1
|
Naik A, Thakur N. Epigenetic regulation of TGF-β and vice versa in cancers - A review on recent developments. Biochim Biophys Acta Rev Cancer 2024:189219. [PMID: 39549878 DOI: 10.1016/j.bbcan.2024.189219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
This review explores the complex relationship between epigenetic mechanisms and Transforming Growth Factor-beta (TGF-β) signalling pathways in the field of cancer research. The study provides an overview of the latest advancements in understanding the crucial functions of epigenetic alterations, such as DNA methylation, histone modifications, and chromatin remodeling, in significantly impacting the TGF-β signalling pathway. The dynamic epigenetic modifications are essential in determining the behaviour of cancer cells, impacting the interactions with the tumor microenvironment, and affecting the overall process of carcinogenesis. Significant attention is given to Breast cancer, Lung cancer, Liver cancer, Prostate cancer, and Pancreatic cancer. Research has revealed intricate regulatory networks in these cancers, involving long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and histone post-translational modifications. These networks are closely connected to TGF-β signalling. Both findings highlight the significant interaction between epigenetic regulation and TGF-β signalling in cancer. They provide valuable insights that can guide the development of new treatment approaches to target both pathways and prevent cancer growth and metastasis.
Collapse
Affiliation(s)
- Ankit Naik
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Noopur Thakur
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
2
|
Gholami Farashah MS, Mohammadi A, Javadi M, Soleimani Rad J, Shakouri SK, Meshgi S, Roshangar L. Bone marrow mesenchymal stem cells' osteogenic potential: superiority or non-superiority to other sources of mesenchymal stem cells? Cell Tissue Bank 2023; 24:663-681. [PMID: 36622494 DOI: 10.1007/s10561-022-10066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
Skeletal problems are an increasing issue due to the increase in the global aging population. Different statistics reports show that today, the global population is aging that results in skeletal problems, increased health system costs, and even higher mortality associated with skeletal problems. Common treatments such as surgery and bone grafts are not always effective and in some cases, they can even cause secondary problems such as infections or improper repair. Cell therapy is a method that can be utilized along with common treatments independently. Mesenchymal stem cells (MSCs) are a very important and efficient source in terms of different diseases, especially bone problems. These cells are present in different tissues such as bone marrow, adipose tissue, umbilical cord, placenta, dental pulp, peripheral blood, amniotic fluid and others. Among the types of MSCs, bone marrow mesenchymal stem cells (BMMSCs) are the most widely used source of these cells, which have appeared to be very effective and promising in terms of skeletal diseases, especially compared to the other sources of MSCs. This study focuses on the specific potential and content of BMMSCs from which the specific capacity of these cells originates, and compares their osteogenic potential with other types of MSCs, and also the future directions in the application of BMMSCs as a source for cell therapy.
Collapse
Affiliation(s)
- Mohammad Sadegh Gholami Farashah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Meshgi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Ennis S, Conforte A, O’Reilly E, Takanlu JS, Cichocka T, Dhami SP, Nicholson P, Krebs P, Ó Broin P, Szegezdi E. Cell-cell interactome of the hematopoietic niche and its changes in acute myeloid leukemia. iScience 2023; 26:106943. [PMID: 37332612 PMCID: PMC10275994 DOI: 10.1016/j.isci.2023.106943] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
The bone marrow (BM) is a complex microenvironment, coordinating the production of billions of blood cells every day. Despite its essential role and its relevance to hematopoietic diseases, this environment remains poorly characterized. Here we present a high-resolution characterization of the niche in health and acute myeloid leukemia (AML) by establishing a single-cell gene expression database of 339,381 BM cells. We found significant changes in cell type proportions and gene expression in AML, indicating that the entire niche is disrupted. We then predicted interactions between hematopoietic stem and progenitor cells (HSPCs) and other BM cell types, revealing a remarkable expansion of predicted interactions in AML that promote HSPC-cell adhesion, immunosuppression, and cytokine signaling. In particular, predicted interactions involving transforming growth factor β1 (TGFB1) become widespread, and we show that this can drive AML cell quiescence in vitro. Our results highlight potential mechanisms of enhanced AML-HSPC competitiveness and a skewed microenvironment, fostering AML growth.
Collapse
Affiliation(s)
- Sarah Ennis
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
- Discipline of Bioinformatics, School of Mathematical & Statistical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Alessandra Conforte
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Eimear O’Reilly
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Javid Sabour Takanlu
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Tatiana Cichocka
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Sukhraj Pal Dhami
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Pamela Nicholson
- Next Generation Sequencing Platform, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Pilib Ó Broin
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
- Discipline of Bioinformatics, School of Mathematical & Statistical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Eva Szegezdi
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
4
|
Ramuta TŽ, Kreft ME. Mesenchymal Stem/Stromal Cells May Decrease Success of Cancer Treatment by Inducing Resistance to Chemotherapy in Cancer Cells. Cancers (Basel) 2022; 14:cancers14153761. [PMID: 35954425 PMCID: PMC9367361 DOI: 10.3390/cancers14153761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Tumours consist of different cell types and an extracellular matrix, all of which together form a complex microenvironment. The tumour microenvironment plays a critical role in various aspects of tumour development and progression. Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells that have a tri-lineage differentiation capacity and are one of the key stromal cells in the tumour microenvironment. Following the interaction with cancer cells, they are transformed from naïve MSCs to tumour-associated MSCs, which substantially affect tumour growth and progression as well as the development of chemoresistance in cancer cells. The aim of this review article is to provide an overview of studies that have investigated how MSCs affect the susceptibility of cancer cells to chemotherapeutics. Their results show that MSCs protect cancer cells from chemotherapeutics by influencing several signalling pathways. This knowledge is crucial for the development of new treatment approaches that will lead to improved treatment outcomes. Abstract The tumour microenvironment, which is comprised of various cell types and the extracellular matrix, substantially impacts tumour initiation, progression, and metastasis. Mesenchymal stem/stromal cells (MSCs) are one of the key stromal cells in the tumour microenvironment, and their interaction with cancer cells results in the transformation of naïve MSCs to tumour-associated MSCs. The latter has an important impact on tumour growth and progression. Recently, it has been shown that they can also contribute to the development of chemoresistance in cancer cells. This review provides an overview of 42 studies published between 1 January 2001 and 1 January 2022 that examined the effect of MSCs on the susceptibility of cancer cells to chemotherapeutics. The studies showed that MSCs affect various signalling pathways in cancer cells, leading to protection against chemotherapy-induced damage. Promising results emerged from the use of inhibitors of various signalling pathways that are affected in cancer cells due to interactions with MSCs in the tumour microenvironment. These studies present a good starting point for the investigation of novel treatment approaches and demonstrate the importance of targeting the stroma in the tumour microenvironment to improve treatment outcomes.
Collapse
|
5
|
Das D, Karthik N, Taneja R. Crosstalk Between Inflammatory Signaling and Methylation in Cancer. Front Cell Dev Biol 2021; 9:756458. [PMID: 34901003 PMCID: PMC8652226 DOI: 10.3389/fcell.2021.756458] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammation is an intricate immune response against infection and tissue damage. While the initial immune response is important for preventing tumorigenesis, chronic inflammation is implicated in cancer pathogenesis. It has been linked to various stages of tumor development including transformation, proliferation, angiogenesis, and metastasis. Immune cells, through the production of inflammatory mediators such as cytokines, chemokines, transforming growth factors, and adhesion molecules contribute to the survival, growth, and progression of the tumor in its microenvironment. The aberrant expression and secretion of pro-inflammatory and growth factors by the tumor cells result in the recruitment of immune cells, thus creating a mutual crosstalk. The reciprocal signaling between the tumor cells and the immune cells creates and maintains a successful tumor niche. Many inflammatory factors are regulated by epigenetic mechanisms including DNA methylation and histone modifications. In particular, DNA and histone methylation are crucial forms of transcriptional regulation and aberrant methylation has been associated with deregulated gene expression in oncogenesis. Such deregulations have been reported in both solid tumors and hematological malignancies. With technological advancements to study genome-wide epigenetic landscapes, it is now possible to identify molecular mechanisms underlying altered inflammatory profiles in cancer. In this review, we discuss the role of DNA and histone methylation in regulation of inflammatory pathways in human cancers and review the merits and challenges of targeting inflammatory mediators as well as epigenetic regulators in cancer.
Collapse
Affiliation(s)
- Dipanwita Das
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nandini Karthik
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Trivedi T, Pagnotti GM, Guise TA, Mohammad KS. The Role of TGF-β in Bone Metastases. Biomolecules 2021; 11:1643. [PMID: 34827641 PMCID: PMC8615596 DOI: 10.3390/biom11111643] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Complications associated with advanced cancer are a major clinical challenge and, if associated with bone metastases, worsen the prognosis and compromise the survival of the patients. Breast and prostate cancer cells exhibit a high propensity to metastasize to bone. The bone microenvironment is unique, providing fertile soil for cancer cell propagation, while mineralized bone matrices store potent growth factors and cytokines. Biologically active transforming growth factor β (TGF-β), one of the most abundant growth factors, is released following tumor-induced osteoclastic bone resorption. TGF-β promotes tumor cell secretion of factors that accelerate bone loss and fuel tumor cells to colonize. Thus, TGF-β is critical for driving the feed-forward vicious cycle of tumor growth in bone. Further, TGF-β promotes epithelial-mesenchymal transition (EMT), increasing cell invasiveness, angiogenesis, and metastatic progression. Emerging evidence shows TGF-β suppresses immune responses, enabling opportunistic cancer cells to escape immune checkpoints and promote bone metastases. Blocking TGF-β signaling pathways could disrupt the vicious cycle, revert EMT, and enhance immune response. However, TGF-β's dual role as both tumor suppressor and enhancer presents a significant challenge in developing therapeutics that target TGF-β signaling. This review presents TGF-β's role in cancer progression and bone metastases, while highlighting current perspectives on the therapeutic potential of targeting TGF-β pathways.
Collapse
Affiliation(s)
- Trupti Trivedi
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
| | - Gabriel M. Pagnotti
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
| | - Theresa A. Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
| | - Khalid S. Mohammad
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.T.); (G.M.P.); (T.A.G.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
7
|
Schelker RC, Kratzer A, Müller G, Brochhausen C, Hart C, Stempfl T, Heudobler D, Moehle C, Herr W, Iberl S, Grassinger J. Stanniocalcin 1 is overexpressed in multipotent mesenchymal stromal cells from acute myeloid leukemia patients. ACTA ACUST UNITED AC 2021; 26:565-576. [PMID: 34384344 DOI: 10.1080/16078454.2021.1962048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objectives: Multipotent mesenchymal stromal cells (MSC) play a pivotal role in the bone marrow (BM) niche. Stanniocalcin 1 (STC1) secreted by MSC has been demonstrated to promote the survival of neoplastic cells and was suggested a marker for minimal residual disease of acute myeloid leukemia (AML). Therefore, we evaluated the expression of STC1 in MSC from AML patients (MSCAML) compared to MSC from healthy donors (MSCHD).Methods: Liquid culture assays of MSCAML and MSCHD were performed to compare expansion capacity. Gene expression profiles of MSCAML vs. MSCHD were established. Secretion of STC1 was tested by ELISA in MSCAML vs. MSCHD and expression of STC1 in AML- vs. HD-BM by immunohistochemistry. In addition, co-cultures of AML cells on MSC were initiated and ultrastructural intercellular communication patterns were investigated. Finally, the effect of blocking STC1 on AML cells was evaluated.Results: MSCAML showed significant decreased expansion capacity compared to MSCHD. Gene analysis revealed marked overexpression of STC1 in MSCAML. ELISA and immunohistochemical findings confirmed this observation. Electron microscopy analysis showed reciprocal stimulation between AML cells and MSC. Blockade of STC1 did not significantly affect AML cell proliferation and apoptosis.Discussion: Characteristics of MSC differ depending on whether they originate from AML patients or from HD. STC1 was mostly overexpressed in MSCAML compared to MSCHD. In vitro blockade of STC1, however, was not associated with AML cell proliferation and apoptosis.Conclusion: Differences in expression levels of glycoproteins from MSCAML compared to MSCHD not necessarily assume that these molecules are niche-relevant in leukemic disease.
Collapse
Affiliation(s)
- Roland Christian Schelker
- Department of Internal Medicine III, Hematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Andrea Kratzer
- Department of Internal Medicine III, Hematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Gunnar Müller
- Department of Internal Medicine III, Hematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | | | - Christina Hart
- Department of Internal Medicine III, Hematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Thomas Stempfl
- Center of Excellence for Fluorescent Bioanalytics (KFB), University of Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Christoph Moehle
- Center of Excellence for Fluorescent Bioanalytics (KFB), University of Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Sabine Iberl
- Department of Internal Medicine III, Hematology & Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Jochen Grassinger
- Department of Internal Medicine III, Hematology & Oncology, University Hospital of Regensburg, Regensburg, Germany.,St. Elisabeth Hospital, Straubing, Germany
| |
Collapse
|
8
|
Jäger P, Geyh S, Twarock S, Cadeddu RP, Rabes P, Koch A, Maus U, Hesper T, Zilkens C, Rautenberg C, Bormann F, Köhrer K, Petzsch P, Wieczorek D, Betz B, Surowy H, Hildebrandt B, Germing U, Kobbe G, Haas R, Schroeder T. Acute myeloid leukemia-induced functional inhibition of healthy CD34+ hematopoietic stem and progenitor cells. STEM CELLS (DAYTON, OHIO) 2021; 39:1270-1284. [PMID: 34013984 DOI: 10.1002/stem.3387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 11/11/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by an expansion of leukemic cells and a simultaneous reduction of normal hematopoietic precursors in the bone marrow (BM) resulting in hematopoietic insufficiency, but the underlying mechanisms are poorly understood in humans. Assuming that leukemic cells functionally inhibit healthy CD34+ hematopoietic stem and progenitor cells (HSPC) via humoral factors, we exposed healthy BM-derived CD34+ HSPC to cell-free supernatants derived from AML cell lines as well as from 24 newly diagnosed AML patients. Exposure to AML-derived supernatants significantly inhibited proliferation, cell cycling, colony formation, and differentiation of healthy CD34+ HSPC. RNA sequencing of healthy CD34+ HSPC after exposure to leukemic conditions revealed a specific signature of genes related to proliferation, cell-cycle regulation, and differentiation, thereby reflecting their functional inhibition on a molecular level. Experiments with paired patient samples showed that these inhibitory effects are markedly related to the immunomagnetically enriched CD34+ leukemic cell population. Using PCR, ELISA, and RNA sequencing, we detected overexpression of TGFβ1 in leukemic cells on the transcriptional and protein level and, correspondingly, a molecular signature related to TGFβ1 signaling in healthy CD34+ HSPC. This inhibitory effect of TGFβ1 on healthy hematopoiesis was functionally corrobated and could be pharmacologically reverted by SD208, an inhibitor of TGFβ receptor 1 signaling. Overall, these data indicate that leukemic cells induce functional inhibition of healthy CD34+ HSPC, at least in part, through TGFβ1, suggesting that blockage of this pathway may improve hematopoiesis in AML.
Collapse
Affiliation(s)
- Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sören Twarock
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ron-Patrick Cadeddu
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Pablo Rabes
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Annemarie Koch
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Uwe Maus
- Department of Orthopaedies and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Hesper
- Department of Orthopaedies and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Zilkens
- Department of Orthopaedies and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christina Rautenberg
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Beate Betz
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Harald Surowy
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Barbara Hildebrandt
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
9
|
Hastreiter AA, Dos Santos GG, Makiyama EN, Santos EWC, Borelli P, Fock RA. Effects of protein malnutrition on hematopoietic regulatory activity of bone marrow mesenchymal stem cells. J Nutr Biochem 2021; 93:108626. [PMID: 33705953 DOI: 10.1016/j.jnutbio.2021.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/15/2020] [Accepted: 02/02/2021] [Indexed: 11/29/2022]
Abstract
Protein malnutrition causes anemia and leukopenia as it reduces hematopoietic precursors and impairs the production of mediators that regulate hematopoiesis. Hematopoiesis occurs in distinct bone marrow niches that modulate the processes of differentiation, proliferation and self-renewal of hematopoietic stem cells (HSCs). Mesenchymal stem cells (MSCs) contribute to the biochemical composition of bone marrow niches by the secretion of several growth factors and cytokines, and they play an important role in the regulation of HSCs and hematopoietic progenitors. In this study, we investigated the effect of protein malnutrition on the hematopoietic regulatory function of MSCs. C57BL/6NTaq mice were divided into control and protein malnutrition groups, which received, respectively, a normal protein diet (12% casein) and a low protein diet (2% casein). The results showed that protein malnutrition altered the synthesis of SCF, TFG-β, Angpt-1, CXCL-12, and G-CSF by MSCs. Additionally, MSCs from the protein malnutrition group were not able to maintain the lymphoid, granulocytic and megakaryocytic-erythroid differentiation capacity compared to the MSCs of the control group. In this way, the comprehension of the role of MSCs on the regulation of the hematopoietic cells, in protein malnutrition states, is for the first time showed. Therefore, we infer that hematopoietic alterations caused by protein malnutrition are due to multifactorial alterations and, at least in part, the MSCs' contribution to hematological impairment.
Collapse
Affiliation(s)
- Araceli Aparecida Hastreiter
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guilherme G Dos Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edson Naoto Makiyama
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ed Wilson Cavalcante Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Primavera Borelli
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Astori A, Matherat G, Munoz I, Gautier EF, Surdez D, Zermati Y, Verdier F, Zaidi S, Feuillet V, Kadi A, Lauret E, Delattre O, Lefèvre C, Fontenay M, Ségal-Bendirdjian E, Dusanter-Fourt I, Bouscary D, Hermine O, Mayeux P, Pendino F. The epigenetic regulator RINF (CXXC5) maintains <i>SMAD7</i> expression in human immature erythroid cells and sustains red blood cells expansion. Haematologica 2020; 107:268-283. [PMID: 33241676 PMCID: PMC8719099 DOI: 10.3324/haematol.2020.263558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 11/16/2022] Open
Abstract
The gene CXXC5, encoding a retinoid-inducible nuclear factor (RINF), is located within a region at 5q31.2 commonly deleted in myelodysplastic syndrome and adult acute myeloid leukemia. RINF may act as an epigenetic regulator and has been proposed as a tumor suppressor in hematopoietic malignancies. However, functional studies in normal hematopoiesis are lacking, and its mechanism of action is unknown. Here, we evaluated the consequences of RINF silencing on cytokine-induced erythroid differentiation of human primary CD34+ progenitors. We found that RINF is expressed in immature erythroid cells and that RINF-knockdown accelerated erythropoietin-driven maturation, leading to a significant reduction (~45%) in the number of red blood cells, without affecting cell viability. The phenotype induced by RINF-silencing was dependent on tumor growth factor b (TGFb) and mediated by SMAD7, a TGFb-signaling inhibitor. RINF upregulates SMAD7 expression by direct binding to its promoter and we found a close correlation between RINF and SMAD7 mRNA levels both in CD34+ cells isolated from bone marrow of healthy donors and myelodysplastic syndrome patients with del(5q). Importantly, RINF knockdown attenuated SMAD7 expression in primary cells and ectopic SMAD7 expression was sufficient to prevent the RINF knockdown-dependent erythroid phenotype. Finally, RINF silencing affects 5’-hydroxymethylation of human erythroblasts, in agreement with its recently described role as a TET2-anchoring platform in mouse. Collectively, our data bring insight into how the epigenetic factor RINF, as a transcriptional regulator of SMAD7, may fine-tune cell sensitivity to TGFb superfamily cytokines and thus play an important role in both normal and pathological erythropoiesis.
Collapse
Affiliation(s)
- Audrey Astori
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Gabriel Matherat
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Isabelle Munoz
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Emilie-Fleur Gautier
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Didier Surdez
- Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France; PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris
| | - Yaël Zermati
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris
| | - Frédérique Verdier
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris
| | - Sakina Zaidi
- Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France; PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris
| | - Vincent Feuillet
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris
| | - Amir Kadi
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris
| | - Evelyne Lauret
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Olivier Delattre
- Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France; PSL Research University, Institut Curie Research Center, INSERM U830, Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris
| | - Carine Lefèvre
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris
| | - Michaela Fontenay
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Service d'Hématologie Biologique, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Paris
| | | | - Isabelle Dusanter-Fourt
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Didier Bouscary
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Olivier Hermine
- Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France; Université de Paris, Institut Imagine, INSERM, CNRS, F-75015, Paris
| | - Patrick Mayeux
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris
| | - Frédéric Pendino
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris.
| |
Collapse
|
11
|
Hematopoietic stem and progenitor cell signaling in the niche. Leukemia 2020; 34:3136-3148. [PMID: 33077865 DOI: 10.1038/s41375-020-01062-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are responsible for lifelong maintenance of hematopoiesis through self-renewal and differentiation into mature blood cell lineages. Traditional models hold that HSPCs guard homeostatic function and adapt to regenerative demand by integrating cell-autonomous, intrinsic programs with extrinsic cues from the niche. Despite the biologic significance, little is known about the active roles HSPCs partake in reciprocally shaping the function of their microenvironment. Here, we review evidence of signals emerging from HSPCs through secreted autocrine or paracrine factors, including extracellular vesicles, and via direct contact within the niche. We also discuss the functional impact of direct cellular interactions between hematopoietic elements on niche occupancy in the context of leukemic infiltration. The aggregate data support a model whereby HSPCs are active participants in the dynamic adaptation of the stem cell niche unit during development and homeostasis, and under inflammatory stress, malignancy, or transplantation.
Collapse
|
12
|
Li G, Gao Y, Li K, Lin A, Jiang Z. Genomic analysis of biomarkers related to the prognosis of acute myeloid leukemia. Oncol Lett 2020; 20:1824-1834. [PMID: 32724426 PMCID: PMC7377096 DOI: 10.3892/ol.2020.11700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/09/2020] [Indexed: 01/26/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common childhood cancer and is a major cause of morbidity among adults with hematologic malignancies. Several novel genetic alterations, which target critical cellular pathways, including alterations in lymphoid development-regulating genes, tumor suppressors and oncogenes that contribute to leukemogenesis, have been identified. The present study aimed to identify molecular markers associated with the occurrence and poor prognosis of AML. Information on these molecular markers may facilitate prediction of clinical outcomes. Clinical data and RNA expression profiles of AML specimens from The Cancer Genome Atlas database were assessed. Mutation data were analyzed and mapped using the maftools package in R software. Kyoto Encyclopedia of Genes and Genomes, Reactome and Gene Ontology analyses were performed using the clusterProfiler package in R software. Furthermore, Kaplan-Meier survival analysis was performed using the survminer package in R software. The expression data of RNAs were subjected to univariate Cox regression analysis, which demonstrated that the mutation loads varied considerably among patients with AML. Subsequently, the expression data of mRNAs, microRNAs (miRNAs/miR) and long non-coding RNAs (lncRNAs) were subjected to univariate Cox regression analysis to determine the the 100 genes most associated with the survival of patients with AML, which revealed 48 mRNAs and 52 miRNAs. The top 1,900 mRNAs (P<0.05) were selected through enrichment analysis to determine their functional role in AML prognosis. The results demonstrated that these molecules were involved in the transforming growth factor-β, SMAD and fibroblast growth factor receptor-1 fusion mutant signaling pathways. Survival analysis indicated that patients with AML, with high MYH15, TREML2, ATP13A2, MMP7, hsa-let-7a-2-3p, hsa-miR-362-3p, hsa-miR-500a-5p, hsa-miR-500b-5p, hsa-miR-362-5p, LINC00987, LACAT143, THCAT393, THCAT531 and KHCAT230 expression levels had a shorter survival time compared with those without these factors. Conversely, a high KANSL1L expression level in patients was associated with a longer survival time. The present study determined genetic mutations, mRNAs, miRNAs, lncRNAs and signaling pathways involved in AML, in order to elucidate the underlying molecular mechanisms of the development and recurrence of this disease.
Collapse
Affiliation(s)
- Guilan Li
- Department of Hematology, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Yang Gao
- Department of Hematology, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Kun Li
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Zujun Jiang
- Department of Hematology, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
13
|
Monaghan L, Massett ME, Bunschoten RP, Hoose A, Pirvan PA, Liskamp RMJ, Jørgensen HG, Huang X. The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia. Front Oncol 2019; 9:705. [PMID: 31428579 PMCID: PMC6687838 DOI: 10.3389/fonc.2019.00705] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022] Open
Abstract
Growing evidence has demonstrated that epigenetic dysregulation is a common pathological feature in human cancer cells. Global alterations in the epigenetic landscape are prevalent in malignant cells across different solid tumors including, prostate cancer, non-small-cell lung cancer, renal cell carcinoma, and in haemopoietic malignancy. In particular, DNA hypomethylation and histone hypoacetylation have been observed in acute myeloid leukemia (AML) patient blasts, with histone methylation being an emerging area of study. Histone 3 lysine 9 trimethylation (H3K9me3) is a post-translational modification known to be involved in the regulation of a broad range of biological processes, including the formation of transcriptionally silent heterochromatin. Following the observation of its aberrant methylation status in hematological malignancy and several other cancer phenotypes, recent studies have associated H3K9me3 levels with patient outcome and highlighted key molecular mechanisms linking H3K9me3 profile with AML etiology in a number of large-scale meta-analysis. Consequently, the development and application of small molecule inhibitors which target the histone methyltransferases or demethylase enzymes known to participate in the oncogenic regulation of H3K9me3 in AML represents an advancing area of ongoing study. Here, we provide a comprehensive review on how this particular epigenetic mark is regulated within cells and its emerging role as a potential therapeutic target in AML, along with an update on the current research into advancing the generation of more potent and selective inhibitors against known H3K9 methyltransferases and demethylases.
Collapse
Affiliation(s)
- Laura Monaghan
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew E. Massett
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Alex Hoose
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
14
|
Zhang AL, Chen XJ, Zou Y, Yang WY, Guo Y, Wang SC, Zhang L, Liu XM, Ruan M, Liu TF, Qi BQ, Zhu XF. [Clinical features and prognosis of children with acute lymphoblastic leukemia and different platelet levels]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:766-771. [PMID: 31416500 PMCID: PMC7389902 DOI: 10.7499/j.issn.1008-8830.2019.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/13/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To study the association of platelet level at diagnosis with prognosis in children with acute lymphoblastic leukemia (ALL). METHODS A total of 892 children with ALL who underwent chemotherapy with the CCLG-ALL 2008 regimen were enrolled. According to the platelet count at diagnosis, these children were divided into normal platelet count group (platelet count ≥100×109/L; n=263) and thrombocytopenia group (platelet count <100×109/L; n=629). The thrombocytopenia group was further divided into (50- <100)×109/L (n=243), (20- <50)×109/L (n=263), and <20×109/L (n=123) subgroups. The association of clinical features (sex, age, immunophenotype, and molecular biology) with event-free survival (EFS) and overall survival (OS) was analyzed. RESULTS Compared with the thrombocytopenia group, the normal platelet count group had significantly lower positive rate of MLL gene rearrangement and recurrence rate (P<0.05), as well as a significantly higher 10-year EFS rate (P<0.05). There was no significant difference in 10-year OS between the two groups (P>0.05). The normal platelet count group still had a significantly higher 10-year EFS rate than the thrombocytopenia group after the children with MLL gene rearrangement were excluded (P<0.05), and there was still no significant difference in 10-year OS between the two groups (P>0.05). The <20×109/L subgroup had significantly lower 10-year EFS and OS rates than the normal platelet count group, the (50- <100)×109/L subgroup, and the (20- <50)×109/L subgroup (P<0.05). After the children with MLL gene rearrangement were excluded, the <20×109/L subgroup still had significantly lower 10-year EFS and OS rates than the normal platelet count group, the (50-<100)×109/L subgroup, and the (20- <50)×109/L subgroup (P<0.05). CONCLUSIONS ALL children with MLL gene rearrangement often have the clinical manifestation of thrombocytopenia. Platelet level at diagnosis is associated with the prognosis of ALL children. The children with normal platelet count have a low recurrence rate and good prognosis, and those with a platelet count of <20×109/L have the worst prognosis.
Collapse
Affiliation(s)
- Ao-Li Zhang
- Department of Pediatric Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Spatial clustering and common regulatory elements correlate with coordinated gene expression. PLoS Comput Biol 2019; 15:e1006786. [PMID: 30822341 PMCID: PMC6415868 DOI: 10.1371/journal.pcbi.1006786] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/13/2019] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Many cellular responses to surrounding cues require temporally concerted transcriptional regulation of multiple genes. In prokaryotic cells, a single-input-module motif with one transcription factor regulating multiple target genes can generate coordinated gene expression. In eukaryotic cells, transcriptional activity of a gene is affected by not only transcription factors but also the epigenetic modifications and three-dimensional chromosome structure of the gene. To examine how local gene environment and transcription factor regulation are coupled, we performed a combined analysis of time-course RNA-seq data of TGF-β treated MCF10A cells and related epigenomic and Hi-C data. Using Dynamic Regulatory Events Miner (DREM), we clustered differentially expressed genes based on gene expression profiles and associated transcription factors. Genes in each class have similar temporal gene expression patterns and share common transcription factors. Next, we defined a set of linear and radial distribution functions, as used in statistical physics, to measure the distributions of genes within a class both spatially and linearly along the genomic sequence. Remarkably, genes within the same class despite sometimes being separated by tens of million bases (Mb) along genomic sequence show a significantly higher tendency to be spatially close despite sometimes being separated by tens of Mb along the genomic sequence than those belonging to different classes do. Analyses extended to the process of mouse nervous system development arrived at similar conclusions. Future studies will be able to test whether this spatial organization of chromosomes contributes to concerted gene expression. Cellular responses to environmental stimulation are often accompanied by changes in gene expression patterns. Genes are linearly arranged along chromosomal DNA, which folds into a three-dimensional structure. The chromosome structure affects gene expression activities and is regulated by multiple events such as histone modifications and DNA binding of transcription factors. A basic question is how these mechanisms work together to regulate gene expression. In this study, we analyzed temporal gene expression patterns in the context of chromosome structure both in a human cell line under TGF-β treatment and during mouse nervous system development. In both cases, we observed that genes regulated by common transcription factors have an enhanced tendency to be spatially close. Our analysis suggests that spatial co-localization of genes may facilitate the concerted gene expression.
Collapse
|
16
|
Gurska LM, Ames K, Gritsman K. Signaling Pathways in Leukemic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:1-39. [PMID: 31338813 PMCID: PMC7249489 DOI: 10.1007/978-981-13-7342-8_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) utilize many of the same signaling pathways for their maintenance and survival. In this review, we will focus on several signaling pathways whose roles have been extensively studied in both HSCs and LSCs. Our main focus will be on the PI3K/AKT/mTOR pathway and several of its regulators and downstream effectors. We will also discuss several other signaling pathways of particular importance in LSCs, including the WNT/β-catenin pathway, the NOTCH pathway, and the TGFβ pathway. For each of these pathways, we will emphasize differences in how these pathways operate in LSCs, compared to their function in HSCs, to highlight opportunities for the specific therapeutic targeting of LSCs. We will also highlight areas of crosstalk between multiple signaling pathways that may affect LSC function.
Collapse
Affiliation(s)
- Lindsay M Gurska
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kristina Ames
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kira Gritsman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
- Department of Medical Oncology, Montefiore Hospital, Bronx, New York, USA.
| |
Collapse
|
17
|
Wenk C, Garz AK, Grath S, Huberle C, Witham D, Weickert M, Malinverni R, Niggemeyer J, Kyncl M, Hecker J, Pagel C, Mulholland CB, Müller-Thomas C, Leonhardt H, Bassermann F, Oostendorp RAJ, Metzeler KH, Buschbeck M, Götze KS. Direct modulation of the bone marrow mesenchymal stromal cell compartment by azacitidine enhances healthy hematopoiesis. Blood Adv 2018; 2:3447-3461. [PMID: 30518537 PMCID: PMC6290099 DOI: 10.1182/bloodadvances.2018022053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/10/2018] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are crucial components of the bone marrow (BM) microenvironment essential for regulating self-renewal, survival, and differentiation of hematopoietic stem/progenitor cells (HSPCs) in the stem cell niche. MSCs are functionally altered in myelodysplastic syndromes (MDS) and exhibit an altered methylome compared with MSCs from healthy controls, thus contributing to disease progression. To determine whether MSCs are amenable to epigenetic therapy and if this affects their function, we examined growth, differentiation, and HSPC-supporting capacity of ex vivo-expanded MSCs from MDS patients in comparison with age-matched healthy controls after direct treatment in vitro with the hypomethylating agent azacitidine (AZA). Strikingly, we find that AZA exerts a direct effect on healthy as well as MDS-derived MSCs such that they favor support of healthy over malignant clonal HSPC expansion in coculture experiments. RNA-sequencing analyses of MSCs identified stromal networks regulated by AZA. Notably, these comprise distinct molecular pathways crucial for HSPC support, foremost extracellular matrix molecules (including collagens) and interferon pathway components. Our study demonstrates that the hypomethylating agent AZA exerts its antileukemic activity in part through a direct effect on the HSPC-supporting BM niche and provides proof of concept for the therapeutic potential of epigenetic treatment of diseased MSCs. In addition, our comprehensive data set of AZA-sensitive gene networks represents a valuable framework to guide future development of targeted epigenetic niche therapy in myeloid malignancies such as MDS and acute myeloid leukemia.
Collapse
Affiliation(s)
- Catharina Wenk
- Department of Medicine III, Technische Universität München, Munich, Germany
| | - Anne-Kathrin Garz
- Department of Medicine III, Technische Universität München, Munich, Germany
| | - Sonja Grath
- Department of Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christina Huberle
- Department of Medicine III, Technische Universität München, Munich, Germany
| | - Denis Witham
- Department of Medicine III, Technische Universität München, Munich, Germany
| | - Marie Weickert
- Department of Medicine III, Technische Universität München, Munich, Germany
| | - Roberto Malinverni
- Josep Carreras Leukaemia Research Institute, Campus ICO-Germany Trias I Pujol-Universidad Autonoma de Barcelona, Badalona, Spain
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Julia Niggemeyer
- Laboratory for Leukemia Diagnostics, Department of Medicine III, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michèle Kyncl
- Department of Medicine III, Technische Universität München, Munich, Germany
| | - Judith Hecker
- Department of Medicine III, Technische Universität München, Munich, Germany
| | - Charlotta Pagel
- Department of Medicine III, Technische Universität München, Munich, Germany
| | | | | | - Heinrich Leonhardt
- Department of Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Bassermann
- Department of Medicine III, Technische Universität München, Munich, Germany
- German Cancer Consortium, Heidelberg, Germany; and
- German Cancer Center, Heidelberg, Germany
| | | | - Klaus H Metzeler
- Laboratory for Leukemia Diagnostics, Department of Medicine III, Ludwig-Maximilians-Universität München, Munich, Germany
- German Cancer Consortium, Heidelberg, Germany; and
- German Cancer Center, Heidelberg, Germany
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute, Campus ICO-Germany Trias I Pujol-Universidad Autonoma de Barcelona, Badalona, Spain
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Katharina S Götze
- Department of Medicine III, Technische Universität München, Munich, Germany
- German Cancer Consortium, Heidelberg, Germany; and
- German Cancer Center, Heidelberg, Germany
| |
Collapse
|
18
|
Murphy-Ullrich JE, Suto MJ. Thrombospondin-1 regulation of latent TGF-β activation: A therapeutic target for fibrotic disease. Matrix Biol 2018; 68-69:28-43. [PMID: 29288716 PMCID: PMC6015530 DOI: 10.1016/j.matbio.2017.12.009] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022]
Abstract
Transforming growth factor-β (TGF-β) is a central player in fibrotic disease. Clinical trials with global inhibitors of TGF-β have been disappointing, suggesting that a more targeted approach is warranted. Conversion of the latent precursor to the biologically active form of TGF-β represents a novel approach to selectively modulating TGF-β in disease, as mechanisms employed to activate latent TGF-β are typically cell, tissue, and/or disease specific. In this review, we will discuss the role of the matricellular protein, thrombospondin 1 (TSP-1), in regulation of latent TGF-β activation and the use of an antagonist of TSP-1 mediated TGF-β activation in a number of diverse fibrotic diseases. In particular, we will discuss the TSP-1/TGF-β pathway in fibrotic complications of diabetes, liver fibrosis, and in multiple myeloma. We will also discuss emerging evidence for a role for TSP-1 in arterial remodeling, biomechanical modulation of TGF-β activity, and in immune dysfunction. As TSP-1 expression is upregulated by factors induced in fibrotic disease, targeting the TSP-1/TGF-β pathway potentially represents a more selective approach to controlling TGF-β activity in disease.
Collapse
Affiliation(s)
- Joanne E Murphy-Ullrich
- Departments of Pathology, Cell Developmental and Integrative Biology, and Ophthalmology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, United States.
| | - Mark J Suto
- Southern Research, 2000 Ninth Avenue South, Birmingham, AL 35205, United States
| |
Collapse
|
19
|
Wu Y, Su M, Zhang S, Cheng Y, Liao XY, Lin BY, Chen YZ. Abnormal expression of TGF-beta type II receptor isoforms contributes to acute myeloid leukemia. Oncotarget 2018; 8:10037-10049. [PMID: 28052022 PMCID: PMC5354639 DOI: 10.18632/oncotarget.14325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/30/2016] [Indexed: 11/25/2022] Open
Abstract
Altered transforming growth factor-beta (TGF-β) signaling has been implicated in the pathogenesis of leukemia. Although TGF-β type II receptor (TβRII) isoforms have been isolated from human leukemia cells, their expression patterns and functions of these variants are unclear. In this study, we determined that two TβRII isoforms (TβRII and TβRII-B) are abnormally expressed in leukemic cells, as compared to normal hematopoietic cells. TβRII-B, but not TβRII, was found to promote cell cycle arrest, apoptosis, and differentiation of leukemic cells. TβRII-B also enhanced TGF-β1 binding and downstream signaling and reduced tumorigenicity in vivo. By contrast, TβRII blocked all-trans retinoic acid-induced differentiation through inhibition of TβRII-B. Overall survival was significantly lower in acute myeloid leukemia (AML) patients with high compared to low TβRII expression. Thus, whereas TβRII-B is a potent inducer of cell cycle arrest, apoptosis, and differentiation, higher TβRII expression correlates with poor clinical prognosis in AML.
Collapse
Affiliation(s)
- Yong Wu
- Fujian Institute of Hematology, Department of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Min Su
- Fujian Institute of Hematology, Department of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - ShuX Zhang
- Fujian Institute of Hematology, Department of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yu Cheng
- Fujian Institute of Hematology, Department of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xiao Y Liao
- Fujian Institute of Hematology, Department of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Bao Y Lin
- Fujian Institute of Hematology, Department of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yuan Z Chen
- Fujian Institute of Hematology, Department of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Cagnan I, Gunel-Ozcan A, Aerts-Kaya F, Ameziane N, Kuskonmaz B, Dorsman J, Gumruk F, Uckan D. Bone Marrow Mesenchymal Stem Cells Carrying FANCD2 Mutation Differ from the Other Fanconi Anemia Complementation Groups in Terms of TGF-β1 Production. Stem Cell Rev Rep 2017; 14:425-437. [DOI: 10.1007/s12015-017-9794-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Schelker RC, Iberl S, Müller G, Hart C, Herr W, Grassinger J. TGF-β1 and CXCL12 modulate proliferation and chemotherapy sensitivity of acute myeloid leukemia cells co-cultured with multipotent mesenchymal stromal cells. Hematology 2017; 23:337-345. [DOI: 10.1080/10245332.2017.1402455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Roland Christian Schelker
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Sabine Iberl
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Gunnar Müller
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Christina Hart
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Jochen Grassinger
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Signaling via Smad2 and Smad3 is dispensable for adult murine hematopoietic stem cell function in vivo. Exp Hematol 2017; 55:34-44.e2. [PMID: 28666967 DOI: 10.1016/j.exphem.2017.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/15/2023]
Abstract
Transforming growth factor-β (TGFβ) is a member of a large family of polypeptide growth factors. TGFβ signals mainly through the intracellular proteins Smad2 and Smad3, which are highly similar in amino acid sequence identity. A number of studies have shown that these proteins, dependent on context, have distinct roles in the TGFβ signaling pathway. TGFβ is one of the most potent inhibitors of hematopoietic stem and progenitor cell proliferation in vitro, but its role in hematopoiesis in vivo is still being determined. To circumvent possible redundancies at the receptor level and to address specifically the role of the Smad circuitry downstream of TGFβ and activin in hematopoiesis, we studied the effect of genetically deleting both Smad2 and Smad3 in adult murine hematopoietic cells. Indeed, TGFβ signaling is impaired in vitro in primitive bone marrow (BM) cells of Smad2 and Smad3 single knockout models. However, blood parameters appear normal under steady state and in the transplantation setting. Interestingly, upon deletion of both Smad2 and Smad3 in vivo, mice quickly develop a lethal inflammatory disease, suggesting that activin/TGFβ signaling is crucial for immune cell homeostasis in the adult context. Furthermore, concurrent deletion of Smad2 and Smad3 in BM cells in immune-deficient nude mice did not result in any significant alterations of the hematopoietic system. Our findings suggest that Smad2 and Smad3 function to mediate crucial aspects of the immunoregulatory properties of TGFβ, but are dispensable for any effect that TGFβ has on primitive hematopoietic cells in vivo.
Collapse
|
23
|
Regulating dynamic signaling between hematopoietic stem cells and niche cells via a hydrogel matrix. Biomaterials 2017; 125:54-64. [PMID: 28231508 DOI: 10.1016/j.biomaterials.2017.02.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 12/22/2022]
Abstract
Hematopoietic stem cells (HSC) reside in unique bone marrow niches and are influenced by signals from surrounding cells, the extracellular matrix (ECM), ECM-bound or diffusible biomolecules. Here we describe the use of a three-dimensional hydrogel to alter the balance of HSC-generated autocrine feedback and paracrine signals generated by co-cultured niche-associated cells. We report shifts in HSC proliferation rate and fate specification in the presence of lineage positive (Lin+) niche cells. Hydrogels promoting autocrine feedback enhanced expansion of early hematopoietic progenitors while paracrine signals from Lin+ cells increased myeloid differentiation. We report thresholds where autocrine vs. paracrine cues alter HSC fate transitions, and were able to selectively abrogate the effects of matrix diffusivity and niche cell co-culture via the use of inhibitory cocktails of autocrine or paracrine signals. Together, these results suggest diffusive biotransport in three-dimensional biomaterials are a critical design element for the development of a synthetic stem cell niche.
Collapse
|
24
|
Hinge A, Filippi MD. Deconstructing the Complexity of TGFβ Signaling in Hematopoietic Stem Cells: Quiescence and Beyond. CURRENT STEM CELL REPORTS 2016; 2:388-397. [PMID: 28529843 DOI: 10.1007/s40778-016-0069-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The hematopoietic system is highly dynamic and must constantly produce new blood cells every day. Mature blood cells all derive from a pool of rare long-lived hematopoietic stem cells (HSCs) that are mostly quiescent but occasionally divide and self-renew in order to maintain the stem cell pool and continuous replenishment of mature blood cells throughout life. A tight control of HSC self-renewal, commitment to differentiation and maintenance of quiescence states is necessary for lifelong blood supply. Transforming growth factor-β (TGF-β) is a critical regulator hematopoietic cell functions. It is a potent inhibitor of hematopoietic cell growth. However, TGFβ functions are more complex and largely context-dependent. Emerging evidence suggests a role in aging, cell identity and cell fate decisions. Here, we will review the role of TGF-β and downstream signaling in normal HSC functions, in HSC quiescence and beyond.
Collapse
Affiliation(s)
- Ashwini Hinge
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
25
|
Extracellular matrix stiffness causes systematic variations in proliferation and chemosensitivity in myeloid leukemias. Proc Natl Acad Sci U S A 2016; 113:12126-12131. [PMID: 27790998 DOI: 10.1073/pnas.1611338113] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular matrix stiffness influences biological functions of some tumors. However, it remains unclear how cancer subtypes with different oncogenic mutations respond to matrix stiffness. In addition, the relevance of matrix stiffness to in vivo tumor growth kinetics and drug efficacy remains elusive. Here, we designed 3D hydrogels with physical parameters relevant to hematopoietic tissues and adapted them to a quantitative high-throughput screening format to facilitate mechanistic investigations into the role of matrix stiffness on myeloid leukemias. Matrix stiffness regulates proliferation of some acute myeloid leukemia types, including MLL-AF9+ MOLM-14 cells, in a biphasic manner by autocrine regulation, whereas it decreases that of chronic myeloid leukemia BCR-ABL+ K-562 cells. Although Arg-Gly-Asp (RGD) integrin ligand and matrix softening confer resistance to a number of drugs, cells become sensitive to drugs against protein kinase B (PKB or AKT) and rapidly accelerated fibrosarcoma (RAF) proteins regardless of matrix stiffness when MLL-AF9 and BCR-ABL are overexpressed in K-562 and MOLM-14 cells, respectively. By adapting the same hydrogels to a xenograft model of extramedullary leukemias, we confirm the pathological relevance of matrix stiffness in growth kinetics and drug sensitivity against standard chemotherapy in vivo. The results thus demonstrate the importance of incorporating 3D mechanical cues into screening for anticancer drugs.
Collapse
|
26
|
Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform. Sci Rep 2016; 6:31951. [PMID: 27535453 PMCID: PMC4989144 DOI: 10.1038/srep31951] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin.
Collapse
|
27
|
Sohrabi Akhkand S, Amirizadeh N, Nikougoftar M, Alizadeh J, Zaker F, Sarveazad A, Joghataei MT, Faramarzi M. Evaluation of umbilical cord blood CD34+ hematopoietic stem cells expansion with inhibition of TGF-β receptorII in co-culture with bone marrow mesenchymal stromal cells. Tissue Cell 2016; 48:305-11. [PMID: 27344285 DOI: 10.1016/j.tice.2016.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Umbilical cord blood (UCB) is an important source of hematopoietic stem cells (HSCs). However, low number of HSCs in UCB has been an obstacle for adult hematopoietic stem cell transplantation. The expansion of HSCs in culture is one approach to overcome this problem. In this study, we investigated the expansion of UCB-HSCs by using human bone marrow mesenchymal stromal cells (MSCs) as feeder layer as well as inhibiting the TGF-β signaling pathway through reduction of TGF-βRII expression. MATERIALS AND METHODS CD34(+) cells were isolated from UCB and transfected by SiRNA targeting TGF-βRII mRNA. CD34(+) cells were expanded in four culture media with different conditions, including 1) expansion of CD34(+) cells in serum free medium containing growth factors, 2) expansion of cells transfected with SiRNA targeting TGF-βRII in medium containing growth factors, 3) expansion of cells in presence of growth factors and MSCs, 4) expansion of cells transfected with SiRNA targeting TGF-βRII on MSCs feeder layer in medium containing growth factors. These culture conditions were evaluated for the number of total nucleated cells (TNCs), CD34 surface marker as well as using CFU assay on 8th day after culture. RESULTS The fold increase in CD34(+) cells, TNCs, and colony numbers (71.8±6.9, 93.2±10.2 and 128±10, respectively) was observed to be highest in fourth culture medium compared to other culture conditions. The difference between number of cells in four culture media in 8th day compared to unexpanded cells (0day) before expansion was statistically significant (P<0.05). CONCLUSION The results showed that transfection of CD34(+) cells with SiRNA targeting TGF-βRII and their co-culture with MSCs could considerably increase the number of progenitors. Therefore, this method could be useful for UCB-HSCs expansion.
Collapse
Affiliation(s)
- Saman Sohrabi Akhkand
- Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Farhad Zaker
- Cellular and Molecular Research Center, Department of Hematology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Arash Sarveazad
- Colorectal Research center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Faramarzi
- Research Center of Pediatric Infectious Diseases, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Yan M, Jurasz P. The role of platelets in the tumor microenvironment: From solid tumors to leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:392-400. [PMID: 26193075 DOI: 10.1016/j.bbamcr.2015.07.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 12/25/2022]
Abstract
Platelets are increasingly being recognized for promoting tumor growth and metastasis. Many cells derived from solid tumors have the ability to aggregate platelets, and this ability correlates with their metastatic potential. Over the past half century, our understanding of tumor cell-induced platelet aggregation (TCIPA) has grown beyond the simple concept that tumor cell-containing microthrombi mechanically embolize the microvasculature. Tumor cell-activated platelets secrete a multitude of factors that reciprocally act on tumor cells, as well as other cells within the tumor microenvironment; thus, affecting both parenychma and tumor-associated stroma. In this review, we summarize the current knowledge of tumor cell-platelet interactions and their influence on the tumor microenvironment, including how these interactions impact neoplastic epithelial cells, endothelial cells, pericytes, fibroblasts, immune cells, and early metastatic niches. In addition, we review the current knowledge of platelet-cancer cell interactions within hematological malignancies and speculate on how platelets may influence the leukemic microenvironment. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
Affiliation(s)
- MengJie Yan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
29
|
TGF-β signaling in the control of hematopoietic stem cells. Blood 2015; 125:3542-50. [PMID: 25833962 DOI: 10.1182/blood-2014-12-618090] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/30/2015] [Indexed: 02/08/2023] Open
Abstract
Blood is a tissue with high cellular turnover, and its production is a tightly orchestrated process that requires constant replenishment. All mature blood cells are generated from hematopoietic stem cells (HSCs), which are the self-renewing units that sustain lifelong hematopoiesis. HSC behavior, such as self-renewal and quiescence, is regulated by a wide array of factors, including external signaling cues present in the bone marrow. The transforming growth factor-β (TGF-β) family of cytokines constitutes a multifunctional signaling circuitry, which regulates pivotal functions related to cell fate and behavior in virtually all tissues of the body. In the hematopoietic system, TGF-β signaling controls a wide spectrum of biological processes, from homeostasis of the immune system to quiescence and self-renewal of HSCs. Here, we review key features and emerging concepts pertaining to TGF-β and downstream signaling pathways in normal HSC biology, featuring aspects of aging, hematologic disease, and how this circuitry may be exploited for clinical purposes in the future.
Collapse
|
30
|
Bruserud Ø, Reikvam H, Fredly H, Skavland J, Hagen KM, van Hoang TT, Brenner AK, Kadi A, Astori A, Gjertsen BT, Pendino F. Expression of the potential therapeutic target CXXC5 in primary acute myeloid leukemia cells - high expression is associated with adverse prognosis as well as altered intracellular signaling and transcriptional regulation. Oncotarget 2015; 6:2794-811. [PMID: 25605239 PMCID: PMC4413618 DOI: 10.18632/oncotarget.3056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 12/21/2014] [Indexed: 12/24/2022] Open
Abstract
The CXXC5 gene encodes a transcriptional activator with a zinc-finger domain, and high expression in human acute myeloid leukemia (AML) cells is associated with adverse prognosis. We now characterized the biological context of CXXC5 expression in primary human AML cells. The global gene expression profile of AML cells derived from 48 consecutive patients was analyzed; cells with high and low CXXC5 expression then showed major differences with regard to extracellular communication and intracellular signaling. We observed significant differences in the phosphorylation status of several intracellular signaling mediators (CREB, PDK1, SRC, STAT1, p38, STAT3, rpS6) that are important for PI3K-Akt-mTOR signaling and/or transcriptional regulation. High CXXC5 expression was also associated with high mRNA expression of several stem cell-associated transcriptional regulators, the strongest associations being with WT1, GATA2, RUNX1, LYL1, DNMT3, SPI1, and MYB. Finally, CXXC5 knockdown in human AML cell lines caused significantly increased expression of the potential tumor suppressor gene TSC22 and genes encoding the growth factor receptor KIT, the cytokine Angiopoietin 1 and the selenium-containing glycoprotein Selenoprotein P. Thus, high CXXC5 expression seems to affect several steps in human leukemogenesis, including intracellular events as well as extracellular communication.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line, Tumor
- DNA-Binding Proteins
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Middle Aged
- Phosphorylation
- Primary Cell Culture
- Prognosis
- RNA Interference
- RNA, Messenger/metabolism
- Signal Transduction
- Transcription Factors
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- Øystein Bruserud
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Håkon Reikvam
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Hanne Fredly
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jørn Skavland
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karen-Marie Hagen
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | - Tuyen Thy van Hoang
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | - Annette K. Brenner
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
| | - Amir Kadi
- Inserm, U1016, Institut Cochin, F-75014, Paris, France
- CNRS, UMR8104, F-75014, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Audrey Astori
- Inserm, U1016, Institut Cochin, F-75014, Paris, France
- CNRS, UMR8104, F-75014, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bjørn Tore Gjertsen
- Section for Hematology, Department of Clinical Science, University of Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Frederic Pendino
- Department of Molecular Biology, University of Bergen, Bergen, Norway
- Inserm, U1016, Institut Cochin, F-75014, Paris, France
- CNRS, UMR8104, F-75014, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
31
|
Pimtong W, Datta M, Ulrich AM, Rhodes J. Drl.3 governs primitive hematopoiesis in zebrafish. Sci Rep 2014; 4:5791. [PMID: 25051985 PMCID: PMC4107348 DOI: 10.1038/srep05791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/19/2014] [Indexed: 12/16/2022] Open
Abstract
The molecular program controlling hematopoietic differentiation is not fully understood. Here, we describe a family of zebrafish genes that includes a novel hematopoietic regulator, draculin-like 3 (drl.3). We found that drl.3 is expressed in mesoderm-derived hematopoietic cells and is retained during erythroid maturation. Moreover, drl.3 expression correlated with erythroid development in gata1a- and spi1b-depleted embryos. Loss-of-function analysis indicated that drl.3 plays an essential role in primitive erythropoiesis and, to a lesser extent, myelopoiesis that is independent of effects on vasculature, emergence of primitive and definitive progenitor cells and cell viability. While drl.3 depletion reduced gata1a expression and inhibited erythroid development, enforced expression of gata1a was not sufficient to rescue erythropoiesis, indicating that the regulation of hematopoiesis by drl.3 extends beyond control of gata1a expression. Knockdown of drl.3 increased the proportion of less differentiated, primitive hematopoietic cells without affecting proliferation, establishing drl.3 as an important regulator of primitive hematopoietic cell differentiation.
Collapse
Affiliation(s)
- Wittaya Pimtong
- 1] Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA [2]
| | - Madhusmita Datta
- 1] Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA [2]
| | - Allison M Ulrich
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| | - Jennifer Rhodes
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| |
Collapse
|
32
|
Zhen G, Cao X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol Sci 2014; 35:227-36. [PMID: 24745631 DOI: 10.1016/j.tips.2014.03.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/27/2014] [Accepted: 03/13/2014] [Indexed: 01/02/2023]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease and no disease-modifying therapy for OA is currently available. Targeting articular cartilage alone may not be sufficient to halt this disease progression. Articular cartilage and subchondral bone act as a functional unit. Increasing evidence indicates that transforming growth factor β (TGFβ) plays a crucial role in maintaining homeostasis of both articular cartilage and subchondral bone. Activation of extracellular matrix (ECM) latent TGFβ at the appropriate time and location is a prerequisite for its function. Aberrant activation of TGFβ in the subchondral bone in response to an abnormal mechanical loading environment induces formation of osteroid islets at the onset of OA. As a result, alteration of subchondral bone structure changes the stress distribution on the articular cartilage and leads to its degeneration. Thus, inhibition of TGFβ activity in the subchondral bone may provide a new avenue of treatment for OA. In this review we will discuss the role of TGFβ in the homeostasis of articular cartilage and subchondral bone as a novel target for OA therapy.
Collapse
Affiliation(s)
- Gehua Zhen
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Ross Building, Room 229, 720 Rutland Ave, Baltimore, MD 21205, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Ross Building, Room 229, 720 Rutland Ave, Baltimore, MD 21205, USA.
| |
Collapse
|
33
|
Kraus S, Lehner B, Reichhart N, Couillard-Despres S, Wagner K, Bogdahn U, Aigner L, Strauß O. Transforming growth factor-β1 primes proliferating adult neural progenitor cells to electrophysiological functionality. Glia 2013; 61:1767-83. [DOI: 10.1002/glia.22551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Sabrina Kraus
- Department of Experimental Ophthalmology, Eye Clinic; University Medical Center Regensburg; Regensburg Germany
| | - Bernadette Lehner
- Department of Neurology; University Medical Center Regensburg; Regensburg Germany
| | - Nadine Reichhart
- Department of Experimental Ophthalmology, Eye Clinic; University Medical Center Regensburg; Regensburg Germany
- Department of Experimental Ophthalmology, Ophthalmology; Charite Universitaetsmedizin Berlin; Berlin Germany
| | - Sebastien Couillard-Despres
- Institute of Molecular Regenerative Medicine; Paracelsus Medical University; Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg; Paracelsus Medical University; Salzburg Austria
| | - Katrin Wagner
- Institute of Molecular Regenerative Medicine; Paracelsus Medical University; Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg; Paracelsus Medical University; Salzburg Austria
| | - Ulrich Bogdahn
- Department of Neurology; University Medical Center Regensburg; Regensburg Germany
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine; Paracelsus Medical University; Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg; Paracelsus Medical University; Salzburg Austria
| | - Olaf Strauß
- Department of Experimental Ophthalmology, Eye Clinic; University Medical Center Regensburg; Regensburg Germany
- Department of Experimental Ophthalmology, Ophthalmology; Charite Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
34
|
Zhang H, Wang YA, Meng A, Yan H, Wang X, Niu J, Li J, Wang H. Inhibiting TGFβ1 has a protective effect on mouse bone marrow suppression following ionizing radiation exposure in vitro. JOURNAL OF RADIATION RESEARCH 2013; 54:630-636. [PMID: 23370919 PMCID: PMC3709670 DOI: 10.1093/jrr/rrs142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/01/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Ionizing radiation (IR) causes not only acute tissue damage but also residual bone marrow (BM) suppression. The induction of residual BM injury is primarily attributable to the induction of reactive oxygen species (ROS) pressure in hematopoietic cells. In this study, we examined if SB431542, a transforming growth factor β1 (TGFβ1) inhibitor, can mitigate IR-induced BM suppression in vitro. Our results showed that treatment with SB431542 protected mice bone marrow mononuclear cells (BMMNCs), hematopoietic progenitor cells (HPCs) and hematopoietic stem cells (HSCs) from IR-induced suppression using cell viability assays, clonogenic assays and competitive repopulation assays. Moreover, expression of gene-related ROS production in hematopoietic cells was analyzed. The expression of NOX1, NOX2 and NOX4 was increased in irradiated BMMNCs, and that of NOX2 and NOX4 was reduced by SB431542 treatment. Therefore, the results from this study suggest that SB431542, a TGFβ1 inhibitor, alleviates IR-induced BM suppression at least in part via inhibiting IR-induced NOX2 and NOX4 expression.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Radiation Oncology, Tianjin Union Medical Center, No.190 Jieyuan Road, Nankai District, Tianjin, China
- Institute of Radiation Medicine, Peking Union Medical College (PUMC), No. 238 Baidi Road, Nankai District, Tianjin, China
| | - Ying-ai Wang
- Department of Internal medicine, Tianjin Medical University, No. 22 Qixiangtai Road, Hexi District, Tianjin, China
| | - Aimin Meng
- Institute of Radiation Medicine, Peking Union Medical College (PUMC), No. 238 Baidi Road, Nankai District, Tianjin, China
| | - Hao Yan
- Department of Radiation Oncology, Tianjin Union Medical Center, No.190 Jieyuan Road, Nankai District, Tianjin, China
| | - Xinzhuo Wang
- Department of Radiation Oncology, Tianjin Union Medical Center, No.190 Jieyuan Road, Nankai District, Tianjin, China
| | - Jingxiu Niu
- Department of Radiation Oncology, Tianjin Union Medical Center, No.190 Jieyuan Road, Nankai District, Tianjin, China
| | - Jin Li
- Institute of Radiation Medicine, Peking Union Medical College (PUMC), No. 238 Baidi Road, Nankai District, Tianjin, China
| | - Hui Wang
- Department of Radiation Oncology, Tianjin Union Medical Center, No.190 Jieyuan Road, Nankai District, Tianjin, China
| |
Collapse
|
35
|
A germline point mutation in Runx1 uncouples its role in definitive hematopoiesis from differentiation. Exp Hematol 2013; 41:980-991.e1. [PMID: 23823022 DOI: 10.1016/j.exphem.2013.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/14/2022]
Abstract
Definitive hematopoiesis requires the master hematopoietic transcription factor Runx1, which is a frequent target of leukemia-related chromosomal translocations. Several of the translocation-generated fusion proteins retain the DNA binding activity of Runx1, but lose subnuclear targeting and associated transactivation potential. Complete loss of these functions in vivo resembles Runx1 ablation, which causes embryonic lethality. We developed a knock-in mouse that expresses full-length Runx1 with a mutation in the subnuclear targeting cofactor interaction domain, Runx1(HTY350-352AAA). Mutant mice survive to adulthood, and hematopoietic stem cell emergence appears to be unaltered. However, defects are observed in multiple differentiated hematopoietic lineages at stages where Runx1 is known to play key roles. Thus, a germline mutation in Runx1 reveals uncoupling of its functions during developmental hematopoiesis from subsequent differentiation across multiple hematopoietic lineages in the adult. These findings indicate that subnuclear targeting and cofactor interactions with Runx1 are important in many compartments throughout hematopoietic differentiation.
Collapse
|
36
|
Tabe Y, Shi YX, Zeng Z, Jin L, Shikami M, Hatanaka Y, Miida T, Hsu FJ, Andreeff M, Konopleva M. TGF-β-Neutralizing Antibody 1D11 Enhances Cytarabine-Induced Apoptosis in AML Cells in the Bone Marrow Microenvironment. PLoS One 2013; 8:e62785. [PMID: 23826077 PMCID: PMC3695026 DOI: 10.1371/journal.pone.0062785] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/25/2013] [Indexed: 01/10/2023] Open
Abstract
Hypoxia and interactions with bone marrow (BM) stromal cells have emerged as essential components of the leukemic BM microenvironment in promoting leukemia cell survival and chemoresistance. High levels of transforming growth factor beta 1 (TGFβ1) produced by BM stromal cells in the BM niche regulate cell proliferation, survival, and apoptosis, depending on the cellular context. Exogenous TGFβ1 induced accumulation of acute myeloid leukemia (AML) cells in a quiescent G0 state, which was further facilitated by the co-culture with BM-derived mesenchymal stem cells (MSCs). In turn, TGFβ-neutralizing antibody 1D11 abrogated rhTGFβ1 induced cell cycle arrest. Blocking TGFβ with 1D11 further enhanced cytarabine (Ara-C)-induced apoptosis of AML cells in hypoxic and in normoxic conditions. Additional constituents of BM niche, the stroma-secreted chemokine CXCL12 and its receptor CXCR4 play crucial roles in cell migration and stroma/leukemia cell interactions. Treatment with 1D11 combined with CXCR4 antagonist plerixafor and Ara-C decreased leukemia burden and prolonged survival in an in vivo leukemia model. These results indicate that blockade of TGFβ by 1D11 and abrogation of CXCL12/CXCR4 signaling may enhance the efficacy of chemotherapy against AML cells in the hypoxic BM microenvironment.
Collapse
Affiliation(s)
- Yoko Tabe
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Yue Xi Shi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Linhua Jin
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Masato Shikami
- Department of Hematology, Aichi Medical University, Aichi, Japan
| | - Yasuhito Hatanaka
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Frank J. Hsu
- Genzyme Corporation, Cambridge, Massachusetts, United States of America
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
37
|
Tarabar O, Cikota-Aleksić B, Tukić L, Milanović N, Aleksić A, Magić Z. Association of interleukin-10, tumor necrosis factor-α and transforming growth factor-β gene polymorphisms with the outcome of diffuse large B-cell lymphomas. Int J Clin Oncol 2013; 19:186-92. [DOI: 10.1007/s10147-013-0531-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
|
38
|
Badalucco S, Di Buduo CA, Campanelli R, Pallotta I, Catarsi P, Rosti V, Kaplan DL, Barosi G, Massa M, Balduini A. Involvement of TGFβ1 in autocrine regulation of proplatelet formation in healthy subjects and patients with primary myelofibrosis. Haematologica 2013; 98:514-7. [PMID: 23403314 DOI: 10.3324/haematol.2012.076752] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Megakaryocytes release platelets into the bloodstream by elongating proplatelets. In this study, we showed that human megakaryocytes constitutively release Transforming Growth Factor β1 and express its receptors. Importantly, Transforming Growth Factor β1 downstream signaling, through SMAD2/3 phosphorylation, was shown to be active in megakaryocytes extending proplatelets, indicating a type of autocrine stimulation on megakaryocyte development. Furthermore, inactivation of Transforming Growth Factor β1 signaling, by the receptor inhibitors SB431542 and Stemolecule ALK5 inhibitor, determined a significant decrease in proplatelet formation. Recent studies indicated a crucial role of Transforming Growth Factor β1 in the pathogenesis of primary myelofibrosis. We demonstrated that primary myelofibrosis-derived megakaryocytes expressed increased levels of bioactive Transforming Growth Factor β1; however, higher levels of released Transforming Growth Factor β1 did not lead to enhanced activation of downstream pathways. Overall, these data propose Transforming Growth Factor β1 as a new element in the autocrine regulation of proplatelet formation in vitro. Despite the increase in Transforming Growth Factor β1 this mechanism seems to be preserved in primary myelofibrosis.
Collapse
Affiliation(s)
- Stefania Badalucco
- Biotechnology Laboratories, Department of Molecular Medicine, University of Pavia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Luo M, Liu Z, Hao H, Lu T, Chen M, Lei M, Verfaillie CM, Liu Z. High glucose facilitates cell cycle arrest of rat bone marrow multipotent adult progenitor cells through transforming growth factor-β1 and extracellular signal-regulated kinase 1/2 signalling without changing Oct4 expression. Clin Exp Pharmacol Physiol 2012; 39:843-51. [PMID: 22804759 DOI: 10.1111/j.1440-1681.2012.05747.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. The transcription factor Oct4 is critical to the pluripotency, self-renewal and differentiation of stem cells. The aim of the present study was to investigate the effects of high glucose (HG) on the cell cycle progression of bone marrow multipotent adult progenitor cells (MAPC) and Oct4 expression, as well as the underlying mechanisms. 2. Rat MAPC were cultured in normal (5.5 mmol/L D-glucose) and HG (25.5 mmol/L D-glucose) media for up to 14 days. L-Glucose served as a high osmolarity control. Culture in HG media substantially increased the number of cells in the G(0)/G(1) phase and decreased the number in the S phase without changing the cell population in the G(2) phase. Expression of the cell cycle regulatory protein p21CIP/WAF-1 (p21), but not that of p27KIP-1 (p27), was significantly upregulated in cells cultured in HG media. Significant increases were seen in transforming growth factor (TGF)-β1 levels in cells and MAPC-conditioned medium in the presence of HG, and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was enhanced in cells cultured in the presence of HG medium without any changes in Akt phosphorylation. 3. Neutralizing TGF-β1 antibody effectively prevented HG-induced increases in ERK1/2 phosphorylation, p21 expression and suppression of cell cycle progression of MAPC. Inhibiting ERK1/2 phosphorylation with PD98059 completely blocked HG-induced p21 expression and markedly reversed HG-induced inhibition of cell cycle progression in MAPC. The HG-induced suppression of cell cycle progression was not accompanied by inhibition of cell proliferation or Oct4 expression in these cells. 4. The data indicate that HG facilitates cell cycle arrest of rat MAPC through TGF-β1-induced activation of ERK1/2 signalling and p21 expression, and that Oct4 expression in MAPC is independent of the cell cycle and/or TGF-β1 or ERK1/2 signalling in HG medium.
Collapse
Affiliation(s)
- Min Luo
- Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Acellular bone marrow extracts significantly enhance engraftment levels of human hematopoietic stem cells in mouse xeno-transplantation models. PLoS One 2012; 7:e40140. [PMID: 22768336 PMCID: PMC3388059 DOI: 10.1371/journal.pone.0040140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/01/2012] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cells (HSC) derived from cord blood (CB), bone marrow (BM), or mobilized peripheral blood (PBSC) can differentiate into multiple lineages such as lymphoid, myeloid, erythroid cells and platelets. The local microenvironment is critical to the differentiation of HSCs and to the preservation of their phenotype in vivo. This microenvironment comprises a physical support supplied by the organ matrix as well as tissue specific cytokines, chemokines and growth factors. We investigated the effects of acellular bovine bone marrow extracts (BME) on HSC in vitro and in vivo. We observed a significant increase in the number of myeloid and erythroid colonies in CB mononuclear cells (MNC) or CB CD34+ cells cultured in methylcellulose media supplemented with BME. Similarly, in xeno-transplantation experiments, pretreatment with BME during ex-vivo culture of HSCs induced a significant increase in HSC engraftment in vivo. Indeed, we observed both an increase in the number of differentiated myeloid, lymphoid and erythroid cells and an acceleration of engraftment. These results were obtained using CB MNCs, BM MNCs or CD34+ cells, transplanted in immuno-compromised mice (NOD/SCID or NSG). These findings establish the basis for exploring the use of BME in the expansion of CB HSC prior to HSC Transplantation. This study stresses the importance of the mechanical structure and soluble mediators present in the surrounding niche for the proper activity and differentiation of stem cells.
Collapse
|
41
|
Wang MK, Sun HQ, Xiang YC, Jiang F, Su YP, Zou ZM. Different roles of TGF-β in the multi-lineage differentiation of stem cells. World J Stem Cells 2012; 4:28-34. [PMID: 22993659 PMCID: PMC3443709 DOI: 10.4252/wjsc.v4.i5.28] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 03/10/2012] [Accepted: 03/25/2012] [Indexed: 02/06/2023] Open
Abstract
Stem cells are a population of cells that has infinite or long-term self-renewal ability and can produce various kinds of descendent cells. Transforming growth factor β (TGF-β) family is a superfamily of growth factors, including TGF-β1, TGF-β2 and TGF-β3, bone morphogenetic proteins, activin/inhibin, and some other cytokines such as nodal, which plays very important roles in regulating a wide variety of biological processes, such as cell growth, differentiation, cell death. TGF-β, a pleiotropic cytokine, has been proved to be differentially involved in the regulation of multi-lineage differentiation of stem cells, through the Smad pathway, non-Smad pathways including mitogen-activated protein kinase pathways, phosphatidylinositol-3-kinase/AKT pathways and Rho-like GTPase signaling pathways, and their cross-talks. For instance, it is generally known that TGF-β promotes the differentiation of stem cells into smooth muscle cells, immature cardiomyocytes, chondrocytes, neurocytes, hepatic stellate cells, Th17 cells, and dendritic cells. However, TGF-β inhibits the differentiation of stem cells into myotubes, adipocytes, endothelial cells, and natural killer cells. Additionally, TGF-β can provide competence for early stages of osteoblastic differentiation, but at late stages TGF-β acts as an inhibitor. The three mammalian isoforms (TGF-β1, 2 and 3) have distinct but overlapping effects on hematopoiesis. Understanding the mechanisms underlying the regulatory effect of TGF-β in the stem cell multi-lineage differentiation is of importance in stem cell biology, and will facilitate both basic research and clinical applications of stem cells. In this article, we discuss the current status and progress in our understanding of different mechanisms by which TGF-β controls multi-lineage differentiation of stem cells.
Collapse
Affiliation(s)
- Ming-Ke Wang
- Ming-Ke Wang, Fan Jiang, Zhong-Min Zou, Department of Chemical Defense and Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | |
Collapse
|
42
|
Multiple myeloma-related deregulation of bone marrow-derived CD34(+) hematopoietic stem and progenitor cells. Blood 2012; 120:2620-30. [PMID: 22517906 DOI: 10.1182/blood-2011-04-347484] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell disorder frequently accompanied by hematopoietic impairment. We show that hematopoietic stem and progenitor cells (HSPCs), in particular megakaryocyte-erythrocyte progenitors, are diminished in the BM of MM patients. Genomic profiling of HSPC subsets revealed deregulations of signaling cascades, most notably TGFβ signaling, and pathways involved in cytoskeletal organization, migration, adhesion, and cell-cycle regulation in the patients. Functionally, proliferation, colony formation, and long-term self-renewal were impaired as a consequence of activated TGFβ signaling. In accordance, TGFβ levels in the BM extracellular fluid were elevated and mesenchymal stromal cells (MSCs) had a reduced capacity to support long-term hematopoiesis of HSPCs that completely recovered on blockade of TGFβ signaling. Furthermore, we found defective actin assembly and down-regulation of the adhesion receptor CD44 in MM HSPCs functionally reflected by impaired migration and adhesion. Still, transplantation into myeloma-free NOG mice revealed even enhanced engraftment and normal differentiation capacities of MM HSPCs, which underlines that functional impairment of HSPCs depends on MM-related microenvironmental cues and is reversible. Taken together, these data implicate that hematopoietic suppression in MM emerges from the HSPCs as a result of MM-related microenvironmental alterations.
Collapse
|
43
|
Valluru M, Staton CA, Reed MWR, Brown NJ. Transforming Growth Factor-β and Endoglin Signaling Orchestrate Wound Healing. Front Physiol 2011; 2:89. [PMID: 22164144 PMCID: PMC3230065 DOI: 10.3389/fphys.2011.00089] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/10/2011] [Indexed: 12/17/2022] Open
Abstract
Physiological wound healing is a complex process requiring the temporal and spatial co-ordination of various signaling networks, biomechanical forces, and biochemical signaling pathways in both hypoxic and non-hypoxic conditions. Although a plethora of factors are required for successful physiological tissue repair, transforming growth factor beta (TGF-β) expression has been demonstrated throughout wound healing and shown to regulate many processes involved in tissue repair, including production of ECM, proteases, protease inhibitors, migration, chemotaxis, and proliferation of macrophages, fibroblasts of the granulation tissue, epithelial and capillary endothelial cells. TGF-β mediates these effects by stimulating signaling pathways through a receptor complex which contains Endoglin. Endoglin is expressed in a broad spectrum of proliferating and stem cells with elevated expression during hypoxia, and regulates important cellular functions such as proliferation and adhesion via Smad signaling. This review focuses on how the TGF-β family and Endoglin, regulate stem cell availability, and modulate cellular behavior within the wound microenvironment, includes current knowledge of the signaling pathways involved, and explores how this information may be applicable to inflammatory and/or angiogenic diseases such as fibrosis, rheumatoid arthritis and metastatic cancer.
Collapse
Affiliation(s)
- Manoj Valluru
- Department of Oncology, Microcirculation Research Group, Faculty of Medicine, Dentistry and Health, University of Sheffield Sheffield, UK
| | | | | | | |
Collapse
|
44
|
Liang Y, Qiu X, Xu RZ, Zhao XY. Berbamine inhibits proliferation and induces apoptosis of KU812 cells by increasing Smad3 activity. J Zhejiang Univ Sci B 2011; 12:568-74. [PMID: 21726064 DOI: 10.1631/jzus.b1000230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The cytotoxic effect of berbamine on chronic myeloid leukemia (CML) cell line KU812 was evaluated, and the mechanisms of its action were explored. METHODS The effect of berbamine on the KU812 cell growth was determined by methyl thiazolyl tetrazolium (MTT) assay. Flow cytometry was used to profile cell cycle alteration upon berbamine treatment. Reverse transcription polymerase chain reaction (RT-PCR) was carried out to determine the transcripts of transforming growth factor-β (TGF-β) receptors (TβRs), Smad3, c-Myc, cyclin D1, p21(Cip1)(p21), and p27(Kip1)(p27). Changes in the protein levels of total Smad3, phosphorylated Smad3, the downstream targets of Smad3, and specific apoptosis-related factors were evaluated by Western blotting. RESULTS Berbamine inhibited KU812 cell proliferation in a dose- and time-dependent manner, and the half maximal inhibitory concentration (IC₅₀) values for treatments of 24, 48, and 72 h were 5.83, 3.43, and 0.75 μg/ml, respectively. Berbamine induced G₁ arrest as well as apoptosis in KU812 cells. Transcriptions of Smad3 and p21 were up-regulated, while those of TβRI, TβRII, c-Myc, cyclin D1 and p27 were not changed significantly. The protein levels of both total Smad3 and phosphorylated Smad3 were both up-regulated after berbamine treatment, together with decreased c-Myc and cyclin D1 and increased p21. Meanwhile, the levels of the anti-apoptotic proteins, such as Bcl-2 and Bcl-xL, were decreased, whereas pro-apoptotic Bax was increased. CONCLUSIONS Berbamine suppresses KU812 cell proliferation through induction of cell cycle arrest in G₁ and apoptosis. It activates Smad3 without additional stimulation of TGF-β, and alters the levels of the Smad3 downstream targets, including c-Myc, cyclin D1 and p21. Our findings suggest that berbamine is a promising drug in the treatment of advanced stage patients with CML.
Collapse
Affiliation(s)
- Yun Liang
- Department of Hematology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | | | | | | |
Collapse
|
45
|
Wu Y, Chen P, Huang HF, Huang MJ, Chen YZ. Reduction of transforming growth factor-β1 expression in leukemia and its possible role in leukemia development. Leuk Lymphoma 2011; 53:145-51. [DOI: 10.3109/10428194.2011.603446] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Blank U, Karlsson S. The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 2011; 25:1379-88. [PMID: 21566654 DOI: 10.1038/leu.2011.95] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) of adult individuals and function to produce and regenerate the entire blood and immune system over the course of an individual's lifetime. Historically, HSCs are among the most thoroughly characterized tissue-specific stem cells. Despite this, the regulation of fate options, such as self-renewal and differentiation, has remained elusive, partly because of the expansive plethora of factors and signaling cues that govern HSC behavior in vivo. In the BM, HSCs are housed in specialized niches that dovetail the behavior of HSCs with the need of the organism. The Smad-signaling pathway, which operates downstream of the transforming growth factor-β (TGF-β) superfamily of ligands, regulates a diverse set of biological processes, including proliferation, differentiation and apoptosis, in many different organ systems. Much of the function of Smad signaling in hematopoiesis has remained nebulous due to early embryonic lethality of most knockout mouse models. However, recently new data have been uncovered, suggesting that the Smad-signaling circuitry is intimately linked to HSC regulation. In this review, we bring the Smad-signaling pathway into focus, chronicling key concepts and recent advances with respect to TGF-β-superfamily signaling in normal and leukemic hematopoiesis.
Collapse
Affiliation(s)
- U Blank
- Division of Molecular Medicine and Gene Therapy, Laboratory Medicine, Lund Stem Cell Center, Lund University Hospital, Lund, Sweden.
| | | |
Collapse
|
47
|
Smad4 binds Hoxa9 in the cytoplasm and protects primitive hematopoietic cells against nuclear activation by Hoxa9 and leukemia transformation. Blood 2011; 117:5918-30. [PMID: 21471525 DOI: 10.1182/blood-2010-08-301879] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We studied leukemic stem cells (LSCs) in a Smad4(-/-) mouse model of acute myelogenous leukemia (AML) induced either by the HOXA9 gene or by the fusion oncogene NUP98-HOXA9. Although Hoxa9-Smad4 complexes accumulate in the cytoplasm of normal hematopoietic stem cells and progenitor cells (HSPCs) transduced with these oncogenes, there is no cytoplasmic stabilization of HOXA9 in Smad4(-/-) HSPCs, and as a consequence increased levels of Hoxa9 is observed in the nucleus leading to increased immortalization in vitro. Loss of Smad4 accelerates the development of leukemia in vivo because of an increase in transformation of HSPCs. Therefore, the cytoplasmic binding of Hoxa9 by Smad4 is a mechanism to protect Hoxa9-induced transformation of normal HSPCs. Because Smad4 is a potent tumor suppressor involved in growth control, we developed a strategy to modify the subcellular distribution of Smad4. We successfully disrupted the interaction between Hoxa9 and Smad4 to activate the TGF-β pathway and apoptosis, leading to a loss of LSCs. Together, these findings reveal a major role for Smad4 in the negative regulation of leukemia initiation and maintenance induced by HOXA9/NUP98-HOXA9 and provide strong evidence that antagonizing Smad4 stabilization by these oncoproteins might be a promising novel therapeutic approach in leukemia.
Collapse
|
48
|
Warr MR, Pietras EM, Passegué E. Mechanisms controlling hematopoietic stem cell functions during normal hematopoiesis and hematological malignancies. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:681-701. [PMID: 21412991 DOI: 10.1002/wsbm.145] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hematopoiesis, the process by which all mature blood cells are generated from multipotent hematopoietic stem cells (HSCs), is a finely tuned balancing act in which HSCs must constantly decide between different cell fates: to proliferate, to self-renew or differentiate, to stay quiescent in the bone marrow niche or migrate to the periphery, to live or die. These fates are regulated by a complex interplay between cell-extrinsic cues and cell-intrinsic regulatory pathways whose function is to maintain a homeostatic balance between HSC self-renewal and life-long replenishment of lost blood cells. Improper regulation of these competing cellular programs can transform HSCs and progenitor cells into disease-initiating leukemic stem cells (LSCs). Strikingly, many of the mechanisms required for maintenance of normal HSC fate decisions are equally critical for the aberrant functions of LSCs. Because of the inherent complexities of these molecular mechanisms, a systematic approach to understanding the regulatory networks underlying HSC self-renewal is critical for uncovering the similarities and differences between HSCs and LSCs. In this review, we focus on recent developments in elucidating the regulatory networks governing normal HSC self-renewal programs and their implications for leukemic transformation. We describe the current technical and methodological limitations in isolating and characterizing HSCs and LSCs, and the emerging approaches that may afford a better understanding of the regulation of normal and leukemic hematopoiesis. Finally, we discuss how such basic mechanistic information may be of use for the design of novel therapies that will selectively reprogram and/or eliminate LSCs.
Collapse
Affiliation(s)
- Matthew R Warr
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
49
|
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2:232-60. [PMID: 21779496 PMCID: PMC3128629 DOI: 10.1177/1947601911407323] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
First identified in the early 1980s as retroviral oncogenes, the Raf proteins have been the objects of intense research. The discoveries 10 years later that the Raf family members (Raf-1, B-Raf, and A-Raf) are bona fide Ras effectors and upstream activators of the ubiquitous ERK pathway increased the interest in these proteins primarily because of the central role that this cascade plays in cancer development. The important role of Raf in cancer was corroborated in 2002 with the discovery of B-Raf genetic mutations in a large number of tumors. This led to intensified drug development efforts to target Raf signaling in cancer. This work yielded not only recent clinical successes but also surprising insights into the regulation of Raf proteins by homodimerization and heterodimerization. Surprising insights also came from the hunt for new Raf targets. Although MEK remains the only widely accepted Raf substrate, new kinase-independent roles for Raf proteins have emerged. These include the regulation of apoptosis by suppressing the activity of the proapoptotic kinases, ASK1 and MST2, and the regulation of cell motility and differentiation by controlling the activity of Rok-α. In this review, we discuss the regulation of Raf proteins and their role in cancer, with special focus on the interacting proteins that modulate Raf signaling. We also describe the new pathways controlled by Raf proteins and summarize the successes and failures in the development of efficient anticancer therapies targeting Raf. Finally, we also argue for the necessity of more systemic approaches to obtain a better understanding of how the Ras-Raf signaling network generates biological specificity.
Collapse
Affiliation(s)
- David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
50
|
Long KK, Montano M, Pavlath GK. Sca-1 is negatively regulated by TGF-beta1 in myogenic cells. FASEB J 2010; 25:1156-65. [PMID: 21156809 DOI: 10.1096/fj.10-170308] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sca-1 (stem cell antigen-1) is a member of the Ly-6 family of proteins and regulates cell proliferation, differentiation, and self-renewal in multiple tissues. In skeletal muscle, Sca-1 inhibits both proliferation and differentiation of myogenic cells. Sca-1 expression is dynamically regulated during muscle regeneration, and mice lacking Sca-1 display increased fibrosis following muscle injury. Here, we show that Sca-1 expression is negatively regulated by TGF-β1 and that this inhibition is dependent on Smad3. We demonstrate that levels of TGF-β1 in skeletal muscle rapidly increase on injury and that the majority of this TGFβ1 is produced by infiltrating macrophages. Sca-1 is expressed in multiple cell types, and we demonstrate that TGF-β1 represses Sca-1 expression in T cells and other immune cell populations derived from the spleen, indicating that regulation by TGF-β1 is a general feature of Sca-1 expression in multiple cell types. Elucidation of the mechanisms by which Sca-1 expression is regulated may aid in the understanding of muscle homeostasis, potentially identifying novel therapeutic targets for muscle diseases.
Collapse
Affiliation(s)
- Kimberly K Long
- Department of Infectious Diseases, Boston Medical Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|