1
|
Chen X, Han C, Yang R, Wang X, Ma J, Wang Y. Influence of the transcription factor ABI5 on growth and development in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154316. [PMID: 39098091 DOI: 10.1016/j.jplph.2024.154316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
ABA-insensitive 5 (ABI5) belongs to the basic leucine zipper class of transcription factors and is named for being the fifth identified Arabidopsis mutant unresponsive to ABA. To understand the influence of ABI5 in its active state on downstream gene expression and plant growth and development, we overexpressed the full-length ABI5 (A.t.MX-4) and the active forms of ABI5 with deleted transcriptional repression domains (A.t.MX-1, A.t.MX-2, and A.t.MX-3). Compared with the wild type, A.t.MX-1, A.t.MX-2, and A.t.MX-3 exhibited an increase in rosette leaf number and size, earlier flowering, increased thousand-seed weight, and significantly enhanced drought resistance. Thirty-five upregulated/downregulated proteins in the A.t.MX-1 were identified by proteomic analysis, and these proteins were involved in ABA biosynthesis and degradation, abiotic stress, fatty acid synthesis, and energy metabolism. These proteins participate in the regulation of plant drought resistance, flowering timing, and seed size at the levels of transcription and post-translational modification.
Collapse
Affiliation(s)
- Xin Chen
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Changze Han
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Rongrong Yang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Xinwen Wang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China
| | - Jianzhong Ma
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China.
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, LanZhou, 730050, China.
| |
Collapse
|
2
|
Panich J, Toppari E, Tejedor-Sanz S, Fong B, Dugan E, Chen Y, Petzold CJ, Zhao Z, Yoshikuni Y, Savage DF, Singer SW. Functional plasticity of HCO 3- uptake and CO 2 fixation in Cupriavidus necator H16. BIORESOURCE TECHNOLOGY 2024; 410:131214. [PMID: 39127361 DOI: 10.1016/j.biortech.2024.131214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Despite its prominence, the ability to engineer Cupriavidus necator H16 for inorganic carbon uptake and fixation is underexplored. We tested the roles of endogenous and heterologous genes on C. necator inorganic carbon metabolism. Deletion of β-carbonic anhydrase can had the most deleterious effect on C. necator autotrophic growth. Replacement of this native uptake system with several classes of dissolved inorganic carbon (DIC) transporters from Cyanobacteria and chemolithoautotrophic bacteria recovered autotrophic growth and supported higher cell densities compared to wild-type (WT) C. necator in batch culture. Strains expressing Halothiobacillus neopolitanus DAB2 (hnDAB2) and diverse rubisco homologs grew in CO2 similarly to the wild-type strain. Our experiments suggest that the primary role of carbonic anhydrase during autotrophic growth is to support anaplerotic metabolism, and an array of DIC transporters can complement this function. This work demonstrates flexibility in HCO3- uptake and CO2 fixation in C. necator, providing new pathways for CO2-based biomanufacturing.
Collapse
Affiliation(s)
- Justin Panich
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Emili Toppari
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sara Tejedor-Sanz
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Advanced Biofuel and Bioproducts Process Development Unit, Lawrence Berkeley NationalLaboratory, Emeryville, CA 94608, USA
| | - Bonnie Fong
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eli Dugan
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zhiying Zhao
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, CA 94720, USA
| | - Yasuo Yoshikuni
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, CA 94720, USA; Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, CA94720, USA
| | - David F Savage
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Steven W Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Dowaidar M. Synthetic biology of metabolic cycles for Enhanced CO 2 capture and Sequestration. Bioorg Chem 2024; 153:107774. [PMID: 39260160 DOI: 10.1016/j.bioorg.2024.107774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/01/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
In most organisms, the tri-carboxylic acid cycle (TCA cycle) is an essential metabolic system that is involved in both energy generation and carbon metabolism. Its uni-directionality, however, restricts its use in synthetic biology and carbon fixation. Here, it is describing the use of the modified TCA cycle, called the Tri-carboxylic acid Hooked to Ethylene by Enzyme Reactions and Amino acid Synthesis, the reductive tricarboxylic acid branch/4-hydroxybutyryl-CoA/ethylmalonyl-CoA/acetyl-CoA (THETA) cycle, in Escherichia coli for the purposes of carbon fixation and amino acid synthesis. Three modules make up the THETA cycle: (1) pyruvate to succinate transformation, (2) succinate to crotonyl-CoA change, and (3) crotonyl-CoA to acetyl-CoA and pyruvate change. It is presenting each module's viability in vivo and showing how it integrates into the E. coli metabolic network to support growth on minimal medium without the need for outside supplementation. Enzyme optimization, route redesign, and heterologous expression were used to get over metabolic roadblocks and produce functional modules. Furthermore, the THETA cycle may be improved by including components of the Carbon-Efficient Tri-Carboxylic Acid Cycle (CETCH cycle) to improve carbon fixation. THETA cycle's promise as a platform for applications in synthetic biology and carbon fixation.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
4
|
Eshenour K, Hotto A, Michel EJS, Oh ZG, Stern DB. Transgenic expression of Rubisco accumulation factor2 and Rubisco subunits increases photosynthesis and growth in maize. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4024-4037. [PMID: 38696303 DOI: 10.1093/jxb/erae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Carbon assimilation by Rubisco is often a limitation to photosynthesis and therefore plant productivity. We have previously shown that transgenic co-expression of the Rubisco large (LS) and small (SS) subunits along with an essential Rubisco accumulation factor, Raf1, leads to faster growth, increased photosynthesis, and enhanced chilling tolerance in maize (Zea mays). Maize also requires Rubisco accumulation factor2 (Raf2) for full accumulation of Rubisco. Here we have analyzed transgenic maize lines with increased expression of Raf2 or Raf2 plus LS and SS. We show that increasing Raf2 expression alone had minor effects on photosynthesis, whereas expressing Raf2 with Rubisco subunits led to increased Rubisco content, more rapid carbon assimilation, and greater plant height, most notably in plants at least 6 weeks of age. The magnitude of the effects was similar to what was observed previously for expression of Raf1 together with Rubisco subunits. Taken together, this suggests that increasing the amount of either assembly factor with Rubisco subunits can independently enhance Rubisco abundance and some aspects of plant performance. These results could also imply either synergy or a degree of functional redundancy for Raf1 and Raf2, the latter of whose precise role in Rubisco assembly is currently unknown.
Collapse
Affiliation(s)
| | - Amber Hotto
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | | | - Zhen Guo Oh
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - David B Stern
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Karthick PV, Senthil A, Djanaguiraman M, Anitha K, Kuttimani R, Boominathan P, Karthikeyan R, Raveendran M. Improving Crop Yield through Increasing Carbon Gain and Reducing Carbon Loss. PLANTS (BASEL, SWITZERLAND) 2024; 13:1317. [PMID: 38794389 PMCID: PMC11124956 DOI: 10.3390/plants13101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024]
Abstract
Photosynthesis is a process where solar energy is utilized to convert atmospheric CO2 into carbohydrates, which forms the basis for plant productivity. The increasing demand for food has created a global urge to enhance yield. Earlier, the plant breeding program was targeting the yield and yield-associated traits to enhance the crop yield. However, the yield cannot be further improved without improving the leaf photosynthetic rate. Hence, in this review, various strategies to enhance leaf photosynthesis were presented. The most promising strategies were the optimization of Rubisco carboxylation efficiency, the introduction of a CO2 concentrating mechanism in C3 plants, and the manipulation of photorespiratory bypasses in C3 plants, which are discussed in detail. Improving Rubisco's carboxylation efficiency is possible by engineering targets such as Rubisco subunits, chaperones, and Rubisco activase enzyme activity. Carbon-concentrating mechanisms can be introduced in C3 plants by the adoption of pyrenoid and carboxysomes, which can increase the CO2 concentration around the Rubisco enzyme. Photorespiration is the process by which the fixed carbon is lost through an oxidative process. Different approaches to reduce carbon and nitrogen loss were discussed. Overall, the potential approaches to improve the photosynthetic process and the way forward were discussed in detail.
Collapse
Affiliation(s)
- Palanivelu Vikram Karthick
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Alagarswamy Senthil
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Maduraimuthu Djanaguiraman
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Kuppusamy Anitha
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Ramalingam Kuttimani
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Parasuraman Boominathan
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (P.V.K.); (M.D.); (K.A.); (R.K.); (P.B.)
| | - Ramasamy Karthikeyan
- Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Muthurajan Raveendran
- Directorate of Research, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| |
Collapse
|
6
|
Cheng Y, Yang B, Jia T, Hu X. Rubisco Accumulation Factor1-like (RAFL) interacts with RAF1 to mediate Rubisco assembly in Arabidopsis. Biochem Biophys Res Commun 2024; 701:149609. [PMID: 38316092 DOI: 10.1016/j.bbrc.2024.149609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Rubisco catalysis a rate-limiting step in photosynthesis. It is a complex of eight large (RbcL) and eight small (RbcS) subunits. The biogenesis of Rubisco requires assembly chaperones. One of the key Rubisco assembly chaperones, Rubisco accumulation factor1 (RAF1), assembled as a dimer, acts downstream of chaperonin-assisted RbcL folding by stabilizing RbcL antiparallel dimers for assembly into RbcL8 complexes. In maize, lacking RAF1 causes Rubisco deficient and seedling lethal. A RAF1 homologue, RAF1-like (RAFL), has been detected in Arabidopsis. We found RAFL shares 61.98 % sequence similarity with RAF1. They have similar conserved domains, predicted 3D structures and gene expression pattern. Phylogenetic tree analysis showed that RAFL and RAF1 only present in analyzed dicots, while only one copy of RAF presented in monocots, mosses and green algae. Combined analysis by three different protein-protein interaction methods showed that RAFL interacts with RAF1 both in vivo and in vitro. Taken together, we conclude that RAFL and RAF1 are close paralogous genes, and they can form heterodimer and/or homodimers to mediate Rubisco assembly in Arabidopsis.
Collapse
Affiliation(s)
- Yuting Cheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Bing Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Bouvier JW, Emms DM, Kelly S. Rubisco is evolving for improved catalytic efficiency and CO 2 assimilation in plants. Proc Natl Acad Sci U S A 2024; 121:e2321050121. [PMID: 38442173 PMCID: PMC10945770 DOI: 10.1073/pnas.2321050121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Rubisco is the primary entry point for carbon into the biosphere. However, rubisco is widely regarded as inefficient leading many to question whether the enzyme can adapt to become a better catalyst. Through a phylogenetic investigation of the molecular and kinetic evolution of Form I rubisco we uncover the evolutionary trajectory of rubisco kinetic evolution in angiosperms. We show that rbcL is among the 1% of slowest-evolving genes and enzymes on Earth, accumulating one nucleotide substitution every 0.9 My and one amino acid mutation every 7.2 My. Despite this, rubisco catalysis has been continually evolving toward improved CO2/O2 specificity, carboxylase turnover, and carboxylation efficiency. Consistent with this kinetic adaptation, increased rubisco evolution has led to a concomitant improvement in leaf-level CO2 assimilation. Thus, rubisco has been slowly but continually evolving toward improved catalytic efficiency and CO2 assimilation in plants.
Collapse
Affiliation(s)
- Jacques W Bouvier
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - David M Emms
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Steven Kelly
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
8
|
Zhou Y, Gunn LH, Birch R, Andersson I, Whitney SM. Grafting Rhodobacter sphaeroides with red algae Rubisco to accelerate catalysis and plant growth. NATURE PLANTS 2023; 9:978-986. [PMID: 37291398 DOI: 10.1038/s41477-023-01436-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
Improving the carboxylation properties of Rubisco has primarily arisen from unforeseen amino acid substitutions remote from the catalytic site. The unpredictability has frustrated rational design efforts to enhance plant Rubisco towards the prized growth-enhancing carboxylation properties of red algae Griffithsia monilis GmRubisco. To address this, we determined the crystal structure of GmRubisco to 1.7 Å. Three structurally divergent domains were identified relative to the red-type bacterial Rhodobacter sphaeroides RsRubisco that, unlike GmRubisco, are expressed in Escherichia coli and plants. Kinetic comparison of 11 RsRubisco chimaeras revealed that incorporating C329A and A332V substitutions from GmRubisco Loop 6 (corresponding to plant residues 328 and 331) into RsRubisco increased the carboxylation rate (kcatc) by 60%, the carboxylation efficiency in air by 22% and the CO2/O2 specificity (Sc/o) by 7%. Plastome transformation of this RsRubisco Loop 6 mutant into tobacco enhanced photosynthesis and growth up to twofold over tobacco producing wild-type RsRubisco. Our findings demonstrate the utility of RsRubisco for the identification and in planta testing of amino acid grafts from algal Rubisco that can enhance the enzyme's carboxylase potential.
Collapse
Affiliation(s)
- Yu Zhou
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Laura H Gunn
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Rosemary Birch
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Norwegian College of Fisheries Sciences, UiT Arctic University of Norway, Tromsø, Norway
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Biocev, Vestec, Czech Republic
| | - Spencer M Whitney
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
9
|
Nguyen ND, Pulsford SB, Hee WY, Rae BD, Rourke LM, Price GD, Long BM. Towards engineering a hybrid carboxysome. PHOTOSYNTHESIS RESEARCH 2023; 156:265-277. [PMID: 36892800 PMCID: PMC10154267 DOI: 10.1007/s11120-023-01009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/17/2023] [Indexed: 05/03/2023]
Abstract
Carboxysomes are bacterial microcompartments, whose structural features enable the encapsulated Rubisco holoenzyme to operate in a high-CO2 environment. Consequently, Rubiscos housed within these compartments possess higher catalytic turnover rates relative to their plant counterparts. This particular enzymatic property has made the carboxysome, along with associated transporters, an attractive prospect to incorporate into plant chloroplasts to increase future crop yields. To date, two carboxysome types have been characterized, the α-type that has fewer shell components and the β-type that houses a faster Rubisco. While research is underway to construct a native carboxysome in planta, work investigating the internal arrangement of carboxysomes has identified conserved Rubisco amino acid residues between the two carboxysome types which could be engineered to produce a new, hybrid carboxysome. In theory, this hybrid carboxysome would benefit from the simpler α-carboxysome shell architecture while simultaneously exploiting the higher Rubisco turnover rates in β-carboxysomes. Here, we demonstrate in an Escherichia coli expression system, that the Thermosynechococcus elongatus Form IB Rubisco can be imperfectly incorporated into simplified Cyanobium α-carboxysome-like structures. While encapsulation of non-native cargo can be achieved, T. elongatus Form IB Rubisco does not interact with the Cyanobium carbonic anhydrase, a core requirement for proper carboxysome functionality. Together, these results suggest a way forward to hybrid carboxysome formation.
Collapse
Affiliation(s)
- Nghiem Dinh Nguyen
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Acton, ACT, 2601, Australia
| | - Sacha B Pulsford
- Australian Research Council Centre of Excellence in Synthetic Biology, Research School of Chemistry, The Australian National University, Building 46, Sullivan's Creek Road, Acton, ACT, 2601, Australia
| | - Wei Yi Hee
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Benjamin D Rae
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Acton, ACT, 2601, Australia
| | - Loraine M Rourke
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Acton, ACT, 2601, Australia
| | - G Dean Price
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Acton, ACT, 2601, Australia.
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia.
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Canberra, ACT, 2601, Australia.
| | - Benedict M Long
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Linnaeus Way, Acton, ACT, 2601, Australia
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| |
Collapse
|
10
|
Chen T, Riaz S, Davey P, Zhao Z, Sun Y, Dykes GF, Zhou F, Hartwell J, Lawson T, Nixon PJ, Lin Y, Liu LN. Producing fast and active Rubisco in tobacco to enhance photosynthesis. THE PLANT CELL 2023; 35:795-807. [PMID: 36471570 PMCID: PMC9940876 DOI: 10.1093/plcell/koac348] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 05/28/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) performs most of the carbon fixation on Earth. However, plant Rubisco is an intrinsically inefficient enzyme given its low carboxylation rate, representing a major limitation to photosynthesis. Replacing endogenous plant Rubisco with a faster Rubisco is anticipated to enhance crop photosynthesis and productivity. However, the requirement of chaperones for Rubisco expression and assembly has obstructed the efficient production of functional foreign Rubisco in chloroplasts. Here, we report the engineering of a Form 1A Rubisco from the proteobacterium Halothiobacillus neapolitanus in Escherichia coli and tobacco (Nicotiana tabacum) chloroplasts without any cognate chaperones. The native tobacco gene encoding Rubisco large subunit was genetically replaced with H. neapolitanus Rubisco (HnRubisco) large and small subunit genes. We show that HnRubisco subunits can form functional L8S8 hexadecamers in tobacco chloroplasts at high efficiency, accounting for ∼40% of the wild-type tobacco Rubisco content. The chloroplast-expressed HnRubisco displayed a ∼2-fold greater carboxylation rate and supported a similar autotrophic growth rate of transgenic plants to that of wild-type in air supplemented with 1% CO2. This study represents a step toward the engineering of a fast and highly active Rubisco in chloroplasts to improve crop photosynthesis and growth.
Collapse
Affiliation(s)
- Taiyu Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Saba Riaz
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Philip Davey
- School of Life Sciences, University of Essex, Colchester CO4 4SQ, UK
| | - Ziyu Zhao
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Yaqi Sun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Gregory F Dykes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - James Hartwell
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester CO4 4SQ, UK
| | - Peter J Nixon
- Department of Life Sciences, Sir Ernst Chain Building-Wolfson Laboratories, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
11
|
Oh ZG, Askey B, Gunn LH. Red Rubiscos and opportunities for engineering green plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:520-542. [PMID: 36055563 PMCID: PMC9833100 DOI: 10.1093/jxb/erac349] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Nature's vital, but notoriously inefficient, CO2-fixing enzyme Rubisco often limits the growth of photosynthetic organisms including crop species. Form I Rubiscos comprise eight catalytic large subunits and eight auxiliary small subunits and can be classified into two distinct lineages-'red' and 'green'. While red-type Rubiscos (Form IC and ID) are found in rhodophytes, their secondary symbionts, and certain proteobacteria, green-type Rubiscos (Form IA and IB) exist in terrestrial plants, chlorophytes, cyanobacteria, and other proteobacteria. Eukaryotic red-type Rubiscos exhibit desirable kinetic properties, namely high specificity and high catalytic efficiency, with certain isoforms outperforming green-type Rubiscos. However, it is not yet possible to functionally express a high-performing red-type Rubisco in chloroplasts to boost photosynthetic carbon assimilation in green plants. Understanding the molecular and evolutionary basis for divergence between red- and green-type Rubiscos could help us to harness the superior CO2-fixing power of red-type Rubiscos. Here we review our current understanding about red-type Rubisco distribution, biogenesis, and sequence-structure, and present opportunities and challenges for utilizing red-type Rubisco kinetics towards crop improvements.
Collapse
Affiliation(s)
- Zhen Guo Oh
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Bryce Askey
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
12
|
Iqbal WA, Lisitsa A, Kapralov MV. Predicting plant Rubisco kinetics from RbcL sequence data using machine learning. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:638-650. [PMID: 36094849 PMCID: PMC9833099 DOI: 10.1093/jxb/erac368] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is responsible for the conversion of atmospheric CO2 to organic carbon during photosynthesis, and often acts as a rate limiting step in the later process. Screening the natural diversity of Rubisco kinetics is the main strategy used to find better Rubisco enzymes for crop engineering efforts. Here, we demonstrate the use of Gaussian processes (GPs), a family of Bayesian models, coupled with protein encoding schemes, for predicting Rubisco kinetics from Rubisco large subunit (RbcL) sequence data. GPs trained on published experimentally obtained Rubisco kinetic datasets were applied to over 9000 sequences encoding RbcL to predict Rubisco kinetic parameters. Notably, our predicted kinetic values were in agreement with known trends, e.g. higher carboxylation turnover rates (Kcat) for Rubisco enzymes from C4 or crassulacean acid metabolism (CAM) species, compared with those found in C3 species. This is the first study demonstrating machine learning approaches as a tool for screening and predicting Rubisco kinetics, which could be applied to other enzymes.
Collapse
Affiliation(s)
- Wasim A Iqbal
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Alexei Lisitsa
- Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | | |
Collapse
|
13
|
Buck S, Rhodes T, Gionfriddo M, Skinner T, Yuan D, Birch R, Kapralov MV, Whitney SM. Escherichia coli expressing chloroplast chaperones as a proxy to test heterologous Rubisco production in leaves. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:664-676. [PMID: 36322613 DOI: 10.1093/jxb/erac435] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Rubisco is a fundamental enzyme in photosynthesis and therefore for life. Efforts to improve plant Rubisco performance have been hindered by the enzymes' complex chloroplast biogenesis requirements. New Synbio approaches, however, now allow the production of some plant Rubisco isoforms in Escherichia coli. While this enhances opportunities for catalytic improvement, there remain limitations in the utility of the expression system. Here we generate, optimize, and test a robust Golden Gate cloning E. coli expression system incorporating the protein folding machinery of tobacco chloroplasts. By comparing the expression of different plant Rubiscos in both E. coli and plastome-transformed tobacco, we show that the E. coli expression system can accurately predict high level Rubisco production in chloroplasts but poorly forecasts the biogenesis potential of isoforms with impaired production in planta. We reveal that heterologous Rubisco production in E. coli and tobacco plastids poorly correlates with Rubisco large subunit phylogeny. Our findings highlight the need to fully understand the factors governing Rubisco biogenesis if we are to deliver an efficient, low-cost screening tool that can accurately emulate chloroplast expression.
Collapse
Affiliation(s)
- Sally Buck
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Tim Rhodes
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Matteo Gionfriddo
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Tanya Skinner
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Ding Yuan
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Rosemary Birch
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Maxim V Kapralov
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Spencer M Whitney
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| |
Collapse
|
14
|
Song C, Fan Q, Tang Y, Sun Y, Wang L, Wei M, Chang Y. Overexpression of DfRaf from Fragrant Woodfern (Dryopteris fragrans) Enhances High-Temperature Tolerance in Tobacco (Nicotiana tabacum). Genes (Basel) 2022; 13:genes13071212. [PMID: 35885995 PMCID: PMC9321628 DOI: 10.3390/genes13071212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023] Open
Abstract
Heat stress seriously affects medicinal herbs’ growth and yield. Rubisco accumulation factor (Raf) is a key mediator regulating the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which plays important roles in carbon assimilation and the Calvin cycle in plants. Raf has been studied in many plants, but has rarely been studied in the important medicinal plant fragrant woodfern (Dryopteris fragrans). The aim of this study was to analyze the effects of Raf on carbohydrate metabolism and the response to heat stress in medicinal plants. In this study, high temperature treatment upregulated the expression of DfRaf, which was significantly higher than that of phosphoribokinase (DfPRK), Rubisco small subunits (DfRbcS), Rubisco large subunits (DfRbcL) and Rubisco activase (DfRCA). The subcellular localization showed that the DfRaf proteins were primarily located in the nucleus; DfPRK, DfRbcS, DfRbcL and DfRCA proteins were primarily located in the chloroplast. We found that overexpression of DfRaf led to increased activity of Rubisco, RCA and PRK under high-temperature stress. The H2O2, O2− and MDA content of the DfRaf-OV-L2 and DfRaf-OV-L6 transgenic lines were significantly lower than those of WT and VC plants under high-temperature stress. The photosynthetic pigments, proline, soluble sugar content and ROS-scavenging ability of the DfRaf-OV-L2 and DfRaf-OV-L6 transgenic lines were higher than those of WT and VC plants under high-temperature stress. The results showed that overexpression of the DfRaf gene increased the Rubisco activity, which enhanced the high-temperature tolerance of plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Chang
- Correspondence: ; Tel.: +86-(0451)-5519-0410
| |
Collapse
|
15
|
Santos Correa S, Schultz J, Lauersen KJ, Soares Rosado A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J Adv Res 2022; 47:75-92. [PMID: 35918056 PMCID: PMC10173188 DOI: 10.1016/j.jare.2022.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Autotrophic carbon fixation is the primary route through which organic carbon enters the biosphere, and it is a key step in the biogeochemical carbon cycle. The Calvin-Benson-Bassham pathway, which is predominantly found in plants, algae, and some bacteria (mainly cyanobacteria), was previously considered to be the sole carbon-fixation pathway. However, the discovery of a new carbon-fixation pathway in sulfurous green bacteria almost two decades ago encouraged further research on previously overlooked ancient carbon-fixation pathways in taxonomically and phylogenetically distinct microorganisms. AIM OF REVIEW In this review, we summarize the six known natural carbon-fixation pathways and outline the newly proposed additions to this list. We also discuss the recent achievements in synthetic carbon fixation and the importance of the metabolism of thermophilic microorganisms in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Currently, at least six carbon-fixation routes have been confirmed in Bacteria and Archaea. Other possible candidate routes have also been suggested on the basis of emerging "omics" data analyses, expanding our knowledge and stimulating discussions on the importance of these pathways in the way organisms acquire carbon. Notably, the currently known natural fixation routes cannot balance the excessive anthropogenic carbon emissions in a highly unbalanced global carbon cycle. Therefore, significant efforts have also been made to improve the existing carbon-fixation pathways and/or design new efficient in vitro and in vivo synthetic pathways.
Collapse
Affiliation(s)
- Sulamita Santos Correa
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Junia Schultz
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
16
|
Chloroplast Engineering: Fundamental Insights and Its Application in Amelioration of Environmental Stress. Appl Biochem Biotechnol 2022; 195:2463-2482. [PMID: 35484466 DOI: 10.1007/s12010-022-03930-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 12/21/2022]
Abstract
Chloroplasts are specialized organelle that are responsible for converting light energy to chemical energy, thereby driving the carbon dioxide fixation. Apart from photosynthesis, chloroplast is the site for essential cellular processes that determine the plant adaptation to changing environment. Owing to the presence of their own expression system, it provides an optimum platform for engineering valued traits as well as site for synthesis of bio-compounds. Advancements in technology have further enhanced the scope of using chloroplast as a multifaceted tool for the biotechnologist to develop stress-tolerant plants and ameliorate environmental stress. Focusing on chloroplast biotechnology, this review discusses the advances in chloroplast engineering and its application in enhancing plant adaptation and resistance to environmental stress and the development of new bioproducts and processes. This is accomplished through analysis of its biogenesis and physiological processes, highlighting the chloroplast engineering and recent developments in chloroplast biotechnology. In the first part of the review, the evolution and principles of structural organization and physiology of chloroplast are discussed. In the second part, the chief methods and mechanisms involved in chloroplast transformation are analyzed. The last part represents an updated analysis of the application of chloroplast engineering in crop improvement and bioproduction of industrial and health compounds.
Collapse
|
17
|
Lin MT, Salihovic H, Clark FK, Hanson MR. Improving the efficiency of Rubisco by resurrecting its ancestors in the family Solanaceae. SCIENCE ADVANCES 2022; 8:eabm6871. [PMID: 35427154 PMCID: PMC9012466 DOI: 10.1126/sciadv.abm6871] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants and photosynthetic organisms have a remarkably inefficient enzyme named Rubisco that fixes atmospheric CO2 into organic compounds. Understanding how Rubisco has evolved in response to past climate change is important for attempts to adjust plants to future conditions. In this study, we developed a computational workflow to assemble de novo both large and small subunits of Rubisco enzymes from transcriptomics data. Next, we predicted sequences for ancestral Rubiscos of the (nightshade) family Solanaceae and characterized their kinetics after coexpressing them in Escherichia coli. Predicted ancestors of C3 Rubiscos were identified that have superior kinetics and excellent potential to help plants adapt to anthropogenic climate change. Our findings also advance understanding of the evolution of Rubisco's catalytic traits.
Collapse
|
18
|
Walter J, Kromdijk J. Here comes the sun: How optimization of photosynthetic light reactions can boost crop yields. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:564-591. [PMID: 34962073 PMCID: PMC9302994 DOI: 10.1111/jipb.13206] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 05/22/2023]
Abstract
Photosynthesis started to evolve some 3.5 billion years ago CO2 is the substrate for photosynthesis and in the past 200-250 years, atmospheric levels have approximately doubled due to human industrial activities. However, this time span is not sufficient for adaptation mechanisms of photosynthesis to be evolutionarily manifested. Steep increases in human population, shortage of arable land and food, and climate change call for actions, now. Thanks to substantial research efforts and advances in the last century, basic knowledge of photosynthetic and primary metabolic processes can now be translated into strategies to optimize photosynthesis to its full potential in order to improve crop yields and food supply for the future. Many different approaches have been proposed in recent years, some of which have already proven successful in different crop species. Here, we summarize recent advances on modifications of the complex network of photosynthetic light reactions. These are the starting point of all biomass production and supply the energy equivalents necessary for downstream processes as well as the oxygen we breathe.
Collapse
Affiliation(s)
- Julia Walter
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Johannes Kromdijk
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinois61801USA
| |
Collapse
|
19
|
Iñiguez C, Aguiló-Nicolau P, Galmés J. Improving photosynthesis through the enhancement of Rubisco carboxylation capacity. Biochem Soc Trans 2021; 49:2007-2019. [PMID: 34623388 DOI: 10.1042/bst20201056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
Rising human population, along with the reduction in arable land and the impacts of global change, sets out the need for continuously improving agricultural resource use efficiency and crop yield (CY). Bioengineering approaches for photosynthesis optimization have largely demonstrated the potential for enhancing CY. This review is focused on the improvement of Rubisco functioning, which catalyzes the rate-limiting step of CO2 fixation required for plant growth, but also catalyzes the ribulose-bisphosphate oxygenation initiating the carbon and energy wasteful photorespiration pathway. Rubisco carboxylation capacity can be enhanced by engineering the Rubisco large and/or small subunit genes to improve its catalytic traits, or by engineering the mechanisms that provide enhanced Rubisco expression, activation and/or elevated [CO2] around the active sites to favor carboxylation over oxygenation. Recent advances have been made in the expression, assembly and activation of foreign (either natural or mutant) faster and/or more CO2-specific Rubisco versions. Some components of CO2 concentrating mechanisms (CCMs) from bacteria, algae and C4 plants has been successfully expressed in tobacco and rice. Still, none of the transformed plant lines expressing foreign Rubisco versions and/or simplified CCM components were able to grow faster than wild type plants under present atmospheric [CO2] and optimum conditions. However, the results obtained up to date suggest that it might be achievable in the near future. In addition, photosynthetic and yield improvements have already been observed when manipulating Rubisco quantity and activation degree in crops. Therefore, engineering Rubisco carboxylation capacity continues being a promising target for the improvement in photosynthesis and yield.
Collapse
Affiliation(s)
- Concepción Iñiguez
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
- Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | - Pere Aguiló-Nicolau
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
20
|
Jin H, Wang Y, Zhao P, Wang L, Zhang S, Meng D, Yang Q, Cheong LZ, Bi Y, Fu Y. Potential of Producing Flavonoids Using Cyanobacteria As a Sustainable Chassis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12385-12401. [PMID: 34649432 DOI: 10.1021/acs.jafc.1c04632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous plant secondary metabolites have remarkable impacts on both food supplements and pharmaceuticals for human health improvement. However, higher plants can only generate small amounts of these chemicals with specific temporal and spatial arrangements, which are unable to satisfy the expanding market demands. Cyanobacteria can directly utilize CO2, light energy, and inorganic nutrients to synthesize versatile plant-specific photosynthetic intermediates and organic compounds in large-scale photobioreactors with outstanding economic merit. Thus, they have been rapidly developed as a "green" chassis for the synthesis of bioproducts. Flavonoids, chemical compounds based on aromatic amino acids, are considered to be indispensable components in a variety of nutraceutical, pharmaceutical, and cosmetic applications. In contrast to heterotrophic metabolic engineering pioneers, such as yeast and Escherichia coli, information about the biosynthesis flavonoids and their derivatives is less comprehensive than that of their photosynthetic counterparts. Here, we review both benefits and challenges to promote cyanobacterial cell factories for flavonoid biosynthesis. With increasing concerns about global environmental issues and food security, we are confident that energy self-supporting cyanobacteria will attract increasing attention for the generation of different kinds of bioproducts. We hope that the work presented here will serve as an index and encourage more scientists to join in the relevant research area.
Collapse
Affiliation(s)
- Haojie Jin
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Pengquan Zhao
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Litao Wang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Su Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Dong Meng
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Qing Yang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yonghong Bi
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, P.R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| |
Collapse
|
21
|
Iqbal WA, Miller IG, Moore RL, Hope IJ, Cowan-Turner D, Kapralov MV. Rubisco substitutions predicted to enhance crop performance through carbon uptake modelling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6066-6075. [PMID: 34115846 PMCID: PMC8411856 DOI: 10.1093/jxb/erab278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/09/2021] [Indexed: 05/03/2023]
Abstract
Improving the performance of the CO2-fixing enzyme Rubisco is among the targets for increasing crop yields. Here, Earth system model (ESM) representations of canopy C3 and C4 photosynthesis were combined with species-specific Rubisco parameters to quantify the consequences of bioengineering foreign Rubiscos into C3 and C4 crops under field conditions. The 'two big leaf' (sunlit/shaded) model for canopy photosynthesis was used together with species-specific Rubisco kinetic parameters including maximum rate (Kcat), Michaelis-Menten constant for CO2 at ambient atmospheric O2 (Kc21%O2), specificity for CO2 to O2 (Sc/o), and associated heat activation (Ha) values. Canopy-scale consequences of replacing native Rubiscos in wheat, maize, and sugar beet with foreign enzymes from 27 species were modelled using data from Ameriflux and Fluxnet databases. Variation among the included Rubisco kinetics differentially affected modelled carbon uptake rates, and Rubiscos from several species of C4 grasses showed the greatest potential of >50% carbon uptake improvement in wheat, and >25% improvement in sugar beet and maize. This study also reaffirms the need for data on fully characterized Rubiscos from more species, and for better parameterization of 'Vcmax' and temperature response of 'Jmax' in ESMs.
Collapse
Affiliation(s)
- Wasim A Iqbal
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Correspondence:
| | - Isabel G Miller
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Rebecca L Moore
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Iain J Hope
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel Cowan-Turner
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Maxim V Kapralov
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
22
|
Gupta D, Sharma G, Saraswat P, Ranjan R. Synthetic Biology in Plants, a Boon for Coming Decades. Mol Biotechnol 2021; 63:1138-1154. [PMID: 34420149 DOI: 10.1007/s12033-021-00386-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/16/2021] [Indexed: 02/01/2023]
Abstract
Recently an enormous expansion of knowledge is seen in various disciplines of science. This surge of information has given rise to concept of interdisciplinary fields, which has resulted in emergence of newer research domains, one of them is 'Synthetic Biology' (SynBio). It captures basics from core biology and integrates it with concepts from the other areas of study such as chemical, electrical, and computational sciences. The essence of synthetic biology is to rewire, re-program, and re-create natural biological pathways, which are carried through genetic circuits. A genetic circuit is a functional assembly of basic biological entities (DNA, RNA, proteins), created using typical design, built, and test cycles. These circuits allow scientists to engineer nearly all biological systems for various useful purposes. The development of sophisticated molecular tools, techniques, genomic programs, and ease of nucleic acid synthesis have further fueled several innovative application of synthetic biology in areas like molecular medicines, pharmaceuticals, biofuels, drug discovery, metabolomics, developing plant biosensors, utilization of prokaryotic systems for metabolite production, and CRISPR/Cas9 in the crop improvement. These applications have largely been dominated by utilization of prokaryotic systems. However, newer researches have indicated positive growth of SynBio for the eukaryotic systems as well. This paper explores advances of synthetic biology in the plant field by elaborating on its core components and potential applications. Here, we have given a comprehensive idea of designing, development, and utilization of synthetic biology in the improvement of the present research state of plant system.
Collapse
Affiliation(s)
- Dipinte Gupta
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Gauri Sharma
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Pooja Saraswat
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Rajiv Ranjan
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India.
| |
Collapse
|
23
|
Wietrzynski W, Traverso E, Wollman FA, Wostrikoff K. The state of oligomerization of Rubisco controls the rate of synthesis of the Rubisco large subunit in Chlamydomonas reinhardtii. THE PLANT CELL 2021; 33:1706-1727. [PMID: 33625514 PMCID: PMC8254502 DOI: 10.1093/plcell/koab061] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/12/2021] [Indexed: 05/22/2023]
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is present in all photosynthetic organisms and is a key enzyme for photosynthesis-driven life on Earth. Its most prominent form is a hetero-oligomer in which small subunits (SSU) stabilize the core of the enzyme built from large subunits (LSU), yielding, after a chaperone-assisted multistep assembly process, an LSU8SSU8 hexadecameric holoenzyme. Here we use Chlamydomonas reinhardtii and a combination of site-directed mutants to dissect the multistep biogenesis pathway of Rubisco in vivo. We identify assembly intermediates, in two of which LSU are associated with the RAF1 chaperone. Using genetic and biochemical approaches we further unravel a major regulation process during Rubisco biogenesis, in which LSU translation is controlled by its ability to assemble with the SSU, via the mechanism of control by epistasy of synthesis (CES). Altogether this leads us to propose a model whereby the last assembly intermediate, an LSU8-RAF1 complex, provides the platform for SSU binding to form the Rubisco enzyme, and when SSU is not available, converts to a key regulatory form that exerts negative feedback on the initiation of LSU translation.
Collapse
Affiliation(s)
- Wojciech Wietrzynski
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, 75005 Paris, France
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Eleonora Traverso
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, 75005 Paris, France
| | - Francis-André Wollman
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, 75005 Paris, France
| | - Katia Wostrikoff
- Sorbonne Université, CNRS, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, 75005 Paris, France
| |
Collapse
|
24
|
Lin MT, Orr DJ, Worrall D, Parry MAJ, Carmo-Silva E, Hanson MR. A procedure to introduce point mutations into the Rubisco large subunit gene in wild-type plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:876-887. [PMID: 33576096 DOI: 10.1111/tpj.15196] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 01/22/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic inefficiencies limit the productivity and sustainability of crop production and the resilience of agriculture to future societal and environmental challenges. Rubisco is a key target for improvement as it plays a central role in carbon fixation during photosynthesis and is remarkably inefficient. Introduction of mutations to the chloroplast-encoded Rubisco large subunit rbcL is of particular interest for improving the catalytic activity and efficiency of the enzyme. However, manipulation of rbcL is hampered by its location in the plastome, with many species recalcitrant to plastome transformation, and by the plastid's efficient repair system, which can prevent effective maintenance of mutations introduced with homologous recombination. Here we present a system where the introduction of a number of silent mutations into rbcL within the model plant Nicotiana tabacum facilitates simplified screening via additional restriction enzyme sites. This system was used to successfully generate a range of transplastomic lines from wild-type N. tabacum with stable point mutations within rbcL in 40% of the transformants, allowing assessment of the effect of these mutations on Rubisco assembly and activity. With further optimization the approach offers a viable way forward for mutagenic testing of Rubisco function in planta within tobacco and modification of rbcL in other crops where chloroplast transformation is feasible. The transformation strategy could also be applied to introduce point mutations in other chloroplast-encoded genes.
Collapse
Affiliation(s)
- Myat T Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Dawn Worrall
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Elizabete Carmo-Silva
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
25
|
Li S, Chang L, Zhang J. Advancing organelle genome transformation and editing for crop improvement. PLANT COMMUNICATIONS 2021; 2:100141. [PMID: 33898977 PMCID: PMC8060728 DOI: 10.1016/j.xplc.2021.100141] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 05/05/2023]
Abstract
Plant cells contain three organelles that harbor DNA: the nucleus, plastids, and mitochondria. Plastid transformation has emerged as an attractive platform for the generation of transgenic plants, also referred to as transplastomic plants. Plastid genomes have been genetically engineered to improve crop yield, nutritional quality, and resistance to abiotic and biotic stresses, as well as for recombinant protein production. Despite many promising proof-of-concept applications, transplastomic plants have not been commercialized to date. Sequence-specific nuclease technologies are widely used to precisely modify nuclear genomes, but these tools have not been applied to edit organelle genomes because the efficient homologous recombination system in plastids facilitates plastid genome editing. Unlike plastid transformation, successful genetic transformation of higher plant mitochondrial genome transformation was tested in several research group, but not successful to date. However, stepwise progress has been made in modifying mitochondrial genes and their transcripts, thus enabling the study of their functions. Here, we provide an overview of advances in organelle transformation and genome editing for crop improvement, and we discuss the bottlenecks and future development of these technologies.
Collapse
Affiliation(s)
- Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
26
|
Abstract
Since 1893, when the word "photosynthesis" was first coined by Charles Reid Barnes and Conway MacMillan, our understanding of the elements and regulation of this complex process is far from being entirely understood. We aim to review the most relevant advances in photosynthesis research from the last few years and to provide a perspective on the forthcoming research in this field. Recent discoveries related to light sensing, harvesting, and dissipation; kinetics of CO2 fixation; components and regulators of CO2 diffusion through stomata and mesophyll; and genetic engineering for improving photosynthetic and production capacities of crops are addressed.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| | - Jaume Flexas
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| |
Collapse
|
27
|
Whitney SM, Sharwood RE. Rubisco Engineering by Plastid Transformation and Protocols for Assessing Expression. Methods Mol Biol 2021; 2317:195-214. [PMID: 34028770 DOI: 10.1007/978-1-0716-1472-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The assimilation of CO2 within chloroplasts is catalyzed by the bifunctional enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco. Within higher plants the Rubisco large subunit gene, rbcL, is encoded in the plastid genome, while the Rubisco small subunit gene, RbcS is coded in the nucleus by a multigene family. Rubisco is considered a poor catalyst due to its slow turnover rate and its additional fixation of O2 that can result in wasteful loss of carbon through the energy requiring photorespiratory cycle. Improving the carboxylation efficiency and CO2/O2 selectivity of Rubisco within higher plants has been a long term goal which has been greatly advanced in recent times using plastid transformation techniques. Here we present experimental methodologies for efficiently engineering Rubisco in the plastids of a tobacco master line and analyzing leaf Rubisco content.
Collapse
Affiliation(s)
- Spencer M Whitney
- Plant Sciences, Research School of Biology, College of Science, The Australian National University, Acton, ACT, Australia.
| | - Robert E Sharwood
- Plant Sciences, Research School of Biology, College of Science, The Australian National University, Acton, ACT, Australia
| |
Collapse
|
28
|
Mu X, Chen Y. The physiological response of photosynthesis to nitrogen deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:76-82. [PMID: 33296848 DOI: 10.1016/j.plaphy.2020.11.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/15/2020] [Indexed: 05/19/2023]
Abstract
Nitrogen (N), as a macro-element, plays a vital role in plant growth and development. N deficiency affects plant productivity by decreasing photosynthesis, leaf area and longevity of green leaf. To date, many studies have reported that the relationship between photosynthesis and N supply. Here, we summarized the physiological response of photosynthesis to N deficiency in leaf structure and N allocation within the leaf. In serious N stress, photosynthetic rate decreases for almost all plants. The reasons as follows:(1) reducing stomatal conductance of mesophyll cell (gs) and bundle sheath cells (gbs) which influences intercellular CO2 concentration; (2) reducing the content of bioenergetics and light-harvesting protein which inhibits electron transport rate and increase the light energy dissipated as heat; (3) reducing the content and/or activity of photosynthetic enzymes which reduces carboxylation rate. During reproductive stage, N stress induces plant senescence and N components degradation, especially photosynthetic enzymes and thylakoid N, and thus reduces photosynthesis. To keep high grain yield in low N deficiency, we should choose the genotype with higher N allocation within bioenergetics and lower degradation of photosynthetic enzymes. This review provides a generalized N allocation in response to N stress and gives a new prospect for breeding N-efficient genotypes.
Collapse
Affiliation(s)
- Xiaohuan Mu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Yanling Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong, 266109, PR China.
| |
Collapse
|
29
|
Ainsworth EA, Long SP. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? GLOBAL CHANGE BIOLOGY 2021; 27:27-49. [PMID: 33135850 DOI: 10.1111/gcb.15375] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 05/03/2023]
Abstract
Free-air CO2 enrichment (FACE) allows open-air elevation of [CO2 ] without altering the microclimate. Its scale uniquely supports simultaneous study from physiology and yield to soil processes and disease. In 2005 we summarized results of then 28 published observations by meta-analysis. Subsequent studies have combined FACE with temperature, drought, ozone, and nitrogen treatments. Here, we summarize the results of now almost 250 observations, spanning 14 sites and five continents. Across 186 independent studies of 18 C3 crops, elevation of [CO2 ] by ca. 200 ppm caused a ca. 18% increase in yield under non-stress conditions. Legumes and root crops showed a greater increase and cereals less. Nitrogen deficiency reduced the average increase to 10%, as did warming by ca. 2°C. Two conclusions of the 2005 analysis were that C4 crops would not be more productive in elevated [CO2 ], except under drought, and that yield responses of C3 crops were diminished by nitrogen deficiency and wet conditions. Both stand the test of time. Further studies of maize and sorghum showed no yield increase, except in drought, while soybean productivity was negatively affected by early growing season wet conditions. Subsequent study showed reduced levels of nutrients, notably Zn and Fe in most crops, and lower nitrogen and protein in the seeds of non-leguminous crops. Testing across crop germplasm revealed sufficient variation to maintain nutrient content under rising [CO2 ]. A strong correlation of yield response under elevated [CO2 ] to genetic yield potential in both rice and soybean was observed. Rice cultivars with the highest yield potential showed a 35% yield increase in elevated [CO2 ] compared to an average of 14%. Future FACE experiments have the potential to develop cultivars and management strategies for co-promoting sustainability and productivity under future elevated [CO2 ].
Collapse
Affiliation(s)
- Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephen P Long
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
30
|
Ye J, Chen W, Feng L, Liu G, Wang Y, Li H, Ye Z, Zhang Y. The chaperonin 60 protein SlCpn60α1 modulates photosynthesis and photorespiration in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7224-7240. [PMID: 32915204 DOI: 10.1093/jxb/eraa418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis, an indispensable biological process of plants, produces organic substances for plant growth, during which photorespiration occurs to oxidize carbohydrates to achieve homeostasis. Although the molecular mechanism underlying photosynthesis and photorespiration has been widely explored, the crosstalk between the two processes remains largely unknown. In this study, we isolated and characterized a T-DNA insertion mutant of tomato (Solanum lycopersicum) named yellow leaf (yl) with yellowish leaves, retarded growth, and chloroplast collapse that hampered both photosynthesis and photorespiration. Genetic and expression analyses demonstrated that the phenotype of yl was caused by a loss-of-function mutation resulting from a single-copy T-DNA insertion in chaperonin 60α1 (SlCPN60α1). SlCPN60α1 showed high expression levels in leaves and was located in both chloroplasts and mitochondria. Silencing of SlCPN60α1using virus-induced gene silencing and RNA interference mimicked the phenotype of yl. Results of two-dimensional electrophoresis and yeast two-hybrid assays suggest that SlCPN60α1 potentially interacts with proteins that are involved in chlorophyll synthesis, photosynthetic electron transport, and the Calvin cycle, and further affect photosynthesis. Moreover, SlCPN60α1 directly interacted with serine hydroxymethyltransferase (SlSHMT1) in mitochondria, thereby regulating photorespiration in tomato. This study outlines the importance of SlCPN60α1 for both photosynthesis and photorespiration, and provides molecular insights towards plant genetic improvement.
Collapse
Affiliation(s)
- Jie Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Weifang Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Longwei Feng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Genzhong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Ying Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
31
|
Donovan S, Mao Y, Orr DJ, Carmo-Silva E, McCormick AJ. CRISPR-Cas9-Mediated Mutagenesis of the Rubisco Small Subunit Family in Nicotiana tabacum. Front Genome Ed 2020; 2:605614. [PMID: 34713229 PMCID: PMC8525408 DOI: 10.3389/fgeed.2020.605614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022] Open
Abstract
Engineering the small subunit of the key CO2-fixing enzyme Rubisco (SSU, encoded by rbcS) in plants currently poses a significant challenge, as many plants have polyploid genomes and SSUs are encoded by large multigene families. Here, we used CRISPR-Cas9-mediated genome editing approach to simultaneously knock-out multiple rbcS homologs in the model tetraploid crop tobacco (Nicotiana tabacum cv. Petit Havana). The three rbcS homologs rbcS_S1a, rbcS_S1b and rbcS_T1 account for at least 80% of total rbcS expression in tobacco. In this study, two multiplexing guide RNAs (gRNAs) were designed to target homologous regions in these three genes. We generated tobacco mutant lines with indel mutations in all three genes, including one line with a 670 bp deletion in rbcS-T1. The Rubisco content of three selected mutant lines in the T1 generation was reduced by ca. 93% and mutant plants accumulated only 10% of the total biomass of wild-type plants. As a second goal, we developed a proof-of-principle approach to simultaneously introduce a non-native rbcS gene while generating the triple SSU knockout by co-transformation into a wild-type tobacco background. Our results show that CRISPR-Cas9 is a viable tool for the targeted mutagenesis of rbcS families in polyploid species and will contribute to efforts aimed at improving photosynthetic efficiency through expression of superior non-native Rubisco enzymes in plants.
Collapse
Affiliation(s)
- Sophie Donovan
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yuwei Mao
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Douglas J. Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | | | - Alistair J. McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
32
|
Matsumura H, Shiomi K, Yamamoto A, Taketani Y, Kobayashi N, Yoshizawa T, Tanaka SI, Yoshikawa H, Endo M, Fukayama H. Hybrid Rubisco with Complete Replacement of Rice Rubisco Small Subunits by Sorghum Counterparts Confers C 4 Plant-like High Catalytic Activity. MOLECULAR PLANT 2020; 13:1570-1581. [PMID: 32882392 DOI: 10.1016/j.molp.2020.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/28/2020] [Accepted: 08/22/2020] [Indexed: 05/25/2023]
Abstract
Photosynthetic rate at the present atmospheric condition is limited by the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) because of its extremely low catalytic rate (kcat) and poor affinity for CO2 (Kc) and specificity for CO2 (Sc/o). Rubisco in C4 plants generally shows higher kcat than that in C3 plants. Rubisco consists of eight large subunits and eight small subunits (RbcS). Previously, the chimeric incorporation of sorghum C4-type RbcS significantly increased the kcat of Rubisco in a C3 plant, rice. In this study, we knocked out rice RbcS multigene family using the CRISPR-Cas9 technology and completely replaced rice RbcS with sorghum RbcS in rice Rubisco. Obtained hybrid Rubisco showed almost C4 plant-like catalytic properties, i.e., higher kcat, higher Kc, and lower Sc/o. Transgenic lines expressing the hybrid Rubisco accumulated reduced levels of Rubisco, whereas they showed slightly but significantly higher photosynthetic capacity and similar biomass production under high CO2 condition compared with wild-type rice. High-resolution crystal structural analysis of the wild-type Rubisco and hybrid Rubisco revealed the structural differences around the central pore of Rubisco and the βC-βD hairpin in RbcS. We propose that such differences, particularly in the βC-βD hairpin, may impact the flexibility of Rubisco catalytic site and change its catalytic properties.
Collapse
Affiliation(s)
- Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan.
| | - Keita Shiomi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-tyou, Nada-ku, Kobe 657-8501, Japan
| | - Akito Yamamoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-tyou, Nada-ku, Kobe 657-8501, Japan
| | - Yuri Taketani
- Faculty of Agriculture, Kobe University, 1-1 Rokkodai-tyou, Nada-ku, Kobe 657-8501, Japan
| | - Noriyuki Kobayashi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-tyou, Nada-ku, Kobe 657-8501, Japan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Shun-Ichi Tanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Hiroki Yoshikawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| | - Masaki Endo
- Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan
| | - Hiroshi Fukayama
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-tyou, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
33
|
Gunn LH, Martin Avila E, Birch R, Whitney SM. The dependency of red Rubisco on its cognate activase for enhancing plant photosynthesis and growth. Proc Natl Acad Sci U S A 2020; 117:25890-25896. [PMID: 32989135 PMCID: PMC7568259 DOI: 10.1073/pnas.2011641117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Plant photosynthesis and growth are often limited by the activity of the CO2-fixing enzyme Rubisco. The broad kinetic diversity of Rubisco in nature is accompanied by differences in the composition and compatibility of the ancillary proteins needed for its folding, assembly, and metabolic regulation. Variations in the protein folding needs of catalytically efficient red algae Rubisco prevent their production in plants. Here, we show this impediment does not extend to Rubisco from Rhodobacter sphaeroides (RsRubisco)-a red-type Rubisco able to assemble in plant chloroplasts. In transplastomic tobRsLS lines expressing a codon optimized Rs-rbcLS operon, the messenger RNA (mRNA) abundance was ∼25% of rbcL transcript and RsRubisco ∼40% the Rubisco content in WT tobacco. To mitigate the low activation status of RsRubisco in tobRsLS (∼23% sites active under ambient CO2), the metabolic repair protein RsRca (Rs-activase) was introduced via nuclear transformation. RsRca production in the tobRsLS::X progeny matched endogenous tobacco Rca levels (∼1 µmol protomer·m2) and enhanced RsRubisco activation to 75% under elevated CO2 (1%, vol/vol) growth. Accordingly, the rate of photosynthesis and growth in the tobRsLS::X lines were improved >twofold relative to tobRsLS. Other tobacco lines producing RsRubisco containing alternate diatom and red algae S-subunits were nonviable as CO2-fixation rates (kcatc) were reduced >95% and CO2/O2 specificity impaired 30-50%. We show differences in hybrid and WT RsRubisco biogenesis in tobacco correlated with assembly in Escherichia coli advocating use of this bacterium to preevaluate the kinetic and chloroplast compatibility of engineered RsRubisco, an isoform amenable to directed evolution.
Collapse
Affiliation(s)
- Laura H Gunn
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Elena Martin Avila
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Rosemary Birch
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Spencer M Whitney
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
34
|
Khumsupan P, Kozlowska MA, Orr DJ, Andreou AI, Nakayama N, Patron N, Carmo-Silva E, McCormick AJ. Generating and characterizing single- and multigene mutants of the Rubisco small subunit family in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5963-5975. [PMID: 32734287 DOI: 10.1093/jxb/eraa316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The primary CO2-fixing enzyme Rubisco limits the productivity of plants. The small subunit of Rubisco (SSU) can influence overall Rubisco levels and catalytic efficiency, and is now receiving increasing attention as a potential engineering target to improve the performance of Rubisco. However, SSUs are encoded by a family of nuclear rbcS genes in plants, which makes them challenging to engineer and study. Here we have used CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9] and T-DNA insertion lines to generate a suite of single and multiple gene knockout mutants for the four members of the rbcS family in Arabidopsis, including two novel mutants 2b3b and 1a2b3b. 1a2b3b contained very low levels of Rubisco (~3% relative to the wild-type) and is the first example of a mutant with a homogenous Rubisco pool consisting of a single SSU isoform (1B). Growth under near-outdoor levels of light demonstrated Rubisco-limited growth phenotypes for several SSU mutants and the importance of the 1A and 3B isoforms. We also identified 1a1b as a likely lethal mutation, suggesting a key contributory role for the least expressed 1B isoform during early development. The successful use of CRISPR/Cas here suggests that this is a viable approach for exploring the functional roles of SSU isoforms in plants.
Collapse
Affiliation(s)
- Panupon Khumsupan
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Marta A Kozlowska
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Andreas I Andreou
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Naomi Nakayama
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Nicola Patron
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Lin MT, Stone WD, Chaudhari V, Hanson MR. Small subunits can determine enzyme kinetics of tobacco Rubisco expressed in Escherichia coli. NATURE PLANTS 2020; 6:1289-1299. [PMID: 32929197 DOI: 10.1038/s41477-020-00761-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/28/2020] [Indexed: 05/19/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) catalyses the first step in carbon fixation and is a strategic target for improving photosynthetic efficiency. In plants, Rubisco is composed of eight large and eight small subunits, and its biogenesis requires multiple chaperones. Here, we optimized a system to produce tobacco Rubisco in Escherichia coli by coexpressing chaperones in autoinduction medium. We successfully assembled tobacco Rubisco in E. coli with each small subunit that is normally encoded by the nuclear genome. Even though each enzyme carries only a single type of small subunit in E. coli, the enzymes exhibit carboxylation kinetics that are very similar to the carboxylation kinetics of the native Rubisco. Tobacco Rubisco assembled with a recently discovered trichome small subunit has a higher catalytic rate and a lower CO2 affinity compared with Rubisco complexes that are assembled with other small subunits. Our E. coli expression system will enable the analysis of features of both subunits of Rubisco that affect its kinetic properties.
Collapse
Affiliation(s)
- Myat T Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - William D Stone
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | | | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
36
|
Martin-Avila E, Lim YL, Birch R, Dirk LMA, Buck S, Rhodes T, Sharwood RE, Kapralov MV, Whitney SM. Modifying Plant Photosynthesis and Growth via Simultaneous Chloroplast Transformation of Rubisco Large and Small Subunits. THE PLANT CELL 2020; 32:2898-2916. [PMID: 32647068 PMCID: PMC7474299 DOI: 10.1105/tpc.20.00288] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 05/20/2023]
Abstract
Engineering improved Rubisco for the enhancement of photosynthesis is challenged by the alternate locations of the chloroplast rbcL gene and nuclear RbcS genes. Here we develop an RNAi-RbcS tobacco (Nicotiana tabacum) master-line, tobRrΔS, for producing homogenous plant Rubisco by rbcL-rbcS operon chloroplast transformation. Four genotypes encoding alternative rbcS genes and adjoining 5'-intergenic sequences revealed that Rubisco production was highest (50% of the wild type) in the lines incorporating a rbcS gene whose codon use and 5' untranslated-region matched rbcL Additional tobacco genotypes produced here incorporated differing potato (Solanum tuberosum) rbcL-rbcS operons that either encoded one of three mesophyll small subunits (pS1, pS2, and pS3) or the potato trichome pST-subunit. The pS3-subunit caused impairment of potato Rubisco production by ∼15% relative to the lines producing pS1, pS2, or pST However, the βA-βB loop Asn-55-His and Lys-57-Ser substitutions in the pS3-subunit improved carboxylation rates by 13% and carboxylation efficiency (CE) by 17%, relative to potato Rubisco incorporating pS1 or pS2-subunits. Tobacco photosynthesis and growth were most impaired in lines producing potato Rubisco incorporating the pST-subunit, which reduced CE and CO2/O2 specificity 40% and 15%, respectively. Returning the rbcS gene to the plant plastome provides an effective bioengineering chassis for introduction and evaluation of novel homogeneous Rubisco complexes in a whole plant context.
Collapse
Affiliation(s)
- Elena Martin-Avila
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Yi-Leen Lim
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Rosemary Birch
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology Group, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Sally Buck
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Timothy Rhodes
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Robert E Sharwood
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Maxim V Kapralov
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Spencer M Whitney
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| |
Collapse
|
37
|
Rubisco accumulation factor 1 (Raf1) plays essential roles in mediating Rubisco assembly and carboxysome biogenesis. Proc Natl Acad Sci U S A 2020; 117:17418-17428. [PMID: 32636267 PMCID: PMC7382273 DOI: 10.1073/pnas.2007990117] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carboxysomes are membrane-free organelles for carbon assimilation in cyanobacteria. The carboxysome consists of a proteinaceous shell that structurally resembles virus capsids and internal enzymes including ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the primary carbon-fixing enzyme in photosynthesis. The formation of carboxysomes requires hierarchical self-assembly of thousands of protein subunits, initiated from Rubisco assembly and packaging to shell encapsulation. Here we study the role of Rubisco assembly factor 1 (Raf1) in Rubisco assembly and carboxysome formation in a model cyanobacterium, Synechococcus elongatus PCC7942 (Syn7942). Cryo-electron microscopy reveals that Raf1 facilitates Rubisco assembly by mediating RbcL dimer formation and dimer-dimer interactions. Syn7942 cells lacking Raf1 are unable to form canonical intact carboxysomes but generate a large number of intermediate assemblies comprising Rubisco, CcaA, CcmM, and CcmN without shell encapsulation and a low abundance of carboxysome-like structures with reduced dimensions and irregular shell shapes and internal organization. As a consequence, the Raf1-depleted cells exhibit reduced Rubisco content, CO2-fixing activity, and cell growth. Our results provide mechanistic insight into the chaperone-assisted Rubisco assembly and biogenesis of carboxysomes. Advanced understanding of the biogenesis and stepwise formation process of the biogeochemically important organelle may inform strategies for heterologous engineering of functional CO2-fixing modules to improve photosynthesis.
Collapse
|
38
|
Mining for Candidate Genes Controlling Secondary Growth of the Carrot Storage Root. Int J Mol Sci 2020; 21:ijms21124263. [PMID: 32549408 PMCID: PMC7352697 DOI: 10.3390/ijms21124263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Diverse groups of carrot cultivars have been developed to meet consumer demands and industry needs. Varietal groups of the cultivated carrot are defined based on the shape of roots. However, little is known about the genetic basis of root shape determination. Methods: Here, we used 307 carrot plants from 103 open-pollinated cultivars for a genome wide association study to identify genomic regions associated with the storage root morphology. Results: A 180 kb-long region on carrot chromosome 1 explained 10% of the total observed phenotypic variance in the shoulder diameter. Within that region, DcDCAF1 and DcBTAF1 genes were proposed as candidates controlling secondary growth of the carrot storage root. Their expression profiles differed between the cultivated and the wild carrots, likely indicating that their elevated expression was required for the development of edible roots. They also showed higher expression at the secondary root growth stage in cultivars producing thick roots, as compared to those developing thin roots. Conclusions: We provided evidence for a likely involvement of DcDCAF1 and/or DcBTAF1 in the development of the carrot storage root and developed a genotyping assay facilitating the identification of variants in the region on carrot chromosome 1 associated with secondary growth of the carrot root.
Collapse
|
39
|
Domiciano D, Nery FC, de Carvalho PA, Prudente DO, de Souza LB, Chalfun-Júnior A, Paiva R, Marchiori PER. Nitrogen sources and CO 2 concentration synergistically affect the growth and metabolism of tobacco plants. PHOTOSYNTHESIS RESEARCH 2020; 144:327-339. [PMID: 32291595 DOI: 10.1007/s11120-020-00743-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The initial stimulation of photosynthesis under elevated CO2 concentrations (eCO2) is often followed by a decline in photosynthesis, known as CO2 acclimation. Changes in N levels under eCO2 can have different effects in plants fertilized with nitrate (NO3-) or ammonium (NH4+) as the N source. NO3- assimilation consumes approximately 25% of the energy produced by an expanded leaf, whereas NH4+ requires less energy to be incorporated into organic compounds. Although plant-N interactions are important for the productivity and nutritional value of food crops worldwide, most studies have not compared the performance of plants supplied with different forms of N. Therefore, this study aims to go beyond treating N as the total N in the soil or the plant because the specific N compounds formed from the available N forms become highly engaged in all aspects of plant metabolism. To this end, plant N metabolism was analyzed through an experiment with eCO2 and fertigation with NO3- and/or NH4+ as N sources for tobacco (Nicotiana tabacum) plants. The results showed that the plants that received only NO3- as a source of N grew more slowly when exposed to a CO2 concentration of 760 μmol mol-1 than when they were exposed to ambient CO2 conditions. On the other hand, in plants fertigated with only NH4+, eCO2 enhanced photosynthesis. This was essential for the maintenance of the metabolic pathways responsible for N assimilation and distribution in growing tissues. These data show that the physiological performance of tobacco plants exposed to eCO2 depends on the form of inorganic N that is absorbed and assimilated.
Collapse
Affiliation(s)
- Débora Domiciano
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | - Fernanda Carlota Nery
- Biosystems Engineering Department, Federal University of Sao Joao del Rei, Sao Joao del Rei, Brazil
| | | | | | - Lucas Batista de Souza
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | - Antônio Chalfun-Júnior
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | - Renato Paiva
- Department of Biology, Plant Physiology Sector, Federal University of Lavras, Lavras, Brazil
| | | |
Collapse
|
40
|
Xia LY, Jiang YL, Kong WW, Sun H, Li WF, Chen Y, Zhou CZ. Molecular basis for the assembly of RuBisCO assisted by the chaperone Raf1. NATURE PLANTS 2020; 6:708-717. [PMID: 32451445 DOI: 10.1038/s41477-020-0665-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/14/2020] [Indexed: 05/19/2023]
Abstract
The folding and assembly of RuBisCO, the most abundant enzyme in nature, needs a series of chaperones, including the RuBisCO accumulation factor Raf1, which is highly conserved in cyanobacteria and plants. Here, we report the crystal structures of Raf1 from cyanobacteria Anabaena sp. PCC 7120 and its complex with RuBisCO large subunit RbcL. Structural analyses and biochemical assays reveal that each Raf1 dimer captures an RbcL dimer, with the C-terminal tail inserting into the catalytic pocket, and further mediates the assembly of RbcL dimers to form the octameric core of RuBisCO. Furthermore, the cryo-electron microscopy structures of the RbcL-Raf1-RbcS assembly intermediates enable us to see a dynamic assembly process from RbcL8Raf18 to the holoenzyme RbcL8RbcS8. In vitro assays also indicate that Raf1 can attenuate and reverse CcmM-mediated cyanobacterial RuBisCO condensation. Combined with previous findings, we propose a putative model for the assembly of cyanobacterial RuBisCO coordinated by the chaperone Raf1.
Collapse
Affiliation(s)
- Ling-Yun Xia
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China.
| | - Wen-Wen Kong
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Hui Sun
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei-Fang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China.
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China.
| |
Collapse
|
41
|
Liu Y, Li N, Lou Y, Liu Y, Zhao X, Wang G. Effect of water accommodated fractions of fuel oil on fixed carbon and nitrogen by microalgae: Implication by stable isotope analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110488. [PMID: 32200143 DOI: 10.1016/j.ecoenv.2020.110488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Effect of water accommodated fractions (WAF) of #180 fuel oil on fixed carbon and nitrogen in microalgae was studied by stable isotopes. Platymonas helgolandica, Heterosigma akashiwo and Nitzschia closterium were exposed to five WAF concentrations for 96 h. The δ13C value of microalgae was significantly lower than that of the control group, indicated that carbon was limited in the WAF concentrations. The δ13C value of microalgae appeared peak valley at 48 h in control group, corresponding to the enhanced capacity in carbon fixation during microalgae photosynthesis. The physiological acclimation capacity of microalgae was revealed by the occurrence time when the δ13C value was in peak valley, and thus the physiological acclimation capacity of microalgae decreased in the order of Nitzschia closterium > Heterosigma akashiwo > Platymonas helgolandica. Principal component analysis (PCA) were applied to the δ13C value in order to verify the "hormesis" phenomenon in microalgae. The δ13C value could discriminate between stimulatory effects at low doses and inhibitory effects at high doses. In addition, the present study also investigated the effect of the nitrogen on microalgae growth. Because microalgae could still absorb the NO3-N and release of NO2-N and NH4-N in present study, the nitrogen cycle in microalgae was in the equilibrium status. The δ15N value in microalgae exhibited no obvious change with the increasing of WAF concentrations at the same time. However, due to the enrichment of nitrogen, the δ15N value first increased gradually with the time and finally was stable. Overall, the fractionation of carbon and nitrogen stable isotopes illustrated that the effect of carbon on the growth of microalgae was more prominent than nitrogen. Stable isotopes was used to investigate the influence of WAF on fixed carbon and nitrogen in microalgae growth, providing a fundamental theoretical guidance for risk assessment of marine ecological environment.
Collapse
Affiliation(s)
- Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China; Environmental Information Institute, Dalian Maritime University, Dalian, China.
| | - Na Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Yadi Lou
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Yuxin Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Xinda Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China.
| |
Collapse
|
42
|
Miyazawa SI, Tobita H, Ujino-Ihara T, Suzuki Y. Oxygen response of leaf CO 2 compensation points used to determine Rubisco specificity factors of gymnosperm species. JOURNAL OF PLANT RESEARCH 2020; 133:205-215. [PMID: 32048093 DOI: 10.1007/s10265-020-01169-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Rubisco specificity factor (Sc/o), a measure of the relative capacities of an enzyme to catalyze carboxylation and oxygenation of ribulose-1,5-bisphosphate, determines the extent of photosynthetic CO2 assimilation and photorespiratory CO2 release. The current model of C3 photosynthesis, the Farquhar-von Caemmerer-Berry (FvCB) model, requires a species-specific Sc/o. However, Sc/o values have never been reported in conifers, likely because in vitro kinetic analysis of conifer Rubisco presents difficulties. To estimate the Sc/o of conifers and compare it with angiosperm Sc/o, we measured changes in leaf CO2 compensation points (Γ) in response to O2 partial pressure for a variety of leaves, with different rates of day respiration (Rday) and maximum Rubisco carboxylation (Vcmax) in gymnosperms (Ginkgo biloba), conifers (Metasequoia glyptostroboides and Cryptomeria japonica), and angiosperms (Nicotiana tabacum and Phaseolus vulgaris). As predicted by the FvCB model, the slope of a linear function of Γ vs O2 partial pressure, d, increased alongside increasing Rday/Vcmax. The Sc/o was obtainable from this relationship between d and Rday/Vcmax, because the d values at Rday/Vcmax = 0 corresponded to α/Sc/o, where α was the photorespiratory CO2 release rate per Rubisco oxygenation rate (generally assumed to be 0.5). The calculated Sc/o values of N. tabacum and P. vulgaris exhibited good agreement with those reported by in vitro studies. The Sc/o values of both conifers were similar to those of the two angiosperm species. In contrast, the Sc/o value of G. biloba was significantly lower than those of the other four studied species. These results suggest that our new method for Sc/o estimation is applicable to C3 plants, including those for which in vitro kinetic analysis is difficult. Furthermore, results also suggest that conifer Sc/o does not differ significantly from that of C3 angiosperms, assuming α remains unchanged.
Collapse
Affiliation(s)
- Shin-Ichi Miyazawa
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan.
| | - Hiroyuki Tobita
- Department of Plant Ecology, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Tokuko Ujino-Ihara
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Yuji Suzuki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| |
Collapse
|
43
|
Singer SD, Soolanayakanahally RY, Foroud NA, Kroebel R. Biotechnological strategies for improved photosynthesis in a future of elevated atmospheric CO 2. PLANTA 2019; 251:24. [PMID: 31784816 DOI: 10.1007/s00425-019-03301-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The improvement of photosynthesis using biotechnological approaches has been the focus of much research. It is now vital that these strategies be assessed under future atmospheric conditions. The demand for crop products is expanding at an alarming rate due to population growth, enhanced affluence, increased per capita calorie consumption, and an escalating need for plant-based bioproducts. While solving this issue will undoubtedly involve a multifaceted approach, improving crop productivity will almost certainly provide one piece of the puzzle. The improvement of photosynthetic efficiency has been a long-standing goal of plant biotechnologists as possibly one of the last remaining means of achieving higher yielding crops. However, the vast majority of these studies have not taken into consideration possible outcomes when these plants are grown long-term under the elevated CO2 concentrations (e[CO2]) that will be evident in the not too distant future. Due to the considerable effect that CO2 levels have on the photosynthetic process, these assessments should become commonplace as a means of ensuring that research in this field focuses on the most effective approaches for our future climate scenarios. In this review, we discuss the main biotechnological research strategies that are currently underway with the aim of improving photosynthetic efficiency and biomass production/yields in the context of a future of e[CO2], as well as alternative approaches that may provide further photosynthetic benefits under these conditions.
Collapse
Affiliation(s)
- Stacy D Singer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| | - Raju Y Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Roland Kroebel
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
44
|
Zhou Y, Whitney S. Directed Evolution of an Improved Rubisco; In Vitro Analyses to Decipher Fact from Fiction. Int J Mol Sci 2019; 20:ijms20205019. [PMID: 31658746 PMCID: PMC6834295 DOI: 10.3390/ijms20205019] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 01/01/2023] Open
Abstract
Inaccuracies in biochemically characterizing the amount and CO2-fixing properties of the photosynthetic enzyme Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase continue to hamper an accurate evaluation of Rubisco mutants selected by directed evolution. Here, we outline an analytical pipeline for accurately quantifying Rubisco content and kinetics that averts the misinterpretation of directed evolution outcomes. Our study utilizes a new T7-promoter regulated Rubisco Dependent Escherichia coli (RDE3) screen to successfully select for the first Rhodobacter sphaeroides Rubisco (RsRubisco) mutant with improved CO2-fixing properties. The RsRubisco contains four amino acid substitutions in the large subunit (RbcL) and an improved carboxylation rate (kcatC, up 27%), carboxylation efficiency (kcatC/Km for CO2, increased 17%), unchanged CO2/O2 specificity and a 40% lower holoenzyme biogenesis capacity. Biochemical analysis of RsRubisco chimers coding one to three of the altered amino acids showed Lys-83-Gln and Arg-252-Leu substitutions (plant RbcL numbering) together, but not independently, impaired holoenzyme (L8S8) assembly. An N-terminal Val-11-Ile substitution did not affect RsRubisco catalysis or assembly, while a Tyr-345-Phe mutation alone conferred the improved kinetics without an effect on RsRubisco production. This study confirms the feasibility of improving Rubisco by directed evolution using an analytical pipeline that can identify false positives and reliably discriminate carboxylation enhancing amino acids changes from those influencing Rubisco biogenesis (solubility).
Collapse
Affiliation(s)
- Yu Zhou
- Australian Research Council Center of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 0200, Australia.
| | - Spencer Whitney
- Australian Research Council Center of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 0200, Australia.
| |
Collapse
|
45
|
Slattery RA, Ort DR. Carbon assimilation in crops at high temperatures. PLANT, CELL & ENVIRONMENT 2019; 42:2750-2758. [PMID: 31046135 DOI: 10.1111/pce.13572] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/15/2019] [Accepted: 04/27/2019] [Indexed: 05/24/2023]
Abstract
Global temperatures are rising, and higher rates of temperature increase are projected over land areas that encompass the globe's major agricultural regions. In addition to increased growing season temperatures, heat waves are predicted to become more common and severe. High temperatures can inhibit photosynthetic carbon gain of crop plants and thus threaten productivity, the effects of which may interact with other aspects of climate change. Here, we review the current literature assessing temperature effects on photosynthesis in key crops with special attention to field studies using crop canopy heating technology and in combination with other climate variables. We also discuss the biochemical reactions related to carbon fixation that may limit crop photosynthesis under warming temperatures and the current strategies for adaptation. Important progress has been made on several adaptation strategies demonstrating proof-of-concept for translating improved photosynthesis into higher yields. These are now poised to test in important food crops.
Collapse
Affiliation(s)
- Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| |
Collapse
|
46
|
Gago J, Carriquí M, Nadal M, Clemente-Moreno MJ, Coopman RE, Fernie AR, Flexas J. Photosynthesis Optimized across Land Plant Phylogeny. TRENDS IN PLANT SCIENCE 2019; 24:947-958. [PMID: 31362860 DOI: 10.1016/j.tplants.2019.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 05/08/2023]
Abstract
Until recently, few data were available on photosynthesis and its underlying mechanistically limiting factors in plants, other than crops and model species. Currently, a new large pool of data from extant representatives of basal terrestrial plant groups is emerging, allowing exploration of how photosynthetic capacity (Amax) increases from minimum values in bryophytes to maximum in tracheophytes, which is associated to an optimization of the balance between its limiting factors. From predominant mesophyll conductance limitation (lm) in bryophytes and lycophytes (fern allies) to stomatal conductance (ls) and lm colimitation in pteridophytes (ferns) and gymnosperms, a balanced colimitation by the three limitations is finally reached in angiosperms. We discuss the implications of this new knowledge for future biotechnological attempts to improve crop photosynthesis.
Collapse
Affiliation(s)
- Jorge Gago
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain.
| | - Marc Carriquí
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - María José Clemente-Moreno
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - Rafael Eduardo Coopman
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Campus Isla Teja, Casilla 567, Valdivia, Chile
| | - Alisdair Robert Fernie
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears / Institute of Agro-Environmental Research and Water Economy -INAGEA, Carretera de Valldemossa, 07122, Palma, Spain.
| |
Collapse
|
47
|
Selection of Cyanobacterial ( Synechococcus sp. Strain PCC 6301) RubisCO Variants with Improved Functional Properties That Confer Enhanced CO 2-Dependent Growth of Rhodobacter capsulatus, a Photosynthetic Bacterium. mBio 2019; 10:mBio.01537-19. [PMID: 31337726 PMCID: PMC6650557 DOI: 10.1128/mbio.01537-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RubisCO catalysis has a significant impact on mitigating greenhouse gas accumulation and CO2 conversion to food, fuel, and other organic compounds required to sustain life. Because RubisCO-dependent CO2 fixation is severely compromised by oxygen inhibition and other physiological constraints, improving RubisCO’s kinetic properties to enhance growth in the presence of atmospheric O2 levels has been a longstanding goal. In this study, RubisCO variants with superior structure-functional properties were selected which resulted in enhanced growth of an autotrophic host organism (R. capsulatus), indicating that RubisCO function was indeed growth limiting. It is evident from these results that genetically engineered RubisCO with kinetically enhanced properties can positively impact growth rates in primary producers. Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a ubiquitous enzyme that catalyzes the conversion of atmospheric CO2 into organic carbon in primary producers. All naturally occurring RubisCOs have low catalytic turnover rates and are inhibited by oxygen. Evolutionary adaptations of the enzyme and its host organisms to changing atmospheric oxygen concentrations provide an impetus to artificially evolve RubisCO variants under unnatural selective conditions. A RubisCO deletion strain of the nonsulfur purple photosynthetic bacterium Rhodobacter capsulatus was previously used as a heterologous host for directed evolution and suppressor selection studies that led to the identification of a conserved hydrophobic region near the active site where amino acid substitutions selectively impacted the enzyme’s sensitivity to O2. In this study, structural alignments, mutagenesis, suppressor selection, and growth complementation with R. capsulatus under anoxic or oxygenic conditions were used to analyze the importance of semiconserved residues in this region of Synechococcus RubisCO. RubisCO mutant substitutions were identified that provided superior CO2-dependent growth capabilities relative to the wild-type enzyme. Kinetic analyses of the mutant enzymes indicated that enhanced growth performance was traceable to differential interactions of the enzymes with CO2 and O2. Effective residue substitutions also appeared to be localized to two other conserved hydrophobic regions of the holoenzyme. Structural comparisons and similarities indicated that regions identified in this study may be targeted for improvement in RubisCOs from other sources, including crop plants.
Collapse
|
48
|
Conlan B, Birch R, Kelso C, Holland S, De Souza AP, Long SP, Beck JL, Whitney SM. BSD2 is a Rubisco-specific assembly chaperone, forms intermediary hetero-oligomeric complexes, and is nonlimiting to growth in tobacco. PLANT, CELL & ENVIRONMENT 2019; 42:1287-1301. [PMID: 30375663 DOI: 10.1111/pce.13473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 05/28/2023]
Abstract
The folding and assembly of Rubisco large and small subunits into L8 S8 holoenzyme in chloroplasts involves many auxiliary factors, including the chaperone BSD2. Here we identify apparent intermediary Rubisco-BSD2 assembly complexes in the model C3 plant tobacco. We show BSD2 and Rubisco content decrease in tandem with leaf age with approximately half of the BSD2 in young leaves (~70 nmol BSD2 protomer.m2 ) stably integrated in putative intermediary Rubisco complexes that account for <0.2% of the L8 S8 pool. RNAi-silencing BSD2 production in transplastomic tobacco producing bacterial L2 Rubisco had no effect on leaf photosynthesis, cell ultrastructure, or plant growth. Genetic crossing the same RNAi-bsd2 alleles into wild-type tobacco however impaired L8 S8 Rubisco production and plant growth, indicating the only critical function of BSD2 is in Rubisco biogenesis. Agrobacterium mediated transient expression of tobacco, Arabidopsis, or maize BSD2 reinstated Rubisco biogenesis in BSD2-silenced tobacco. Overexpressing BSD2 in tobacco chloroplasts however did not alter Rubisco content, activation status, leaf photosynthesis rate, or plant growth in the field or in the glasshouse at 20°C or 35°C. Our findings indicate BSD2 functions exclusively in Rubisco biogenesis, can efficiently facilitate heterologous plant Rubisco assembly, and is produced in amounts nonlimiting to tobacco growth.
Collapse
Affiliation(s)
- Brendon Conlan
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Rosemary Birch
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Celine Kelso
- School of Chemistry, Molecular Horizons, University of Wollongong, New South Wales, Australia
| | - Sophie Holland
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Amanda P De Souza
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | - Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Jennifer L Beck
- School of Chemistry, Molecular Horizons, University of Wollongong, New South Wales, Australia
| | - Spencer M Whitney
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
49
|
Abstract
Photosynthesis and nitrogen fixation became evolutionarily immutable as “frozen metabolic accidents” because multiple interactions between the proteins and protein complexes involved led to their co-evolution in modules. This has impeded their adaptation to an oxidizing atmosphere, and reconfiguration now requires modification or replacement of whole modules, using either natural modules from exotic species or non-natural proteins with similar interaction potential. Ultimately, the relevant complexes might be reconstructed (almost) from scratch, starting either from appropriate precursor processes or by designing alternative pathways. These approaches will require advances in synthetic biology, laboratory evolution, and a better understanding of module functions.
Collapse
Affiliation(s)
- Dario Leister
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
50
|
South PF, Cavanagh AP, Lopez-Calcagno PE, Raines CA, Ort DR. Optimizing photorespiration for improved crop productivity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1217-1230. [PMID: 30126060 DOI: 10.1111/jipb.12709] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/14/2018] [Indexed: 05/24/2023]
Abstract
In C3 plants, photorespiration is an energy-expensive process, including the oxygenation of ribulose-1,5-bisphosphate (RuBP) by ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the ensuing multi-organellar photorespiratory pathway required to recycle the toxic byproducts and recapture a portion of the fixed carbon. Photorespiration significantly impacts crop productivity through reducing yields in C3 crops by as much as 50% under severe conditions. Thus, reducing the flux through, or improving the efficiency of photorespiration has the potential of large improvements in C3 crop productivity. Here, we review an array of approaches intended to engineer photorespiration in a range of plant systems with the goal of increasing crop productivity. Approaches include optimizing flux through the native photorespiratory pathway, installing non-native alternative photorespiratory pathways, and lowering or even eliminating Rubisco-catalyzed oxygenation of RuBP to reduce substrate entrance into the photorespiratory cycle. Some proposed designs have been successful at the proof of concept level. A plant systems-engineering approach, based on new opportunities available from synthetic biology to implement in silico designs, holds promise for further progress toward delivering more productive crops to farmer's fields.
Collapse
Affiliation(s)
- Paul F South
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture/Agricultural Research Service, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Amanda P Cavanagh
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | | | - Christine A Raines
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
- Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|