFT, and 42 (59%) did not (no-LVFT). All had a TTE and at least 1 follow-up study after revascularization. The χ² analysis, Student's t-test, and Mann Whitney U test were used for the statistical analyses. RESULTS The mean age (64 vs. 66 years), left ventricular ejection fraction (LVEF) (41% vs. 39%), left ventricular end-diastolic diameter (LVEDd) index (23 mm/m² for both), and prevalence of ≥ moderate secondary/functional mitral regurgitation (MR) (17% vs. 14%) were similar between the LVFT and no-LVFT groups. At 1-year follow-up, there was no significant difference in chamber remodeling amongst the LVFT versus no-LVFT group when assessed by: 1) ≥ 10% decrease in the relative LVEF (24% vs. 26%; p = 0.83); 2) ≥ 10% increase in the LVEDd index (41% vs. 38%, p = 0.98); and, 3) ≥ 10% increase in the LV mass index (48% vs. 41%, p = 0.68). There was no difference in the prevalence of ≥ moderate secondary/functional MR (17% vs. 12%, p = 0.77). Outcomes remained similar when stratifying by LVFT morphology or ischemic territory. CONCLUSIONS In patients with mild to moderate LV dysfunction and normal chamber size, LVFT do not affect the development of LV remodeling or secondary/functional MR post-myocardial infarction.
Collapse
Affiliation(s)
- Saberio Lo Presti
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Diego Lugo Baruqui
- Department of Internal Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Jorge Perez
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Ben Johns Vadasseril
- Department of Internal Medicine, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Esteban Escolar
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Mount Sinai Medical Center, Miami Beach, FL, USA
- Coronary Care Unit, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Sofia A Horvath
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Mount Sinai Medical Center, Miami Beach, FL, USA
- Echocardiography Laboratory, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Christos G Mihos
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Mount Sinai Medical Center, Miami Beach, FL, USA
- Echocardiography Laboratory, Mount Sinai Medical Center, Miami Beach, FL, USA. ,
| |
Collapse
|
5
|
Abstract
Heart failure (HF) is a common consequence of several cardiovascular diseases and is understood as a vicious cycle of cardiac and hemodynamic decline. The current inventory of treatments either alleviates the pathophysiological features (eg, cardiac dysfunction, neurohumoral activation, and ventricular remodeling) and/or targets any underlying pathologies (eg, hypertension and myocardial infarction). Yet, since these do not provide a cure, the morbidity and mortality associated with HF remains high. Therefore, the disease constitutes an unmet medical need, and novel therapies are desperately needed. Cyclic guanosine-3',5'-monophosphate (cGMP), synthesized by nitric oxide (NO)- and natriuretic peptide (NP)-responsive guanylyl cyclase (GC) enzymes, exerts numerous protective effects on cardiac contractility, hypertrophy, fibrosis, and apoptosis. Impaired cGMP signaling, which can occur after GC deactivation and the upregulation of cyclic nucleotide-hydrolyzing phosphodiesterases (PDEs), promotes cardiac dysfunction. In this study, we review the role that NO/cGMP and NP/cGMP signaling plays in HF. After considering disease etiology, the physiological effects of cGMP in the heart are discussed. We then assess the evidence from preclinical models and patients that compromised cGMP signaling contributes to the HF phenotype. Finally, the potential of pharmacologically harnessing cardioprotective cGMP to rectify the present paucity of effective HF treatments is examined.
Collapse
|
6
|
Abstract
The cyclic nucleotides cyclic adenosine-3′,5′-monophosphate (cAMP) and cyclic guanosine-3′,5′-monophosphate (cGMP) maintain physiological cardiac contractility and integrity. Cyclic nucleotide–hydrolysing phosphodiesterases (PDEs) are the prime regulators of cAMP and cGMP signalling in the heart. During heart failure (HF), the expression and activity of multiple PDEs are altered, which disrupt cyclic nucleotide levels and promote cardiac dysfunction. Given that the morbidity and mortality associated with HF are extremely high, novel therapies are urgently needed. Herein, the role of PDEs in HF pathophysiology and their therapeutic potential is reviewed. Attention is given to PDEs 1–5, and other PDEs are briefly considered. After assessing the role of each PDE in cardiac physiology, the evidence from pre-clinical models and patients that altered PDE signalling contributes to the HF phenotype is examined. The potential of pharmacologically harnessing PDEs for therapeutic gain is considered.
Collapse
|
7
|
Caprnda M, Zulli A, Shiwani HA, Kubatka P, Filipova S, Valentova V, Gazdikova K, Mozos I, Berukstis A, Laucevicius A, Rihacek I, Dragasek J, Prosecky R, Egom EE, Staffa R, Kruzliak P, Krasnik V. The therapeutic effect of B-type natriuretic peptides in acute decompensated heart failure. Clin Exp Pharmacol Physiol 2020; 47:1120-1133. [PMID: 32083749 DOI: 10.1111/1440-1681.13290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/03/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
Abstract
B-type natriuretic peptide (BNP) exhibits roles in natriuresis and diuresis, making it an ideal drug that may aid in diuresing a fluid-overloaded patient with poor or worsening renal function. Several randomized clinical trials have tested the hypothesis that infusions of pharmacological doses of BNP to acute heart failure (HF) patients may enhance decongestion and preserve renal function in this clinical setting. Unfortunately, none of these have demonstrated beneficial outcomes. The current challenge for BNP research in acute HF lies in addressing a failure of concept and a reluctance to abandon an ineffective research model. Future success will necessitate a detailed understanding of the mechanism of action of BNP, as well as better integration of basic and clinical science.
Collapse
Affiliation(s)
- Martin Caprnda
- First Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Haaris A Shiwani
- Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Trust, Lancaster, UK
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Division of Oncology, Department of Experimental Carcinogenesis, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Slavomira Filipova
- Department of Cardiology, National Institute of Cardiovascular Diseases and Slovak Medical University, Bratislava, Slovakia
| | - Vanda Valentova
- Division of Oncology, Department of Experimental Carcinogenesis, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Independent Researcher, Mosjøen, Norway
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovakia
- Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Ioana Mozos
- Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Andrius Berukstis
- Clinic of Heart and Vessel Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aleksandras Laucevicius
- Clinic of Heart and Vessel Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ivan Rihacek
- Second Department of Internal Medicine, Faculty of Medicine, Masaryk University and St, Anne´s University Hospital, Brno, Czech Republic
| | - Jozef Dragasek
- First Department of Psychiatry, Faculty of Medicine, Luis Pasteur University Hospital, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Robert Prosecky
- Department of Internal Medicine, Brothers of Mercy Hospital, Brno, Czech Republic
| | - Emmanuel E Egom
- Egom Clinical & Translational Research Services Ltd, Dartmouth, NS, Canada
- Jewish General Hospital and Lady Davis Research Institute, Montreal, QC, Canada
| | - Robert Staffa
- Second Department of Surgery, Faculty of Medicine, St. Anne´s University Hospital, Masaryk University, Brno, Czech Republic
| | - Peter Kruzliak
- Department of Internal Medicine, Brothers of Mercy Hospital, Brno, Czech Republic
- Second Department of Surgery, Faculty of Medicine, St. Anne´s University Hospital, Masaryk University, Brno, Czech Republic
| | - Vladimir Krasnik
- Department of Ophthalmology, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| |
Collapse
|
8
|
Xu S, Wang Y, Yu M, Wang D, Liang Y, Chen Y, Liao C, Xie Z, Zhao B, Han J, Duan Y, Yang X. LongShengZhi capsule inhibits doxorubicin-induced heart failure by anti-oxidative stress. Biomed Pharmacother 2019; 123:109803. [PMID: 31877550 DOI: 10.1016/j.biopha.2019.109803] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 12/22/2022] Open
Abstract
Heart failure is a major cause of morbidity and mortality worldwide. LongShengZhi capsule (LSZ), a traditional Chinese medicine, is used for treatment of patients with vascular diseases. Herein we investigated the effect of LSZ treatment on doxorubicin (DOX)-induced heart failure in mice. C57BL/6 mice randomly in 3 groups received following treatment: Control group, mice were fed normal chow; DOX group, mice were intraperitoneally injected DOX to induce heart failure and fed normal chow; and LSZ group, mice were injected DOX and fed normal chow containing LSZ. DOX induced heart failure as evidenced by increased serum creatine kinase, lactic dehydrogenase and α-hydroxybutyrate dehydrogenase, and cardiac fibrosis. However, LSZ treatment substantially inhibited DOX-induced heart failure parameters. Mechanistically, LSZ reduced collagen content and fibrosis by inhibiting expression of collagen type I α1 (COL1α1), COL1α2, α-smooth muscle actin and transforming growth factor β1. In addition, DOX-induced cell apoptosis was inhibited by LSZ, coupled with reduced caspase 3 activity and mRNA expression. LSZ decreased inflammatory cytokine levels. More importantly, LSZ decreased oxidative stress by inducing expression of anti-oxidative stress enzymes including superoxide dismutase 1 (SOD1), SOD2, catalase and glutathione peroxidase 1 through activation of forkhead box O3A and sirtuin 3. In conclusion, our study demonstrates that LSZ reduces heart failure by reducing production of reactive oxygen species and inhibiting inflammation/apoptosis. Our study also suggests the potential application of LSZ for heart failure treatment.
Collapse
Affiliation(s)
- Shuai Xu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanyu Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Maoyun Yu
- School of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Dandan Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yingquan Liang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chenzhong Liao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhouling Xie
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | | | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China; College of Life Science, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
9
|
Chiba A, Watanabe-Takano H, Miyazaki T, Mochizuki N. Cardiomyokines from the heart. Cell Mol Life Sci 2018; 75:1349-1362. [PMID: 29238844 PMCID: PMC11105766 DOI: 10.1007/s00018-017-2723-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
The heart is regarded as an endocrine organ as well as a pump for circulation, since atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were discovered in cardiomyocytes to be secreted as hormones. Both ANP and BNP bind to their receptors expressed on remote organs, such as kidneys and blood vessels; therefore, the heart controls the circulation by pumping blood and by secreting endocrine peptides. Cardiomyocytes secrete other peptides besides natriuretic peptides. Although most of such cardiomyocyte-derived peptides act on the heart in autocrine/paracrine fashions, several peptides target remote organs. In this review, to overview current knowledge of endocrine properties of the heart, we focus on cardiomyocyte-derived peptides (cardiomyokines) that act on the remote organs as well as the heart. Cardiomyokines act on remote organs to regulate cardiovascular homeostasis, systemic metabolism, and inflammation. Therefore, through its endocrine function, the heart can maintain physiological conditions and prevent organ damage under pathological conditions.
Collapse
Affiliation(s)
- Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
- AMED-CREST, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
| |
Collapse
|
10
|
Kurt O, Yesildag E, Yazici CM, Aktas C, Ozcaglayan O, Bozdemir Y. Effect of Tadalafil on Prevention of Urethral Stricture After Urethral Injury: An Experimental Study. Urology 2016; 91:243.e1-6. [DOI: 10.1016/j.urology.2016.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
11
|
Moghtadaei M, Polina I, Rose RA. Electrophysiological effects of natriuretic peptides in the heart are mediated by multiple receptor subtypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:37-49. [DOI: 10.1016/j.pbiomolbio.2015.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/25/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
|
12
|
Binoun-A-Egom C, Andreas A, Klimas J, Valentova V, Kruzliak P, Egom EE. B-type natriuretic peptide and heart failure: what can we learn from clinical trials? Clin Exp Pharmacol Physiol 2015; 42:881-887. [PMID: 25969125 DOI: 10.1111/1440-1681.12418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/24/2015] [Accepted: 05/07/2015] [Indexed: 11/26/2022]
Abstract
The B-type natriuretic peptide (BNP) may favour natriuresis and diuresis, making it an ideal drug to aid in diuresing a fluid-overloaded patient with poor or worsening renal function. Several randomized clinical trials have tested the hypothesis that infusions of pharmacological doses of BNP to acute heart failure (HF) patients may enhance decongestion and preserve renal function in this clinical setting. Unfortunately, none of these has resulted in a better outcome. The current challenge for BNP research in acute HF lies in a failure of concept and reluctance to abandon a demonstrably ineffectual research model. Future success will necessitate a detailed understanding of the mechanism of action of BNP as well as a better integration of basic and clinical science.
Collapse
Affiliation(s)
| | - Angelo Andreas
- University of Toronto Scarborough Campus, Toronto, ON, Canada
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Vanda Valentova
- Department of Medical Biology, Jessenius Medical Faculty in Martin, Comenius University, Martin, Slovak Republic
| | - Peter Kruzliak
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Emmanuel E Egom
- EGOM Clinical and Translational Research Services (ECTRS) Ltd, Halifax, NS, Canada
| |
Collapse
|
13
|
Lin CC, Pan CS, Wang CY, Liu SW, Hsiao LD, Yang CM. Tumor necrosis factor-alpha induces VCAM-1-mediated inflammation via c-Src-dependent transactivation of EGF receptors in human cardiac fibroblasts. J Biomed Sci 2015; 22:53. [PMID: 26173590 PMCID: PMC4502472 DOI: 10.1186/s12929-015-0165-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/07/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine and elevated in the regions of tissue injury and inflammatory diseases. The deleterious effects of TNF-α on fibroblasts may aggravate heart inflammation mediated through the up-regulation of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1). However, the mechanisms underlying TNF-α-induced VCAM-1 expression in cardiac fibroblasts remain unknown. This study aimed to investigate the roles of TNF-α in VCAM-1 expression and its effects on human cardiac fibroblasts (HCFs). RESULTS The primary culture HCFs were used in this study. The results obtained with Western blotting, real time-quantitative PCR, and promoter activity analyses showed that TNF-α-induced VCAM-1 expression was mediated through TNF receptor (TNFR) 1-dependent gene up-regulation. Activation of TNFR1 by TNF-α transactivated c-Src-dependent EGF receptor (EGFR) linking to PI3K/Akt cascade, and then led to transcriptional activity of NF-κB. Moreover, the results of promoter reporter assay demonstrated that the phosphorylated p65 NF-κB turned on VCAM-1 gene expression. Subsequently, up-regulation of VCAM-1 promoted monocytes adhesion to HCFs challenged with TNF-α determined by cell adhesion assay. CONCLUSIONS Taken together, these results indicate that in HCFs, activation of NF-κB by c-Src-mediated transactivation of EGFR/PI3K/Akt cascade is required for TNF-α-induced VCAM-1 expression. Finally, increased VCAM-1 enhances monocytes adhering to HCFs challenged with TNF-α. Understanding the mechanisms of VCAM-1 up-regulated by TNF-α on HCFs may provide rationally therapeutic interventions for heart injury or inflammatory diseases.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, Kwei-Shan, Tao-Yuan, Taiwan.,College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chih-Shuo Pan
- Department of Physiology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chen-Yu Wang
- Department of Physiology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan.,Department of Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan
| | - Shiau-Wen Liu
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, Kwei-Shan, Tao-Yuan, Taiwan.,College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, Kwei-Shan, Tao-Yuan, Taiwan.,College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan. .,Department of Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
14
|
Frentzou GA, Drinkhill MJ, Turner NA, Ball SG, Ainscough JFX. A state of reversible compensated ventricular dysfunction precedes pathological remodelling in response to cardiomyocyte-specific activity of angiotensin II type-1 receptor in mice. Dis Model Mech 2015; 8:783-94. [PMID: 26092119 PMCID: PMC4527284 DOI: 10.1242/dmm.019174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/26/2015] [Indexed: 12/12/2022] Open
Abstract
Cardiac dysfunction is commonly associated with high-blood-pressure-induced cardiomyocyte hypertrophy, in response to aberrant renin-angiotensin system (RAS) activity. Ensuing pathological remodelling promotes cardiomyocyte death and cardiac fibroblast activation, leading to cardiac fibrosis. The initiating cellular mechanisms that underlie this progressive disease are poorly understood. We previously reported a conditional mouse model in which a human angiotensin II type-I receptor transgene (HART) was expressed in differentiated cardiomyocytes after they had fully matured, but not during development. Twelve-month-old HART mice exhibited ventricular dysfunction and cardiomyocyte hypertrophy with interstitial fibrosis following full receptor stimulation, without affecting blood pressure. Here, we show that chronic HART activity in young adult mice causes ventricular dysfunction without hypertrophy, fibrosis or cardiomyocyte death. Dysfunction correlated with reduced expression of pro-hypertrophy markers and increased expression of pro-angiogenic markers in the cardiomyocytes experiencing increased receptor load. This stimulates responsive changes in closely associated non-myocyte cells, including the downregulation of pro-angiogenic genes, a dampened inflammatory response and upregulation of Tgfβ. Importantly, this state of compensated dysfunction was reversible. Furthermore, increased stimulation of the receptors on the cardiomyocytes caused a switch in the secondary response from the non-myocyte cells. Progressive cardiac remodelling was stimulated through hypertrophy and death of individual cardiomyocytes, with infiltration, proliferation and activation of fibroblast and inflammatory cells, leading to increased angiogenic and inflammatory signalling. Together, these data demonstrate that a state of pre-hypertrophic compensated dysfunction can exist in affected individuals before common markers of heart disease are detectable. The data also suggest that there is an initial response from the housekeeping cells of the heart to signals emanating from distressed neighbouring cardiomyocytes to suppress those changes most commonly associated with progressive heart disease. We suggest that the reversible nature of this state of compensated dysfunction presents an ideal window of opportunity for personalised therapeutic intervention. Highlighted Article: A novel conditional mouse model was used to investigate early initiating stages of heart disease that are commonly overlooked, and identifies a ‘window of opportunity’ for personalised therapeutic intervention.
Collapse
Affiliation(s)
- Georgia A Frentzou
- Leeds Institute of Cardiovascular & Metabolic Medicine, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Mark J Drinkhill
- Leeds Institute of Cardiovascular & Metabolic Medicine, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Neil A Turner
- Leeds Institute of Cardiovascular & Metabolic Medicine, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen G Ball
- Leeds Institute of Cardiovascular & Metabolic Medicine, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Justin F X Ainscough
- Leeds Institute of Cardiovascular & Metabolic Medicine, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
15
|
Roche PL, Filomeno KL, Bagchi RA, Czubryt MP. Intracellular Signaling of Cardiac Fibroblasts. Compr Physiol 2015; 5:721-60. [DOI: 10.1002/cphy.c140044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Wang D, Gladysheva IP, Fan THM, Sullivan R, Houng AK, Reed GL. Atrial natriuretic peptide affects cardiac remodeling, function, heart failure, and survival in a mouse model of dilated cardiomyopathy. Hypertension 2013; 63:514-9. [PMID: 24379183 DOI: 10.1161/hypertensionaha.113.02164] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dilated cardiomyopathy is a frequent cause of heart failure and death. Atrial natriuretic peptide (ANP) is a biomarker of dilated cardiomyopathy, but there is controversy whether ANP modulates the development of heart failure. Therefore, we examined whether ANP affects heart failure, cardiac remodeling, function, and survival in a well-characterized, transgenic model of dilated cardiomyopathy. Mice with dilated cardiomyopathy with normal ANP levels survived longer than mice with partial ANP (P<0.01) or full ANP deficiency (P<0.001). In dilated cardiomyopathy mice, ANP protected against the development of heart failure as indicated by reduced lung water, alveolar congestion, pleural effusions, etc. ANP improved systolic function and reduced cardiomegaly. Pathological cardiac remodeling was diminished in mice with normal ANP as indicated by decreased ventricular interstitial and perivascular fibrosis. Mice with dilated cardiomyopathy and normal ANP levels had better systolic function (P<0.001) than mice with dilated cardiomyopathy and ANP deficiency. Dilated cardiomyopathy was associated with diminished cardiac transcripts for NP receptors A and B in mice with normal ANP and ANP deficiency, but transcripts for NP receptor C and C-type natriuretic peptide were selectively altered in mice with dilated cardiomyopathy and ANP deficiency. Taken together, these data indicate that ANP has potent effects in experimental dilated cardiomyopathy that reduce the development of heart failure, prevent pathological remodeling, preserve systolic function, and reduce mortality. Despite the apparent overlap in physiological function between the NPs, these data suggest that the role of ANP in dilated cardiomyopathy and heart failure is not compensated physiologically by other NPs.
Collapse
Affiliation(s)
- Dong Wang
- Department of Medicine, University of Tennessee Health Science Center, Coleman, D334, 956 Court Ave, Memphis, TN 38163.
| | | | | | | | | | | |
Collapse
|
17
|
Silbiger JJ. Left ventricular false tendons: anatomic, echocardiographic, and pathophysiologic insights. J Am Soc Echocardiogr 2013; 26:582-8. [PMID: 23602169 DOI: 10.1016/j.echo.2013.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Indexed: 01/12/2023]
Abstract
Left ventricular (LV) false tendons are chordlike structures that traverse the LV cavity. They attach to the septum, to the papillary muscles, or to the free wall of the ventricle but not to the mitral valve. They are found in approximately half of human hearts examined at autopsy. Although it has been more than 100 years since their initial description, the functional significance of these structures remains largely unexplored. It has been suggested that they retard LV remodeling by tethering the walls to which they are attached, but there are few data to substantiate this. Some studies have suggested that false tendons reduce the severity of functional mitral regurgitation by stabilizing the position of the papillary muscles as the left ventricle enlarges. LV false tendons may also have deleterious effects and have been implicated in promoting membrane formation in discrete subaortic stenosis. This article reviews current understanding of the anatomy, echocardiographic characteristics, and pathophysiology of these structures.
Collapse
|
18
|
Parthasarathy A, Gopi V, Umadevi S, Simna A, Sheik MJY, Divya H, Vellaichamy E. Suppression of atrial natriuretic peptide/natriuretic peptide receptor-A-mediated signaling upregulates angiotensin-II-induced collagen synthesis in adult cardiac fibroblasts. Mol Cell Biochem 2013; 378:217-28. [DOI: 10.1007/s11010-013-1612-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/02/2013] [Indexed: 12/15/2022]
|
19
|
Takimoto E, Kass DA. Sildenafil's protective effect against cardiac hypertrophy. Expert Rev Clin Pharmacol 2012; 2:323-7. [PMID: 22112175 DOI: 10.1586/ecp.09.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Eiki Takimoto
- Division of Cardiology, Johns Hopkins Medical Institutions, 720 Rutland Avenue Ross-858, Baltimore, MD 21205, USA.
| | | |
Collapse
|
20
|
Abstract
The second messengers cAMP and cGMP exist in multiple discrete compartments and regulate a variety of biological processes in the heart. The cyclic nucleotide phosphodiesterases, by catalyzing the hydrolysis of cAMP and cGMP, play crucial roles in controlling the amplitude, duration, and compartmentalization of cyclic nucleotide signaling. Over 60 phosphodiesterase isoforms, grouped into 11 families, have been discovered to date. In the heart, both cAMP- and cGMP-hydrolyzing phosphodiesterases play important roles in physiology and pathology. At least 7 of the 11 phosphodiesterase family members appear to be expressed in the myocardium, and evidence supports phosphodiesterase involvement in regulation of many processes important for normal cardiac function including pacemaking and contractility, as well as many pathological processes including remodeling and myocyte apoptosis. Pharmacological inhibitors for a number of phosphodiesterase families have also been used clinically or preclinically to treat several types of cardiovascular disease. In addition, phosphodiesterase inhibitors are also being considered for treatment of many forms of disease outside the cardiovascular system, raising the possibility of cardiovascular side effects of such agents. This review will discuss the roles of phosphodiesterases in the heart, in terms of expression patterns, regulation, and involvement in physiological and pathological functions. Additionally, the cardiac effects of various phosphodiesterase inhibitors, both potentially beneficial and detrimental, will be discussed.
Collapse
Affiliation(s)
- W. E. Knight
- Department of Pharmacology and Physiology, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - C. Yan
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
21
|
Kutuk MS, Ozgun MT, Batukan C, Ozcelik B, Basbug M, Ozturk A. Oral tadalafil reduces intra-abdominal adhesion reformation in rats. Hum Reprod 2012; 27:733-7. [PMID: 22215626 DOI: 10.1093/humrep/der439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Currently, there is no ideal agent to prevent adhesion formation. We have shown that sildenafil, a phosphodiesterase-5 (PDE-5) inhibitor, reduces post-operative adhesion formation by vasodilatation and increases fibrinolytic activity. Here, we evaluated whether tadalafil, a long-acting PDE-5 inhibitor, decreases post-operative adhesion reformation in rats. MATERIALS AND METHODS Standardized lesions were created in Wistar albino rats by cauterization of uterine horns and abrasion of adjacent peritonium. The extent and severity of adhesions were scored on the 14th post-operative day and adhesiolysis was performed at the second laparotomy. Animals were then assigned randomly into two groups. The study group (n = 11) received 10 mg/kg oral tadalafil by gavage 60 min before the second laparotomy and daily for 14 days afterwards. Controls (n = 11) received the same volume of tap water for 14 days by gavage. Animals were killed 15 days after adhesiolysis and adhesions were scored blind during the third laparotomy. RESULTS Basal adhesion scores at the time of the second laparotomy were comparable in the study and control groups. Scores for the extent of adhesion reformation in the study and control groups did not differ [median 1 (range 0-3) versus median 2 (range 1-3); P: 0.81] but tadalafil reduced the respective severity scores [median 0.5 (range 0-1) versus median 1 (range 0.5-1); P: 0.02] and total scores [median 2 (range 0-4) versus median 2.5 (range 1.5-4); P: 0.042]. CONCLUSIONS Oral administration of tadalafil during the perioperative period reduces intra-abdominal adhesion reformation in rats.
Collapse
Affiliation(s)
- Mehmet Serdar Kutuk
- Department of Obstetrics and Gynecology, Faculty of Medicine, Erciyes University, Gevher Nesibe Hospital, 38039 Kayseri, Turkey.
| | | | | | | | | | | |
Collapse
|
22
|
Zhou HY, Chen WD, Zhu DL, Wu LY, Zhang J, Han WQ, Li JD, Yan C, Gao PJ. The PDE1A-PKCalpha signaling pathway is involved in the upregulation of alpha-smooth muscle actin by TGF-beta1 in adventitial fibroblasts. J Vasc Res 2009; 47:9-15. [PMID: 19672103 DOI: 10.1159/000231716] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 12/31/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Increasing evidence has suggested that differentiation of adventitial fibroblasts (AFs) to myofibroblasts plays an important role in arterial remodeling. The molecular mechanisms by which myofibroblast formation is regulated still remain largely unknown. This study aimed to evaluate the role of cyclic nucleotide phosphodiesterase 1A (PDE1A) in the formation of adventitial myofibroblasts induced by transforming growth factor (TGF)-beta(1). METHODS AND RESULTS AFs were cultured by the explant method. Western blot and immunocytochemistry were applied for alpha-smooth muscle actin (SMA) or protein kinase C (PKC) alpha protein analysis. Results showed that TGF-beta(1) upregulated PDE1A protein expression in rat aortic AFs and pharmacological inhibition of PDE1A blocked TGF-beta(1)-induced alpha-SMA expression, a marker of myofibroblast formation, suggesting that the upregulation of PDE1A may mediate TGF-beta(1)-induced AF transformation. Moreover, calphostin C (a PKC inhibitor) inhibited TGF-beta(1)-induced alpha-SMA expression, whereas phorbol-12-myristate-13-acetate (a PKC activator) induced it. Finally, the upregulation of PKCalpha expression by TGF-beta(1) was also inhibited by PDE1A inhibition. CONCLUSIONS Taken together, our data suggest that TGFbeta(1) induces alpha-SMA expression and myofibroblast formation via a PDE1A-PKCalpha-dependent mechanism. Our study thus unveils a novel signaling mechanism underlying TGF-beta(1)-induced adventitial myofibroblast formation.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- Shanghai Key Laboratory of Vascular Biology, Ruijin Hospital, and Laboratory of Vascular Biology, Health Science Center, Shanghai JiaoTong University School of Medicine and Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 2009; 123:255-78. [PMID: 19460403 DOI: 10.1016/j.pharmthera.2009.05.002] [Citation(s) in RCA: 759] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 05/05/2009] [Indexed: 12/24/2022]
Abstract
Cardiac fibroblasts are the most prevalent cell type in the heart and play a key role in regulating normal myocardial function and in the adverse myocardial remodeling that occurs with hypertension, myocardial infarction and heart failure. Many of the functional effects of cardiac fibroblasts are mediated through differentiation to a myofibroblast phenotype that expresses contractile proteins and exhibits increased migratory, proliferative and secretory properties. Cardiac myofibroblasts respond to proinflammatory cytokines (e.g. TNFalpha, IL-1, IL-6, TGF-beta), vasoactive peptides (e.g. angiotensin II, endothelin-1, natriuretic peptides) and hormones (e.g. noradrenaline), the levels of which are increased in the remodeling heart. Their function is also modulated by mechanical stretch and changes in oxygen availability (e.g. ischaemia-reperfusion). Myofibroblast responses to such stimuli include changes in cell proliferation, cell migration, extracellular matrix metabolism and secretion of various bioactive molecules including cytokines, vasoactive peptides and growth factors. Several classes of commonly prescribed therapeutic agents for cardiovascular disease also exert pleiotropic effects on cardiac fibroblasts that may explain some of their beneficial outcomes on the remodeling heart. These include drugs for reducing hypertension (ACE inhibitors, angiotensin receptor blockers, beta-blockers), cholesterol levels (statins, fibrates) and insulin resistance (thiazolidinediones). In this review, we provide insight into the properties of cardiac fibroblasts that underscores their importance in the remodeling heart, including their origin, electrophysiological properties, role in matrix metabolism, functional responses to environmental stimuli and ability to secrete bioactive molecules. We also review the evidence suggesting that certain cardiovascular drugs can reduce myocardial remodeling specifically via modulatory effects on cardiac fibroblasts.
Collapse
|
24
|
Keswani AN, Peyton KJ, Durante W, Schafer AI, Tulis DA. The cyclic GMP modulators YC-1 and zaprinast reduce vessel remodeling through antiproliferative and proapoptotic effects. J Cardiovasc Pharmacol Ther 2009; 14:116-24. [PMID: 19342499 DOI: 10.1177/1074248409333266] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Guanosine-specific cyclic nucleotide signaling is suggested to serve protective actions in the vasculature; however, the influence of selective pharmacologic modulation of cyclic guanosine monophosphate- synthesizing soluble guanylate cyclase or cyclic guanosine monophosphate-degrading phosphodiesterase on vessel remodeling has not been thoroughly examined. In this study, rat carotid artery balloon injury was performed and the growth-modulating effects of the soluble guanylate cyclase stimulator YC-1 or the cyclic guanosine monophosphate-dependent phosphodiesterase-V inhibitor zaprinast were examined. YC-1 or zaprinast elevated vessel cyclic guanosine monophosphate content, reduced medial wall and neointimal cell proliferation, stimulated medial and neointimal cellular apoptosis, and markedly attenuated neointimal remodeling in comparable fashion. Interestingly, soluble guanylate cyclase inhibition by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one failed to noticeably alter neointimal growth, and concomitant zaprinast with YC-1 did not modify any parameter compared to individual treatments. These results provide novel in vivo evidence that YC-1 and zaprinast inhibit injury-induced vascular remodeling through antimitogenic and proapoptotic actions and may offer promising therapeutic approaches against vasoproliferative disorders.
Collapse
Affiliation(s)
- Amit N Keswani
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | |
Collapse
|
25
|
Johnson KR, Olson KR. Responses of the trout cardiac natriuretic peptide system to manipulation of salt and water balance. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1170-9. [DOI: 10.1152/ajpregu.90880.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natriuretic peptides (NPs) are evolutionarily conserved hormones that affect blood pressure and fluid volume through membrane-bound guanylate cyclase (GC)-linked natriuretic peptide receptors-A and -B (NPR-A and NPR-B, respectively) in a variety of vascular, renal, and other tissues. The principal physiological stimulus for cardiac NPs in fish is somewhat debated between two prominent theories: regulation of salt balance (osmoregulatory hypothesis) or prevention of volume expansion (cardioprotective hypothesis). In the present study, we examined atrial and ventricular expression of trout NPs, atrial (ANP), brain (BNP), and ventricular (VNP) using Northern (mRNA), Western (NP pro-hormone), and qPCR (GC-NPR-A and -B mRNA) blot analysis following independent manipulation of plasma salt and volume levels after chronic exposure to freshwater (FW; volume loaded, salt depleted), saltwater (SW; volume depleted, salt loaded), or freshwater trout fed a high-salt diet (FW-HSD; volume and salt loaded). We also measured NP transcriptional response to acute (2 h) volume expansion with dialyzed plasma (VE; 80% blood vol) or volume depletion by hemorrhage (VD, 20% blood volume every 30 min for 2 h) with real-time PCR. In essentially all instances, increased expression of the NP system was associated with FW-HSD or plasma expansion. There were no differences in NP expression between chronically adapted FW and SW fish, and hemorrhage decreased atrial ANP and VNP mRNA. These results indicate that rainbow trout cardiac NPs and cardiovascular GC-NPRs respond principally to volume, not salt overload, and this suggests that the primary function of trout cardiac NP system is to protect the heart.
Collapse
|
26
|
Natriuretic Peptides and Cardiovascular Regulation. Cardiovasc Endocrinol 2008. [DOI: 10.1007/978-1-59745-141-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
27
|
Shan X, Wang H, Margulies KB. Apoptosis signal-regulating kinase 1 attenuates atrial natriuretic peptide secretion. Biochemistry 2008; 47:10041-8. [PMID: 18759454 DOI: 10.1021/bi800972z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atrial natriuretic peptide (ANP) is an endogenous peptide hormone that is synthesized and secreted by the myocardium in health and disease. Although the bioactivity of this molecule has been studied extensively, cellular mechanisms governing its processing and secretion are not fully understood. Through a yeast two-hybrid screen of a cDNA library made from tissue of a failing human heart, we have discovered that the precursor of ANP, natriuretic peptide precursor (NPPA), physically interacts with the N-terminus of apoptosis signal-regulating kinase 1 (ASK1), a kinase believed to be involved in the pathogenesis of heart failure. We demonstrated that NPPA is a substrate of ASK1 in an in vitro kinase assay. Indirect immunofluorescence microscopy shows that, when expressed in Hela cells, ASK1 and NPPA exhibit distinct, but overlapping, staining patterns, suggesting partial colocalization in cells. Additionally, coexpressing wild-type ASK1 with NPPA in Hela cells led to reduced levels of NPPA in the culture medium, suggesting that ASK1 negatively impacts NPPA processing and/or secretion. This negative effect was less pronounced when a dominant-negative allele of ASK1 with deficient kinase activity was coexpressed with NPPA. Because both ASK1 and ANP are associated with pathologic cardiac hypertrophy, their interaction may have pathophysiological and therapeutic relevance.
Collapse
Affiliation(s)
- Xiaoyin Shan
- Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
28
|
Buxton ILO, Duan D. Cyclic GMP/protein kinase G phosphorylation of Smad3 blocks transforming growth factor-beta-induced nuclear Smad translocation: a key antifibrogenic mechanism of atrial natriuretic peptide. Circ Res 2008; 102:151-3. [PMID: 18239144 DOI: 10.1161/circresaha.107.170217] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Batukan C, Ozgun MT, Basbug M, Muderris II. Sildenafil reduces postoperative adhesion formation in a rat uterine horn model. Eur J Obstet Gynecol Reprod Biol 2007; 135:183-7. [PMID: 16965850 DOI: 10.1016/j.ejogrb.2006.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/30/2006] [Accepted: 08/01/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The purpose of this experimental study was to evaluate the effect of oral sildenafil on postoperative adhesion formation in rats. STUDY DESIGN Thirty-two Wistar Albino rats were subjected to standardized lesion by cauterization of the uterine horn and abrasion of the adjacent parietal peritoneum. They were randomized to receive sildenafil at a daily dose of 15 mg/kg, 7.5mg/kg and 3.75 mg/kg or placebo. Sildenafil was administered by gavage 1h before the operation and daily for 5 days after the procedure. The extent and severity of adhesions were assessed on the 14th postoperative day. RESULT(S) The severity but not extent of adhesions in rats given 15 mg/kg sildenafil was significantly less when compared with the other groups (<0.001). CONCLUSION Sildenafil diminishes peritoneal adhesion formation in rat.
Collapse
Affiliation(s)
- Cem Batukan
- Erciyes University, School of Medicine, Department of Obstetrics and Gynecology, Gevher Neshibe Hospital, 38039 Kayseri, Turkey.
| | | | | | | |
Collapse
|
30
|
Li P, Wang D, Lucas J, Oparil S, Xing D, Cao X, Novak L, Renfrow MB, Chen YF. Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ Res 2007; 102:185-92. [PMID: 17991884 DOI: 10.1161/circresaha.107.157677] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study tested the hypothesis that activation of atrial natriuretic peptide (ANP)/cGMP/protein kinase G signaling inhibits transforming growth factor (TGF)-beta1-induced extracellular matrix expression in cardiac fibroblasts and defined the specific site(s) at which this molecular merging of signaling pathways occurs. Left ventricular hypertrophy and fibrosis, collagen deposition, and myofibroblast transformation of cardiac fibroblasts in response to pressure overload by transverse aortic constriction were exaggerated in ANP-null mice compared with wild-type controls. ANP and cGMP inhibited TGF-beta1-induced myofibroblast transformation, proliferation, collagen synthesis, and plasminogen activator inhibitor-1 expression in cardiac fibroblasts isolated from wild-type mice. Following pretreatment with cGMP, TGF-beta1 induced phosphorylation of Smad3, but the resultant pSmad3 could not be translocated to the nucleus. pSmad3 that had been phosphorylated with recombinant protein kinase G-1alpha was analyzed by use of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and ion trap tandem mass spectrometry. The analysis revealed phosphorylation of Ser309 and Thr388 residues, sites distinct from the C-terminal Ser423/425 residues that are phosphorylated by TGF-beta receptor kinase and are critical for the nuclear translocation and down-stream signaling of pSmad3. These results suggest that phosphorylation of Smad3 by protein kinase G is a potential molecular mechanism by which activation of ANP/cGMP/protein kinase G signaling disrupts TGF-beta1-induced nuclear translocation of pSmad3 and downstream events, including myofibroblast transformation, proliferation, and expression of extracellular matrix molecules in cardiac fibroblasts. We postulate that this process contributes to the antifibrogenic effects of the natriuretic peptide in heart.
Collapse
Affiliation(s)
- Peng Li
- Vascular Biology and Hypertension Program, Department of Medicine, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Huntley BK, Sandberg SM, Noser JA, Cataliotti A, Redfield MM, Matsuda Y, Burnett JC. BNP-induced activation of cGMP in human cardiac fibroblasts: interactions with fibronectin and natriuretic peptide receptors. J Cell Physiol 2007; 209:943-9. [PMID: 16986166 DOI: 10.1002/jcp.20793] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiac remodeling involves the accumulation of extracellular matrix (ECM) proteins including fibronectin (FN). FN contains RGD motifs that bind integrins at DDX sequences allowing signaling from the ECM to the nucleus. We noted that the natriuretic peptide receptor A (NPR-A) sequence contains both RGD and DDX sequences. The goal of the current investigation was to determine potential interactions between FN and NPR-A on BNP induction of cGMP in cultured human cardiac fibroblasts (CFs). Further, we sought to determine whether a Mayo designed NPR-A specific RGD peptide could modify this interaction. Here we reconfirm the presence of all three natriuretic peptide receptors (NPR) in CFs. CFs plated on FN demonstrated a pronounced increase in cGMP production to BNP compared to non-coated plates. This production was also enhanced by the NPR-A specific RGD peptide, which further augmented FN associated cGMP production. Addition of HS-142-1, a NPR-A/B antagonist, abrogated the responses of BNP to both FN and the NPR-A specific RGD peptide. Finally, we defined a possible role for the NPR-C through non-cGMP mechanisms in mediating the anti-proliferative actions of BNP in CFs where the NPR-C antagonist cANF 4-28 but not HS-142-1 blocked BNP-mediated inhibition of proliferation of CFs. We conclude that NPR-A interacts with components of the ECM such as FN to enhance BNP activation of cGMP and that a small NPR-A specific RGD peptide augments this action of BNP with possible therapeutic implications. Lastly, the NPR-C may also have a role in mediating anti-proliferative actions of BNP in CFs.
Collapse
Affiliation(s)
- Brenda K Huntley
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic and Foundation, Rochester, MN 55904, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Loch D, Hoey A, Brown L. Attenuation of cardiovascular remodeling in DOCA-salt rats by the vasopeptidase inhibitor, omapatrilat. Clin Exp Hypertens 2006; 28:475-88. [PMID: 16820344 DOI: 10.1080/10641960600798754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Omapatrilat, a vasopeptidase inhibitor, inhibits both neutral endopeptidase and angiotensin-converting enzyme with similar potency. The aim of this study was to investigate whether omapatrilat prevents or reverses cardiovascular remodeling and hypertension in deoxycorticosterone acetate (DOCA)-salt rats. Male Wistar rats (313 +/- 2 g, n = 114) were uninephrectomized (UNX) with or without further treatment with DOCA and 1% NaCl in the drinking water. Compared with UNX control rats, DOCA-salt rats developed hypertension, cardiovascular hypertrophy, perivascular and interstitial cardiac fibrosis and inflammation, endothelial dysfunction, and the prolongation of ventricular action potential duration within four weeks. The administration of omapatrilat (40 mg/kg/day po) for two weeks commencing two weeks after surgery attenuated the development of cardiovascular hypertrophy, inflammation, fibrosis, and ventricular action potential prolongation. In contrast, omapatrilat treatment did not lower systolic blood pressure nor improve endothelial dysfunction. This study concludes that the renin-angiotensin-aldosterone, natriuretic peptide, and bradykinin systems are directly involved in the pathogenesis of cardiovascular remodeling in the DOCA-salt model of hypertension in rats, which may be independent of their effects on blood pressure.
Collapse
Affiliation(s)
- David Loch
- Department of Physiology and Pharmacology, School of Biomedical Sciences, The University of Queensland, 4072, Australia
| | | | | |
Collapse
|
33
|
O’Connell TD, Swigart PM, Rodrigo M, Ishizaka S, Joho S, Turnbull L, Tecott LH, Baker AJ, Foster E, Grossman W, Simpson PC. Alpha1-adrenergic receptors prevent a maladaptive cardiac response to pressure overload. J Clin Invest 2006; 116:1005-15. [PMID: 16585965 PMCID: PMC1421341 DOI: 10.1172/jci22811] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 01/10/2006] [Indexed: 01/06/2023] Open
Abstract
An alpha1-adrenergic receptor (alpha1-AR) antagonist increased heart failure in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT), but it is unknown whether this adverse result was due to alpha1-AR inhibition or a nonspecific drug effect. We studied cardiac pressure overload in mice with double KO of the 2 main alpha1-AR subtypes in the heart, alpha 1A (Adra1a) and alpha 1B (Adra1b). At 2 weeks after transverse aortic constriction (TAC), KO mouse survival was only 60% of WT, and surviving KO mice had lower ejection fractions and larger end-diastolic volumes than WT mice. Mechanistically, final heart weight and myocyte cross-sectional area were the same after TAC in KO and WT mice. However, KO hearts after TAC had increased interstitial fibrosis, increased apoptosis, and failed induction of the fetal hypertrophic genes. Before TAC, isolated KO myocytes were more susceptible to apoptosis after oxidative and beta-AR stimulation, and beta-ARs were desensitized. Thus, alpha1-AR deletion worsens dilated cardiomyopathy after pressure overload, by multiple mechanisms, indicating that alpha1-signaling is required for cardiac adaptation. These results suggest that the adverse cardiac effects of alpha1-antagonists in clinical trials are due to loss of alpha1-signaling in myocytes, emphasizing concern about clinical use of alpha1-antagonists, and point to a revised perspective on sympathetic activation in heart failure.
Collapse
Affiliation(s)
- Timothy D. O’Connell
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Philip M. Swigart
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - M.C. Rodrigo
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Shinji Ishizaka
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Shuji Joho
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Lynne Turnbull
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Laurence H. Tecott
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Anthony J. Baker
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Elyse Foster
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - William Grossman
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Paul C. Simpson
- Cardiology Division, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.
Cardiovascular Research Institute and Department of Medicine, UCSF, San Francisco, California, USA.
Cardiology Division, Department of Medicine, UCSF, San Francisco, California, USA.
Department of Radiology, UCSF, San Francisco, California, USA.
Department of Psychiatry, UCSF, San Francisco, California, USA
| |
Collapse
|
34
|
Chen YF, Feng JA, Li P, Xing D, Ambalavanan N, Oparil S. Atrial natriuretic peptide-dependent modulation of hypoxia-induced pulmonary vascular remodeling. Life Sci 2006; 79:1357-65. [PMID: 16714036 DOI: 10.1016/j.lfs.2006.03.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 03/23/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
UNLABELLED Hypoxic stress upsets the balance in the normal relationships between mitogenic and growth inhibiting pathways in lung, resulting in pulmonary vascular remodeling characterized by hyperplasia of pulmonary arterial smooth muscle cells (PASMCs) and fibroblasts and enhanced deposition of extracellular matrix. Atrial natriuretic peptide (ANP) reduces pulmonary vascular resistance and attenuates hypoxia-induced pulmonary hypertension in vivo and PASMC proliferation and collagen synthesis in vitro. The current study utilized an ANP null mouse model (Nppa-/-) to test the hypothesis that ANP modulates the pulmonary vascular and alveolar remodeling response to normobaric hypoxic stress. Nine-10 wk old male ANP null (Nppa-/-) and wild type nontransgenic (NTG) mice were exposed to chronic hypoxia (10% O(2), 1 atm) or air for 6 wks. MEASUREMENT pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial and alveolar remodeling were assessed. Hypoxia-induced pulmonary arterial hypertrophy and muscularization were significantly increased in Nppa-/- mice compared to NTG controls. Furthermore, the stimulatory effects of hypoxia on alveolar myofibroblast transformation (8.2 and 5.4 fold increases in Nppa-/- and NTG mice, respectively) and expression of extracellular matrix molecule (including osteopontin [OPN] and periostin [PN]) mRNA in whole lung were exaggerated in Nppa-/- mice compared to NTG controls. Combined with our previous finding that ANP signaling attenuates transforming growth factor (TGF)-beta-induced expression of OPN and PN in isolated PASMCs, the current study supports the hypothesis that endogenous ANP plays an important anti-fibrogenic role in the pulmonary vascular adaptation to chronic hypoxia.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/physiology
- Blotting, Northern
- Chronic Disease
- Collagen/metabolism
- Hemodynamics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypertrophy, Right Ventricular/pathology
- Hypoxia/complications
- Hypoxia/pathology
- Immunohistochemistry
- Lung/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/pathology
- Pulmonary Alveoli/pathology
- Pulmonary Artery/pathology
- Pulmonary Circulation/physiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Yiu-Fai Chen
- Vascular Biology and Hypertension Program, Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 35296, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Langenickel TH, Buttgereit J, Pagel-Langenickel I, Lindner M, Monti J, Beuerlein K, Al-Saadi N, Plehm R, Popova E, Tank J, Dietz R, Willenbrock R, Bader M. Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. Proc Natl Acad Sci U S A 2006; 103:4735-40. [PMID: 16537417 PMCID: PMC1450239 DOI: 10.1073/pnas.0510019103] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Natriuretic peptides (NP) mediate their effects by activating membrane-bound guanylyl cyclase-coupled receptors A (NPR-A) or B (NPR-B). Whereas the pathophysiological role of NPR-A has been widely studied, only limited knowledge on the cardiovascular function of NPR-B is available. In vitro studies suggest antiproliferative and antihypertrophic actions of the NPR-B ligand C-type NP (CNP). Because of the lack of a specific pharmacological inhibitor, these effects could not clearly be attributed to impaired NPR-B signaling. Recently, gene deletion revealed a predominant role of NPR-B in endochondral ossification and development of female reproductive organs. However, morphological abnormalities and premature death of NPR-B-deficient mice preclude detailed cardiovascular phenotyping. In the present study, a dominant-negative mutant (NPR-BDeltaKC) was used to characterize CNP-dependent NPR-B signaling in vitro and in transgenic rats. Here we demonstrate that reduced CNP- but not atrial NP-dependent cGMP response attenuates antihypertrophic potency of CNP in vitro. In transgenic rats, NPR-BDeltaKC expression selectively reduced NPR-B but not NPR-A signaling. NPR-BDeltaKC transgenic rats display progressive, blood pressure-independent cardiac hypertrophy and elevated heart rate. The hypertrophic phenotype is further enhanced in chronic volume overload-induced congestive heart failure. Thus, this study provides evidence linking NPR-B signaling to the control of cardiac growth.
Collapse
Affiliation(s)
- Thomas H. Langenickel
- *Max Delbrück Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
- To whom correspondence may be sent at the † address. E-mail:
| | - Jens Buttgereit
- *Max Delbrück Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
- Franz Volhard Clinic, Humboldt University, Charité Campus Berlin-Buch, D-13125 Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Free University of Berlin, D-14195 Berlin-Dahlem, Germany; and
| | - Ines Pagel-Langenickel
- Franz Volhard Clinic, Humboldt University, Charité Campus Berlin-Buch, D-13125 Berlin, Germany
| | - Maren Lindner
- *Max Delbrück Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
| | - Jan Monti
- Franz Volhard Clinic, Humboldt University, Charité Campus Berlin-Buch, D-13125 Berlin, Germany
| | - Knut Beuerlein
- **Rudolf Buchheim Institute for Pharmacology, University Clinics, D-35392 Giessen, Germany
| | - Nidal Al-Saadi
- Franz Volhard Clinic, Humboldt University, Charité Campus Berlin-Buch, D-13125 Berlin, Germany
| | - Ralph Plehm
- *Max Delbrück Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
| | - Elena Popova
- *Max Delbrück Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
| | - Jens Tank
- Franz Volhard Clinic, Humboldt University, Charité Campus Berlin-Buch, D-13125 Berlin, Germany
| | - Rainer Dietz
- Franz Volhard Clinic, Humboldt University, Charité Campus Berlin-Buch, D-13125 Berlin, Germany
| | - Roland Willenbrock
- Franz Volhard Clinic, Humboldt University, Charité Campus Berlin-Buch, D-13125 Berlin, Germany
| | - Michael Bader
- *Max Delbrück Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
- To whom correspondence may be addressed. E-mail:
| |
Collapse
|
36
|
Abdelalim EM, Takada T, Toyoda F, Omatsu-Kanbe M, Matsuura H, Tooyama I, Torii R. In Vitro expression of natriuretic peptides in cardiomyocytes differentiated from monkey embryonic stem cells. Biochem Biophys Res Commun 2006; 340:689-95. [PMID: 16378593 DOI: 10.1016/j.bbrc.2005.12.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/05/2005] [Indexed: 11/17/2022]
Abstract
Functional characterization of ES cell-derived cardiomyocytes is important for differentiation control and application to the cell therapy. One of the crucial functions of cardiomyocytes is a production of atrial and brain natriuretic peptides (ANP and BNP, respectively), which have important endocrine, autocrine, and paracrine functions. In this study, we focused on the functional aspect of the cardiomyocytes differentiated from monkey ES cells in vitro and investigated the expression of ANP and BNP. Spontaneously contracting cells showed nodal-like action potentials, and expression of ANP and BNP by RT-PCR and immunocytochemistry. Interestingly, ANP and BNP expressions were detected as immunoreactive granules in the perinuclear area and these signals appeared to co-localize with trans-Golgi network. These findings suggest that monkey ES cells were able to differentiate into cardiomyocytes with functional characteristics in vitro and therefore can be used as a useful model to study mechanisms and functions in early cardiogenesis.
Collapse
Affiliation(s)
- Essam Mohamed Abdelalim
- Research Center For Animal Life Science, Shiga University of Medical Science, Tsukinowa-Cho, Seta, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Increasing evidence suggests that natriuretic peptides (NPs) play diverse roles in mammals, including renal hemodynamics, neuroendocrine, and cardiovascular functions. Collectively, NPs are classified as hypotensive hormones; the main actions of NPs are implicated in eliciting natriuretic, diuretic, steroidogenic, antiproliferative, and vasorelaxant effects, important factors in the control of body fluid volume and blood pressure homeostasis. One of the principal loci involved in the regulatory actions of NPs is their cognate plasma membrane receptor molecules, which are activated by binding with specific NPs. Interaction of NPs with their receptors plays a central role in physiology and pathophysiology of hypertension and cardiovascular disorders. Gaining insight into the intricacies of NPs-specific receptor signaling pathways is of pivotal importance for understanding both hormone-receptor biology and the disease states arising from abnormal hormone receptor interplay. During the last decade there has been a surge in interest in NP receptors; consequently, a wealth of information has emerged concerning molecular structure and function, signaling mechanisms, and use of transgenics and gene-targeted mouse models. The objective of this present review is to summarize and document the previous findings and recent discoveries in the field of the natriuretic peptide hormone family and receptor systems with emphasis on the structure-function relationship, signaling mechanisms, and the physiological and pathophysiological significance in health and disease.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
38
|
Valente EGA, Vernet D, Ferrini MG, Qian A, Rajfer J, Gonzalez-Cadavid NF. L-arginine and phosphodiesterase (PDE) inhibitors counteract fibrosis in the Peyronie's fibrotic plaque and related fibroblast cultures. Nitric Oxide 2004; 9:229-44. [PMID: 14996430 DOI: 10.1016/j.niox.2003.12.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Indexed: 10/26/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is expressed in both the fibrotic plaque of Peyronie's disease (PD) in the human, and in the PD-like plaque elicited by injection of TGFbeta1 into the penile tunica albuginea (TA) of the rat. Long-term inhibition of iNOS activity, presumably by blocking nitric oxide (NO)- and cGMP-mediated effects triggered by iNOS expression, exacerbates tissue fibrosis through an increase in: (a) collagen synthesis, (b) levels of reactive oxygen species (ROS), and (c) the differentiation of fibroblasts into myofibroblasts. We have now investigated whether: (a) phosphodiesterase (PDE) isoforms, that regulate the interplay of cGMP and cAMP pathways, are expressed in both the human and rat TA; and (b) L-arginine, that stimulates NOS activity and hence NO synthesis, and PDE inhibitors, that increase the levels of cGMP and/or cAMP, can inhibit collagen synthesis and induce fibroblast/myofibroblast apoptosis, thus acting as antifibrotic agents. We have found by immunohistochemistry, RT/PCR, and Western blot that PDE5A-3 and PDE4A, B, and D variants are indeed expressed in human and rat normal TA and PD plaque tissue, as well as in their respective fibroblast cultures. As expected, in the PD fibroblast cultures, pentoxifylline (non-specific cAMP-PDE inhibitor) increased cAMP levels without affecting cGMP levels, whereas sildenafil (PDE5A inhibitor) raised cGMP levels. Both agents and L-arginine reduced the expression of collagen I (but not collagen III) and the myofibroblast marker, alpha-smooth muscle actin, as determined by immunocytochemistry and quantitative image analysis. These effects were mimicked by incubation with 8-Br-cGMP, which in addition increased apoptosis, as measured by TUNEL. When L-arginine (2.25 g/kg/day), pentoxifylline (10 mg/kg/day), or sildenafil (10 mg/kg/day) was given individually in the drinking water for 45 days to rats with a PD-like plaque induced by TGF beta1, each treatment resulted in a 80-95% reduction in both plaque size and in the collagen/fibroblast ratio, as determined by Masson trichrome staining. Both sildenafil and pentoxiphylline stimulated fibroblast apoptosis within the TA. Our results support the hypothesis that the increase in NO and/or cGMP/cAMP levels by long-term administration of nitrergic agents or inhibitors of PDE, may be effective in reversing the fibrosis of PD, and more speculatively, other fibrotic conditions.
Collapse
Affiliation(s)
- Eliane G A Valente
- Division of Urology, Research and Education Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | | | | | | |
Collapse
|
39
|
Yap LB, Mukerjee D, Timms PM, Ashrafian H, Coghlan JG. Natriuretic Peptides, Respiratory Disease, and the Right Heart. Chest 2004; 126:1330-6. [PMID: 15486400 DOI: 10.1378/chest.126.4.1330] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
It is well-recognized that atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are raised in conditions with ventricular volume and pressure overload. In addition to this established role in left ventricular congestive cardiac failure, there is good evidence that BNP has a diagnostic role in right ventricular (RV) dysfunction and pulmonary arterial hypertension (PAH). For example, BNP levels can be used to differentiate between dyspneic patients with pure respiratory defects and those with RV dysfunction. Studies in patients with PAH have demonstrated significant correlations between BNP levels and mean pulmonary arterial pressure as well as pulmonary vascular resistance. Additionally, BNP has a prognostic role in patients with RV pressure overload and pulmonary hypertension, and it offers a noninvasive test that can be used to guide therapy in patients with PAH. However, although measured plasma proBNP levels are raised in conditions with RV overload, its biological significance is still not well-understood. In this article, we review the general physiologic and potential therapeutic role of natriuretic peptides in respiratory disease, RV dysfunction, and PAH. Furthermore, we assess the various clues toward natriuretic peptide action coming from laboratory studies. ANP and BNP knockout mice develop cardiac fibrosis and hypertrophy. Potentiation of the natriuretic pathway has been shown to reduce cardiac hypertrophy and PAH. This is likely to take place as a result of increased intracellular cyclic guanosine monophosphate levels and subsequent pulmonary vasorelaxant activity. In view of this evidence, there may be a rationale for the therapeutic use of recombinant BNP or neutral endopeptidase inhibitors under conditions of RV dysfunction and PAH.
Collapse
Affiliation(s)
- Lok Bin Yap
- Department of Cardiology, Homerton University Hospital, Homerton Row, London E9 6SR, UK.
| | | | | | | | | |
Collapse
|
40
|
Yap LB, Ashrafian H, Mukerjee D, Coghlan JG, Timms PM. The natriuretic peptides and their role in disorders of right heart dysfunction and pulmonary hypertension. Clin Biochem 2004; 37:847-56. [PMID: 15369714 DOI: 10.1016/j.clinbiochem.2004.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 06/01/2004] [Indexed: 11/23/2022]
Abstract
Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are increased in conditions with cardiac ventricular volume and pressure overload. The general physiological and potential therapeutic roles of natriuretic peptides in respiratory disease, right ventricular (RV) dysfunction, and pulmonary arterial hypertension (PAH) are reviewed. BNP levels can be used to differentiate between dyspneic patients with a pure respiratory defect and those with RV dysfunction. BNP levels also correlate with mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance (PVR) in patients with PAH (atrial septal defect, chronic thromboembolic disease, and scleroderma). BNP is a predictor of mortality in patients with primary pulmonary hypertension (PPH). These are important clinical implications in that a noninvasive blood test may be used to identify high-risk patients for more invasive procedures such as cardiac catheterization. BNP or NT-proBNP measurements may also be used to guide therapy (e.g., pulmonary vasorelaxants) in PAH since upregulation of the natriuretic peptide pathway has been shown to reduce cardiac hypertrophy and PAH. Additionally, there may be therapeutic potential via recombinant BNP or neutral endopeptidase inhibitors in RV dysfunction and PAH.
Collapse
Affiliation(s)
- Lok B Yap
- Department of Cardiology, Homerton University Hospital NHS Trust, London, E9 6SR, UK.
| | | | | | | | | |
Collapse
|
41
|
Abstract
The natriuretic peptides, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), are a family of polypeptide mediators exerting numerous actions in cardiovascular homeostasis. ANP and BNP are cardiac derived, being secreted and up-regulated in myocardium in response to many pathophysiological stimuli. CNP is an endothelium-derived mediator. The classical endocrine effects of ANP and BNP on fluid homeostasis and blood pressure, especially in conditions characterised by left ventricular dysfunction, are well recognised and extensively researched. However, there is accumulating evidence that, in addition to endocrine actions, ANP and BNP exhibit important autocrine and paracrine functions within the heart and coronary circulation. These include regulation of myocyte growth, inhibition of fibroblast proliferation and extracellular matrix deposition, a cytoprotective anti-ischaemic (preconditioning-like) function, and influences on coronary endothelium and vascular smooth muscle proliferation and contractility. Most if not all of these actions can be ascribed to particulate guanylyl cyclase activation because the ANP/BNP receptor, natriuretic peptide receptor (NPR)-A, has an intracellular guanylyl cyclase domain. Subsequent elevation of the intracellular second messenger cGMP may exert diverse physiological effects through activation of cGMP-dependent protein kinases (cGK), predominantly cGK-I. However, there appear to be other contributory mechanisms in several of these actions, including the augmentation of nitric oxide synthesis. These diverse actions may represent counterregulatory mechanisms in the pathophysiology of many cardiovascular diseases, not just those typified by left ventricular dysfunction. Ultimately, insights from the autocrine/paracrine actions of natriuretic peptides may provide routes to therapeutic application in cardiac diseases of natriuretic peptides and drugs that modify their availability.
Collapse
|
42
|
Magga J, Puhakka M, Hietakorpi S, Punnonen K, Uusimaa P, Risteli J, Vuolteenaho O, Ruskoaho H, Peuhkurinen K. Atrial natriuretic peptide, B-type natriuretic peptide, and serum collagen markers after acute myocardial infarction. J Appl Physiol (1985) 2004; 96:1306-11. [PMID: 14607848 DOI: 10.1152/japplphysiol.00557.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experimental data suggest that atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) act locally as antifibrotic factors in heart. We investigated the interrelationships of natriuretic peptides and collagen markers in 93 patients receiving thrombolytic treatment for their first acute myocardial infarction (AMI). Collagen formation following AMI, evaluated as serum levels of amino terminal propeptide of type III procollagen, correlated with NH2-terminal proANP ( r = 0.45, P < 0.001), BNP ( r = 0.55, P < 0.001) and NH2-terminal proBNP ( r = 0.50, P < 0.01) on day 4 after thrombolysis. Levels of intact amino terminal propeptide of type I procollagen decreased by 34% ( P < 0.001), and levels of carboxy terminal cross-linked telopeptide of type I collagen (ICTP) increased by 65% ( P < 0.001). ICTP levels correlated with NH2-terminal proBNP ( r = 0.25, P < 0.05) and BNP ( r = 0.28, P < 0.05) on day 4. Our results suggest that ANP and BNP may act as regulators of collagen scar formation and left ventricular remodeling after AMI in humans. Furthermore, degradation of type I collagen is increased after AMI and may be regulated by BNP.
Collapse
Affiliation(s)
- Jarkko Magga
- Department of Internal Medicine, Kuopio University Hospital, 70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Weber NC, Blumenthal SB, Hartung T, Vollmar AM, Kiemer AK. ANP inhibits TNF-alpha-induced endothelial MCP-1 expression--involvement of p38 MAPK and MKP-1. J Leukoc Biol 2003; 74:932-41. [PMID: 12960255 DOI: 10.1189/jlb.0603254] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Atrial natriuretic peptide (ANP) has been shown to reduce tumor necrosis factor-alpha (TNF-alpha)-induced activation of endothelial cells via inhibition of p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-kappaB pathways. The aim of this study was to determine whether ANP is able to inhibit TNF-alpha-induced expression of monocyte chemoattractant protein-1 (MCP-1) in endothelial cells and to elucidate the mechanisms involved. Pretreatment of human umbilical vein endothelial cells (HUVEC) with ANP significantly reduced TNF-alpha-induced expression of MCP-1 protein and mRNA. The effects of ANP were shown to be mediated via the guanylyl-cyclase (GC)-coupled A receptor. Activation of the other GC-coupled receptor (natriuretic peptide receptor-B) by the C-type natriuretic peptide as well as activation of soluble GC with S-nitroso-L-glutathione (GSNO) exerted similar effects as ANP, supporting a role for cyclic guanosine monophosphate (cGMP) in the signal transduction. Antisense experiments showed a requirement of MAPK phosphatase-1 (MKP-1) induction and therefore, inhibition of p38 MAPK in the ANP-mediated inhibition of TNF-alpha-induced expression of MCP-1. To investigate a potential interplay between TNF-alpha-induced activation of p38 MAPK and NF-kappaB, the p38 MAPK inhibitor SB203580 and a dominant-negative p38 MAPK mutant were used. The results indicated that the blockade of p38 MAPK activity leads to an increased activation of NF-kappaB and therefore, suggest a counter-regulatory action of p38 MAPK and NF-kappaB. As antisense experiments revealed a pivotal role for MKP-1 induction and therefore, p38 MAPK inhibition in ANP-mediated attenuation of MCP-1 expression, this action seems to be rather independent of NF-kappaB inhibition.
Collapse
Affiliation(s)
- Nina C Weber
- Department of Pharmacy, University of Munich, Germany
| | | | | | | | | |
Collapse
|
44
|
Horio T, Tokudome T, Maki T, Yoshihara F, Suga SI, Nishikimi T, Kojima M, Kawano Y, Kangawa K. Gene expression, secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology 2003; 144:2279-84. [PMID: 12746286 DOI: 10.1210/en.2003-0128] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
C-type natriuretic peptide (CNP), the third member of the natriuretic peptide family, is known to be synthesized in the central nervous system and vascular endothelial cells, in contrast to atrial natriuretic peptide and brain natriuretic peptide. However, there have been no studies concerning CNP production in cultured cardiac cells. Here, we examined the production and the local effect of CNP in cultured ventricular cells. Under serum-free conditions, adult rat cardiac fibroblasts secreted immunoreactive CNP time dependently. TGF-beta1, basic fibroblast growth factor, and endothelin-1 significantly stimulated CNP secretion. Northern blot analysis detected significant expressions of CNP and its specific receptor (guanylyl cyclase-B) mRNA in cardiac fibroblasts. CNP stimulated intracellular cGMP production in fibroblasts more intensely than atrial and brain natriuretic peptides. CNP inhibited both DNA and collagen syntheses of cardiac fibroblasts, and these inhibitory effects by CNP were stronger than by atrial and brain natriuretic peptides. The inhibition by CNP of DNA and collagen syntheses was reproduced by a cGMP analog, 8-bromo cGMP. The present findings demonstrate that CNP is synthesized in and secreted from cardiac fibroblasts and suggest that CNP has a suppressive effect on fibroblast proliferation and extracellular matrix production, probably via the guanylyl cyclase-B-mediated cGMP-dependent process. CNP produced by cardiac fibroblasts may play a role as an autocrine regulator against excessive cardiac fibrosis.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- Atrial Natriuretic Factor/pharmacology
- Autocrine Communication/physiology
- Cells, Cultured
- Collagen/biosynthesis
- Cyclic GMP/biosynthesis
- DNA/biosynthesis
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/physiology
- Gene Expression/physiology
- Heart Ventricles/cytology
- Male
- Myocardium/cytology
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Natriuretic Peptide, Brain/pharmacology
- Natriuretic Peptide, C-Type/genetics
- Natriuretic Peptide, C-Type/metabolism
- Natriuretic Peptide, C-Type/pharmacology
- RNA, Messenger/analysis
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Takeshi Horio
- Department of Medicine, National Cardiovascular Center, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Tremblay J, Desjardins R, Hum D, Gutkowska J, Hamet P. Biochemistry and physiology of the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biochem 2002; 230:31-47. [PMID: 11952095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Guanylyl cyclases (GC) exist as soluble and particulate, membrane-associated enzymes which catalyse the conversion of GTP to cGMP, an intracellular signalling molecule. Several membrane forms of the enzyme have been identified up to now. Some of them serve as receptors for the natriuretic peptides, a family of peptides which includes atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP), three peptides known to play important roles in renal and cardiovascular physiology. These are transmembrane proteins composed of a single transmembrane domain, a variable extracellular natriuretic peptide-binding domain, and a more conserved intracellular kinase homology domain (KHD) and catalytic domain. GC-A, the receptor for ANP and BNP, also named natriuretic peptide receptor-A or -1 (NPR-A or NPR- 1), has been studied widely. Its mode of activation by peptide ligands and mechanisms of regulation serve as prototypes for understanding the function of other particulate GC. Activation of this enzyme by its ligand is a complex process requiring oligomerization, ligand binding, KHD phosphorylation and ATP binding. Gene knockout and genetic segregation studies have provided strong evidence for the importance of GC-A in the regulation of blood pressure and heart and renal functions. GC-B is the main receptor for CNP, the latter having a more paracrine role at the vascular and venous levels. The structure and regulation of GC-B is similar to that of GC-A. This chapter reviews the structure and roles of GC-A and GC-B in blood pressure regulation and cardiac and renal pathophysiology.
Collapse
Affiliation(s)
- Johanne Tremblay
- Research Centre, Centre hospitalier de l 'Université de Montréal, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
47
|
Hayashi M, Tsutamoto T, Wada A, Maeda K, Mabuchi N, Tsutsui T, Horie H, Ohnishi M, Kinoshita M. Intravenous atrial natriuretic peptide prevents left ventricular remodeling in patients with first anterior acute myocardial infarction. J Am Coll Cardiol 2001; 37:1820-6. [PMID: 11401117 DOI: 10.1016/s0735-1097(01)01233-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The study evaluates the effect of atrial natriuretic peptide (ANP) compared with nitroglycerin (GTN) on left ventricular (LV) remodeling after first anterior acute myocardial infarction (AMI). BACKGROUND Compared with GTN, ANP suppresses the renin-angiotensin-aldosterone system and endothelin-1 (ET-1), which stimulate LV remodeling. METHODS Sixty patients with a first anterior AMI were randomly divided into the ANP (n = 30) or GTN (n = 30) groups after direct percutaneous transluminal coronary angioplasty. We evaluated LV ejection fraction (LVEF), end-diastolic volume index (LVEDVI) and end-systolic volume index (LVESVI) at the acute phase and after one month. We also measured neurohumoral factors during study drug infusion. RESULTS There was no difference in the baseline characteristics or LVEF (46.9+/-1.0 vs. 46.8+/-1.3%) between the two groups. Although there was no difference in hemodynamics during the infusion periods, the LVEF was significantly improved after one month compared with the baseline value in both groups, but it was improved more in the ANP group than in the GTN group (54.6+/-1.1%, 50.8+/-1.3%, p < 0.05). Left ventricular enlargement was prevented in the ANP group (LVEDVI, 85.8+/-3.1 ml/m2 to 87.3+/-2.7 ml/m2; p = ns, LVESVI, 45.6+/-1.8 ml/m2 to 41.0+/-2.1 ml/m2, p < 0.05) but not in the GTN group (LVEDVI, 86.2+/-4.1 to 100.2+/-3.7, p < 0.01; LVESVI, 46.3+/-2.8 ml/m2 to 51.1+/-3.0 ml/m2, p = ns). During the infusion, ANP suppressed plasma levels of aldosterone, angiotensin II and ET-1 compared with GTN. CONCLUSIONS These findings indicate that in patients with a first anterior AMI, an ANP infusion can prevent LV remodeling better than can GTN, and effectively suppresses aldosterone, angiotensin II and ET-1.
Collapse
Affiliation(s)
- M Hayashi
- First Department of Internal Medicine, Shiga University of Medical Science, Seta, Otsu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Silberbach M, Roberts CT. Natriuretic peptide signalling: molecular and cellular pathways to growth regulation. Cell Signal 2001; 13:221-31. [PMID: 11306239 DOI: 10.1016/s0898-6568(01)00139-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The natriuretic peptides (NPs) constitute a family of polypeptide hormones that regulate mammalian blood volume and blood pressure. The ability of the NPs to modulate cardiac hypertrophy and cell proliferation as well is now beginning to be recognized. The NPs interact with three membrane-bound receptors, all of which contain a well-characterized extracellular ligand-binding domain. The R1 subclass of NP receptors (NPR-A and NPR-B) contains a C-terminal guanylyl cyclase domain and is responsible for most of the NPs downstream actions through their ability to generate cGMP. The R2 subclass lacks an obvious catalytic domain and functions primarily as a clearance receptor. This review focuses on the signal transduction pathways initiated by ligand binding and other factors that help to determine signalling specificities, including allosteric factors modulating cGMP generation, receptor desensitization, the activation and function of cGMP-dependent protein kinase (PKG), and identification of potential nuclear or cytoplasmic targets such as the mitogen-activated protein kinase signalling (MAPK) cascade. The inhibition of cardiac growth and hypertrophy may be an important but underappreciated action of the NP signalling system.
Collapse
Affiliation(s)
- M Silberbach
- Division of Pediatric Cardiology, Department of Pediatrics, Doernbecher Children's Hospital, UHN-60, 3181 SW Sam Jackson Park Road, 97201, Portland, OR, USA.
| | | |
Collapse
|
49
|
Maki T, Horio T, Yoshihara F, Suga SI, Takeo S, Matsuo H, Kangawa K. Effect of neutral endopeptidase inhibitor on endogenous atrial natriuretic peptide as a paracrine factor in cultured cardiac fibroblasts. Br J Pharmacol 2000; 131:1204-10. [PMID: 11082129 PMCID: PMC1572435 DOI: 10.1038/sj.bjp.0703679] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Cardiac remodelling is a fundamental response to hypertension, myocardial infarction and chronic heart failure, and involves cardiac fibroblast proliferation and production of extracellular matrix components such as collagen. The present study was performed to examine the role of endogenous atrial natriuretic peptide (ANP) as a possible paracrine factor for cardiac fibroblasts, and to examine the effects of three neutral endopeptidase (NEP) inhibitors, thiorphan, phosphoramidon and ONO-BB-039-02 (ONO-BB) on endogenous ANP-induced changes in collagen synthesis by cultured neonatal rat cardiac fibroblasts. 2. Each NEP inhibitor singly had no significant effect on collagen synthesis by cardiac fibroblasts, except for maximum concentration (10(-3) M) of thiorphan. 3. Exogenous ANP inhibited collagen synthesis in a concentration-dependent manner (10(-8) - 10(-6) M). Thiorphan (10(-4) and 10(-3) M) and phosphoramidon (10(-5) and 10(-4) M) enhanced the ANP (10(-7) M)-induced decrease in collagen synthesis. ONO-BB (10(-5) and 10(-4) M) slightly enhanced the ANP-induced decrease in collagen synthesis. 4. Myocyte-conditioned medium (MC-CM), as well as exogenous ANP, inhibited collagen synthesis dose-dependently. The decrease in collagen synthesis at 100% MC-CM was augmented by thiorphan (10(-3) M), phosphoramidon (10(-4) M) and ONO-BB (10(-4) M). 5. HS-142-1, a natriuretic peptide receptor antagonist, significantly reduced the MC-CM plus thiorphan- and MC-CM plus ONO-BB-induced decrease in collagen synthesis, by 92 and 62%, respectively and showed a tendency to attenuate the MC-CM plus phosphoramidon-induced decrease in collagen synthesis by 40%. 6. Our observations suggested that endogenous ANP released from cardiomyocytes inhibited collagen synthesis as a paracrine factor and that NEP inhibitors enhanced the activity of this peptide in cardiac fibroblasts.
Collapse
Affiliation(s)
- Toshiyuki Maki
- Research Institute, National Cardiovascular Center, 5-7-1, Fujishirodai, Suita, Osaka 565-8565, Japan
- Department of Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takeshi Horio
- Department of Medicine, National Cardiovascular Center, 5-7-1, Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Fumiki Yoshihara
- Research Institute, National Cardiovascular Center, 5-7-1, Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Shin-ichi Suga
- Research Institute, National Cardiovascular Center, 5-7-1, Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Satoshi Takeo
- Department of Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hisayuki Matsuo
- Research Institute, National Cardiovascular Center, 5-7-1, Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Kenji Kangawa
- Research Institute, National Cardiovascular Center, 5-7-1, Fujishirodai, Suita, Osaka 565-8565, Japan
- Author for correspondence:
| |
Collapse
|
50
|
Callahan W, Forster M, Toop T. Evidence of a guanylyl cyclase natriuretic peptide receptor in the gills of the new zealand hagfish Eptatretus cirrhatus (Class Agnatha). J Exp Biol 2000; 203:2519-28. [PMID: 10933996 DOI: 10.1242/jeb.203.17.2519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Natriuretic peptide binding sites were examined in the gills of the hagfish Eptatretus cirrhatus (Class Agnatha, subfamily Eptatretinae) using radio-ligand binding techniques, molecular cloning and guanylyl cyclase assays. Iodinated rat atrial natriuretic peptide ((125)I-rANP) and iodinated porcine C-type natriuretic peptide ((125)I-pCNP) bound specifically to the lamellar folds and cavernous tissue of E. cirrhatus gills, and 0.3 nmol l(−1) rat ANP competed for 50 % of specific (125)I-rANP binding sites. Affinity cross-linking of (125)I-rANP to gill membranes followed by sodium dodecylsulphate-polyacrylamide gel electrophoresis revealed a single binding site of 150 kDa. In the presence of Mn(2+), 0.1 nmol l(−1) rANP inhibited cGMP production, whereas 1 micromol l(−1) rANP stimulated cGMP production rates. At 1 micromol l(−1), pCNP also stimulated cGMP production. The production of cGMP was also measured in the presence and absence of ATP with either Mn(2+) or Mg(2+). Reverse transcriptase polymerase chain reaction (RT-PCR) of hagfish gill RNA, followed by cloning and sequencing of PCR products, produced a partial cDNA sequence of a natriuretic peptide guanylyl cyclase receptor. The deduced amino acid sequence indicated 87–91 % homology with other natriuretic peptide guanylyl cyclase receptors. This study indicates the presence of a natriuretic peptide guanylyl cyclase receptor in the gills of E. cirrhatus that is similar to the natriuretic peptide guanylyl cyclase receptors in higher vertebrates. These observations demonstrate that the coupling of natriuretic peptide receptors with guanylyl cyclase has a long evolutionary history.
Collapse
Affiliation(s)
- W Callahan
- School of Biological and Chemical Sciences, Deakin University, Waurn Ponds, Geelong, Victoria 3217, Australia
| | | | | |
Collapse
|