1
|
Wang G, Xu X, Gao Z, Liu T, Li Y, Hou X. Genome-wide identification of LEA gene family and cold response mechanism of BcLEA4-7 and BcLEA4-18 in non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111291. [PMID: 35696933 DOI: 10.1016/j.plantsci.2022.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Cold stress is a key factor limiting the yield and quality of non-heading Chinese cabbage. The hydrophilic protective protein LEA plays an important role in plant abiotic stress. In this study, 72 BcLEAs were identified from non-heading Chinese cabbage and divided into 9 subfamilies by phylogenetic analysis. Gene structure analysis showed that BcLEAs were unevenly distributed on 10 chromosomes, with few introns. Through analyzing the expression of these genes under cold stress by RNA-seq and qRT-PCR, two genes (BcLEA4-7 and BcLEA4-18) highly sensitive to cold stress were identified, whose roles in cold tolerance of non-heading Chinese cabbage were demonstrated by virus-induced gene silencing. The BcLEA promoters were analyzed to study the cold response mechanism of BcLEA4-7 and BcLEA4-18, revealing that both BcLEA4-7 and BcLEA4-18 promoters contained two CRT/DRE elements. Subsequently, it was found that the promoters isolated from non-heading Chinese cabbage could be activated at low temperatures. Further analysis showed BcCBF2 in non-heading Chinese cabbage interacted with two CRT/DRE elements in BcLEA4-7 and BcLEA4-18 promoters to stimulate their activity, indicating that BcCBF2 is an upstream regulator. Meanwhile, the CRT/DRE element located in BcLEA4-7 promoter (-219 bp to -171 bp) and BcLEA4-18 promoter (-234 bp to -186 bp) was more likely to be activated by BcCBF2, which may be attributed to its flanking sequence. These data laid a foundation for further understanding the functional role and regulatory mechanism of BcLEAs in cold stress tolerance.
Collapse
Affiliation(s)
- Guangpeng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China; Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinfeng Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China
| | - Zhanyuan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China; Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China; Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs, PR China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education, PR China; Nanjing Suman Plasma Engineering Research Institute, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Importin/exportin-mediated nucleocytoplasmic shuttling of cucumber mosaic virus 2b protein is required for 2b's efficient suppression of RNA silencing. PLoS Pathog 2022; 18:e1010267. [PMID: 35081172 PMCID: PMC8820599 DOI: 10.1371/journal.ppat.1010267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/07/2022] [Accepted: 01/11/2022] [Indexed: 11/19/2022] Open
Abstract
The 2b protein (2b) of cucumber mosaic virus (CMV), an RNA-silencing suppressor (RSS), is a major pathogenicity determinant of CMV. 2b is localized in the nucleus and cytoplasm, and its nuclear import is determined by two nuclear localization signals (NLSs); a carrier protein (importin [IMPα]) is predicted to be involved in 2b's nuclear transport. Cytoplasmic 2bs play a role in suppression of RNA silencing by binding to small RNAs and AGO proteins. A putative nuclear export signal (NES) motif was also found in 2b, but has not been proved to function. Here, we identified a leucine-rich motif in 2b's C-terminal half as an NES. We then showed that NES-deficient 2b accumulated abundantly in the nucleus and lost its RSS activity, suggesting that 2b exported from the nucleus can play a role as an RSS. Although two serine residues (S40 and S42) were previously found to be phosphorylated, we also found that an additional phosphorylation site (S28) alone can affect 2b's nuclear localization and RSS activity. Alanine substitution at S28 impaired the IMPα-mediated nuclear/nucleolar localization of 2b, and RSS activity was even stronger compared to wild-type 2b. In a subcellular fractionation assay, phosphorylated 2bs were detected in the nucleus, and comparison of the accumulation levels of nuclear phospho-2b between wild-type 2b and the NES mutant showed a greatly reduced level of the phosphorylated NES mutant in the nucleus, suggesting that 2bs are dephosphorylated in the nucleus and may be translocated to the cytoplasm in a nonphosphorylated form. These results suggest that 2b manipulates its nucleocytoplasmic transport as if it tracks down its targets, small RNAs and AGOs, in the RNA silencing pathway. We infer that 2b's efficient RSS activity is maintained by a balance of phosphorylation and dephosphorylation, which are coupled to importin/exportin-mediated shuttling between the nucleus and cytoplasm.
Collapse
|
3
|
Lv A, Wen W, Fan N, Su L, Zhou P, An Y. Dehydrin MsDHN1 improves aluminum tolerance of alfalfa (Medicago sativa L.) by affecting oxalate exudation from root tips. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:441-458. [PMID: 34363255 DOI: 10.1111/tpj.15451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
A SK3 -type dehydrin MsDHN1 was cloned from alfalfa (Medicago sativa L.). Its function and gene regulatory pathways were studied via overexpression and suppression of MsDHN1 in alfalfa seedlings or hairy roots. The results showed that MsDHN1 is a typical intrinsically disordered protein that exists in the form of monomers and homodimers in alfalfa. The plant growth rates increased as a result of MsDHN1 overexpression (MsDHN1-OE) and decreased upon MsDHN1 suppression (MsDHN1-RNAi) in seedlings or hairy roots of alfalfa compared with the wild-type or the vector line under Al stress. MsDHN1 interacting with aquaporin (AQP) MsPIP2;1 and MsTIP1;1 positively affected oxalate secretion from root tips and Al accumulation in root tips. MsABF2 was proven to be an upstream transcription factor of MsDHN1 and activated MsDHN1 expression by binding to the ABRE element of the MsDHN1 promoter. The transcriptional regulation of MsABF2 on MsDHN1 was dependent on the abscisic acid signaling pathway. These results indicate that MsDHN1 can increase alfalfa tolerance to Al stress via increasing oxalate secretion from root tips, which may involve in the interaction of MsDHN1 with two AQP.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China
| |
Collapse
|
4
|
Accumulation Dynamics of Transcripts and Proteins of Cold-Responsive Genes in Fragaria vesca Genotypes of Differing Cold Tolerance. Int J Mol Sci 2021; 22:ijms22116124. [PMID: 34200124 PMCID: PMC8201005 DOI: 10.3390/ijms22116124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022] Open
Abstract
Identifying and characterizing cold responsive genes in Fragaria vesca associated with or responsible for low temperature tolerance is a vital part of strawberry cultivar development. In this study we have investigated the transcript levels of eight genes, two dehydrin genes, three putative ABA-regulated genes, two cold–inducible CBF genes and the alcohol dehydrogenase gene, extracted from leaf and crown tissues of three F. vesca genotypes that vary in cold tolerance. Transcript levels of the CBF/DREB1 transcription factor FvCBF1E exhibited stronger cold up-regulation in comparison to FvCBF1B.1 in all genotypes. Transcripts of FvADH were highly up-regulated in both crown and leaf tissues from all three genotypes. In the ‘ALTA’ genotype, FvADH transcripts were significantly higher in leaf than crown tissues and more than 10 to 20-fold greater than in the less cold-tolerant ‘NCGR1363’ and ‘FDP817’ genotypes. FvGEM, containing the conserved ABRE promoter element, transcript was found to be cold-regulated in crowns. Direct comparison of the kinetics of transcript and protein accumulation of dehydrins was scrutinized. In all genotypes and organs, the changes of XERO2 transcript levels generally preceded protein changes, while levels of COR47 protein accumulation preceded the increases in COR47 RNA in ‘ALTA’ crowns.
Collapse
|
5
|
Wang X, Zhang M, Xie B, Jiang X, Gai Y. Functional Characteristics Analysis of Dehydrins in Larix kaempferi under Osmotic Stress. Int J Mol Sci 2021; 22:1715. [PMID: 33572055 PMCID: PMC7915896 DOI: 10.3390/ijms22041715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
Dehydrins (DHN) belong to the late embryogenesis abundant II family and have been found to enhance plant tolerance to abiotic stress. In the present study, we reported four DHNs in Larix kaempferi (LkDHN) which were identified from the published transcriptome. Alignment analysis showed that these four LkDHNs shared close relationships and belonged to SK3-type DHNs. The electrophoretic mobility shift assay indicated that these four LkDHNs all possess sequence-independent binding capacity for double-strands DNAs. The subcellular localizations of the four LkDHNs were in both the nucleus and cytoplasm, indicating that these LkDHNs enter the nucleus to exert the ability to bind DNA. The preparation of tobacco protoplasts with different concentrations of mannitol showed that LkDHNs enhanced the tolerance of plant cells under osmotic stress. The overexpression of LkDHNs in yeasts enhanced their tolerance to osmotic stress and helped the yeasts to survive severe stress. In addition, LkDHNs in the nucleus of salt treated tobacco increased. All of these results indicated that the four LkDHNs help plants survive from heavy stress by participating in DNA protection. These four LKDHNs played similar roles in the response to osmotic stress and assisted in the adaptation of L. kaempferi to the arid and cold winter of northern China.
Collapse
Affiliation(s)
- Xuechun Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (M.Z.); (B.X.); (X.J.)
| | - Meng Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (M.Z.); (B.X.); (X.J.)
| | - Baohui Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (M.Z.); (B.X.); (X.J.)
| | - Xiangning Jiang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (M.Z.); (B.X.); (X.J.)
- National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| | - Ying Gai
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (X.W.); (M.Z.); (B.X.); (X.J.)
- National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| |
Collapse
|
6
|
Yang Y, Dong A, Zenda T, Liu S, Liu X, Wang Y, Li J, Duan H. DIA (Data Independent Acquisition) proteomic based study on maize filling-kernel stage drought stress-responsive proteins and metabolic pathways. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1827981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Yatong Yang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Anyi Dong
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Tinashe Zenda
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Songtao Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Xinyue Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Yafei Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Jiao Li
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Huijun Duan
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| |
Collapse
|
7
|
Kishor PBK, Suravajhala R, Rajasheker G, Marka N, Shridhar KK, Dhulala D, Scinthia KP, Divya K, Doma M, Edupuganti S, Suravajhala P, Polavarapu R. Lysine, Lysine-Rich, Serine, and Serine-Rich Proteins: Link Between Metabolism, Development, and Abiotic Stress Tolerance and the Role of ncRNAs in Their Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:546213. [PMID: 33343588 PMCID: PMC7744598 DOI: 10.3389/fpls.2020.546213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Lysine (Lys) is indispensable nutritionally, and its levels in plants are modulated by both transcriptional and post-transcriptional control during plant ontogeny. Animal glutamate receptor homologs have been detected in plants, which may participate in several plant processes through the Lys catabolic products. Interestingly, a connection between Lys and serotonin metabolism has been established recently in rice. 2-Aminoadipate, a catabolic product of Lys appears to play a critical role between serotonin accumulation and the color of rice endosperm/grain. It has also been shown that expression of some lysine-methylated proteins and genes encoding lysine-methyltransferases (KMTs) are regulated by cadmium even as it is known that Lys biosynthesis and its degradation are modulated by novel mechanisms. Three complex pathways co-exist in plants for serine (Ser) biosynthesis, and the relative preponderance of each pathway in relation to plant development or abiotic stress tolerance are being unfolded slowly. But the phosphorylated pathway of L-Ser biosynthesis (PPSB) appears to play critical roles and is essential in plant metabolism and development. Ser, which participates indirectly in purine and pyrimidine biosynthesis and plays a pivotal role in plant metabolism and signaling. Also, L-Ser has been implicated in plant responses to both biotic and abiotic stresses. A large body of information implicates Lys-rich and serine/arginine-rich (SR) proteins in a very wide array of abiotic stresses. Interestingly, a link exists between Lys-rich K-segment and stress tolerance levels. It is of interest to note that abiotic stresses largely influence the expression patterns of SR proteins and also the alternative splicing (AS) patterns. We have checked if any lncRNAs form a cohort of differentially expressed genes from the publicly available PPSB, sequence read archives of NCBI GenBank. Finally, we discuss the link between Lys and Ser synthesis, catabolism, Lys-proteins, and SR proteins during plant development and their myriad roles in response to abiotic stresses.
Collapse
Affiliation(s)
- P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research (Deemed to be University), Guntur, India
- *Correspondence: P. B. Kavi Kishor,
| | | | | | - Nagaraju Marka
- Biochemistry Division, National Institute of Nutrition-ICMR, Hyderabad, India
| | | | - Divya Dhulala
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Kummari Divya
- Department of Genetics, Osmania University, Hyderabad, India
| | - Madhavi Doma
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | | |
Collapse
|
8
|
The functional diversity of structural disorder in plant proteins. Arch Biochem Biophys 2019; 680:108229. [PMID: 31870661 DOI: 10.1016/j.abb.2019.108229] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Structural disorder in proteins is a widespread feature distributed in all domains of life, particularly abundant in eukaryotes, including plants. In these organisms, intrinsically disordered proteins (IDPs) perform a diversity of functions, participating as integrators of signaling networks, in transcriptional and post-transcriptional regulation, in metabolic control, in stress responses and in the formation of biomolecular condensates by liquid-liquid phase separation. Their roles impact the perception, propagation and control of various developmental and environmental cues, as well as the plant defense against abiotic and biotic adverse conditions. In this review, we focus on primary processes to exhibit a broad perspective of the relevance of IDPs in plant cell functions. The information here might help to incorporate this knowledge into a more dynamic view of plant cells, as well as open more questions and promote new ideas for a better understanding of plant life.
Collapse
|
9
|
Maszkowska J, Dębski J, Kulik A, Kistowski M, Bucholc M, Lichocka M, Klimecka M, Sztatelman O, Szymańska KP, Dadlez M, Dobrowolska G. Phosphoproteomic analysis reveals that dehydrins ERD10 and ERD14 are phosphorylated by SNF1-related protein kinase 2.10 in response to osmotic stress. PLANT, CELL & ENVIRONMENT 2019; 42:931-946. [PMID: 30338858 DOI: 10.1111/pce.13465] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 05/21/2023]
Abstract
SNF1-related protein kinases 2 (SnRK2s) regulate the plant responses to abiotic stresses, especially water deficits. They are activated in plants subjected to osmotic stress, and some of them are additionally activated in response to enhanced concentrations of abscisic acid (ABA) in plant cells. The SnRK2s that are activated in response to ABA are key elements of ABA signalling that regulate plant acclimation to environmental stresses and ABA-dependent development. Much less is known about the SnRK2s that are not activated by ABA, albeit several studies have shown that these kinases are also involved in response to osmotic stress. Here, we show that one of the Arabidopsis thaliana ABA-non-activated SnRK2s, SnRK2.10, regulates not only the response to salinity but also the plant sensitivity to dehydration. Several potential SnRK2.10 targets phosphorylated in response to stress were identified by a phosphoproteomic approach, including the dehydrins ERD10 and ERD14. Their phosphorylation by SnRK2.10 was confirmed in vitro. Our data suggest that the phosphorylation of ERD14 within the S-segment is involved in the regulation of dehydrin subcellular localization in response to stress.
Collapse
Affiliation(s)
- Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Dębski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Kistowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Maria Bucholc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Maria Klimecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Edrisi Maryan K, Samizadeh Lahiji H, Farrokhi N, Hasani Komeleh H. Analysis of Brassica napus dehydrins and their Co-Expression regulatory networks in relation to cold stress. Gene Expr Patterns 2018; 31:7-17. [PMID: 30408599 DOI: 10.1016/j.gep.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 10/27/2022]
Abstract
Dehydrins (DHNs) are plant specific cold and drought stress-responsive proteins that belong to late embryogenesis abundant (LEA) protein families. B. napus DHNs (BnDHNs) were computationally analyzed to establish gene regulatory- and protein-protein interaction networks. Promoter analyses suggested functionality of phytohormones in BnDHNs gene network. The relative expressions of some BnDHNs were analyzed using qRT-PCR in seedling leaves of both cold-tolerant (Zarfam) and -sensitive (Sari Gul) canola treated/untreated by cold. Our expression data were indicative of the importance of BnDHNs in cold tolerance in Zarfam. BnDHNs were classified into three classes according to the expression pattern. Moreover, expression of three BnDHN types, SKn (BnLEA10 and BnLEA18), YnKn (BnLEA90) and YnSKn (BnLEA104) were significantly high in the tolerant cultivar at 12 h of cold treatment. Our findings put forward the possibility of considering these genes as screening biomarker to determine cold-tolerant breeding lines; something that needs to be further corroborated. Furthermore, these genes may have some implications in developing such tolerant lines via transgenesis.
Collapse
Affiliation(s)
- Khazar Edrisi Maryan
- Department of Plant Biotechnology, Faculty of Agriculture, University of Guilan, Rasht, Iran
| | | | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences and Biotechnology, Shahid Beheshti University. G.C., Evin, Tehran, Iran.
| | - Hassan Hasani Komeleh
- Department of Plant Biotechnology, Faculty of Agriculture, University of Guilan, Rasht, Iran
| |
Collapse
|
11
|
Yu Z, Wang X, Zhang L. Structural and Functional Dynamics of Dehydrins: A Plant Protector Protein under Abiotic Stress. Int J Mol Sci 2018; 19:ijms19113420. [PMID: 30384475 PMCID: PMC6275027 DOI: 10.3390/ijms19113420] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022] Open
Abstract
Abiotic stress affects the growth and development of crops tremendously, worldwide. To avoid adverse environmental effects, plants have evolved various efficient mechanisms to respond and adapt to harsh environmental factors. Stress conditions are associated with coordinated changes in gene expressions at a transcriptional level. Dehydrins have been extensively studied as protectors in plant cells, owing to their vital roles in sustaining the integrity of membranes and lactate dehydrogenase (LDH). Dehydrins are highly hydrophilic and thermostable intrinsically disordered proteins (IDPs), with at least one Lys-rich K-segment. Many dehydrins are induced by multiple stress factors, such as drought, salt, extreme temperatures, etc. This article reviews the role of dehydrins under abiotic stress, regulatory networks of dehydrin genes, and the physiological functions of dehydrins. Advances in our understanding of dehydrin structures, gene regulation and their close relationships with abiotic stresses demonstrates their remarkable ability to enhance stress tolerance in plants.
Collapse
Affiliation(s)
- Zhengyang Yu
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Xin Wang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| | - Linsheng Zhang
- College of Life Science/State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
12
|
Stival Sena J, Giguère I, Rigault P, Bousquet J, Mackay J. Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression. TREE PHYSIOLOGY 2018; 38:442-456. [PMID: 29040752 DOI: 10.1093/treephys/tpx125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Temperatures are expected to increase over the next century in all terrestrial biomes and particularly in boreal forests, where drought-induced mortality has been predicted to rise. Genomics research is helping to develop hypotheses regarding the molecular basis of drought tolerance and recent work proposed that the osmo-protecting dehydrin proteins have undergone a clade-specific expansion in the Pinaceae, a major group of conifer trees. The objectives of this study were to identify all of the putative members of the gene family, trace their evolutionary origin, examine their structural diversity and test for drought-responsive expression. We identified 41 complete dehydrin coding sequences in Picea glauca, which is four times more than most angiosperms studied to date, and more than in pines. Phylogenetic reconstructions indicated that the family has undergone an expansion in conifers, with parallel evolution implicating the sporadic resurgence of certain amino acid sequence motifs, and a major duplication giving rise to a clade specific to the Pinaceae. A variety of plant dehydrin structures were identified with variable numbers of the A-, E-, S- and K-segments and an N-terminal (N1) amino acid motif including assemblages specific to conifers. The expression of several of the spruce dehydrins was tissue preferential under non-stressful conditions or responded to water stress after 7-18 days without watering, reflecting changes in osmotic potential. We found that dehydrins with N1 K2 and N1 AESK2 sequences were the most responsive to the lack of water. Together, the family expansion, drought-responsive expression and structural diversification involving loss and gain of amino acid motifs suggests that subfunctionalization has driven the diversification seen among dehydrin gene duplicates. Our findings clearly indicate that dehydrins represent a large family of candidate genes for drought tolerance in spruces and in other Pinaceae that may underpin adaptability in spatially and temporally variable environments.
Collapse
Affiliation(s)
- Juliana Stival Sena
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
- Canada Research Chair in Forest Genomics, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
| | - Isabelle Giguère
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
| | - Philippe Rigault
- Gydle Inc., 1135 Grande Allée Ouest Suite 220, Québec QC G1S 1E7, Canada
| | - Jean Bousquet
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
- Canada Research Chair in Forest Genomics, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
| | - John Mackay
- Center for Forest Research and Institute for Systems and Integrative Biology, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
- Canada Research Chair in Forest Genomics, 1030 rue de la Médecine, Université Laval, Québec QC G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
13
|
Functional characterization of KS-type dehydrin ZmDHN13 and its related conserved domains under oxidative stress. Sci Rep 2017; 7:7361. [PMID: 28779129 PMCID: PMC5544677 DOI: 10.1038/s41598-017-07852-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 07/03/2017] [Indexed: 11/08/2022] Open
Abstract
Dehydrins belong to the group 2 family LEA (Late Embryogenesis Abundant) proteins, which are up-regulated in most plants during cold and drought stress. According to the number and order of the Y-, S- and K-segments, dehydrins are classified into five subclasses: YnSKn, YnKn, SKn, Kn and KnS. Here, the maize (Zea mays L.) KS-type dehydrin gene, ZmDHN13, was identified and later characterized. Expression profiling demonstrated that ZmDHN13 was constitutively expressed, but its expression was also altered by high osmosis, low temperature, oxidative stress and abscisic acid (ABA). Furthermore, the roles of the three conserved segments in phosphorylation, localization, binding metal ions and physiological functions were explored. ZmDHN13 was mainly localized in the nucleus, depending on phosphorylation status. Additional studies indicated that ZmDHN13 could be phosphorylated by CKII (casein kinase II), when the NLS (nuclear localization signal) segment and the S-segment were core sequences. The overexpression of ZmDHN13 enhanced transgenic tobacco tolerance to oxidative stress, and the three conserved segments exhibited a cooperative effect in response to environmental stresses in vivo.
Collapse
|
14
|
Liu Y, Song Q, Li D, Yang X, Li D. Multifunctional Roles of Plant Dehydrins in Response to Environmental Stresses. FRONTIERS IN PLANT SCIENCE 2017; 8:1018. [PMID: 28649262 PMCID: PMC5465263 DOI: 10.3389/fpls.2017.01018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/29/2017] [Indexed: 05/18/2023]
Abstract
To respond to environmental changes, plants have developed complex mechanisms that allow them to rapidly perceive and respond to abiotic stresses. Late embryogenesis abundant (LEA) proteins are a large and diverse family that play important roles in environmental stress tolerance in plants. Dehydrins belong to group II LEA proteins, which are considered stress proteins involved in the formation of plants' protective reactions to dehydration. Some studies have demonstrated that dehydrins could binding metal ions or lipid vesicles. In vitro experiments revealed that dehydrins could protect the activity of enzyme from damage caused by environmental stress. Although many studies have been conducted to understand their roles in abiotic stresses, the molecular function of dehydrins is still unclear. In this review, to generate new ideas for elucidating dehydrins' functions, we highlight the functional characteristics of dehydrins to understand their roles under environmental stress in plants.
Collapse
Affiliation(s)
| | | | | | | | - Dequan Li
- *Correspondence: Dequan Li, Xinghong Yang,
| |
Collapse
|
15
|
Malik AA, Veltri M, Boddington KF, Singh KK, Graether SP. Genome Analysis of Conserved Dehydrin Motifs in Vascular Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:709. [PMID: 28523013 PMCID: PMC5415607 DOI: 10.3389/fpls.2017.00709] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/18/2017] [Indexed: 05/02/2023]
Abstract
Dehydrins, a large family of abiotic stress proteins, are defined by the presence of a mostly conserved motif known as the K-segment, and may also contain two other conserved motifs known as the Y-segment and S-segment. Using the dehydrin literature, we developed a sequence motif definition of the K-segment, which we used to create a large dataset of dehydrin sequences by searching the Pfam00257 dehydrin dataset and the Phytozome 10 sequences of vascular plants. A comprehensive analysis of these sequences reveals that lysine residues are highly conserved in the K-segment, while the amino acid type is often conserved at other positions. Despite the Y-segment name, the central tyrosine is somewhat conserved, but can be substituted with two other small aromatic amino acids (phenylalanine or histidine). The S-segment contains a series of serine residues, but in some proteins is also preceded by a conserved LHR sequence. In many dehydrins containing all three of these motifs the S-segment is linked to the K-segment by a GXGGRRKK motif (where X can be any amino acid), suggesting a functional linkage between these two motifs. An analysis of the sequences shows that the dehydrin architecture and several biochemical properties (isoelectric point, molecular mass, and hydrophobicity score) are dependent on each other, and that some dehydrin architectures are overexpressed during certain abiotic stress, suggesting that they may be optimized for a specific abiotic stress while others are involved in all forms of dehydration stress (drought, cold, and salinity).
Collapse
|
16
|
Yuan LL, Zhang M, Yan X, Bian YW, Zhen SM, Yan YM. Dynamic Phosphoproteome Analysis of Seedling Leaves in Brachypodium distachyon L. Reveals Central Phosphorylated Proteins Involved in the Drought Stress Response. Sci Rep 2016; 6:35280. [PMID: 27748408 PMCID: PMC5066223 DOI: 10.1038/srep35280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/16/2016] [Indexed: 01/18/2023] Open
Abstract
Drought stress is a major abiotic stress affecting plant growth and development. In this study, we performed the first dynamic phosphoproteome analysis of Brachypodium distachyon L. seedling leaves under drought stress for different times. A total of 4924 phosphopeptides, contained 6362 phosphosites belonging to 2748 phosphoproteins. Rigorous standards were imposed to screen 484 phosphorylation sites, representing 442 unique phosphoproteins. Comparative analyses revealed significant changes in phosphorylation levels at 0, 6, and 24 h under drought stress. The most phosphorylated proteins and the highest phosphorylation level occurred at 6 h. Venn analysis showed that the up-regulated phosphopeptides at 6 h were almost two-fold those at 24 h. Motif-X analysis identified the six motifs: [sP], [Rxxs], [LxRxxs], [sxD], [sF], and [TP], among which [LxRxxs] was also previously identified in B. distachyon. Results from molecular function and protein-protein interaction analyses suggested that phosphoproteins mainly participate in signal transduction, gene expression, drought response and defense, photosynthesis and energy metabolism, and material transmembrane transport. These phosphoproteins, which showed significant changes in phosphorylation levels, play important roles in signal transduction and material transmembrane transport in response to drought conditions. Our results provide new insights into the molecular mechanism of this plant’s abiotic stress response through phosphorylation modification.
Collapse
Affiliation(s)
- Lin-Lin Yuan
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Ming Zhang
- College of Life Science, Capital Normal University, 100048 Beijing, China.,College of Life Science, Heze University, 274015 Shandong, China
| | - Xing Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yan-Wei Bian
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Shou-Min Zhen
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yue-Ming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China
| |
Collapse
|
17
|
Sharma A, Kumar D, Kumar S, Rampuria S, Reddy AR, Kirti PB. Ectopic Expression of an Atypical Hydrophobic Group 5 LEA Protein from Wild Peanut, Arachis diogoi Confers Abiotic Stress Tolerance in Tobacco. PLoS One 2016; 11:e0150609. [PMID: 26938884 PMCID: PMC4777422 DOI: 10.1371/journal.pone.0150609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/16/2016] [Indexed: 11/23/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are a group of hydrophilic proteins, which accumulate in plants under varied stress conditions like drought, salinity, extreme temperatures and oxidative stress suggesting their role in the protection of plants against these stresses. A transcript derived fragment (TDF) corresponding to LEA gene, which got differentially expressed in wild peanut, Arachis diogoi against the late leaf spot pathogen, Phaeoisariopsis personata was used in this study. We have cloned its full length cDNA by RACE-PCR, which was designated as AdLEA. AdLEA belongs to the atypical Group 5C of LEA protein family as confirmed by sequence analysis. Group 5C LEA protein subfamily contains Pfam LEA_2 domain and is highly hydrophobic. In native conditions, expression of AdLEA was upregulated considerably upon hormonal and abiotic stress treatments emphasizing its role in abiotic stress tolerance. Subcellular localization studies showed that AdLEA protein is distributed in both nucleus and cytosol. Ectopic expression of AdLEA in tobacco resulted in enhanced tolerance of plants to dehydration, salinity and oxidative stress with the transgenic plants showing higher chlorophyll content and reduced lipid peroxidation as compared to wild type plants. Overexpressed AdLEA tobacco plants maintained better photosynthetic efficiency under drought conditions as demonstrated by chlorophyll fluorescence measurements. These plants showed enhanced transcript accumulation of some stress-responsive genes. Our study also elucidates that ROS levels were significantly reduced in leaves and stomatal guard cells of transgenic plants upon stress treatments. These results suggest that AdLEA confers multiple stress tolerance to plants, which make it a potential gene for genetic modification in plants.
Collapse
Affiliation(s)
- Akanksha Sharma
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Dilip Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
- Department of Postharvest Science of Fresh Produce, ARO, The Volcani Center, Bet Dagan, 50250, Israel
| | - Sumit Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sakshi Rampuria
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Attipalli R. Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | |
Collapse
|
18
|
Liu Y, Liang J, Sun L, Yang X, Li D. Group 3 LEA Protein, ZmLEA3, Is Involved in Protection from Low Temperature Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1011. [PMID: 27471509 PMCID: PMC4944394 DOI: 10.3389/fpls.2016.01011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/27/2016] [Indexed: 05/02/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are a family of small highly hydrophilic proteins that accumulate at the onset of seed desiccation and in response to adverse conditions such as drought, salinity, low temperature, or water deficit. In previous studies, we demonstrated that ZmLEA3 could enhance the transgenic tobacco tolerance to osmotic and oxidative stresses. Here, we demonstrated that the transcription of ZmLEA3 in the maize stems could be significantly induced by low temperature and osmotic stresses and by treatment with abscisic acid (ABA) and H2O2. Further study indicated that ZmLEA3 is a single copy gene in the maize genome. The ZmLEA3 protein could protect lactate dehydrogenase (LDH) activity at low temperatures. The overexpression of ZmLEA3 conferred tolerance to low-temperature stress to transgenic tobacco, yeast (GS115) and E. coli (BL21).
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai’an, China
- *Correspondence: Yang Liu,
| | - Jianan Liang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai’an, China
| | - Liping Sun
- Faculty of Chemistry and Chemical Engineering, Taishan Medical UniversityTai’an, China
| | - Xinghong Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai’an, China
| | - Dequan Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai’an, China
| |
Collapse
|
19
|
Kalemba EM, Litkowiec M. Functional characterization of a dehydrin protein from Fagus sylvatica seeds using experimental and in silico approaches. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:246-254. [PMID: 26492132 DOI: 10.1016/j.plaphy.2015.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/06/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
A strong increase in the level of dehydrin/response ABA transcripts expression reported from the 14th week after flowering coincident with the accumulation of 26 and 44 kDa dehydrins in the embryonic axes of developing beech (Fagus sylvatica L.) seeds. Both transcript and protein levels were strongly correlated with maturation drying. These results suggest that the 44-kDa dehydrin protein is a putative dimer of dehydrin/response ABA protein migrating as a 26-kDa protein. Dehydrins and dehydrin-like proteins form large oligomeric complexes under native conditions and are shown as several spots differing in pI through isoelectrofocusing analyses. Detailed prediction of specific sites accessible for various post-translational modifications (PTMs) in the dehydrin/response ABA protein sequence revealed sites specific to acetylation, amidation, glycosylation, methylation, myristoylation, nitrosylation, O-linked β-N-acetylglucosamination and Yin-O-Yang modification, palmitoylation, phosphorylation, sumoylation, sulfation, and ubiquitination. Thus, these results suggest that specific PTMs might play a role in switching dehydrin function or activity, water binding ability, protein-membrane interactions, transport and subcellular localization, interactions with targeted molecules, and protein stability. Despite the ability of two Cys residues to form a disulfide bond, -SH groups are likely not involved in dimer arrangement. His-rich regions and/or polyQ-tracts are potential candidates as spatial organization modulators. Dehydrin/response ABA protein is an intrinsically disordered protein containing low complexity regions. The lack of a fixed structure and exposition of amino acids on the surface of the protein structure enhances the accessibility to 40 predicted PTM sites, thereby facilitating dehydrin multifunctionality, which is discussed in the present study.
Collapse
Affiliation(s)
- Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland.
| | - Monika Litkowiec
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| |
Collapse
|
20
|
Calestani C, Moses M, Maestri E, Marmiroli N, Bray E. Constitutive Expression of the Barley Dehydrin Gene aba2 Enhances Arabidopsis Germination in Response to Salt Stress. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2015. [DOI: 10.4081/pb.2015.5826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dehydrins (DHNs) are a sub-family of the late embryogenesis abundant proteins generally induced during development of desiccation tolerance in seeds and water deficit or salinity stress in plants. Nevertheless, a detailed understanding of the DHNs function is still lacking. In this work we investigated the possible protective role during salt stress of a Dhn from Hordeum vulgare (L.), aba2. The coding sequence of the aba2 gene was constitutively expressed in transgenic lines of Arabidopsis thaliana (L.). During salt stress conditions germination rate, cotyledon expansion and greening were greatly improved in the transgenic lines as compared to the wild type. Between 98 and 100% of the transgenic seeds germinated after two weeks in media containing up to 250 mM NaCl, and 90% after 22 days at 300 mM NaCl. In conditions of 200 mM NaCl 93% of the transgenic cotyledons had greened after two weeks, outperforming the wild type by 45%. Our study provides further evidence that DHNs have an important role in salt stress tolerance. The production of plants constitutively expressing DHNs could be an effective strategy to improve plant breeding programs.
Collapse
|
21
|
Giarola V, Challabathula D, Bartels D. Quantification of expression of dehydrin isoforms in the desiccation tolerant plant Craterostigma plantagineum using specifically designed reference genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:103-15. [PMID: 26025524 DOI: 10.1016/j.plantsci.2015.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 05/18/2023]
Abstract
Craterostigma plantagineum is a desiccation tolerant resurrection plant. Many genes are induced during desiccation. Dehydrins are a group of dehydration-induced genes present in all higher plants. The current study aims at classifying the most abundantly expressed dehydrin genes from vegetative tissues of C. plantagineum and quantifying their expression. To identify variations between dehydrin isoforms at different stages of desiccation and rehydration by RT-qPCR, the target mRNA requires an accurate and reliable normalization. Previously we reported that RNAs from leaves and roots of C. plantagineum are not degraded during desiccation and subsequent rehydration thus allowing the use of RT-qPCR to test the stability of reference genes. The expression stability of eight candidate reference genes was tested in leaves, roots and callus. These genes were ranked according to their stability of gene expression using GeNorm(PLUS) and RefFinder. The most consistently expressed reference genes in each tissue were identified and used to normalize gene expression data. Dehydrin isoforms were divided in three groups based on the expression level during the desiccation process in three different tissues (leaves, roots and callus).
Collapse
Affiliation(s)
- Valentino Giarola
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Dinakar Challabathula
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany; Department of Life Sciences, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany.
| |
Collapse
|
22
|
Hernández-Sánchez IE, Maruri-López I, Ferrando A, Carbonell J, Graether SP, Jiménez-Bremont JF. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif. FRONTIERS IN PLANT SCIENCE 2015; 6:702. [PMID: 26442018 PMCID: PMC4561349 DOI: 10.3389/fpls.2015.00702] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/23/2015] [Indexed: 05/18/2023]
Abstract
The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization.
Collapse
Affiliation(s)
- Itzell E. Hernández-Sánchez
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, México
| | - Israel Maruri-López
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, México
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Juan Carbonell
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Steffen P. Graether
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Juan F. Jiménez-Bremont
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica ACSan Luis Potosí, México
- *Correspondence: Juan F. Jiménez-Bremont, Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, Camino a la Presa de San Jose No. 2055 Lomas 4a Seccion Cp 78216, AP 3-74 Tangamanga, San Luis Potosi, Mexico
| |
Collapse
|
23
|
Liu Y, Wang L, Jiang S, Pan J, Cai G, Li D. Group 5 LEA protein, ZmLEA5C, enhance tolerance to osmotic and low temperature stresses in transgenic tobacco and yeast. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:22-31. [PMID: 25240107 DOI: 10.1016/j.plaphy.2014.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/18/2014] [Indexed: 05/08/2023]
Abstract
Group 5 LEA (Late Embryogenesis Abundant) proteins contain a significantly higher proportion of hydrophobic residues but lack significant signature motifs or consensus sequences. This group is considered as an atypical group of LEA proteins. Up to now, there is little known about group 5C LEA proteins in maize. Here, we identified a novel group 5C LEA protein from maize. The accumulation of transcripts demonstrated that ZmLEA5C displayed similar induced characteristics in leaves and roots. Transcription of ZmLEA5C could be induced by low temperature, osmotic and oxidative stress and some signaling molecules, such as abscisic acid (ABA), salicylic acid (SA) and methyl jasmonate (MeJA). However, transcription of ZmLEA5C was significantly inhibited by high salinity. Further study indicated that the ZmLEA5C protein could be phosphorylated by the protein kinase CKII. ZmLEA5C could protect the activity of LDH under water deficit and low temperature stresses. Overexpression of ZmLEA5C conferred to transgenic tobacco (Nicotiana benthamiana) and yeast (GS115) tolerance to osmotic and low temperature stresses.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Li Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shanshan Jiang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiaowen Pan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guohua Cai
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Dequan Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
24
|
Zhang M, Ma CY, Lv DW, Zhen SM, Li XH, Yan YM. Comparative phosphoproteome analysis of the developing grains in bread wheat (Triticum aestivum L.) under well-watered and water-deficit conditions. J Proteome Res 2014; 13:4281-97. [PMID: 25145454 DOI: 10.1021/pr500400t] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wheat (Triticum aestivum), one of the most important cereal crops, is often threatened by drought. In this study, water deficit significantly reduced the height of plants and yield of grains. To explore further the effect of drought stress on the development and yield of grains, we first performed a large scale phosphoproteome analysis of developing grains in wheat. A total of 590 unique phosphopeptides, representing 471 phosphoproteins, were identified under well-watered conditions. Motif-X analysis showed that four motifs were enriched, including [sP], [Rxxs], [sDxE], and [sxD]. Through comparative phosphoproteome analysis between well-watered and water-deficit conditions, we found that 63 unique phosphopeptides, corresponding to 61 phosphoproteins, showed significant changes in phosphorylation level (≥2-fold intensities). Functional analysis suggested that some of these proteins may be involved in signal transduction, embryo and endosperm development of grains, and drought response and defense under water-deficit conditions. Moreover, we also found that some chaperones may play important roles in protein refolding or degradation when the plant is subjected to water stress. These results provide a detailed insight into the stress response and defense mechanisms of developmental grains at the phosphoproteome level. They also suggested some potential candidates for further study of transgenosis and drought stress as well as incorporation into molecular breeding for drought resistance.
Collapse
Affiliation(s)
- Ming Zhang
- College of Life Science, Capital Normal University , 100048 Beijing, China
| | | | | | | | | | | |
Collapse
|
25
|
Zhang M, Lv D, Ge P, Bian Y, Chen G, Zhu G, Li X, Yan Y. Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). J Proteomics 2014; 109:290-308. [PMID: 25065648 DOI: 10.1016/j.jprot.2014.07.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Drought is a major form of abiotic stress that significantly affects plant growth and development. In this study, we performed the first phosphoproteome analysis of seedling leaves from two bread wheat cultivars (Hanxuan 10 and Ningchun 47) subjected to drought stress. As a result, a total of 191 and 251 unique phosphopeptides, representing 173 and 227 phosphoproteins in two cultivars, respectively, were identified as being significant changes in phosphorylation level (SCPL) under drought stress. Through the comparison of SCPL phosphoproteins between two cultivars, 31 common SCPL phosphoproteins were found in both cultivars. Function analysis showed that the SCPL phosphoproteins in the two cultivars are mainly involved in three biological processes: RNA transcription/processing, stress/detoxification/defense, and signal transduction. Further analyses revealed that some SCPL phosphoproteins may play key roles in signal transduction and the signaling cascade under drought stress. Furthermore, some phosphoproteins related to drought tolerance and osmotic regulation exhibited significant phosphorylation changes. This study used a series of bioinformatics tools to profile the phosphorylation status of wheat seedling leaves under drought stress with greater accuracy. BIOLOGICAL SIGNIFICANCE Drought is of the most studied abiotic stresses, because it severely restricts the development and yield of plants. In this study, large numbers of stress-related phosphoproteins are identified from the two bread wheat cultivars. These phosphoproteins contribute to signal transduction, osmotic regulation and ROS scavenging under water stress. This work provides a detailed insight into the mechanisms of drought response and defense in bread wheat from the perspective of phosphoproteomics, and identifies some important drought-tolerant candidates for further transgenosis study and incorporation into the breeding of resistant cultivars.
Collapse
Affiliation(s)
- Ming Zhang
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Dongwen Lv
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Pei Ge
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Yanwei Bian
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Guanxing Chen
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Gengrui Zhu
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Xiaohui Li
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| |
Collapse
|
26
|
A systematic proteomic analysis of NaCl-stressed germinating maize seeds. Mol Biol Rep 2014; 41:3431-43. [PMID: 24700167 DOI: 10.1007/s11033-014-3205-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
Abstract
Salt (NaCl) is a common physiological stressor of plants. To better understand how germinating seeds respond to salt stress, we examined the changes that occurred in the proteome of maize seeds during NaCl-treated germination. Phenotypically, salt concentrations less than 0.2 M appear to delay germination, while higher concentrations disrupt development completely, leading to seed death. The identities of 96 proteins with expression levels altered by NaCl-incubation were established using 2-DE-MALDI-TOF-MS and 2-DE-MALDI-TOF-MS/MS. Of these 96 proteins, 79 were altered greater than twofold when incubated with a 0.2 M salt solution, while 51 were altered when incubated with a 0.1 M salt solution. According to their functional annotations in the Swiss-Prot protein-sequence databases, these proteins are mainly involved in seed storage, energy metabolism, stress response, and protein metabolism. Notably, the expression of proteins that respond to abscisic acid signals increased in response to salt stress. The results of this study provide important clues as to how NaCl stresses the physiology of germinating maize seeds.
Collapse
|
27
|
Fíla J, Čapková V, Honys D. Phosphoproteomic studies in Arabidopsis and tobacco male gametophytes. Biochem Soc Trans 2014; 42:383-7. [PMID: 24646248 DOI: 10.1042/bst20130249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Mature pollen represents an extremely resistant quiescent structure surrounded by a tough cell wall. After its hydration on stigma papillary cells, pollen tube growth starts rapidly. Massive metabolic changes are likely to be accompanied by changes in protein phosphorylation. Protein phosphorylation belongs among the most rapid post-translational modifications. To date, only Arabidopsis thaliana and tobacco (Nicotiana tabacum) mature pollen have been subjected to phosphoproteomic studies in order to identify the phosphoproteins present. In the present mini-review, Arabidopsis and tobacco datasets were compared with each other. The representation of the O-phosphorylated amino acids was compared between these two datasets, and the putative pollen-specific or pollen-abundant phosphopeptides were highlighted. Finally, the phosphorylation sites common for both Arabidopsis and tobacco phosphoproteins are listed as well as the phosphorylation motifs identified.
Collapse
Affiliation(s)
| | - Věra Čapková
- *Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Praha 6, Czech Republic
| | - David Honys
- *Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Praha 6, Czech Republic
| |
Collapse
|
28
|
Sasaki K, Christov NK, Tsuda S, Imai R. Identification of a novel LEA protein involved in freezing tolerance in wheat. PLANT & CELL PHYSIOLOGY 2014; 55:136-47. [PMID: 24265272 DOI: 10.1093/pcp/pct164] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are a family of hyper-hydrophilic proteins that accumulate in response to cellular dehydration. Originally identified as plant proteins associated with seed desiccation tolerance, LEA proteins have been identified in a wide range of organisms such as invertebrates and microorganisms. LEA proteins are thought to protect proteins and biomembranes under water-deficit conditions. Here, we characterized WCI16, a wheat (Triticum aestivum) protein that belongs to a class of plant proteins of unknown function, and provide evidence that WCI16 shares common features with LEA proteins. WCI16 was induced during cold acclimation in winter wheat. Based on its amino acid sequence, WCI16 is highly hydrophilic, like LEA proteins, despite having no significant sequence similarity to any of the known classes of LEA proteins. Recombinant WCI16 protein was soluble after boiling, and (1)H-nuclear magnetic resonance (NMR) spectroscopy revealed that the structure of WCI16 is random and has no hydrophobic regions. WCI16 exhibited in vitro cryoprotection of the freeze-labile enzyme l-lactate dehydrogenase as well as double-stranded DNA binding activity, suggesting that WCI16 may protect both proteins and DNA during environmental stresses. The biological relevance of these activities was supported by the subcellular localization of a green fluorescent protein (GFP)-fused WCI16 protein in the nucleus and cytoplasm. Heterologous expression of WCI16 in Arabidopsis (Arabidopsis thaliana) plants conferred enhanced freezing tolerance. Taken together, our results indicate that WCI16 represents a novel class of LEA proteins and is involved in freezing tolerance.
Collapse
Affiliation(s)
- Kentaro Sasaki
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Hitsujigaoka 1, Toyohira-ku, Sapporo, 062-8555 Japan
| | | | | | | |
Collapse
|
29
|
Farias-Soares FL, Burrieza HP, Steiner N, Maldonado S, Guerra MP. Immunoanalysis of dehydrins in Araucaria angustifolia embryos. PROTOPLASMA 2013; 250:911-918. [PMID: 23263687 DOI: 10.1007/s00709-012-0474-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
The aim of this study was to describe the dehydrin content of mature Araucaria angustifolia embryos, a species of endangered and economically important conifers, native to southern Brazil, northeastern Argentina, and eastern Paraguay. The A. angustifolia seeds have been categorized as recalcitrant. Dehydrins were studied by western blot analysis and in situ immunolocalization microscopy using antibodies raised against the K segment, a highly conserved lysine-rich 15-amino acid sequence extensively used to recognize proteins immunologically related to the dehydrin family. Western blot analysis of the heat-stable protein fraction, as estimated by 15 % SDS-PAGE, revealed three main bands of approximately 20-, 26-, and 29-kDa; when 17.5 % SDS-PAGE was used, each band resolved into two other bands. Two thermosensitive dehydrin bands of around 16 and 35 kDa were common to the axis and cotyledons, and another thermosensitive band, with molecular mass of approximately 10 kDa, was present in the cotyledons only. Following alkaline phosphatase (AP) treatment, a gel mobility shift was detected for each one of the four main bands that can be due to phosphorylation. Dehydrins were detected in all axis and cotyledon tissues using in situ immunolocalization microscopy. At the subcellular level, dehydrins were immunolocalized in the nuclei, protein bodies, and microbodies. In the nucleus, dehydrins were found to be associated with chromatin. We concluded that the gel mobility shift for the four main bands (probably due to phosphorylation), the presence of thermosensitive bands, and the specific localizations in nuclei and protein bodies provide key starting points to understand the function of dehydrins in the embryo cells of this species.
Collapse
Affiliation(s)
- Francine Lunardi Farias-Soares
- Plant Developmental Physiology and Genetics Laboratory Graduate Program in Plant Genetic Resources, Federal University of Santa Catarina, 88034-000 Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
30
|
Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica. Mol Biol Rep 2012; 39:10759-68. [DOI: 10.1007/s11033-012-1968-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
|
31
|
Yang Y, He M, Zhu Z, Li S, Xu Y, Zhang C, Singer SD, Wang Y. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC PLANT BIOLOGY 2012; 12:140. [PMID: 22882870 PMCID: PMC3460772 DOI: 10.1186/1471-2229-12-140] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/02/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Dehydrins (DHNs) protect plant cells from desiccation damage during environmental stress, and also participate in host resistance to various pathogens. In this study, we aimed to identify and characterize the DHN gene families from Vitis vinifera and wild V. yeshanensis, which is tolerant to both drought and cold, and moderately resistant to powdery mildew. RESULTS Four DHN genes were identified in both V. vinifera and V. yeshanensis, which shared a high sequence identity between the two species but little homology between the genes themselves. These genes were designated DHN1, DHN2, DHN3 and DHN4. All four of the DHN proteins were highly hydrophilic and were predicted to be intrinsically disordered, but they differed in their isoelectric points, kinase selectivities and number of functional motifs. Also, the expression profiles of each gene differed appreciably from one another. Grapevine DHN1 was not expressed in vegetative tissues under normal growth conditions, but was induced by drought, cold, heat, embryogenesis, as well as the application of abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA). It was expressed earlier in V. yeshanensis under drought conditions than in V. vinifera, and also exhibited a second round of up-regulation in V. yeshanensis following inoculation with Erysiphe necator, which was not apparent in V. vinifera. Like DHN1, DHN2 was induced by cold, heat, embryogenesis and ABA; however, it exhibited no responsiveness to drought, E. necator infection, SA or MeJA, and was also expressed constitutively in vegetative tissues under normal growth conditions. Conversely, DHN3 was only expressed during seed development at extremely low levels, and DHN4 was expressed specifically during late embryogenesis. Neither DHN3 nor DHN4 exhibited responsiveness to any of the treatments carried out in this study. Interestingly, the presence of particular cis-elements within the promoter regions of each gene was positively correlated with their expression profiles. CONCLUSIONS The grapevine DHN family comprises four divergent members. While it is likely that their functions overlap to some extent, it seems that DHN1 provides the main stress-responsive function. In addition, our results suggest a close relationship between expression patterns, physicochemical properties, and cis-regulatory elements in the promoter regions of the DHN genes.
Collapse
Affiliation(s)
- Yazhou Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingyang He
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ziguo Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuxiu Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaohong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Stacy D Singer
- Department of Agricultural, Food and Nutritional Science, 4–10 Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Yuejin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
32
|
Ruibal C, Salamó IP, Carballo V, Castro A, Bentancor M, Borsani O, Szabados L, Vidal S. Differential contribution of individual dehydrin genes from Physcomitrella patens to salt and osmotic stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 190:89-102. [PMID: 22608523 DOI: 10.1016/j.plantsci.2012.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/16/2012] [Accepted: 03/28/2012] [Indexed: 05/02/2023]
Abstract
The moss Physcomitrella patens can withstand extreme environmental conditions including drought and salt stress. Tolerance to dehydration in mosses is thought to rely on efficient limitation of stress-induced cell damage and repair of cell injury upon stress relief. Dehydrin proteins (DHNs) are part of a conserved cell protecting mechanism in plants although their role in stress tolerance is not well understood. Four DHNs and two DHN-like proteins were identified in the predicted proteome of P. patens. Expression of PpDHNA and PpDHNB was induced by salt and osmotic stress and controlled by abscisic acid. Subcellular localization of the encoded proteins suggested that these dehydrins are localized in cytosol and accumulate near membranes during stress. Comparative analysis of dhnA and dhnB targeted knockout mutants of P. patens revealed that both genes play a role in cellular protection during salt and osmotic stress, although PpDHNA has a higher contribution to stress tolerance. Overexpression of PpDHNA and PpDHNB genes in transgenic Arabidopsis improved rosette and root growth in stress conditions, although PpDHNA was more efficient in this role. These results suggest that specific DHNs contribute considerably to the high stress tolerance of mosses and offer novel tools for genetic engineering stress tolerance of higher plants.
Collapse
Affiliation(s)
- Cecilia Ruibal
- Laboratorio de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400 Montevideo, Uruguay.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lin CH, Peng PH, Ko CY, Markhart AH, Lin TY. Characterization of a novel Y2K-type dehydrin VrDhn1 from Vigna radiata. PLANT & CELL PHYSIOLOGY 2012; 53:930-42. [PMID: 22440330 DOI: 10.1093/pcp/pcs040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A novel dehydrin gene (VrDhn1) was isolated from an embryo cDNA library of Vigna radiata (L.) Wilczek (mungbean) variety VC1973A. The intronless VrDhn1 gene encodes a protein belonging to the Y(2)K-type dehydrin family. VrDhn1 protein accumulated in embryos and cotyledons during seed maturation and disappeared 2 days after seed imbibition (DAI). The expression of VrDhn1 mRNA and accumulation of VrDhn1 protein were at high levels in mature seeds, but neither mRNA nor protein was detected in mungbean vegetative tissues under normal growth conditions. The VrDhn1 mRNA level was extremely high in mature seeds and decreased to ∼30% at 1 DAI, and was not detectable at ~7 DAI. Tissue dehydration, salinity and exogenous ABA markedly induced VrDhn1 transcripts in plants as measured by quantitative real-time reverse transcription-PCR (qRT-PCR). VrDhn1 protein was not detected using immunoblots in seedlings under stress treatments. In mature seeds or 1 DAI seedlings, VrDhn1 proteins were immunolocalized in the nucleus and cytoplasm. VrDhn1 exhibited low affinity for non-specific interaction with DNA using electrophoretic mobility shift assays (EMSAs), and the exogenous addition of Zn(2+) or Ni(2+) stimulated interaction. The His-tagged VrDhn1 (30.17 kDa) protein showed a molecular mass of 63.1 kDa on gel filtration, suggesting a dimer form. This is the first report showing that a Y(2)K-type VrDhn1 enters the nucleus and interacts with DNA during seed maturation.
Collapse
Affiliation(s)
- Chia-Hui Lin
- Institute of Bioinformatics and Structural Biology & Department of Life Science, National Tsing Hua University, 101 Sec 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | | | | | | | | |
Collapse
|
34
|
Liu CC, Liu CF, Wang HX, Shen ZY, Yang CP, Wei ZG. Identification and analysis of phosphorylation status of proteins in dormant terminal buds of poplar. BMC PLANT BIOLOGY 2011; 11:158. [PMID: 22074553 PMCID: PMC3234192 DOI: 10.1186/1471-2229-11-158] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 11/11/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Although there has been considerable progress made towards understanding the molecular mechanisms of bud dormancy, the roles of protein phosphorylation in the process of dormancy regulation in woody plants remain unclear. RESULTS We used mass spectrometry combined with TiO₂ phosphopeptide-enrichment strategies to investigate the phosphoproteome of dormant terminal buds (DTBs) in poplar (Populus simonii × P. nigra). There were 161 unique phosphorylated sites in 161 phosphopeptides from 151 proteins; 141 proteins have orthologs in Arabidopsis, and 10 proteins are unique to poplar. Only 34 sites in proteins in poplar did not match well with the equivalent phosphorylation sites of their orthologs in Arabidopsis, indicating that regulatory mechanisms are well conserved between poplar and Arabidopsis. Further functional classifications showed that most of these phosphoproteins were involved in binding and catalytic activity. Extraction of the phosphorylation motif using Motif-X indicated that proline-directed kinases are a major kinase group involved in protein phosphorylation in dormant poplar tissues. CONCLUSIONS This study provides evidence about the significance of protein phosphorylation during dormancy, and will be useful for similar studies on other woody plants.
Collapse
Affiliation(s)
- Chang-Cai Liu
- State Key Laboratory of Forest Genetics and Tree Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
- Laboratory for Chemical Defence and Microscale Analysis, P.O. Box 3, Zhijiang 443200, China
| | - Chang-Fu Liu
- Shenyang Agricultural University, Dongling Road 120, Shenyang, Liaoning 110866, China
| | - Hong-Xia Wang
- Institute of Basic Medical Sciences, National Center for Biomedical Analysis, 27 Taiping Road, Beijing 100850, China
| | - Zhi-Ying Shen
- Daqing Branch, Harbin Medical University, Daqing 163319, China
| | - Chuan-Ping Yang
- State Key Laboratory of Forest Genetics and Tree Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| | - Zhi-Gang Wei
- State Key Laboratory of Forest Genetics and Tree Breeding (Northeast Forestry University), 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
35
|
Rahman LN, Smith GST, Bamm VV, Voyer-Grant JAM, Moffatt BA, Dutcher JR, Harauz G. Phosphorylation of Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 facilitates cation-induced conformational changes and actin assembly. Biochemistry 2011; 50:9587-604. [PMID: 21970344 DOI: 10.1021/bi201205m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Group 2 late embryogenesis abundant (LEA) proteins, also known as dehydrins, are intrinsically disordered proteins that are expressed in plants experiencing extreme environmental conditions such as drought or low temperatures. These proteins are characterized by the presence of at least one conserved, lysine-rich K-segment and sometimes by one or more serine-rich S-segments that are phosphorylated. Dehydrins may stabilize proteins and membrane structures during environmental stress and can sequester and scavenge metal ions. Here, we investigate how the conformations of two dehydrins from Thellungiella salsuginea, denoted as TsDHN-1 (acidic) and TsDHN-2 (basic), are affected by pH, interactions with cations and membranes, and phosphorylation. Both TsDHN-1 and TsDHN-2 were expressed as SUMO fusion proteins for in vitro phosphorylation by casein kinase II (CKII), and structural analysis by circular dichroism and attenuated total reflection-Fourier transform infrared spectroscopy. We show that the polyproline II conformation can be induced in the dehydrins by their environmental conditions, including changes in the concentration of divalent cations such as Ca(2+). The assembly of actin by these dehydrins was assessed by sedimentation assays and viewed by transmission electron and atomic force microscopy. Phosphorylation allowed both dehydrins to polymerize actin filaments. These results support the hypothesis that dehydrins stabilize the cytoskeleton under stress conditions and further that phosphorylation may be an important feature of this stabilization.
Collapse
Affiliation(s)
- Luna N Rahman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Su L, Zhao CZ, Bi YP, Wan SB, Xia H, Wang XJ. Isolation and expression analysis of LEA genes in peanut (Arachis hypogaea L.). J Biosci 2011; 36:223-8. [PMID: 21654076 DOI: 10.1007/s12038-011-9058-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Late embryogenesis abundant (LEA) protein family is a large protein family that includes proteins accumulated at late stages of seed development or in vegetative tissues in response to drought, salinity, cold stress and exogenous application of abscisic acid. In order to isolate peanut genes, an expressed sequence tag (EST) sequencing project was carried out using a peanut seed cDNA library. From 6258 ESTs, 19 LEA-encoding genes were identified and could be classified into eight distinct groups. Expression of these genes in seeds at different developmental stages and in various peanut tissues was analysed by semi-quantitative RT-PCR. The results showed that expression levels of LEA genes were generally high in seeds. Some LEA protein genes were expressed at a high level in non-seed tissues such as root, stem, leaf, flower and gynophore. These results provided valuable information for the functional and regulatory studies on peanut LEA genes.
Collapse
Affiliation(s)
- Lei Su
- College of Life Science, Shandong Normal University, Jinan 250014, The People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. PLANT SIGNALING & BEHAVIOR 2011; 6:1503-9. [PMID: 21897131 PMCID: PMC3256378 DOI: 10.4161/psb.6.10.17088] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 05/18/2023]
Abstract
Dehydrins (DHNs), or group 2 LEA (Late Embryogenesis Abundant) proteins, play a fundamental role in plant response and adaptation to abiotic stresses. They accumulate typically in maturing seeds or are induced in vegetative tissues following salinity, dehydration, cold, and freezing stress. The generally accepted classification of dehydrins is based on their structural features, such as the presence of conserved sequences, designated as Y, S, and K segments. The K segment representing a highly conserved 15 amino acid motif forming amphiphilic α-helix is especially important since it has been found in all dehydrins. Since more than 20 years, they are thought to play an important protective role during cellular dehydration but their precise function remains unclear. This review outlines the current status of the progress made towards the structural, physico-chemical and functional characterization of plant dehydrins and how these features could be exploited in improving stress tolerance in plants.
Collapse
Affiliation(s)
- Moez Hanin
- Laboratory of Plant Protection and Improvement, Centre of Biotechnology of Sfax, Institute of Biotechnology, University of Sfax, Sfax, Tunisia.
| | | | | | | | | | | |
Collapse
|
38
|
Rinalducci S, Egidi MG, Mahfoozi S, Jahanbakhsh Godehkahriz S, Zolla L. The influence of temperature on plant development in a vernalization-requiring winter wheat: A 2-DE based proteomic investigation. J Proteomics 2011; 74:643-59. [DOI: 10.1016/j.jprot.2011.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/30/2011] [Accepted: 02/02/2011] [Indexed: 12/25/2022]
|
39
|
|
40
|
Ritsema T, van Zanten M, Leon-Reyes A, Voesenek LACJ, Millenaar FF, Pieterse CMJ, Peeters AJM. Kinome profiling reveals an interaction between jasmonate, salicylate and light control of hyponastic petiole growth in Arabidopsis thaliana. PLoS One 2010; 5:e14255. [PMID: 21170386 PMCID: PMC2999534 DOI: 10.1371/journal.pone.0014255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 11/17/2010] [Indexed: 12/13/2022] Open
Abstract
Plants defend themselves against infection by biotic attackers by producing distinct phytohormones. Especially jasmonic acid (JA) and salicylic acid (SA) are well known defense-inducing hormones. Here, the effects of MeJA and SA on the Arabidopsis thaliana kinome were monitored using PepChip arrays containing kinase substrate peptides to analyze posttranslational interactions in MeJA and SA signaling pathways and to test if kinome profiling can provide leads to predict posttranslational events in plant signaling. MeJA and SA mediate differential phosphorylation of substrates for many kinase families. Also some plant specific substrates were differentially phosphorylated, including peptides derived from Phytochrome A, and Photosystem II D protein. This indicates that MeJA and SA mediate cross-talk between defense signaling and light responses. We tested the predicted effects of MeJA and SA using light-mediated upward leaf movement (differential petiole growth also called hyponastic growth). We found that MeJA, infestation by the JA-inducing insect herbivore Pieris rapae, and SA suppressed low light-induced hyponastic growth. MeJA and SA acted in a synergistic fashion via two (partially) divergent signaling routes. This work demonstrates that kinome profiling using PepChip arrays can be a valuable complementary ∼omics tool to give directions towards predicting behavior of organisms after a given stimulus and can be used to obtain leads for physiological relevant phenomena in planta.
Collapse
Affiliation(s)
- Tita Ritsema
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Shih MD, Huang LT, Wei FJ, Wu MT, Hoekstra FA, Hsing YIC. OsLEA1a, a new Em-like protein of cereal plants. PLANT & CELL PHYSIOLOGY 2010; 51:2132-2144. [PMID: 21097897 DOI: 10.1093/pcp/pcq172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proteins abundant in seeds during the late stages of development, late embryogenesis abundant (LEA) proteins, are associated with desiccation tolerance. More than 100 of the group I LEA genes, also termed Em genes, have been identified from plants, bacteria and animals. The wide distribution indicates the functional importance of these genes. In the present study, we characterized a novel Em-like gene, OsLEA1a of rice (Oryza sativa). The encoded OsLEA1a protein has an N-terminal sequence similar to that of other plant Em proteins but lacks a 20-mer motif that is the most significant feature of typical Em proteins. The location of the sole intron indicates that the second exon of OsLEA1a is the mutated product of a typical Em gene. Transcriptome analysis revealed OsLEA1a mainly expressed in embryos, with no or only a few transcripts in osmotic stress-treated vegetative tissues. Structural analysis revealed that the OsLEA1a protein adopts high amounts of disordered conformations in solution and undergoes desiccation-induced conformational changes. Macromolecular interaction studies revealed that OsLEA1a protein interacts with non-reducing sugars and phospholipids but not poly-l-lysine. Thus, although the OsLEA1a protein lost its 20-mer motif, it is still involved in the formation of bioglasses with non-reducing sugars or plasma membrane. However, the protein does not function as a chaperone as do other groups of hydrophilic LEA proteins. The orthologs of the OsLEA1a gene had been identified from various grasses but not in dicot plants. Genetic analysis indicated that rice OsLEA1a locates at a 193 kb segment in chromosome 1 and is conserved in several published cereal genomes. Thus, the ancestor of Em-like genes might have evolved after the divergence of monocot plants.
Collapse
Affiliation(s)
- Ming-Der Shih
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
42
|
Capoano CA, Wettstein R, Kun A, Geisinger A. Spats 1 (Srsp1) is differentially expressed during testis development of the rat. Gene Expr Patterns 2010; 10:1-8. [DOI: 10.1016/j.gep.2009.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 11/19/2009] [Accepted: 11/24/2009] [Indexed: 11/28/2022]
|
43
|
Koag MC, Wilkens S, Fenton RD, Resnik J, Vo E, Close TJ. The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. PLANT PHYSIOLOGY 2009; 150:1503-14. [PMID: 19439573 PMCID: PMC2705017 DOI: 10.1104/pp.109.136697] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 05/06/2009] [Indexed: 05/18/2023]
Abstract
Dehydrins (DHNs; late embryogenesis abundant D11 family) are a family of intrinsically unstructured plant proteins that accumulate in the late stages of seed development and in vegetative tissues subjected to water deficit, salinity, low temperature, or abscisic acid treatment. We demonstrated previously that maize (Zea mays) DHNs bind preferentially to anionic phospholipid vesicles; this binding is accompanied by an increase in alpha-helicity of the protein, and adoption of alpha-helicity can be induced by sodium dodecyl sulfate. All DHNs contain at least one "K-segment," a lysine-rich 15-amino acid consensus sequence. The K-segment is predicted to form a class A2 amphipathic alpha-helix, a structural element known to interact with membranes and proteins. Here, three K-segment deletion proteins of maize DHN1 were produced. Lipid vesicle-binding assays revealed that the K-segment is required for binding to anionic phospholipid vesicles, and adoption of alpha-helicity of the K-segment accounts for most of the conformational change of DHNs upon binding to anionic phospholipid vesicles or sodium dodecyl sulfate. The adoption of structure may help stabilize cellular components, including membranes, under stress conditions.
Collapse
Affiliation(s)
- Myong-Chul Koag
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, California 92521-0124, USA
| | | | | | | | | | | |
Collapse
|
44
|
Xu P, Xiang Y, Zhu H, Xu H, Zhang Z, Zhang C, Zhang L, Ma Z. Wheat cryptochromes: subcellular localization and involvement in photomorphogenesis and osmotic stress responses. PLANT PHYSIOLOGY 2009; 149:760-74. [PMID: 19052154 PMCID: PMC2633824 DOI: 10.1104/pp.108.132217] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 11/28/2008] [Indexed: 05/18/2023]
Abstract
Cryptochromes (CRYs) are blue light receptors important for plant growth and development. Comprehensive information on monocot CRYs is currently only available for rice (Oryza sativa). We report here the molecular and functional characterization of two CRY genes, TaCRY1a and TaCRY2, from the monocot wheat (Triticum aestivum). The expression of TaCRY1a was most abundant in seedling leaves and barely detected in roots and germinating embryos under normal growth conditions. The expression of TaCRY2 in germinating embryos was equivalent to that in leaves and much higher than the TaCRY1a counterpart. Transition from dark to light slightly affected the expression of TaCRY1a and TaCRY2 in leaves, and red light produced a stronger induction of TaCRY1a. Treatment of seedlings with high salt, polyethylene glycol, and abscisic acid (ABA) up-regulated TaCRY2 in roots and germinating embryos. TaCRY1a displays a light-responsive nucleocytoplasmic shuttling pattern similar to that of Arabidopsis (Arabidopsis thaliana) CRY1, contains nuclear localization domains in both the N and C termini, and includes information for nuclear export in its N-terminal domain. TaCRY2 was localized to the nucleus in the dark. Expression of TaCRY1a-green fluorescent protein or TaCRY2-green fluorescent protein in Arabidopsis conferred a shorter hypocotyl phenotype under blue light. These transgenic Arabidopsis plants showed higher sensitivity to high-salt, osmotic stress, and ABA treatment during germination and postgermination development, and they displayed altered expression of stress/ABA-responsive genes. The primary root growth in transgenic seedlings was less tolerant of ABA. These observations indicate that TaCRY1 and TaCRY2 might be involved in the ABA signaling pathway in addition to their role in primary blue light signal transduction.
Collapse
Affiliation(s)
- Pei Xu
- Applied Plant Genomics Laboratory, Crop Genomics and Bioinformatics Center, Nanjing Agricultural University, Jiangsu 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Carjuzaa P, Castellión M, Distéfano AJ, del Vas M, Maldonado S. Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos. PROTOPLASMA 2008; 233:149-56. [PMID: 18648732 DOI: 10.1007/s00709-008-0300-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 11/17/2007] [Indexed: 05/16/2023]
Abstract
The aim of this study was to characterize the dehydrin content in mature embryos of two quinoa cultivars, Sajama and Baer La Unión. Cultivar Sajama grows at 3600-4000 m altitude and is adapted to the very arid conditions characteristic of the salty soils of the Bolivian Altiplano, with less than 250 mm of annual rain and a minimum temperature of -1 degrees C. Cultivar Baer La Unión grows at sea-level regions of central Chile and is adapted to more humid conditions (800 to 1500 mm of annual rain), fertile soils, and temperatures above 5 degrees C. Western blot analysis of embryo tissues from plants growing under controlled greenhouse conditions clearly revealed the presence of several dehydrin bands (at molecular masses of approximately 30, 32, 50, and 55 kDa), which were common to both cultivars, although the amount of the 30 and 32 kDa bands differed. Nevertheless, when grains originated from their respective natural environments, three extra bands (at molecular masses of approximately 34, 38, and 40 kDa), which were hardly visible in Sajama, and another weak band (at a molecular mass of approximately 28 kDa) were evident in Baer La Unión. In situ immunolocalization microscopy detected dehydrin-like proteins in all axis and cotyledon tissues. At the subcellular level, dehydrins were detected in the plasma membrane, cytoplasm and nucleus. In the cytoplasm, dehydrins were found associated with mitochondria, rough endoplasmic reticulum cisternae, and proplastid membranes. The presence of dehydrins was also recognized in the matrix of protein bodies. In the nucleus, dehydrins were associated with the euchromatin. Upon examining dehydrin composition and subcellular localization in two quinoa cultivars belonging to highly contrasting environments, we conclude that most dehydrins detected here were constitutive components of the quinoa seed developmental program, but some of them (specially the 34, 38, and 40 kDa bands) may reflect quantitative molecular differences associated with the adaptation of both cultivars to contrasting environmental conditions.
Collapse
Affiliation(s)
- P Carjuzaa
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires
| | | | | | | | | |
Collapse
|
46
|
Bønsager BC, Finnie C, Roepstorff P, Svensson B. Spatio-temporal changes in germination and radical elongation of barley seeds tracked by proteome analysis of dissected embryo, aleurone layer, and endosperm tissues. Proteomics 2007; 7:4528-40. [DOI: 10.1002/pmic.200700766] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Abstract
Research into late embryogenesis abundant (LEA) proteins has been ongoing for more than 20 years but, although there is a strong association of LEA proteins with abiotic stress tolerance particularly dehydration and cold stress, for most of that time, their function has been entirely obscure. After their initial discovery in plant seeds, three major groups (numbered 1, 2 and 3) of LEA proteins have been described in a range of different plants and plant tissues. Homologues of groups 1 and 3 proteins have also been found in bacteria and in certain invertebrates. In this review, we present some new data, survey the biochemistry, biophysics and bioinformatics of the LEA proteins and highlight several possible functions. These include roles as antioxidants and as membrane and protein stabilisers during water stress, either by direct interaction or by acting as molecular shields. Along with other hydrophilic proteins and compatible solutes, LEA proteins might also serve as "space fillers" to prevent cellular collapse at low water activities. This multifunctional capacity of the LEA proteins is probably attributable in part to their structural plasticity, as they are largely lacking in secondary structure in the fully hydrated state, but can become more folded during water stress and/or through association with membrane surfaces. The challenge now facing researchers investigating these enigmatic proteins is to make sense of the various in vitro defined functions in the living cell: Are the LEA proteins truly multi-talented, or are they still just misunderstood?
Collapse
|
48
|
Tunnacliffe A, Wise MJ. The continuing conundrum of the LEA proteins. Naturwissenschaften 2007; 94:791-812. [PMID: 17479232 DOI: 10.1007/s00114-007-0254-y] [Citation(s) in RCA: 468] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 03/27/2007] [Accepted: 04/11/2007] [Indexed: 11/25/2022]
Abstract
Research into late embryogenesis abundant (LEA) proteins has been ongoing for more than 20 years but, although there is a strong association of LEA proteins with abiotic stress tolerance particularly dehydration and cold stress, for most of that time, their function has been entirely obscure. After their initial discovery in plant seeds, three major groups (numbered 1, 2 and 3) of LEA proteins have been described in a range of different plants and plant tissues. Homologues of groups 1 and 3 proteins have also been found in bacteria and in certain invertebrates. In this review, we present some new data, survey the biochemistry, biophysics and bioinformatics of the LEA proteins and highlight several possible functions. These include roles as antioxidants and as membrane and protein stabilisers during water stress, either by direct interaction or by acting as molecular shields. Along with other hydrophilic proteins and compatible solutes, LEA proteins might also serve as "space fillers" to prevent cellular collapse at low water activities. This multifunctional capacity of the LEA proteins is probably attributable in part to their structural plasticity, as they are largely lacking in secondary structure in the fully hydrated state, but can become more folded during water stress and/or through association with membrane surfaces. The challenge now facing researchers investigating these enigmatic proteins is to make sense of the various in vitro defined functions in the living cell: Are the LEA proteins truly multi-talented, or are they still just misunderstood?
Collapse
Affiliation(s)
- Alan Tunnacliffe
- Institute of Biotechnology, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
49
|
Deng Z, Wang Y, Jiang K, Liu X, Wu W, Gao S, Lin J, Sun X, Tang K. Molecular cloning and characterization of a novel dehydrin gene from Ginkgo biloba. Biosci Rep 2007; 26:203-15. [PMID: 16850253 DOI: 10.1007/s10540-006-9016-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
A full-length cDNA encoding a dehydrin was cloned from the living fossil plant Ginkgo biloba by rapid amplification of cDNA ends (RACE). The cDNA, designated as GbDHN, was 813 bp long containing an open reading frame of 489 bp. The deduced GbDHN protein had 163 amino acid residues, which formed a 17 kDa polypeptide with a predicted isoelectric point (pI) of 5.75. GbDHN had an S-segment and a K-segment, indicative of dehydrins, but no Y-segments. Homology analysis indicated that the S-segment and K-segment of GbDHN shared identity with those of other reported dehydrins, indicating that GbDHN belonged to dehydrin superfamily. Genomic sequence of GbDHN was also cloned using genomic walker technology. By comparing genomic DNA with the cDNA, it was found that there was a 257-bp intron in this gene. Promoter analysis indicated that it contained six CAAT boxes, one TATA box, one ABRE box and one GC-motif in the 5'-flanking region. Southern blot analysis revealed that GbDHN belonged to a single copy gene family. RT-PCR analysis revealed that GbDHN constitutively expressed in stems and roots. The increased expression of GbDHN was detected when G. biloba seedlings were treated with exogenous abscisic acid (ABA), salt stress and drought stress. These results indicate that the GbDHN has the potential to play a role in response to ABA and environmental stresses that can cause plant dehydration.
Collapse
Affiliation(s)
- Zhongxiang Deng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Morgan-Tan International Center for Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University, Shanghai, 200433, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rorat T. Plant dehydrins--tissue location, structure and function. Cell Mol Biol Lett 2006; 11:536-56. [PMID: 16983453 PMCID: PMC6275985 DOI: 10.2478/s11658-006-0044-0] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 06/28/2006] [Indexed: 11/21/2022] Open
Abstract
Dehydrins (DHNs) are part of a large group of highly hydrophilic proteins known as LEA (Late Embryogenesis Abundant). They were originally identified as group II of the LEA proteins. The distinctive feature of all DHNs is a conserved, lysine-rich 15-amino acid domain, EKKGIMDKIKEKLPG, named the K-segment. It is usually present near the C-terminus. Other typical dehydrin features are: a track of Ser residues (the S-segment); a consensus motif, T/VDEYGNP (the Y-segment), located near the N-terminus; and less conserved regions, usually rich in polar amino acids (the Phi-segments). They do not display a well-defined secondary structure. The number and order of the Y-, S-and K-segments define different DHN sub-classes: Y(n)SK(n), Y(n)Kn, SK(n), K(n) and K(n)S. Dehydrins are distributed in a wide range of organisms including the higher plants, algae, yeast and cyanobacteria. They accumulate late in embryogenesis, and in nearly all the vegetative tissues during normal growth conditions and in response to stress leading to cellular dehydration (e.g. drought, low temperature and salinity). DHNs are localized in different cell compartments, such as the cytosol, nucleus, mitochondria, vacuole, and the vicinity of the plasma membrane; however, they are primarily localized to the cytoplasm and nucleus. The precise function of dehydrins has not been established yet, but in vitro experiments revealed that some DHNs (YSK(n)-type) bind to lipid vesicles that contain acidic phospholipids, and others (K(n)S) were shown to bind metals and have the ability to scavenge hydroxyl radicals [Asghar, R. et al. Protoplasma 177 (1994) 87-94], protect lipid membranes against peroxidation or display cryoprotective activity towards freezing-sensitive enzymes. The SK(n)-and K-type seem to be directly involved in cold acclimation processes. The main question arising from the in vitro findings is whether each DHN structural type could possess a specific function and tissue distribution. Much recent in vitro data clearly indicates that dehydrins belonging to different subclasses exhibit distinct functions.
Collapse
|