1
|
Sahay S, Devine EA, Vargas CFA, McCullumsmith RE, O’Donovan SM. Adenosine Metabolism Pathway Alterations in Frontal Cortical Neurons in Schizophrenia. Cells 2024; 13:1657. [PMID: 39404420 PMCID: PMC11475131 DOI: 10.3390/cells13191657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Schizophrenia is a neuropsychiatric illness characterized by altered neurotransmission, in which adenosine, a modulator of glutamate and dopamine, plays a critical role that is relatively unexplored in the human brain. In the present study, postmortem human brain tissue from the anterior cingulate cortex (ACC) of individuals with schizophrenia (n = 20) and sex- and age-matched control subjects without psychiatric illness (n = 20) was obtained from the Bronx-Mount Sinai NIH Brain and Tissue Repository. Enriched populations of ACC pyramidal neurons were isolated using laser microdissection (LMD). The mRNA expression levels of six key adenosine pathway components-adenosine kinase (ADK), equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2), ectonucleoside triphosphate diphosphohydrolases 1 and 3 (ENTPD1 and ENTPD3), and ecto-5'-nucleotidase (NT5E)-were quantified using real-time PCR (qPCR) in neurons from these individuals. No significant mRNA expression differences were observed between the schizophrenia and control groups (p > 0.05). However, a significant sex difference was found in ADK mRNA expression, with higher levels in male compared with female subjects (Mann-Whitney U = 86; p < 0.05), a finding significantly driven by disease (t(17) = 3.289; p < 0.05). Correlation analyses also demonstrated significant associations (n = 12) between the expression of several adenosine pathway components (p < 0.05). In our dementia severity analysis, ENTPD1 mRNA expression was significantly higher in males in the "mild" clinical dementia rating (CDR) bin compared with males in the "none" CDR bin (F(2, 13) = 5.212; p < 0.05). Lastly, antipsychotic analysis revealed no significant impact on the expression of adenosine pathway components between medicated and non-medicated schizophrenia subjects (p > 0.05). The observed sex-specific variations and inter-component correlations highlight the value of investigating sex differences in disease and contribute to the molecular basis of schizophrenia's pathology.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
| | - Emily A. Devine
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Christina F.-A. Vargas
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
| | - Robert E. McCullumsmith
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
- Neuroscience Institute, ProMedica, Toledo, OH 43606, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences & Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (S.M.O.)
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick V94 T9PX, Ireland
| |
Collapse
|
2
|
Duan KL, Wang TX, You JW, Wang HN, Wang ZQ, Huang ZX, Zhang JY, Sun YP, Xiong Y, Guan KL, Ye D, Chen L, Liu R, Yuan HX. PCK2 maintains intestinal homeostasis and prevents colitis by protecting antibody-secreting cells from oxidative stress. Immunology 2024; 173:339-359. [PMID: 38934051 DOI: 10.1111/imm.13827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Maintaining intracellular redox balance is essential for the survival, antibody secretion, and mucosal immune homeostasis of immunoglobulin A (IgA) antibody-secreting cells (ASCs). However, the relationship between mitochondrial metabolic enzymes and the redox balance in ASCs has yet to be comprehensively studied. Our study unveils the pivotal role of mitochondrial enzyme PCK2 in regulating ASCs' redox balance and intestinal homeostasis. We discover that PCK2 loss, whether globally or in B cells, exacerbates dextran sodium sulphate (DSS)-induced colitis due to increased IgA ASC cell death and diminished antibody production. Mechanistically, the absence of PCK2 diverts glutamine into the TCA cycle, leading to heightened TCA flux and excessive mitochondrial reactive oxygen species (mtROS) production. In addition, PCK2 loss reduces glutamine availability for glutathione (GSH) synthesis, resulting in a decrease of total glutathione level. The elevated mtROS and reduced GSH expose ASCs to overwhelming oxidative stress, culminating in cell apoptosis. Crucially, we found that the mitochondria-targeted antioxidant Mitoquinone (Mito-Q) can mitigate the detrimental effects of PCK2 deficiency in IgA ASCs, thereby alleviating colitis in mice. Our findings highlight PCK2 as a key player in IgA ASC survival and provide a potential new target for colitis treatment.
Collapse
Affiliation(s)
- Kun-Long Duan
- Shanghai Fifth People's Hospital, Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tian-Xiang Wang
- Shanghai Fifth People's Hospital, Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jian-Wei You
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Hai-Ning Wang
- Shanghai Fifth People's Hospital, Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhi-Qiang Wang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zi-Xuan Huang
- Shanghai Fifth People's Hospital, Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jin-Ye Zhang
- Shanghai Fifth People's Hospital, Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yi-Ping Sun
- Shanghai Fifth People's Hospital, Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yue Xiong
- Cullgen Inc., San Diego, California, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Dan Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital of Fudan University, Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Li Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Ronghua Liu
- Shanghai Fifth People's Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hai-Xin Yuan
- Shanghai Fifth People's Hospital, Molecular and Cell Biology Research Lab of Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Li L, Zhang X, Wang L, Gao M, Wang Y, Zhang Z, Yang X, Yang J. Protective effect of soluble dietary fiber from Rosa roxburghii Tratt residue on dextran sulfate sodium-induced ulcerative colitis by regulating serum metabolism and NF-κB pathway in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7258-7270. [PMID: 38629513 DOI: 10.1002/jsfa.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) refers to an idiopathic chronic inflammatory bowel disease that starts with inflammation of the intestinal mucosa. Dietary fiber plays a crucial role in maintaining the normal architecture of the intestinal mucosa. In this study, the protective effect and potential mechanism of soluble dietary fiber from Rosa roxburghii Tratt residue (SDFR) on dextran sulfate sodium (DSS)-induced UC mice were explored. RESULTS The results revealed that SDFR could ameliorate body weight loss and pathological injury, improve the structure and crypt destruction in colon in DSS-induced mice. Moreover, the levels of NO, IL-1β, TNF-α, MPO and protein expression of iNOS and COX-2 were decreased after administration of SDFR. Notably, nontargeted metabolomics analysis indicated that there were significant differences in 51 potential metabolites in serum between the DSS and control groups. SDFR intervention could regulate aberrant alterations of these metabolites and mitigate UC via regulating metabolic pathways, including arachidonic acid and glycerophospholipid metabolism. CONCLUSION This study provides novel evidence that SDFR could be used as a potential modulator to relieve UC. Also, the results provide a theoretical basis for the utilization of byproducts in Rosa roxburghii Tratt fruit processing. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lilang Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Xiang Zhang
- Guizhou Vocational College of Foodstuff Engineering, Qingzhen, China
| | - Li Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Ming Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Yu Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Zhengrong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Xiaosheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Juan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| |
Collapse
|
4
|
Nelius E, Fan Z, Sobecki M, Krzywinska E, Nagarajan S, Ferapontova I, Gotthardt D, Takeda N, Sexl V, Stockmann C. The transcription factor HIF-1α in NKp46+ ILCs limits chronic intestinal inflammation and fibrosis. Life Sci Alliance 2024; 7:e202402593. [PMID: 38876796 PMCID: PMC11178940 DOI: 10.26508/lsa.202402593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Innate lymphoid cells (ILCs) are critical for intestinal adaptation to microenvironmental challenges, and the gut mucosa is characterized by low oxygen. Adaptation to low oxygen is mediated by hypoxia-inducible transcription factors (HIFs), and the HIF-1α subunit shapes an ILC phenotype upon acute colitis that contributes to intestinal damage. However, the impact of HIF signaling in NKp46+ ILCs in the context of repetitive mucosal damage and chronic inflammation, as it typically occurs during inflammatory bowel disease, is unknown. In chronic colitis, mice lacking the HIF-1α isoform in NKp46+ ILCs show a decrease in NKp46+ ILC1s but a concomitant rise in neutrophils and Ly6Chigh macrophages. Single-nucleus RNA sequencing suggests enhanced interaction of mesenchymal cells with other cell compartments in the colon of HIF-1α KO mice and a loss of mucus-producing enterocytes and intestinal stem cells. This was, furthermore, associated with increased bone morphogenetic pathway-integrin signaling, expansion of fibroblast subsets, and intestinal fibrosis. In summary, this suggests that HIF-1α-mediated ILC1 activation, although detrimental upon acute colitis, protects against excessive inflammation and fibrosis during chronic intestinal damage.
Collapse
Affiliation(s)
- Eric Nelius
- https://ror.org/02crff812 Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Zheng Fan
- https://ror.org/02crff812 Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Michal Sobecki
- https://ror.org/02crff812 Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Ewelina Krzywinska
- https://ror.org/02crff812 Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Shunmugam Nagarajan
- https://ror.org/02crff812 Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Irina Ferapontova
- https://ror.org/02crff812 Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | | | - Christian Stockmann
- https://ror.org/02crff812 Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
- Zurich Kidney Center, Zurich, Switzerland
| |
Collapse
|
5
|
Wu X, Chen PI, Whitener RL, MacDougall MS, Coykendall VMN, Yan H, Kim YB, Harper W, Pathak S, Iliopoulou BP, Hestor A, Saunders DC, Spears E, Sévigny J, Maahs DM, Basina M, Sharp SA, Gloyn AL, Powers AC, Kim SK, Jensen KP, Meyer EH. CD39 delineates chimeric antigen receptor regulatory T cell subsets with distinct cytotoxic & regulatory functions against human islets. Front Immunol 2024; 15:1415102. [PMID: 39007132 PMCID: PMC11239501 DOI: 10.3389/fimmu.2024.1415102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Human regulatory T cells (Treg) suppress other immune cells. Their dysfunction contributes to the pathophysiology of autoimmune diseases, including type 1 diabetes (T1D). Infusion of Tregs is being clinically evaluated as a novel way to prevent or treat T1D. Genetic modification of Tregs, most notably through the introduction of a chimeric antigen receptor (CAR) targeting Tregs to pancreatic islets, may improve their efficacy. We evaluated CAR targeting of human Tregs to monocytes, a human β cell line and human islet β cells in vitro. Targeting of HLA-A2-CAR (A2-CAR) bulk Tregs to HLA-A2+ cells resulted in dichotomous cytotoxic killing of human monocytes and islet β cells. In exploring subsets and mechanisms that may explain this pattern, we found that CD39 expression segregated CAR Treg cytotoxicity. CAR Tregs from individuals with more CD39low/- Tregs and from individuals with genetic polymorphism associated with lower CD39 expression (rs10748643) had more cytotoxicity. Isolated CD39- CAR Tregs had elevated granzyme B expression and cytotoxicity compared to the CD39+ CAR Treg subset. Genetic overexpression of CD39 in CD39low CAR Tregs reduced their cytotoxicity. Importantly, β cells upregulated protein surface expression of PD-L1 and PD-L2 in response to A2-CAR Tregs. Blockade of PD-L1/PD-L2 increased β cell death in A2-CAR Treg co-cultures suggesting that the PD-1/PD-L1 pathway is important in protecting islet β cells in the setting of CAR immunotherapy. In summary, introduction of CAR can enhance biological differences in subsets of Tregs. CD39+ Tregs represent a safer choice for CAR Treg therapies targeting tissues for tolerance induction.
Collapse
Affiliation(s)
- Xiangni Wu
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
- Department of Internal Medicine, University of Missouri Kansas City, Kansas City, MO, United States
| | - Pin-I Chen
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
| | - Robert L. Whitener
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Matthew S. MacDougall
- Departments of Medicine and of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Vy M. N. Coykendall
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States
| | - Hao Yan
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
| | - Yong Bin Kim
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States
| | - William Harper
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center (SDRC), Stanford University School of Medicine, Stanford, CA, United States
| | - Shiva Pathak
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
| | - Bettina P. Iliopoulou
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
| | - Allison Hestor
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
| | - Diane C. Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Erick Spears
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jean Sévigny
- Centre de recherche du centre hospitalier universitaire (CHU) de Québec – Université Laval, Québec City, QC, Canada
- Départment de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - David M. Maahs
- Stanford Diabetes Research Center (SDRC), Stanford University School of Medicine, Stanford, CA, United States
- Department of Pediatrics, Division of Pediatric Endocrinology, Stanford University School of Medicine, Stanford, CA, United States
| | - Marina Basina
- Stanford Diabetes Research Center (SDRC), Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA, United States
| | - Seth A. Sharp
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Anna L. Gloyn
- Stanford Diabetes Research Center (SDRC), Stanford University School of Medicine, Stanford, CA, United States
- Department of Pediatrics, Division of Pediatric Endocrinology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alvin C. Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs (VA) Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Seung K. Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center (SDRC), Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA, United States
- The Juvenile Diabetes Research Foundation (JDRF) Northern California Center of Excellence, Stanford University School of Medicine, Stanford, CA, United States
| | - Kent P. Jensen
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center (SDRC), Stanford University School of Medicine, Stanford, CA, United States
- The Juvenile Diabetes Research Foundation (JDRF) Northern California Center of Excellence, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Department of Medicine, Stanford, CA, United States
| | - Everett H. Meyer
- Department of Medicine, Division of Blood and Bone Marrow Transplantation and Cell Therapy, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center (SDRC), Stanford University School of Medicine, Stanford, CA, United States
- The Juvenile Diabetes Research Foundation (JDRF) Northern California Center of Excellence, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Department of Medicine, Stanford, CA, United States
- Department of Pediatrics, Division of Stem Cell Transplantation, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
6
|
Kajimura Y, Taguchi A, Nagao Y, Yamamoto K, Masuda K, Shibata K, Asaoka Y, Furutani-Seiki M, Tanizawa Y, Ohta Y. E4BP4 in macrophages induces an anti-inflammatory phenotype that ameliorates the severity of colitis. Commun Biol 2024; 7:527. [PMID: 38714733 PMCID: PMC11076557 DOI: 10.1038/s42003-024-06099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/22/2024] [Indexed: 05/10/2024] Open
Abstract
Macrophages are versatile cells of the innate immune system that work by altering their pro- or anti-inflammatory features. Their dysregulation leads to inflammatory disorders such as inflammatory bowel disease. We show that macrophage-specific upregulation of the clock output gene and transcription factor E4BP4 reduces the severity of colitis in mice. RNA-sequencing and single-cell analyses of macrophages revealed that increased expression of E4BP4 leads to an overall increase in expression of anti-inflammatory genes including Il4ra with a concomitant reduction in pro-inflammatory gene expression. In contrast, knockout of E4BP4 in macrophages leads to increased proinflammatory gene expression and decreased expression of anti-inflammatory genes. ChIP-seq and ATAC-seq analyses further identified Il4ra as a target of E4BP4, which drives anti-inflammatory polarization in macrophages. Together, these results reveal a critical role for E4BP4 in regulating macrophage inflammatory phenotypes and resolving inflammatory bowel diseases.
Collapse
Affiliation(s)
- Yasuko Kajimura
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Akihiko Taguchi
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan.
| | - Yuko Nagao
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Kaoru Yamamoto
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Konosuke Masuda
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Kensuke Shibata
- Department of Microbiology and Immunology, Yamaguchi University, School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoichi Asaoka
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University, School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Makoto Furutani-Seiki
- Department of Systems Biochemistry in Pathology and Regeneration, Yamaguchi University, School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| | - Yukio Tanizawa
- Yamaguchi University, 1677-1, Yoshida, Yamaguchi, 753-8511, Japan
| | - Yasuharu Ohta
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Department of Bio-Signal Analysis, Yamaguchi University, Graduate School of Medicine, 1-1-1, Minami Kogushi, Ube, 755-8505, Japan
| |
Collapse
|
7
|
Chen H, Li Q, Gao T, Wang Y, Ren X, Liu S, Zhang S, Zhou P, Lyu J, Bai H, Wang Y. Causal role of immune cells in inflammatory bowel disease: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37537. [PMID: 38579066 PMCID: PMC10994490 DOI: 10.1097/md.0000000000037537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/16/2024] [Indexed: 04/07/2024] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by an inflammatory response closely related to the immune system, but the relationship between inflammation and IBD remains unclear. We performed a comprehensive 2-sample Mendelian randomization (MR) analysis to determine the causal relationship between immune cell characteristics and IBD. Using publicly available genetic data, we explored the relationship between 731 immune cell characteristics and IBD risk. Inverse-variance weighting was the primary analytical method. To test the robustness of the results, we used the weighted median-based, MR-Egger, simple mode, and mode-based methods. Finally, we performed a reverse MR analysis to assess the possibility of reverse causality. We identified suggestive associations between 2 immune cell traits and IBD risk (P = 4.18 × 10-5 for human leukocyte antigen-DR on CD14+ monocytes, OR: 0.902; 95% CI: 0.859-0.947; for CD39+ CD4+ T cells, P = 6.24 × 10-5; OR: 1.042; 95% CI: 1.021-1.063). Sensitivity analysis results of these immune cell traits were consistent. In reverse MR analysis, we found no statistically significant association between IBD and these 2 cell traits. Our study demonstrates the close connection between immune cells and IBD using MR, providing guidance for future clinical and basic research.
Collapse
Affiliation(s)
- Haoyu Chen
- School of Graduate, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, China
| | - Qi Li
- School of Graduate, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, China
| | - Tianyu Gao
- School of Graduate, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, China
| | - Yuhua Wang
- School of Graduate, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, China
| | - Xuetong Ren
- School of Graduate, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, China
| | - Shaowei Liu
- School of Graduate, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, China
| | - Shixiong Zhang
- School of Graduate, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Pingping Zhou
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Jingjing Lyu
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Haiyan Bai
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, China
| | - Yangang Wang
- School of Graduate, Hebei University of Chinese Medicine, Hebei, Shijiazhuang, China
- Department of Gastroenterology, Beijing University of Chinese Medicine, Third Affiliated Hospital, Beijing, China
| |
Collapse
|
8
|
Tsai AK, Stromnes IM. CD39 deletion in TCR-engineered T cells enhances antitumour immunity. Gut 2024; 73:716-717. [PMID: 37898545 PMCID: PMC10997453 DOI: 10.1136/gutjnl-2023-330424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Affiliation(s)
- Alexander K Tsai
- Microbiology & Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ingunn M Stromnes
- Microbiology & Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Stepanova M, Aherne CM. Adenosine in Intestinal Epithelial Barrier Function. Cells 2024; 13:381. [PMID: 38474346 DOI: 10.3390/cells13050381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
At the intestinal front, several lines of defense are in place to resist infection and injury, the mucus layer, gut microbiome and strong epithelial junctions, to name a few. Their collaboration creates a resilient barrier. In intestinal disorders, such as inflammatory bowel disease (IBD), barrier function is compromised, which results in rampant inflammation and tissue injury. In response to the destruction, the intestinal epithelium releases adenosine, a small but powerful nucleoside that functions as an alarm signal. Amidst the chaos of inflammation, adenosine aims to restore order. Within the scope of its effects is the ability to regulate intestinal epithelial barrier integrity. This review aims to define the contributions of adenosine to mucus production, microbiome-dependent barrier protection, tight junction dynamics, chloride secretion and acid-base balance to reinforce its importance in the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Mariya Stepanova
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Carol M Aherne
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
10
|
Layunta E, Jäverfelt S, van de Koolwijk FC, Sivertsson M, Dolan B, Arike L, Thulin S, Vallance BA, Pelaseyed T. MUC17 is an essential small intestinal glycocalyx component that is disrupted in Crohn's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.578867. [PMID: 38405862 PMCID: PMC10888976 DOI: 10.1101/2024.02.08.578867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Crohn's disease (CD) is the chronic inflammation of the ileum and colon triggered by bacteria, but insights into molecular perturbations at the bacteria-epithelium interface are limited. We report that membrane mucin MUC17 protects small intestinal enterocytes against commensal and pathogenic bacteria. In non-inflamed CD ileum, reduced MUC17 levels correlated with a compromised glycocalyx, allowing bacterial contact with enterocytes. Muc17 deletion in mice rendered the small intestine prone to atypical infection while maintaining resistance to colitis. The loss of Muc17 resulted in spontaneous deterioration of epithelial homeostasis and extra-intestinal translocation of bacteria. Finally, Muc17-deficient mice harbored specific small intestinal bacterial taxa observed in CD. Our findings highlight MUC17 as an essential line of defense in the small intestine with relevance for early epithelial defects in CD.
Collapse
Affiliation(s)
- Elena Layunta
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Sofia Jäverfelt
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Fleur C van de Koolwijk
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Molly Sivertsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Brendan Dolan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Sara Thulin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Bruce A Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Thaher Pelaseyed
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| |
Collapse
|
11
|
Engevik KA, Scribano FJ, Gebert JT, Perry JL, Crawford SE, Hyser JM. Distribution of P2Y and P2X purinergic receptor expression within the intestine. Am J Physiol Gastrointest Liver Physiol 2024; 326:G107-G119. [PMID: 37987757 PMCID: PMC11208031 DOI: 10.1152/ajpgi.00108.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Nucleotides are potent extracellular signaling molecules during homeostasis, infection, and injury due to their ability to activate purinergic receptors. The nucleotide ATP activates P2X receptors (P2RXs), whereas the nucleotides ADP, ATP, UTP, and UDP-glucose selectively activate different P2Y receptors (P2RYs). Several studies have established crucial roles for P2 receptors during intestinal inflammatory and infectious diseases, yet the most extensive characterization of purinergic signaling has focused on immune cells and the central and enteric nervous systems. As epithelial cells serve as the first barrier against irritants and infection, we hypothesized that the gut epithelium may express multiple purinergic receptors that respond to extracellular nucleotide signals. Using the Human Protein Atlas and Gut Cell Survey, we queried single-cell RNA sequencing (RNAseq) data for the P2 purinergic receptors in the small and large intestines. In silico analysis reveals robust mRNA expression of P2RY1, P2RY2, P2RY11, and P2RX4 throughout the gastrointestinal tract. Human intestinal organoids exhibited a similar expression pattern with a prominent expression of P2RY1, P2RY2, and P2RX4, but this purinergic receptor repertoire was not conserved in T84, Caco2, and HT29 intestinal epithelial cell lines. Finally, P2YR1 and P2YR2 agonists elicited robust calcium responses in human intestinal organoids, but calcium responses were weaker or absent in the cell lines. These findings suggest that the gastrointestinal epithelia respond to extracellular purinergic signaling via P2RY1, P2RY2, P2RY11, and P2RX4 receptors and highlight the benefit of using intestinal organoids as a model of intestinal purinergic signaling.NEW & NOTEWORTHY Several studies have revealed crucial roles for P2 receptors during inflammatory and infectious diseases, however, these have largely been demonstrated in immune cells and the enteric nervous system. Although epithelial cells serve as the first barrier against infection and inflammation, the role of purinergic signaling within the gastrointestinal tract remains largely unknown. This work expands our knowledge of purinergic receptor distribution and relative expression along the intestine.
Collapse
Affiliation(s)
- Kristen A Engevik
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States
| | - Francesca J Scribano
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States
| | - J Thomas Gebert
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States
| | - Jacob L Perry
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States
| | - Sue E Crawford
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States
| | - Joseph M Hyser
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
12
|
Pabst O, Cerovic V. Interferon-γ sensing by epithelial cells tames gut inflammation. Nat Immunol 2024; 25:9-10. [PMID: 38168963 DOI: 10.1038/s41590-023-01705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Affiliation(s)
- Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
13
|
Malik A, Sharma D, Aguirre-Gamboa R, McGrath S, Zabala S, Weber C, Jabri B. Epithelial IFNγ signalling and compartmentalized antigen presentation orchestrate gut immunity. Nature 2023; 623:1044-1052. [PMID: 37993709 PMCID: PMC11361632 DOI: 10.1038/s41586-023-06721-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2023] [Indexed: 11/24/2023]
Abstract
All nucleated cells express major histocompatibility complex I and interferon-γ (IFNγ) receptor1, but an epithelial cell-specific function of IFNγ signalling or antigen presentation by means of major histocompatibility complex I has not been explored. We show here that on sensing IFNγ, colonic epithelial cells productively present pathogen and self-derived antigens to cognate intra-epithelial T cells, which are critically located at the epithelial barrier. Antigen presentation by the epithelial cells confers extracellular ATPase expression in cognate intra-epithelial T cells, which limits the accumulation of extracellular adenosine triphosphate and consequent activation of the NLRP3 inflammasome in tissue macrophages. By contrast, antigen presentation by the tissue macrophages alongside inflammasome-associated interleukin-1α and interleukin-1β production promotes a pathogenic transformation of CD4+ T cells into granulocyte-macrophage colony-stimulating-factor (GM-CSF)-producing T cells in vivo, which promotes colitis and colorectal cancer. Taken together, our study unravels critical checkpoints requiring IFNγ sensing and antigen presentation by epithelial cells that control the development of pathogenic CD4+ T cell responses in vivo.
Collapse
Affiliation(s)
- Ankit Malik
- Department of Medicine, Committee on Immunology, Department of Pediatrics, Department of Pathology, University of Chicago, Chicago, IL, USA.
| | - Deepika Sharma
- Department of Medicine, Committee on Immunology, Department of Pediatrics, Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Raúl Aguirre-Gamboa
- Department of Medicine, Committee on Immunology, Department of Pediatrics, Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Shaina McGrath
- Department of Medicine, Committee on Immunology, Department of Pediatrics, Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sarah Zabala
- Department of Medicine, Committee on Immunology, Department of Pediatrics, Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Christopher Weber
- Department of Medicine, Committee on Immunology, Department of Pediatrics, Department of Pathology, University of Chicago, Chicago, IL, USA
- Department of Pathology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Bana Jabri
- Department of Medicine, Committee on Immunology, Department of Pediatrics, Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Ai Y, Wang H, Liu L, Qi Y, Tang S, Tang J, Chen N. Purine and purinergic receptors in health and disease. MedComm (Beijing) 2023; 4:e359. [PMID: 37692109 PMCID: PMC10484181 DOI: 10.1002/mco2.359] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Purines and purinergic receptors are widely distributed throughout the human body. Purine molecules within cells play crucial roles in regulating energy metabolism and other cellular processes, while extracellular purines transmit signals through specific purinergic receptors. The ubiquitous purinergic signaling maintains normal neural excitability, digestion and absorption, respiratory movement, and other complex physiological activities, and participates in cell proliferation, differentiation, migration, and death. Pathological dysregulation of purinergic signaling can result in the development of various diseases, including neurodegeneration, inflammatory reactions, and malignant tumors. The dysregulation or dysfunction of purines and purinergic receptors has been demonstrated to be closely associated with tumor progression. Compared with other subtypes of purinergic receptors, the P2X7 receptor (P2X7R) exhibits distinct characteristics (i.e., a low affinity for ATP, dual functionality upon activation, the mediation of ion channels, and nonselective pores formation) and is considered a promising target for antitumor therapy, particularly in patients with poor response to immunotherapy This review summarizes the physiological and pathological significance of purinergic signaling and purinergic receptors, analyzes their complex relationship with tumors, and proposes potential antitumor immunotherapy strategies from tumor P2X7R inhibition, tumor P2X7R overactivation, and host P2X7R activation. This review provides a reference for clinical immunotherapy and mechanism investigation.
Collapse
Affiliation(s)
- Yanling Ai
- Department of OncologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Hengyi Wang
- Department of Infectious DiseasesHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Lu Liu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yulin Qi
- Department of OphthalmologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
- Postdoctoral Research Station of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan ProvinceHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and EngineeringCollege of Biomedical EngineeringChongqing Medical UniversityChongqingChina
| |
Collapse
|
15
|
Son SJ, Han AR, Sung MJ, Hong SM, Lee SH. Hermetia illucens Fermented with Lactobacillus plantarum KCCM12757P Alleviates Dextran Sodium Sulfate-Induced Colitis in Mice. Antioxidants (Basel) 2023; 12:1822. [PMID: 37891901 PMCID: PMC10604763 DOI: 10.3390/antiox12101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) can severely affect humans and animals and is difficult to treat. Black soldier fly (Hermetia illucens; Hi) larvae (BSFL) are a sustainable source of protein. However, no studies exist on the antioxidant and anti-inflammatory functions of BSFL or fermented BSFL with respect to IBD. In this study, riboflavin-producing Lactobacillus plantarum KCCM12757P was isolated from a fish farm tank, and in conjunction with hot water-extracted Hi (HeHi) (termed HeHi_Lp), was used to determine optimal fermentation conditions to increase vitamin B2 concentration. This in vivo study investigated the therapeutic effects and mechanistic role of HeHi_Lp in chronic colitis-induced murine models. Histological changes, inflammatory cytokine levels, and intestinal barrier function were explored. Gut microbial communities and gene expression in the nuclear factor (NF)-κB signaling pathway were also studied. HeHi_Lp remarkably reduced the disease activity index, inflammatory cytokine (inducible nitric oxide synthase, cyclooxygenase 2, tumor necrosis factor α, interleukin (IL-6 and IL-1β) levels, and increased body weight and colon length. HeHi_Lp administration significantly raised zonula occludens 1, occludin and claudin 1 and improved the composition of the gut microbiota and beneficial intestinal bacteria. These results suggest that HeHi_Lp can be used as a dietary supplement in pet food to alleviate colitis.
Collapse
Affiliation(s)
- Seok Jun Son
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| | - Ah-Ram Han
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| | - Mi Jeong Sung
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| | - Sun Mee Hong
- Department of Technology Development, Marine Industry Research Institute for East Sea Rim, Jukbyeon, Uljin-gun 36315, Gyeongsangbuk-do, Republic of Korea;
| | - Sang-Hee Lee
- Korea Food Research Institute, Iseo-myeon, Wanju-Gun 55365, Jeollabuk-do, Republic of Korea; (S.J.S.); (A.-R.H.); (M.J.S.)
| |
Collapse
|
16
|
Potenza A, Balestrieri C, Spiga M, Albarello L, Pedica F, Manfredi F, Cianciotti BC, De Lalla C, Botrugno OA, Faccani C, Stasi L, Tassi E, Bonfiglio S, Scotti GM, Redegalli M, Biancolini D, Camisa B, Tiziano E, Sirini C, Casucci M, Iozzi C, Abbati D, Simeoni F, Lazarevic D, Elmore U, Fiorentini G, Di Lullo G, Casorati G, Doglioni C, Tonon G, Dellabona P, Rosati R, Aldrighetti L, Ruggiero E, Bonini C. Revealing and harnessing CD39 for the treatment of colorectal cancer and liver metastases by engineered T cells. Gut 2023; 72:1887-1903. [PMID: 37399271 DOI: 10.1136/gutjnl-2022-328042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/02/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Colorectal tumours are often densely infiltrated by immune cells that have a role in surveillance and modulation of tumour progression but are burdened by immunosuppressive signals, which might vary from primary to metastatic stages. Here, we deployed a multidimensional approach to unravel the T-cell functional landscape in primary colorectal cancers (CRC) and liver metastases, and genome editing tools to develop CRC-specific engineered T cells. DESIGN We paired high-dimensional flow cytometry, RNA sequencing and immunohistochemistry to describe the functional phenotype of T cells from healthy and neoplastic tissue of patients with primary and metastatic CRC and we applied lentiviral vectors (LV) and CRISPR/Cas9 genome editing technologies to develop CRC-specific cellular products. RESULTS We found that T cells are mainly localised at the front edge and that tumor-infiltrating T cells co-express multiple inhibitory receptors, which largely differ from primary to metastatic sites. Our data highlighted CD39 as the major driver of exhaustion in both primary and metastatic colorectal tumours. We thus simultaneously redirected T-cell specificity employing a novel T-cell receptor targeting HER-2 and disrupted the endogenous TCR genes (TCR editing (TCRED)) and the CD39 encoding gene (ENTPD1), thus generating TCREDENTPD1KOHER-2-redirected lymphocytes. We showed that the absence of CD39 confers to HER-2-specific T cells a functional advantage in eliminating HER-2+ patient-derived organoids in vitro and in vivo. CONCLUSION HER-2-specific CD39 disrupted engineered T cells are promising advanced medicinal products for primary and metastatic CRC.
Collapse
Affiliation(s)
- Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Balestrieri
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Spiga
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Albarello
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pedica
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudia De Lalla
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Oronza A Botrugno
- Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Faccani
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorena Stasi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bonfiglio
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Maria Scotti
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miriam Redegalli
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Donatella Biancolini
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Camisa
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tiziano
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camilla Sirini
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Iozzi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Simeoni
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ugo Elmore
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guido Fiorentini
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Di Lullo
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Tonon
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Functional Genomics of Cancer Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Riccardo Rosati
- Vita-Salute San Raffaele University, Milan, Italy
- Gastrointestinal Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Aldrighetti
- Vita-Salute San Raffaele University, Milan, Italy
- Hepatobiliary Surgery Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
17
|
Zhang Y, Hu J, Ji K, Jiang S, Dong Y, Sun L, Wang J, Hu G, Chen D, Chen K, Tao Z. CD39 inhibition and VISTA blockade may overcome radiotherapy resistance by targeting exhausted CD8+ T cells and immunosuppressive myeloid cells. Cell Rep Med 2023; 4:101151. [PMID: 37567173 PMCID: PMC10439278 DOI: 10.1016/j.xcrm.2023.101151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023]
Abstract
Although radiotherapy (RT) has achieved great success in the treatment of non-small cell lung cancer (NSCLC), local relapses still occur and abscopal effects are rarely seen even when it is combined with immune checkpoint blockers (ICBs). Here, we characterize the dynamic changes of tumor-infiltrating immune cells after RT in a therapy-resistant murine tumor model using single-cell transcriptomes and T cell receptor sequencing. At the early stage, the innate and adaptive immune systems are activated. At the late stage, however, the tumor immune microenvironment (TIME) shifts into immunosuppressive properties. Our study reveals that inhibition of CD39 combined with RT preferentially decreases the percentage of exhausted CD8+ T cells. Moreover, we find that the combination of V-domain immunoglobulin suppressor of T cell activation (VISTA) blockade and RT synergistically reduces immunosuppressive myeloid cells. Clinically, high VISTA expression is associated with poor prognosis in patients with NSCLC. Altogether, our data provide deep insight into acquired resistance to RT from an immune perspective and present rational combination strategies.
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Junyi Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Ji
- Department of Pain Relief, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Shengpeng Jiang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yang Dong
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lin Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jun Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Department of Radiation Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Department of Radiation Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China; Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Hipp AV, Bengsch B, Globig AM. Friend or Foe - Tc17 cell generation and current evidence for their importance in human disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad010. [PMID: 38567057 PMCID: PMC10917240 DOI: 10.1093/discim/kyad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 04/04/2024]
Abstract
The term Tc17 cells refers to interleukin 17 (IL-17)-producing CD8+ T cells. While IL-17 is an important mediator of mucosal defense, it is also centrally involved in driving the inflammatory response in immune-mediated diseases, such as psoriasis, multiple sclerosis, and inflammatory bowel disease. In this review, we aim to gather the current knowledge on the phenotypic and transcriptional profile, the in vitro and in vivo generation of Tc17 cells, and the evidence pointing towards a relevant role of Tc17 cells in human diseases such as infectious diseases, cancer, and immune-mediated diseases.
Collapse
Affiliation(s)
- Anna Veronika Hipp
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna-Maria Globig
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
19
|
Mondal S, Das M, Ghosh R, Singh M, Adhikari A, Darbar S, Kumar Das A, Bhattacharya SS, Pal D, Bhattacharyya D, Ahmed ASA, Mallick AK, Al-Rooqi MM, Moussa Z, Ahmed SA, Pal SK. Chitosan functionalized Mn 3O 4 nanoparticles counteracts ulcerative colitis in mice through modulation of cellular redox state. Commun Biol 2023; 6:647. [PMID: 37328528 PMCID: PMC10275949 DOI: 10.1038/s42003-023-05023-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 06/07/2023] [Indexed: 06/18/2023] Open
Abstract
Recent findings suggest a key role for reactive oxygen species (ROS) in the pathogenesis and progression of ulcerative colitis (UC). Several studies have also highlighted the efficacy of citrate functionalized Mn3O4 nanoparticles as redox medicine against a number of ROS-mediated disorders. Here we show that synthesized nanoparticles consisting of chitosan functionalized tri-manganese tetroxide (Mn3O4) can restore redox balance in a mouse model of UC induced by dextran sulfate sodium (DSS). Our in-vitro characterization of the developed nanoparticle confirms critical electronic transitions in the nanoparticle to be important for the redox buffering activity in the animal model. A careful administration of the developed nanoparticle not only reduces inflammatory markers in the animals, but also reduces the mortality rate from the induced disease. This study provides a proof of concept for the use of nanomaterial with synergistic anti-inflammatory and redox buffering capacity to prevent and treat ulcerative colitis.
Collapse
Affiliation(s)
- Susmita Mondal
- Department of Chemical, Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Monojit Das
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, 711315, India
- Department of Zoology, Vidyasagar University, Rangamati, Midnapore, 721102, India
| | - Ria Ghosh
- Department of Chemical, Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Manali Singh
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, Punjab, 147004, India
| | - Aniruddha Adhikari
- Department of Chemical, Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India
| | - Soumendra Darbar
- Research & Development Division, Dey's Medical Stores (Mfg.) Ltd, 62, Bondel Road, Ballygunge, Kolkata, 700019, India
| | - Anjan Kumar Das
- Department of Pathology, Cooch Behar Government Medical College & Hospital, Vivekananda Rd, Khagrabari, Cooch Behar, West Bengal, 736101, India
| | | | - Debasish Pal
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, 711315, India
| | - Debasish Bhattacharyya
- Department of Gynecology & Obstetrics, Nil Ratan Sircar Medical College & Hospital, 138, AJC Bose Road, Sealdah, Raja Bazar, Kolkata, 700014, India
| | - Ahmed S A Ahmed
- Faculty of Medicine, Assiut University, 71516, Assiut, Egypt
| | - Asim Kumar Mallick
- Department of Pediatric Medicine, Nil Ratan Sirkar Medical College and Hospital, 38, Acharya Jagadish Chandra Bose Rd, Sealdah, Raja Bazar, Kolkata, West Bengal, 700014, India
| | - Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 21955, Makkah, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
| | - Samir Kumar Pal
- Department of Chemical, Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata, 700106, India.
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, 711315, India.
| |
Collapse
|
20
|
Lee A, Chung YC, Song KH, Ryuk JA, Ha H, Hwang YH. Network pharmacology-based identification of bioavailable anti-inflammatory agents from Psoralea corylifolia L. in an experimental colitis model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116534. [PMID: 37127140 DOI: 10.1016/j.jep.2023.116534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional oriental medicine, the dried seeds of Psoralea corylifolia L. (PC) have been used to treat various diseases, including gastrointestinal, urinary, orthopedic, diarrheal, ulcer, and inflammatory disorders. AIM OF THE STUDY Although its various biological properties are well-known, there is no information on the therapeutic effects and bioavailable components of PC against inflammatory bowel disease. Therefore, we focused on the relationship between hydroethanolic extract of PC (EPC) that ameliorates colitis in mice and bioactive constituents of EPC that suppress pro-inflammatory cytokines in macrophages. MATERIALS AND METHODS We investigated the therapeutic effects of EPC in a dextran sulfate sodium-induced colitis mouse model and identified the orally absorbed components of EPC using UPLC-MS/MS analysis. In addition, we evaluated and validated the mechanism of action of the bioavailable constituents of EPC using network pharmacology analysis. The effects on nitric oxide (NO) and inflammatory cytokines were measured by Griess reagent and enzyme linked immunosorbent assay in lipopolysaccharide (LPS)-induced macrophages. RESULTS In experimental colitis, EPC improved body weight loss, colon length shortening, and disease activity index. Moreover, EPC reduced the serum levels of pro-inflammatory cytokines and histopathological damage to the colon. Network pharmacological analysis identified 13 phytochemicals that were bioavailable following oral administration of EPC, as well as their potential anti-inflammatory effects. 11 identified EPC constituents markedly reduced the overproduction of NO, tumor necrosis factor-α, and/or interleukin-6 in macrophages induced by LPS. The LPS-induced expression of the nuclear factor kappa-light-chain-enhancer of activated B cells reporter gene was reduced by the 4 EPC constituents. CONCLUSIONS The results indicate that the protective activity of EPC against colitis is a result of the additive effects of each constituent on the expression of inflammatory cytokines. Therefore, it suggests that 11 bioavailable phytochemicals of EPC could aid in the management of intestinal inflammation, and also provides useful insights into the clinical application of PC for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Ami Lee
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea
| | - You Chul Chung
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Kwang Hoon Song
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Jin Ah Ryuk
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Hyunil Ha
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institution of Oriental Medicine, Deajeon, 34054, Republic of Korea; Korean Convergence Medical Science Major, KIOM Campus, University of Science & Technology (UST), Deajeon, 34054, Republic of Korea.
| |
Collapse
|
21
|
Deng C, Hu Y, Conceição M, Wood MJA, Zhong H, Wang Y, Shao P, Chen J, Qiu L. Oral delivery of layer-by-layer coated exosomes for colitis therapy. J Control Release 2023; 354:635-650. [PMID: 36634710 DOI: 10.1016/j.jconrel.2023.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have attracted much attention as a potential cell-free therapy for ulcerative colitis (UC), mainly due to their anti-inflammatory, tissue repair, and immunomodulatory properties. Although intravenous injection of MSC-Exos is able to improve UC to a certain extent, oral administration of exosomes is the preferred method to treat gastrointestinal diseases such as UC. However, exosomes contain proteins and nucleic acids that are vulnerable to degradation by the gastrointestinal environment, making oral administration difficult to implement. Layer-by-layer (LbL) self-assembly technology provides a promising strategy for the oral delivery of exosomes. Therefore, an efficient LbL-Exos self-assembly system was constructed in this study for the oral delivery of exosomes targeted to the colon to improve UC treatment. Biocompatible and biodegradable N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) and oxidized konjac glucomannan (OKGM) polysaccharides were used as the outer layers to provide colon targeting and to protect exosomes from degradation. Similar to plain exosomes, LbL-Exos had a similar structure and features, but LbL provided controlled release of exosomes in the inflammatory colon. Compared with intravenous administration, oral administration of LbL-Exos could effectively alleviate UC using half the number of exosomes. Mechanistic studies showed that LbL-Exos were internalized by macrophages and intestinal epithelial cells to exert anti-inflammatory and tissue repair effects and therefore alleviate UC. Furthermore, the LbL-Exos system was able to improve UC via MAPK/NF-κB signaling pathway inhibition. Overall, our data show that LbL-MSC-Exos can alleviate UC after oral administration and therefore may constitute a new strategy for UC treatment in the future.
Collapse
Affiliation(s)
- Chao Deng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yiwei Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Jiangyin Center for Disease Control and Prevention, Jiangyin 214434, China
| | | | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Hongyao Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yan Wang
- Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, China
| | - Ping Shao
- Yixing Hospital of Traditional Chinese Medicine, Wuxi 214200, China.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Lipeng Qiu
- Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK; School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
22
|
Wang X, Su L, Tan J, Ding T, Yue Y. Albiflorin alleviates DSS-induced ulcerative colitis in mice by reducing inflammation and oxidative stress. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:48-56. [PMID: 36594064 PMCID: PMC9790056 DOI: 10.22038/ijbms.2022.66678.14624] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023]
Abstract
Objectives To clarify therapeutic potential of albiflorin and its intrinsic mechanisms against dextran sulfate sodium (DSS)-induced Ulcerative colitis (UC) mice. Materials and Methods Sixty male C57BL/6 mice were randomly divided into five groups: negative control, positive, albiflorin low-dose group, albiflorin high-dose group and treatment control (Salicylazosulfapyridine "SASP", 100 mg/kg) group. Acute colitis was induced in all groups except NC by administration of 3% DSS for 7 days. Albiflorin and SASP were administered via the intragastric route twice a day for 7 days. The changes of colon tissue were assessed by disease activity index (DAI), HE staining, and ELISA. Adrenodoxin expressions of UC colon tissues were evaluated by immunohistochemistry. Western blotting was performed to investigate related protein of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Results It has been found that the albiflorin shares similar influences as the SASP in ameliorating the DSS-induced UC. The reduced DAI and alleviated colon tissue damage were observed in albiflorin intervened groups. Moreover, albiflorin significantly inhibited myeloperoxidase activities and attenuated immuno-inflammatory response and elevated Foxp3 mRNA in colon tissue. Furthermore, investigations revealed that albiflorin could inhibit adrenodoxin isoform and activate activated phosphorylated NF-κB p65 and IκBα, which consequently suppressed phosphorylated p38 MAPK, extracellular regulated protein kinase (ERK), and c-Jun N-terminal kinase (JNK). Conclusion These findings showed that albiflorin could alleviate DSS-induced murine colitis by activating inhibiting NF-κB and MAPK signaling pathways. It might be a potential therapeutic reagent for UC treatment.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of General Surgery, Bayinguoleng Mongolian Autonomous Prefecture People’s Hospital, Korla, 841000, Xinjiang, China,These authors contributed eqully to this work
| | - Lianlin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China,These authors contributed eqully to this work
| | - Jinhua Tan
- Department of General Surgery, Bayinguoleng Mongolian Autonomous Prefecture People’s Hospital, Korla, 841000, Xinjiang, China
| | - Tianwen Ding
- Department of General Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Yinzi Yue
- Department of General Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China,Corresponding author: Yinzi Yue. Department of General Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China.
| |
Collapse
|
23
|
Bae UJ, Jang HN, Lee SH, Kim JY, Kim GC. Oenanthe javanica Ethanolic Extract Alleviates Inflammation and Modifies Gut Microbiota in Mice with DSS-Induced Colitis. Antioxidants (Basel) 2022; 11:antiox11122429. [PMID: 36552637 PMCID: PMC9774932 DOI: 10.3390/antiox11122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Oenanthe javanica, commonly known as water dropwort, has long been used to treat acute and chronic hepatitis, abdominal pain, alcohol hangovers, and inflammation in various traditional medicine systems in Asia. However, whether O. javanica has beneficial effects on colitis-induced intestinal damage remains elusive. This study tested the hypothesis that O. javanica has anti-inflammatory and antioxidant activities in mice with dextran sulfate sodium (DSS)-induced colitis. First, treatment of O. javanica ethanol extract (OJE) inhibited the production of inflammatory cytokines in lipopolysaccharide-affected macrophages. Second, in mice with DSS-induced colitis, OJE administration reduced pathological damage to the colon while alleviating weight gain and decreasing colon length, including inflammation and mucosal necrosis. In addition, OJE significantly (p < 0.01) restricted the activation of nuclear factor-κB (NF-κB) and the secretion of pro-inflammatory mediators and increased the expression of Nrf2-phase 2 antioxidant enzymes. The results of 16S rRNA gene sequencing workflows for taxonomic assignment analysis confirmed that the diversity (richness and evenness) of fecal microbiota was markedly elevated in the OJE group. OJE administration reduced the abundance of Proteobacteria including Escherichia and increased the abundance of the genus Muribaculum. These results suggested that OJE exerts beneficial effects on inflammation and gut microbial composition in a mouse model of colitis.
Collapse
|
24
|
Bamboo Shoot and Artemisia capillaris Extract Mixture Ameliorates Dextran Sodium Sulfate-Induced Colitis. Curr Issues Mol Biol 2022; 44:5086-5103. [PMID: 36286060 PMCID: PMC9600592 DOI: 10.3390/cimb44100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract and is characterized by recurrent chronic inflammation and mucosal damage of the gastrointestinal tract. Recent studies have demonstrated that bamboo shoot (BS) and Artemisia capillaris (AC) extracts enhance anti-inflammatory effects in various disease models. However, it is uncertain whether there is a synergistic protective effect of BS and AC in dextran sodium sulfate (DSS)-induced colitis. In the current study, we tested the combined effects of BS and AC extracts (BA) on colitis using in vivo and in vitro models. Compared with control mice, oral administration of DSS exacerbated colon length and increased the disease activity index (DAI) and histological damage. In DSS-induced colitis, treatment with BA significantly alleviated DSS-induced symptoms such as colon shortening, DAI, histological damage, and colonic pro-inflammatory marker expression compared to single extracts (BS or AC) treatment. Furthermore, we found BA treatment attenuated the ROS generation, F-actin formation, and RhoA activity compared with the single extract (BS or AC) treatment in DSS-treated cell lines. Collectively, these findings suggest that BA treatment has a positive synergistic protective effect on colonic inflammation compared with single extracts, it may be a highly effective complementary natural extract mixture for the prevention or treatment of IBD.
Collapse
|
25
|
Hamoud AR, Bach K, Kakrecha O, Henkel N, Wu X, McCullumsmith RE, O’Donovan SM. Adenosine, Schizophrenia and Cancer: Does the Purinergic System Offer a Pathway to Treatment? Int J Mol Sci 2022; 23:ijms231911835. [PMID: 36233136 PMCID: PMC9570456 DOI: 10.3390/ijms231911835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
For over a century, a complex relationship between schizophrenia diagnosis and development of many cancers has been observed. Findings from epidemiological studies are mixed, with reports of increased, reduced, or no difference in cancer incidence in schizophrenia patients. However, as risk factors for cancer, including elevated smoking rates and substance abuse, are commonly associated with this patient population, it is surprising that cancer incidence is not higher. Various factors may account for the proposed reduction in cancer incidence rates including pathophysiological changes associated with disease. Perturbations of the adenosine system are hypothesized to contribute to the neurobiology of schizophrenia. Conversely, hyperfunction of the adenosine system is found in the tumor microenvironment in cancer and targeting the adenosine system therapeutically is a promising area of research in this disease. We outline the current biochemical and pharmacological evidence for hypofunction of the adenosine system in schizophrenia, and the role of increased adenosine metabolism in the tumor microenvironment. In the context of the relatively limited literature on this patient population, we discuss whether hypofunction of this system in schizophrenia, may counteract the immunosuppressive role of adenosine in the tumor microenvironment. We also highlight the importance of studies examining the adenosine system in this subset of patients for the potential insight they may offer into these complex disorders.
Collapse
Affiliation(s)
- Abdul-Rizaq Hamoud
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Karen Bach
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Ojal Kakrecha
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Nicholas Henkel
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Xiaojun Wu
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| | - Sinead M. O’Donovan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA
- Correspondence:
| |
Collapse
|
26
|
Globig AM, Mayer LS, Heeg M, Andrieux G, Ku M, Otto-Mora P, Hipp AV, Zoldan K, Pattekar A, Rana N, Schell C, Boerries M, Hofmann M, Neumann-Haefelin C, Kuellmer A, Schmidt A, Boettler T, Tomov V, Thimme R, Hasselblatt P, Bengsch B. Exhaustion of CD39-Expressing CD8 + T Cells in Crohn's Disease Is Linked to Clinical Outcome. Gastroenterology 2022; 163:965-981.e31. [PMID: 35738329 DOI: 10.1053/j.gastro.2022.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Exhaustion of CD8 T cells has been suggested to inform different clinical outcomes in Crohn's disease, but detailed analyses are lacking. This study aimed to identify the role of exhaustion on a single-cell level and identify relevant CD8 T cell populations in Crohn's disease. METHODS Blood and intestinal tissue from 58 patients with Crohn's disease (active disease or remission) were assessed for CD8 T cell expression of exhaustion markers and their cytokine profile by highly multiplexed flow and mass cytometry. Key disease-associated subsets were sorted and analyzed by RNA sequencing. CD39 inhibition assays were performed in vitro. RESULTS Activated CD39+ and CD39+PD-1+ CD8 T cell subsets expressing multiple exhaustion markers were enriched at low frequency in active Crohn's disease. Their cytokine production capacity was inversely linked to the Harvey-Bradshaw Index. Subset-level protein and transcriptome profiling revealed co-existence of effector and exhaustion programs in CD39+ and CD39+ PD-1+CD8 T cells, with CD39+ cells likely originating from the intestine. CD39 enzymatic activity controlled T cell cytokine production. Importantly, transcriptional exhaustion signatures were enriched in remission in CD39-expressing subsets with up-regulation of TOX. Subset-level transcriptomics revealed a CD39-related gene module that is associated with the clinical course. CONCLUSIONS These data showed a role for the exhaustion of peripheral CD39-expressing CD8 T cell subsets in Crohn's disease. Their low frequency illustrated the utility of single-cell cytometry methods for identification of relevant immune populations. Importantly, the link of their exhaustion status to the clinical activity and their specific gene signatures have implications for exhaustion-based personalized medicine approaches.
Collapse
Affiliation(s)
- Anna-Maria Globig
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Lena Sophie Mayer
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Manching Ku
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Patricia Otto-Mora
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna Veronika Hipp
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Katharina Zoldan
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ajinkya Pattekar
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nisha Rana
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christoph Schell
- Institute for Surgical Pathology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Maike Hofmann
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Armin Kuellmer
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Arthur Schmidt
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Tobias Boettler
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Vesselin Tomov
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert Thimme
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Peter Hasselblatt
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany; German Cancer Consortium Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany; Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
27
|
Vuerich M, Wang N, Graham JJ, Gao L, Zhang W, Kalbasi A, Zhang L, Csizmadia E, Hristopoulos J, Ma Y, Kokkotou E, Cheifetz AS, Robson SC, Longhi MS. Blockade of PGK1 and ALDOA enhances bilirubin control of Th17 cells in Crohn's disease. Commun Biol 2022; 5:994. [PMID: 36131123 PMCID: PMC9492699 DOI: 10.1038/s42003-022-03913-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Unconjugated bilirubin (UCB) confers Th17-cells immunosuppressive features by activating aryl-hydrocarbon-receptor, a modulator of toxin and adaptive immune responses. In Crohn's disease, Th17-cells fail to acquire regulatory properties in response to UCB, remaining at an inflammatory/pathogenic state. Here we show that UCB modulates Th17-cell metabolism by limiting glycolysis and through downregulation of glycolysis-related genes, namely phosphoglycerate-kinase-1 (PGK1) and aldolase-A (ALDOA). Th17-cells of Crohn's disease patients display heightened PGK1 and ALDOA and defective response to UCB. Silencing of PGK1 or ALDOA restores Th17-cell response to UCB, as reflected by increase in immunoregulatory markers like FOXP3, IL-10 and CD39. In vivo, PGK1 and ALDOA silencing enhances UCB salutary effects in trinitro-benzene-sulfonic-acid-induced colitis in NOD/scid/gamma humanized mice where control over disease activity and enhanced immunoregulatory phenotypes are achieved. PGK1 and/or ALDOA blockade might have therapeutic effects in Crohn's disease by favoring acquisition of regulatory properties by Th17-cells along with control over their pathogenic potential.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Na Wang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Jonathon J Graham
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Li Gao
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Wei Zhang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Ahmadreza Kalbasi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lina Zhang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eva Csizmadia
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jason Hristopoulos
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yun Ma
- Institute of Liver Studies, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, King's College Hospital, London, UK
| | - Efi Kokkotou
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adam S Cheifetz
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Lin MK, Yang YT, Lin LJ, Yu WH, Chen HY. Pulsatilla decoction suppresses matrix metalloproteinase-7-mediated leukocyte recruitment in dextran sulfate sodium-induced colitis mouse model. BMC Complement Med Ther 2022; 22:211. [PMID: 35933374 PMCID: PMC9356479 DOI: 10.1186/s12906-022-03696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background Intestinal inflammation is considered to be an important characteristic of ulcerative colitis (UC) and the current medical treatments for UC are usually proposed to suppress abnormal intestinal immune responses. Pulsatilla decoction (PD), a traditional Chinese medicine, is frequently used in UC treatments in Asian countries; however, the mechanism of the action of PD remains unclear. In the present study, the mechanism of the action of PD was elucidated in the dextran sulfate sodium (DSS)-induced colitis mouse model, a model to mimic UC. Methods Murine colitis was evaluated by comparing the disease activity index score. The intestinal inflammation was examined by histology analyses. The leukocyte infiltration in the colonic tissues was examined by immunohistochemistry analyses. The cytokines level in colonic tissues was examined by Multi-Plex immunoassay. The epithelial proliferation was evaluated by histological analyses. Immunofluorescence double staining was used to examine the expression of MMP-7 in the immune cells. Results In the DSS-induced colitis mouse model, administration of PD attenuated the intestinal inflammation, with a marked decrease in colonic infiltration of innate immune cells. Immunohistochemical analyses further showed that matrix metalloproteinase-7 (MMP-7) expressed by the infiltrating leukocytes, including neutrophils and macrophages was inhibited by PD treatment. PD increases the cytokine level of IL-6 in colonic tissues. Conclusion PD suppresses intestinal inflammation, with a marked decrease in colonic infiltration of innate immune cells, through decreasing MMP-7 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03696-w.
Collapse
|
29
|
Cui M, Fang Z, Song M, Zhou T, Wang Y, Liu K. Phragmites rhizoma polysaccharide-based nanocarriers for synergistic treatment of ulcerative colitis. Int J Biol Macromol 2022; 220:22-32. [PMID: 35932810 DOI: 10.1016/j.ijbiomac.2022.07.245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/11/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to construct Phragmites rhizoma polysaccharide-based nano-drug delivery systems (PRP2-SeNPs-H/Aza-Lips) for synergistically alleviating ulcerative colitis and to investigate the important roles of Phragmites rhizoma polysaccharide-based nanocarriers in PRP2-SeNPs-H/Aza-Lips. Phragmites rhizoma polysaccharide (PRP2) was isolated and used for the preparation of Phragmites rhizoma polysaccharide selenium nanoparticles with low selenium content (PRP2-SeNPs-L) and high selenium content (PRP2-SeNPs-H). Based on the electrostatic attraction between PRP2-SeNPs-H and azathioprine liposomes (Aza-Lips), PRP2-SeNPs-H/Aza-Lips were constructed for precise delivery of the model drug azathioprine (Aza) to colon lesions. Results showed that PRP2 significantly alleviated the clinical symptoms and colon tissue damage and down-regulated the levels of inflammatory factors in serum and colon, demonstrating beneficial effects on mice with ulcerative colitis. PRP2-SeNPs-L had better relieving effects on ulcerative colitis. Phragmites rhizoma polysaccharide-based nanocarriers may protect azathioprine liposomes against gastrointestinal digestion, enhance the therapeutic effects on ulcerative colitis, and significantly reduce liver damage from azathioprine, which helps to improve the efficacy and toxicity of clinical drugs.
Collapse
Affiliation(s)
- Mingxiao Cui
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhou Fang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mengdi Song
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Taidi Zhou
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yongjie Wang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Canter for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
30
|
Calame DG, Herman I, Marshall AE, Maroofian R, Donis KC, Fatih JM, Mitani T, Du H, Grochowski CM, Sousa S, Bakhtiari S, Ito YA, Rocca C, Hunter JV, Sutton VR, Emrick LT, Boycott KM, Lossos A, Fellig Y, Prus E, Kalish Y, Meiner V, Suerink M, Ruivenkamp C, Muirhead K, Saadi NW, Zaki MS, Skidmore DL, Osmond M, Silva TO, Houlden H, Murphy D, Ghayoorarimiani E, Jamshidi Y, Jaddoa AG, Tajsharghi H, Jin SC, Coban-Akdemir Z, Travaglini L, Nicita F, Jhangiani SN, Gibbs RA, Posey JE, Kruer MC, Kernohan KD, Morales Saute JA, Vanderver A, Pehlivan D, Marafi D, Lupski JR. Biallelic Variants in the Ectonucleotidase ENTPD1 Cause a Complex Neurodevelopmental Disorder with Intellectual Disability, Distinct White Matter Abnormalities, and Spastic Paraplegia. Ann Neurol 2022; 92:304-321. [PMID: 35471564 PMCID: PMC10054521 DOI: 10.1002/ana.26381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). METHODS Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. RESULTS A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 2022;92:304-321.
Collapse
Affiliation(s)
- Daniel G. Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Aren E. Marshall
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Karina Carvalho Donis
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jawid M. Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | | | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, 85016, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine–Phoenix, Phoenix, AZ, USA
| | - Yoko A. Ito
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Jill V. Hunter
- Texas Children’s Hospital, Houston, Texas, 77030, USA
- Division of Neuroradiology, Edward B. Singleton Department of Radiology, Texas Children’s Hospital, Houston, Texas
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Lisa T. Emrick
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Alexander Lossos
- Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Eugenia Prus
- Hematology and Bone Marrow Transplantation Division, Hadassah Medical Center and the Hebrew University, POB 12000, 91120, Jerusalem, Israel
| | - Yosef Kalish
- Hematology and Bone Marrow Transplantation Division, Hadassah Medical Center and the Hebrew University, POB 12000, 91120, Jerusalem, Israel
| | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Center and the Hebrew University, POB 12000, 91120, Jerusalem, Israel
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kayla Muirhead
- Division of Neurology, Children’s Hospital of Philadelphia, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Nebal W. Saadi
- College of Medicine / University of Baghdad, Children Welfare Teaching Hospital, Medical City Complex, Baghdad 10001, Iraq
| | - Maha S. Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, Centre of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - David L. Skidmore
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Matthew Osmond
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Thiago Oliveira Silva
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Ehsan Ghayoorarimiani
- Genetics Section, Molecular and Clinical Sciences Institute, St. George’s University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Yalda Jamshidi
- Genetics Section, Molecular and Clinical Sciences Institute, St. George’s University of London, Cranmer Terrace, London SW17 0RE, UK
| | | | - Homa Tajsharghi
- School of Health Sciences, Division Biomedicine, University of Skovde, Skovde, Sweden
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Lorena Travaglini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Francesco Nicita
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Laboratory of Molecular Medicine, Department of Neuroscience, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| | - Shalini N. Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Michael C. Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ, 85016, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine–Phoenix, Phoenix, AZ, USA
| | - Kristin D. Kernohan
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
- Newborn Screening Ontario, Ottawa, Canada, K1H 8L1, Canada
| | - Jonas A. Morales Saute
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
31
|
Yuan X, Mills T, Doursout MF, Evans SE, Vidal Melo MF, Eltzschig HK. Alternative adenosine Receptor activation: The netrin-Adora2b link. Front Pharmacol 2022; 13:944994. [PMID: 35910389 PMCID: PMC9334855 DOI: 10.3389/fphar.2022.944994] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
During hypoxia or inflammation, extracellular adenosine levels are elevated. Studies using pharmacologic approaches or genetic animal models pertinent to extracellular adenosine signaling implicate this pathway in attenuating hypoxia-associated inflammation. There are four distinct adenosine receptors. Of these, it is not surprising that the Adora2b adenosine receptor functions as an endogenous feedback loop to control hypoxia-associated inflammation. First, Adora2b activation requires higher adenosine concentrations compared to other adenosine receptors, similar to those achieved during hypoxic inflammation. Second, Adora2b is transcriptionally induced during hypoxia or inflammation by hypoxia-inducible transcription factor HIF1A. Studies seeking an alternative adenosine receptor activation mechanism have linked netrin-1 with Adora2b. Netrin-1 was originally discovered as a neuronal guidance molecule but also functions as an immune-modulatory signaling molecule. Similar to Adora2b, netrin-1 is induced by HIF1A, and has been shown to enhance Adora2b signaling. Studies of acute respiratory distress syndrome (ARDS), intestinal inflammation, myocardial or hepatic ischemia and reperfusion implicate the netrin-Adora2b link in tissue protection. In this review, we will discuss the potential molecular linkage between netrin-1 and Adora2b, and explore studies demonstrating interactions between netrin-1 and Adora2b in attenuating tissue inflammation.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott E. Evans
- Department of Pulmonology, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
32
|
Radygina TV, Petrichuk SV, Kuptsova DG, Potapov AS, Illarionov AS, Anushenko AO, Kurbatova OV, Semikina EL. Content of CD4+ cells expressing CD39/CD73 ectonucleotidases in children with inflammatory bowel diseases. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The regulation of TNF inhibitor therapy-associated immune responses in inflammatory bowel diseases (IBD) in children remains an urgent problem. The study aimed at analyzing the expression of CD39/CD73 endonucleotidases by different subsets of peripheral blood T cells in children with IBD including Crohn's disease (n = 34) and ulcerative colitis (n = 33) having received TNF inhibitors in comparison with conditionally healthy children (n = 45). Lymphocyte subsets including regulatory T cells (Treg, CD4+CD127lowCD25high), activated T cells (Tact, CD4+CD25+CD127high) and Th17 cells (CD4+CD161+CD3+) were studied by flow cytometry. The results are presented as medians (Me) and quartiles (Q25–Q75). In children with IBD the highest and the lowest relative counts of CD39+ cells were found in Treg and Tact subsets — 31% (15–38) and 4% (1–7), respectively. The highest relative counts of CD73+ cells were found in Tact — 13% (8–21). The CD39 and CD73 expression ratio in patients with IBD, and in the control group as well, depended on particular subset. CD39 expression in Treg, Tact and Th17 of patients with IBD was not age-dependent. Patients with acute Crohn's disease revealed decreased expression of CD39 in Treg compared with the control group (12% (9–23) vs 35% (28–39), respectively; р = 10–6). Patients with Crohn's disease in remission revealed increased expression of CD39 in Treg compared with the acute of the disease (31% (27–40) vs 12% (9–23); р = 9.4 × 10–5). Patients with Crohn's disease in remission revealed no significant differences with the control group apart from reduced expression of CD73 by Treg in Crohn's disease. The results indicate significant association of CD39 and CD73 expression levels in particular subsets of CD4+ cells with the phase of the disease (acute vs remission) and, accordingly, with the anti-TNF regimen efficacy.
Collapse
Affiliation(s)
- TV Radygina
- National Medical Research Center for Children's Health, Moscow, Russia
| | - SV Petrichuk
- National Medical Research Center for Children's Health, Moscow, Russia
| | - DG Kuptsova
- National Medical Research Center for Children's Health, Moscow, Russia
| | - AS Potapov
- National Medical Research Center for Children's Health, Moscow, Russia
| | - AS Illarionov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - AO Anushenko
- National Medical Research Center for Children's Health, Moscow, Russia
| | - OV Kurbatova
- National Medical Research Center for Children's Health, Moscow, Russia
| | - EL Semikina
- National Medical Research Center for Children's Health, Moscow, Russia
| |
Collapse
|
33
|
Liu GH, Zhuo XC, Huang YH, Liu HM, Wu RC, Kuo CJ, Chen NH, Chuang LP, Lin SW, Chen YL, Yang HY, Lee TY. Alterations in Gut Microbiota and Upregulations of VPAC2 and Intestinal Tight Junctions Correlate with Anti-Inflammatory Effects of Electroacupuncture in Colitis Mice with Sleep Fragmentation. BIOLOGY 2022; 11:biology11070962. [PMID: 36101343 PMCID: PMC9311573 DOI: 10.3390/biology11070962] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Along with the modernization of society and people getting older, sleep disturbances and gut health have been identified as two key factors influencing aging, with dramatic effects on immunity and metabolism. Sleep is closely related to the gut, reflects the degree of chronic inflammation, and is associated with many degenerative diseases, hence the term “inflammaging”. This article addresses how sleep fragmentation affects the inflammatory state of the gut and elucidates the effects of restorative sleep and acupuncture on inflammatory gut remodeling and gut microbial recovery. In summary, fragmented sleep disrupted intestinal repair in mice with colitis, while electroacupuncture demonstrated likely results in alleviating colon inflammation, including maintaining colon length and daily body weight changes. In addition, the structure of the microbiota changed with decreasing gut inflammatory status. The intestinal tight junction proteins may be the key mechanism of electroacupuncture in treating sleep-fragmented ulcerative colitis mice. Electroacupuncture affects VIP through VPAC2 and further regulates intestinal mucosal immunity. This experiment demonstrates how physical stimulation stabilizes the intestinal epithelium and exerts an important anti-inflammatory effect. Abstract The relationship between inflammatory bowel disease and sleep disturbances is complicated and of increasing interest. We investigated the inflammatory and immunological consequences of EA in sleep-deprived colitis and found that dextran sulfate sodium (DSS)-induced colitis in sleep-fragmented (SF) mice was more severe than that in mice with normal sleep. This increase in the severity of colitis was accompanied by reduced body weight, shortened colon length, and deteriorated disease activity index. DSS with SF mice presented obvious diminished intestinal tight junction proteins (claudin-1 and occludin), elevated proinflammatory cytokines (CRP, IFN-γ, IL-6), lowered melatonin and adiponectin levels, downregulated vasoactive intestinal peptide (VIP) type 1 and 2 receptor (VPAC1, VPAC2) expression, and decreased diversity of gut bacteria. EA ameliorated colitis severity and preserved the performance of the epithelial tight junction proteins and VIP receptors, especially VPAC2. Meanwhile, the innate lymphoid cells-derived cytokines in both group 2 (IL-4, IL5, IL-9, IL-13) and group 3 (IL-22, GM-CSF) were elevated in mice colon tissue. Furthermore, dysbiosis was confirmed in the DSS group with and without SF, and EA could maintain the species diversity. Firmicutes could be restored, such as Lachnospiraceae, and Proteobacteria become rebalanced, mainly Enterobacteriaceae, after EA intervention. On the other hand, SF plays different roles in physiological and pathological conditions. In normal mice, interrupted sleep did not affect the expression of claudin-1 and occludin. But VPAC1, VPAC2, and gut microbiota diversity, including Burkholderiaceae and Rhodococcus, were opposite to mice in an inflamed state.
Collapse
Affiliation(s)
- Geng-Hao Liu
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan; (G.-H.L.); (R.-C.W.); (N.-H.C.)
- Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
- Division of Acupuncture and Moxibustion, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
- Sleep Center, Chang Gung Memorial Hospital, Taoyuan 333008, Taiwan; (L.-P.C.); (S.-W.L.)
| | - Xin-Cheng Zhuo
- Department of General Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan;
| | - Yueh-Hsiang Huang
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei 105406, Taiwan;
| | - Hsuan-Miao Liu
- Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
| | - Ren-Chin Wu
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan; (G.-H.L.); (R.-C.W.); (N.-H.C.)
- Department of Anatomic Pathology, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Chia-Jung Kuo
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
| | - Ning-Hung Chen
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan; (G.-H.L.); (R.-C.W.); (N.-H.C.)
- Sleep Center, Chang Gung Memorial Hospital, Taoyuan 333008, Taiwan; (L.-P.C.); (S.-W.L.)
- Department of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Li-Pang Chuang
- Sleep Center, Chang Gung Memorial Hospital, Taoyuan 333008, Taiwan; (L.-P.C.); (S.-W.L.)
- Department of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Shih-Wei Lin
- Sleep Center, Chang Gung Memorial Hospital, Taoyuan 333008, Taiwan; (L.-P.C.); (S.-W.L.)
- Department of Pulmonary and Critical Care Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | - Yen-Lung Chen
- Division of Acupuncture and Moxibustion, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
- Sleep Center, Chang Gung Memorial Hospital, Taoyuan 333008, Taiwan; (L.-P.C.); (S.-W.L.)
| | - Huang-Yu Yang
- Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21287, USA
- Correspondence: (H.-Y.Y.); (T.-Y.L.); Tel.: +886-03-328-1200 (ext. 8181) (H.-Y.Y.); +886-03-211-8800 (ext. 3537) (T.-Y.L.)
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204201, Taiwan
- Correspondence: (H.-Y.Y.); (T.-Y.L.); Tel.: +886-03-328-1200 (ext. 8181) (H.-Y.Y.); +886-03-211-8800 (ext. 3537) (T.-Y.L.)
| |
Collapse
|
34
|
Fang F, Cao W, Mu Y, Okuyama H, Li L, Qiu J, Weyand CM, Goronzy JJ. IL-4 prevents adenosine-mediated immunoregulation by inhibiting CD39 expression. JCI Insight 2022; 7:e157509. [PMID: 35730568 PMCID: PMC9309057 DOI: 10.1172/jci.insight.157509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The ectonucleotidase CD39 functions as a checkpoint in purinergic signaling on effector T cells. By depleting eATP and initiating the generation of adenosine, it impairs memory cell development and contributes to T cell exhaustion, thereby causing defective tumor immunity and deficient T cell responses in older adults who have increased CD39 expression. Tuning enzymatic activity of CD39 and targeting the transcriptional regulation of ENTPD1 can be used to modulate purinergic signaling. Here, we describe that STAT6 phosphorylation downstream of IL-4 signaling represses CD39 expression on activated T cells by inducing a transcription factor network including GATA3, GFI1, and YY1. GATA3 suppresses ENTPD1 transcription through prevention of RUNX3 recruitment to the ENTPD1 promoter. Conversely, pharmacological STAT6 inhibition decreases T cell effector functions via increased CD39 expression, resulting in the defective signaling of P2X receptors by ATP and stimulation of A2A receptors by adenosine. Our studies suggest that inhibiting the STAT6 pathway to increase CD39 expression has the potential to treat autoimmune disease while stimulation of the pathway could improve T cell immunity.
Collapse
Affiliation(s)
- Fengqin Fang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yunmei Mu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Hirohisa Okuyama
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Lingjie Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| | - Jingtao Qiu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Cornelia M. Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Medicine/Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Jörg J. Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Medicine/Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
35
|
Zheng J, Jiang Z, Song Y, Huang S, Du Y, Yang X, Xiao Y, Ma Z, Xu D, Li J. 3,4-Methylenedioxy-β-Nitrostyrene Alleviates Dextran Sulfate Sodium–Induced Mouse Colitis by Inhibiting the NLRP3 Inflammasome. Front Pharmacol 2022; 13:866228. [PMID: 35784693 PMCID: PMC9240698 DOI: 10.3389/fphar.2022.866228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) has been reported to be associated with NLRP3 inflammasome activation. Therefore inhibiting inflammasome activation could be a new approach to treat IBD. Inflammasome inhibitors NLRP3-IN-2, JC124, and 3,4-methylenedioxy-β-nitrostyrene (MNS) were previously reported to exert anti-inflammatory effects in various disease models but not in the dextran sulfate sodium (DSS)–induced colitis model. Here, we showed that MNS was more efficient in inhibiting the secretion of interleukin-1β (IL-1β) by blocking oligomerization of apoptosis-associated speck-like protein (ASC) than NLRP3-IN-2 and JC124. To investigate the protective effects of MNS on enteritis, we administered intragastric MNS to DSS-induced colitis mice. The results demonstrated that MNS attenuated DSS-induced body weight loss, colon length shortening, and pathological damage. In addition, MNS inhibited the infiltration of macrophages and inflammatory cells and reduced IL-1β and IL-12p40 pro-inflammatory cytokines but had no significant effect on tumor necrosis factor α (TNF-α) and IL-6. Furthermore, we also found that the differentiation of IL-17A+interferon-γ (IFN-γ)+CD4+ T cell was decreased in the colon after MNS treatment, which might be mediated by IL-1β, etc. cytokine release. Taken together, MNS alleviated DSS-induced intestinal inflammation by inhibiting NLRP3 inflammasome activation, which may function as an effective therapeutic for IBD.
Collapse
Affiliation(s)
- Juanjuan Zheng
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhongxin Jiang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Yue Song
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Shu Huang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuzhang Du
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaobao Yang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Xiao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Zhihui Ma
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dakang Xu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Dakang Xu, ; Jing Li,
| | - Jing Li
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
- *Correspondence: Dakang Xu, ; Jing Li,
| |
Collapse
|
36
|
Cristofoletti C, Bresin A, Fioretti M, Russo G, Narducci MG. Combined High-Throughput Approaches Reveal the Signals Driven by Skin and Blood Environments and Define the Tumor Heterogeneity in Sézary Syndrome. Cancers (Basel) 2022; 14:cancers14122847. [PMID: 35740513 PMCID: PMC9221051 DOI: 10.3390/cancers14122847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Sézary syndrome (SS) is a leukemic and incurable variant of cutaneous T-cell lymphoma characterized by the accumulation of neoplastic CD4+ lymphocytes in the blood, lymph nodes, and skin. With the exception of allogenic transplantation, no curative chance is available to treat SS, and it is a priority to find new therapies that target SS cells within all disease compartments. This review aims to summarize the more recent analyses conducted on skin- and blood-derived SS cells concurrently obtained from the same SS patients. The results highlighted that skin-SS cells were more active/proliferating with respect to matched blood SS cells that instead appeared quiescent. These data shed the light on the possibility to treat blood and skin SS cells with different compounds, respectively. Moreover, this review recaps the more recent findings on the heterogeneity of circulating SS cells that presented a series of novel markers that could improve diagnosis, prognosis and therapy of this lymphoma. Abstract Sézary syndrome (SS) is an aggressive variant of cutaneous t-cell lymphoma characterized by the accumulation of neoplastic CD4+ lymphocytes—the SS cells—mainly in blood, lymph nodes, and skin. The tumor spread pattern of SS makes this lymphoma a unique model of disease that allows a concurrent blood and skin sampling for analysis. This review summarizes the recent studies highlighting the transcriptional programs triggered by the crosstalk between SS cells and blood–skin microenvironments. Emerging data proved that skin-derived SS cells show consistently higher activation/proliferation rates, mainly driven by T-cell receptor signaling with respect to matched blood SS cells that instead appear quiescent. Biochemical analyses also demonstrated an hyperactivation of PI3K/AKT/mTOR, a targetable pathway by multiple inhibitors currently in clinical trials, in skin SS cells compared with a paired blood counterpart. These results indicated that active and quiescent SS cells coexist in this lymphoma, and that they could be respectively treated with different therapeutics. Finally, this review underlines the more recent discoveries into the heterogeneity of circulating SS cells, highlighting a series of novel markers that could improve the diagnosis and that represent novel therapeutic targets (GPR15, PTPN13, KLRB1, and ITGB1) as well as new genetic markers (PD-1 and CD39) able to stratify SS patients for disease aggressiveness.
Collapse
|
37
|
Adamkova P, Hradicka P, Kupcova Skalnikova H, Cizkova V, Vodicka P, Farkasova Iannaccone S, Kassayova M, Gancarcikova S, Demeckova V. Dextran Sulphate Sodium Acute Colitis Rat Model: A Suitable Tool for Advancing Our Understanding of Immune and Microbial Mechanisms in the Pathogenesis of Inflammatory Bowel Disease. Vet Sci 2022; 9:238. [PMID: 35622766 PMCID: PMC9147231 DOI: 10.3390/vetsci9050238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders causing inflammation in the digestive tract. Recent data suggest that dysbiosis may play a pivotal role in the IBD pathogenesis. As microbiome-based therapeutics that modulate the gut ecology have been proposed as a novel strategy for preventing IBD, the aim of presenting study was to evaluate the dextran sulphate sodium (DSS) rat model mainly in terms of microbial shifts to confirm its suitability for dysbiosis study in IBD. Acute colitis was induced using 5% DSS solution for seven days and rats were euthanized five days after DSS removal. The faecal/caecal microbiota was analyzed by next generation sequencing. Disease activity index (DAI) score was evaluated daily. Blood and colon tissue immunophenotyping was assessed by flow cytometry and histological, haematological, and biochemical parameters were also evaluated. The colitis induction was reflected in a significantly higher DAI score and changes in all parameters measured. This study demonstrated significant shifts in the colitis-related microbial species after colitis induction. The characteristic inflammation-associated microbiota could be detected even after a five day-recovery period. Moreover, the DSS-model might contribute to an understanding of the effect of different treatments on extraintestinal organ impairments. The observation that certain bacterial species in the gut microbiota are associated with colitis raises the question of whether these organisms are contributors to, or a consequence of the disease. Despite some limitations, we confirmed the suitability of DSS-induced colitis model to monitor microbial changes during acute colitis, in order to test attractive new microbiome-based therapies.
Collapse
Affiliation(s)
- Petra Adamkova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Petra Hradicka
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Veronika Cizkova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Silvia Farkasova Iannaccone
- Department of Forensic Medicine, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia;
| | - Monika Kassayova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Vlasta Demeckova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| |
Collapse
|
38
|
Luo Y, Xue Y, Lin Q, Tang G, Song H, Liu W, Mao L, Sun Z, Wang F. CD39 pathway inhibits Th1 cell function in tuberculosis. Immunology 2022; 166:522-538. [PMID: 35574713 PMCID: PMC9426615 DOI: 10.1111/imm.13493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/23/2022] [Indexed: 12/01/2022] Open
Abstract
The role of CD39 pathway in Th1 cell function in tuberculosis (TB) is rarely elucidated. The present study aims to investigate the modulating mechanism of CD39 pathway during Mycobacterium tuberculosis (MTB) infection. CD39 expression was examined on host immune cells among patients with TB. The relationship between CD39 expression and Th1 cell function was analysed. Patients with TB displayed dramatically higher CD39 expression on Th1 cells than healthy controls, and a significantly increased expression of surface markers, including activation, exhaustion and apoptosis markers, were noted in CD39+ Th1 cells in comparison with CD39− Th1 cells. Conversely, CD39 expression on Th1 cells was associated with diminished number of polyfunctional cells producing Th1‐type cytokines, and CD39+ Th1 cells showed obviously lower proliferation potential. Notably, tetramer analysis demonstrated a predominant CD39 expression on TB‐specific CD4+ cells, which was associated with higher apoptosis and lower cytokine‐producing ability. Transcriptome sequencing identified 27 genes that were differentially expressed between CD39+ and CD39− Th1 cells, such as IL32, DUSP4 and RGS1. Inhibition of CD39 pathway could enhance the activation, proliferation and cytokine‐producing ability of Th1 cells. Furthermore, there was a significantly negative correlation between CD39 expression on Th1 cells and nutritional status indicators such as lymphocyte count and albumin levels, and we observed a significant decline in CD39 expression on Th1 cells after anti‐TB treatment. CD39 is predominantly expressed on TB‐specific Th1 cells and correlated with their exhausted function, which suggests that CD39 could serve as a prominent target for TB therapy.
Collapse
Affiliation(s)
- Ying Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Lin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoxing Tang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Song
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liyan Mao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Mahmood A, Iqbal J. Purinergic receptors modulators: An emerging pharmacological tool for disease management. Med Res Rev 2022; 42:1661-1703. [PMID: 35561109 DOI: 10.1002/med.21888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
Purinergic signaling is mediated through extracellular nucleotides (adenosine 5'-triphosphate, uridine-5'-triphosphate, adenosine diphosphate, uridine-5'-diphosphate, and adenosine) that serve as signaling molecules. In the early 1990s, purines and pyrimidine receptors were cloned and characterized drawing the attention of scientists toward this aspect of cellular signaling. This signaling pathway is comprised of four subtypes of adenosine receptors (P1), eight subtypes of G-coupled protein receptors (P2YRs), and seven subtypes of ligand-gated ionotropic receptors (P2XRs). In current studies, the pathophysiology and therapeutic potentials of these receptors have been focused on. Various ligands, modulating the functions of purinergic receptors, are in current clinical practices for the treatment of various neurodegenerative disorders and cardiovascular diseases. Moreover, several purinergic receptors ligands are in advanced phases of clinical trials as a remedy for depression, epilepsy, autism, osteoporosis, atherosclerosis, myocardial infarction, diabetes, irritable bowel syndrome, and cancers. In the present study, agonists and antagonists of purinergic receptors have been summarized that may serve as pharmacological tools for drug design and development.
Collapse
Affiliation(s)
- Abid Mahmood
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
40
|
Perindopril/Ambrosin Combination Mitigates Dextran Sulfate Sodium-Induced Colitis in Mice: Crosstalk between Toll-like Receptor 4, the Pro-Inflammatory Pathways, and SIRT1/PPAR-γ Signaling. Pharmaceuticals (Basel) 2022; 15:ph15050600. [PMID: 35631426 PMCID: PMC9143999 DOI: 10.3390/ph15050600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Colitis is one of the inflammatory states that affect the intestinal wall and may even predispose to malignancy due to chronic irritation. Although the etiology of colitis is not yet fully explored, a combination of genetic and environmental factors is strongly incriminated. Perindopril is an angiotensin-converting enzyme inhibitor that is used for the management of a wide range of cardiovascular diseases. Ambrosin is a sesquiterpene lactone that was proven to have beneficial effects in disorders characterized by inflammatory nature. The objective of this study is to make a comparison between the effects of perindopril or ambrosin on dextran sulfate sodium (DSS)-induced colitis in mice and to explore the effect of their combination. The present findings indicate that each ambrosin or perindopril alone or in combination is able to ameliorate oxidative stress and suppress the proinflammatory pathways in the colonic tissues of DSS-treated mice via mechanisms related to toll-like receptor 4/nuclear factor kappa B signaling and modulation of peroxisome proliferator-activated receptor gamma/sirtuin-1 levels. In addition, each ambrosin or perindopril alone or in combination inhibits apoptosis and augments the mediators of autophagy in DSS-treated mice. These effects are reflected in the amelioration of the histopathological and electron microscopic changes in the colonic tissues. Interestingly, the most remarkable effects are those encountered with the perindopril/ambrosin combination compared to the groups treated with each of these agents alone. In conclusion, the perindopril/ambrosin combination might represent an effective modality for mitigation of the pathogenic events and the clinical sequelae of colitis.
Collapse
|
41
|
Picozza M, Cristofoletti C, Bresin A, Fioretti M, Sambucci M, Scala E, Monopoli A, Cantonetti M, Pilla MA, Accetturi MP, Borsellino G, D’Atri S, Caprini E, Russo G, Narducci MG. Genetically driven CD39 expression affects Sezary cell viability, IL-2 production and detects two patient subsets with distinct prognosis. J Invest Dermatol 2022; 142:3009-3019.e9. [DOI: 10.1016/j.jid.2022.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022]
|
42
|
Grubišić V, Bali V, Fried DE, Eltzschig HK, Robson SC, Mazei-Robison MS, Gulbransen BD. Enteric glial adenosine 2B receptor signaling mediates persistent epithelial barrier dysfunction following acute DSS colitis. Mucosal Immunol 2022; 15:964-976. [PMID: 35869148 PMCID: PMC9385475 DOI: 10.1038/s41385-022-00550-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023]
Abstract
Intestinal epithelial barrier function is compromised in inflammatory bowel disease and barrier dysfunction contributes to disease progression. Extracellular nucleotides/nucleosides generated in gut inflammation may regulate barrier function through actions on diverse cell types. Enteric glia modulate extracellular purinergic signaling and exert pathophysiological effects on mucosal permeability. These glia may regulate inflammation with paracrine responses, theoretically mediated via adenosine 2B receptor (A2BR) signaling. As the cell-specific roles of A2BRs in models of colitis and barrier dysfunction are unclear, we studied glial A2BRs in acute dextran sodium sulfate (DSS) colitis. We performed and validated conditional ablation of glial A2BRs in Sox10CreERT2+/-;Adora2bf/f mice. Overt intestinal disease activity indices in DSS-colitis were comparable between Sox10CreERT2+/-;Adora2bf/f mice and littermate controls. However, ablating glial A2BRs protected against barrier dysfunction following acute DSS-colitis. These benefits were associated with the normalization of tight junction protein expression and localization including claudin-1, claudin-8, and occludin. Glial A2BR signaling increased levels of proinflammatory mediators in the colon and cell-intrinsic regulation of genes including Csf3, Cxcl1, Cxcl10, and Il6. Our studies show that glial A2BR signaling exacerbates immune responses during DSS-colitis and that this adenosinergic cell-specific mechanism contributes to persistent gut epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Vladimir Grubišić
- Department of Physiology and Neuroscience program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Sciences and Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11568, USA
| | - Vedrana Bali
- Department of Physiology and Neuroscience program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - David E Fried
- Department of Physiology and Neuroscience program, Michigan State University, East Lansing, MI, 48824, USA
| | - Holger K Eltzschig
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Simon C Robson
- Division of Gastroenterology, Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Michelle S Mazei-Robison
- Department of Physiology and Neuroscience program, Michigan State University, East Lansing, MI, 48824, USA
| | - Brian D Gulbransen
- Department of Physiology and Neuroscience program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
43
|
Lu SY, Liu Y, Tang S, Zhang W, Yu Q, Shi C, Cheong KL. Gracilaria lemaneiformis polysaccharides alleviate colitis by modulating the gut microbiota and intestinal barrier in mice. Food Chem X 2022; 13:100197. [PMID: 35498989 PMCID: PMC9039929 DOI: 10.1016/j.fochx.2021.100197] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/05/2023] Open
Abstract
Gracilaria lemaneiformis polysaccharide (GLP) has varieties of antioxidation, however, the therapeutic effects of GLP on ulcerative colitis (UC) and the potential mechanisms involved are still incomplete. In the study, the analysis of the ζ-potential, thermal, and morphology properties demonstrated that GLP was a negatively charged polymer, and had great thermostability and irregular network. Moreover, the GLP treatment has the effects of reducing the severity of colitis caused by dextran sulfate sodium by alleviating the colon damage of mice, and increasing the amount of short-chain fatty acids in the intestines, alleviating histopathological inflammation. The sequencing results and α-diversity analysis showed that GLP could improve biodiversity, restore the abundance of Bacteroidetes, and decrease the proportion of Firmicutes. The level of CCL-25 and CCR-9 were inhibited, CD40 and TGF-β1 were increased. In summary, GLP has potentiality to be utilized as a hopeful functional food to the UC patients.
Collapse
Affiliation(s)
- Si-Yuan Lu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou, Guangdong, China
| | - Qiuyong Yu
- Maynntetra (Shantou) Bio-technology Co., Ltd., Shantou, Guangdong, China
| | - Changqi Shi
- Maynntetra (Shantou) Bio-technology Co., Ltd., Shantou, Guangdong, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| |
Collapse
|
44
|
Chang ZY, Liu HM, Leu YL, Hsu CH, Lee TY. Modulation of Gut Microbiota Combined with Upregulation of Intestinal Tight Junction Explains Anti-Inflammatory Effect of Corylin on Colitis-Associated Cancer in Mice. Int J Mol Sci 2022; 23:ijms23052667. [PMID: 35269806 PMCID: PMC8910903 DOI: 10.3390/ijms23052667] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD) involves chronic inflammation, loss of epithelial integrity, and gastrointestinal microbiota dysbiosis, resulting in the development of a colon cancer known as colitis-associated colorectal cancer (CAC). In this study, we evaluated the effects of corylin in a mouse model of dextran sodium sulfate (DSS)-induced colitis. The results showed corylin could improved the survival rate and colon length, maintained body weight, and ameliorated the inflammatory response in the colon. Then, we further identified the possible antitumor effects after 30-day treatment of corylin on an azoxymethane (AOM)/DSS-induced CAC mouse model. Biomarkers associated with inflammation, the colon tissue barrier, macrophage polarization (CD11c, CCR7, CD163, and CD206), and microbiota dysbiosis were monitored in the AOM/DSS group versus corylin groups. Corylin downregulated pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, and IL-6) mRNA expression and inflammatory signaling-associated markers (TLR4, MyD88, AP-1, CD11b, and F4/80). In addition, a colon barrier experiment revealed that epithelial cell proliferation of the mucus layer (Lgr5, Cyclin D1, and Olfm4) was downregulated and tight junction proteins (claudin-1 and ZO-1) were upregulated. Furthermore, the Firmicutes/Bacteroidetes ratio changed with corylin intervention, and the microbial diversity and community richness of the AOM/DSS mice were improved by corylin. The comparative analysis of gut microbiota revealed that Bacteroidetes, Patescibacteria, Candidatus Saccharimonas, Erysipelatoclostridium, and Enterorhabdus were significantly increased but Firmicutes, Turicibacter, Romboutsia, and Blautia decreased after corylin treatment. Altogether, corylin administration showed cancer-ameliorating effects by reducing the risk of colitis-associated colon cancer via regulation of inflammation, carcinogenesis, and compositional change of gut microbiota. Therefore, corylin could be a novel, potential health-protective, natural agent against CAC.
Collapse
Affiliation(s)
- Zi-Yu Chang
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Hsuan-Miao Liu
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Yann-Lii Leu
- Graduate Institute of Nature Products, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Correspondence: (C.-H.H.); (T.-Y.L.); Tel.: +886-02-2388-7088 (ext. 3100) (C.-H.H.); +886-03-211-8800 (ext. 3537) (T.-Y.L.)
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
- Correspondence: (C.-H.H.); (T.-Y.L.); Tel.: +886-02-2388-7088 (ext. 3100) (C.-H.H.); +886-03-211-8800 (ext. 3537) (T.-Y.L.)
| |
Collapse
|
45
|
Vultaggio-Poma V, Falzoni S, Salvi G, Giuliani AL, Di Virgilio F. Signalling by extracellular nucleotides in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119237. [PMID: 35150807 DOI: 10.1016/j.bbamcr.2022.119237] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 01/04/2023]
Abstract
Nucleotides are released from all cells through regulated pathways or as a result of plasma membrane damage or cell death. Outside the cell, nucleotides act as signalling molecules triggering multiple responses via specific plasma membrane receptors of the P2 family. In the nervous system, purinergic signalling has a key function in neurotransmission. Outside the nervous system, purinergic signalling is one of the major modulators of basal tissue homeostasis, while its dysregulation contributes to the pathogenesis of various disease, including inflammation and cancer. Pre-clinical and clinical evidence shows that selective P2 agonists or antagonists are effective treatments for many pathologies, thus highlighting the relevance of extracellular nucleotides and P2 receptors as therapeutic targets.
Collapse
Affiliation(s)
| | | | - Giada Salvi
- Department of Medical Sciences, University of Ferrara, Italy
| | | | | |
Collapse
|
46
|
Transglutaminase 3 crosslinks the secreted gel-forming mucus component Mucin-2 and stabilizes the colonic mucus layer. Nat Commun 2022; 13:45. [PMID: 35017479 PMCID: PMC8752817 DOI: 10.1038/s41467-021-27743-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The colonic mucus layer is organized as a two-layered system providing a physical barrier against pathogens and simultaneously harboring the commensal flora. The factors contributing to the organization of this gel network are not well understood. In this study, the impact of transglutaminase activity on this architecture was analyzed. Here, we show that transglutaminase TGM3 is the major transglutaminase-isoform expressed and synthesized in the colon. Furthermore, intrinsic extracellular transglutaminase activity in the secreted mucus was demonstrated in vitro and ex vivo. Absence of this acyl-transferase activity resulted in faster degradation of the major mucus component the MUC2 mucin and changed the biochemical properties of mucus. Finally, TGM3-deficient mice showed an early increased susceptibility to Dextran Sodium Sulfate-induced colitis. Here, we report that natural isopeptide cross-linking by TGM3 is important for mucus homeostasis and protection of the colon from inflammation, reducing the risk of colitis. The colonic mucus layer is an organized system providing a physical barrier against pathogens and simultaneously harbouring the commensal flora. Here the authors report that transglutaminase 3 activity contributes to homeostasis of the colonic mucus layer and the lack of this enzymatic activity leads to increased susceptibility against DSS-induced colitis in mice.
Collapse
|
47
|
Salem M, Lecka J, Pelletier J, Gomes Marconato D, Dumas A, Vallières L, Brochu G, Robaye B, Jobin C, Sévigny J. NTPDase8 protects mice from intestinal inflammation by limiting P2Y 6 receptor activation: identification of a new pathway of inflammation for the potential treatment of IBD. Gut 2022; 71:43-54. [PMID: 33452178 DOI: 10.1136/gutjnl-2020-320937] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Nucleotides are danger signals that activate inflammatory responses via binding P2 receptors. The nucleoside triphosphate diphosphohydrolase-8 (NTPDase8) is an ectonucleotidase that hydrolyses P2 receptor ligands. We investigated the role of NTPDase8 in intestinal inflammation. DESIGN We generated NTPDase8-deficient (Entpd8-/-) mice to define the role of NTPDase8 in the dextran sodium sulfate (DSS) colitis model. To assess inflammation, colons were collected and analysed by histopathology, reverse transcriptase-quantitative real-time PCR (RT-qPCR) and immunohistochemistry. P2 receptor expression was analysed by RT-qPCR on primary intestinal epithelium and NTPDase8 activity by histochemistry. The role of intestinal P2Y6 receptors was assessed by bone marrow transplantation experiments and with a P2Y6 receptor antagonist. RESULTS NTPDase8 is the dominant enzyme responsible for the hydrolysis of nucleotides in the lumen of the colon. Compared with wild-type (WT) control mice, the colon of Entpd8-/- mice treated with DSS displayed significantly more histological damage, immune cell infiltration, apoptosis and increased expression of several proinflammatory cytokines. P2Y6 was the dominant P2Y receptor expressed at the mRNA level by the colonic epithelia. Irradiated P2ry6-/- mice transplanted with WT bone marrow were fully protected from DSS-induced intestinal inflammation. In agreement, the daily intrarectal injection of a P2Y6 antagonist protected mice from DSS-induced intestinal inflammation in a dose-dependent manner. Finally, human intestinal epithelial cells express NTPDase8 and P2Y6 similarly as in mice. CONCLUSION NTPDase8 protects the intestine from inflammation most probably by limiting the activation of P2Y6 receptors in colonic epithelial cells. This may provide a novel therapeutic strategy for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Mabrouka Salem
- Dép de microbiologie-infectiologie et d'immunologie, fac de médecine, Université Laval, Quebec City, QC, Canada
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Joanna Lecka
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Julie Pelletier
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Danielle Gomes Marconato
- Dép de microbiologie-infectiologie et d'immunologie, fac de médecine, Université Laval, Quebec City, QC, Canada
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| | - Aline Dumas
- Axe Neurosciences, CHU de Québec - Université Laval, Quebec city, QC, Canada
| | - Luc Vallières
- Axe Neurosciences, CHU de Québec - Université Laval, Quebec city, QC, Canada
- Dép de médecine moléculaire, fac de médecine, Université Laval, Quebec City, QC, Canada
| | - Gaetan Brochu
- CHU de Québec - Université Laval, Quebec City, QC, Canada
- Dept. of Surgery, Université Laval, Quebec City, QC, Canada
| | - Bernard Robaye
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Christian Jobin
- Dept of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida, USA
| | - Jean Sévigny
- Dép de microbiologie-infectiologie et d'immunologie, fac de médecine, Université Laval, Quebec City, QC, Canada
- Axe Maladies infectieuses et immunitaires, CHU de Québec - Université Laval, Quebec City, QC, Canada
| |
Collapse
|
48
|
Wang N, Vuerich M, Kalbasi A, Graham JJ, Csizmadia E, Manickas-Hill ZJ, Woolley A, David C, Miller EM, Gorman K, Hecht JL, Shaefi S, Robson SC, Longhi MS. Limited TCR repertoire and ENTPD1 dysregulation mark late-stage COVID-19. iScience 2021; 24:103205. [PMID: 34608452 PMCID: PMC8482538 DOI: 10.1016/j.isci.2021.103205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023] Open
Abstract
T cell exhaustion and dysfunction are hallmarks of severe COVID-19. To gain insights into the pathways underlying these alterations, we performed a comprehensive transcriptome analysis of peripheral-blood-mononuclear-cells (PBMCs), spleen, lung, kidney, liver, and heart obtained at autopsy from COVID-19 patients and matched controls, using the nCounter CAR-T-Characterization panel. We found substantial gene alterations in COVID-19-impacted organs, especially the lung where altered TCR repertoires are noted. Reduced TCR repertoires are also observed in PBMCs of severe COVID-19 patients. ENTPD1/CD39, an ectoenzyme defining exhausted T-cells, is upregulated in the lung, liver, spleen, and PBMCs of severe COVID-19 patients where expression positively correlates with markers of vasculopathy. Heightened ENTPD1/CD39 is paralleled by elevations in STAT-3 and HIF-1α transcription factors; and by markedly reduced CD39-antisense-RNA, a long-noncoding-RNA negatively regulating ENTPD1/CD39 at the post-transcriptional level. Limited TCR repertoire and aberrant regulation of ENTPD1/CD39 could have permissive roles in COVID-19 progression and indicate potential therapeutic targets to reverse disease. Transcriptome profiling of COVID-19 autoptic tissue and PBMC was carried out There is limited TCR repertoire in lung, kidney and PBMC of severe COVID-19 cases There are increased CD39 levels in PBMC of severe COVID-19 patients High HIF-1a and STAT-3 and low CD39-antisense might be linked with CD39 increase
Collapse
Affiliation(s)
- Na Wang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong 250021, China.,School of Medicine, Shandong University, 44 Wenhuaxilu, Jinan, Shandong 250021, China
| | - Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Ahmadreza Kalbasi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Jonathon J Graham
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Eva Csizmadia
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | - Ann Woolley
- Division of Infectious Diseases, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Clement David
- NanoString Technologies, 530 Fairview Avenue N, Seattle, WA 98109, USA
| | - Eric M Miller
- NanoString Technologies, 530 Fairview Avenue N, Seattle, WA 98109, USA
| | - Kara Gorman
- NanoString Technologies, 530 Fairview Avenue N, Seattle, WA 98109, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Shahzad Shaefi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
49
|
Jarvis LB, Rainbow DB, Coppard V, Howlett SK, Georgieva Z, Davies JL, Mullay HK, Hester J, Ashmore T, Van Den Bosch A, Grist JT, Coles AJ, Mousa HS, Pluchino S, Mahbubani KT, Griffin JL, Saeb-Parsy K, Issa F, Peruzzotti-Jametti L, Wicker LS, Jones JL. Therapeutically expanded human regulatory T-cells are super-suppressive due to HIF1A induced expression of CD73. Commun Biol 2021; 4:1186. [PMID: 34650224 PMCID: PMC8516976 DOI: 10.1038/s42003-021-02721-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
The adoptive transfer of regulatory T-cells (Tregs) is a promising therapeutic approach in transplantation and autoimmunity. However, because large cell numbers are needed to achieve a therapeutic effect, in vitro expansion is required. By comparing their function, phenotype and transcriptomic profile against ex vivo Tregs, we demonstrate that expanded human Tregs switch their metabolism to aerobic glycolysis and show enhanced suppressive function through hypoxia-inducible factor 1-alpha (HIF1A) driven acquisition of CD73 expression. In conjunction with CD39, CD73 expression enables expanded Tregs to convert ATP to immunosuppressive adenosine. We conclude that for maximum therapeutic benefit, Treg expansion protocols should be optimised for CD39/CD73 co-expression.
Collapse
Affiliation(s)
- Lorna B Jarvis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Daniel B Rainbow
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Valerie Coppard
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sarah K Howlett
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Zoya Georgieva
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jessica L Davies
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Joanna Hester
- Department of Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tom Ashmore
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | | | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Hani S Mousa
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Imperial College London Dementia Research Institute & Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Fadi Issa
- Department of Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - Linda S Wicker
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
50
|
Xie XT, Zheng LX, Duan HM, Liu Y, Chen XQ, Cheong KL. Structural characteristics of Gracilaria lemaneiformis oligosaccharides and their alleviation of dextran sulphate sodium-induced colitis by modulating the gut microbiota and intestinal metabolites in mice. Food Funct 2021; 12:8635-8646. [PMID: 34346464 DOI: 10.1039/d1fo01201k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ulcerative colitis (UC) is a chronic lifetime disorder with a high incidence worldwide. A functional food-based method to prevent UC would be a good option for disease control. G. lemaneiformis oligosaccharides (GLOs) should have potent benefits for the gastrointestinal tract, based on in vitro fermentation assessed in our previous study. This study evaluated the therapeutic potential of GLOs in UC, as well as their possible mechanisms of action. The administration of GLOs was able to reduce the severity of dextran sulphate sodium-induced colitis by protecting mice from weight loss, reductions in colon length, inflammatory infiltration, and colon damage. Gut microbiota composition analysis showed that at the phylum level, GLOs could restore the composition of Bacteroidetes and decrease the level of Firmicutes. Consistently, it increased the contents of beneficial microbial metabolites and short-chain fatty acids in the mouse colitis model. In conclusion, GLOs could comprise a promising functional food strategy to alleviate UC symptoms.
Collapse
Affiliation(s)
- Xu-Ting Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| | - Li-Xin Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| | - Hui-Min Duan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| | - Xian-Qiang Chen
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China.
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| |
Collapse
|