1
|
Semenikhina M, Bohovyk R, Fedoriuk M, Stefanenko M, Klemens CA, Oates JC, Staruschenko A, Palygin O. Renin-angiotensin system-mediated nitric oxide signaling in podocytes. Am J Physiol Renal Physiol 2024; 327:F532-F542. [PMID: 39024356 PMCID: PMC11460333 DOI: 10.1152/ajprenal.00316.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Nitric oxide (NO) is widely recognized for its role in regulating renal function and blood pressure. However, the precise mechanisms by which NO affects renal epithelial cells remain understudied. Our previous research has shown that NO signaling in glomerular podocytes can be initiated by Angiotensin II (ANG II) but not by ATP. This study aims to elucidate the crucial interplay between the renin-angiotensin system (RAS) and NO production in podocytes. To conduct our research, we used cultured human podocytes and freshly isolated rat glomeruli. A variety of RAS peptides were used, alongside confocal microscopy, to detect NO production and NO/Ca2+ cross talk. Dynamic changes in the podocyte cytoskeleton, mediated by RAS-NO intracellular signaling, were observed using fluorescent labeling for F-actin and scanning probe microscopy. The experiments demonstrated that ANG II and ANG III generated high levels of NO by activating the angiotensin II type 2 receptor (AT2R). We did not detect functional MAS receptor presence in podocytes, and the moderate NO response to ANG 1-7 was also mediated through AT2R. Furthermore, NO production impacted intracellular Ca2+ signaling and correlated with an increase in podocyte volume and growth. Scanning probe experiments revealed that AT2R activation and the corresponding NO generation are responsible for the protrusion of podocyte lamellipodia. Taken together, our data indicate that AT2R activation enhances NO production in podocytes and subsequently mediates changes in Ca2+ signaling and podocyte volume dynamics. These mechanisms may play a significant role in both physiological and pathophysiological interactions between the RAS and podocytes.NEW & NOTEWORTHY The renin-angiotensin system plays a crucial role in the production of intracellular nitric oxide within podocytes. This mechanism operates through the activation of the angiotensin II type 2 receptor, leading to dynamic modifications in intracellular calcium levels and the actin filament network. This intricate process is vital for linking the activity of angiotensin receptors to podocyte function.
Collapse
Affiliation(s)
- Marharyta Semenikhina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Ruslan Bohovyk
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Mykhailo Fedoriuk
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Mariia Stefanenko
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, United States
| | - Jim C Oates
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, United States
- James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
2
|
Ma R, Tao Y, Wade ML, Mallet RT. Non-voltage-gated Ca 2+ channel signaling in glomerular cells in kidney health and disease. Am J Physiol Renal Physiol 2024; 327:F249-F264. [PMID: 38867675 PMCID: PMC11460346 DOI: 10.1152/ajprenal.00130.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Positioned at the head of the nephron, the renal corpuscle generates a plasma ultrafiltrate to initiate urine formation. Three major cell types within the renal corpuscle, the glomerular mesangial cells, podocytes, and glomerular capillary endothelial cells, communicate via endocrine- and paracrine-signaling mechanisms to maintain the structure and function of the glomerular capillary network and filtration barrier. Ca2+ signaling mediated by several distinct plasma membrane Ca2+ channels impacts the functions of all three cell types. The past two decades have witnessed pivotal advances in understanding of non-voltage-gated Ca2+ channel function and regulation in the renal corpuscle in health and renal disease. This review summarizes the current knowledge of the physiological and pathological impact of non-voltage-gated Ca2+ channel signaling in mesangial cells, podocytes and glomerular capillary endothelium. The main focus is on transient receptor potential and store-operated Ca2+ channels, but ionotropic N-methyl-d-aspartate receptors and purinergic receptors also are discussed. This update of Ca2+ channel functions and their cellular signaling cascades in the renal corpuscle is intended to inform the development of therapeutic strategies targeting these channels to treat kidney diseases, particularly diabetic nephropathy.
Collapse
Affiliation(s)
- Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Michael L Wade
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
3
|
Edwards A. Renal handling of albumin in rats with early stage diabetes: A theoretical analysis. J Physiol 2024; 602:3575-3592. [PMID: 38857419 PMCID: PMC11250707 DOI: 10.1113/jp286245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
In early diabetic nephropathy (DN), recent studies have shown that albuminuria stems mostly from alterations in tubular function rather than from glomerular damage. Several factors in DN, including hyperfiltration, hypertrophy and reduced abundance of the albumin receptors megalin and cubilin, affect albumin endocytosis in the proximal tubule (PT). To assess their respective contribution, we developed a model of albumin handling in the rat PT that couples the transport of albumin to that of water and solutes. Our simulations suggest that, under basal conditions, ∼75% of albumin is retrieved in the S1 segment. The model predicts negligible uptake in S3, as observed experimentally. It also accurately predicts the impact of acute hyperglycaemia on urinary albumin excretion. Simulations reproduce observed increases in albumin excretion in early DN by considering the combined effects of increased glomerular filtration rate (GFR), osmotic diuresis, hypertrophy, and megalin and cubilin downregulation, without stipulating changes in glomerular permselectivity. The results indicate that in isolation, glucose-elicited osmotic diuresis and glucose transporter upregulation raise albumin excretion only slightly. Enlargement of PT diameter not only augments uptake via surface area expansion, but also reduces fluid velocity and thus shear stress-induced stimulation of endocytosis. Overall, our model predicts that downregulation of megalin and cubilin and hyperfiltration both contribute significantly to increasing albumin excretion in rats with early-stage diabetes. The results also suggest that acute sodium-glucose cotransporter 2 inhibition lowers albumin excretion only if GFR decreases sufficiently, and that angiotensin II receptor blockers mitigate urinary albumin loss in early DN in large part by upregulating albumin receptor abundance. KEY POINTS: The urinary excretion of albumin is increased in early diabetic nephropathy (DN). It is difficult to experimentally disentangle the multiple factors that affect the renal handling of albumin in DN. We developed a mathematical model of albumin transport in the rat proximal tubule (PT) to examine the impact of elevated plasma glucose, hyperfiltration, PT hypertrophy and reduced abundance of albumin receptors on albumin uptake and excretion in DN. Our model predicts that glucose-elicited osmotic diuresis per se raises albumin excretion only slightly. Conversely, increases in PT diameter and length favour reduced albumin excretion. Our results suggest that downregulation of the receptors megalin and cubilin in PT cells and hyperfiltration both contribute significantly to increasing albumin excretion in DN. The model helps to better understand the mechanisms underlying urinary loss of albumin in early-stage diabetes, and the impact of specific treatments thereupon.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
4
|
Juin SK, Pushpakumar S, Sen U. Nimbidiol protects from renal injury by alleviating redox imbalance in diabetic mice. Front Pharmacol 2024; 15:1369408. [PMID: 38835661 PMCID: PMC11148448 DOI: 10.3389/fphar.2024.1369408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/17/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Chronic hyperglycemia-induced oxidative stress plays a crucial role in the development of diabetic nephropathy (DN). Moreover, adverse extracellular matrix (ECM) accumulation elevates renal resistive index leading to progressive worsening of the pathology in DN. Nimbidiol is an alpha-glucosidase inhibitor, isolated from the medicinal plant, 'neem' (Azadirachta indica) and reported as a promising anti-diabetic compound. Previously, a myriad of studies demonstrated an anti-oxidative property of a broad-spectrum neem-extracts in various diseases including diabetes. Our recent study has shown that Nimbidiol protects diabetic mice from fibrotic renal dysfunction in part by mitigating adverse ECM accumulation. However, the precise mechanism remains poorly understood. Methods The present study aimed to investigate whether Nimbidiol ameliorates renal injury by reducing oxidative stress in type-1 diabetes. To test the hypothesis, wild-type (C57BL/6J) and diabetic Akita (C57BL/6-Ins2Akita/J) mice aged 10-14 weeks were used to treat with saline or Nimbidiol (400 μg kg-1 day-1) for 8 weeks. Results Diabetic mice showed elevated blood pressure, increased renal resistive index, and decreased renal vasculature compared to wild-type control. In diabetic kidney, reactive oxygen species and the expression levels of 4HNE, p22phox, Nox4, and ROMO1 were increased while GSH: GSSG, and the expression levels of SOD-1, SOD-2, and catalase were decreased. Further, eNOS, ACE2, Sirt1 and IL-10 were found to be downregulated while iNOS and IL-17 were upregulated in diabetic kidney. The changes were accompanied by elevated expression of the renal injury markers viz., lipocalin-2 and KIM-1 in diabetic kidney. Moreover, an upregulation of p-NF-κB and a downregulation of IkBα were observed in diabetic kidney compared to the control. Nimbidiol ameliorated these pathological changes in diabetic mice. Conclusion Altogether, the data of our study suggest that oxidative stress largely contributes to the diabetic renal injury, and Nimbidiol mitigates redox imbalance and thereby protects kidney in part by inhibiting NF-κB signaling pathway in type-1 diabetes.
Collapse
Affiliation(s)
- Subir Kumar Juin
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
5
|
Shukla AK, Awasthi K, Usman K, Banerjee M. Role of renin-angiotensin system/angiotensin converting enzyme-2 mechanism and enhanced COVID-19 susceptibility in type 2 diabetes mellitus. World J Diabetes 2024; 15:606-622. [PMID: 38680697 PMCID: PMC11045416 DOI: 10.4239/wjd.v15.i4.606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus. It has affected over 768 million people worldwide, resulting in approximately 6900000 deaths. High-risk groups, identified by the Centers for Disease Control and Prevention, include individuals with conditions like type 2 diabetes mellitus (T2DM), obesity, chronic lung disease, serious heart conditions, and chronic kidney disease. Research indicates that those with T2DM face a heightened susceptibility to COVID-19 and increased mortality compared to non-diabetic individuals. Examining the renin-angiotensin system (RAS), a vital regulator of blood pressure and pulmonary stability, reveals the significance of the angiotensin-converting enzyme (ACE) and ACE2 enzymes. ACE converts angiotensin-I to the vasoconstrictor angiotensin-II, while ACE2 counters this by converting angiotensin-II to angiotensin 1-7, a vasodilator. Reduced ACE2 expression, common in diabetes, intensifies RAS activity, contributing to conditions like inflammation and fibrosis. Although ACE inhibitors and angiotensin receptor blockers can be therapeutically beneficial by increasing ACE2 levels, concerns arise regarding the potential elevation of ACE2 receptors on cell membranes, potentially facilitating COVID-19 entry. This review explored the role of the RAS/ACE2 mechanism in amplifying severe acute respiratory syndrome coronavirus 2 infection and associated complications in T2DM. Potential treatment strategies, including recombinant human ACE2 therapy, broad-spectrum antiviral drugs, and epigenetic signature detection, are discussed as promising avenues in the battle against this pandemic.
Collapse
Affiliation(s)
- Ashwin Kumar Shukla
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Komal Awasthi
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Kauser Usman
- Department of Medicine, King Georges’ Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
- Institute of Advanced Molecular Genetics, and Infectious Diseases (IAMGID), University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
6
|
Gallego-López MDC, Ojeda ML, Romero-Herrera I, Rua RM, Carreras O, Nogales F. Folic acid antioxidant supplementation to binge drinking adolescent rats improves hydric-saline balance and blood pressure, but fails to increase renal NO availability and glomerular filtration rate. FASEB J 2024; 38:e23341. [PMID: 38031982 DOI: 10.1096/fj.202301609r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Binge drinking (BD) is an especially pro-oxidant pattern of alcohol consumption, particularly widespread in the adolescent population. In the kidneys, it affects the glomerular filtration rate (GFR), leading to high blood pressure. BD exposure also disrupts folic acid (FA) homeostasis and its antioxidant properties. The aim of this study is to test a FA supplementation as an effective therapy against the oxidative, nitrosative, and apoptotic damage as well as the renal function alteration occurred after BD in adolescence. Four groups of adolescent rats were used: control, BD (exposed to intraperitoneal alcohol), control FA-supplemented group and BD FA-supplemented group. Dietary FA content in control groups was 2 ppm, and 8 ppm in supplemented groups. BD provoked an oxidative imbalance in the kidneys by dysregulating antioxidant enzymes and increasing the enzyme NADPH oxidase 4 (NOX4), which led to an increase in caspase-9. BD also altered the renal nitrosative status affecting the expression of the three nitric oxide (NO) synthase (NOS) isoforms, leading to a decrease in NO levels. Functionally, BD produced a hydric-electrolytic imbalance, a low GFR and an increase in blood pressure. FA supplementation to BD adolescent rats improved the oxidative, nitrosative, and apoptotic balance, recovering the hydric-electrolytic equilibrium and blood pressure. However, neither NO levels nor GFR were recovered, showing in this study for the first time that NO availability in the kidneys plays a crucial role in GFR regulation that the antioxidant effects of FA cannot repair.
Collapse
Affiliation(s)
| | - María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Inés Romero-Herrera
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Rui Manuel Rua
- Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
7
|
Downie ML, Desjarlais A, Verdin N, Woodlock T, Collister D. Precision Medicine in Diabetic Kidney Disease: A Narrative Review Framed by Lived Experience. Can J Kidney Health Dis 2023; 10:20543581231209012. [PMID: 37920777 PMCID: PMC10619345 DOI: 10.1177/20543581231209012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/10/2023] [Indexed: 11/04/2023] Open
Abstract
Purpose of review Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease (CKD) for which many treatments exist that have been shown to prevent CKD progression and kidney failure. However, DKD is a complex and heterogeneous etiology of CKD with a spectrum of phenotypes and disease trajectories. In this narrative review, we discuss precision medicine approaches to DKD, including genomics, metabolomics, proteomics, and their potential role in the management of diabetes mellitus and DKD. A patient and caregivers of patients with lived experience with CKD were involved in this review. Sources of information Original research articles were identified from MEDLINE and Google Scholar using the search terms "diabetes," "diabetic kidney disease," "diabetic nephropathy," "chronic kidney disease," "kidney failure," "dialysis," "nephrology," "genomics," "metabolomics," and "proteomics." Methods A focused review and critical appraisal of existing literature regarding the precision medicine approaches to the diagnosis, prognosis, and treatment of diabetes and DKD framed by a patient partner's/caregiver's lived experience. Key findings Distinguishing diabetic nephropathy from CKD due to other types of DKD and non-DKD is challenging and typically requires a kidney biopsy for a diagnosis. Biomarkers have been identified to assist with the prediction of the onset and progression of DKD, but they have yet to be incorporated and evaluated relative to clinical standard of care CKD and kidney failure risk prediction tools. Genomics has identified multiple causal genetic variants for neonatal diabetes mellitus and monogenic diabetes of the young that can be used for diagnostic purposes and to specify antiglycemic therapy. Genome-wide-associated studies have identified genes implicated in DKD pathophysiology in the setting of type 1 and 2 diabetes but their translational benefits are lagging beyond polygenetic risk scores. Metabolomics and proteomics have been shown to improve diagnostic accuracy in DKD, have been used to identify novel pathways involved in DKD pathogenesis, and can be used to improve the prediction of CKD progression and kidney failure as well as predict response to DKD therapy. Limitations There are a limited number of large, high-quality prospective observational studies and no randomized controlled trials that support the use of precision medicine based approaches to improve clinical outcomes in adults with or at risk of diabetes and DKD. It is unclear which patients may benefit from the clinical use of genomics, metabolomics and proteomics along the spectrum of DKD trajectory. Implications Additional research is needed to evaluate the role of the use of precision medicine for DKD management, including diagnosis, differentiation of diabetic nephropathy from other etiologies of DKD and CKD, short-term and long-term risk prognostication kidney outcomes, and the prediction of response to and safety of disease-modifying therapies.
Collapse
Affiliation(s)
- Mallory L. Downie
- McGill University Health Center Research Institute, Montreal, QC, Canada
| | - Arlene Desjarlais
- Kidney Research Scientist Core Education and National Training Program, Montreal, QC, Canada
| | - Nancy Verdin
- Kidney Research Scientist Core Education and National Training Program, Montreal, QC, Canada
| | - Tania Woodlock
- Kidney Research Scientist Core Education and National Training Program, Montreal, QC, Canada
| | - David Collister
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Habib YH, Sheta E, Khattab M, Gowayed MA. Diminazene aceturate or losartan ameliorates the functional, radiological and histopathological alterations in knee osteoarthritis rodent model: repurposing of the ACE2/Ang1-7/MasR cascade. J Exp Orthop 2023; 10:107. [PMID: 37878123 PMCID: PMC10600085 DOI: 10.1186/s40634-023-00673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
PURPOSE Current therapies for osteoarthritis (OA) are limited to analgesics and anti-inflammatory drugs. Considering the importance of oxidative stress and inflammatory mediators in OA etiology, we tested the hypothesis that targeting the renin-angiotensin-aldosterone system (RAAS) can improve OA anomalies. Diminazene (DIZE), an activator of angiotensin-converting enzyme 2 and the angiotensin 2 type-1 receptor blocker losartan (LOS) were used for this purpose. METHODS OA was induced by a single intra-articular injection of monosodium iodoacetate. The effects of exposure to DIZE or LOS for 21 days on OA anomalies in rats' knees were investigated. Evaluation of motor function, nociception, and inflammatory response was done using rotarod, knee bend and knee swelling tests. Markers of knee joint inflammation, and cellular oxidation in addition to the RAAS biomarkers, were assessed in knee tissues, along with radiological and histopathological investigations. RESULTS Elevations in inflammatory and oxidative markers in knee tissues of OA rats were mostly improved by the two therapeutic drugs. Such effect was also reflected in the rotarod, knee bend and knee swelling tests. Treatment with DIZE has shown a more prominent effect than LOS in controlling OA-associated inflammation and cellular oxidation. Markers of RAAS have also shown better responsiveness to DIZE over LOS. CONCLUSIONS DIZE has shown a prominent increase in the angiotensin 1-7 amount, highlighting the involvement of the signaling pathway in the immunomodulatory effect. The radiological and histopathology examination came to confirm the outcome of biochemical markers, nominating diminazene aceturate as a possible therapeutic option for OA.
Collapse
Affiliation(s)
- Yasser H Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Canal El- Mahmoudia Str., Smouha, Alexandria, Egypt.
| |
Collapse
|
9
|
Wang D, Li J, Luo G, Zhou J, Wang N, Wang S, Zhao R, Cao X, Ma Y, Liu G, Hao L. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol 2023; 64:102781. [PMID: 37321060 PMCID: PMC10363438 DOI: 10.1016/j.redox.2023.102781] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic vascular complications can affect both microvascular and macrovascular. Diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic cardiomyopathy, are believed to be caused by oxidative stress. The Nox family of NADPH oxidases is a significant source of reactive oxygen species and plays a crucial role in regulating redox signaling, particularly in response to high glucose and diabetes mellitus. This review aims to provide an overview of the current knowledge about the role of Nox4 and its regulatory mechanisms in diabetic microangiopathies. Especially, the latest novel advances in the upregulation of Nox4 that aggravate various cell types within diabetic kidney disease will be highlighted. Interestingly, this review also presents the mechanisms by which Nox4 regulates diabetic microangiopathy from novel perspectives such as epigenetics. Besides, we emphasize Nox4 as a therapeutic target for treating microvascular complications of diabetes and summarize drugs, inhibitors, and dietary components targeting Nox4 as important therapeutic measures in preventing and treating diabetic microangiopathy. Additionally, this review also sums up the evidence related to Nox4 and diabetic macroangiopathy.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Jiaying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Juan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050000, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China.
| |
Collapse
|
10
|
Yañez AJ, Jaramillo K, Blaña C, Burgos RA, Isla A, Silva P, Aguilar M. Sodium Tungstate (NaW) Decreases Reactive Oxygen Species (ROS) Production in Cells: New Cellular Antioxidant. Biomedicines 2023; 11:biomedicines11020417. [PMID: 36830953 PMCID: PMC9953222 DOI: 10.3390/biomedicines11020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal failure worldwide. Hyperglycemia generates reactive oxygen species (ROS), contributing to diabetic complications, especially in DN. Sodium Tungstate (NaW) is an effective antidiabetic agent for short and long-term treatments of both type 1 and type 2 diabetes models. In this study, we evaluated the effect of NaW on ROS production in bovine neutrophils incubated with platelet-activating factor (PAF) and in HK-2 cells induced by high glucose or H2O2. In addition, we evaluated the effect on iNOS expression in the type 1 diabetic rat model induced with streptozotocin (STZ). NaW inhibited ROS production in PAF-induced bovine neutrophils, and human tubular cells (HK-2) were incubated in high glucose or H2O2. In addition, NaW inhibited iNOS expression in glomeruli and tubular cells in the type 1 diabetic rat. This study demonstrates a new role for NaW as an active antioxidant and its potential use in treating DN.
Collapse
Affiliation(s)
- Alejandro J. Yañez
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción 4030000, Chile
- Correspondence: (A.J.Y.); (M.A.)
| | - Karen Jaramillo
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Camila Blaña
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Rafael A. Burgos
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, UACH Campus Isla Teja, Valdivia 5090000, Chile
| | - Adolfo Isla
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Valdivia 5090000, Chile
| | - Pamela Silva
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Marcelo Aguilar
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Correspondence: (A.J.Y.); (M.A.)
| |
Collapse
|
11
|
Gong S, Deng F. Renin-angiotensin system: The underlying mechanisms and promising therapeutical target for depression and anxiety. Front Immunol 2023; 13:1053136. [PMID: 36761172 PMCID: PMC9902382 DOI: 10.3389/fimmu.2022.1053136] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
Emotional disorders, including depression and anxiety, contribute considerably to morbidity across the world. Depression is a serious condition and is projected to be the top contributor to the global burden of disease by 2030. The role of the renin-angiotensin system (RAS) in hypertension and emotional disorders is well established. Evidence points to an association between elevated RAS activity and depression and anxiety, partly through the induction of neuroinflammation, stress, and oxidative stress. Therefore, blocking the RAS provides a theoretical basis for future treatment of anxiety and depression. The evidence for the positive effects of RAS blockers on depression and anxiety is reviewed, aiming to provide a promising target for novel anxiolytic and antidepressant medications and/or for improving the efficacy of currently available medications used for the treatment of anxiety and depression, which independent of blood pressure management.
Collapse
Affiliation(s)
| | - Fang Deng
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Glucose Increases Hepatic Mitochondrial Antioxidant Enzyme Activities in Insulin Resistant Rats Following Chronic Angiotensin Receptor Blockade. Int J Mol Sci 2022; 23:ijms231810897. [PMID: 36142809 PMCID: PMC9505141 DOI: 10.3390/ijms231810897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects up to 20% of the world’s population. Overactivation of the angiotensin receptor type 1 (AT1) contributes to metabolic dysfunction and increased oxidant production, which are associated with NAFLD and impaired hepatic lipid metabolism. Nuclear factor erythroid-2-related factor 2 (Nrf2) regulates the expression of antioxidant phase II genes by binding to the antioxidant response element (ARE); however, the mechanisms by which AT1 contributes to this pathway during the progression of NAFLD remain unresolved. To investigate hepatic Nrf2 response to a hyperglycemic challenge, we studied three groups of rats (male, 10-weeks-old): (1) untreated, lean Long Evans Tokushima Otsuka (LETO), (2) untreated, obese Otsuka Long Evans Tokushima Fatty (OLETF), and (3) OLETF + angiotensin receptor blocker (OLETF + ARB; 10 mg olmesartan/kg/d × 6 weeks). Livers were collected after overnight fasting (T0; baseline), and 1 h and 2 h post-oral glucose load. At baseline, chronic AT1 blockade increased nuclear Nrf2 content, reduced expression of glutamate-cysteine ligase catalytic (GCLC) subunit, glutathione peroxidase 1 (GPx1), and superoxide dismutase 2 (SOD2), mitochondrial catalase activity, and hepatic 4-hydroxy-2-nonenal (4-HNE) content. The expression of hepatic interleukin-1 beta (IL-1β) and collagen type IV, which are associated with liver fibrosis, were decreased with AT1 blockade. Glucose increased Nrf2 translocation in OLETF but was reduced in ARB, suggesting that glucose induces the need for antioxidant defense that is ameliorated with ARB. These results suggest that overactivation of AT1 promotes oxidant damage by suppressing Nrf2 and contributing to hepatic fibrosis associated with NAFLD development.
Collapse
|
13
|
Ong GJ, Nguyen TH, Surikow SY, Horowitz JD. Risk factors for a broken heart: understanding drug-induced causes for Takotsubo syndrome and pharmacological treatment options. Expert Rev Clin Pharmacol 2022; 15:1017-1025. [DOI: 10.1080/17512433.2022.2121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Gao Jing Ong
- Cardiology Unit, Central Adelaide Local Health Network, Adelaide, Australia
- Cardiovascular Pathophysiology and Therapeutics Group, Basil Hetzel Institute, University of Adelaide, Woodville, Australia
| | - Thanh Ha Nguyen
- Cardiovascular Pathophysiology and Therapeutics Group, Basil Hetzel Institute, University of Adelaide, Woodville, Australia
- Northern Adelaide Local Health Network, Elizabeth Vale, Australia
| | - Sven Y Surikow
- Cardiovascular Pathophysiology and Therapeutics Group, Basil Hetzel Institute, University of Adelaide, Woodville, Australia
- Northern Adelaide Local Health Network, Elizabeth Vale, Australia
| | - John D Horowitz
- Cardiovascular Pathophysiology and Therapeutics Group, Basil Hetzel Institute, University of Adelaide, Woodville, Australia
| |
Collapse
|
14
|
Urinary Podocyte Excretion Predicts Urinary Protein Selectivity and Renal Prognosis. Int J Nephrol 2022; 2022:2702651. [PMID: 35866051 PMCID: PMC9296344 DOI: 10.1155/2022/2702651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background Urinary podocyte excretion is related to a reduction in glomerular podocyte numbers, glomerulosclerosis, and urinary protein selectivity. To elucidate the role of urinary podocytes in proteinuria and renal prognosis and to identify the factors that cause podocyte detachment, we examined urinary podocytes in 120 renal biopsy patients. Methods Podocytes were identified in urinary sediments stained with fluorescent-labeled anti-podocalyxin antibodies in ten high power fields. The amounts of protein bands, separated by SDS-polyacrylamide gel electrophoresis, were calculated using an image software program and the correlation with urinary podocytes was analyzed. Podocyte surface pores were observed using a low-vacuum scanning electron microscope. The renal prognosis, including induction of hemodialysis or 30% reduction in eGFR, was investigated. Results Urinary podocyte excretion showed a higher positive correlation with albumin excretion compared to IgG, prealbumin, and transferrin. There were no significant correlations between urinary podocyte count and low molecular weight proteins, including β2-microglobulin and α1-microglobulin. The number of podocyte surface pores was positively correlated with proteinuria, suggesting enhanced albumin transcytosis. The hemodynamic pressure on the glomerular capillary wall, including products of pulse pressure and pulse rate (water hammer pressure), was positively correlated with urinary podocyte excretion. Urinary podocyte excretion and Tamm–Horsfall protein (THP) were independent risk factors for renal prognosis but were not related to response to treatment. Conclusion Urinary podocyte excretion was correlated with urinary albumin excretion, indicating specific albumin transport by podocytes. Podocytes were detached from the glomerular capillaries by water hammer pressure and THP was involved in the renal prognosis.
Collapse
|
15
|
Yan J, Zhai W, Li Z, Ding L, You J, Zeng J, Yang X, Wang C, Meng X, Jiang Y, Huang X, Wang S, Wang Y, Li Z, Zhu S, Wang Y, Zhao X, Feng J. ICH-LR2S2: a new risk score for predicting stroke-associated pneumonia from spontaneous intracerebral hemorrhage. J Transl Med 2022; 20:193. [PMID: 35509104 PMCID: PMC9066782 DOI: 10.1186/s12967-022-03389-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose We develop a new risk score to predict patients with stroke-associated pneumonia (SAP) who have an acute intracranial hemorrhage (ICH). Method We applied logistic regression to develop a new risk score called ICH-LR2S2. It was derived from examining a dataset of 70,540 ICH patients between 2015 and 2018 from the Chinese Stroke Center Alliance (CSCA). During the training of ICH-LR2S2, patients were randomly divided into two groups – 80% for the training set and 20% for model validation. A prospective test set was developed using 12,523 patients recruited in 2019. To further verify its effectiveness, we tested ICH-LR2S2 on an external dataset of 24,860 patients from the China National Stroke Registration Management System II (CNSR II). The performance of ICH-LR2S2 was measured by the area under the receiver operating characteristic curve (AUROC). Results The incidence of SAP in the dataset was 25.52%. A 24-point ICH-LR2S2 was developed from independent predictors, including age, modified Rankin Scale, fasting blood glucose, National Institutes of Health Stroke Scale admission score, Glasgow Coma Scale score, C-reactive protein, dysphagia, Chronic Obstructive Pulmonary Disease, and current smoking. The results showed that ICH-LR2S2 achieved an AUC = 0.749 [95% CI 0.739–0.759], which outperforms the best baseline ICH-APS (AUC = 0.704) [95% CI 0.694–0.714]. Compared with the previous ICH risk scores, ICH-LR2S2 incorporates fasting blood glucose and C-reactive protein, improving its discriminative ability. Machine learning methods such as XGboost (AUC = 0.772) [95% CI 0.762–0.782] can further improve our prediction performance. It also performed well when further validated by the external independent cohort of patients (n = 24,860), ICH-LR2S2 AUC = 0.784 [95% CI 0.774–0.794]. Conclusion ICH-LR2S2 accurately distinguishes SAP patients based on easily available clinical features. It can help identify high-risk patients in the early stages of diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03389-5.
Collapse
Affiliation(s)
- Jing Yan
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Weiqi Zhai
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.,Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Shanghai, 200433, China.,MOE Frontiers Center for Brain Science and Shanghai Institute of Artificial Intelligence Algorithms, Fudan University, Shanghai, 200433, China.,Zhangjiang Fudan International Innovation Center, Shanghai, 200433, China
| | - Zhaoxia Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - LingLing Ding
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jia You
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.,Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Shanghai, 200433, China.,MOE Frontiers Center for Brain Science and Shanghai Institute of Artificial Intelligence Algorithms, Fudan University, Shanghai, 200433, China.,Zhangjiang Fudan International Innovation Center, Shanghai, 200433, China
| | - Jiayi Zeng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Xin Yang
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chunjuan Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xia Meng
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Jiang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaodi Huang
- School of Computing, Mathematics and Engineering, Charles Sturt University, Albury, NSW, 2640, Australia
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.,Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Shanghai, 200433, China.,MOE Frontiers Center for Brain Science and Shanghai Institute of Artificial Intelligence Algorithms, Fudan University, Shanghai, 200433, China.,Zhangjiang Fudan International Innovation Center, Shanghai, 200433, China
| | - Yilong Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, China. .,Chinese Institute for Brain Research, Beijing, China. .,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China.
| | - Shanfeng Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China. .,Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Shanghai, 200433, China. .,MOE Frontiers Center for Brain Science and Shanghai Institute of Artificial Intelligence Algorithms, Fudan University, Shanghai, 200433, China. .,Zhangjiang Fudan International Innovation Center, Shanghai, 200433, China.
| | - Yongjun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| | - Xingquan Zhao
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,China National Clinical Research Center for Neurological Diseases, Beijing, China. .,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.,Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Shanghai, 200433, China.,MOE Frontiers Center for Brain Science and Shanghai Institute of Artificial Intelligence Algorithms, Fudan University, Shanghai, 200433, China.,Zhangjiang Fudan International Innovation Center, Shanghai, 200433, China
| |
Collapse
|
16
|
Dugbartey GJ, Alornyo KK, N'guessan BB, Atule S, Mensah SD, Adjei S. Supplementation of conventional anti-diabetic therapy with alpha-lipoic acid prevents early development and progression of diabetic nephropathy. Biomed Pharmacother 2022; 149:112818. [PMID: 35286963 DOI: 10.1016/j.biopha.2022.112818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Current pharmacological interventions only retard DN progression. Alpha-lipoic acid (ALA) is a potent antioxidant with beneficial effect in other diabetic complications. This study investigates whether ALA supplementation prevents early development and progression of DN. METHOD Fifty-eight male Sprague-Dawley rats were randomly assigned to healthy control and diabetic groups and subjected to overnight fasting. Type 2 diabetes mellitus (T2DM) was induced in diabetic group by intraperitoneal administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). On day 3 after T2DM induction, diabetic rats received oral daily administration of ALA (60 mg/kg), gliclazide (15 mg/kg), ramipril (10 mg/kg) or drug combinations for 6 weeks. Untreated diabetic rats served as diabetic control. Blood, kidneys and pancreas were harvested for biochemical and histological analyses. RESULT Induction of T2DM resulted in hypoinsulinemia, hyperglycemia and renal pathology. ALA supplementation maintained β-cell function, normoinsulinemia and normoglycemia in diabetic rats, and prevented renal pathology (PAS, KIM-1, plasma creatinine, total protein, blood urea nitrogen, uric acid and urine albumin/creatinine ratio) and triglycerides level compared to diabetic control (p < 0.001). Additionally, ALA supplementation significantly prevented elevated serum and tissue malondialdehyde, collagen deposition, α-SMA expression, apoptosis and serum IL-1β and IL-6 levels while it markedly increased renal glutathione content and plasma HDL-C compared to diabetic control group (p < 0.001). CONCLUSION ALA supplementation prevents early development and progression of DN by exerting anti-hyperglycemic, antioxidant, anti-inflammatory, anti-fibrotic and anti-apoptotic effects. Our findings provide additional option for clinical treatment of DN in T2DM patients.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Benoit B N'guessan
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Stephen Atule
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel D Mensah
- Department of Pathology, University of Ghana Dental School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel Adjei
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
17
|
Yin Y, Rohli KE, Shen P, Lu H, Liu Y, Dou Q, Zhang L, Kong X, Yang S, Jia P. The epidemiology, pathophysiological mechanisms, and management toward COVID-19 patients with Type 2 diabetes: A systematic review. Prim Care Diabetes 2021; 15:899-909. [PMID: 34600859 PMCID: PMC8418914 DOI: 10.1016/j.pcd.2021.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
This review comprehensively summarizes epidemiologic evidence of COVID-19 in patients with Type 2 diabetes, explores pathophysiological mechanisms, and integrates recommendations and guidelines for patient management. We found that diabetes was a risk factor for diagnosed infection and poor prognosis of COVID-19. Patients with diabetes may be more susceptible to adverse outcomes associated with SARS-CoV-2 infection due to impaired immune function and possible upregulation of enzymes that mediate viral invasion. The chronic inflammation caused by diabetes, coupled with the acute inflammatory reaction caused by SARS-CoV-2, results in a propensity for inflammatory storm. Patients with diabetes should be aware of their increased risk for COVID-19.
Collapse
Affiliation(s)
- Yun Yin
- International Institute of Spatial Lifecourse Epidemiology (ISLE), Wuhan University, Wuhan, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Kristen E Rohli
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Pengyue Shen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Haonan Lu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuenan Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qingyu Dou
- International Institute of Spatial Lifecourse Epidemiology (ISLE), Wuhan University, Wuhan, China; National Clinical Research Center of Geriatrics, Geriatric Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; International Institute of Spatial Lifecourse Epidemiology (ISLE), Wuhan University, Wuhan, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; International Institute of Spatial Lifecourse Epidemiology (ISLE), Wuhan University, Wuhan, China.
| | - Peng Jia
- School of Resources and Environmental Science, Wuhan University, Wuhan, China; International Institute of Spatial Lifecourse Epidemiology (ISLE), Wuhan University, Wuhan, China.
| |
Collapse
|
18
|
Niazmand S, Mirzaei M, Hosseinian S, Khazdair MR, Gowhari Shabgah A, Baghcheghi Y, Hedayati-Moghadam M. The effect of Cinnamomum cassia extract on oxidative stress in the liver and kidney of STZ-induced diabetic rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:311-321. [PMID: 34506695 DOI: 10.1515/jcim-2021-0142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Many diabetes-related complications are caused by oxidative stress. In the current study, the protective effect of Cinnamomum cassia against diabetes-induced liver and kidney oxidative stress was evaluated. METHODS The male Wistar rats (n=48) were randomly divided into six groups including; control group received 500 µL normal saline orally for 42 days. Diabetes groups received intraperitoneally (i.p.) streptozotocin (STZ) as single-dose (60 mg/kg, i.p.). Cinnamon extract (100, 200, 400 mg/kg) and metformin (300 mg/kg) were orally administered to diabetic rats for 42 days. After the experiment period, the animals were anesthetized and the liver and kidney tissues were quickly removed and restored for oxidative stress evaluation. The levels of malondialdehyde (MDA), total thiol content, glutathione (GSH), nitric oxide (NO) metabolites, as well as, superoxide dismutase (SOD) and catalase (CAT) activities were measured in kidney and liver tissue. RESULTS The level of MDA, SOD, and CAT activities increased significantly, while the total thiol content, and NO production were significantly reduced in diabetic animals compared to the control group (from p<0.05 to p<0.001). Treatment with cinnamon extract significantly decreased the MDA level, as well as, SOD and CAT activities in the liver and kidney of diabetic rats (from p<0.05 to p<0.001). In the liver and kidney of cinnamon treated groups, GSH and total thiol contents and NO production were significantly higher than diabetic group (from p<0.05 to p<0.001). CONCLUSIONS Cinnamon extract due to its potent antioxidant property could be effective in decrease of diabetes-induced oxidative stress that plays a major role in renal and hepatic complications.
Collapse
Affiliation(s)
- Saeed Niazmand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masomeh Mirzaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | | | - Yousef Baghcheghi
- Student Research Committee Jiroft, Jiroft University of Medical Sciences, Jiroft, Iran
| | | |
Collapse
|
19
|
Zhang Z, He P, Zhou C, Liu M, Liu C, Li H, Zhang Y, Li Q, Zhang Y, Wang G, Liang M, Qin X. Association of estimated glomerular filtration rate from serum creatinine and cystatin C with new-onset diabetes: a nationwide cohort study in China. Acta Diabetol 2021; 58:1269-1276. [PMID: 33909121 DOI: 10.1007/s00592-021-01719-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/11/2021] [Indexed: 12/22/2022]
Abstract
AIMS The association between estimated glomerular filtration rate (eGFR) and the risk of diabetes remains uncertain. We aimed to examine the association between eGFR based on creatinine (eGFRcr), cystatin C (eGFRcys), or a combination of both (eGFRcr-cys) and new-onset diabetes, using data from the China Health and Retirement Longitudinal Study (CHARLS), a nationally representative cohort study. METHODS A total of 4,775 participants with pertinent measurements and without diabetes at baseline from CHARLS were included in the final analysis. The eGFR was calculated by creatinine, cystatin C or a combination of both using the Chronic Kidney Disease Epidemiology Collaboration equations. The study outcome was new-onset diabetes, defined as physician-diagnosed diabetes or use of glucose-lowering drugs during follow-up, or fasting glucose ≥ 126 mg/dL, random glucose ≥ 200 mg/dL, or HbA1c ≥ 6.5% (48 mmol/mol) at the exit visit. RESULTS The mean age of the study population was 59.6 years. The mean values for the eGFRcr, eGFRcys, and eGFRcr-cys were 92.4, 78.9 and 85.9 mL/min/1.73m2, respectively. Over 4 years of follow-up, 612 (12.8%) participants experienced diabetes. Participants with lower eGFRcr-cys (< 60 mL/min/1.73m2) had a significantly higher risk of new-onset diabetes (adjusted OR, 1.46; 95%CI: 1.02, 2.09), compared to those with eGFRcr-cys ≥ 60 mL/min/1.73m2. However, there was no significant association between eGFRcr (< 60 vs. ≥ 60 mL/min/1.73m2; adjusted OR, 1.27; 95%CI: 0.75, 2.17) or eGFRcys (adjusted OR, 1.04; 95%CI: 0.80, 1.36) and new-onset diabetes. CONCLUSIONS Lower eGFRcr-cys (< 60 mL/min/1.73m2), but not eGFRcr or eGFRcys, was significantly associated with an increased risk of new-onset diabetes in Chinese adults.
Collapse
Affiliation(s)
- Zhuxian Zhang
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Panpan He
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chun Zhou
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mengyi Liu
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chengzhang Liu
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Institute of Biomedicine, Anhui Medical University, Hefei, 230032, China
| | - Huan Li
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuanyuan Zhang
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qinqin Li
- Institute of Biomedicine, Anhui Medical University, Hefei, 230032, China
| | - Yan Zhang
- Spine Disease Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guobao Wang
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Min Liang
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xianhui Qin
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Ishimitsu A, Tojo A, Satonaka H, Ishimitsu T. Eucommia ulmoides (Tochu) and its extract geniposidic acid reduced blood pressure and improved renal hemodynamics. Biomed Pharmacother 2021; 141:111901. [PMID: 34328117 DOI: 10.1016/j.biopha.2021.111901] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Eucommia ulmoides leaves are used as Tochu tea, which has a blood pressure lowering effect of unknown mechanism. PURPOSE AND METHODS The effects of Tochu tea and its component, geniposidic acid, on blood pressure and renal hemodynamics were investigated in Dahl salt-sensitive (DS) rats received 1% saline solution from 4 weeks of age. At 9 weeks of age, 1% saline alone (DSHS), Tochu tea extract added 1% saline (DSHS+T), or geniposidic acid added 1% saline (DSHS+G) was administered for another 4 weeks. DS rats fed with tap water were used as controls (DSLS). At 13 weeks, the blood pressure, the renal plasma flow (RPF) and the renal NADPH oxidase, endothelial nitric oxide synthase (eNOS) were examined. RESULTS Blood pressure in DSHS rats was significantly increased in comparison to DSLS (144 vs. 196 mmHg, p < 0.01), and was significantly reduced in DSHS+T (158 mmHg) and DSHS+G (162 mmHg) rats. RPF in DSHS+T rats was significantly higher than in DSHS rats (p < 0.05). The expression of NADPH oxidase in DSHS rats was enhanced in comparison to DSLS rats; however, it was suppressed in DSHS+T and DSHS+G rats, and the NO production by eNOS was increased; thus, RPF was improved. The urinary Na excretion in DSHS rats was higher than that in DSLS rats; however it was further increased in DSHS+T rats without changes in the tubular Na transporters. CONCLUSION Tochu tea and geniposidic acid suppressed NADPH oxidase, increased eNOS, and improved blood pressure and renal hemodynamics.
Collapse
Affiliation(s)
- Akira Ishimitsu
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Akihiro Tojo
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.
| | - Hiroshi Satonaka
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | - Toshihiko Ishimitsu
- Department of Nephrology & Hypertension, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| |
Collapse
|
21
|
Patinha D, Carvalho C, Persson P, Pihl L, Fasching A, Friederich-Persson M, O'Neill J, Palm F. Determinants of renal oxygen metabolism during low Na + diet: effect of angiotensin II AT 1 and aldosterone receptor blockade. J Physiol 2020; 598:5573-5587. [PMID: 32857872 DOI: 10.1113/jp280481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Reducing Na+ intake reduces the partial pressure of oxygen in the renal cortex and activates the renin-angiotensin-aldosterone system. In the absence of high blood pressure, these consequences of dietary Na+ reduction may be detrimental for the kidney. In a normotensive animal experimental model, reducing Na+ intake for 2 weeks increased renal oxygen consumption, which was normalized by mineralocorticoid receptor blockade. Furthermore, blockade of the angiotensin II AT1 receptor restored cortical partial pressure of oxygen by improving oxygen delivery. This shows that increased activity of the renin-angiotensin-aldosterone system contributes to increased oxygen metabolism in the kidney after 2 weeks of a low Na+ diet. The results provide insights into dietary Na+ restriction in the absence of high blood pressure, and its consequences for the kidney. ABSTRACT Reduced Na+ intake reduces the P O 2 (partial pressure of oxygen) in the renal cortex. Upon reduced Na+ intake, reabsorption along the nephron is adjusted with activation of the renin-angiotensin-aldosterone system (RAAS). Thus, we studied the effect of reduced Na+ intake on renal oxygen homeostasis and function in rats, and the impact of intrarenal angiotensin II AT1 receptor blockade using candesartan and mineralocorticoid receptor blockade using canrenoic acid potassium salt (CAP). Male Sprague-Dawley rats were fed standard rat chow containing normal (0.25%) and low (0.025%) Na+ for 2 weeks. The animals were anaesthetized (thiobutabarbital 120 mg kg-1 ) and surgically prepared for kidney oxygen metabolism and function studies before and after acute intrarenal arterial infusion of candesartan (4.2 μg kg-1 ) or intravenous infusion of CAP (20 mg kg-1 ). Baseline mean arterial pressure and renal blood flow were similar in both dietary groups. Fractional Na+ excretion and cortical oxygen tension were lower and renal oxygen consumption was higher in low Na+ groups. Neither candesartan nor CAP affected arterial pressure. Renal blood flow and cortical oxygen tension increased in both groups after candesartan in the low Na+ group. Fractional Na+ excretion was increased and oxygen consumption reduced in the low Na+ group after CAP. These results suggest that blockade of angiotensin II AT1 receptors has a major impact upon oxygen delivery during normal and low Na+ conditions, while aldosterone receptors mainly affect oxygen metabolism following 2 weeks of a low Na+ diet.
Collapse
Affiliation(s)
- Daniela Patinha
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, UK.,Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Carla Carvalho
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Patrik Persson
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Liselotte Pihl
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Angelica Fasching
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Malou Friederich-Persson
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Julie O'Neill
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Fredrik Palm
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Kitada M, Xu J, Ogura Y, Monno I, Koya D. Manganese Superoxide Dismutase Dysfunction and the Pathogenesis of Kidney Disease. Front Physiol 2020; 11:755. [PMID: 32760286 PMCID: PMC7373076 DOI: 10.3389/fphys.2020.00755] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondria are a major source of reactive oxygen species (ROS). Superoxide anion (O2•–) is produced by the process of oxidative phosphorylation associated with glucose, amino acid, and fatty acid metabolism, resulting in the production of adenosine triphosphate (ATP) in the mitochondria. Excess production of reactive oxidants in the mitochondria, including O2•–, and its by-product, peroxynitrite (ONOO–), which is generated by a reaction between O2•– with nitric oxide (NO•), alters cellular function via oxidative modification of proteins, lipids, and nucleic acids. Mitochondria maintain an antioxidant enzyme system that eliminates excess ROS; manganese superoxide dismutase (Mn-SOD) is one of the major components of this system, as it catalyzes the first step involved in scavenging ROS. Reduced expression and/or the activity of Mn-SOD results in diminished mitochondrial antioxidant capacity; this can impair the overall health of the cell by altering mitochondrial function and may lead to the development and progression of kidney disease. Targeted therapeutic agents may protect mitochondrial proteins, including Mn-SOD against oxidative stress-induced dysfunction, and this may consequently lead to the protection of renal function. Here, we describe the biological function and regulation of Mn-SOD and review the significance of mitochondrial oxidative stress concerning the pathogenesis of kidney diseases, including chronic kidney disease (CKD) and acute kidney injury (AKI), with a focus on Mn-SOD dysfunction.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Jing Xu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Itaru Monno
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
23
|
Hong D, Shi W, Lu X, Lou Y, Li L. Development and Validation of a Medication Selection Model Under Clinical Application of Renin-Angiotensin Inhibitor Combined with Calcium Channel Blocker for Hypertension Patients. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020; 26:e923696. [PMID: 32285846 PMCID: PMC7174895 DOI: 10.12659/msm.923696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background This study evaluated the impact of clinical features and concomitant conditions on the clinical selection of different renin-angiotensin system (RAS) inhibitors in patients with hypertension, and built a renin-angiotensin inhibitors selection model (RAISM) to provide a reference for clinical decision making. Material/Methods We included 213 hypertensive patients in the study cohort; patients were divided into two groups: the angiotensin-converting enzyme inhibitor (ACEI) combined with calcium channel blocker (CCB) group (ACEI+CCB group) and the angiotensin receptor antagonist (ARB) combined with CCB group (ARB+CCB group). Basic demographic characteristics and concomitant conditions of the patients were compared. Single-factor and multi-factor analysis was performed by adopting logistic regression model. The RAISM was established by utilizing the nomograph technology. C-index and calibration curve were used to evaluate the model’s efficacy. Results In the study, 34.27% of the patients used ACEI+CCB and 65.73% of patients used ARB+CCB. The difference in age, body mass index (BMI), elderly patient, diabetes, renal dysfunction, and hyperlipidemia between the 2 groups determined medication selection. To be specific, compared to the group using ARB+CCB, the odds ratios and 95% confidence interval (CI) of the aforementioned factors for the ACEI+CCB group were 0.476 (0.319–0.711), 1.274 (1.001–1.622), 0.365 (0.180–0.743), 0.471 (0.203–1.092), 0.542 (0.268–1.094), and 0.270 (0.100–0.728), respectively; The C-index of RAISM acquired from the model construction parameters was 0.699, and the correction curve demonstrated that the model has good discriminative ability. Conclusions The outcome of our study suggests that independent discriminating factors that influence the clinical selection of different RAS inhibitors were elderly patient, renal insufficiency, and hyperlipidemia; and the RAISM constructed in this study has good predictability and clinical benefit.
Collapse
Affiliation(s)
- Dongsheng Hong
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Wendan Shi
- Sydney Nursing School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Xiaoyang Lu
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Yan Lou
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Lu Li
- Department of Social Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
24
|
Ong GJ, Nguyen TH, Stansborough J, Surikow S, Mahadavan G, Worthley M, Horowitz J. The N-AcetylCysteine and RAMipril in Takotsubo Syndrome Trial (NACRAM): Rationale and design of a randomised controlled trial of sequential N-Acetylcysteine and ramipril for the management of Takotsubo Syndrome. Contemp Clin Trials 2020; 90:105894. [PMID: 31740426 DOI: 10.1016/j.cct.2019.105894] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Takotsubo Syndrome(TTS), contrary to historical reports, is now increasingly recognised to be associated with substantial mortality and morbidity, both in the short- and long-term. Although TTS is often precipitated by a catecholamine "pulse", in-hospital hypotension is a common occurrence, increasing the risk of mortality. Furthermore, despite the transient catecholamine stimulus, there is increasing evidence that there are significant long term sequelae, including persistently impaired left ventricular(LV) systolic dysfunction, myocardial oedema with fibrosis, as well as persistent impairment of quality of life. A definitive therapeutic option to limit the extent of initial myocardial injury, and to accelerate recovery in TTS is therefore justified. However to date, there has been a lack of prospective studies in this area. DESIGN AND RATIONALE NACRAM is a multi-centre, randomised, placebo-controlled trial, sequentially testing early use of intravenous N-acetylcysteine(NAC), followed by/or oral ramipril for 12 weeks. The rationale for utilising these agents is related to their effects on limiting nitrosative stress and expression of the inflammasome activator thioredoxin interacting protein(TXNIP); both processes fundamental to the pathogenesis of TTS. END POINTS NACRAM is assessing resolution of myocardial oedema on cardiac magnetic resonance imaging(CMR), improvements in LV systolic function as measured by global longitudinal strain(GLS) on echocardiography, quality of life, and inflammatory markers. DISCUSSION To the best of our knowledge, NACRAM will be the first prospective study to help definitively evaluate a therapeutic option in acute attacks of TTS.
Collapse
Affiliation(s)
- Gao Jing Ong
- Cardiology Unit, Queen Elizabeth Hospital, Woodville, SA, Australia; University of Adelaide, Basil Hetzel Institute, Woodville, SA, Australia; Cardiology Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Thanh Ha Nguyen
- Cardiology Unit, Queen Elizabeth Hospital, Woodville, SA, Australia; University of Adelaide, Basil Hetzel Institute, Woodville, SA, Australia
| | | | - Sven Surikow
- Cardiology Unit, Queen Elizabeth Hospital, Woodville, SA, Australia; University of Adelaide, Basil Hetzel Institute, Woodville, SA, Australia
| | - Gnanadevan Mahadavan
- Cardiology Unit, Queen Elizabeth Hospital, Woodville, SA, Australia; University of Adelaide, Basil Hetzel Institute, Woodville, SA, Australia; Cardiology Unit, Royal Adelaide Hospital, Adelaide, SA, Australia; Cardiology Unit, Lyell McEwin Hospital, Elizabeth Vale, SA, Australia
| | - Matthew Worthley
- Cardiology Unit, Queen Elizabeth Hospital, Woodville, SA, Australia; University of Adelaide, Basil Hetzel Institute, Woodville, SA, Australia; Cardiology Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - John Horowitz
- Cardiology Unit, Queen Elizabeth Hospital, Woodville, SA, Australia; University of Adelaide, Basil Hetzel Institute, Woodville, SA, Australia.
| |
Collapse
|
25
|
Advanced Glycation End Products: Potential Mechanism and Therapeutic Target in Cardiovascular Complications under Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9570616. [PMID: 31885827 PMCID: PMC6925928 DOI: 10.1155/2019/9570616] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
Abstract
The occurrence and development of cardiovascular complications are predominantly responsible for the increased morbidity and mortality observed in patients with diabetes. Oxidative stress under hyperglycemia is currently considered the initial link to diabetic cardiovascular complications and a key node for the prevention and treatment of diabetes-related fatal cardiovascular events. Numerous studies have indicated that the common upstream pathway in the context of oxidative stress in the cardiovascular system under diabetic conditions is the interaction of advanced glycation end products (AGEs) with their receptors (RAGEs). Therefore, a further understanding of the relationship between oxidative stress and AGEs is of great significance for the prevention and treatment of cardiovascular complications in patients with diabetes. In this review, we will briefly summarize the recent research advances in diabetes with an emphasis on oxidative stress and its association with AGEs in diabetic cardiovascular complications.
Collapse
|
26
|
Abdel-Moneim A, Mahmoud B, Nabil A, Negeem Z. Correlation between oxidative stress and hematological profile abnormalities in diabetic nephropathy. Diabetes Metab Syndr 2019; 13:2365-2373. [PMID: 31405645 DOI: 10.1016/j.dsx.2019.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/10/2019] [Indexed: 11/17/2022]
Abstract
AIMS Diabetes patients with renal impairment commonly have a degree of hematological abnormalities than those non-diabetics with chronic kidney disease. The present study aimed to clarify the association between oxidative stress and hematological abnormalities with the progression of diabetic nephropathy. METHODS A total of 20 healthy subjects and 100 patients were enrolled in the study. Eligible renal dysfunction patients were classified according to biochemical markers into five groups (20 patients); diabetic patients, pre-renal failure patients, diabetic pre-renal failure patients, renal failure patients, and diabetic renal failure patients. RESULTS Erythrocytes and platelets count, hemoglobin and hematocrit levels revealed a significant decrease in all renal dysfunction groups, while leukocytes count, red cell distribution width, platelet distribution width, and mean platelet volume showed significant increases in diabetic and renal dysfunction groups as compared to the healthy control. Nitric oxide level increased significantly, while reduced glutathione showed a marked decrease in diabetic and all renal dysfunction groups compared to the healthy control. CONCLUSION Nitric oxide and reduced glutathione were associated with the inflammatory status in diabetic renal dysfunction patients which reflected by elevation in leukocytes and neutrophils count, red cell distribution width as well as the reduction in values of erythrocytes, platelets count, hemoglobin and hematocrit. Therefore, hematological indices can play a role in predict the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt.
| | - Basant Mahmoud
- Biochemistry Division, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmad Nabil
- Biotechnology Department, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Egypt
| | - Zinab Negeem
- Biotechnology Department, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Egypt
| |
Collapse
|
27
|
Huang F, Sheng XX, Zhang HJ. DUSP26 regulates podocyte oxidative stress and fibrosis in a mouse model with diabetic nephropathy through the mediation of ROS. Biochem Biophys Res Commun 2019; 515:410-416. [PMID: 31155289 DOI: 10.1016/j.bbrc.2019.05.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/03/2019] [Indexed: 01/02/2023]
Abstract
Diabetic nephropathy (DN) is a leading cause of renal failure worldwide. Unfortunately, the pathogenetic mechanism of DN is far from to be understood. Dual-specificity phosphatase 26 (DUSP26) is a member of the Dusp protein family, and is suggested to be involved in divers biological and pathological processes, such as cell growth, differentiation, inflammation and apoptosis. However, its role in the development of DN is still vague. In this study, we found that DUSP26 expression was increased in kidney of DN patients. Then, the wild type (DUSP26+/+) and gene knockout (DUSP26-/-) mice were used to further explore the effects of DUSP26 on DN development induced by streptozotocin (STZ). DUSP26 deficiency accelerated renal injury and dysfunction, as evidenced by the elevated glomerulosclerosis, reduced expression of Nephrin and promoted glomerular basement membrane thickness. In addition, STZ treatment resulted in reactive oxygen species (ROS) accumulation, H2O2 overproduction and superoxide dismutase (SOD) reduction in renal cortex or glomeruli of mice. The ROS production caused the activation of mitogen-activated protein kinase (MAPKs) signaling in kidney glomeruli of STZ-induced mice. These in vivo pathological processes were further confirmed in the differentiated podocytes stimulated by glucose (GLU). Intriguingly, we found that STZ-induced DN as mentioned above was further accelerated by DUSP26-/- in mice following STZ injection. Moreover, STZ-induced fibrosis in kidney glomeruli of DN mice was markedly prolonged in DUSP26-knockout mice through potentiating transforming growth factor-β1 (TGF-β1) expression. More importantly, reducing ROS generation could significantly abolish DUSP26 knockdown-exacerbated TGF-β1 expression and MAPKs activation, thereby protecting podocytes from GLU-induced podocyte injury. Thus, DUSP26-regulated DN development was largely dependent on ROS generation. Taken together, we concluded that DUSP26 might be a promising therapeutic target for developing effective treatments against DN progression.
Collapse
Affiliation(s)
- Feng Huang
- Department of Nephrology, Linyi City People Hospital, Linyi, Shandong, 276003, China
| | - Xu-Xiang Sheng
- Department of Nephrology, Linyi City People Hospital, Linyi, Shandong, 276003, China
| | - Hong-Juan Zhang
- Department of Nephrology, Linyi City People Hospital, Linyi, Shandong, 276003, China.
| |
Collapse
|
28
|
Xie L, Hu D, Qin H, Zhang W, Zhang S, Feng Y, Yao H, Xiao Y, Yao K, Huang X. In vivo gum arabic-coated tetrahydrobiopterin protects against myocardial ischemia reperfusion injury by preserving eNOS coupling. Life Sci 2019; 219:294-302. [PMID: 30668954 DOI: 10.1016/j.lfs.2019.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
Abstract
AIMS Exogenous tetrahydrobiopterin (BH4), an indispensable cofactor of endothelial nitric oxide synthase (eNOS), supplementation has been proved to be of advantage to improve cardiovascular function. Nevertheless, due to its highly redox-sensitive and easy to be oxidized, there is an urgent need to develop an appropriate BH4 formulation for clinical therapy. Gum Arabic (GA) has been considered as an alternative biopolymer for the stabilization and coating of drugs. The effects of GA on protecting BH4 from being oxidized were investigated in a rat model of myocardial ischemia-reperfusion (I/R). MAIN METHODS Rats were subjected to 60-min of in vivo left coronary artery occlusion and varying periods of reperfusion with or without pre-ischemic GA-coated BH4 supplementation (10 mg/kg, oral). Myocardial infarction, fibrotic area and left ventricle ejection fraction were correlated with cardiac BH4 content, eNOS protein, NOS enzyme activity, and ROS/NO generation. KEY FINDINGS Pretreatment of rats with GA-coated 6R-BH4, 24 h before myocardial ischemia, resulted in smaller myocardial infarction, improved left ventricular function and inhibited fibrosis, correlated with maintained high levels of cardiac BH4 content, preserved eNOS activation and dimerization, and decreased ROS generation. However in uncoated group, 6R-BH4 treatment did not reduce acute and chronic myocardial I/R injury compared with control I/R rats, which was closely related with the marked loss of myocardial BH4 levels during I/R. SIGNIFICANCE These findings provide evidence that in vivo pre-ischemic oral GA-coated BH4 administration preserves eNOS function secondary to maintaining cardiac BH4 content, and confers cardioprotection after I/R.
Collapse
Affiliation(s)
- Lin Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; NHC Key Laboratory of Organ Transplantation, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China.
| | - Dan Hu
- Department of Neurology, Renmin Hospital of Wuhan University, China
| | - Huan Qin
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Wenliang Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Shiyao Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Yuan Feng
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Haozhe Yao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Ying Xiao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China
| | - Kai Yao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei, China.
| | - Xia Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; NHC Key Laboratory of Organ Transplantation, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, China
| |
Collapse
|
29
|
Wang X, Li Z, Huang X, Li F, Liu J, Li Z, Bai D. An experimental study of exenatide effects on renal injury in diabetic rats1. Acta Cir Bras 2019; 34:e20190010000001. [PMID: 30785502 PMCID: PMC6585921 DOI: 10.1590/s0102-865020190010000001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/25/2018] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To investigate the effects of exenatide on renal injury in streptozotocin-induced diabetic rats. METHODS Fifty SD rats were randomly divided into normal control, model, exenatide-1, exenatide-2 and exenatide-3 groups, 10 rats in each group. The diabetic nephropathy model was constructed in later 4 groups. Then, the later 3 groups were treated with 2, 4 and 8 μg/kg exenatide for 8 weeks, respectively. The serum and urine biochemical indexes and oxidative stress and inflammatory indexes in renal tissue were determined. RESULTS Compared to the model group, in exenatide-3 group the serum fasting plasma glucose and hemoglobin A1c levels were significantly decreased, the fasting insulin level was significantly increased, the renal index and blood urea nitrogen, serum creatinine and 24 h urine protein levels were significantly decreased, the renal tissue superoxide dismutase and glutathione peroxidase levels were significantly increased, the malondialdehyde level was significantly decreased, and the renal tissue tumor necrosis factor alpha, interleukin 6, hypersensitive C-reactive protein and chemokine (C-C motif) ligand 5 levels were significantly decreased P<0.05). CONCLUSIONS Exenatide can mitigate the renal injury in diabetic rats. The mechanisms may be related to its resistance of oxidative stress and inflammatory response in renal tissue.
Collapse
Affiliation(s)
- Xiaodong Wang
- Master, Second Department of Nephrology, Tai'an Central Hospital, China. Technical procedures, critical revision, final approval
| | - Zhaoliang Li
- Bachelor, Second Department of Endocrinology, Tai'an Central Hospital, China. Technical procedures, statistical analysis, critical revision, final approval
| | - Xiaolei Huang
- Master, Department of Hemodialysis, Tai'an Central Hospital, China. Acquisition of data, critical revision, final approval
| | - Fenghua Li
- Bachelor, Second Department of Endocrinology, Tai'an Central Hospital, China. Technical procedures, statistical analysis, critical revision, final approval
| | - Jinbo Liu
- MD, Department of Endocrinology, Qilu Hospital, Shandong University, China. Statistical analysis, critical revision, final approval
| | - Zhenzuo Li
- MD, Department of Endocrinology, The Fourth People's Hospital of Ji'nan City, China. Manuscript writing, critical revision, final approval
| | - Dongfang Bai
- Master, Second Department of Endocrinology, Tai'an Central Hospital, China. Design of the study, critical revision, final approval
| |
Collapse
|
30
|
Thorwald MA, Godoy-Lugo JA, Rodriguez GJ, Rodriguez MA, Jamal M, Kinoshita H, Nakano D, Nishiyama A, Forman HJ, Ortiz RM. Nrf2-related gene expression is impaired during a glucose challenge in type II diabetic rat hearts. Free Radic Biol Med 2019; 130:306-317. [PMID: 30316779 DOI: 10.1016/j.freeradbiomed.2018.10.405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/21/2018] [Accepted: 10/03/2018] [Indexed: 12/25/2022]
Abstract
Diabetic hearts are susceptible to damage from inappropriate activation of the renin angiotensin system (RAS) and hyperglycemic events both of which contribute to increased oxidant production. Prolonged elevation of oxidants impairs mitochondrial enzyme function, further contributing to metabolic derangement. Nuclear factor erythriod-2-related factor 2 (Nrf2) induces antioxidant genes including those for glutathione (GSH) synthesis following translocation to the nucleus. We hypothesized that an acute elevation in glucose impairs Nrf2-related gene expression in diabetic hearts, while AT1 antagonism would aid in Nrf2-mediated antioxidant production and energy replenishment. We used four groups (n = 6-8/group) of 25-week-old rats: 1) LETO (lean strain-control), 2) type II diabetic OLETF, 3) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d × 8 wks), and 4) ARBM (4 weeks on ARB, 4 weeks off) to study the effects of acutely elevated glucose on cardiac mitochondrial function and Nrf2 signaling in the diabetic heart. Animals were gavaged with a glucose bolus (2 g/kg) and groups were dissected at T0, T180, and T360 minutes. Nrf2 mRNA was 32% lower in OLETF rats compared to LETO and remained suppressed in response to glucose. LETO Nrf2 mRNA increased 25% at T360 in response to glucose while no changes were observed in diabetic hearts. GCLC and GCLM mRNA decreased in diabetic hearts 33% and 44% respectively and remained suppressed in response to glucose while ARB treatment increased GCLM transcripts 90% at T180. These data illustrate that during T2DM and in response to glucose, cardiac Nrf2's adaptive response to environmental stressors such as glucose is impaired in diabetic hearts and that ARB treatment may aid Nrf2's impaired dynamic response.
Collapse
Affiliation(s)
- Max A Thorwald
- School of Natural Sciences, University of California, Merced, United States; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States.
| | - Jose A Godoy-Lugo
- School of Natural Sciences, University of California, Merced, United States
| | - Gema J Rodriguez
- School of Natural Sciences, University of California, Merced, United States
| | | | - Mostofa Jamal
- Department of Forensic Medicine, Kagawa University Medical School, Japan
| | - Hiroshi Kinoshita
- Department of Forensic Medicine, Kagawa University Medical School, Japan
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Henry J Forman
- School of Natural Sciences, University of California, Merced, United States; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Rudy M Ortiz
- School of Natural Sciences, University of California, Merced, United States
| |
Collapse
|
31
|
Nuhu F, Bhandari S. Oxidative Stress and Cardiovascular Complications in Chronic Kidney Disease, the Impact of Anaemia. Pharmaceuticals (Basel) 2018; 11:E103. [PMID: 30314359 PMCID: PMC6316624 DOI: 10.3390/ph11040103] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have significant cardiovascular morbidity and mortality as a result of risk factors such as left ventricular hypertrophy (LVH), oxidative stress, and inflammation. The presence of anaemia in CKD further increases the risk of LVH and oxidative stress, thereby magnifying the deleterious consequence in uraemic cardiomyopathy (UCM), and aggravating progression to failure and increasing the risk of sudden cardiac death. This short review highlights the specific cardio-renal oxidative stress in CKD and provides an understanding of the pathophysiology and impact of uraemic toxins, inflammation, and anaemia on oxidative stress.
Collapse
Affiliation(s)
- Faisal Nuhu
- School of Life Sciences (Biomedical), University of Hull, Cottingham Rd, Hull HU6 7RX, UK.
| | - Sunil Bhandari
- Hull York Medical School & Department of Renal Medicine, Hull and East Yorkshire NHS Hospital Trust, Hull HU3 2JZ, UK.
| |
Collapse
|
32
|
Keyhanmanesh R, Hamidian G, Alipour MR, Ranjbar M, Oghbaei H. Protective effects of sodium nitrate against testicular apoptosis and spermatogenesis impairments in streptozotocin-induced diabetic male rats. Life Sci 2018; 211:63-73. [PMID: 30205097 DOI: 10.1016/j.lfs.2018.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 12/13/2022]
Abstract
AIMS As nitric oxide (NO) production is essential for insulin signaling, glucose uptake, endothelial function, and regulation of apoptosis, the loss of bioavailable NO may be a mechanism underlying the development of diabetes complication. Dietary nitrate acts as a substrate for NO generation, thus serving as a physiological source of NO. This study evaluated the therapeutic effects of nitrate supplementation on the apoptosis-induced testicular disorders in diabetic rats. MAIN METHODS Fifty male Wistar rats were divided into five groups; control, control with 100 mg/L nitrate in distilled drinking water, diabetes, diabetes treated with 2-4 U/day NPH insulin, diabetes treated with 100 mg/L nitrate in distilled drinking water. After 8 weeks, blood samples, testis, and epididymis were collected to assess the apoptosis process and the stereology of testis tissue, sperm motility, morphology and DNA fragmentation, and also mRNA expression of miR-449a, p53, Pdcd4, and Pacs2 mRNA, as well as serum glucose, insulin, and NOx levels were investigated. KEY FINDINGS The results of this study indicated that nitrate treatment ameliorated the sperm parameters, testicular morphometrical and stereological alterations, reduced blood glucose, the number of TUNEL positive cells and tubules, and testicular expressions of p53, Pdcd4, and Pacs2 mRNA as well as increased body weight, serum insulin and NOx levels, and testicular expression of miR-449a in streptozotocin-induced diabetic rats. SIGNIFICANCE Our in vivo evidence revealed that nitrate treatment may has a favorable effect as an exogenous NO donor on experimental diabetic testicular damages in which NO bioavailability is impaired.
Collapse
Affiliation(s)
- Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | | - Minoo Ranjbar
- Department of Midwifery, Bonab Branch, Islamic Azad University, Bonab, Iran
| | - Hajar Oghbaei
- Deptartment of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clin Sci (Lond) 2018; 132:1811-1836. [PMID: 30166499 DOI: 10.1042/cs20171459] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022]
Abstract
Chronic renal and vascular oxidative stress in association with an enhanced inflammatory burden are determinant processes in the development and progression of diabetic complications including cardiovascular disease (CVD), atherosclerosis and diabetic kidney disease (DKD). Persistent hyperglycaemia in diabetes mellitus increases the production of reactive oxygen species (ROS) and activates mediators of inflammation as well as suppresses antioxidant defence mechanisms ultimately contributing to oxidative stress which leads to vascular and renal injury in diabetes. Furthermore, there is increasing evidence that ROS, inflammation and fibrosis promote each other and are part of a vicious connection leading to development and progression of CVD and kidney disease in diabetes.
Collapse
|
34
|
Sagoo MK, Gnudi L. Diabetic nephropathy: Is there a role for oxidative stress? Free Radic Biol Med 2018; 116:50-63. [PMID: 29305106 DOI: 10.1016/j.freeradbiomed.2017.12.040] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/27/2017] [Accepted: 12/31/2017] [Indexed: 01/06/2023]
Abstract
Oxidative stress has been implicated in the pathophysiology of diabetic nephropathy. Studies in experimental animal models of diabetes strongly implicate oxidant species as a major determinant in the pathophysiology of diabetic kidney disease. The translation, in the clinical setting, of these concepts have been quite disappointing, and new theories have challenged the concepts that oxidative stress per se plays a role in the pathophysiology of diabetic kidney disease. The concept of mitochondrial hormesis has been introduced to explain this apparent disconnect. Hormesis is intended as any cellular process that exhibits a biphasic response to exposure to increasing amounts of a substance or condition: specifically, in diabetic kidney disease, oxidant species may represent, at determined concentration, an essential and potentially protective factor. It could be postulated that excessive production or inhibition of oxidant species formation might result in an adverse phenotype. This review discusses the evidence underlying these two apparent contradicting concepts, with the aim to propose and speculate on potential mechanisms underlying the role of oxidant species in the pathophysiology of diabetic nephropathy and possibly open future more efficient therapies to be tested in the clinical settings.
Collapse
Affiliation(s)
- Manpreet K Sagoo
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Luigi Gnudi
- School of Cardiovascular Medicine & Sciences, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
35
|
Siboto A, Sibiya N, Khathi A, Ngubane P. The Effects of Momordica balsamina Methanolic Extract on Kidney Function in STZ-Induced Diabetic Rats: Effects on Selected Metabolic Markers. J Diabetes Res 2018; 2018:7341242. [PMID: 30009183 PMCID: PMC6020477 DOI: 10.1155/2018/7341242] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/10/2018] [Accepted: 05/14/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Studies suggest that Momordica balsamina (intshungu) possesses hypoglycaemic effects. The effects of Momordica balsamina on diabetic complications such as DN, however, have not been established. Accordingly, this study seeks to investigate the effects of M. balsamina on kidney function in STZ-induced diabetic rats. METHODS Methanolic extracts (ME) of M. balsamina's leaves were used in this study. Short-term effects of M. balsamina methanolic extract on kidney function and MAP were studied in STZ-induced diabetic rats treated twice daily with M. balsamina methanolic extract (250 mg/kg), insulin (175 μg/kg, s.c.), and metformin (500 mg/kg) for 5 weeks. RESULTS M. balsamina methanolic extract significantly increased Na+ excretion outputs in STZ-induced diabetic rats by comparison to STZ-diabetic control rats. M. balsamina methanolic extract significantly increased GFR in STZ-diabetic rats with a concomitant decrease in creatinine concentration and also reduced kidney-to-body ratio, albumin excretion rate (AER), and albumin creatinine ratio (ACR). M. balsamina methanolic extract significantly reduced MAP in STZ-diabetic animals by comparison with STZ-diabetic control animals. These results suggest that M. balsamina methanolic extract not only lowers blood glucose but also has beneficial effects on kidney function and blood pressure. CONCLUSION These findings suggest that M. balsamina may have beneficial effects on some processes that are associated with renal derangement in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Anelisiwe Siboto
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
36
|
Azarkish F, Hashemi K, Talebi A, Kamalinejad M, Soltani N, Pouladian N. Effect of the Administration of Solanum nigrum Fruit on Prevention of Diabetic Nephropathy in Streptozotocin-induced Diabetic Rats. Pharmacognosy Res 2017; 9:325-332. [PMID: 29263625 PMCID: PMC5717784 DOI: 10.4103/pr.pr_47_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Our previous study showed antidiabetic effect of aqueous extract of Solanum nigrum Linn fruit (SNE). Objective This study was designed to explore the antidiabetic and nephroprotective effects of SNE in diabetic rats. Materials and Methods Animals were divided into nine groups to undergo two experiment protocols: Two groups served as nondiabetic controls (NDCs), while the other groups had diabetes induced with a single injection of streptozotocin. SNE-treated diabetic (D-SNE) and SNE-treated controls (NDC-SNE) received 1 g/L of SNE added to the drinking water and insulin-treated diabetic (D-I) for 8 weeks. Furthermore, there were four groups (D-SNE, NDC-SNE, D-I, D) in the second protocol to examine diabetic nephropathy (DN) for 16 weeks. Blood urea nitrogen (BUN), creatinine (Cr) magnesium, nitric oxide (NO), and malondialdehyde (MDA) levels were measured. Both kidneys were isolated to measure MDA, NO levels, and renal damage. Results SNE could decrease blood glucose level in diabetic rats. In addition, SNE was more effective than insulin in controlling blood glucose. SNE could decrease BUN, Cr levels, and kidney weight and damage after 8 and 16 weeks of administration. Plasma and kidney levels of NO and MDA also decreased. Conclusion Our results support the hypothesis that SNE could play a role in the management of diabetes and the prevention of DN. SUMMARY The aqueous extract of Solanum nigrum Linn fruit (SNE) (1 g/L via drinking water) was studied on streptozotocin-induced diabetic rats to prevent diabetic nephropathy (DN). The results suggest that SNE in addition to the management of diabetes could have a beneficial effect on the prevention of DN. Abbreviations Used: SNE: Extract of Solanum nigrum Linn fruit, NDCs: Nondiabetic controls, STZ: Streptozotocin, D-SNE: SNE-treated diabetic, NDC-SNE: SNE-treated controls, D-I: Insulin-treated diabetic, BUN: Blood urea nitrogen, Cr: Creatinine, Mg: Magnesium, NO: Nitric oxide, MDA: Malondialdehyde, DN: Diabetic nephropathy, BW: Body weight, FBG: Fed blood glucose, KW: Kidney weight, TBA: Thiobarbituric acid, IPGTT: Intraperitoneal glucose tolerance test, AUC: Aria under the curve, GFR: Glomerular filtration rate.
Collapse
Affiliation(s)
- Fariba Azarkish
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kobra Hashemi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ardashir Talebi
- Department of Pathology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kamalinejad
- Department of Pharmacognosy, Faculty of Pharmacy, Shahid Bahashti University of Medical Sciences, Tehran, Iran
| | - Nepton Soltani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nima Pouladian
- English language Department, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
37
|
Su LQ, Wang YD, Chi HY. Effect of curcumin on glucose and lipid metabolism, FFAs and TNF-α in serum of type 2 diabetes mellitus rat models. Saudi J Biol Sci 2017; 24:1776-1780. [PMID: 29551922 PMCID: PMC5851928 DOI: 10.1016/j.sjbs.2017.11.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 11/21/2022] Open
Abstract
Objective To investigate how curcumin affects the glucose and lipid metabolism in type 2 diabetes mellitus (DM) rat models, and to explore its effect on the free fatty acid (FFA) and tumor necrosis factor α (TNF-α) in serum. Methods Successfully established type 2 DM rats were divided into three groups, i.e. the normal control group, model group and curcumin group, and received the medication for consecutive 8 weeks. Thereafter, we detected the level of fasting blood glucose (FBG), and the blood glucose at 30 min, 60 min and 120 min; besides, we also carried out the insulin tolerance tests to measure the levels of fasting serum insulin (FINS) and blood glucose at 40 min and 90 min; additionally, we also detected the levels of TC, TG, HDL-C, LDL-C, FFA and TNF-α in serum. The results were expected to discover the mechanism of curcumin in decreasing the blood glucose level in DM rats. Results Compared with the model group, AUCs of FBG, blood glucose at 30 min, 60 min and 120 min, and glucose were decreased in varying degrees in the curcumin group, and the differences had statistical significance (p < .05). After subcutaneous injection of insulin, we found that the blood glucose at 40 min and 90 min in the curcumin group was decreased, while AUC of glucose level was also decreased (p < .05 or .01). Eight weeks after medication, compared with the rats in the normal group, the levels of HDL-C, LDL-C, TC and TG in rats of the model group and the curcumin group were obviously increased (p < .05). In comparison with the model group, the level of LDL-C in rats of the curcumin group was also decreased significantly (p < .05). In comparison with the normal control group in the same period, we found that the content of FFAs and TNF-α in serum of rats of the model group were elevated significantly, and the differences had statistical significance (p < .05 or .01); the levels in the curcumin group were significantly decreased in comparison with the model group in the same period, and the difference had statistical significance (p < .05 or .01). Conclusion Treatment with curcumin can significantly improve the metabolic disorder of glucose and lipid, enhance the sensitivity to the insulin, and ameliorate the resistance to insulin of the type II DM rats. Meanwhile, this treatment method can also significantly decrease the level of FFA and TNF-α in serum of type II DM rats. Thus, we inferred that the mechanism of curcumin to improve the insulin resistance might be correlated with the decreases of FFA and TNF-α in serum.
Collapse
Affiliation(s)
- Li-Qing Su
- Department of Endocrinology, Weihai Municipal Hospital, Weihai 264200, China
| | - Yong-di Wang
- Department of Endocrinology, Weihai Municipal Hospital, Weihai 264200, China
| | - Hai-Yan Chi
- Department of Endocrinology, Weihai Municipal Hospital, Weihai 264200, China
| |
Collapse
|
38
|
Tidke PS, Patil CR. Nrf2 activator corosolic acid meliorates alloxan induced diabetic nephropathy in mice. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
39
|
Sibiya N, Ngubane P, Mabandla M. The Ameliorative Effect of Pectin-Insulin Patch On Renal Injury in Streptozotocin-Induced Diabetic Rats. Kidney Blood Press Res 2017; 42:530-540. [PMID: 28854437 DOI: 10.1159/000480395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/09/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS Renal damage and dysfunction is attributed to sustained hyperglycaemia in overt diabetes. Subcutaneous insulin injections are beneficial in delaying the progression of renal dysfunction and damage in diabetics. However, the current mode of administration is associated with severe undesirable effects. In this study, we evaluated the ameliorative effects of pectin-insulin dermal patches on renal dysfunction in diabetes. METHODS Pectin-insulin patches (20.0, 40.8 and 82.9 µg/kg) were applied on the skin of streptozotocin-induced diabetic rats, thrice daily for 5 weeks. Blood glucose concentration, blood pressure and urine output volume were recorded on week 5 after which the animals were sacrificed after which the kidneys and plasma were collected. Kidney nephrin expression and urinary nephrin concentration, albumin excretion rate (AER), creatinine clearance (CC) and albumin creatinine ratio (ACR) were assessed. RESULTS Patch application resulted in reduced blood glucose concentration and blood pressure. Furthermore, pectin-insulin patch treatment resulted in increased kidney nephrin expression and reduced urinary nephrin concentration. AER, CC ACR were also reduced post patch application. CONCLUSIONS The application of pectin-insulin patch limited diabetes associated kidney damaged and improved kidney function. These observations suggest that pectin-insulin patches may ameliorate kidney dysfunction that is associated with chronic subcutaneous insulin administration.
Collapse
|
40
|
Giribabu N, Karim K, Kilari EK, Salleh N. Phyllanthus niruri leaves aqueous extract improves kidney functions, ameliorates kidney oxidative stress, inflammation, fibrosis and apoptosis and enhances kidney cell proliferation in adult male rats with diabetes mellitus. JOURNAL OF ETHNOPHARMACOLOGY 2017; 205:123-137. [PMID: 28483637 DOI: 10.1016/j.jep.2017.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phylanthus niruri has been used to treat ailments related to the urogenital organs. In this study, this herb was hypothesized to help to ameliorate kidney disease in diabetes mellitus (DM). AIMS To investigate P. niruri leaves aqueous extract (PN) effects on kidney functions, histopathological changes and levels of oxidative stress, inflammation, fibrosis, apoptosis and proliferation in DM. METHODS PN was orally administered to streptozotocin-nicotinamide-induced male diabetic rats for 28 days. At the end of the treatment, fasting blood glucose (FBG) and kidney functions were measured. Kidney somatic index, histopathological changes and levels of RAGE, Nrf2, oxidative stress markers (TBARS, SOD, CAT and GPx), inflammatory markers (NFkβ-p65, Ikk-β, TNF-α, IL-1β and IL-6), apoptosis markers (caspase-3, caspase-9 and Bax), fibrosis markers (TGF-β1, VEGF and FGF-1) and proliferative markers (PCNA and Ki-67) were determined by biochemical assays, qPCR, Western blotting, immunohistochemistry or immunofluorescence. RESULTS Administration of PN helps to maintain near normal FBG, creatinine clearance (CCr), blood urea nitrogen (BUN), BUN/Cr ratio, serum electrolytes, uric acid and urine protein levels in DM. Decreased RAGE, TBARS and increased Nrf2, SOD-1, CAT and GPx-1 were observed in PN-treated diabetic rat kidneys. Expression of inflammatory, fibrosis and apoptosis markers in the kidney reduced but expression of proliferative markers increased following PN treatment. Lesser histopathological changes were observed in the kidney of PN-treated diabetic rats. CONCLUSION PN helps to preserve near normal kidney function and prevents histopathological changes via ameliorating oxidative stress, inflammation, fibrosis and apoptosis while enhancing proliferation of the kidney in DM.
Collapse
Affiliation(s)
- Nelli Giribabu
- Dept of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kamarulzaman Karim
- Dept of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Eswar Kumar Kilari
- Pharmacology Division, A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India
| | - Naguib Salleh
- Dept of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
41
|
Mi X, Tang W, Chen X, Liu F, Tang X. Mitofusin 2 attenuates the histone acetylation at collagen IV promoter in diabetic nephropathy. J Mol Endocrinol 2016; 57:233-249. [PMID: 27997345 DOI: 10.1530/jme-16-0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022]
Abstract
Extracellular matrix (ECM) increase in diabetic nephropathy (DN) is closely related to mitochondrial dysfunction. The mechanism of protective function of mitofusin 2 (Mfn2) for mitochondria remains largely unknown. In this study, the molecular mechanisms for the effect of Mfn2 on mitochondria and subsequent collagen IV expression in DN were investigated. Ras-binding-deficient mitofusin 2 (Mfn2-Ras(Δ)) were overexpressed in rat glomerular mesangial cells, and then the cells were detected for mitochondrial morphology, cellular reactive oxygen species (ROS), mRNA and protein expression of collagen IV with advanced glycation end-product (AGE) stimulation. Preliminary results reveal that the mitochondrial dysfunction and the increased synthesis of collagen IV after AGE stimulation were reverted by Mfn2-Ras(Δ) overexpression. Bioinformatical computations were performed to search transcriptional factor motifs in the promoter region of collagen IV. Three specific regions for TFAP2A binding were identified, followed by validation with chromatin immunoprecipitation experiments. Knocking down TFAP2A significantly decreased the TF binding in the first two regions and the gene expression of collagen IV. Furthermore, results reveal that Mfn2-Ras(Δ) overexpression significantly mitigated TFAP2A binding and also reverted the histone acetylation at Regions 1 and 2 after AGE stimulation. In streptozotocin-induced diabetic rats, Mfn2-Ras(Δ) overexpression also ameliorated glomerular mesangial lesions with decreased collagen IV expression, accompanied by decreased acetylation and TFAP2A binding at Region 1. In conclusion, this study highlights the pathway by which mitochondria affect the histone acetylation of gene promoter and provides a new potential therapy approach for DN.
Collapse
Affiliation(s)
- Xuhua Mi
- Division of NephrologyWest China Hospital, Sichuan University, Chengdu, China
| | - Wanxin Tang
- Division of NephrologyWest China Hospital, Sichuan University, Chengdu, China
| | - Xiaolei Chen
- Division of NephrologyWest China Hospital, Sichuan University, Chengdu, China
| | - Fei Liu
- Division of NephrologyWest China Hospital, Sichuan University, Chengdu, China
| | - Xiaohong Tang
- Division of NephrologyWest China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Ma R, Chaudhari S, Li W. Canonical Transient Receptor Potential 6 Channel: A New Target of Reactive Oxygen Species in Renal Physiology and Pathology. Antioxid Redox Signal 2016; 25:732-748. [PMID: 26937558 PMCID: PMC5079416 DOI: 10.1089/ars.2016.6661] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/06/2016] [Indexed: 02/07/2023]
Abstract
SIGNIFICANCE Regulation of Ca2+ signaling cascade by reactive oxygen species (ROS) is becoming increasingly evident and this regulation represents a key mechanism for control of many fundamental cellular functions. Canonical transient receptor potential (TRPC) 6, a member of Ca2+-conductive channel in the TRPC family, is widely expressed in kidney cells, including glomerular mesangial cells, podocytes, tubular epithelial cells, and vascular myocytes in renal microvasculature. Both overproduction of ROS and dysfunction of TRPC6 channel are involved in renal injury in animal models and human subjects. Although regulation of TRPC channel function by ROS has been well described in other tissues and cell types, such as vascular smooth muscle, this important cell regulatory mechanism has not been fully reviewed in kidney cells. Recent Advances: Accumulating evidence has shown that TRPC6 is a redox-sensitive channel, and modulation of TRPC6 Ca2+ signaling by altering TRPC6 protein expression or TRPC6 channel activity in kidney cells is a downstream mechanism by which ROS induce renal damage. CRITICAL ISSUES This review highlights how recent studies analyzing function and expression of TRPC6 channels in the kidney and their response to ROS improve our mechanistic understanding of oxidative stress-related kidney diseases. FUTURE DIRECTIONS Although it is evident that ROS regulate TRPC6-mediated Ca2+ signaling in several types of kidney cells, further study is needed to identify the underlying molecular mechanism. We hope that the newly identified ROS/TRPC6 pathway will pave the way to new, promising therapeutic strategies to target kidney diseases such as diabetic nephropathy. Antioxid. Redox Signal. 25, 732-748.
Collapse
Affiliation(s)
- Rong Ma
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| | - Sarika Chaudhari
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, Texas
| | - Weizu Li
- Department of Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
43
|
Jha JC, Banal C, Chow BSM, Cooper ME, Jandeleit-Dahm K. Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid Redox Signal 2016; 25:657-684. [PMID: 26906673 PMCID: PMC5069735 DOI: 10.1089/ars.2016.6664] [Citation(s) in RCA: 403] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intrarenal oxidative stress plays a critical role in the initiation and progression of diabetic kidney disease (DKD). Enhanced oxidative stress results from overproduction of reactive oxygen species (ROS) in the context of concomitant, insufficient antioxidant pathways. Renal ROS production in diabetes is predominantly mediated by various NADPH oxidases (NOXs), but a defective antioxidant system as well as mitochondrial dysfunction may also contribute. Recent Advances: Effective agents targeting the source of ROS generation hold the promise to rescue the kidney from oxidative damage and prevent subsequent progression of DKD. Critical Issues and Future Directions: In the present review, we summarize and critically analyze molecular and cellular mechanisms that have been demonstrated to be involved in NOX-induced renal injury in diabetes, with particular focus on the role of increased glomerular injury, the development of albuminuria, and tubulointerstitial fibrosis, as well as mitochondrial dysfunction. Furthermore, novel agents targeting NOX isoforms are discussed. Antioxid. Redox Signal. 25, 657-684.
Collapse
Affiliation(s)
- Jay C Jha
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Claudine Banal
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Bryna S M Chow
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia
| | - Mark E Cooper
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia .,2 Department of Medicine, Monash University , Melbourne, Australia
| | - Karin Jandeleit-Dahm
- 1 Diabetic Complications Division, JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Baker IDI Heart and Diabetes Institute , Melbourne, Australia .,2 Department of Medicine, Monash University , Melbourne, Australia
| |
Collapse
|
44
|
Komers R, Xu B, Schneider J, Oyama TT. Effects of xanthine oxidase inhibition with febuxostat on the development of nephropathy in experimental type 2 diabetes. Br J Pharmacol 2016; 173:2573-88. [PMID: 27238746 DOI: 10.1111/bph.13527] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Elevated serum uric acid (UA) is a risk factor for the development of kidney disease. Inhibitors of xanthine oxidase (XOi), an enzyme involved in UA synthesis, have protective effects at early stages of experimental diabetic nephropathy (DN). However, long-term effects of XOi in models of DN remain to be determined. EXPERIMENTAL APPROACH The development of albuminuria, renal structure and molecular markers of DN were studied in type 2 diabetic Zucker obese (ZO) rats treated for 18 weeks with the XOi febuxostat and compared with vehicle-treated ZO rats, ZO rats treated with enalapril or a combination of both agents, and lean Zucker rats without metabolic defects. RESULTS Febuxostat normalized serum UA and attenuated the development of albuminuria, renal structural changes, with no significant effects on BP, metabolic control or systemic markers of oxidative stress (OS). Most of these actions were comparable with those of enalapril. Combination treatment induced marked decreases in BP and was more effective in ameliorating structural changes, expression of profibrotic genes and systemic OS than either monotherapy. Febuxostat attenuated renal protein expression of TGF-ß, CTGF, collagen 4, mesenchymal markers (FSP1 and vimentin) and a tissue marker of OS nitrotyrosine. Moreover, febuxostat attenuated TGF-ß- and S100B-induced increased expression of fibrogenic molecules in renal tubular cells in vitro in UA-free media in an Akt kinase-dependent manner. CONCLUSIONS AND IMPLICATIONS Febuxostat is protective and enhances the actions of enalapril in experimental DN. Multiple mechanisms might be involved, such as a reduction of UA, renal OS and inhibition of profibrotic signalling.
Collapse
Affiliation(s)
- Radko Komers
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| | - Bei Xu
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| | - Jennifer Schneider
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| | - Terry T Oyama
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
45
|
Yanagihara H, Ushijima K, Arakawa Y, Aizawa KI, Fujimura A. Effects of telmisartan and olmesartan on insulin sensitivity and renal function in spontaneously hypertensive rats fed a high fat diet. J Pharmacol Sci 2016; 131:190-7. [PMID: 27430988 DOI: 10.1016/j.jphs.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/05/2016] [Accepted: 06/20/2016] [Indexed: 02/07/2023] Open
Abstract
Although telmisartan, an angiotensin II receptor blocker (ARB), has an agonistic action for proliferator-activated receptor (PPAR)-γ in vitro, it remains to be determined whether telmisartan exerts such an action in vivo using a non-toxic dose (<5 mg/kg in rats). To address the issue, telmisartan (2 mg/kg) and olmesartan (2 mg/kg), another ARB without PPAR-γ agonistic action, were given to spontaneously hypertensive rats (SHR) fed a high fat diet (HFD). HFD decreased plasma adiponectin, and caused insulin resistance, hypertriglyceridemia and renal damage, which were improved by ARBs. Protective effects of telmisartan and olmesartan did not significantly differ. In addition, in vitro study showed that 1 μM of telmisartan did not elevate the mRNA expression of adipose protein 2, which is a PPAR-γ-stimulated adipogenic marker gene, in preadipocytes with 3% albumin. To obtain 1 μM of plasma concentration, oral dose of telmisartan was calculated to be 6 mg/kg, which indicates that PPAR-γ agonistic action is negligible with a non-toxic dose of telmisartan (<5 mg/kg) in rats. This study showed that 2 mg/kg of telmisartan and olmesartan ameliorated insulin resistance, hypertriglyceridemia and renal damage in SHR fed a HFD. As beneficial effects of telmisartan and olmesartan did not significantly differ, these were mediated through the PPAR-γ-independent actions.
Collapse
Affiliation(s)
- Hayato Yanagihara
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Kentaro Ushijima
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Yusuke Arakawa
- Division of Nephrology, Department of Internal Medicine, Nippon Medical University, Tokyo, Japan
| | - Ken-Ichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Akio Fujimura
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Tochigi, 329-0498, Japan.
| |
Collapse
|
46
|
Mascali A, Franzese O, Nisticò S, Campia U, Lauro D, Cardillo C, Di Daniele N, Tesauro M. Obesity and kidney disease: Beyond the hyperfiltration. Int J Immunopathol Pharmacol 2016; 29:354-63. [PMID: 27044633 DOI: 10.1177/0394632016643550] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/23/2016] [Indexed: 01/13/2023] Open
Abstract
In industrialized countries, overweight and obesity account for approximately 13.8% and 24.9% of the kidney disease observed in men and women, respectively. Moreover, obesity-associated glomerulopathy is now considered as "an emerging epidemic." Kidney function can be negatively impacted by obesity through several mechanisms, either direct or indirect. While it is well established that obesity represents the leading risk factor for type 2 diabetes and hypertension, awareness that obesity is associated with direct kidney damage independently of hypertension and diabetes is still not widespread. In this paper we will discuss the emerging role of adipose tissue, particularly in the visceral depot, in obesity-induced chronic kidney damage.
Collapse
Affiliation(s)
- A Mascali
- Division of Hypertension and Nephrology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - O Franzese
- Division of Hypertension and Nephrology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - S Nisticò
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - U Campia
- MedStar Cardiovascular Research Network, Washington, DC, USA
| | - D Lauro
- Endocrinology Unit, University of Rome Tor Vergata, Rome, Italy
| | - C Cardillo
- Internal Medicine, Catholic University, Rome, Italy
| | - N Di Daniele
- Division of Hypertension and Nephrology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - M Tesauro
- Division of Hypertension and Nephrology, Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
47
|
Mai HN, Chung YH, Shin EJ, Kim DJ, Jeong JH, Nguyen TTL, Nam Y, Lee YJ, Nah SY, Yu DY, Jang CG, Ho YS, Lei XG, Kim HC. Genetic depletion of glutathione peroxidase-1 potentiates nephrotoxicity induced by multiple doses of cocaine via activation of angiotensin II AT1 receptor. Free Radic Res 2016; 50:467-83. [DOI: 10.3109/10715762.2016.1143097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Tojo A, Kinugasa S, Fujita T, Wilcox CS. A local renal renin-angiotensin system activation via renal uptake of prorenin and angiotensinogen in diabetic rats. Diabetes Metab Syndr Obes 2016; 9:1-10. [PMID: 26848273 PMCID: PMC4723098 DOI: 10.2147/dmso.s91245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanism of activation of local renal renin-angiotensin system (RAS) has not been clarified in diabetes mellitus (DM). We hypothesized that the local renal RAS will be activated via increased glomerular filtration and tubular uptake of prorenin and angiotensinogen in diabetic kidney with microalbuminuria. Streptozotocin (STZ)-induced DM and control rats were injected with human prorenin and subsequently with human angiotensinogen. Human prorenin uptake was increased in podocytes, proximal tubules, macula densa, and cortical collecting ducts of DM rats where prorenin receptor (PRR) was expressed. Co-immunoprecipitation of kidney homogenates in DM rats revealed binding of human prorenin to the PRR and to megalin. The renal uptake of human angiotensinogen was increased in DM rats at the same nephron sites as prorenin. Angiotensin-converting enzyme was increased in podocytes, but decreased in the proximal tubules in DM rats, which may have contributed to unchanged renal levels of angiotensin despite increased angiotensinogen. The systolic blood pressure increased more after the injection of 20 μg of angiotensinogen in DM rats than in controls, accompanied by an increased uptake of human angiotensinogen in the vascular endothelium. In conclusion, endocytic uptake of prorenin and angiotensinogen in the kidney and vasculature in DM rats was contributed to increased tissue RAS and their pressor response to angiotensinogen.
Collapse
Affiliation(s)
- Akihiro Tojo
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
- Correspondence: Akihiro Tojo, Division of Nephrology and Endocrinology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan, Tel +81 3 3815 5411 ext 37219, Fax +81 3 3814 0021, Email
| | - Satoshi Kinugasa
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Toshiro Fujita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension, Center for Hypertension, Kidney and Vascular Research, Georgetown University, Washington, DC, USA
| |
Collapse
|
49
|
Lee ES, Kim HM, Kang JS, Lee EY, Yadav D, Kwon MH, Kim YM, Kim HS, Chung CH. Oleanolic acid and N-acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model. Nephrol Dial Transplant 2015; 31:391-400. [PMID: 26567248 DOI: 10.1093/ndt/gfv377] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hyperglycemia-induced endoplasmic reticulum (ER) stress and oxidative stress could be causes of renal fibrosis in diabetes. Oleanolic acid (OA) naturally occurs in fruits and vegetables. It has anti-inflammatory, antihyperlipidemic and antioxidant effects. N-acetylcysteine (NAC) is a precursor of glutathione, which has a strong antioxidant effect in the body. In this study, we investigated the therapeutic effects of OA and NAC in diabetic nephropathy (DN). METHODS Otsuka Long-Evans Tokushima Fatty rats were treated with OA (100 mg/kg/day) or NAC (300 mg/kg/day) for 20 weeks by oral gavage. RESULTS The OA or NAC administration increased blood insulin secretion and superoxide dismutase levels, and decreased triglycerides and urinary albumin/creatinine levels. In the kidney, the damaged renal structure recovered with OA or NAC administration, through an increase in nephrin and endothelial selective adhesion molecules and a decrease in transforming growth factor-β/p-smad2/3 and ER stress. Reactive oxygen species and ER stress were increased by high glucose and ER stress inducers in cultured mesangial cells, and these levels recovered with OA (5.0 μM) or NAC (2.5 mM) treatment. CONCLUSION The findings in this study suggest that OA and NAC have therapeutic effects for DN through an antioxidant effect and ER stress reduction.
Collapse
Affiliation(s)
- Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Hong Min Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 330-721, Republic of Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 330-721, Republic of Korea
| | - Dhananjay Yadav
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Mi-Hye Kwon
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - You Mi Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul 136-701, Republic of Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| |
Collapse
|
50
|
Islam BU, Habib S, Ahmad P, Allarakha S, Moinuddin, Ali A. Pathophysiological Role of Peroxynitrite Induced DNA Damage in Human Diseases: A Special Focus on Poly(ADP-ribose) Polymerase (PARP). Indian J Clin Biochem 2015; 30:368-385. [PMID: 26788021 PMCID: PMC4712174 DOI: 10.1007/s12291-014-0475-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
Abstract
Peroxynitrite is formed in biological systems when nitric oxide and superoxide rapidly interact at near equimolar ratio. Peroxynitrite, though not a free radical by chemical nature, is a powerful oxidant which reacts with proteins, DNA and lipids. These reactions trigger a wide array of cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. The present review outlines the various peroxynitrite-induced DNA modifications with special mention to the formation of 8-nitroguanine and 8-oxoguanine as well as the induction of DNA single strand breakage. Low concentrations of peroxynitrite cause apoptotic death, whereas higher concentrations cause necrosis with cellular energetics (ATP and NAD(+)) serving as control between the two modes of cell death. DNA damage induced by peroxynitrite triggers the activation of DNA repair systems. A DNA nick sensing enzyme, poly(ADP-ribose) polymerase-1 (PARP-1) becomes activated upon detecting DNA breakage and it cleaves NAD(+) into nicotinamide and ADP-ribose and polymerizes the latter on nuclear acceptor proteins. Over-activation of PARP induced by peroxynitrite consumes NAD(+) and consequently ATP decreases, culminating in cell dysfunction, apoptosis or necrosis. This mechanism has been implicated in the pathogenesis of various diseases like diabetes, cardiovascular diseases and neurodegenerative diseases. In this review, we have discussed the cytotoxic effects (apoptosis and necrosis) of peroxynitrite in the etiology of the mentioned diseases, focusing on the role of PARP in DNA repair in presence of peroxynitrite.
Collapse
Affiliation(s)
- Badar ul Islam
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Safia Habib
- />Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Parvez Ahmad
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Shaziya Allarakha
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Moinuddin
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Asif Ali
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| |
Collapse
|