1
|
Auvity S, Attili B, Caillé F, Goislard M, Cayla J, Hinnen F, Demphel S, Brulon V, Bottlaender M, Leroy C, Bormans G, Kuhnast B, Peyronneau MA. Translational Preclinical PET Imaging and Metabolic Evaluation of a New Cannabinoid 2 Receptor (CB 2R) Radioligand, ( Z)- N-(3-(2-(2-[ 18F]Fluoroethoxy)ethyl)-4,5-dimethylthiazol-2(3 H)-ylidene)-2,2,3,3-tetramethylcyclopropane-1-carboxamide. ACS Pharmacol Transl Sci 2024; 7:3144-3154. [PMID: 39421654 PMCID: PMC11480890 DOI: 10.1021/acsptsci.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
We have previously developed seven fluorinated analogues of A-836339 as new PET tracers for cannabinoid type 2 receptor (CB2R) imaging, among which (Z)-N-(3-(2-(2-[18F]fluoroethoxy)ethyl)-4,5-dimethylthiazol-2(3H)-ylidene)-2,2,3,3-tetramethylcyclopropane-1-carboxamide ([18F]FC0324) displayed high affinity and selectivity for CB2R in healthy rats. In the present study, we have further evaluated the imaging and metabolic properties of [18F]FC0324 in a rat model of human CB2R overexpression in the brain (AAV-hCB2) and in non-human primates (NHPs). Autoradiography with AAV-hCB2 rat brain sections exhibited a signal of [18F]FC0324 8-fold higher in the ipsilateral region than in the contralateral region. Blocking with NE40, a CB2R-specific agonist, resulted in a 91% decrease in the radioactivity. PET experiments showed a signal 7-fold higher in the ipsilateral region, and the specificity of [18F]FC0324 for hCB2R in vivo was confirmed by the 80% decrease after blocking with NE40. In NHPs, brain time-activity curves displayed a fast and homogeneous distribution followed by a rapid washout, in accordance with the low amount of CB2Rs in healthy brain. Whole-body PET-CT suggested a high and specific uptake of the radiotracer in the spleen, a CB2R-rich organ, and in the organs involved in metabolism and excretion, with a low bone uptake. In vitro metabolism with monkey liver microsomes (MLMs) led to the formation of six main hydroxylated metabolites of FC0324. Five of them were produced by human liver microsomes, being much less active than MLMs. In vivo, in NHPs, the main radiometabolite was likely to result from further oxidation of hydroxylated compounds, and parent [18F]FC0324 accounted for 8 ± 3% of plasma radioactivity (at 120 min p.i.) with a low level of potential interfering radiometabolites. Furthermore, this metabolism should be significantly reduced in humans due to species differences. In conclusion, [18F]FC0324 appears to be a promising candidate for further human studies with suitable kinetics, selectivity, and metabolic profile for CB2R PET imaging.
Collapse
Affiliation(s)
- Sylvain Auvity
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
- Inserm
UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris-Cité, 75006 Paris, France
- Assistance
Publique-Hôpitaux de Paris, Hôpital
Universitaire Necker-Enfants Malades, 75015 Paris, France
| | - Bala Attili
- Laboratory
for Radiopharmaceutical Research, Department of Pharmaceutical and
Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Fabien Caillé
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Maud Goislard
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Jérôme Cayla
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Françoise Hinnen
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Stéphane Demphel
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Vincent Brulon
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Michel Bottlaender
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
- UNIACT,
Neurospin, CEA, 91191 Gif-sur-Yvette, France
| | - Claire Leroy
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Guy Bormans
- Laboratory
for Radiopharmaceutical Research, Department of Pharmaceutical and
Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Bertrand Kuhnast
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Marie-Anne Peyronneau
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
2
|
Bala K, Porel P, Aran KR. Emerging roles of cannabinoid receptor CB2 receptor in the central nervous system: therapeutic target for CNS disorders. Psychopharmacology (Berl) 2024; 241:1939-1954. [PMID: 39264450 DOI: 10.1007/s00213-024-06683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
RATIONALE The endocannabinoid system (ECS) belongs to the G protein-coupled receptor family of cell membranes and is associated with neuropsychiatric conditions, and neurodegenerative diseases. Cannabinoid 2 receptors (CB2) are expressed in the central nervous system (CNS) on microglia and subgroups of neurons and are involved in various behavioural processes via immunological and neural regulation. OBJECTIVE The objective of this paper is to summarize and explore the impact of CB2 receptors on neuronal modulation, their involvement in various neurological disorders, and their influence on mood, behavior, and cognitive function. RESULTS The activation of CB2 appears to protect the brain and its functions from damage under neuroinflammatory actions, making it an attractive target in a variety of neurological conditions such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), and Huntington's disease (HD). During inflammation, there is an overexpression of CB2 receptors, and CB2 agonists show a strong anti-inflammatory effect. These results have sparked interest in the CB2 receptors as a potential target for neurodegenerative and neuroinflammatory disease treatment. CONCLUSION In conclusion, CB2 receptors signalling shows promise for developing targeted interventions that could positively affect both immune and neuronal functions, ultimately influencing behavioral outcomes in both health and disease.
Collapse
Affiliation(s)
- Kanchan Bala
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Pratyush Porel
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
3
|
Chhabra M, Lewis EC, Balshaw R, Stewart B, Zaslawski Z, Lowthian T, Alidina Z, Chesick-Gordis M, Xie W, Drögemöller BI, Wright GEB, Birnie KA, Boerner KE, Tsang VWL, Irwin SL, Pohl D, Weil AG, Sell E, Penz E, Robson-MacKay A, Mbabaali S, Blackman S, Gordon S, Alcorn J, Huntsman RJ, Oberlander TF, Finley GA, Kelly LE. A multi-centre, tolerability study of a cannabidiol-enriched Cannabis Herbal Extract for chronic headaches in adolescents: The CAN-CHA protocol. PLoS One 2024; 19:e0290185. [PMID: 39302982 DOI: 10.1371/journal.pone.0290185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/18/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION Cannabis products have been used in the management of headaches in adults and may play a role in pediatric chronic pain. Canadian pediatricians report increasing use of cannabis for the management of chronic headaches, despite no well-controlled studies to inform its dosing, safety, and effectiveness. The aim of our clinical trial is to determine the dosing and safety of a Cannabidiol (CBD)-enriched Cannabis Herbal Extract (CHE) for the treatment of chronic headaches in adolescents. METHODS AND ANALYSIS Youth, parents, and an expert steering committee co-designed this tolerability study. Twenty adolescents (aged 14 to 17 years), with a chronic migraine diagnosis for more than 6 months that has not responded to other therapies will be enrolled into an open label, dose escalation study across three Canadian sites. Study participants will receive escalating doses of a CBD-enriched CHE (MPL-001 with a THC:CBD of 1:25), starting at 0.2-0.4 mg/kg of CBD per day and escalating monthly up to 0.8-1.0 mg/kg of CBD per day. The primary objective of this study is to determine the safety and tolerability of CBD-enriched CHE in adolescents with chronic migraine. Secondary objectives of this study will inform the development of subsequent randomized controlled trials and include investigating the relationship between the dose escalation and change in the frequency of headache, impact and intensity of pain, changes in sleep, mood, function, and quality of life. Exploratory outcomes include investigating steady-state trough plasma levels of bioactive cannabinoids and investigating how pharmacogenetic profiles affect cannabinoid metabolism among adolescents receiving CBD-enriched CHE. DISCUSSION This protocol was co-designed with youth and describes a tolerability clinical trial of CBD-enriched CHE in adolescents with chronic headaches that have not responded to conventional therapies. This study is the first clinical trial on cannabis products in adolescents with chronic headaches and will inform the development of future comparative effectiveness clinical trials. TRIAL REGISTRATION CAN-CHA trial is registered with ClinicalTrials.gov with a number of register NCT05337033.
Collapse
Affiliation(s)
- Manik Chhabra
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Evan C Lewis
- North Toronto Neurology, Toronto, Ontario, Canada
| | - Robert Balshaw
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Breanne Stewart
- Quality Management in Clinical Research (QMCR), University of Alberta, Edmonton, Alberta, Canada
- Maternal Infant Child and Youth Research Network (MICYRN), Vancouver, British Columbia, Canada
| | - Zina Zaslawski
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Trinity Lowthian
- Youth Research Partners, Childhood Cannabinoid Therapeutics (C4T), Ottawa, Ontario, Canada
| | - Zahra Alidina
- Youth Research Partners, Childhood Cannabinoid Therapeutics (C4T), Holland Landing, Ontario, Canada
| | - Melila Chesick-Gordis
- Youth Research Partners, Childhood Cannabinoid Therapeutics (C4T), Vancouver, British Columbia, Canada
| | - Wenli Xie
- Maternal Infant Child and Youth Research Network (MICYRN), Vancouver, British Columbia, Canada
| | - Britt I Drögemöller
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Galen E B Wright
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kathryn A Birnie
- Department of Anesthesiology, Perioperative and Pain Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Katelynn E Boerner
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vivian W L Tsang
- Maternal Infant Child and Youth Research Network (MICYRN), Vancouver, British Columbia, Canada
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samantha Lee Irwin
- University of Texas at Austin Pediatric Neurosciences at Dell Children's Pediatric Headache Program, Austin, Texas, United States of America
| | - Daniela Pohl
- Division of Neurology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexander G Weil
- Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Erick Sell
- Division of Neurology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Erika Penz
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Amy Robson-MacKay
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sophia Mbabaali
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stephanie Blackman
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Center for Pediatric Pain Research, IWK Health, Halifax, Nova Scotia, Canada
| | - Shanlea Gordon
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jane Alcorn
- Cannabinoid Research Initiative of Saskatchewan, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard J Huntsman
- Cannabinoid Research Initiative of Saskatchewan, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Division Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Tim F Oberlander
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - G Allen Finley
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Center for Pediatric Pain Research, IWK Health, Halifax, Nova Scotia, Canada
| | - Lauren E Kelly
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Bortolato M, Braccagni G, Pederson CA, Floris G, Fite PJ. "Weeding out" violence? Translational perspectives on the neuropsychobiological links between cannabis and aggression. AGGRESSION AND VIOLENT BEHAVIOR 2024; 78:101948. [PMID: 38828012 PMCID: PMC11141739 DOI: 10.1016/j.avb.2024.101948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Recent shifts in societal attitudes towards cannabis have led to a dramatic increase in consumption rates in many Western countries, particularly among young people. This trend has shed light on a significant link between cannabis use disorder (CUD) and pathological reactive aggression, a condition involving disproportionate aggressive and violent reactions to minor provocations. The discourse on the connection between cannabis use and aggression is frequently enmeshed in political and legal discussions, leading to a polarized understanding of the causative relationship between cannabis use and aggression. However, integrative analyses from both human and animal research indicate a complex, bidirectional interplay between cannabis misuse and pathological aggression. On the one hand, emerging research reveals a shared genetic and environmental predisposition for both cannabis use and aggression, suggesting a common underlying biological mechanism. On the other hand, there is evidence that cannabis consumption can lead to violent behaviors while also being used as a self-medication strategy to mitigate the negative emotions associated with pathological reactive aggression. This suggests that the coexistence of pathological aggression and CUD may result from overlapping vulnerabilities, potentially creating a self-perpetuating cycle where each condition exacerbates the other, escalating into externalizing and violent behaviors. This article aims to synthesize existing research on the intricate connections between these issues and propose a theoretical model to explain the neurobiological mechanisms underpinning this complex relationship.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA
| | - Giulia Braccagni
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Casey A. Pederson
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Paula J. Fite
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
5
|
Wu X, Wu Y, Tang F, Wang Y, Li C, Wu S, Wang G, Zhang J. Foxq1 activates CB2R with oleamide to alleviate POCD. Brain Pathol 2024:e13289. [PMID: 39046224 DOI: 10.1111/bpa.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a major concern, particularly among older adults. This study used social isolation (ISO) and multiomics analyses in aged mice to investigate potential mechanisms underlying POCD development. Aged mice were divided into two groups: ISO and paired housing (PH). Oleamide and the cannabinoid receptor type 2 (CB2R) antagonist AM630 were administered intraperitoneally, while Foxq1 adeno-associated viral (AAV) vector was injected directly into the hippocampus. Intramedullary tibial surgeries were subsequently performed to establish the POCD models. Behavioral tests comprising the Y-maze, open field test, and novel object recognition were conducted 2 days after surgery. Hippocampal and serum inflammatory cytokines were assessed. Following surgery, ISO mice demonstrated intensified cognitive impairments and escalated inflammatory markers. Integrative transcriptomic and metabolomic analysis revealed elevated oleamide concentrations in the hippocampus and serum of PH mice, with associative investigations indicating a close relationship between the Foxq1 gene and oleamide levels. While oleamide administration and Foxq1 gene overexpression substantially ameliorated postoperative cognitive performance and systemic inflammation in mice, CB2R antagonist AM630 impeded these enhancements. The Foxq1 gene and oleamide may be crucial in alleviating POCD. While potentially acting through CB2R-mediated pathways, these factors may modulate neuroinflammation and attenuate proinflammatory cytokine levels within the hippocampus, substantially improving cognitive performance postsurgery. This study lays the groundwork for future research into therapeutic approaches targeting the Foxq1-oleamide-CB2R axis, with the ultimate goal of preventing or mitigating POCD.
Collapse
Affiliation(s)
- Xiaoying Wu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yuming Wu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fudong Tang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Chenxi Li
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Su Wu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Guangzhi Wang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Fadaee A, Mohammadi FS, Ariaee N, Ahmadi Ghezeldasht S, Valizadeh N, Kheradmand F, Boostani R, Rafatpanah H, Rezaee SA. Cannabinoid receptors as new targets for HTLV-1 associated myelopathy (HAM/TSP) treatment. Mult Scler Relat Disord 2024; 87:105659. [PMID: 38704874 DOI: 10.1016/j.msard.2024.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND/AIM The roles of endocannabinoids are described in immune modulation and neuroprotection. HTLV-1-associated myelopathy (HAM/TSP) is an inflammatory neurodegenerative disease. Therefore, in this study, the interactions of HTLV-1 regulatory factors and host cannabinoid receptors (CBRs) were evaluated in HAM/TSP. METHODS Nineteen HAM/TSPs, 22 asymptomatic carriers (ACs), and 18 healthy controls (HCs) were enrolled. RNA was extracted from PBMCs and then reverse-transcribed to cDNA. The gene expression of CB1R and CB2R, as well as HTLV-1 proviral load (PVL), Tax and HTLV-1 basic leucine zipper factor (HBZ) were assessed by RT-qPCR. RESULTS The mean expression of CB1R in ACs (8.51 ± 2.76) was significantly higher than HAMTSPs (1.593 ± 0.74, p = 0.05) and also HCs (0.10 ± 0.039, p = 0.001). The CB2R gene expression level in ACs (2.62±0.44) was significantly higher than HAM/TSPs (0.59 ± 0.15, p = 0.001) and HCs (1.00 ± 0.2, p = 0.006). Meanwhile there was a strong correlation between CB1R and CB2R gene expression levels in the HCs and HAM/TSPs (p = 0.001). HTLV-1-Tax expression in HAM/TSPs (386 ± 104) was higher than ACs (75 ± 32) and statistically significant (p = 0.003). While HTLV-1-HBZ was only expressed in three AC subjects and five HAM/TSPs, thus it cannot be analyzed. CONCLUSION The up-regulation of CB2R has immunomodulatory effects in inflammatory reactions. While CB1R as a neuroprotective agent may suppress inflammatory reactions in ACs, preventing HAM/TSP. It seems that, like multiple sclerosis (MS), cannabinoid medications are beneficial in HAM/TSP.
Collapse
Affiliation(s)
- Afsane Fadaee
- Faculty of Medicine, Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad 9177948564, Iran; HTLV-1 Foundation, Ghaem Hospital, Mashhad University of Medical Sciences, Ahmad Abad Bolv., Mashhad, Iran
| | - Fatemeh Sadat Mohammadi
- Faculty of Medicine, Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad 9177948564, Iran
| | - Nazila Ariaee
- Faculty of Medicine, Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad 9177948564, Iran
| | - Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Narges Valizadeh
- Faculty of Medicine, Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad 9177948564, Iran
| | - Fatemeh Kheradmand
- Immunology Research Center, Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- HTLV-1 Foundation, Ghaem Hospital, Mashhad University of Medical Sciences, Ahmad Abad Bolv., Mashhad, Iran
| | - Houshang Rafatpanah
- Faculty of Medicine, Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad 9177948564, Iran; HTLV-1 Foundation, Ghaem Hospital, Mashhad University of Medical Sciences, Ahmad Abad Bolv., Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Faculty of Medicine, Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad 9177948564, Iran; HTLV-1 Foundation, Ghaem Hospital, Mashhad University of Medical Sciences, Ahmad Abad Bolv., Mashhad, Iran.
| |
Collapse
|
7
|
Lee N, Choi JY, Ryu YH. The development status of PET radiotracers for evaluating neuroinflammation. Nucl Med Mol Imaging 2024; 58:160-176. [PMID: 38932754 PMCID: PMC11196502 DOI: 10.1007/s13139-023-00831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 06/28/2024] Open
Abstract
Neuroinflammation is associated with the pathophysiologies of neurodegenerative and psychiatric disorders. Evaluating neuroinflammation using positron emission tomography (PET) plays an important role in the early diagnosis and determination of proper treatment of brain diseases. To quantify neuroinflammatory responses in vivo, many PET tracers have been developed using translocator proteins, imidazole-2 binding site, cyclooxygenase, monoamine oxidase-B, adenosine, cannabinoid, purinergic P2X7, and CSF-1 receptors as biomarkers. In this review, we introduce the latest developments in PET tracers that can image neuroinflammation, focusing on clinical trials, and further consider their current implications.
Collapse
Affiliation(s)
- Namhun Lee
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812 Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812 Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Zhou C, Satpute V, Yip KL, Anderson LL, Hawkins N, Kearney J, Arnold JC. A high seizure burden increases several prostaglandin species in the hippocampus of a Scn1a +/- mouse model of Dravet syndrome. Prostaglandins Other Lipid Mediat 2024; 172:106836. [PMID: 38599513 DOI: 10.1016/j.prostaglandins.2024.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Dravet syndrome is an intractable epilepsy with a high seizure burden that is resistant to current anti-seizure medications. There is evidence that neuroinflammation plays a role in epilepsy and seizures, however few studies have specifically examined neuroinflammation in Dravet syndrome under conditions of a higher seizure burden. Here we used an established genetic mouse model of Dravet syndrome (Scn1a+/- mice), to examine whether a higher seizure burden impacts the number and morphology of microglia in the hippocampus. Moreover, we examined whether a high seizure burden influences classical inflammatory mediators in this brain region. Scn1a+/- mice with a high seizure burden induced by thermal priming displayed a localised reduction in microglial cell density in the granule cell layer and subgranular zone of the dentate gyrus, regions important to postnatal neurogenesis. However, microglial cell number and morphology remained unchanged in other hippocampal subfields. The high seizure burden in Scn1a+/- mice did not affect hippocampal mRNA expression of classical inflammatory mediators such as interleukin 1β and tumour necrosis factor α, but increased cyclooxygenase 2 (COX-2) expression. We then quantified hippocampal levels of prostanoids that arise from COX-2 mediated metabolism of fatty acids and found that Scn1a+/- mice with a high seizure burden displayed increased hippocampal concentrations of numerous prostaglandins, notably PGF2α, PGE2, PGD2, and 6-K-PGF1A, compared to Scn1a+/- mice with a low seizure burden. In conclusion, a high seizure burden increased hippocampal concentrations of various prostaglandin mediators in a mouse model of Dravet syndrome. Future studies could interrogate the prostaglandin pathways to further better understand their role in the pathophysiology of Dravet syndrome.
Collapse
Affiliation(s)
- Cilla Zhou
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Vaishali Satpute
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Ka Lai Yip
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Lyndsey L Anderson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Nicole Hawkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Jennifer Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Jonathon C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.
| |
Collapse
|
9
|
Andersen SL. Increasing CB2 Receptor Activity after Early Life Stress Prevents Depressive Behavior in Female Rats. Biomolecules 2024; 14:464. [PMID: 38672480 PMCID: PMC11047932 DOI: 10.3390/biom14040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Early adversity, the loss of the inhibitory GABAergic interneuron parvalbumin, and elevated neuroinflammation are associated with depression. Individuals with a maltreatment history initiate medicinal cannabis use earlier in life than non-maltreated individuals, suggesting self-medication. Female rats underwent maternal separation (MS) between 2 and 20 days of age to model early adversity or served as colony controls. The prelimbic cortex and behavior were examined to determine whether MS alters the cannabinoid receptor 2 (CB2), which has anti-inflammatory properties. A reduction in the CB2-associated regulatory enzyme MARCH7 leading to increased NLRP3 was observed with Western immunoblots in MS females. Immunohistochemistry with stereology quantified numbers of parvalbumin-immunoreactive cells and CB2 at 25, 40, and 100 days of age, revealing that the CB2 receptor associated with PV neurons initially increases at P25 and subsequently decreases by P40 in MS animals, with no change in controls. Confocal and triple-label microscopy suggest colocalization of these CB2 receptors to microglia wrapped around the parvalbumin neuron. Depressive-like behavior in MS animals was elevated at P40 and reduced with the CB2 agonist HU-308 or a CB2-overexpressing lentivirus microinjected into the prelimbic cortex. These results suggest that increasing CB2 expression by P40 in the prelimbic cortex prevents depressive behavior in MS female rats.
Collapse
Affiliation(s)
- Susan L Andersen
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Comai S, Nunez N, Atkin T, Ghabrash MF, Zakarian R, Fielding A, Saint-Laurent M, Low N, Sauber G, Ragazzi E, Hillard CJ, Gobbi G. Dysfunction in endocannabinoids, palmitoylethanolamide, and degradation of tryptophan into kynurenine in individuals with depressive symptoms. BMC Med 2024; 22:33. [PMID: 38273283 PMCID: PMC10809514 DOI: 10.1186/s12916-024-03248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The endocannabinoid (eCB) system and the serotonin (5-HT) are both implicated in the severity of the depression. 5-HT is synthesized from the amino acid tryptophan (Trp), which is also a precursor for kynurenine (Kyn) whose production is increased at the expense of 5-HT in depressed patients. No clinical studies have investigated the crosstalk between the eCB system and the Trp/5-HT/Kyn pathways. Here, we hypothesized that the eCB system is associated with an enhanced Kyn production in relation to the severity of depressive symptoms. METHODS Eighty-two subjects (51 patients with a diagnosis of depressive disorder (DSM-5) and 31 healthy volunteers), were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS), Beck Depression Scale, and Global Clinical Impression. Serum concentrations of eCBs (N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG)); structurally related fatty acyl compounds 2-oleoylglycerol (2-OG), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA); Trp, Kyn, Kyn/Trp ratio (an index of Trp degradation into Kyn) and 5-HT were also determined. RESULTS Following a principal component analysis including the severity of depression, Kyn and the Kyn/Trp ratio appear to be directly associated with 2-AG, AEA, and PEA. Interestingly, these biomarkers also permitted to distinguish the population into two main clusters: one of individuals having mild/severe depressive symptoms and the other with an absence of depressive symptoms. Using parametric analysis, higher serum levels of 2-AG, Kyn, and the ratio Kyn/Trp and lower levels of Trp and 5-HT were found in individuals with mild/severe depressive symptoms than in those without depressive symptoms. While in asymptomatic people, PEA was directly associated to Trp, and OEA indirectly linked to 5-HT, in individuals with depressive symptoms, these correlations were lost, and instead, positive correlations between AEA and 2-AG, PEA and AEA, and PEA vs 2-AG and OEA concentrations were found. CONCLUSIONS Parametric and non-parametric analyses suggest a possible association between eCBs, tryptophan/kynurenine biomarkers, and severity of depression, confirming a likely interplay among inflammation, stress, and depression. The enhanced relationships among the biomarkers of the 2-AG and AEA pathways and related lipids seen in individuals with depressive symptoms, but not in asymptomatics, suggest an altered metabolism of the eCB system in depression.
Collapse
Affiliation(s)
- Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Nicolas Nunez
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Tobias Atkin
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Rita Zakarian
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Allan Fielding
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada
| | - Marie Saint-Laurent
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada
| | - Nancy Low
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada
| | - Garrett Sauber
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gabriella Gobbi
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
11
|
Yadav-Samudrala BJ, Gorman BL, Dodson H, Ramineni S, Wallace ED, Peace MR, Poklis JL, Jiang W, Fitting S. Effects of acute Δ 9-tetrahydrocannabinol on behavior and the endocannabinoid system in HIV-1 Tat transgenic female and male mice. Brain Res 2024; 1822:148638. [PMID: 37858856 PMCID: PMC10873064 DOI: 10.1016/j.brainres.2023.148638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Cannabis use is highly prevalent especially among people living with HIV (PLWH). Activation of the anti-inflammatory and neuroprotective endocannabinoid system by phytocannabinoids, i.e. Δ9-tetrahydrocannabinol (THC), has been proposed to reduce HIV symptoms. However, THC's effects on HIV-related memory deficits are unclear. Using HIV-1 Tat transgenic mice, the current study investigates acute THC effects on various behavioral outcomes and the endocannabinoid system. For the rodent tetrad model, THC doses (1, 3, 10 mg/kg) induced known antinociceptive effects, with Tat induction increasing antinociceptive THC effects at 3 and 10 mg/kg doses. Only minor or no effects were noted for acute THC on body temperature, locomotor activity, and coordination. Increased anxiety-like behavior was found for females compared to males, but acute THC had no effect on anxiety. Object recognition memory was diminished by acute THC in Tat(-) females but not Tat(+) females, without affecting males. The endocannabinoid system and related lipids were not affected by acute THC, except for THC-induced decreases in CB1R protein expression levels in the spinal cord of Tat(-) mice. Female sex and Tat induction was associated with elevated 2-AG, AEA, AA, CB1R, CB2R, FAAH and/or MAGL expression in various brain regions. Further, AEA levels in the prefrontal cortex of Tat(+) females were negatively associated with object recognition memory. Overall, findings indicate that acute THC exerts differential effects on antinociception and memory, dependent on sex and HIV Tat expression, potentially in relation to an altered endocannabinoid system, which may be of relevance in view of potential cannabis-based treatment options for PLWH.
Collapse
Affiliation(s)
- Barkha J Yadav-Samudrala
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin L Gorman
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hailey Dodson
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shreya Ramineni
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - E Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michelle R Peace
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Bietar B, Tanner S, Lehmann C. Neuroprotection and Beyond: The Central Role of CB1 and CB2 Receptors in Stroke Recovery. Int J Mol Sci 2023; 24:16728. [PMID: 38069049 PMCID: PMC10705908 DOI: 10.3390/ijms242316728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The endocannabinoid system, with its intricate presence in numerous cells, tissues, and organs, offers a compelling avenue for therapeutic interventions. Central to this system are the cannabinoid receptors 1 and 2 (CB1R and CB2R), whose ubiquity can introduce complexities in targeted treatments due to their wide-ranging physiological influence. Injuries to the central nervous system (CNS), including strokes and traumatic brain injuries, induce localized pro-inflammatory immune responses, termed neuroinflammation. Research has shown that compensatory immunodepression usually follows, and these mechanisms might influence immunity, potentially affecting infection risks in patients. As traditional preventive treatments like antibiotics face challenges, the exploration of immunomodulatory therapies offers a promising alternative. This review delves into the potential neuroprotective roles of the cannabinoid receptors: CB1R's involvement in mitigating excitotoxicity and CB2R's dual role in promoting cell survival and anti-inflammatory responses. However, the potential of cannabinoids to reduce neuroinflammation must be weighed against the risk of exacerbating immunodepression. Though the endocannabinoid system promises numerous therapeutic benefits, understanding its multifaceted signaling mechanisms and outcomes remains a challenge.
Collapse
Affiliation(s)
- Bashir Bietar
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Sophie Tanner
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Christian Lehmann
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
13
|
Raus de Baviera D, Ruiz-Canales A, Barrajón-Catalán E. Cistus albidus L.-Review of a Traditional Mediterranean Medicinal Plant with Pharmacological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2988. [PMID: 37631199 PMCID: PMC10458491 DOI: 10.3390/plants12162988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Cistus albidus L. (Cistaceae) is a medicinal plant that has been used therapeutically since ancient times in the Mediterranean basin for its important pharmacological properties. The ability of C. albidus to produce large quantities of a wide range of natural metabolites makes it an attractive source of raw material. The main constituents with bioactive functions that exert pharmacological effects are terpenes and polyphenols, with more than 200 identified compounds. The purpose of this review is to offer a detailed account of the botanical, ethnological, phytochemical, and pharmacological characteristics of C. albidus with the aim of encouraging additional pharmaceutical investigations into the potential therapeutic benefits of this medicinal plant. This review was carried out using organized searches of the available literature up to July 2023. A detailed analysis of C. albidus confirms its traditional use as a medicinal plant. The outcome of several studies suggests a deeper involvement of certain polyphenols and terpenes in multiple mechanisms such as inflammation and pain, with a potential application focus on neurodegenerative diseases and disorders. Other diseases such as prostate cancer and leukemia have already been researched with promising results for this plant, for which no intoxication has been reported in humans.
Collapse
Affiliation(s)
- Daniel Raus de Baviera
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Antonio Ruiz-Canales
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Enrique Barrajón-Catalán
- Institute for Research, Development and Innovation in Health Biotechnology, Miguel Hernández University, 03202 Elche, Spain
- Department of Pharmacy, Elche University Hospital-FISABIO, 03203 Elche, Spain
| |
Collapse
|
14
|
Kallinen A, Mardon K, Lane S, Montgomery AP, Bhalla R, Stimson DHR, Ahamed M, Cowin GJ, Hibbs D, Werry EL, Fulton R, Connor M, Kassiou M. Synthesis and Preclinical Evaluation of Fluorinated 5-Azaindoles as CB2 PET Radioligands. ACS Chem Neurosci 2023; 14:2902-2921. [PMID: 37499194 DOI: 10.1021/acschemneuro.3c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Several classes of cannabinoid receptor type 2 radioligands have been evaluated for imaging of neuroinflammation, with successful clinical translation yet to take place. Here we describe the synthesis of fluorinated 5-azaindoles and pharmacological characterization and in vivo evaluation of 18F-radiolabeled analogues. [18F]2 (hCB2 Ki = 96.5 nM) and [18F]9 (hCB2 Ki = 7.7 nM) were prepared using Cu-mediated 18F-fluorination with non-decay-corrected radiochemical yields of 15 ± 6% and 18 ± 2% over 85 and 80 min, respectively, with high radiochemical purities (>97%) and molar activities (140-416 GBq/μmol). In PET imaging studies in rats, both [18F]2 and [18F]9 demonstrated specific binding in CB2-rich spleen after pretreatment with CB2-specific GW405833. Moreover, [18F]9 exhibited higher brain uptake at later time points in a murine model of neuroinflammation compared with a healthy control group. The results suggest further evaluation of azaindole based CB2 radioligands is warranted in other neuroinflammation models.
Collapse
Affiliation(s)
- Annukka Kallinen
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Karine Mardon
- ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samuel Lane
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | - Muneer Ahamed
- ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gary J Cowin
- ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David Hibbs
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Roger Fulton
- Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Mark Connor
- Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Medina-Vera D, Zhao H, Bereczki E, Rosell-Valle C, Shimozawa M, Chen G, de Fonseca FR, Nilsson P, Tambaro S. The Expression of the Endocannabinoid Receptors CB2 and GPR55 Is Highly Increased during the Progression of Alzheimer's Disease in AppNL-G-F Knock-In Mice. BIOLOGY 2023; 12:805. [PMID: 37372090 DOI: 10.3390/biology12060805] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The endocannabinoid system (ECS) and associated lipid transmitter-based signaling systems play an important role in modulating brain neuroinflammation. ECS is affected in neurodegenerative disorders, such as Alzheimer's disease (AD). Here we have evaluated the non-psychotropic endocannabinoid receptor type 2 (CB2) and lysophosphatidylinositol G-protein-coupled receptor 55 (GPR55) localization and expression during Aβ-pathology progression. METHODS Hippocampal gene expression of CB2 and GPR55 was explored by qPCR analysis, and brain distribution was evaluated by immunofluorescence in the wild type (WT) and APP knock-in AppNL-G-F AD mouse model. Furthermore, the effects of Aβ42 on CB2 and GPR55 expression were assessed in primary cell cultures. RESULTS CB2 and GPR55 mRNA levels were significantly upregulated in AppNL-G-F mice at 6 and 12 months of age, compared to WT. CB2 was highly expressed in the microglia and astrocytes surrounding the Aβ plaques. Differently, GPR55 staining was mainly detected in neurons and microglia but not in astrocytes. In vitro, Aβ42 treatment enhanced CB2 receptor expression mainly in astrocytes and microglia cells, whereas GPR55 expression was enhanced primarily in neurons. CONCLUSIONS These data show that Aβ pathology progression, particularly Aβ42, plays a crucial role in increasing the expression of CB2 and GPR55 receptors, supporting CB2 and GPR55 implications in AD.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Makoto Shimozawa
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| |
Collapse
|
16
|
Grabon W, Rheims S, Smith J, Bodennec J, Belmeguenai A, Bezin L. CB2 receptor in the CNS: from immune and neuronal modulation to behavior. Neurosci Biobehav Rev 2023; 150:105226. [PMID: 37164044 DOI: 10.1016/j.neubiorev.2023.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Despite low levels of cannabinoid receptor type 2 (CB2R) expression in the central nervous system in human and rodents, a growing body of evidence shows CB2R involvement in many processes at the behavioral level, through both immune and neuronal modulations. Recent in vitro and in vivo evidence have highlighted the complex role of CB2R under physiological and inflammatory conditions. Under neuroinflammatory states, its activation seems to protect the brain and its functions, making it a promising target in a wide range of neurological disorders. Here, we provide a complete and updated overview of CB2R function in the central nervous system of rodents, spanning from modulation of immune function in microglia but also in other cell types, to behavior and neuronal activity, in both physiological and neuroinflammatory contexts.
Collapse
Affiliation(s)
- Wanda Grabon
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France.
| | - Sylvain Rheims
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France; Department of Functional Neurology and Epileptology, Hospices Civils de Lyon - France
| | - Jonathon Smith
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France
| | - Jacques Bodennec
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France
| | - Amor Belmeguenai
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France
| | - Laurent Bezin
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France.
| |
Collapse
|
17
|
Min AK, Keane AM, Weinstein MP, Swartz TH. The impact of cannabinoids on inflammasome signaling in HIV-1 infection. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:79-88. [PMID: 37027347 PMCID: PMC10070009 DOI: 10.1515/nipt-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is a chronic disease that afflicts over 38 million people worldwide without a known cure. The advent of effective antiretroviral therapies (ART) has significantly decreased the morbidity and mortality associated with HIV-1 infection in people living with HIV-1 (PWH), thanks to durable virologic suppression. Despite this, people with HIV-1 experience chronic inflammation associated with co-morbidities. While no single known mechanism accounts for chronic inflammation, there is significant evidence to support the role of the NLRP3 inflammasome as a key driver. Numerous studies have demonstrated therapeutic impact of cannabinoids, including exerting modulatory effects on the NLRP3 inflammasome. Given the high rates of cannabinoid use in PWH, it is of great interest to understand the intersecting biology of the role of cannabinoids in HIV-1-associated inflammasome signaling. Here we describe the literature of chronic inflammation in people with HIV, the therapeutic impact of cannabinoids in PWH, endocannabinoids in inflammation, and HIV-1-associated inflammation. We describe a key interaction between cannabinoids, the NLRP3 inflammasome, and HIV-1 viral infection, which supports further investigation of the critical role of cannabinoids in HIV-1 infection and inflammasome signaling.
Collapse
Affiliation(s)
- Alice K. Min
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aislinn M. Keane
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Paltiel Weinstein
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Talia H. Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Graziano G, Delre P, Carofiglio F, Brea J, Ligresti A, Kostrzewa M, Riganti C, Gioè-Gallo C, Majellaro M, Nicolotti O, Colabufo NA, Abate C, Loza MI, Sotelo E, Mangiatordi GF, Contino M, Stefanachi A, Leonetti F. N-adamantyl-anthranil amide derivatives: New selective ligands for the cannabinoid receptor subtype 2 (CB2R). Eur J Med Chem 2023; 248:115109. [PMID: 36657299 DOI: 10.1016/j.ejmech.2023.115109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Cannabinoid type 2 receptor (CB2R) is a G-protein-coupled receptor that, together with Cannabinoid type 1 receptor (CB1R), endogenous cannabinoids and enzymes responsible for their synthesis and degradation, forms the EndoCannabinoid System (ECS). In the last decade, several studies have shown that CB2R is overexpressed in activated central nervous system (CNS) microglia cells, in disorders based on an inflammatory state, such as neurodegenerative diseases, neuropathic pain, and cancer. For this reason, the anti-inflammatory and immune-modulatory potentials of CB2R ligands are emerging as a novel therapeutic approach. The design of selective ligands is however hampered by the high sequence homology of transmembrane domains of CB1R and CB2R. Based on a recent three-arm pharmacophore hypothesis and latest CB2R crystal structures, we designed, synthesized, and evaluated a series of new N-adamantyl-anthranil amide derivatives as CB2R selective ligands. Interestingly, this new class of compounds displayed a high affinity for human CB2R along with an excellent selectivity respect to CB1R. In this respect, compounds exhibiting the best pharmacodynamic profile in terms of CB2R affinity were also evaluated for the functional behavior and molecular docking simulations provided a sound rationale by highlighting the relevance of the arm 1 substitution to prompt CB2R action. Moreover, the modulation of the pro- and anti-inflammatory cytokines production was also investigated to exert the ability of the best compounds to modulate the inflammatory cascade.
Collapse
Affiliation(s)
- Giovanni Graziano
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Pietro Delre
- CNR - Institute of Crystallography, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
| | - Francesca Carofiglio
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Josè Brea
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Av. Barcelona, 15782, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Turin, Italy
| | - Claudia Gioè-Gallo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Nicola Antonio Colabufo
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Carmen Abate
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy; CNR - Institute of Crystallography, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
| | - Maria Isabel Loza
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Av. Barcelona, 15782, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | | | - Marialessandra Contino
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy.
| | - Angela Stefanachi
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy.
| | - Francesco Leonetti
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| |
Collapse
|
19
|
Murray CJ, Vecchiarelli HA, Tremblay MÈ. Enhancing axonal myelination in seniors: A review exploring the potential impact cannabis has on myelination in the aged brain. Front Aging Neurosci 2023; 15:1119552. [PMID: 37032821 PMCID: PMC10073480 DOI: 10.3389/fnagi.2023.1119552] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Consumption of cannabis is on the rise as public opinion trends toward acceptance and its consequent legalization. Specifically, the senior population is one of the demographics increasing their use of cannabis the fastest, but research aimed at understanding cannabis' impact on the aged brain is still scarce. Aging is characterized by many brain changes that slowly alter cognitive ability. One process that is greatly impacted during aging is axonal myelination. The slow degradation and loss of myelin (i.e., demyelination) in the brain with age has been shown to associate with cognitive decline and, furthermore, is a common characteristic of numerous neurological diseases experienced in aging. It is currently not known what causes this age-dependent degradation, but it is likely due to numerous confounding factors (i.e., heightened inflammation, reduced blood flow, cellular senescence) that impact the many cells responsible for maintaining overall homeostasis and myelin integrity. Importantly, animal studies using non-human primates and rodents have also revealed demyelination with age, providing a reliable model for researchers to try and understand the cellular mechanisms at play. In rodents, cannabis was recently shown to modulate the myelination process. Furthermore, studies looking at the direct modulatory impact cannabis has on microglia, astrocytes and oligodendrocyte lineage cells hint at potential mechanisms to prevent some of the more damaging activities performed by these cells that contribute to demyelination in aging. However, research focusing on how cannabis impacts myelination in the aged brain is lacking. Therefore, this review will explore the evidence thus far accumulated to show how cannabis impacts myelination and will extrapolate what this knowledge may mean for the aged brain.
Collapse
Affiliation(s)
- Colin J. Murray
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- *Correspondence: Colin J. Murray,
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Départment de Médicine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Marie-Ève Tremblay,
| |
Collapse
|
20
|
Aryannejad A, Eslami F, Shayan M, Noroozi N, Hedayatyanfard K, Tavangar SM, Jafari RM, Dehpour AR. Cannabidiol Improves Random-Pattern Skin Flap Survival in Rats: Involvement of Cannabinoid Type-2 Receptors. J Reconstr Microsurg 2023; 39:48-58. [PMID: 35817049 DOI: 10.1055/s-0042-1749338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND One of the major complications associated with random-pattern skin flaps is distal necrosis. Cannabidiol (CBD) has recently gained much attention as a therapeutic anti-inflammatory agent. We aimed to evaluate the efficacy of CBD on the random-pattern skin flap survival (SFS) in rats and to explore the possible involvement of cannabinoid type-2 (CB2) receptors. METHODS In this controlled experimental study, we randomly divided male Wistar rats into seven study groups (six rats each). We performed a random-pattern skin flap model in each rat following pretreatment with vehicle (control) or multiple doses of CBD (0.3, 1, 5, or 10 mg/kg). In a separate group, we injected SR144528 (2 mg/kg), a high affinity and selective CB2 inverse agonist, before the most effective dose of CBD (1 mg/kg). A sham nontreated and nonoperated group was also included. Seven days after surgeries, the percentage of necrotic area (PNA) was calculated. Histopathological microscopy, CB2 expression level, and interleukin (IL)-1β and tumor necrosis factor (TNF)-α concentrations were also investigated in the flap tissue samples. RESULTS A PNA of 72.7 ± 7.5 (95% confidence interval [CI]: 64.8-80.6) was captured in the control group. Following treatment with CBD 0.3, 1, 5, and 10 mg/kg, a dose-dependent effect was observed with PNAs of 51.0 ± 10.0 (95% CI: 40.5-61.5; p <0.05), 15.4 ± 5.8 (95% CI: 9.3-21.5; p <0.001), 37.1 ± 10.2 (95% CI: 26.3-47.8; p <0.001), and 46.4 ± 14.0 (95% CI: 31.7-61.1; p <0.001), respectively. Histopathologically, tissues enhanced significantly. Besides, CB2 expression surged remarkably, IL-1β and TNF-α concentrations decreased considerably after treatment with CBD of 1 mg/kg compared with the control (p <0.05 and <0.001, respectively). Administering SR144528 reversed the favorable effects of CBD of 1 mg/kg, both macroscopically and microscopically. CONCLUSION Pretreatment with CBD of 1 mg/kg improved SFS considerably in rats and exerted desirable anti-inflammatory effects which were possibly mediated by CB2 receptors.
Collapse
Affiliation(s)
- Armin Aryannejad
- Department of Pharmacology, Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Eslami
- Department of Pharmacology, Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nafise Noroozi
- Department of Pharmacology, Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keshvad Hedayatyanfard
- Department of Physiology and Pharmacology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Department of Cardiology, Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Department of Pharmacology, Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Gómez-Cañas M, Rodríguez-Cueto C, Satta V, Hernández-Fisac I, Navarro E, Fernández-Ruiz J. Endocannabinoid-Binding Receptors as Drug Targets. Methods Mol Biol 2023; 2576:67-94. [PMID: 36152178 DOI: 10.1007/978-1-0716-2728-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cannabis plant has been used from ancient times with therapeutic purposes for treating human pathologies, but the identification of the cellular and molecular mechanisms underlying the therapeutic properties of the phytocannabinoids, the active compounds in this plant, occurred in the last years of the past century. In the late 1980s and early 1990s, seminal studies demonstrated the existence of cannabinoid receptors and other elements of the so-called endocannabinoid system. These G protein-coupled receptors (GPCRs) are a key element in the functions assigned to endocannabinoids and appear to serve as promising pharmacological targets. They include CB1, CB2, and GPR55, but also non-GPCRs can be activated by endocannabinoids, like ionotropic receptor TRPV1 and even nuclear receptors of the PPAR family. Their activation, inhibition, or simply modulation have been associated with numerous physiological effects at both central and peripheral levels, which may have therapeutic value in different human pathologies, then providing a solid experimental explanation for both the ancient medicinal uses of Cannabis plant and the recent advances in the development of cannabinoid-based specific therapies. This chapter will review the scientific knowledge generated in the last years around the research on the different endocannabinoid-binding receptors and their signaling mechanisms. Our intention is that this knowledge may help readers to understand the relevance of these receptors in health and disease conditions, as well as it may serve as the theoretical basis for the different experimental protocols to investigate these receptors and their signaling mechanisms that will be described in the following chapters.
Collapse
Affiliation(s)
- María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Elisa Navarro
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
22
|
Eraso‐Pichot A, Pouvreau S, Olivera‐Pinto A, Gomez‐Sotres P, Skupio U, Marsicano G. Endocannabinoid signaling in astrocytes. Glia 2023; 71:44-59. [PMID: 35822691 PMCID: PMC9796923 DOI: 10.1002/glia.24246] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023]
Abstract
The study of the astrocytic contribution to brain functions has been growing in popularity in the neuroscience field. In the last years, and especially since the demonstration of the involvement of astrocytes in synaptic functions, the astrocyte field has revealed multiple functions of these cells that seemed inconceivable not long ago. In parallel, cannabinoid investigation has also identified different ways by which cannabinoids are able to interact with these cells, modify their functions, alter their communication with neurons and impact behavior. In this review, we will describe the expression of different endocannabinoid system members in astrocytes. Moreover, we will relate the latest findings regarding cannabinoid modulation of some of the most relevant astroglial functions, namely calcium (Ca2+ ) dynamics, gliotransmission, metabolism, and inflammation.
Collapse
Affiliation(s)
- Abel Eraso‐Pichot
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Sandrine Pouvreau
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Alexandre Olivera‐Pinto
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Paula Gomez‐Sotres
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Urszula Skupio
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Giovanni Marsicano
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| |
Collapse
|
23
|
Cheng C, Wan H, Cong P, Huang X, Wu T, He M, Zhang Q, Xiong L, Tian L. Targeting neuroinflammation as a preventive and therapeutic approach for perioperative neurocognitive disorders. J Neuroinflammation 2022; 19:297. [PMID: 36503642 PMCID: PMC9743533 DOI: 10.1186/s12974-022-02656-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Perioperative neurocognitive disorders (PND) is a common postoperative complication associated with regional or general anesthesia and surgery. Growing evidence in both patient and animal models of PND suggested that neuroinflammation plays a critical role in the development and progression of this problem, therefore, mounting efforts have been made to develop novel therapeutic approaches for PND by targeting specific factors or steps alongside the neuroinflammation. Multiple studies have shown that perioperative anti-neuroinflammatory strategies via administering pharmacologic agents or performing nonpharmacologic approaches exert benefits in the prevention and management of PND, although more clinical evidence is urgently needed to testify or confirm these results. Furthermore, long-term effects and outcomes with respect to cognitive functions and side effects are needed to be observed. In this review, we discuss recent preclinical and clinical studies published within a decade as potential preventive and therapeutic approaches targeting neuroinflammation for PND.
Collapse
Affiliation(s)
- Chun Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Hanxi Wan
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Peilin Cong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Xinwei Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Tingmei Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Mengfan He
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Qian Zhang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| | - Li Tian
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434 China ,grid.24516.340000000123704535Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434 China ,grid.24516.340000000123704535Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434 China
| |
Collapse
|
24
|
Ni R, Müller Herde A, Haider A, Keller C, Louloudis G, Vaas M, Schibli R, Ametamey SM, Klohs J, Mu L. In vivo Imaging of Cannabinoid Type 2 Receptors: Functional and Structural Alterations in Mouse Model of Cerebral Ischemia by PET and MRI. Mol Imaging Biol 2022; 24:700-709. [PMID: 34642898 PMCID: PMC9581861 DOI: 10.1007/s11307-021-01655-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Stroke is one of the most prevalent vascular diseases. Non-invasive molecular imaging methods have the potential to provide critical insights into the temporal dynamics and follow alterations of receptor expression and metabolism in ischemic stroke. The aim of this study was to assess the cannabinoid type 2 receptor (CB2R) levels in transient middle cerebral artery occlusion (tMCAO) mouse models at subacute stage using positron emission tomography (PET) with our novel tracer [18F]RoSMA-18-d6 and structural imaging by magnetic resonance imaging (MRI). PROCEDURES Our recently developed CB2R PET tracer [18F]RoSMA-18-d6 was used for imaging neuroinflammation at 24 h after reperfusion in tMCAO mice. The RNA expression levels of CB2R and other inflammatory markers were analyzed by quantitative real-time polymerase chain reaction using brain tissues from tMCAO (1 h occlusion) and sham-operated mice. [18F]fluorodeoxyglucose (FDG) was included for evaluation of the cerebral metabolic rate of glucose (CMRglc). In addition, diffusion-weighted imaging and T2-weighted imaging were performed for anatomical reference and delineating the lesion in tMCAO mice. RESULTS mRNA expressions of inflammatory markers TNF-α, Iba1, MMP9 and GFAP, CNR2 were increased to 1.3-2.5 fold at 24 h after reperfusion in the ipsilateral compared to contralateral hemisphere of tMCAO mice, while mRNA expression of the neuronal marker MAP-2 was markedly reduced to ca. 50 %. Reduced [18F]FDG uptake was observed in the ischemic striatum of tMCAO mouse brain at 24 h after reperfusion. Although higher activity of [18F]RoSMA-18-d6 in ex vivo biodistribution studies and higher standard uptake value ratio (SUVR) were detected in the ischemic ipsilateral compared to contralateral striatum in tMCAO mice, the in vivo specificity of [18F]RoSMA-18-d6 was confirmed only in the CB2R-rich spleen. CONCLUSIONS This study revealed an increased [18F]RoSMA-18-d6 measure of CB2R and a reduced [18F]FDG measure of CMRglc in the ischemic striatum of tMCAO mice at subacute stage. [18F]RoSMA-18-d6 might be a promising PET tracer for detecting CB2R alterations in animal models of neuroinflammation without neuronal loss.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Adrienne Müller Herde
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Ahmed Haider
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Claudia Keller
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Georgios Louloudis
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Markus Vaas
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
25
|
La Maida N, Di Giorgi A, Pichini S, Busardò FP, Huestis MA. Recent challenges and trends in forensic analysis: Δ9-THC isomers pharmacology, toxicology and analysis. J Pharm Biomed Anal 2022; 220:114987. [PMID: 35985136 DOI: 10.1016/j.jpba.2022.114987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
Δ9-tetrahydrocannabinol (Δ9-THC) isomers, especially Δ8-tetrahydrocannabinol (Δ8-THC), are increasing in foods, beverages, and e-cigarettes liquids. A major factor is passage of the Agriculture Improvement Act (AIA) that removed hemp containing less than 0.3 % Δ9-THC from the definition of "marijuana" or cannabis. CBD-rich hemp flooded the market resulting in excess product that could be subjected to CBD cyclization to produce Δ8-THC. This process utilizes strong acid and yields toxic byproducts that frequently are not removed prior to sale and are currently inadequately studied. Pharmacological activity is qualitatively similar for Δ8-THC and Δ9-THC, but most preclinical studies in mice, rats, and monkeys documented greater ∆9-THC potency. Both isomers caused graded dose-response effects on euphoria, blurred vision, mental confusion and lethargy, although Δ8-THC was at least 25 % less potent. The most common analytical methodologies providing baseline resolution of ∆8-THC and ∆9-THC in non-biological matrices are liquid-chromatography coupled to diode-array detection (LC-DAD or LC-PDA), while liquid chromatography coupled to mass spectrometry is preferred for biological matrices. Other available analytical methods are gas-chromatography-mass spectrometry (GC-MS) and quantitative nuclear magnetic resonance (QNMR). Current knowledge on the pharmacology of ∆8-THC and other ∆9-THC isomers are reviewed to raise awareness of the activity of these isomers in cannabis products, as well as analytical methods to discriminate ∆9-THC qualitatively, and quantitatively and ∆8-THC in biological and non-biological matrices.
Collapse
Affiliation(s)
- Nunzia La Maida
- Unit of Forensic Toxicology, Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Università la Sapienza, V. Le Regina Elena 366, 00161 Rome, Italy
| | - Alessandro Di Giorgi
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 10/a, 60124, Ancona, Italy
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, V. Le Regina Elena 299, 00161 Rome, Italy
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 10/a, 60124, Ancona, Italy.
| | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
26
|
Activating cannabinoid receptor 2 preserves axonal health through GSK-3β/NRF2 axis in adrenoleukodystrophy. Acta Neuropathol 2022; 144:241-258. [PMID: 35778568 DOI: 10.1007/s00401-022-02451-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 11/01/2022]
Abstract
Aberrant endocannabinoid signaling accompanies several neurodegenerative disorders, including multiple sclerosis. Here, we report altered endocannabinoid signaling in X-linked adrenoleukodystrophy (X-ALD), a rare neurometabolic demyelinating syndrome caused by malfunction of the peroxisomal ABCD1 transporter, resulting in the accumulation of very long-chain fatty acids (VLCFAs). We found abnormal levels of cannabinoid receptor 2 (CB2r) and related endocannabinoid enzymes in the brain and peripheral blood mononuclear cells (PBMCs) of X-ALD patients and in the spinal cord of a murine model of X-ALD. Preclinical treatment with a selective agonist of CB2r (JWH133) halted axonal degeneration and associated locomotor deficits, along with normalization of microgliosis. Moreover, the drug improved the main metabolic disturbances underlying this model, particularly in redox and lipid homeostatic pathways, including increased lipid droplets in motor neurons, through the modulation of the GSK-3β/NRF2 axis. JWH133 inhibited Reactive Oxygen Species elicited by excess VLCFAs in primary microglial cultures of Abcd1-null mice. Furthermore, we uncovered intertwined redox and CB2r signaling in the murine spinal cords and in patient PBMC samples obtained from a phase II clinical trial with antioxidants (NCT01495260). These findings highlight CB2r signaling as a potential therapeutic target for X-ALD and perhaps other neurodegenerative disorders that present with dysregulated redox and lipid homeostasis.
Collapse
|
27
|
Gündel D, Deuther-Conrad W, Ueberham L, Kaur S, Otikova E, Teodoro R, Toussaint M, Lai TH, Clauß O, Scheunemann M, Bormans G, Bachmann M, Kopka K, Brust P, Moldovan RP. Structure-Based Design, Optimization, and Development of [ 18F]LU13: A Novel Radioligand for Cannabinoid Receptor Type 2 Imaging in the Brain with PET. J Med Chem 2022; 65:9034-9049. [PMID: 35771668 DOI: 10.1021/acs.jmedchem.2c00256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cannabinoid receptor type 2 (CB2R) is an attractive target for the diagnosis and therapy of neurodegenerative diseases and cancer. In this study, we aimed at the development of a novel 18F-labeled radioligand starting from the structure of the known naphthyrid-2-one CB2R ligands. Compound 28 (LU13) was identified with the highest binding affinity and selectivity versus CB1R (CB2RKi = 0.6 nM; CB1RKi/CB2RKi > 1000) and was selected for radiolabeling with fluorine-18 and biological characterization. The new radioligand [18F]LU13 showed high CB2R affinity in vitro as well as high metabolic stability in vivo. PET imaging with [18F]LU13 in a rat model of vector-based/-related hCB2R overexpression in the striatum revealed a high signal-to-background ratio. Thus, [18F]LU13 is a novel and highly promising PET radioligand for the imaging of upregulated CB2R expression under pathological conditions in the brain.
Collapse
Affiliation(s)
- Daniel Gündel
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Lea Ueberham
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Sarandeep Kaur
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Elina Otikova
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Rodrigo Teodoro
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Magali Toussaint
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Thu Hang Lai
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany.,Department of Research and Development, ROTOP Pharmaka GmbH, 01069 Dresden, Germany
| | - Oliver Clauß
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Matthias Scheunemann
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, BE-3000 Leuven, Belgium
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01069 Dresden, Germany
| | - Peter Brust
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany.,The Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany
| | - Rareş-Petru Moldovan
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| |
Collapse
|
28
|
Amini M, Abdolmaleki Z. The Effect of Cannabidiol Coated by Nano-Chitosan on Learning and Memory, Hippocampal CB1 and CB2 Levels, and Amyloid Plaques in an Alzheimer's Disease Rat Model. Neuropsychobiology 2022; 81:171-183. [PMID: 34727550 DOI: 10.1159/000519534] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Using nanoparticle (NP) drugs can have better effects on the target tissue in various diseases. Alzheimer's disease (AD) is one of the degenerative neurological diseases that due to its high prevalence, requires the use of more appropriate treatments. Therefore, the aim of this study was consideration of the effect of cannabidiol (CBD) coated by nano-chitosan on learning and memory, hippocampal cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 1 (CB2) levels, and amyloid plaques in an AD rat model. MATERIAL AND METHODS Thirty-five male Wistar rats were randomly divided into 5 groups (n = 7 in each): control, Alzheimer's disease model that received the beta-amyloid (Aβ) peptide (Alz), Alz + nano-chitosan (NP) Alz + CBD, and Alz + NP + CBD. Alz was induced by injection of the Aβ1-42 peptide into the hippocampal area cornu ammonis1. After confirmation of Alz, 1 μL of CBD and NP + CBD were administered by oral gavage daily in rats for 1 month. The Morris water maze (MWM) test was used to assess learning and memory of animals. Cresyl violet staining was used for consideration of dead cells. Gene and protein expression of CB1 and CB2 was performed by real-time PCR and immunohistochemistry methods. RESULTS Induction of Alz significantly increased Aβ plaques and dead cells compared to the control group (p < 0.001). Results of MWM in the day test show that Alz + NP + CBD significantly decrease escape latency (p < 0.01), travelled distance (p < 0.001), and significantly increased spending time (p < 0.001) compared to the Alz group. Protein expression of CB1 and CB2 significantly increased in Alz + CBD and Alz + NP + CBD compared to the Alz group (p < 0.05). CONCLUSION It seems that CBD coated by nano-chitosan has good potential for reducing Aβ plaques, increasing brain CB1 and levels CB2, and improving learning and memory in Alz rats.
Collapse
Affiliation(s)
- Mohammadali Amini
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
29
|
Coccurello R, Marrone MC, Maccarrone M. The Endocannabinoids-Microbiota Partnership in Gut-Brain Axis Homeostasis: Implications for Autism Spectrum Disorders. Front Pharmacol 2022; 13:869606. [PMID: 35721203 PMCID: PMC9204215 DOI: 10.3389/fphar.2022.869606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The latest years have witnessed a growing interest towards the relationship between neuropsychiatric disease in children with autism spectrum disorders (ASD) and severe alterations in gut microbiota composition. In parallel, an increasing literature has focused the attention towards the association between derangement of the endocannabinoids machinery and some mechanisms and symptoms identified in ASD pathophysiology, such as alteration of neural development, immune system dysfunction, defective social interaction and stereotypic behavior. In this narrative review, we put together the vast ground of endocannabinoids and their partnership with gut microbiota, pursuing the hypothesis that the crosstalk between these two complex homeostatic systems (bioactive lipid mediators, receptors, biosynthetic and hydrolytic enzymes and the entire bacterial gut ecosystem, signaling molecules, metabolites and short chain fatty acids) may disclose new ideas and functional connections for the development of synergic treatments combining “gut-therapy,” nutritional intervention and pharmacological approaches. The two separate domains of the literature have been examined looking for all the plausible (and so far known) overlapping points, describing the mutual changes induced by acting either on the endocannabinoid system or on gut bacteria population and their relevance for the understanding of ASD pathophysiology. Both human pathology and symptoms relief in ASD subjects, as well as multiple ASD-like animal models, have been taken into consideration in order to provide evidence of the relevance of the endocannabinoids-microbiota crosstalk in this major neurodevelopmental disorder.
Collapse
Affiliation(s)
- Roberto Coccurello
- Institute for Complex Systems (ISC), National Council of Research (CNR), Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- *Correspondence: Roberto Coccurello, ; Mauro Maccarrone,
| | - Maria Cristina Marrone
- Ministry of University and Research, Mission Unity for Recovery and Resilience Plan, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical and Sciences, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Roberto Coccurello, ; Mauro Maccarrone,
| |
Collapse
|
30
|
Role of Cannabinoid CB2 Receptor in Alcohol Use Disorders: From Animal to Human Studies. Int J Mol Sci 2022; 23:ijms23115908. [PMID: 35682586 PMCID: PMC9180470 DOI: 10.3390/ijms23115908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Cumulative evidence has pointed out cannabinoid CB2 receptors (CB2r) as a potential therapeutic key target for treating alcohol use disorder (AUD). This review provides the most relevant results obtained from rodent and human studies, including an integrative section focused on the involvement of CB2r in the neurobiology of alcohol addiction. A literature search was conducted using the electronic databases Medline and Scopus for articles. The search strategy was as follows: “Receptor, Cannabinoid, CB2” AND “Alcohol-Related Disorders” AND “human/or patients”; “Receptor, Cannabinoid, CB2” AND “Alcohol” OR “Ethanol” AND “rodents/or mice/or rats”. Pharmacological approaches demonstrated that the activation or blockade of CB2r modulated different alcohol-addictive behaviors. Rodent models of alcoholism revealed significant alterations of CB2r in brain areas of the reward system. In addition, mice lacking CB2r (CB2KO) show increased alcohol consumption, motivation, and relapse alterations. It has been stressed that the potential neurobiological mechanisms underlying their behavioral effects involve critical elements of the alcohol reward system. Interestingly, recent postmortem studies showed CNR2 alterations in brain areas of alcoholic patients. Moreover, although the number of studies is limited, the results revealed an association between some genetic alterations of the CNR2 and an increased risk for developing AUD. This review provides evidence that CB2r may play a role in alcohol addiction. Clinical studies are necessary to figure out whether CB2r ligands may prove useful for the treatment of AUD in humans.
Collapse
|
31
|
Lin X, Xu Z, Carey L, Romero J, Makriyannis A, Hillard CJ, Ruggiero E, Dockum M, Houk G, Mackie K, Albrecht PJ, Rice FL, Hohmann AG. A peripheral CB2 cannabinoid receptor mechanism suppresses chemotherapy-induced peripheral neuropathy: evidence from a CB2 reporter mouse. Pain 2022; 163:834-851. [PMID: 35001054 PMCID: PMC8942871 DOI: 10.1097/j.pain.0000000000002502] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/10/2023]
Abstract
ABSTRACT CB2 cannabinoid receptors (CB2) are a promising therapeutic target that lacks unwanted side effects of CB1 activation. However, the cell types expressing CB2 that mediate these effects remain poorly understood. We used transgenic mice with CB2 promoter-driven expression of enhanced green fluorescent protein (EGFP) to study cell types that express CB2 and suppress neuropathic nociception in a mouse model of chemotherapy-induced peripheral neuropathy. Structurally distinct CB2 agonists (AM1710 and LY2828360) suppressed paclitaxel-induced mechanical and cold allodynia in CB2EGFP reporter mice with established neuropathy. Antiallodynic effects of AM1710 were blocked by SR144528, a CB2 antagonist with limited CNS penetration. Intraplantar AM1710 administration suppressed paclitaxel-induced neuropathic nociception in CB2EGFP but not CB2 knockout mice, consistent with a local site of antiallodynic action. mRNA expression levels of the anti-inflammatory cytokine interleukin-10 were elevated in the lumbar spinal cord after intraplantar AM1710 injection along with the proinflammatory cytokine tumor necrosis factor alpha and chemokine monocyte chemoattractant protein-1. CB2EGFP, but not wildtype mice, exhibited anti-GFP immunoreactivity in the spleen. However, the anti-GFP signal was below the threshold for detection in the spinal cord and brain of either vehicle-treated or paclitaxel-treated CB2EGFP mice. EGFP fluorescence was coexpressed with CB2 immunolabeling in stratified patterns among epidermal keratinocytes. EGFP fluorescence was also expressed in dendritic cells in the dermis, Langerhans cells in the epidermis, and Merkel cells. Quantification of the EGFP signal revealed that Langerhans cells were dynamically increased in the epidermis after paclitaxel treatment. Our studies implicate CB2 expressed in previously unrecognized populations of skin cells as a potential target for suppressing chemotherapy-induced neuropathic nociception.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Zhili Xu
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Lawrence Carey
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Julian Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Alexandros Makriyannis
- School of Pharmacy, Bouvé College of Health Sciences, Center for Drug Discovery, College of Science, Health Sciences Entrepreneurs, Northeastern University, Boston, MA, United States
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Marilyn Dockum
- Integrated Tissue Dynamics LLC, Rensselaer, NY, United States
| | - George Houk
- Integrated Tissue Dynamics LLC, Rensselaer, NY, United States
| | - Ken Mackie
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
- Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
| | | | - Frank L. Rice
- Integrated Tissue Dynamics LLC, Rensselaer, NY, United States
| | - Andrea G. Hohmann
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
- Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
| |
Collapse
|
32
|
Zhang HY, De Biase L, Chandra R, Shen H, Liu QR, Gardner E, Lobo MK, Xi ZX. Repeated cocaine administration upregulates CB 2 receptor expression in striatal medium-spiny neurons that express dopamine D 1 receptors in mice. Acta Pharmacol Sin 2022; 43:876-888. [PMID: 34316031 DOI: 10.1038/s41401-021-00712-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
Cannabinoid CB2 receptors (CB2R) are importantly involved in drug reward and addiction. However, the cellular mechanisms underlying CB2R action remain unclear. We have previously reported that cocaine self-administration upregulates CB2R expression in midbrain dopamine (DA) neurons. In the present study, we investigated whether cocaine or heroin also alters CB2R expression in striatal medium-spiny neurons that express dopamine D1 or D2 receptors (D1-MSNs, D2-MSNs) and microglia. Due to the concern of CB2R antibody specificity, we developed three mouse CB2-specific probes to detect CB2R mRNA using quantitative RT-PCR and RNAscope in situ hybridization (ISH) assays. We found that a single injection of cocaine failed to alter, while repeated cocaine injections or self-administration dose-dependently upregulated CB2R gene expression in both brain (cortex and striatum) and periphery (spleen). In contrast, repeated administration of heroin produced a dose-dependent reduction in striatal CB2 mRNA expression. RNAscope ISH assays detected CB2R mRNA in striatal D1- and D2-MSNs, not in microglia. We then used transgenic CX3CR1eGFP/+ microglia reporter mice and D1- or D2-Cre-RiboTag mice to purify striatal microglia or ribosome-associated mRNAs from CX3CR1eGFP/+, D1-MSNs, or D2-MSNs, respectively. We found that CB2R upregulation occurred mainly in D1-MSNs, not in D2-MSNs or microglia, in the nucleus accumbens rather than the dorsal striatum. These findings indicate that repeated cocaine exposure may upregulate CB2R expression in both brain and spleen, with regional and cell type-specific profiles. In the striatum, CB2R upregulation occurs mainly in D1-MSNs in the nucleus accumbens. Given the important role of D1-MSNs in brain reward function, the present findings provide new insight into mechanisms by which brain CB2Rs modulate cocaine action.
Collapse
|
33
|
Abd El-Rahman SS, Fayed HM. Improved cognition impairment by activating cannabinoid receptor type 2: Modulating CREB/BDNF expression and impeding TLR-4/NFκBp65/M1 microglia signaling pathway in D-galactose-injected ovariectomized rats. PLoS One 2022; 17:e0265961. [PMID: 35349580 PMCID: PMC8963558 DOI: 10.1371/journal.pone.0265961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/10/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by an active inflammatory response induced by the brain's deposition and accumulation of amyloid-beta (Aβ). Cannabinoid receptor type 2 (CB2R) is expressed in specific brain areas, modulating functions, and pathophysiologies in CNS. Herein, we aimed to evaluate whether activation of CB2R can improve the cognitive impairment in the experimental AD-like model and determine the involved intracellular signaling pathway. Injection of D-galactose (150 mg/kg, i.p.) was performed to urge AD-like features in bilaterally ovariectomized female rats (OVC/D-gal rats) for 8-weeks. Then, AM1241, a CB2R-agonist (3 and 6 mg/kg), was injected intraperitoneally starting from the 6th week. Treatment with AM1241, significantly down-regulated; Toll-like receptor4 (TLR4), Myd88 (TLR4-adaptor protein) genes expression, and the pro-inflammatory cytokines (NFκB p65, TNF-α, IL-6, and IL-12). In contrast, it enhanced BDNF (the brain-derived neurotrophic factor) and CREB (the cyclic AMP response element-binding protein) as well as the immune-modulatory cytokines (IL-4 and IL-10) levels. Moreover, AM1241 lessened the immune-expression of GFAP, CD68, caspase-3, and NFκB p65 markers and mended the histopathological damage observed in OVC/D-gal rats by decreasing the deposition of amyloid plaques and degenerative neuronal lesions, as well as improving their recognition and learning memory in both novel object recognition and Morris water maze tests. In conclusion, activating CB2R by the selective agonist AM1241 can overrun cognitive deficits in OVC/D-gal rats through modulation of TLR4/ NFκB p65 signaling, mediated by modulating CREB/BDNF pathway, thereby can be applied as a potential therapeutic strategy in AD treatment.
Collapse
Affiliation(s)
| | - Hany M. Fayed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
34
|
Wang M, Liu H, Ma Z. Roles of the Cannabinoid System in the Basal Ganglia in Parkinson’s Disease. Front Cell Neurosci 2022; 16:832854. [PMID: 35264932 PMCID: PMC8900732 DOI: 10.3389/fncel.2022.832854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/26/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease usually caused by neuroinflammation, oxidative stress and other etiologies. Recent studies have found that the cannabinoid system present in the basal ganglia has a strong influence on the progression of PD. Altering the cannabinoid receptor activation status by modulating endogenous cannabinoid (eCB) levels can exert an anti-movement disorder effect. Therefore, the development of drugs that modulate the endocannabinoid system may be a novel strategy for the treatment of PD. However, eCB regulation is complex, with diverse cannabinoid receptor functions and the presence of dopaminergic, glutamatergic, and γ-aminobutyric signals interacting with cannabinoid signaling in the basal ganglia region. Therefore, the study of eCB is challenging. Here, we have described the function of the cannabinoid system in the basal ganglia and its association with PD in three parts (eCBs, cannabinoid receptors, and factors regulating the cannabinoid metabolism) and summarized the mechanisms of action related to the cannabinoid analogs currently aimed at treating PD. The shortcomings identified from previous studies and the directions that should be explored in the future will provide insights into new approaches and ideas for the future development of cannabinoid-based drugs and the treatment of PD.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, China
| | - Huayuan Liu
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zegang Ma
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, China
- *Correspondence: Zegang Ma,
| |
Collapse
|
35
|
Ribeiro MA, Aguiar RP, Scarante FF, Fusse EJ, de Oliveira RMW, Guimaraes FS, Campos AC. Spontaneous Activity of CB2 Receptors Attenuates Stress-Induced Behavioral and Neuroplastic Deficits in Male Mice. Front Pharmacol 2022; 12:805758. [PMID: 35126139 PMCID: PMC8814367 DOI: 10.3389/fphar.2021.805758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
The monoaminergic theory of depression/anxiety disorders cannot fully explain the behavioral and neuroplastic changes observed after ADs chronic treatment. Endocannabinoid system, which comprises CB2 receptors, has been associated with the chronic effects of these drugs, especially in stressed mice. CB2-KO mice display more vulnerability to stressful stimuli. In the present study, we hypothesized that the behavioral and neuroplastic effects observed after repeated treatment with the AD escitalopram (Esc) in chronically stressed mice depend on CB2 receptor signaling. Male mice submitted to chronic unpredictable stress (CUS) paradigm (21 days) were treated daily with AM630 (0.01; 0.03 or 0.3 mg/kg, i.p) a CB2 receptor antagonist/inverse agonist. At e 19th day of the CUS protocol, mice were submitted to Open field test and Tail-suspension test to evaluate antidepressant-like behavior. At the end of the stress protocol, mice were submitted to Novel Suppressed Feeding test (day 22nd) to evaluate anxiety-like behavior. In a second series of experiments, male mice treated with Esc (10 mg/kg, daily, 21 days) in the presence or not of AM630 (0.30 mg/kg) were submitted to the same round of behavioral tests in the same conditions as performed in the dose-response curve protocol. Animals were then euthanized under deep anesthesia, and their brains/hippocampi removed for immunohistochemistry (Doublecortin-DCX) or Western Blot assay. Our results demonstrated that chronic treatment with AM630, a CB2 antagonist/inverse agonist, induces anxiolytic-like effects in stressed mice. Moreover, chronic reduction of CB2 receptor endogenous activity by AM630 attenuated the neuroplastic (potentiating stress-induced decreased expression of pro-BDNF, but enhanced pmTOR and DAGL expression in the hippocampus reduced in stressed mice), the antidepressant- but not the anxiolytic-like effects of Esc. AM630 alone or in combination with Esc decreased the expression of DCX + cell in both the subgranular and granular layers of the dentate gyrus (DG), indicating a general reduction of DCX + neuroblasts and a decrease in their migration through the DG layers. We suggest that the antidepressant-like behavior and the pro-neurogenic effect, but not the anxiolytic like behavior, promoted by Esc in stressed mice are, at least in part, mediated by CB2 receptors.
Collapse
Affiliation(s)
- Melissa A. Ribeiro
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Rafael P. Aguiar
- Department of Pharmacology- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Franciele F. Scarante
- Department of Pharmacology- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo J. Fusse
- Mental Health Graduate Program- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rubia M. W. de Oliveira
- Department of Pharmacology- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Francisco S. Guimaraes
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Alline C Campos
- Pharmacology, University of São Paulo, São Paulo, Brazil
- *Correspondence: Alline C Campos,
| |
Collapse
|
36
|
Cannabinoid receptor type 2 agonist JWH-133 decreases cathepsin B secretion and neurotoxicity from HIV-infected macrophages. Sci Rep 2022; 12:233. [PMID: 34996989 PMCID: PMC8741953 DOI: 10.1038/s41598-021-03896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are prevalent despite combined antiretroviral therapy (cART), affecting 52% of people living with HIV. Our laboratory has demonstrated increased expression of cathepsin B (CATB) in postmortem brain tissue with HAND. Increased secretion of CATB from in vitro HIV-infected monocyte-derived macrophages (MDM) induces neurotoxicity. Activation of cannabinoid receptor type 2 (CB2R) inhibits HIV-1 replication in macrophages and the neurotoxicity induced by viral proteins. However, it is unknown if CB2R agonists affect CATB secretion and neurotoxicity in HIV-infected MDM. We hypothesized that HIV-infected MDM exposed to CB2R agonists decrease CATB secretion and neurotoxicity. Primary MDM were inoculated with HIV-1ADA and treated with selective CB2R agonists JWH-133 and HU-308. HIV-1 p24 and CATB levels were determined from supernatants using ELISA. MDM were pre-treated with a selective CB2R antagonist SR144528 before JWH-133 treatment to determine if CB2R activation is responsible for the effects. Neuronal apoptosis was assessed using a TUNEL assay. Results show that both agonists reduce HIV-1 replication and CATB secretion from MDM in a time and dose-dependent manner and that CB2R activation is responsible for these effects. Finally, JWH-133 decreased HIV/MDM-CATB induced neuronal apoptosis. Our results suggest that agonists of CB2R represent a potential therapeutic strategy against HIV/MDM-induced neurotoxicity.
Collapse
|
37
|
Modemann DJ, Maharadhika A, Yamoune S, Kreyenschmidt AK, Maaß F, Kremers S, Breunig C, Sahlmann CO, Bucerius JA, Stalke D, Wiltfang J, Bouter Y, Müller CE, Bouter C, Meller B. Development of high-affinity fluorinated ligands for cannabinoid subtype 2 receptor, and in vitro evaluation of a radioactive tracer for imaging. Eur J Med Chem 2022; 232:114138. [DOI: 10.1016/j.ejmech.2022.114138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/04/2022]
|
38
|
Morcuende A, García-Gutiérrez MS, Tambaro S, Nieto E, Manzanares J, Femenia T. Immunomodulatory Role of CB2 Receptors in Emotional and Cognitive Disorders. Front Psychiatry 2022; 13:866052. [PMID: 35492718 PMCID: PMC9051035 DOI: 10.3389/fpsyt.2022.866052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Emotional behavior, memory, and learning have been associated with alterations in the immune system in neuropsychiatric and neurodegenerative diseases. In recent years, several studies pointed out the involvement of the cannabinoid receptor 2 (CB2r) in the immune system and the regulation of inflammation. This receptor is widely distributed in different tissues and organs with higher expression in spleen and immune system cells. However, CB2r has also been detected in several brain areas and different brain cell types, such as neurons and glia. These findings suggest that CB2r may closely relate the immune system and the brain circuits regulating inflammation, mood, and cognitive functions. Therefore, we review the studies that may help elucidate the molecular bases of CB2r in regulating inflammation in different brain cells and its role in the pathophysiology of psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Alvaro Morcuende
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Simone Tambaro
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elena Nieto
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Teresa Femenia
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (CSIC), Alicante, Spain.,Redes de Investigación Cooperativa Orientada a Resultados en Salud, Red de Investigación en Atención Primaria de Adicciones, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (MICINN) and Fondo Europeo de Desarrollo Regional (FEDER), Madrid, Spain
| |
Collapse
|
39
|
Sudeep HV, Venkatakrishna K, Amritharaj, Gouthamchandra K, Reethi B, Naveen P, Lingaraju HB, Shyamprasad K. A standardized black pepper seed extract containing β-caryophyllene improves cognitive function in scopolamine-induced amnesia model mice via regulation of brain-derived neurotrophic factor and MAPK proteins. J Food Biochem 2021; 45:e13994. [PMID: 34778972 DOI: 10.1111/jfbc.13994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
β-caryophyllene (BCP), a natural sesquiterpene present in plants, is a selective agonist of cannabinoid receptor type-2 (CB2) of the endocannabinoid system. In this study, we have prepared an extract from Piper nigrum (black pepper) seeds using supercritical fluid extraction, standardized to contain 30% BCP (ViphyllinTM ). The beneficial effects of prophylactic treatment with Viphyllin on cognitive functions were demonstrated in Scopolamine-induced dementia model mice. Male Swiss albino mice (25-30 g) were administered with Viphyllin (50 mg and 100 mg/kg body weight p.o.) or donepezil (1.60 mg/kg) for 14 days. Subsequently, cognitive deficits were induced by treating the animals intraperitoneally with Scopolamine (0.75 mg/kg). The cognitive behavior of mice was evaluated using a novel object recognition test (NORT) and Morris water maze (MWM) test. The brain homogenates were studied for biochemical parameters including cholinesterase activities and antioxidant status. Western blot analysis was performed to investigate the mechanism of action. Viphyllin dose dependently improved the recognition and spatial memory and cholinergic functions in Scop-treated mice. The extract was found protective against Scop-induced oxidative damage and histopathologic changes in the brain. At 100 mg/kg Viphyllin markedly reduced the proBDNF/mBDNF ratio (p < .05) and augmented the TrkB expression (p < .01). Viphyllin (100 mg/kg) was found to be neuroprotective by reducing the Scop-induced upregulation of p-JNK and p-p38 MAPK proteins, Bax/Bcl-2 ratio, and caspase activation in the brain. Viphyllin also exerted anti-inflammatory effects by downregulating Cox-2, TNF-α, and NOS-2 in Scop-induced mice (p < .05). To summarize, our data encourage Viphyllin as a functional ingredient/dietary supplement for brain health and cognition. PRACTICAL APPLICATIONS: Black pepper is a culinary spice having several medicinal attributes. Essential oils in the seeds of the plant give aroma and flavor to it. Here we have prepared an extract from the seeds of black pepper using supercritical fluid extraction, characterized for the presence of β-caryophyllene (not <30%). This research work further validates the neuroprotective mechanism of the extract in Scopolamine-induced cognitive impairment model mice. The findings from this study strongly suggest the beneficial neuroactive properties of black pepper seed extract having the presence of BCP, a CB2 receptor agonist. It can thus be used potentially as a functional food ingredient for cognition and brain function.
Collapse
Affiliation(s)
- H V Sudeep
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore, India
| | - K Venkatakrishna
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore, India
| | - Amritharaj
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore, India
| | - K Gouthamchandra
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore, India
| | - B Reethi
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore, India
| | - P Naveen
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore, India
| | - H B Lingaraju
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore, India
| | - K Shyamprasad
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore, India
| |
Collapse
|
40
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Navarro D, Manzanares J. CB2 Receptor Involvement in the Treatment of Substance Use Disorders. Biomolecules 2021; 11:1556. [PMID: 34827554 PMCID: PMC8615453 DOI: 10.3390/biom11111556] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
The pharmacological modulation of the cannabinoid receptor 2 (CB2r) has emerged as a promising potential therapeutic option in addiction. The purpose of this review was to determine the functional involvement of CB2r in the effects produced by drugs of abuse at the central nervous system (CNS) level by assessing evidence from preclinical and clinical studies. In rodents, several reports suggest the functional involvement of CB2r in the effects produced by drugs of abuse such as alcohol, cocaine, or nicotine. In addition, the discovery of CB2r in brain areas that are part of the reward system supports the relevance of CB2r in the field of addiction. Interestingly, animal studies support that the CB2r regulates anxiety and depression behavioral traits. Due to its frequent comorbidity with neuropsychiatric disorders, these pharmacological actions may be of great interest in managing SUD. Preliminary clinical trials are focused on exploring the therapeutic potential of modulating CB2r in treating addictive disorders. These promising results support the development of new pharmacological tools regulating the CB2r that may help to increase the therapeutic success in the management of SUD.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.)
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| |
Collapse
|
41
|
Komorowska-Müller JA, Rana T, Olabiyi BF, Zimmer A, Schmöle AC. Cannabinoid Receptor 2 Alters Social Memory and Microglial Activity in an Age-Dependent Manner. Molecules 2021; 26:5984. [PMID: 34641528 PMCID: PMC8513097 DOI: 10.3390/molecules26195984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Physiological brain aging is characterized by gradual, substantial changes in cognitive ability, accompanied by chronic activation of the neural immune system. This form of inflammation, termed inflammaging, in the central nervous system is primarily enacted through microglia, the resident immune cells. The endocannabinoid system, and particularly the cannabinoid receptor 2 (CB2R), is a major regulator of the activity of microglia and is upregulated under inflammatory conditions. Here, we elucidated the role of the CB2R in physiological brain aging. We used CB2R-/- mice of progressive ages in a behavioral test battery to assess social and spatial learning and memory. This was followed by detailed immunohistochemical analysis of microglial activity and morphology, and of the expression of pro-inflammatory cytokines in the hippocampus. CB2R deletion decreased social memory in young mice, but did not affect spatial memory. In fact, old CB2R-/- mice had a slightly improved social memory, whereas in WT mice we detected an age-related cognitive decline. On a cellular level, CB2R deletion increased lipofuscin accumulation in microglia, but not in neurons. CB2R-/- microglia showed an increase of activity markers Iba1 and CD68, and minor upregulation in tnfa and il6 expression and downregulation of ccl2 with age. This was accompanied by a change in morphology as CB2R-/- microglia had smaller somas and lower polarity, with increased branching, cell volume, and tree length. We present that CB2Rs are involved in cognition and age-induced microglial activity, but may also be important for microglial activation itself.
Collapse
Affiliation(s)
- Joanna Agnieszka Komorowska-Müller
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (J.A.K.-M.); (T.R.); (B.F.O.); (A.-C.S.)
- International Max Planck Research School for Brain and Behavior, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Tanushka Rana
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (J.A.K.-M.); (T.R.); (B.F.O.); (A.-C.S.)
| | - Bolanle Fatimat Olabiyi
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (J.A.K.-M.); (T.R.); (B.F.O.); (A.-C.S.)
| | - Andreas Zimmer
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (J.A.K.-M.); (T.R.); (B.F.O.); (A.-C.S.)
| | - Anne-Caroline Schmöle
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (J.A.K.-M.); (T.R.); (B.F.O.); (A.-C.S.)
| |
Collapse
|
42
|
Reusch N, Ravichandran KA, Olabiyi BF, Komorowska-Müller JA, Hansen JN, Ulas T, Beyer M, Zimmer A, Schmöle AC. Cannabinoid receptor 2 is necessary to induce toll-like receptor-mediated microglial activation. Glia 2021; 70:71-88. [PMID: 34499767 DOI: 10.1002/glia.24089] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/17/2023]
Abstract
The tight regulation of microglia activity is key for precise responses to potential threats, while uncontrolled and exacerbated microglial activity is neurotoxic. Microglial toll-like receptors (TLRs) are indispensable for sensing different types of assaults and triggering an innate immune response. Cannabinoid receptor 2 (CB2) signaling is a key pathway to control microglial homeostasis and activation, and its activation is connected to changes in microglial activity. We aimed to investigate how CB2 signaling impacts TLR-mediated microglial activation. Here, we demonstrate that deletion of CB2 causes a dampened transcriptional response to prototypic TLR ligands in microglia. Loss of CB2 results in distinct microglial gene expression profiles, morphology, and activation. We show that the CB2-mediated attenuation of TLR-induced microglial activation is mainly p38 MAPK-dependent. Taken together, we demonstrate that CB2 expression and signaling are necessary to fine-tune TLR-induced activation programs in microglia.
Collapse
Affiliation(s)
- Nico Reusch
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | | | | | - Joanna Agnieszka Komorowska-Müller
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany.,International Max Planck Research School for Brain and Behavior, University of Bonn, Bonn, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany
| | - Marc Beyer
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany.,Molecular Immunology in Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Andreas Zimmer
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne-Caroline Schmöle
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
43
|
Swinton MK, Sundermann EE, Pedersen L, Nguyen JD, Grelotti DJ, Taffe MA, Iudicello JE, Fields JA. Alterations in Brain Cannabinoid Receptor Levels Are Associated with HIV-Associated Neurocognitive Disorders in the ART Era: Implications for Therapeutic Strategies Targeting the Endocannabinoid System. Viruses 2021; 13:v13091742. [PMID: 34578323 PMCID: PMC8473156 DOI: 10.3390/v13091742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 01/02/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) persist despite the advent of antiretroviral therapy (ART), suggesting underlying systemic and central nervous system (CNS) inflammatory mechanisms. The endogenous cannabinoid receptors 1 and 2 (CB1 and CB2) modulate inflammatory gene expression and play an important role in maintaining neuronal homeostasis. Cannabis use is disproportionately high among people with HIV (PWH) and may provide a neuroprotective effect for those on ART due to its anti-inflammatory properties. However, expression profiles of CB1 and CB2 in the brains of PWH on ART with HAND have not been reported. In this study, biochemical and immunohistochemical analyses were performed to determine CB1 and CB2 expression in the brain specimens of HAND donors. Immunoblot revealed that CB1 and CB2 were differentially expressed in the frontal cortices of HAND brains compared to neurocognitively unimpaired (NUI) brains of PWH. CB1 expression levels negatively correlated with memory and information processing speed. CB1 was primarily localized to neuronal soma in HAND brains versus a more punctate distribution of neuronal processes in NUI brains. CB1 expression was increased in cells with glial morphology and showed increased colocalization with an astroglial marker. These results suggest that targeting the endocannabinoid system may be a potential therapeutic strategy for HAND.
Collapse
|
44
|
Teodoro R, Gündel D, Deuther-Conrad W, Ueberham L, Toussaint M, Bormans G, Brust P, Moldovan RP. Development of [ 18F]LU14 for PET Imaging of Cannabinoid Receptor Type 2 in the Brain. Int J Mol Sci 2021; 22:ijms22158051. [PMID: 34360817 PMCID: PMC8347709 DOI: 10.3390/ijms22158051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
Cannabinoid receptors type 2 (CB2R) represent an attractive therapeutic target for neurodegenerative diseases and cancer. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor receptor density and/or occupancy during a CB2R-tailored therapy, we herein describe the radiosynthesis of cis-[18F]1-(4-fluorobutyl-N-((1s,4s)-4-methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide ([18F]LU14) starting from the corresponding mesylate precursor. The first biological evaluation revealed that [18F]LU14 is a highly affine CB2R radioligand with >80% intact tracer in the brain at 30 min p.i. Its further evaluation by PET in a well-established rat model of CB2R overexpression demonstrated its ability to selectively image the CB2R in the brain and its potential as a tracer to further investigate disease-related changes in CB2R expression.
Collapse
Affiliation(s)
- Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Daniel Gündel
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Lea Ueberham
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, BE-3000 Leuven, Belgium;
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
- The Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany
| | - Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
- Correspondence: ; Tel.: +49-3412-3417-94634
| |
Collapse
|
45
|
Aly MW, Ludwig FA, Deuther-Conrad W, Brust P, Abadi AH, Moldovan RP, Osman NA. Development of fluorinated and methoxylated benzothiazole derivatives as highly potent and selective cannabinoid CB 2 receptor ligands. Bioorg Chem 2021; 114:105191. [PMID: 34375194 DOI: 10.1016/j.bioorg.2021.105191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/25/2022]
Abstract
The upregulation of the CB2 receptors in neuroinflammation and cancer and their potential visualization with PET (positron emission tomography) could provide a valuable diagnostic and therapy-monitoring tool in such disorders. However, the availability of reliable CB2-selective imaging probes is still lacking in clinical practice. We have recently identified a benzothiazole-2-ylidine amide hit (6a) as a highly potent CB2 ligand. With the aim of enhancing its CB2 over CB1 selectivity and introducing structural sites suitable for radiolabeling, we herein describe the development of fluorinated and methoxylated benzothiazole derivatives endowed with extremely high CB2 binding affinity and an exclusive selectivity to the CB2 receptor. Compounds 14, 15, 18, 19, 21, 24 and 25 displayed subnanomolar CB2Ki values (ranging from 0.16 nM to 0.68 nM) and interestingly, all of the synthesized compounds completely lacked affinity at the CB1 receptor (Ki > 10,000 nM for all compounds), indicating their remarkably high CB2 over CB1 selectivity factors. The fluorinated analogs, 15 and 21, were evaluated for their in vitro metabolic stability in mouse and human liver microsomes (MLM and HLM). Both 15 and 21 displayed an exceptionally high stability (98% and 91% intact compounds, respectively) after 60 min incubation with MLM. Contrastingly, a 5- and 2.8-fold lower stability was demonstrated for compounds 15 and 21, respectively, upon incubation with HLM for 60 min. Taken together, our data present extremely potent and selective CB2 ligands as credible leads that can be further exploited for 18F- or 11C-radiolabeling and utilization as PET tracers.
Collapse
Affiliation(s)
- Mayar W Aly
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, Leipzig 04318, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, Leipzig 04318, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, Leipzig 04318, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, Leipzig 04318, Germany.
| | - Noha A Osman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt.
| |
Collapse
|
46
|
Oyagawa CRM, Grimsey NL. Cannabinoid receptor CB 1 and CB 2 interacting proteins: Techniques, progress and perspectives. Methods Cell Biol 2021; 166:83-132. [PMID: 34752341 DOI: 10.1016/bs.mcb.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cannabinoid receptors 1 and 2 (CB1 and CB2) are implicated in a range of physiological processes and have gained attention as promising therapeutic targets for a number of diseases. Protein-protein interactions play an integral role in modulating G protein-coupled receptor (GPCR) expression, subcellular distribution and signaling, and the identification and characterization of these will not only improve our understanding of GPCR function and biology, but may provide a novel avenue for therapeutic intervention. A variety of techniques are currently being used to investigate GPCR protein-protein interactions, including Förster/fluorescence and bioluminescence resonance energy transfer (FRET and BRET), proximity ligation assay (PLA), and bimolecular fluorescence complementation (BiFC). However, the reliable application of these methodologies is dependent on the use of appropriate controls and the consideration of the physiological context. Though not as extensively characterized as some other GPCRs, the investigation of CB1 and CB2 interacting proteins is a growing area of interest, and a range of interacting partners have been identified to date. This review summarizes the current state of the literature regarding the cannabinoid receptor interactome, provides commentary on the methodologies and techniques utilized, and discusses future perspectives.
Collapse
Affiliation(s)
- Caitlin R M Oyagawa
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
47
|
Hashiesh HM, Sharma C, Goyal SN, Sadek B, Jha NK, Kaabi JA, Ojha S. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed Pharmacother 2021; 140:111639. [PMID: 34091179 DOI: 10.1016/j.biopha.2021.111639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R. The ligands activate CB2R are of endogenous, synthetic and plant origin. In recent years, β-caryophyllene (BCP), a natural bicyclic sesquiterpene in cannabis as well as non-cannabis plants, has received attention due to its selective agonist property on CB2R. BCP has been well studied in a variety of pathological conditions mediating CB2R selective agonist property. The focus of the present manuscript is to represent the CB2R selective agonist mediated pharmacological mechanisms and therapeutic potential of BCP. The present narrative review summarizes insights into the CB2R-selective pharmacological properties and therapeutic potential of BCP such as cardioprotective, hepatoprotective, neuroprotective, nephroprotective, gastroprotective, chemopreventive, antioxidant, anti-inflammatory, and immunomodulator. The available evidences suggest that BCP, can be an important candidate of plant origin endowed with CB2R selective properties that may provide a pharmacological rationale for its pharmacotherapeutic application and pharmaceutical development like a drug. Additionally, given the wide availability in edible plants and dietary use, with safety, and no toxicity, BCP can be promoted as a nutraceutical and functional food for general health and well-being. Further, studies are needed to explore pharmacological and pharmaceutical opportunities for therapeutic and preventive applications of use of BCP in human diseases.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
48
|
Fulo HF, Shoeib A, Cabanlong CV, Williams AH, Zhan CG, Prather PL, Dudley GB. Synthesis, Molecular Pharmacology, and Structure-Activity Relationships of 3-(Indanoyl)indoles as Selective Cannabinoid Type 2 Receptor Antagonists. J Med Chem 2021; 64:6381-6396. [PMID: 33887913 PMCID: PMC8683641 DOI: 10.1021/acs.jmedchem.1c00442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Synthetic indole cannabinoids characterized by a 2',2'-dimethylindan-5'-oyl group at the indole C3 position constitute a new class of ligands possessing high affinity for human CB2 receptors at a nanomolar concentration and a good selectivity index. Starting from the neutral antagonist 4, the effects of indole core modification on the pharmacodynamic profile of the ligands were investigated. Several N1 side chains afforded potent and CB2-selective neutral antagonists, notably derivatives 26 (R1 = n-propyl, R2 = H) and 35 (R1 = 4-pentynyl, R2 = H). Addition of a methyl group at C2 improved the selectivity for the CB2 receptor. Moreover, C2 indole substitution may control the CB2 activity as shown by the functionality switch in 35 (antagonist) and 49 (R1 = 4-pentynyl, R2 = CH3, partial agonist).
Collapse
Affiliation(s)
- Harvey F Fulo
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Amal Shoeib
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Christian V Cabanlong
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Alexander H Williams
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Paul L Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Gregory B Dudley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
49
|
Clarke TL, Johnson RL, Simone JJ, Carlone RL. The Endocannabinoid System and Invertebrate Neurodevelopment and Regeneration. Int J Mol Sci 2021; 22:2103. [PMID: 33672634 PMCID: PMC7924210 DOI: 10.3390/ijms22042103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabis has long been used for its medicinal and psychoactive properties. With the relatively new adoption of formal medicinal cannabis regulations worldwide, the study of cannabinoids, both endogenous and exogenous, has similarly flourished in more recent decades. In particular, research investigating the role of cannabinoids in regeneration and neurodevelopment has yielded promising results in vertebrate models. However, regeneration-competent vertebrates are few, whereas a myriad of invertebrate species have been established as superb models for regeneration. As such, this review aims to provide a comprehensive summary of the endocannabinoid system, with a focus on current advances in the area of endocannabinoid system contributions to invertebrate neurodevelopment and regeneration.
Collapse
Affiliation(s)
- Tristyn L. Clarke
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Rachael L. Johnson
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Jonathan J. Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
- eCB Consulting Inc., P.O. Box 652, 3 Cameron St. W., Cannington, ON L2S 3A1, Canada
| | - Robert L. Carlone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
50
|
Yadav-Samudrala BJ, Fitting S. Mini-review: The therapeutic role of cannabinoids in neuroHIV. Neurosci Lett 2021; 750:135717. [PMID: 33587986 DOI: 10.1016/j.neulet.2021.135717] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/25/2022]
Abstract
In the era of combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is considered a chronic disease with an inflammatory component that specifically targets the brain and causes a high prevalence of HIV-1-associated neurocognitive disorders (HAND). The endocannabinoid (eCB) system has attracted interest as a target for treatment of neurodegenerative disorders, due to the potential anti-inflammatory and neuroprotective properties of cannabinoids, including its potential therapeutic use in HIV-1 neuropathogenesis. In this review, we summarize what is currently known about the structural and functional changes of the eCB system under conditions of HAND. This will be followed by summarizing the current clinical and preclinical findings on the effects of cannabis use and cannabinoids in the context of HIV-1 infection, with specifically focusing on viral load, cognition, inflammation, and neuroprotection. Lastly, we present some potential future directions to better understand the involvement of the eCB system and the role that cannabis use and cannabinoids play in neuroHIV.
Collapse
Affiliation(s)
- Barkha J Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|