1
|
Taylor JP, Blum SI, Graffeo HC, Shang Q, Qiu S, Green TJ, Botta D, Lund FE, Tse HM. The Type 1 Diabetes-Associated Single Nucleotide Polymorphism rs1990760 in IFIH1 Is Associated with Increased Basal Type I IFNs and IFN-stimulated Gene Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1415-1428. [PMID: 39373578 DOI: 10.4049/jimmunol.2400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that is caused by a combination of genetic and environmental risk factors. In this study, we sought to determine whether a known genetic risk factor, the rs1990760 single nucleotide polymorphism (SNP) (A946T) in IFIH1, resulted in a gain of function in the MDA5 protein and the effects of this mutation on the regulation of type I IFNs during infection with the diabetogenic virus coxsackievirus B3. We found that in cell lines overexpressing the risk variant IFIH1946T there was an elevated level of basal type I IFN signaling and increased basal IFN-stimulated gene expression. An investigation into the mechanism demonstrated that recombinant MDA5 with the A946T mutation had increased ATPase activity in vitro. We also assessed the effect of this SNP in primary human PBMCs from healthy donors to determine whether this SNP influenced their response to infection with coxsackievirus B3. However, we observed no significant changes in type I IFN expression or downstream induction of IFN-stimulated genes in PBMCs from donors carrying the risk allele IFIH1946T. These findings demonstrate the need for a deeper understanding of how mutations in T1D-associated genes contribute to disease onset in specific cellular contexts.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Samuel I Blum
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Hollis C Graffeo
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Qiao Shang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Shihong Qiu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
- Heersink School of Medicine, Immunology Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
- Heersink School of Medicine, Immunology Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Hubert M Tse
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
2
|
Li M, Zhu C, Yuan Y, Huang X, Wu L, Wu J, Yin H, Chai L, Qu W, Yan Y, Li P, Li X. Porcine NLRC3 specially binds short dsDNA to regulate cGAS activation. iScience 2024; 27:111145. [PMID: 39524340 PMCID: PMC11544074 DOI: 10.1016/j.isci.2024.111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Host immune system has evolved multiple sensors to detect pathogenic and damaged DNA, where precise regulation is critical for distinguishing self from non-self. Our previous studies showed that NLRC3 is an inhibitory nucleic acid sensor that binds to viral DNA and thereby unleashing STING activation. In this study, we demonstrate that human NLRC3 favors long dsDNA, while porcine NLRC3 shows an affinity for shorter dsDNA. Mechanistically, a conserved arginine residue within the leucine-rich repeats of primates NLRC3 forms a structural bridge facilitating the binding of long dsDNA. Conversely, a glycine residue that replaces the arginine in non-primates disrupts this bridge. Furthermore, porcine NLRC3 negatively regulates type I interferon by interacting with cyclic GMP-AMP synthase (cGAS) to inhibit its DNA binding, thereby preventing cGAS activation. These results reveal an unrecognized mechanism by which a species-specific amino acid variation of NLRC3 influences nucleic acid recognition, providing insights into the evolution of innate immunity to pathogens.
Collapse
Affiliation(s)
- Minjie Li
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Ye Yuan
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangyu Huang
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Wu
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiayang Wu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Hongyan Yin
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lvye Chai
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weiyu Qu
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ya Yan
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Xin Li
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Krieger MR, Abrahamian M, He KL, Atamdede S, Hakimjavadi H, Momcilovic M, Ostrow D, Maggo SD, Tsang YP, Gai X, Chanfreau GF, Shackelford DB, Teitell MA, Koehler CM. Trafficking of mitochondrial double-stranded RNA from mitochondria to the cytosol. Life Sci Alliance 2024; 7:e202302396. [PMID: 38955468 PMCID: PMC11220484 DOI: 10.26508/lsa.202302396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.
Collapse
Affiliation(s)
- Matthew R Krieger
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | | | - Kevin L He
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Sean Atamdede
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | | | - Milica Momcilovic
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Dejerianne Ostrow
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Simran Ds Maggo
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yik Pui Tsang
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Xiaowu Gai
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - David B Shackelford
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Michael A Teitell
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
4
|
Zhang S, Huang W, Wu X, Chen H, Wang L, Chao J, Xie J, Qiu H. IBR1, a novel endogenous IFIH1-binding dsRNA, governs IFIH1 activation and M1 macrophage polarisation in ARDS. Clin Transl Med 2024; 14:e70027. [PMID: 39313944 PMCID: PMC11420289 DOI: 10.1002/ctm2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/28/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Uncontrolled inflammation caused by macrophages and monocytes plays a crucial role in worsening acute respiratory distress syndrome (ARDS). Previous studies have highlighted the importance of IFIH1 in regulating macrophage polarisation in ARDS triggered by pneumonia. However, the mechanisms by which IFIH1 is activated in ARDS remain unclear. METHODS In this study, we utilised multiomics sequencing and molecular interaction experiments to explore the molecular mechanisms underlying IFIH1 activation in ARDS. Through the use of conditional gene knockout mice and primary cells, we demonstrated the significant role of these mechanisms in the development of ARDS. Additionally, we validated the associations between these mechanisms and ARDS by quantitative PCR analysis of CD14+ cells obtained from the peripheral blood of 140 ARDS patients. RESULTS Our investigation revealed that lipopolysaccharide, a critical component derived from Gram-negative bacteria, activated IFIH1 by upregulating a novel transcript known as IFIH1-binding RNA1 (IBR1) in monocytes and macrophages. Specifically, as an endogenous double-stranded RNA, IBR1 bind to the helicase domain of IFIH1 because of its unique double-stranded structure. Deletion of IBR1 significantly reduced the activation of IFIH1, M1 polarisation of macrophages, and inflammatory lung injury in ARDS. Moreover, IBR1 directly induced M1 polarisation of macrophages and ARDS, whereas deletion of IFIH1 inhibited IBR1-induced macrophage M1 polarisation and inflammatory lung injury. Importantly, we observed a notable increase in IBR1 expression in ARDS patients with pneumonia caused by Gram-negative bacteria. Furthermore, we demonstrated that the delivery of IFIH1 mutants through exosomes effectively counteracted IBR1, thereby reducing pulmonary inflammation and alleviating lung injury. CONCLUSIONS This study revealed a novel mechanism involving IBR1, an endogenous double-stranded RNA (dsRNA) that binds to IFIH1, shedding light on the complex process of macrophage polarisation in ARDS. The administration of IFIH1 variants has the potential to eliminate pulmonary dsRNA and alleviate inflammatory lung injury in ARDS. HIGHLIGHTS In monocytes and macrophages, the endogenous double-stranded RNA, IFIH1-binding RNA 1 (IBR1), binds to the helicase domain of IFIH1 because of its unique double-stranded structure. IBR1 plays a significant role in macrophage polarisation and the development of acute respiratory distress syndrome (ARDS) induced by Gram-negative bacteria or lipopolysaccharide (LPS). Administration of IFIH1 variants has potential for eliminating pulmonary IBR1 and reducing inflammatory lung injury in ARDS patients.
Collapse
Affiliation(s)
- Shi Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xueling Wu
- Department of Respiratory and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanbing Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Guney MH, Nagalekshmi K, McCauley SM, Carbone C, Aydemir O, Luban J. IFIH1 (MDA5) is required for innate immune detection of intron-containing RNA expressed from the HIV-1 provirus. Proc Natl Acad Sci U S A 2024; 121:e2404349121. [PMID: 38985764 PMCID: PMC11260138 DOI: 10.1073/pnas.2404349121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Intron-containing RNA expressed from the HIV-1 provirus activates type 1 interferon in primary human blood cells, including CD4+ T cells, macrophages, and dendritic cells. To identify the innate immune receptor required for detection of intron-containing RNA expressed from the HIV-1 provirus, a loss-of-function screen was performed with short hairpin RNA-expressing lentivectors targeting twenty-one candidate genes in human monocyte-derived dendritic cells. Among the candidate genes tested, only knockdown of XPO1 (CRM1), IFIH1 (MDA5), or MAVS prevented activation of the interferon-stimulated gene ISG15. The importance of IFIH1 protein was demonstrated by rescue of the knockdown with nontargetable IFIH1 coding sequence. Inhibition of HIV-1-induced ISG15 by the IFIH1-specific Nipah virus V protein, and by IFIH1-transdominant 2-CARD domain-deletion or phosphomimetic point mutations, indicates that IFIH1 (MDA5) filament formation, dephosphorylation, and association with MAVS are all required for innate immune activation in response to HIV-1 transduction. Since both IFIH1 (MDA5) and DDX58 (RIG-I) signal via MAVS, the specificity of HIV-1 RNA detection by IFIH1 was demonstrated by the fact that DDX58 knockdown had no effect on activation. RNA-Seq showed that IFIH1 knockdown in dendritic cells globally disrupted the induction of IFN-stimulated genes by HIV-1. Finally, specific enrichment of unspliced HIV-1 RNA by IFIH1 (MDA5), over two orders of magnitude, was revealed by formaldehyde cross-linking immunoprecipitation (f-CLIP). These results demonstrate that IFIH1 is the innate immune receptor for intron-containing RNA from the HIV-1 provirus and that IFIH1 potentially contributes to chronic inflammation in people living with HIV-1, even in the presence of effective antiretroviral therapy.
Collapse
Affiliation(s)
- Mehmet Hakan Guney
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Karthika Nagalekshmi
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Sean Matthew McCauley
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Claudia Carbone
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA01605
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA02139
- Massachusetts Consortium on Pathogen Readiness, Boston, MA02115
| |
Collapse
|
6
|
Batachari LE, Dai AY, Troemel ER. Caenorhabditis elegans RIG-I-like receptor DRH-1 signals via CARDs to activate antiviral immunity in intestinal cells. Proc Natl Acad Sci U S A 2024; 121:e2402126121. [PMID: 38980902 PMCID: PMC11260149 DOI: 10.1073/pnas.2402126121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Upon sensing viral RNA, mammalian RIG-I-like receptors (RLRs) activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well studied. In contrast, the downstream signaling mechanisms for invertebrate RLRs are much less clear. For example, the Caenorhabditis elegans RLR DRH-1 lacks annotated CARDs and up-regulates the distinct output of RNA interference. Here, we found that similar to mammal RLRs, DRH-1 signals through two tandem CARDs (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation in C. elegans. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into antiviral signaling in C. elegans, highlighting unexpected parallels in RLR signaling between C. elegans and mammals.
Collapse
Affiliation(s)
- Lakshmi E. Batachari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093
| | - Alyssa Y. Dai
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093
| | - Emily R. Troemel
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
7
|
Lenk R, Kleindienst W, Szabó GT, Baiersdörfer M, Boros G, Keller JM, Mahiny AJ, Vlatkovic I. Understanding the impact of in vitro transcription byproducts and contaminants. Front Mol Biosci 2024; 11:1426129. [PMID: 39050733 PMCID: PMC11266732 DOI: 10.3389/fmolb.2024.1426129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The success of messenger (m)RNA-based vaccines against SARS-CoV-2 during the COVID-19 pandemic has led to rapid growth and innovation in the field of mRNA-based therapeutics. However, mRNA production, whether in small amounts for research or large-scale GMP-grade for biopharmaceutics, is still based on the In Vitro Transcription (IVT) reaction developed in the early 1980s. The IVT reaction exploits phage RNA polymerase to catalyze the formation of an engineered mRNA that depends on a linearized DNA template, nucleotide building blocks, as well as pH, temperature, and reaction time. But depending on the IVT conditions and subsequent purification steps, diverse byproducts such as dsRNA, abortive RNAs and RNA:DNA hybrids might form. Unwanted byproducts, if not removed, could be formulated together with the full-length mRNA and cause an immune response in cells by activating host pattern recognition receptors. In this review, we summarize the potential types of IVT byproducts, their known biological activity, and how they can impact the efficacy and safety of mRNA therapeutics. In addition, we briefly overview non-nucleotide-based contaminants such as RNases, endotoxin and metal ions that, when present in the IVT reaction, can also influence the activity of mRNA-based drugs. We further discuss current approaches aimed at adjusting the IVT reaction conditions or improving mRNA purification to achieve optimal performance for medical applications.
Collapse
|
8
|
Solotchi M, Patel SS. Proofreading mechanisms of the innate immune receptor RIG-I: distinguishing self and viral RNA. Biochem Soc Trans 2024; 52:1131-1148. [PMID: 38884803 PMCID: PMC11346460 DOI: 10.1042/bst20230724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
The RIG-I-like receptors (RLRs), comprising retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), are pattern recognition receptors belonging to the DExD/H-box RNA helicase family of proteins. RLRs detect viral RNAs in the cytoplasm and respond by initiating a robust antiviral response that up-regulates interferon and cytokine production. RIG-I and MDA5 complement each other by recognizing different RNA features, and LGP2 regulates their activation. RIG-I's multilayered RNA recognition and proofreading mechanisms ensure accurate viral RNA detection while averting harmful responses to host RNAs. RIG-I's C-terminal domain targets 5'-triphosphate double-stranded RNA (dsRNA) blunt ends, while an intrinsic gating mechanism prevents the helicase domains from non-specifically engaging with host RNAs. The ATPase and RNA translocation activity of RIG-I adds another layer of selectivity by minimizing the lifetime of RIG-I on non-specific RNAs, preventing off-target activation. The versatility of RIG-I's ATPase function also amplifies downstream signaling by enhancing the signaling domain (CARDs) exposure on 5'-triphosphate dsRNA and promoting oligomerization. In this review, we offer an in-depth understanding of the mechanisms RIG-I uses to facilitate viral RNA sensing and regulate downstream activation of the immune system.
Collapse
Affiliation(s)
- Mihai Solotchi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
- Graduate School of Biomedical Sciences, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, U.S.A
| | - Smita S. Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, U.S.A
| |
Collapse
|
9
|
Shibata K, Moriizumi H, Onomoto K, Kaneko Y, Miyakawa T, Zenno S, Tanokura M, Yoneyama M, Takahashi T, Ui-Tei K. Caspase-mediated processing of TRBP regulates apoptosis during viral infection. Nucleic Acids Res 2024; 52:5209-5225. [PMID: 38636948 PMCID: PMC11109963 DOI: 10.1093/nar/gkae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
RNA silencing is a post-transcriptional gene-silencing mechanism mediated by microRNAs (miRNAs). However, the regulatory mechanism of RNA silencing during viral infection is unclear. TAR RNA-binding protein (TRBP) is an enhancer of RNA silencing that induces miRNA maturation by interacting with the ribonuclease Dicer. TRBP interacts with a virus sensor protein, laboratory of genetics and physiology 2 (LGP2), in the early stage of viral infection of human cells. Next, it induces apoptosis by inhibiting the maturation of miRNAs, thereby upregulating the expression of apoptosis regulatory genes. In this study, we show that TRBP undergoes a functional conversion in the late stage of viral infection. Viral infection resulted in the activation of caspases that proteolytically processed TRBP into two fragments. The N-terminal fragment did not interact with Dicer but interacted with type I interferon (IFN) signaling modulators, such as protein kinase R (PKR) and LGP2, and induced ER stress. The end results were irreversible apoptosis and suppression of IFN signaling. Our results demonstrate that the processing of TRBP enhances apoptosis, reducing IFN signaling during viral infection.
Collapse
Affiliation(s)
- Keiko Shibata
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Harune Moriizumi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Yuka Kaneko
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shuhei Zenno
- Department of Biotechnology, Faculty of Engineering, Maebashi Institute of Technology, Gunma 371-0816, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
- Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba 260-8673, Japan
| | - Tomoko Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
10
|
Consalvo CD, Aderounmu AM, Donelick HM, Aruscavage PJ, Eckert DM, Shen PS, Bass BL. Caenorhabditis elegans Dicer acts with the RIG-I-like helicase DRH-1 and RDE-4 to cleave dsRNA. eLife 2024; 13:RP93979. [PMID: 38747717 PMCID: PMC11095941 DOI: 10.7554/elife.93979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.
Collapse
Affiliation(s)
- Claudia D Consalvo
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | | | - Helen M Donelick
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | | | - Debra M Eckert
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Peter S Shen
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| | - Brenda L Bass
- Department of Biochemistry, University of UtahSalt Lake CityUnited States
| |
Collapse
|
11
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
12
|
de Reuver R, Maelfait J. Novel insights into double-stranded RNA-mediated immunopathology. Nat Rev Immunol 2024; 24:235-249. [PMID: 37752355 DOI: 10.1038/s41577-023-00940-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Recent progress in human and mouse genetics has transformed our understanding of the molecular mechanisms by which recognition of self double-stranded RNA (self-dsRNA) causes immunopathology. Novel mouse models recapitulate loss-of-function mutations in the RNA editing enzyme ADAR1 that are found in patients with Aicardi-Goutières syndrome (AGS) - a monogenic inflammatory disease associated with increased levels of type I interferon. Extensive analyses of the genotype-phenotype relationships in these mice have now firmly established a causal relationship between increased intracellular concentrations of endogenous immunostimulatory dsRNA and type I interferon-driven immunopathology. Activation of the dsRNA-specific immune sensor MDA5 perpetuates the overproduction of type I interferons, and chronic engagement of the interferon-inducible innate immune receptors PKR and ZBP1 by dsRNA drives immunopathology by activating an integrated stress response or by inducing excessive cell death. Biochemical and genetic data support a role for the p150 isoform of ADAR1 in the cytosol in suppressing the spontaneous, pathological response to self-dsRNA.
Collapse
Affiliation(s)
- Richard de Reuver
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
13
|
Wang H, Ye T, Guo Z, Yao Y, Tu H, Wang P, Zhang Y, Wang Y, Li X, Li B, Xiong H, Lai X, Xiong L. A double-stranded RNA binding protein enhances drought resistance via protein phase separation in rice. Nat Commun 2024; 15:2514. [PMID: 38514621 PMCID: PMC10957929 DOI: 10.1038/s41467-024-46754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Drought stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of drought resistance in rice. Here, through a genome-wide association study, we reveal that natural variations in DROUGHT RESISTANCE GENE 9 (DRG9), encoding a double-stranded RNA (dsRNA) binding protein, contribute to drought resistance. Under drought stress, DRG9 condenses into stress granules (SGs) through liquid-liquid phase separation via a crucial α-helix. DRG9 recruits the mRNAs of OsNCED4, a key gene for the biosynthesis of abscisic acid, into SGs and protects them from degradation. In drought-resistant DRG9 allele, natural variations in the coding region, causing an amino acid substitution (G267F) within the zinc finger domain, increase DRG9's binding ability to OsNCED4 mRNA and enhance drought resistance. Introgression of the drought-resistant DRG9 allele into the elite rice Huanghuazhan significantly improves its drought resistance. Thus, our study underscores the role of a dsRNA-binding protein in drought resistance and its promising value in breeding drought-resistant rice.
Collapse
Affiliation(s)
- Huaijun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Tiantian Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zilong Guo
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yilong Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Bingchen Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuelei Lai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
14
|
Dansako H, Ikeda M, Ariumi Y, Togashi Y, Kato N. Hepatitis C virus NS5B triggers an MDA5-mediated innate immune response by producing dsRNA without the replication of viral genomes. FEBS J 2024; 291:1119-1130. [PMID: 37863517 DOI: 10.1111/febs.16980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
During the replication of viral genomes, RNA viruses produce double-stranded RNA (dsRNA), through the activity of their RNA-dependent RNA polymerases (RdRps) as viral replication intermediates. Recognition of viral dsRNA by host pattern recognition receptors - such as retinoic acid-induced gene-I (RIG-I)-like receptors and Toll-like receptor 3 - triggers the production of interferon (IFN)-β via the activation of IFN regulatory factor (IRF)-3. It has been proposed that, during the replication of viral genomes, each of RIG-I and melanoma differentiation-associated gene 5 (MDA5) form homodimers for the efficient activation of a downstream signalling pathway in host cells. We previously reported that, in the non-neoplastic human hepatocyte line PH5CH8, the RdRp NS5B derived from hepatitis C virus (HCV) could induce IFN-β expression by its RdRp activity without the actual replication of viral genomes. However, the exact mechanism by which HCV NS5B produced IFN-β remained unknown. In the present study, we first showed that NS5B derived from another Flaviviridae family member, GB virus B (GBV-B), also possessed the ability to induce IFN-β in PH5CH8 cells. Similarly, HCV NS5B, but not its G317V mutant, which lacks RdRp activity, induced the dimerization of MDA5 and subsequently the activation of IRF-3. Interestingly, immunofluorescence analysis showed that HCV NS5B produced dsRNA. Like HCV NS5B, GBV-B NS5B also triggered the production of dsRNA and subsequently the dimerization of MDA5. Taken together, our results show that HCV NS5B triggers an MDA5-mediated innate immune response by producing dsRNA without the replication of viral genomes in human hepatocytes.
Collapse
Affiliation(s)
- Hiromichi Dansako
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Masanori Ikeda
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Japan
| | - Yasuo Ariumi
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Nobuyuki Kato
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| |
Collapse
|
15
|
Singh R, Wu Y, Herrero Del Valle A, Leigh KE, Mong S, Cheng MTK, Ferguson BJ, Modis Y. Contrasting functions of ATP hydrolysis by MDA5 and LGP2 in viral RNA sensing. J Biol Chem 2024; 300:105711. [PMID: 38309507 PMCID: PMC10909783 DOI: 10.1016/j.jbc.2024.105711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
Cytosolic long dsRNA, among the most potent proinflammatory signals, is recognized by melanoma differentiation-associated protein 5 (MDA5). MDA5 binds dsRNA cooperatively forming helical filaments. ATP hydrolysis by MDA5 fulfills a proofreading function by promoting dissociation of shorter endogenous dsRNs from MDA5 while allowing longer viral dsRNAs to remain bound leading to activation of interferon-β responses. Here, we show that adjacent MDA5 subunits in MDA5-dsRNA filaments hydrolyze ATP cooperatively, inducing cooperative filament disassembly. Consecutive rounds of ATP hydrolysis amplify the filament footprint, displacing tightly bound proteins from dsRNA. Our electron microscopy and biochemical assays show that LGP2 binds to dsRNA at internal binding sites through noncooperative ATP hydrolysis. Unlike MDA5, LGP2 has low nucleic acid selectivity and can hydrolyze GTP and CTP as well as ATP. Binding of LGP2 to dsRNA promotes nucleation of MDA5 filament assembly resulting in shorter filaments. Molecular modeling identifies an internally bound MDA5-LGP2-RNA complex, with the LGP2 C-terminal tail forming the key contacts with MDA5. These contacts are specifically required for NTP-dependent internal RNA binding. We conclude that NTPase-dependent binding of LGP2 to internal dsRNA sites complements NTPase-independent binding to dsRNA ends, via distinct binding modes, to increase the number and signaling output of MDA5-dsRNA complexes.
Collapse
Affiliation(s)
- Rahul Singh
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Yuan Wu
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Alba Herrero Del Valle
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kendra E Leigh
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sai Mong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Mark T K Cheng
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Brian J Ferguson
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Stock AJ, Gonzalez Paredes P, de Almeida LP, Kosanke SD, Chetlur S, Budde H, Wakenight P, Zwingman TA, Rosen AB, Allenspach EJ, Millen KJ, Buckner JH, Rawlings DJ, Gorman JA. The IFIH1-A946T risk variant promotes diabetes in a sex-dependent manner. Front Immunol 2024; 15:1349601. [PMID: 38487540 PMCID: PMC10937421 DOI: 10.3389/fimmu.2024.1349601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic islet β-cells are attacked by the immune system, resulting in insulin deficiency and hyperglycemia. One of the top non-synonymous single-nucleotide polymorphisms (SNP) associated with T1D is in the interferon-induced helicase C domain-containing protein 1 (IFIH1), which encodes an anti-viral cytosolic RNA sensor. This SNP results in an alanine to threonine substitution at amino acid 946 (IFIH1A946T) and confers an increased risk for several autoimmune diseases, including T1D. We hypothesized that the IFIH1A946T risk variant, (IFIH1R) would promote T1D pathogenesis by stimulating type I interferon (IFN I) signaling leading to immune cell alterations. To test this, we developed Ifih1R knock-in mice on the non-obese diabetic (NOD) mouse background, a spontaneous T1D model. Our results revealed a modest increase in diabetes incidence and insulitis in Ifih1R compared to non-risk Ifih1 (Ifih1NR) mice and a significant acceleration of diabetes onset in Ifih1R females. Ifih1R mice exhibited a significantly enhanced interferon stimulated gene (ISG) signature compared to Ifih1NR, indicative of increased IFN I signaling. Ifih1R mice exhibited an increased frequency of plasma cells as well as tissue-dependent changes in the frequency and activation of CD8+ T cells. Our results indicate that IFIH1R may contribute to T1D pathogenesis by altering the frequency and activation of immune cells. These findings advance our knowledge on the connection between the rs1990760 variant and T1D. Further, these data are the first to demonstrate effects of Ifih1R in NOD mice, which will be important to consider for the development of therapeutics for T1D.
Collapse
Affiliation(s)
- Amanda J. Stock
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology, Oklahoma City, OK, United States
| | - Pierina Gonzalez Paredes
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology, Oklahoma City, OK, United States
| | | | - Stanley D. Kosanke
- Heartland Veterinary Pathology Services, PLLC, Edmond, OK, United States
| | - Srinivaas Chetlur
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology, Oklahoma City, OK, United States
| | - Hannah Budde
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology, Oklahoma City, OK, United States
| | - Paul Wakenight
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
| | - Theresa A. Zwingman
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
| | - Aaron B.I. Rosen
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapies, Seattle, WA, United States
| | - Eric J. Allenspach
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapies, Seattle, WA, United States
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States
| | - Kathleen J. Millen
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States
| | - Jane H. Buckner
- Benaroya Research Institute at Virginia Mason, Center for Translational Immunology, Seattle, WA, United States
| | - David J. Rawlings
- Seattle Children’s Research Institute, Center for Immunity and Immunotherapies, Seattle, WA, United States
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Jacquelyn A. Gorman
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology, Oklahoma City, OK, United States
| |
Collapse
|
17
|
Batachari LE, Dai AY, Troemel ER. C. elegans RIG-I-like receptor DRH-1 signals via CARDs to activate anti-viral immunity in intestinal cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578694. [PMID: 38370651 PMCID: PMC10871272 DOI: 10.1101/2024.02.05.578694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Upon sensing viral RNA, mammalian RIG-I-like receptors activate downstream signals using caspase activation and recruitment domains (CARDs), which ultimately promote transcriptional immune responses that have been well-studied. In contrast, the downstream signaling mechanisms for invertebrate RIG-I-like receptors are much less clear. For example, the Caenorhabditis elegans RIG-I-like receptor DRH-1 lacks annotated CARDs and upregulates the distinct output of RNA interference (RNAi). Here we found that, similar to mammal RIG-I-like receptors, DRH-1 signals through two tandem caspase activation and recruitment domains (2CARD) to induce a transcriptional immune response. Expression of DRH-1(2CARD) alone in the intestine was sufficient to induce immune gene expression, increase viral resistance, and promote thermotolerance, a phenotype previously associated with immune activation. We also found that DRH-1 is required in the intestine to induce immune gene expression, and we demonstrate subcellular colocalization of DRH-1 puncta with double-stranded RNA inside the cytoplasm of intestinal cells upon viral infection. Altogether, our results reveal mechanistic and spatial insights into anti-viral signaling in C. elegans, highlighting unexpected parallels in RIG-I-like receptor signaling between C. elegans and mammals.
Collapse
Affiliation(s)
- Lakshmi E Batachari
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Alyssa Y Dai
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| | - Emily R Troemel
- School of Biological Sciences, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
18
|
Li L. "Goldilocks Modifications" for mRNA Therapeutics Won the Nobel Prize. Nucleic Acid Ther 2024; 34:1-3. [PMID: 38285523 PMCID: PMC11302211 DOI: 10.1089/nat.2023.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 01/31/2024] Open
Affiliation(s)
- Li Li
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
19
|
Consalvo CD, Aderounmu AM, Donelick HM, Aruscavage PJ, Eckert DM, Shen PS, Bass BL. C. elegans Dicer acts with the RIG-I-like helicase DRH-1 and RDE-4 to cleave dsRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558868. [PMID: 37790392 PMCID: PMC10542151 DOI: 10.1101/2023.09.21.558868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, C. elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.
Collapse
Affiliation(s)
| | - Adedeji M. Aderounmu
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
- These authors contributed equally
| | - Helen M. Donelick
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
- These authors contributed equally
| | - P. Joe Aruscavage
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
| | - Debra M. Eckert
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
| | - Peter S. Shen
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
| | - Brenda L. Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112
- Lead Contact
| |
Collapse
|
20
|
Stock AJ, Gonzalez-Paredes P, Previato de Almeida L, Kosanke SD, Chetlur S, Budde H, Wakenight P, Zwingman TA, Rosen AB, Allenspach E, Millen KJ, Buckner JH, Rawlings DJ, Gorman JA. The IFIH1-A946T risk variant promotes diabetes in a sex-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576482. [PMID: 38328221 PMCID: PMC10849491 DOI: 10.1101/2024.01.20.576482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic islet β-cells are attacked by the immune system, resulting in insulin deficiency and hyperglycemia. One of the top non-synonymous single-nucleotide polymorphisms (SNP) associated with T1D is in the interferon-induced helicase C domain-containing protein 1 ( IFIH1 ), which encodes an anti-viral cytosolic RNA sensor. This SNP results in an alanine to threonine substitution at amino acid 946 (IFIH1 A946T ) and confers an increased risk for several autoimmune diseases, including T1D. We hypothesized that the IFIH1 A946T risk variant, ( IFIH1 R ) would promote T1D pathogenesis by stimulating type I interferon (IFN I) signaling leading to immune cell alterations. To test this, we developed Ifih1 R knock-in mice on the non-obese diabetic (NOD) mouse background, a spontaneous T1D model. Our results revealed a modest increase in diabetes incidence and insulitis in Ifih1 R compared to non-risk Ifih1 ( Ifih1 NR ) mice and a significant acceleration of diabetes onset in Ifih1 R females. Ifih1 R mice exhibited a significantly enhanced interferon stimulated gene (ISG) signature compared to Ifih1 NR , indicative of increased IFN I signaling. Ifih1 R mice exhibited an increased frequency of plasma cells as well as tissue-dependent changes in the frequency and activation of CD8 + T cells. Our results indicate that IFIH1 R may contribute to T1D pathogenesis by altering the frequency and activation of immune cells. These findings advance our knowledge on the connection between the rs1990760 variant and T1D. Further, these data are the first to demonstrate effects of Ifih1 R in NOD mice, which will be important to consider for the development of therapeutics for T1D.
Collapse
|
21
|
Lee KY, Craig C, Patel SS. Unraveling blunt-end RNA binding and ATPase-driven translocation activities of the RIG-I family helicase LGP2. Nucleic Acids Res 2024; 52:355-369. [PMID: 38015453 PMCID: PMC10783506 DOI: 10.1093/nar/gkad1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
The RIG-I family helicases, comprising RIG-I, MDA5 and LGP2, are cytoplasmic RNA sensors that trigger an antiviral immune response by specifically recognizing foreign RNAs. While LGP2 lacks the signaling domain necessary for immune activation, it plays a vital role in regulating the RIG-I/MDA5 signaling pathway. In this study, we investigate the mechanisms underlying this regulation by examining the oligomeric state, RNA binding specificity, and translocation activity of human LGP2 and the impact of ATPase activity. We show that LGP2, like RIG-I, prefers binding blunt-ended double-stranded (ds) RNAs over internal dsRNA regions or RNA overhangs and associates with blunt-ends faster than with overhangs. Unlike RIG-I, a 5'-triphosphate (5'ppp), Cap0, or Cap1 RNA-end does not influence LGP2's RNA binding affinity. LGP2 hydrolyzes ATP in the presence of RNA but at a 5-10 fold slower rate than RIG-I. Nevertheless, LGP2 uses its ATPase activity to translocate and displace biotin-streptavidin interactions. This activity is significantly hindered by a methylated RNA patch, particularly on the 3'-strand, suggesting a 3'-strand tracking mechanism like RIG-I. The preference of LGP2 for blunt-end RNA binding, its insensitivity to Cap0/Cap1 modification, and its translocation/protein displacement ability have substantial implications for how LGP2 regulates the RNA sensing process by MDA5/RIG-I.
Collapse
Affiliation(s)
- Kuan-Ying Lee
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Graduate School of Biomedical Sciences at the Robert Wood Johnson Medical School of Rutgers University, 08854, USA
| | - Candice Craig
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Graduate School of Biomedical Sciences at the Robert Wood Johnson Medical School of Rutgers University, 08854, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
22
|
Cottrell KA, Andrews RJ, Bass BL. The competitive landscape of the dsRNA world. Mol Cell 2024; 84:107-119. [PMID: 38118451 PMCID: PMC10843539 DOI: 10.1016/j.molcel.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
The ability to sense and respond to infection is essential for life. Viral infection produces double-stranded RNAs (dsRNAs) that are sensed by proteins that recognize the structure of dsRNA. This structure-based recognition of viral dsRNA allows dsRNA sensors to recognize infection by many viruses, but it comes at a cost-the dsRNA sensors cannot always distinguish between "self" and "nonself" dsRNAs. "Self" RNAs often contain dsRNA regions, and not surprisingly, mechanisms have evolved to prevent aberrant activation of dsRNA sensors by "self" RNA. Here, we review current knowledge about the life of endogenous dsRNAs in mammals-the biosynthesis and processing of dsRNAs, the proteins they encounter, and their ultimate degradation. We highlight mechanisms that evolved to prevent aberrant dsRNA sensor activation and the importance of competition in the regulation of dsRNA sensors and other dsRNA-binding proteins.
Collapse
Affiliation(s)
- Kyle A Cottrell
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
| | - Ryan J Andrews
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
23
|
Nassour J, Przetocka S, Karlseder J. Telomeres as hotspots for innate immunity and inflammation. DNA Repair (Amst) 2024; 133:103591. [PMID: 37951043 PMCID: PMC10842095 DOI: 10.1016/j.dnarep.2023.103591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Aging is marked by the gradual accumulation of deleterious changes that disrupt organ function, creating an altered physiological state that is permissive for the onset of prevalent human diseases. While the exact mechanisms governing aging remain a subject of ongoing research, there are several cellular and molecular hallmarks that contribute to this biological process. This review focuses on two factors, namely telomere dysfunction and inflammation, which have emerged as crucial contributors to the aging process. We aim to discuss the mechanistic connections between these two distinct hallmarks and provide compelling evidence highlighting the loss of telomere protection as a driver of pro-inflammatory states associated with aging. By reevaluating the interplay between telomeres, innate immunity, and inflammation, we present novel perspectives on the etiology of aging and its associated diseases.
Collapse
Affiliation(s)
- Joe Nassour
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, 12801 E. 17th Ave, Aurora, CO 80045, USA; The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sara Przetocka
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
24
|
Guney MH, Nagalekshmi K, McCauley SM, Carbone C, Aydemir O, Luban J. IFIH1 (MDA5) is required for innate immune detection of intron-containing RNA expressed from the HIV-1 provirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567619. [PMID: 38014177 PMCID: PMC10680824 DOI: 10.1101/2023.11.17.567619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Antiretroviral therapy (ART) suppresses HIV-1 viremia and prevents progression to AIDS. Nonetheless, chronic inflammation is a common problem for people living with HIV-1 on ART. One possible cause of inflammation is ongoing transcription from HIV-1 proviruses, whether or not the sequences are competent for replication. Previous work has shown that intron-containing RNA expressed from the HIV-1 provirus in primary human blood cells, including CD4+ T cells, macrophages, and dendritic cells, activates type 1 interferon. This activation required HIV-1 rev and was blocked by the XPO1 (CRM1)-inhibitor leptomycin. To identify the innate immune receptor required for detection of intron-containing RNA expressed from the HIV-1 provirus, a loss-of-function screen was performed with shRNA-expressing lentivectors targeting twenty-one candidate genes in human monocyte derived dendritic cells. Among the candidate genes tested, only knockdown of XPO1 (CRM1), IFIH1 (MDA5), or MAVS prevented activation of the IFN-stimulated gene ISG15. The importance of IFIH1 protein was demonstrated by rescue of the knockdown with non-targetable IFIH1 coding sequence. Inhibition of HIV-1-induced ISG15 by the IFIH1-specific Nipah virus V protein, and by IFIH1-transdominant inhibitory CARD-deletion or phosphomimetic point mutations, indicates that IFIH1 filament formation, dephosphorylation, and association with MAVS, are all required for innate immune activation in response to HIV-1 transduction. Since both IFIH1 and DDX58 (RIG-I) signal via MAVS, the specificity of HIV-1 RNA detection by IFIH1 was demonstrated by the fact that DDX58 knockdown had no effect on activation. RNA-Seq showed that IFIH1-knockdown in dendritic cells globally disrupted the induction of IFN-stimulated genes. Finally, specific enrichment of unspliced HIV-1 RNA by IFIH1 was revealed by formaldehyde crosslinking immunoprecipitation (f-CLIP). These results demonstrate that IFIH1 is required for innate immune activation by intron-containing RNA from the HIV-1 provirus, and potentially contributes to chronic inflammation in people living with HIV-1.
Collapse
Affiliation(s)
- Mehmet Hakan Guney
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- These authors contributed equally
| | - Karthika Nagalekshmi
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- These authors contributed equally
| | - Sean Matthew McCauley
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Claudia Carbone
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA 02115, USA
| |
Collapse
|
25
|
Jung YJ, Choi JS, Ryu JY, Zhang Z, Lim YB. Cooperative Assembly of Self-Adjusting α-Helical Coiled Coils along the Length of an mRNA Chain to Form a Thermodynamically Stable Nanotube Carrier. J Am Chem Soc 2023; 145:23048-23056. [PMID: 37735109 DOI: 10.1021/jacs.3c05638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Although mRNA delivery technology is very promising, problems in safety and transport arise due to the intrinsically low thermodynamic stability of the current mRNA carriers. Considering that mRNAs are filamentous and a nanotube is one of the most thermodynamically stable shapes among nanoassemblies, a nanotube is one of the most stable supramolecular structures that can be assembled with mRNA. Here, we develop a nanotube-shaped filamentous mRNA delivery platform that shows exceptionally high thermodynamic stability. The key to the development of the mRNA nanotube is the design of self-adjusting supramolecular building blocks (SABs) that have two disparate properties, i.e., dynamic property and stiffness, in a single molecule. The counterbalance of the dynamic property and stiffness in SABs enables the coating of mRNA by winding its way through the flexible and irregular mRNA chain via cooperative interactions. SAB nanotubes with targeting ligands installed show a high uptake efficiency in mammalian cells and controllable gene expression behavior. Thus, the mRNA nanotube provides an enabling technology toward the development of safe and stable mRNA vaccines and therapeutics.
Collapse
Affiliation(s)
- You-Jin Jung
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jun Shik Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jung-Yeon Ryu
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Zhihao Zhang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yong-Beom Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
26
|
Zheng J, Shi W, Yang Z, Chen J, Qi A, Yang Y, Deng Y, Yang D, Song N, Song B, Luo D. RIG-I-like receptors: Molecular mechanism of activation and signaling. Adv Immunol 2023; 158:1-74. [PMID: 37453753 DOI: 10.1016/bs.ai.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
During RNA viral infection, RIG-I-like receptors (RLRs) recognize the intracellular pathogenic RNA species derived from viral replication and activate antiviral innate immune response by stimulating type 1 interferon expression. Three RLR members, namely, RIG-I, MDA5, and LGP2 are homologous and belong to a subgroup of superfamily 2 Helicase/ATPase that is preferably activated by double-stranded RNA. RLRs are significantly different in gene architecture, RNA ligand preference, activation, and molecular functions. As switchable macromolecular sensors, RLRs' activities are tightly regulated by RNA ligands, ATP, posttranslational modifications, and cellular cofactors. We provide a comprehensive review of the structure and function of the RLRs and summarize the molecular understanding of sensing and signaling events during the RLR activation process. The key roles RLR signaling play in both anti-infection and immune disease conditions highlight the therapeutic potential in targeting this important molecular pathway.
Collapse
Affiliation(s)
- Jie Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wenjia Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ziqun Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jin Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ao Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yulin Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongyuan Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
27
|
Antiochos B, Casciola-Rosen L. Interferon and autoantigens: intersection in autoimmunity. Front Med (Lausanne) 2023; 10:1165225. [PMID: 37228405 PMCID: PMC10203243 DOI: 10.3389/fmed.2023.1165225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Interferon (IFN) is a key component of the innate immune response. For reasons that remain incompletely understood, the IFN system is upregulated in several rheumatic diseases, particularly those that feature autoantibody production, such as SLE, Sjögren's syndrome, myositis and systemic sclerosis. Interestingly, many of the autoantigens targeted in these diseases are components of the IFN system, representing IFN-stimulated genes (ISGs), pattern recognition receptors (PRRs), and modulators of the IFN response. In this review, we describe features of these IFN-linked proteins that may underlie their status as autoantigens. Note is also made of anti-IFN autoantibodies that have been described in immunodeficiency states.
Collapse
Affiliation(s)
- Brendan Antiochos
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, United States
| | | |
Collapse
|
28
|
Paget M, Cadena C, Ahmad S, Wang HT, Jordan TX, Kim E, Koo B, Lyons SM, Ivanov P, tenOever B, Mu X, Hur S. Stress granules are shock absorbers that prevent excessive innate immune responses to dsRNA. Mol Cell 2023; 83:1180-1196.e8. [PMID: 37028415 PMCID: PMC10170497 DOI: 10.1016/j.molcel.2023.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/08/2022] [Accepted: 03/08/2023] [Indexed: 04/09/2023]
Abstract
Proper defense against microbial infection depends on the controlled activation of the immune system. This is particularly important for the RIG-I-like receptors (RLRs), which recognize viral dsRNA and initiate antiviral innate immune responses with the potential of triggering systemic inflammation and immunopathology. Here, we show that stress granules (SGs), molecular condensates that form in response to various stresses including viral dsRNA, play key roles in the controlled activation of RLR signaling. Without the SG nucleators G3BP1/2 and UBAP2L, dsRNA triggers excessive inflammation and immune-mediated apoptosis. In addition to exogenous dsRNA, host-derived dsRNA generated in response to ADAR1 deficiency is also controlled by SG biology. Intriguingly, SGs can function beyond immune control by suppressing viral replication independently of the RLR pathway. These observations thus highlight the multi-functional nature of SGs as cellular "shock absorbers" that converge on protecting cell homeostasis by dampening both toxic immune response and viral replication.
Collapse
Affiliation(s)
- Max Paget
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cristhian Cadena
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Hai-Tao Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Tristan X Jordan
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016, USA
| | - Ehyun Kim
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Beechui Koo
- Morrisey School of Arts and Science, Boston College, Boston, MA 02467, USA
| | - Shawn M Lyons
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Pavel Ivanov
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Benjamin tenOever
- Department of Microbiology, New York University, Grossman School of Medicine, New York, NY 10016, USA
| | - Xin Mu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sun Hur
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Rex V, Zargari R, Stempel M, Halle S, Brinkmann MM. The innate and T-cell mediated immune response during acute and chronic gammaherpesvirus infection. Front Cell Infect Microbiol 2023; 13:1146381. [PMID: 37065193 PMCID: PMC10102517 DOI: 10.3389/fcimb.2023.1146381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Immediately after entry into host cells, viruses are sensed by the innate immune system, leading to the activation of innate antiviral effector mechanisms including the type I interferon (IFN) response and natural killer (NK) cells. This innate immune response helps to shape an effective adaptive T cell immune response mediated by cytotoxic T cells and CD4+ T helper cells and is also critical for the maintenance of protective T cells during chronic infection. The human gammaherpesvirus Epstein-Barr virus (EBV) is a highly prevalent lymphotropic oncovirus that establishes chronic lifelong infections in the vast majority of the adult population. Although acute EBV infection is controlled in an immunocompetent host, chronic EBV infection can lead to severe complications in immunosuppressed patients. Given that EBV is strictly host-specific, its murine homolog murid herpesvirus 4 or MHV68 is a widely used model to obtain in vivo insights into the interaction between gammaherpesviruses and their host. Despite the fact that EBV and MHV68 have developed strategies to evade the innate and adaptive immune response, innate antiviral effector mechanisms still play a vital role in not only controlling the acute infection but also shaping an efficient long-lasting adaptive immune response. Here, we summarize the current knowledge about the innate immune response mediated by the type I IFN system and NK cells, and the adaptive T cell-mediated response during EBV and MHV68 infection. Investigating the fine-tuned interplay between the innate immune and T cell response will provide valuable insights which may be exploited to design better therapeutic strategies to vanquish chronic herpesviral infection.
Collapse
Affiliation(s)
- Viktoria Rex
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Razieh Zargari
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| |
Collapse
|
30
|
Ke PY. Crosstalk between Autophagy and RLR Signaling. Cells 2023; 12:cells12060956. [PMID: 36980296 PMCID: PMC10047499 DOI: 10.3390/cells12060956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Autophagy plays a homeostatic role in regulating cellular metabolism by degrading unwanted intracellular materials and acts as a host defense mechanism by eliminating infecting pathogens, such as viruses. Upon viral infection, host cells often activate retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling to induce the transcription of type I interferons, thus establishing the first line of the innate antiviral response. In recent years, numerous studies have shown that virus-mediated autophagy activation may benefit viral replication through different actions on host cellular processes, including the modulation of RLR-mediated innate immunity. Here, an overview of the functional molecules and regulatory mechanism of the RLR antiviral immune response as well as autophagy is presented. Moreover, a summary of the current knowledge on the biological role of autophagy in regulating RLR antiviral signaling is provided. The molecular mechanisms underlying the crosstalk between autophagy and RLR innate immunity are also discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
31
|
IFN-Induced PARPs—Sensors of Foreign Nucleic Acids? Pathogens 2023; 12:pathogens12030457. [PMID: 36986379 PMCID: PMC10057411 DOI: 10.3390/pathogens12030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Cells have developed different strategies to cope with viral infections. Key to initiating a defense response against viruses is the ability to distinguish foreign molecules from their own. One central mechanism is the perception of foreign nucleic acids by host proteins which, in turn, initiate an efficient immune response. Nucleic acid sensing pattern recognition receptors have evolved, each targeting specific features to discriminate viral from host RNA. These are complemented by several RNA-binding proteins that assist in sensing of foreign RNAs. There is increasing evidence that the interferon-inducible ADP-ribosyltransferases (ARTs; PARP9—PARP15) contribute to immune defense and attenuation of viruses. However, their activation, subsequent targets, and precise mechanisms of interference with viruses and their propagation are still largely unknown. Best known for its antiviral activities and its role as RNA sensor is PARP13. In addition, PARP9 has been recently described as sensor for viral RNA. Here we will discuss recent findings suggesting that some PARPs function in antiviral innate immunity. We expand on these findings and integrate this information into a concept that outlines how the different PARPs might function as sensors of foreign RNA. We speculate about possible consequences of RNA binding with regard to the catalytic activities of PARPs, substrate specificity and signaling, which together result in antiviral activities.
Collapse
|
32
|
Miyamoto M, Himeda T, Ishihara K, Okuwa T, Kobayashi D, Nameta M, Karasawa Y, Chunhaphinyokul B, Yoshida Y, Tanaka N, Higuchi M, Komuro A. Theilovirus 3C Protease Cleaves the C-Terminal Domain of the Innate Immune RNA Sensor, Melanoma Differentiation-Associated Gene 5, and Impairs Double-Stranded RNA-Mediated IFN Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:335-347. [PMID: 36525065 DOI: 10.4049/jimmunol.2200565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/09/2022] [Indexed: 01/04/2023]
Abstract
Melanoma differentiation-associated gene 5 (MDA5), a member of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), has pivotal roles in innate immune responses against many positive-stranded RNA viruses, including picornavirus and coronavirus. Upon engagement with dsRNA derived from viral infection, MDA5 initiates coordinated signal transduction leading to type I IFN induction to restrict viral replication. In this study, we describe a targeted cleavage events of MDA5 by the 3C protease from Theilovirus. Upon ectopic expression of theilovirus 3C protease from Saffold virus or Theiler's murine encephalomyelitis virus but not encephalomyocarditis virus, fragments of cleaved MDA5 were observed in a dose-dependent manner. When enzymatically inactive Theilovirus 3C protease was expressed, MDA5 cleavage was completely abrogated. Mass spectrometric analysis identified two cleavage sites at the C terminus of MDA5, cleaving off one of the RNA-binding domains. The same cleavage pattern was observed during Theilovirus infection. The cleavage of MDA5 by Theilovirus protease impaired ATP hydrolysis, RNA binding, and filament assembly on RNA, resulting in dysfunction of MDA5 as an innate immune RNA sensor for IFN induction. Furthermore, the cleavage-resistant MDA5 mutant against the 3C protease showed an enhanced IFN response during Saffold virus infection, indicating that Theilovirus has a strategy to circumvent the antiviral immune response by cleaving MDA5 using 3C protease. In summary, these data suggest MDA5 cleavage by 3C protease as a novel immune evasive strategy of Theilovirus.
Collapse
Affiliation(s)
- Masahiko Miyamoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Kazuki Ishihara
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Takako Okuwa
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Daiki Kobayashi
- Omics Unit, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Nameta
- Electron Microscope Core Facility, Niigata University, Niigata, Japan
| | - Yu Karasawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Benyapa Chunhaphinyokul
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Niigata University, Niigata, Japan; and
| | - Nobuyuki Tanaka
- Division of Tumor Immunology, Miyagi Cancer Center Research Institute, Medeshima-Shiode, Natori, Miyagi, Japan
| | - Masaya Higuchi
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Akihiko Komuro
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
33
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
34
|
Nassour J, Aguiar LG, Correia A, Schmidt TT, Mainz L, Przetocka S, Haggblom C, Tadepalle N, Williams A, Shokhirev MN, Akincilar SC, Tergaonkar V, Shadel GS, Karlseder J. Telomere-to-mitochondria signalling by ZBP1 mediates replicative crisis. Nature 2023; 614:767-773. [PMID: 36755096 PMCID: PMC9946831 DOI: 10.1038/s41586-023-05710-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2023] [Indexed: 02/10/2023]
Abstract
Cancers arise through the accumulation of genetic and epigenetic alterations that enable cells to evade telomere-based proliferative barriers and achieve immortality. One such barrier is replicative crisis-an autophagy-dependent program that eliminates checkpoint-deficient cells with unstable telomeres and other cancer-relevant chromosomal aberrations1,2. However, little is known about the molecular events that regulate the onset of this important tumour-suppressive barrier. Here we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as a regulator of the crisis program. A crisis-associated isoform of ZBP1 is induced by the cGAS-STING DNA-sensing pathway, but reaches full activation only when associated with telomeric-repeat-containing RNA (TERRA) transcripts that are synthesized from dysfunctional telomeres. TERRA-bound ZBP1 oligomerizes into filaments on the outer mitochondrial membrane of a subset of mitochondria, where it activates the innate immune adapter protein mitochondrial antiviral-signalling protein (MAVS). We propose that these oligomerization properties of ZBP1 serve as a signal amplification mechanism, where few TERRA-ZBP1 interactions are sufficient to launch a detrimental MAVS-dependent interferon response. Our study reveals a mechanism for telomere-mediated tumour suppression, whereby dysfunctional telomeres activate innate immune responses through mitochondrial TERRA-ZBP1 complexes to eliminate cells destined for neoplastic transformation.
Collapse
Affiliation(s)
- Joe Nassour
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Adriana Correia
- The Salk Institute for Biological Studies, La Jolla, CA, USA
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Lisbon, Portugal
| | | | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sara Przetocka
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Candy Haggblom
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - April Williams
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Semih C Akincilar
- A*STAR Division of Cancer Genetics, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore
- Therapeutics Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore
| | - Vinay Tergaonkar
- A*STAR Division of Cancer Genetics, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore
- Therapeutics Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Gerald S Shadel
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
35
|
Blum SI, Taylor JP, Barra JM, Burg AR, Shang Q, Qiu S, Shechter O, Hayes AR, Green TJ, Geurts AM, Chen YG, Tse HM. MDA5-dependent responses contribute to autoimmune diabetes progression and hindrance. JCI Insight 2023; 8:e157929. [PMID: 36512407 PMCID: PMC9977297 DOI: 10.1172/jci.insight.157929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulting in pancreatic β cell destruction. Coxsackievirus B3 (CVB3) infection and melanoma differentiation-associated protein 5-dependent (MDA5-dependent) antiviral responses are linked with T1D development. Mutations within IFIH1, coding for MDA5, are correlated with T1D susceptibility, but how these mutations contribute to T1D remains unclear. Utilizing nonobese diabetic (NOD) mice lacking Ifih1 expression (KO) or containing an in-frame deletion within the ATPase site of the helicase 1 domain of MDA5 (ΔHel1), we tested the hypothesis that partial or complete loss-of-function mutations in MDA5 would delay T1D by impairing proinflammatory pancreatic macrophage and T cell responses. Spontaneous T1D developed in female NOD and KO mice similarly, but was significantly delayed in ΔHel1 mice, which may be partly due to a concomitant increase in myeloid-derived suppressor cells. Interestingly, KO male mice had increased spontaneous T1D compared with NOD mice. Whereas NOD and KO mice developed CVB3-accelerated T1D, ΔHel1 mice were protected partly due to decreased type I IFNs, pancreatic infiltrating TNF+ macrophages, IFN-γ+CD4+ T cells, and perforin+CD8+ T cells. Furthermore, ΔHel1 MDA5 protein had reduced ATP hydrolysis compared with wild-type MDA5. Our results suggest that dampened MDA5 function delays T1D, yet loss of MDA5 promotes T1D.
Collapse
Affiliation(s)
- Samuel I. Blum
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jared P. Taylor
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessie M. Barra
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ashley R. Burg
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qiao Shang
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shihong Qiu
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oren Shechter
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aleah R. Hayes
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J. Green
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hubert M. Tse
- Department of Microbiology, Comprehensive Diabetes Center, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
36
|
Li X, Sun X, Yan Z, Zhao Z, Pang Z, Yang H, Ji X, Lei Y, Zhu Z, Guo X, Mu X. New role of gramicidin A in RIG-I-like receptors-mediated IFN signalling. Immunology 2023; 169:219-228. [PMID: 36683251 DOI: 10.1111/imm.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The pattern recognition receptors (PRRs) sense exogenous molecular patterns most commonly derived from invading pathogens, to active the interferon (IFN) signalling. In the cytoplasm, the viral double-stranded RNAs (dsRNAs) are sensed by retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated protein 5 (MDA5), depending on the length and chemical properties. Through the binding and oligomerizing onto the RNAs, they form filament to initiate the signalling cascade. Regulation of these receptors' activities are essential for manipulating the strength of IFN signalling. Here, through the virtual screening of chemical reagents using the published MDA5-dsRNA complex structure (PDB: 4GL2), we identified an antibiotic, gramicidin A as a stimulator that enhanced MDA5-mediated IFN signalling. Cytotoxic assay and IFN signalling assay suggested that disruption of lipid membrane, which is a well-defined mechanism of gramicidin A to perform its action, was dispensable in this process. Sucrose gradient ultracentrifugation assay showed that the gramicidin A treatment enhanced MDA5 oligomerization status in the presence of dsRNA. Our work implicated a new role of gramicidin A in innate immunity and presented a new tool to manipulate MDA5 activity.
Collapse
Affiliation(s)
- Xiao Li
- School of Pharmaceutical Science and Technology, Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| | - Xinyuan Sun
- School of Pharmaceutical Science and Technology, Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhongyi Yan
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Zhenxiang Zhao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhaojun Pang
- School of Pharmaceutical Science and Technology, Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| | - Han Yang
- School of Pharmaceutical Science and Technology, Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaoxin Ji
- School of Pharmaceutical Science and Technology, Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| | - Yi Lei
- School of Pharmaceutical Science and Technology, Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
37
|
Yuan Y, Gao F, Chang Y, Zhao Q, He X. Advances of mRNA vaccine in tumor: a maze of opportunities and challenges. Biomark Res 2023; 11:6. [PMID: 36650562 PMCID: PMC9845107 DOI: 10.1186/s40364-023-00449-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
High-frequency mutations in tumor genomes could be exploited as an asset for developing tumor vaccines. In recent years, with the tremendous breakthrough in genomics, intelligence algorithm, and in-depth insight of tumor immunology, it has become possible to rapidly target genomic alterations in tumor cell and rationally select vaccine targets. Among a variety of candidate vaccine platforms, the early application of mRNA was limited by instability low efficiency and excessive immunogenicity until the successful development of mRNA vaccines against SARS-COV-2 broken of technical bottleneck in vaccine preparation, allowing tumor mRNA vaccines to be prepared rapidly in an economical way with good performance of stability and efficiency. In this review, we systematically summarized the classification and characteristics of tumor antigens, the general process and methods for screening neoantigens, the strategies of vaccine preparations and advances in clinical trials, as well as presented the main challenges in the current mRNA tumor vaccine development.
Collapse
Affiliation(s)
- Yuan Yuan
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.412793.a0000 0004 1799 5032Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Gao
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.412793.a0000 0004 1799 5032Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Chang
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xingxing He
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China ,grid.412793.a0000 0004 1799 5032Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
38
|
Aditi, McKinnon PJ. Genome integrity and inflammation in the nervous system. DNA Repair (Amst) 2022; 119:103406. [PMID: 36148701 PMCID: PMC9844216 DOI: 10.1016/j.dnarep.2022.103406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
Preservation of genomic integrity is crucial for nervous system development and function. DNA repair deficiency results in several human diseases that are characterized by both neurodegeneration and neuroinflammation. Recent research has highlighted a role for compromised genomic integrity as a key factor driving neuropathology and triggering innate immune signaling to cause inflammation. Here we review the mechanisms by which DNA damage engages innate immune signaling and how this may promote neurological disease. We also consider the contributions of different neural cell types towards DNA damage-driven neuroinflammation. A deeper knowledge of genome maintenance mechanisms that prevent aberrant immune activation in neural cells will guide future therapies to ameliorate neurological disease.
Collapse
Affiliation(s)
- Aditi
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
39
|
de Reuver R, Verdonck S, Dierick E, Nemegeer J, Hessmann E, Ahmad S, Jans M, Blancke G, Van Nieuwerburgh F, Botzki A, Vereecke L, van Loo G, Declercq W, Hur S, Vandenabeele P, Maelfait J. ADAR1 prevents autoinflammation by suppressing spontaneous ZBP1 activation. Nature 2022; 607:784-789. [PMID: 35859175 DOI: 10.1038/s41586-022-04974-w] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 06/13/2022] [Indexed: 12/20/2022]
Abstract
The RNA-editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) limits the accumulation of endogenous immunostimulatory double-stranded RNA (dsRNA)1. In humans, reduced ADAR1 activity causes the severe inflammatory disease Aicardi-Goutières syndrome (AGS)2. In mice, complete loss of ADAR1 activity is embryonically lethal3-6, and mutations similar to those found in patients with AGS cause autoinflammation7-12. Mechanistically, adenosine-to-inosine (A-to-I) base modification of endogenous dsRNA by ADAR1 prevents chronic overactivation of the dsRNA sensors MDA5 and PKR3,7-10,13,14. Here we show that ADAR1 also inhibits the spontaneous activation of the left-handed Z-nucleic acid sensor ZBP1. Activation of ZBP1 elicits caspase-8-dependent apoptosis and MLKL-mediated necroptosis of ADAR1-deficient cells. ZBP1 contributes to the embryonic lethality of Adar-knockout mice, and it drives early mortality and intestinal cell death in mice deficient in the expression of both ADAR and MAVS. The Z-nucleic-acid-binding Zα domain of ADAR1 is necessary to prevent ZBP1-mediated intestinal cell death and skin inflammation. The Zα domain of ADAR1 promotes A-to-I editing of endogenous Alu elements to prevent dsRNA formation through the pairing of inverted Alu repeats, which can otherwise induce ZBP1 activation. This shows that recognition of Alu duplex RNA by ZBP1 may contribute to the pathological features of AGS that result from the loss of ADAR1 function.
Collapse
Affiliation(s)
- Richard de Reuver
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Simon Verdonck
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Evelien Dierick
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Josephine Nemegeer
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Eline Hessmann
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Maude Jans
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Gillian Blancke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Lars Vereecke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wim Declercq
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
40
|
Nishikawa H, Christiany P, Hayashi T, Iizasa H, Yoshiyama H, Hatakeyama M. Kinase Activity of PAR1b, Which Mediates Nuclear Translocation of the BRCA1 Tumor Suppressor, Is Potentiated by Nucleic Acid-Mediated PAR1b Multimerization. Int J Mol Sci 2022; 23:6634. [PMID: 35743080 PMCID: PMC9223676 DOI: 10.3390/ijms23126634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 02/07/2023] Open
Abstract
PAR1b is a cytoplasmic serine/threonine kinase that controls cell polarity and cell-cell interaction by regulating microtubule stability while mediating cytoplasmic-to-nuclear translocation of BRCA1. PAR1b is also a cellular target of the CagA protein of Helicobacter pylori, which leads to chronic infection causatively associated with the development of gastric cancer. The CagA-PAR1b interaction inactivates the kinase activity of PAR1b and thereby dampens PAR1b-mediated BRCA1 phosphorylation, which reduces the level of nuclear BRCA1 and thereby leads to BRCAness and BRCAness-associated genome instability underlying gastric carcinogenesis. While PAR1b can multimerize within the cells, little is known about the mechanism and functional role of PAR1b multimerization. We found in the present study that PAR1b was multimerized in vitro by binding with nucleic acids (both single- and double-stranded DNA/RNA) via the spacer region in a manner independent of nucleic-acid sequences, which markedly potentiated the kinase activity of PAR1b. Consistent with these in vitro observations, cytoplasmic introduction of double-stranded DNA or expression of single-stranded RNA increased the PAR1b kinase activity in the cells. These findings indicate that the cytoplasmic DNA/RNA contribute to nuclear accumulation of BRCA1 by constitutively activating/potentiating cytoplasmic PAR1b kinase activity, which is subverted in gastric epithelial cells upon delivery of H. pylori CagA oncoprotein.
Collapse
Affiliation(s)
- Hiroko Nishikawa
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (H.N.); (P.C.); (T.H.)
| | - Priscillia Christiany
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (H.N.); (P.C.); (T.H.)
| | - Takeru Hayashi
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (H.N.); (P.C.); (T.H.)
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (H.I.); (H.Y.)
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (H.I.); (H.Y.)
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; (H.N.); (P.C.); (T.H.)
- Laboratory of Virology, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
- Center for Infectious Cancers, Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo 060-0815, Japan
| |
Collapse
|
41
|
Chen YG, Hur S. Cellular origins of dsRNA, their recognition and consequences. Nat Rev Mol Cell Biol 2022; 23:286-301. [PMID: 34815573 PMCID: PMC8969093 DOI: 10.1038/s41580-021-00430-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 01/02/2023]
Abstract
Double-stranded RNA (dsRNA) is associated with most viral infections - it either constitutes the viral genome (in the case of dsRNA viruses) or is generated in host cells during viral replication. Hence, nearly all organisms have the capability of recognizing dsRNA and mounting a response, the primary aim of which is to mitigate the potential infection. In vertebrates, a set of innate immune receptors for dsRNA induce a multitude of cell-intrinsic and cell-extrinsic immune responses upon dsRNA recognition. Notably, recent studies showed that vertebrate cells can accumulate self-derived dsRNAs or dsRNA-like species upon dysregulation of several cellular processes, activating the very same immune pathways as in infected cells. On the one hand, such aberrant immune activation in the absence of infection can lead to pathogenesis of immune disorders, such as Aicardi-Goutières syndrome. On the other hand, the same innate immune reaction can be induced in a controlled setting for a therapeutic benefit, as occurs in immunotherapies. In this Review, we describe mechanisms by which immunostimulatory dsRNAs are generated in mammalian cells, either by viruses or by the host cells, and how cells respond to them, with the focus on recent developments regarding the role of cellular dsRNAs in immune modulation.
Collapse
Affiliation(s)
- Y Grace Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Sun Hur
- Harvard Medical School & Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
42
|
Lange PT, White MC, Damania B. Activation and Evasion of Innate Immunity by Gammaherpesviruses. J Mol Biol 2022; 434:167214. [PMID: 34437888 PMCID: PMC8863980 DOI: 10.1016/j.jmb.2021.167214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022]
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the vast majority of adults worldwide. Importantly, these viruses are associated with numerous malignancies and are responsible for significant human cancer burden. These virus-associated cancers are due, in part, to the ability of gammaherpesviruses to successfully evade the innate immune response throughout the course of infection. In this review, we will summarize the current understanding of how gammaherpesviruses are detected by innate immune sensors, how these viruses evade recognition by host cells, and how this knowledge can inform novel therapeutic approaches for these viruses and their associated diseases.
Collapse
Affiliation(s)
- Philip T Lange
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/langept
| | - Maria C White
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/maria_c_white
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
43
|
Chowdhury A, Witte S, Aich A. Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Front Cell Dev Biol 2022; 10:796066. [PMID: 35223833 PMCID: PMC8873532 DOI: 10.3389/fcell.2022.796066] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria, in symbiosis with the host cell, carry out a wide variety of functions from generating energy, regulating the metabolic processes, cell death to inflammation. The most prominent function of mitochondria relies on the oxidative phosphorylation (OXPHOS) system. OXPHOS heavily influences the mitochondrial-nuclear communication through a plethora of interconnected signaling pathways. Additionally, owing to the bacterial ancestry, mitochondria also harbor a large number of Damage Associated Molecular Patterns (DAMPs). These molecules relay the information about the state of the mitochondrial health and dysfunction to the innate immune system. Consequently, depending on the intracellular or extracellular nature of detection, different inflammatory pathways are elicited. One group of DAMPs, the mitochondrial nucleic acids, hijack the antiviral DNA or RNA sensing mechanisms such as the cGAS/STING and RIG-1/MAVS pathways. A pro-inflammatory response is invoked by these signals predominantly through type I interferon (T1-IFN) cytokines. This affects a wide range of organ systems which exhibit clinical presentations of auto-immune disorders. Interestingly, tumor cells too, have devised ingenious ways to use the mitochondrial DNA mediated cGAS-STING-IRF3 response to promote neoplastic transformations and develop tumor micro-environments. Thus, mitochondrial nucleic acid-sensing pathways are fundamental in understanding the source and nature of disease initiation and development. Apart from the pathological interest, recent studies also attempt to delineate the structural considerations for the release of nucleic acids across the mitochondrial membranes. Hence, this review presents a comprehensive overview of the different aspects of mitochondrial nucleic acid-sensing. It attempts to summarize the nature of the molecular patterns involved, their release and recognition in the cytoplasm and signaling. Finally, a major emphasis is given to elaborate the resulting patho-physiologies.
Collapse
Affiliation(s)
- Arpita Chowdhury
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Steffen Witte
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging, from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
44
|
Woo SJ, Choi HJ, Park YH, Rengaraj D, Kim JK, Han JY. Amplification of immunity by engineering chicken MDA5 combined with the C terminal domain (CTD) of RIG-I. Appl Microbiol Biotechnol 2022; 106:1599-1613. [PMID: 35129655 DOI: 10.1007/s00253-022-11806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/24/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022]
Abstract
Innate immune system is triggered by pattern recognition receptors (PRRs) recognition. Retinoic acid-inducible gene 1 (RIG-I) is a major sensor that recognizes RNA ligands. However, chickens have no homologue of RIG-I; instead, they rely on melanoma differentiation-associated protein 5 (MDA5) to recognize RNA ligands, which renders chickens susceptible to infection by influenza A viruses (IAVs). Here, we engineered the cMDA5 viral RNA sensing domain (C-terminal domain, CTD) such that it functions similarly to human RIG-I (hRIG-I) by mutating histidine 925 into phenylalanine, a key residue for hRIG-I RNA binding loop function, or by swapping the CTD of cMDA5 with that of hRIG-I or duck RIG-I (dRIG-I). The engineered cMDA5 gene was expressed in cMDA5 knockout DF-1 cells, and interferon-beta (IFN-β) activity and expression of interferon-related genes were measured after transfection of cells with RNA ligands of hRIG-I or human MDA5 (hMDA5). We found that both mutant cMDA5 and engineered cMDA5 triggered significantly stronger interferon-mediated immune responses than wild-type cMDA5. Moreover, engineered cMDA5 reduced the IAV titer by 100-fold compared with that in control cells. Collectively, engineered cMDA5/RIG-I CTD significantly enhanced interferon-mediated immune responses, making them invaluable strategies for production of IAV-resistant chickens. KEY POINTS: • Mutant chicken MDA5 with critical residue of RIG-I (phenylalanine) enhanced immunity. • Engineered chicken MDA5 with CTD of RIG-I increased IFN-mediated immune responses. • Engineered chicken MDA5 reduced influenza A virus titers by up to 100-fold.
Collapse
Affiliation(s)
- Seung Je Woo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Deivendran Rengaraj
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jin-Kyoo Kim
- Department of Microbiology, Changwon National University, Changwon, South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
45
|
Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2022; 12:796012. [PMID: 35087521 PMCID: PMC8787094 DOI: 10.3389/fimmu.2021.796012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.
Collapse
Affiliation(s)
- Anissa Guillemin
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| | - Anuj Kumar
- CRCL, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mélanie Wencker
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, ENS de Lyon, CNRS, UMR 5308, INSERM, Lyon, France
| | - Emiliano P. Ricci
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| |
Collapse
|
46
|
Cao X, Cordova AF, Li L. Therapeutic Interventions Targeting Innate Immune Receptors: A Balancing Act. Chem Rev 2021; 122:3414-3458. [PMID: 34870969 DOI: 10.1021/acs.chemrev.1c00716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The innate immune system is an organism's first line of defense against an onslaught of internal and external threats. The downstream adaptive immune system has been a popular target for therapeutic intervention, while there is a relative paucity of therapeutics targeting the innate immune system. However, the innate immune system plays a critical role in many human diseases, such as microbial infection, cancer, and autoimmunity, highlighting the need for ongoing therapeutic research. In this review, we discuss the major innate immune pathways and detail the molecular strategies underpinning successful therapeutics targeting each pathway as well as previous and ongoing efforts. We will also discuss any recent discoveries that could inform the development of novel therapeutic strategies. As our understanding of the innate immune system continues to develop, we envision that therapies harnessing the power of the innate immune system will become the mainstay of treatment for a wide variety of human diseases.
Collapse
|
47
|
Yu Q, Herrero Del Valle A, Singh R, Modis Y. MDA5 disease variant M854K prevents ATP-dependent structural discrimination of viral and cellular RNA. Nat Commun 2021; 12:6668. [PMID: 34795277 PMCID: PMC8602431 DOI: 10.1038/s41467-021-27062-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
Our innate immune responses to viral RNA are vital defenses. Long cytosolic double-stranded RNA (dsRNA) is recognized by MDA5. The ATPase activity of MDA5 contributes to its dsRNA binding selectivity. Mutations that reduce RNA selectivity can cause autoinflammatory disease. Here, we show how the disease-associated MDA5 variant M854K perturbs MDA5-dsRNA recognition. M854K MDA5 constitutively activates interferon signaling in the absence of exogenous RNA. M854K MDA5 lacks ATPase activity and binds more stably to synthetic Alu:Alu dsRNA. CryoEM structures of MDA5-dsRNA filaments at different stages of ATP hydrolysis show that the K854 sidechain forms polar bonds that constrain the conformation of MDA5 subdomains, disrupting key steps in the ATPase cycle- RNA footprint expansion and helical twist modulation. The M854K mutation inhibits ATP-dependent RNA proofreading via an allosteric mechanism, allowing MDA5 to form signaling complexes on endogenous RNAs. This work provides insights on how MDA5 recognizes dsRNA in health and disease.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Adenosine Triphosphatases/ultrastructure
- Adenosine Triphosphate/metabolism
- Cryoelectron Microscopy
- HEK293 Cells
- Humans
- Immunity, Innate/genetics
- Inflammation/genetics
- Inflammation/metabolism
- Interferon-Induced Helicase, IFIH1/chemistry
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/metabolism
- Models, Molecular
- Mutation, Missense
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
Collapse
Affiliation(s)
- Qin Yu
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Alba Herrero Del Valle
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Rahul Singh
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge, CB2 0AW, UK.
| |
Collapse
|
48
|
Abstract
In vitro-transcribed RNAs are emerging as new biologics for therapeutic innovation, as exemplified by their application recently in SARS-CoV-2 vaccinations. RNAs prepared by in vitro transcription (IVT) allow transient expression of proteins of interest, conferring safety over DNA- or virus-mediated gene delivery systems. However, in vitro-transcribed RNAs should be used with caution because of their immunogenicity, which is in part triggered by double-stranded RNA (dsRNA) byproducts during IVT. Cellular innate immune response to dsRNA byproducts can lead to undesirable consequences, including suppression of protein synthesis and cell death, which in turn can detrimentally impact the efficacy of mRNA therapy. Thus, it is critical to understand the nature of IVT byproducts and the mechanisms by which they trigger innate immune responses.Our lab has been investigating the mechanisms by which the innate immune system discriminates between "self" and "nonself" RNA, with the focus on the cytoplasmic dsRNA receptors retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated 5 (MDA5). We have biochemically and structurally characterized critical events involving RNA discrimination and signal transduction by RIG-I or MDA5. We have used in vitro-transcribed RNAs as tools to investigate RNA specificity of RIG-I and MDA5, which required optimization of the IVT reaction and purification processes to eliminate the effect of IVT byproducts. In this Account, we summarize our current understanding of RIG-I and MDA5 and IVT reactions and propose future directions for improving IVT as a method to generate both research tools and therapeutics. Other critical proteins in cellular innate immune response to dsRNAs are also discussed. We arrange the contents in the following order: (i) innate immunity sensors for nonself RNA, including the RIG-I-like receptors (RLRs) in the cytosol and the toll-like receptors (TLRs) in the endosome, as well as cytoplasmic dsRNA-responding proteins, including protein kinase R (PKR) and 2',5'-oligoadenylate synthetases (OASes), illustrating the feature of protein-RNA binding and its consequences; (ii) the immunogenicity of IVT byproducts, specifically the generation of dsRNA molecules during IVT; and (iii) methods to reduce IVT RNA immunogenicity, including optimizations of RNA polymerases, reagents, and experimental conditions during IVT and subsequent purification.
Collapse
Affiliation(s)
- Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, United States
| |
Collapse
|
49
|
Chukwurah E, Farabaugh KT, Guan BJ, Ramakrishnan P, Hatzoglou M. A tale of two proteins: PACT and PKR and their roles in inflammation. FEBS J 2021; 288:6365-6391. [PMID: 33387379 PMCID: PMC9248962 DOI: 10.1111/febs.15691] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Inflammation is a pathological hallmark associated with bacterial and viral infections, autoimmune diseases, genetic disorders, obesity and diabetes, as well as environmental stresses including physical and chemical trauma. Among numerous proteins regulating proinflammatory signaling, very few such as Protein kinase R (PKR), have been shown to play an all-pervading role in inflammation induced by varied stimuli. PKR was initially characterized as an interferon-inducible gene activated by viral double-stranded RNA with a role in protein translation inhibition. However, it has become increasingly clear that PKR is involved in multiple pathways that promote inflammation in response to stress activation, both dependent on and independent of its cellular protein activator of PKR (PACT). In this review, we discuss the signaling pathways that contribute to the initiation of inflammation, including Toll-like receptor, interferon, and RIG-I-like receptor signaling, as well as inflammasome activation. We go on to discuss the specific roles that PKR and PACT play in such proinflammatory signaling, as well as in metabolic syndrome- and environmental stress-induced inflammation.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Kenneth T. Farabaugh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | | | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
50
|
Wayment-Steele HK, Kim DS, Choe CA, Nicol JJ, Wellington-Oguri R, Watkins AM, Parra Sperberg RA, Huang PS, Participants E, Das R. Theoretical basis for stabilizing messenger RNA through secondary structure design. Nucleic Acids Res 2021; 49:10604-10617. [PMID: 34520542 PMCID: PMC8499941 DOI: 10.1093/nar/gkab764] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
RNA hydrolysis presents problems in manufacturing, long-term storage, world-wide delivery and in vivo stability of messenger RNA (mRNA)-based vaccines and therapeutics. A largely unexplored strategy to reduce mRNA hydrolysis is to redesign RNAs to form double-stranded regions, which are protected from in-line cleavage and enzymatic degradation, while coding for the same proteins. The amount of stabilization that this strategy can deliver and the most effective algorithmic approach to achieve stabilization remain poorly understood. Here, we present simple calculations for estimating RNA stability against hydrolysis, and a model that links the average unpaired probability of an mRNA, or AUP, to its overall hydrolysis rate. To characterize the stabilization achievable through structure design, we compare AUP optimization by conventional mRNA design methods to results from more computationally sophisticated algorithms and crowdsourcing through the OpenVaccine challenge on the Eterna platform. We find that rational design on Eterna and the more sophisticated algorithms lead to constructs with low AUP, which we term 'superfolder' mRNAs. These designs exhibit a wide diversity of sequence and structure features that may be desirable for translation, biophysical size, and immunogenicity. Furthermore, their folding is robust to temperature, computer modeling method, choice of flanking untranslated regions, and changes in target protein sequence, as illustrated by rapid redesign of superfolder mRNAs for B.1.351, P.1 and B.1.1.7 variants of the prefusion-stabilized SARS-CoV-2 spike protein. Increases in in vitro mRNA half-life by at least two-fold appear immediately achievable.
Collapse
MESH Headings
- Algorithms
- Base Pairing
- Base Sequence
- COVID-19/prevention & control
- Humans
- Hydrolysis
- RNA Stability
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/immunology
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/immunology
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Thermodynamics
Collapse
Affiliation(s)
- Hannah K Wayment-Steele
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Eterna Massive Open Laboratory
| | - Do Soon Kim
- Eterna Massive Open Laboratory
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Christian A Choe
- Eterna Massive Open Laboratory
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | | | - Andrew M Watkins
- Eterna Massive Open Laboratory
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Po-Ssu Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | - Rhiju Das
- Eterna Massive Open Laboratory
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|