1
|
Zhang K, Luo W, Liu H, Gong J. PANX2 promotes malignant transformation of colorectal cancer and 5-Fu resistance through PI3K-AKT signaling pathway. Exp Cell Res 2024; 442:114269. [PMID: 39389335 DOI: 10.1016/j.yexcr.2024.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Colorectal cancer (CRC) is the third deadliest cancer in the world, with a high incidence, aggressiveness, poor prognosis, and resistant to drugs. 5-fluorouracil (5-FU) is the most commonly used drug for the chemotherapeutic of CRC, however, CRC is resistant to 5-FU after a period of treatment. Therefore, there is an urgent need to explore the underlying molecular mechanisms of CRC resistance to 5-FU. In the present study, we found that the expression of PANX2 was increased in CRC tissues and metastatic tissues from the TCGA database. The K-M survival curve showed that the high expression of PANX2 was associated with poor cancer prognosis. GDSC database showed that the IC50 of 5-Fu in the PANX2 high expression group was significantly higher, and the results were verified in CRC cells. In vitro cell function and in vivo tumorigenesis experiments showed that PANX2 promoted CRC cell proliferation, clone formation, migration and tumorigenesis in vivo. WB result revealed that PANX2 may lead to resistance to 5-Fu in CRC by affecting the PI3K-AKT signaling pathway. Overall, PANX2 regulates CRC proliferation, clone formation, migration, and 5-Fu resistance by PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Ke Zhang
- Jinan University, Guangzhou, 510632, China; Department of General Surgery, Changde Hospital, Xiangya School of Medicine, Central South University(The first people's hospital of Changde city), Changde, Hunan, 415000, China
| | - Wen Luo
- Department of General Surgery, Changde Hospital, Xiangya School of Medicine, Central South University(The first people's hospital of Changde city), Changde, Hunan, 415000, China
| | - Haijun Liu
- Department of General Surgery, Changde Hospital, Xiangya School of Medicine, Central South University(The first people's hospital of Changde city), Changde, Hunan, 415000, China
| | - Jin Gong
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
2
|
Huang Y, Shi Y, Wang M, Liu B, Chang X, Xiao X, Yu H, Cui X, Bai Y. Pannexin1 Channel-Mediated Inflammation in Acute Ischemic Stroke. Aging Dis 2024; 15:1296-1307. [PMID: 37196132 PMCID: PMC11081155 DOI: 10.14336/ad.2023.0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 05/19/2023] Open
Abstract
Emerging evidence suggests that inflammation mediated by the pannexin1 channel contributes significantly to acute ischemic stroke. It is believed that the pannexin1 channel is key in initiating central system inflammation during the early stages of acute ischemic stroke. Moreover, the pannexin1 channel is involved in the inflammatory cascade to maintain the inflammation levels. Specifically, the interaction of pannexin1 channels with ATP-sensitive P2X7 purinoceptors or promotion of potassium efflux mediates the activation of the NLRP3 inflammasome, triggering the release of pro-inflammatory factors such as IL-1 and IL-18, exacerbating and sustaining inflammation of brain. Also, increased release of ATP induced by cerebrovascular injury activates pannexin1 in vascular endothelial cells. This signal directs peripheral leukocytes to migrate into ischemic brain tissue, leading to an expansion of the inflammatory zone. Intervention strategies targeting pannexin1 channels may greatly alleviate inflammation after acute ischemic stroke to improve this patient population's clinical outcomes. In this review, we sought to summarize relevant studies on inflammation mediated by the pannexin1 channel in acute ischemic stroke and discussed the possibility of using brain organoid-on-a-chip technology to screen miRNAs that exclusively target the pannexin1 channel to provide new therapeutic measures for targeted regulation of pannexin1 channel to reduce inflammation in acute ischemic stroke.
Collapse
Affiliation(s)
- Yubing Huang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Yutong Shi
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Mengmeng Wang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Bingyi Liu
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xueqin Chang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xia Xiao
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Huihui Yu
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xiaodie Cui
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Ying Bai
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| |
Collapse
|
3
|
Hussain N, Apotikar A, Pidathala S, Mukherjee S, Burada AP, Sikdar SK, Vinothkumar KR, Penmatsa A. Cryo-EM structures of pannexin 1 and 3 reveal differences among pannexin isoforms. Nat Commun 2024; 15:2942. [PMID: 38580658 PMCID: PMC10997603 DOI: 10.1038/s41467-024-47142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
Pannexins are single-membrane large-pore channels that release ions and ATP upon activation. Three isoforms of pannexins 1, 2, and 3, perform diverse cellular roles and differ in their pore lining residues. In this study, we report the cryo-EM structure of pannexin 3 at 3.9 Å and analyze its structural differences with pannexin isoforms 1 and 2. The pannexin 3 vestibule has two distinct chambers and a wider pore radius in comparison to pannexins 1 and 2. We further report two cryo-EM structures of pannexin 1, with pore substitutions W74R/R75D that mimic the pore lining residues of pannexin 2 and a germline mutant of pannexin 1, R217H at resolutions of 3.2 Å and 3.9 Å, respectively. Substitution of cationic residues in the vestibule of pannexin 1 results in reduced ATP interaction propensities to the channel. The germline mutant R217H in transmembrane helix 3 (TM3), leads to a partially constricted pore, reduced ATP interaction and weakened voltage sensitivity. The study compares the three pannexin isoform structures, the effects of substitutions of pore and vestibule-lining residues and allosteric effects of a pathological substitution on channel structure and function thereby enhancing our understanding of this vital group of ATP-release channels.
Collapse
Affiliation(s)
- Nazia Hussain
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Ashish Apotikar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Shabareesh Pidathala
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sourajit Mukherjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- Department of Chemistry, The University of Chicago, Chicago, USA
| | - Ananth Prasad Burada
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Sujit Kumar Sikdar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Kutti R Vinothkumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
4
|
Park HR, Azzara D, Cohen ED, Boomhower SR, Diwadkar AR, Himes BE, O'Reilly MA, Lu Q. Identification of novel NRF2-dependent genes as regulators of lead and arsenic toxicity in neural progenitor cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132906. [PMID: 37939567 PMCID: PMC10842917 DOI: 10.1016/j.jhazmat.2023.132906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Lead (Pb) and arsenic (As) are prevalent metal contaminants in the environment. Exposures to these metals are associated with impaired neuronal functions and adverse effects on neurodevelopment in children. However, the molecular mechanisms by which Pb and As impair neuronal functions remain poorly understood. Here, we identified F2RL2, TRIM16L, and PANX2 as novel targets of Nuclear factor erythroid 2-related factor 2 (NRF2)-the master transcriptional factor for the oxidative stress response-that are commonly upregulated with both Pb and As in human neural progenitor cells (NPCs). Using a ChIP (Chromatin immunoprecipitation)-qPCR assay, we showed that NRF2 directly binds to the promoter region of F2RL2, TRIM16L, and PANX2 to regulate expression of these genes. We demonstrated that F2RL2, PANX2, and TRIM16L have differential effects on cell death, proliferation, and differentiation of NPCs in both the presence and absence of metal exposures, highlighting their roles in regulating NPC function. Furthermore, the analyses of the transcriptomic data on NPCs derived from autism spectrum disorder (ASD) patients revealed that dysregulation of F2RL2, TRIM16L, and PANX2 was associated with ASD genetic backgrounds and ASD risk genes. Our findings revealed that Pb and As induce a shared NRF2-dependent transcriptional response in NPCs and identified novel genes regulating NPC function. While further in vivo studies are warranted, this study provides a novel mechanism linking metal exposures to NPC function and identifies potential genes of interest in the context of neurodevelopment.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| | - David Azzara
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Ethan D Cohen
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Steven R Boomhower
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Avantika R Diwadkar
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
Noort RJ, Zhu H, Flemmer RT, Moore CS, Belbin TJ, Esseltine JL. Apically localized PANX1 impacts neuroepithelial expansion in human cerebral organoids. Cell Death Discov 2024; 10:22. [PMID: 38212304 PMCID: PMC10784521 DOI: 10.1038/s41420-023-01774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Dysfunctional paracrine signaling through Pannexin 1 (PANX1) channels is linked to several adult neurological pathologies and emerging evidence suggests that PANX1 plays an important role in human brain development. It remains unclear how early PANX1 influences brain development, or how loss of PANX1 alters the developing human brain. Using a cerebral organoid model of early human brain development, we find that PANX1 is expressed at all stages of organoid development from neural induction through to neuroepithelial expansion and maturation. Interestingly, PANX1 cellular distribution and subcellular localization changes dramatically throughout cerebral organoid development. During neural induction, PANX1 becomes concentrated at the apical membrane domain of neural rosettes where it co-localizes with several apical membrane adhesion molecules. During neuroepithelial expansion, PANX1-/- organoids are significantly smaller than control and exhibit significant gene expression changes related to cell adhesion, WNT signaling and non-coding RNAs. As cerebral organoids mature, PANX1 expression is significantly upregulated and is primarily localized to neuronal populations outside of the ventricular-like zones. Ultimately, PANX1 protein can be detected in all layers of a 21-22 post conception week human fetal cerebral cortex. Together, these results show that PANX1 is dynamically expressed by numerous cell types throughout embryonic and early fetal stages of human corticogenesis and loss of PANX1 compromises neuroepithelial expansion due to dysregulation of cell-cell and cell-matrix adhesion, perturbed intracellular signaling, and changes to gene regulation.
Collapse
Affiliation(s)
- Rebecca J Noort
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Hanrui Zhu
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Robert T Flemmer
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Thomas J Belbin
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
- Discipline of Oncology, Faculty of sp. Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Jessica L Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada.
| |
Collapse
|
6
|
O'Donnell BL, Penuela S. Skin in the game: pannexin channels in healthy and cancerous skin. Biochem J 2023; 480:1929-1949. [PMID: 38038973 DOI: 10.1042/bcj20230176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
The skin is a highly organized tissue composed of multiple layers and cell types that require coordinated cell to cell communication to maintain tissue homeostasis. In skin cancer, this organized structure and communication is disrupted, prompting the malignant transformation of healthy cells into melanoma, basal cell carcinoma or squamous cell carcinoma tumours. One such family of channel proteins critical for cellular communication is pannexins (PANX1, PANX2, PANX3), all of which are present in the skin. These heptameric single-membrane channels act as conduits for small molecules and ions like ATP and Ca2+ but have also been shown to have channel-independent functions through their interacting partners or action in signalling pathways. Pannexins have diverse roles in the skin such as in skin development, aging, barrier function, keratinocyte differentiation, inflammation, and wound healing, which were discovered through work with pannexin knockout mice, organotypic epidermis models, primary cells, and immortalized cell lines. In the context of cutaneous cancer, PANX1 is present at high levels in melanoma tumours and functions in melanoma carcinogenesis, and both PANX1 and PANX3 expression is altered in non-melanoma skin cancer. PANX2 has thus far not been implicated in any skin cancer. This review will discuss pannexin isoforms, structure, trafficking, post-translational modifications, interactome, and channel activity. We will also outline the expression, localization, and function of pannexin channels within the diverse cell types of the epidermis, dermis, hypodermis, and adnexal structures of the skin, and how these properties are exploited or abrogated in instances of skin cancer.
Collapse
Affiliation(s)
- Brooke L O'Donnell
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
- Department of Oncology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
7
|
García-Rodríguez C, Mujica P, Illanes-González J, López A, Vargas C, Sáez JC, González-Jamett A, Ardiles ÁO. Probenecid, an Old Drug with Potential New Uses for Central Nervous System Disorders and Neuroinflammation. Biomedicines 2023; 11:1516. [PMID: 37371611 DOI: 10.3390/biomedicines11061516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Probenecid is an old uricosuric agent used in clinics to treat gout and reduce the renal excretion of antibiotics. In recent years, probenecid has gained attention due to its ability to interact with membrane proteins such as TRPV2 channels, organic anion transporters, and pannexin 1 hemichannels, which suggests new potential therapeutic utilities in medicine. Some current functions of probenecid include their use as an adjuvant to increase the bioavailability of several drugs in the Central Nervous System (CNS). Numerous studies also suggest that this drug has important neuroprotective, antiepileptic, and anti-inflammatory properties, as evidenced by their effect against neurological and neurodegenerative diseases. In these studies, the use of probenecid as a Panx1 hemichannel blocker to reduce neuroinflammation is highlighted since neuroinflammation is a major trigger for diverse CNS alterations. Although the clinical use of probenecid has declined over the years, advances in its use in preclinical research indicate that it may be useful to improve conventional therapies in the psychiatric field where the drugs used have a low bioavailability, either because of a deficient passage through the blood-brain barrier or a high efflux from the CNS or also a high urinary clearance. This review summarizes the history, pharmacological properties, and recent research uses of probenecid and discusses its future projections as a potential pharmacological strategy to intervene in neurodegeneration as an outcome of neuroinflammation.
Collapse
Affiliation(s)
- Claudia García-Rodríguez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Paula Mujica
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Javiera Illanes-González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Araceli López
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Camilo Vargas
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Juan C Sáez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Arlek González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Álvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2341386, Chile
- Centro Interdisciplinario de Estudios en Salud, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2540064, Chile
| |
Collapse
|
8
|
He Z, Zhao Y, Rau MJ, Fitzpatrick JAJ, Sah R, Hu H, Yuan P. Structural and functional analysis of human pannexin 2 channel. Nat Commun 2023; 14:1712. [PMID: 36973289 PMCID: PMC10043284 DOI: 10.1038/s41467-023-37413-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
The pannexin 2 channel (PANX2) participates in multiple physiological processes including skin homeostasis, neuronal development, and ischemia-induced brain injury. However, the molecular basis of PANX2 channel function remains largely unknown. Here, we present a cryo-electron microscopy structure of human PANX2, which reveals pore properties contrasting with those of the intensely studied paralog PANX1. The extracellular selectivity filter, defined by a ring of basic residues, more closely resembles that of the distantly related volume-regulated anion channel (VRAC) LRRC8A, rather than PANX1. Furthermore, we show that PANX2 displays a similar anion permeability sequence as VRAC, and that PANX2 channel activity is inhibited by a commonly used VRAC inhibitor, DCPIB. Thus, the shared channel properties between PANX2 and VRAC may complicate dissection of their cellular functions through pharmacological manipulation. Collectively, our structural and functional analysis provides a framework for development of PANX2-specific reagents that are needed for better understanding of channel physiology and pathophysiology.
Collapse
Affiliation(s)
- Zhihui He
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yonghui Zhao
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael J Rau
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, USA
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Rajan Sah
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Iwasa K, Yamagishi A, Yamamoto S, Haruta C, Maruyama K, Yoshikawa K. GPR137 Inhibits Cell Proliferation and Promotes Neuronal Differentiation in the Neuro2a Cells. Neurochem Res 2023; 48:996-1008. [PMID: 36436172 PMCID: PMC9922245 DOI: 10.1007/s11064-022-03833-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/19/2022] [Indexed: 11/28/2022]
Abstract
The orphan receptor, G protein-coupled receptor 137 (GPR137), is an integral membrane protein involved in several types of cancer. GPR137 is expressed ubiquitously, including in the central nervous system (CNS). We established a GPR137 knockout (KO) neuro2A cell line to analyze GPR137 function in neuronal cells. KO cells were generated by genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and cultured as single cells by limited dilution. Rescue cells were then constructed to re-express GPR137 in GPR137 KO neuro2A cells using an expression vector with an EF1-alpha promoter. GPR137 KO cells increased cellular proliferation and decreased neurite outgrowth (i.e., a lower level of neuronal differentiation). Furthermore, GPR137 KO cells exhibited increased expression of a cell cycle regulator, cyclin D1, and decreased expression of a neuronal differentiation marker, NeuroD1. Additionally, GPR137 KO cells exhibited lower expression levels of the neurite outgrowth markers STAT3 and GAP43. These phenotypes were all abrogated in the rescue cells. In conclusion, GPR137 deletion increased cellular proliferation and decreased neuronal differentiation, suggesting that GPR137 promotes cell cycle exit and neuronal differentiation in neuro2A cells. Regulation of neuronal differentiation by GPR137 could be vital to constructing neuronal structure during brain development.
Collapse
Affiliation(s)
- Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-Hongo, Moroyama-Machi, Iruma-Gun, Saitama, 350-0495, Japan
| | - Anzu Yamagishi
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-Hongo, Moroyama-Machi, Iruma-Gun, Saitama, 350-0495, Japan
| | - Shinji Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-Hongo, Moroyama-Machi, Iruma-Gun, Saitama, 350-0495, Japan
| | - Chikara Haruta
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-Hongo, Moroyama-Machi, Iruma-Gun, Saitama, 350-0495, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-Hongo, Moroyama-Machi, Iruma-Gun, Saitama, 350-0495, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-Hongo, Moroyama-Machi, Iruma-Gun, Saitama, 350-0495, Japan.
| |
Collapse
|
10
|
Baracaldo-Santamaría D, Corrales-Hernández MG, Ortiz-Vergara MC, Cormane-Alfaro V, Luque-Bernal RM, Calderon-Ospina CA, Cediel-Becerra JF. Connexins and Pannexins: Important Players in Neurodevelopment, Neurological Diseases, and Potential Therapeutics. Biomedicines 2022; 10:2237. [PMID: 36140338 PMCID: PMC9496069 DOI: 10.3390/biomedicines10092237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cell-to-cell communication is essential for proper embryonic development and its dysfunction may lead to disease. Recent research has drawn attention to a new group of molecules called connexins (Cxs) and pannexins (Panxs). Cxs have been described for more than forty years as pivotal regulators of embryogenesis; however, the exact mechanism by which they provide this regulation has not been clearly elucidated. Consequently, Cxs and Panxs have been linked to congenital neurodegenerative diseases such as Charcot-Marie-Tooth disease and, more recently, chronic hemichannel opening has been associated with adult neurodegenerative diseases (e.g., Alzheimer's disease). Cell-to-cell communication via gap junctions formed by hexameric assemblies of Cxs, known as connexons, is believed to be a crucial component in developmental regulation. As for Panxs, despite being topologically similar to Cxs, they predominantly seem to form channels connecting the cytoplasm to the extracellular space and, despite recent research into Panx1 (Pannexin 1) expression in different regions of the brain during the embryonic phase, it has been studied to a lesser degree. When it comes to the nervous system, Cxs and Panxs play an important role in early stages of neuronal development with a wide span of action ranging from cellular migration during early stages to neuronal differentiation and system circuitry formation. In this review, we describe the most recent available evidence regarding the molecular and structural aspects of Cx and Panx channels, their role in neurodevelopment, congenital and adult neurological diseases, and finally propose how pharmacological modulation of these channels could modify the pathogenesis of some diseases.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - María Gabriela Corrales-Hernández
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Maria Camila Ortiz-Vergara
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Valeria Cormane-Alfaro
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Ricardo-Miguel Luque-Bernal
- Anatomy and Embriology Units, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos-Alberto Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- GENIUROS Research Group, Center for Research in Genetics and Genomics (CIGGUR), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Juan-Fernando Cediel-Becerra
- Histology and Embryology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| |
Collapse
|
11
|
Omolaoye TS, Jalaleddine N, Cardona Maya WD, du Plessis SS. Mechanisms of SARS-CoV-2 and Male Infertility: Could Connexin and Pannexin Play a Role? Front Physiol 2022; 13:866675. [PMID: 35721552 PMCID: PMC9205395 DOI: 10.3389/fphys.2022.866675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on male infertility has lately received significant attention. SARS-CoV-2, the virus that causes coronavirus disease (COVID-19) in humans, has been shown to impose adverse effects on both the structural components and function of the testis, which potentially impact spermatogenesis. These adverse effects are partially explained by fever, systemic inflammation, oxidative stress, and an increased immune response leading to impaired blood-testis barrier. It has been well established that efficient cellular communication via gap junctions or functional channels is required for tissue homeostasis. Connexins and pannexins are two protein families that mediate autocrine and paracrine signaling between the cells and the extracellular environment. These channel-forming proteins have been shown to play a role in coordinating cellular communication in the testis and epididymis. Despite their role in maintaining a proper male reproductive milieu, their function is disrupted under pathological conditions. The involvement of these channels has been well documented in several physiological and pathological conditions and their designated function in infectious diseases. However, their role in COVID-19 and their meaningful contribution to male infertility remains to be elucidated. Therefore, this review highlights the multivariate pathophysiological mechanisms of SARS-CoV-2 involvement in male reproduction. It also aims to shed light on the role of connexin and pannexin channels in disease progression, emphasizing their unexplored role and regulation of SARS-CoV-2 pathophysiology. Finally, we hypothesize the possible involvement of connexins and pannexins in SARS-CoV-2 inducing male infertility to assist future research ideas targeting therapeutic approaches.
Collapse
Affiliation(s)
- Temidayo S. Omolaoye
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nour Jalaleddine
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Walter D. Cardona Maya
- Reproduction Group, Department of Microbiology and Parasitology, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Stefan S. du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- *Correspondence: Stefan S. du Plessis,
| |
Collapse
|
12
|
Sanchez-Pupo RE, O'Donnell BL, Johnston D, Gyenis L, Litchfield DW, Penuela S. Pannexin 2 is expressed in murine skin and promotes UVB-induced apoptosis of keratinocytes. Mol Biol Cell 2022; 33:ar24. [PMID: 34985913 PMCID: PMC9250380 DOI: 10.1091/mbc.e21-08-0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pannexins (PANX) are a family of three channel-forming membrane glycoproteins expressed in the skin. Previous studies have focused on the role of PANX1 and PANX3 in the regulation of cellular functions in skin cells while PANX2, the largest member of this protein family, has not been investigated. In the current study, we explored the temporal PANX2 expression in murine skin and found that one Panx2 splice variant (Panx2-202) tends to be more abundant at the protein level and is continuously expressed in developed skin. PANX2 was detected in the suprabasal layers of the mouse epidermis and up-regulated in an in vitro model of rat epidermal keratinocyte differentiation. Furthermore, we show that in apoptotic rat keratinocytes, upon UV light B (UVB)-induced caspase-3/7 activation, ectopically overexpressed PANX2 is cleaved in its C-terminal domain at the D416 residue without increasing the apoptotic rate measured by caspase-3/7 activation. Notably, CRISPR-Cas9 mediated genetic deletion of rat Panx2 delays but does not impair caspase-3/7 activation and cytotoxicity in UVB-irradiated keratinocytes. We propose that endogenous PANX2 expression in keratinocytes promotes cell death after UVB insult and may contribute to skin homeostasis.
Collapse
Affiliation(s)
- Rafael E Sanchez-Pupo
- Department of Anatomy and Cell Biology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Brooke L O'Donnell
- Department of Anatomy and Cell Biology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Laszlo Gyenis
- Department of Biochemistry, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - David W Litchfield
- Department of Biochemistry, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Oncology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Oncology, Division of Experimental Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
13
|
Niego A, Benítez-Burraco A. Are feralization and domestication truly mirror processes? ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1975314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amy Niego
- PhD Program, Faculty of Philology, University of Seville, C/Palos de la Frontera s/n, 41004 Sevilla, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, C/Palos de la Frontera s/n, 41004 Sevilla, Spain (E-mail: )
| |
Collapse
|
14
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
15
|
Qian D, Zheng Q, Wu D, Ye B, Qian Y, Zhou T, Qiu J, Meng X. Integrated Analysis of ceRNA Network Reveals Prognostic and Metastasis Associated Biomarkers in Breast Cancer. Front Oncol 2021; 11:670138. [PMID: 34055638 PMCID: PMC8158160 DOI: 10.3389/fonc.2021.670138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/07/2021] [Indexed: 01/17/2023] Open
Abstract
Background Breast cancer is a malignancy and lethal tumor in women. Metastasis of breast cancer is one of the causes of poor prognosis. Increasing evidences have suggested that the competing endogenous RNAs (ceRNAs) were associated with the metastasis of breast cancer. Nonetheless, potential roles of ceRNAs in regulating the metastasis of breast cancer remain unclear. Methods The RNA expression (3 levels) and follow-up data of breast cancer and noncancerous tissue samples were downloaded from the Cancer Genome Atlas (TCGA). Differentially expressed and metastasis associated RNAs were identified for functional analysis and constructing the metastasis associated ceRNA network by comprehensively bioinformatic analysis. The Kaplan-Meier (K-M) survival curve was utilized to screen the prognostic RNAs in metastasis associated ceRNA network. Moreover, we further identified the metastasis associated biomarkers with operating characteristic (ROC) curve. Ultimately, the data of Cancer Cell Line Encyclopedia (CCLE, https://portals.broadinstitute.org/ccle) website were selected to obtained the reliable metastasis associated biomarkers. Results 1005 mRNAs, 22 miRNAs and 164 lncRNAs were screened as differentially expressed and metastasis associated RNAs. The results of GO function and KEGG pathway enrichment analysis showed that these RNAs are mainly associated with the metabolic processes and stress responses. Next, a metastasis associated ceRNA (including 104 mRNAs, 19 miRNAs, and 16 lncRNAs) network was established, and 12 RNAs were found to be related to the overall survival (OS) of patients. In addition, 3 RNAs (hsa-miR-105-5p, BCAR1, and PANX2) were identified to serve as reliable metastasis associated biomarkers. Eventually, the results of mechanism analysis suggested that BCAR1 might promote the metastasis of breast cancer by facilitating Rap 1 signaling pathway. Conclusion In the present research, we identified 3 RNAs (hsa-miR-105-5p, BCAR1 and PANX2) might associated with prognosis and metastasis of breast cancer, which might be provide a new perspective for metastasis of breast cancer and contributed to the treatment of breast cancer.
Collapse
Affiliation(s)
- Da Qian
- College of Medicine, Soochow University, Soochow, China.,Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Burn and Plastic Surgery-Hand Surgery, First People's Hospital of Changshu City, Changshu Hospital Affiliated to Soochow University, Soochow, China
| | - Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Danping Wu
- Department of Breast Surgery, First People's Hospital of Changshu City, Changshu Hospital Affiliated to Soochow University, Soochow, China
| | - Buyun Ye
- Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangyang Qian
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Tao Zhou
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jie Qiu
- Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
16
|
Cho HJ, Velichkovska M, Schurhoff N, András IE, Toborek M. Extracellular vesicles regulate gap junction-mediated intercellular communication and HIV-1 infection of human neural progenitor cells. Neurobiol Dis 2021; 155:105388. [PMID: 33962010 DOI: 10.1016/j.nbd.2021.105388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/13/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) has been shown to cross the blood-brain barrier and cause HIV-associated neurocognitive disorders (HAND) through a process that may involve direct or indirect interactions with the central nervous system (CNS) cells and alterations of amyloid β (Aβ) homeostasis. The present study focused on the mechanisms of HIV-1 infecting human neural progenitor cells (hNPCs) and affecting NPC intercellular communications with human brain endothelial cells (HBMEC). Despite the lack of the CD4 receptor, hNPCs were effectively infected by HIV-1 via a mechanism involving the chemokine receptors, CXCR4 and CCR5. HIV-1 infection increased expression of connexin-43 (Cx43), phosphorylated Cx43 (pCx43), and pannexin 2 (Panx2) protein levels in hNPCs, suggesting alterations in gap-junction (GJ) and pannexin channel communication. Indeed, a functional GJ assay indicated an increase in communication between HIV-infected hNPCs and non-infected HBMEC. We next analyzed the impact of HBMEC-derived extracellular vesicles (EVs) and EVs carrying Aβ (EV-Aβ) on the expression of Cx43, pCx43, and Panx2 in HIV-1 infected and non-infected hNPCs. Exposure to EV-Aβ resulted in significant reduction of Cx43 and pCx43 protein expression in non-infected hNPCs when compared to EV controls. Interestingly, EV-Aβ treatment significantly increased levels of Cx43, pCx43, and Panx2 in HIV-1-infected hNPCs when compared to non-infected controls. These results were confirmed in a GJ functional assay and an ATP release assay, which is an indicator of connexin hemichannel and/or pannexin channel functions. Overall, the current study demonstrates the importance of hNPCs in HIV-1 infection and indicates that intercellular communications between infected hNPCs and HBMEC can be effectively modulated by EVs carrying Aβ as their cargo.
Collapse
Affiliation(s)
- Hyung Joon Cho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Martina Velichkovska
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ibolya E András
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
17
|
Noort RJ, Christopher GA, Esseltine JL. Pannexin 1 Influences Lineage Specification of Human iPSCs. Front Cell Dev Biol 2021; 9:659397. [PMID: 33937260 PMCID: PMC8086557 DOI: 10.3389/fcell.2021.659397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Every single cell in the body communicates with nearby cells to locally organize activities with their neighbors and dysfunctional cell-cell communication can be detrimental during cell lineage commitment, tissue patterning and organ development. Pannexin channels (PANX1, PANX2, and PANX3) facilitate purinergic paracrine signaling through the passage of messenger molecules out of cells. PANX1 is widely expressed throughout the body and has recently been identified in human oocytes as well as 2 and 4-cell stage human embryos. Given its abundance across multiple adult tissues and its expression at the earliest stages of human development, we sought to understand whether PANX1 impacts human induced pluripotent stem cells (iPSCs) or plays a role in cell fate decisions. Western blot, immunofluorescence and flow cytometry reveal that PANX1 is expressed in iPSCs as well as all three germ lineages derived from these cells: ectoderm, endoderm, and mesoderm. PANX1 demonstrates differential glycosylation patterns and subcellular localization across the germ lineages. Using CRISPR-Cas9 gene ablation, we find that loss of PANX1 has no obvious impact on iPSC morphology, survival, or pluripotency gene expression. However, PANX1 gene knockout iPSCs exhibit apparent lineage specification bias under 3-dimensional spontaneous differentiation into the three germ lineages. Indeed, loss of PANX1 increases representation of endodermal and mesodermal populations in PANX1 knockout cells. Importantly, PANX1 knockout iPSCs are fully capable of differentiating toward each specific lineage when exposed to the appropriate external signaling pressures, suggesting that although PANX1 influences germ lineage specification, it is not essential to this process.
Collapse
Affiliation(s)
- Rebecca J Noort
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Grace A Christopher
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jessica L Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
18
|
Abstract
PANX2 forms large-pore channels mediating ATP release in response to physiological and pathological stimuli. Although PANX2 shows involvements in glioma genesis, the underlying mechanism remains unclear. PANX2 mRNA expression was analyzed via Oncomine and was confirmed via Gene Expression Profiling Interactive Analysis (GEPIA). The influence of PANX2 on overall survival (OS) of glioma was evaluated using LinkedOmics and further assessed through Cox regression analysis. The correlated genes with PANX2 acquired from LinkedOmics were validated through GEPIA and cBioPortal. Protein-protein interaction (PPI) of these genes was then obtained using Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape with MCODE plug-in. All the PANX2-related genes underwent Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The correlation between PANX2 and cancer immune infiltrates was evaluated via Tumor Immune Estimation Resource (TIMER). A higher expression of PANX2 only revealed a better OS in brain low grade glioma (LGG). PANX2-related genes in LGG functionally enriched in neuroactive ligand-receptor interaction, synaptic vesicle cycle, and calcium signaling. The hub genes from highest module of PPI were mainly linked to chemical synaptic transmission, plasma membrane, neuropeptide, and the pathway of neuroactive ligand-receptor interaction. Besides, PANX2 expression was negatively associated with infiltrating levels of macrophage, dendritic cells, and CD4+ T cells. This study demonstrated that PANX2 likely participated in LGG pathogenesis by affecting multiple molecular pathways and immune-related processes. PANX2 was associated with LGG prognosis and might become a promising therapeutic target of LGG.
Collapse
Affiliation(s)
- XiaoXue Xu
- Department of Neurology, The First
Hospital of China Medical University, Shenyang, China
- Key Laboratory of Neurological Disease
Big Data of Liaoning Province, Shenyang, China
| | - YueHan Hao
- Department of Neurology, The First
Hospital of China Medical University, Shenyang, China
- Key Laboratory of Neurological Disease
Big Data of Liaoning Province, Shenyang, China
| | - Shuang Xiong
- Liaoning Academy of Analytic Science,
Construction Engineering Center of Important Technology Innovation and Research and
Development Base in Liaoning Province, Shenyang, China
| | - ZhiYi He
- Department of Neurology, The First
Hospital of China Medical University, Shenyang, China
- Key Laboratory of Neurological Disease
Big Data of Liaoning Province, Shenyang, China
| |
Collapse
|
19
|
Menéndez Méndez A, Smith J, Engel T. Neonatal Seizures and Purinergic Signalling. Int J Mol Sci 2020; 21:ijms21217832. [PMID: 33105750 PMCID: PMC7660091 DOI: 10.3390/ijms21217832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.
Collapse
Affiliation(s)
- Aida Menéndez Méndez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
| | - Jonathon Smith
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- Correspondence: ; Tel.: +35-314-025-199
| |
Collapse
|
20
|
Yeung AK, Patil CS, Jackson MF. Pannexin‐1 in the CNS: Emerging concepts in health and disease. J Neurochem 2020; 154:468-485. [DOI: 10.1111/jnc.15004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Albert K. Yeung
- Department of Pharmacology and Therapeutics Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
- Neuroscience Research Program Kleysen Institute for Advanced Medicine University of Manitoba Winnipeg Manitoba Canada
| | - Chetan S. Patil
- Department of Pharmacology and Therapeutics Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
- Neuroscience Research Program Kleysen Institute for Advanced Medicine University of Manitoba Winnipeg Manitoba Canada
| | - Michael F. Jackson
- Department of Pharmacology and Therapeutics Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba Canada
- Neuroscience Research Program Kleysen Institute for Advanced Medicine University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
21
|
Epp AL, Ebert SN, Sanchez-Arias JC, Wicki-Stordeur LE, Boyce AKJ, Swayne LA. A novel motif in the proximal C-terminus of Pannexin 1 regulates cell surface localization. Sci Rep 2019; 9:9721. [PMID: 31278290 PMCID: PMC6611761 DOI: 10.1038/s41598-019-46144-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
The Pannexin 1 (Panx1) ion and metabolite channel is expressed in a wide variety of cells where it regulates a number of cell behaviours including proliferation and differentiation. Panx1 is expressed on the cell surface as well as intracellular membranes. Previous work suggests that a region within the proximal Panx1 C-terminus (Panx1CT) regulates cell surface localization. Here we report the discovery of a putative leucine-rich repeat (LRR) motif in the proximal Panx1CT necessary for Panx1 cell surface expression in HEK293T cells. Deletion of the putative LRR motif results in significant loss of Panx1 cell surface distribution. Outcomes of complementary cell surface oligomerization and glycosylation state analyses were consistent with reduced cell surface expression of Panx1 LRR deletion mutants. Of note, the oligomerization analysis revealed the presence of putative dimers and trimers of Panx1 at the cell surface. Expression of Panx1 increased HEK293T cell growth and reduced doubling time, while expression of a Panx1 LRR deletion mutant (highly conserved segment) did not reproduce this effect. In summary, here we discovered the presence of a putative LRR motif in the Panx1CT that impacts on Panx1 cell surface localization. Overall these findings provide new insights into the molecular mechanisms underlying C-terminal regulation of Panx1 trafficking and raise potential new lines of investigation with respect to Panx1 oligomerization and glycosylation.
Collapse
Affiliation(s)
- Anna L Epp
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada
| | - Sarah N Ebert
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada
| | - Juan C Sanchez-Arias
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada
| | - Leigh E Wicki-Stordeur
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada
| | - Andrew K J Boyce
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria, V8P 5C2, Canada.
| |
Collapse
|
22
|
Vitronectin is Involved in the Morphological Transition of Neurites in Retinoic Acid-Induced Neurogenesis of Neuroblastoma Cell Line Neuro2a. Neurochem Res 2019; 44:1621-1635. [PMID: 30937689 DOI: 10.1007/s11064-019-02787-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 01/15/2023]
Abstract
Vitronectin (Vtn), one of the extracellular matrix proteins, has been reported to result in cell cycle exit, neurite formation, and polarization of neural progenitor cells during neurogenesis. The underlying mechanism, however, has not been fully understood. In this study, we investigated the roles of Vtn and its integrin receptors, during the transition of neurites from multipolar to bipolar morphology, accompanying the cell cycle exit in neural progenitor cells. We used mouse neuroblastoma cell line Neuro2a as a model of neural progenitor cells which can induce cell cycle exit and the morphological transition of neurites by retinoic acid (RA)-stimulation. Treatment with an antibody for Vtn suppressed the RA-induced cell cycle exit and multipolar-to-bipolar transition. Furthermore, immunostaining results showed that in the cells displaying multipolar morphology Vtn was partially localized at the tips of neurites and in cells displaying bipolar morphology at both tips. This Vtn localization and multipolar-to-bipolar transition was perturbed by the transfection of a dominant negative mutant of cell polarity regulator Par6. In addition, a knockdown of β5 integrin, which is a receptor candidate for Vtn, affected the multipolar-to-bipolar transition. Taken together, these results suggest that Vtn regulates the multipolar-to-bipolar morphological transition via αvβ5 integrin.
Collapse
|
23
|
Pannexin 2 Localizes at ER-Mitochondria Contact Sites. Cancers (Basel) 2019; 11:cancers11030343. [PMID: 30862038 PMCID: PMC6468579 DOI: 10.3390/cancers11030343] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 01/02/2023] Open
Abstract
Endomembrane specialization allows functional compartmentalization but imposes physical constraints to information flow within the cell. However, the evolution of an endomembrane system was associated with the emergence of contact sites facilitating communication between membrane-bound organelles. Contact sites between the endoplasmic reticulum (ER) and mitochondria are highly conserved in terms of their morphological features but show surprising molecular diversity within and across eukaryote species. ER-mitochondria contact sites are thought to regulate key processes in oncogenesis but their molecular composition remains poorly characterized in mammalian cells. In this study, we investigate the localization of pannexin 2 (Panx2), a membrane channel protein showing tumor-suppressing properties in cancer cells. Using a combination of subcellular fractionation, particle tracking in live-cell, and immunogold electron microscopy, we show that Panx2 localizes at ER-mitochondria contact sites in mammalian cells and sensitizes cells to apoptotic stimuli.
Collapse
|
24
|
Sanchez-Pupo RE, Johnston D, Penuela S. N-Glycosylation Regulates Pannexin 2 Localization but Is Not Required for Interacting with Pannexin 1. Int J Mol Sci 2018; 19:ijms19071837. [PMID: 29932112 PMCID: PMC6073767 DOI: 10.3390/ijms19071837] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/16/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Pannexins (Panx1, 2, 3) are channel-forming glycoproteins expressed in mammalian tissues. We previously reported that N-glycosylation acts as a regulator of the localization and intermixing of Panx1 and Panx3, but its effects on Panx2 are currently unknown. Panx1 and Panx2 intermixing can regulate channel properties, and both pannexins have been implicated in neuronal cell death after ischemia. Our objectives were to validate the predicted N-glycosylation site of Panx2 and to study the effects of Panx2 glycosylation on localization and its capacity to interact with Panx1. We used site-directed mutagenesis, enzymatic de-glycosylation, cell-surface biotinylation, co-immunoprecipitation, and confocal microscopy. Our results showed that N86 is the only N-glycosylation site of Panx2. Panx2 and the N86Q mutant are predominantly localized to the endoplasmic reticulum (ER) and cis-Golgi matrix with limited cell surface localization was seen only in the presence of Panx1. The Panx2 N86Q mutant is glycosylation-deficient and tends to aggregate in the ER reducing its cell surface trafficking but it can still interact with Panx1. Our study indicates that N-glycosylation may be important for folding and trafficking of Panx2. We found that the un-glycosylated forms of Panx1 and 2 can readily interact, regulating their localization and potentially their channel function in cells where they are co-expressed.
Collapse
Affiliation(s)
- Rafael E Sanchez-Pupo
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A5C1, Canada.
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A5C1, Canada.
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A5C1, Canada.
| |
Collapse
|
25
|
Makarenkova HP, Shah SB, Shestopalov VI. The two faces of pannexins: new roles in inflammation and repair. J Inflamm Res 2018; 11:273-288. [PMID: 29950881 PMCID: PMC6016592 DOI: 10.2147/jir.s128401] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Pannexins belong to a family of ATP-release channels expressed in almost all cell types. An increasing body of literature on pannexins suggests that these channels play dual and sometimes contradictory roles, contributing to normal cell function, as well as to the pathological progression of disease. In this review, we summarize our understanding of pannexin "protective" and "harmful" functions in inflammation, regeneration and mechanical signaling. We also suggest a possible basis for pannexin's dual roles, related to extracellular ATP and K+ levels and the activation of various types of P2 receptors that are associated with pannexin. Finally, we speculate upon therapeutic strategies related to pannexin using eyes, lacrimal glands, and peripheral nerves as examples of interesting therapeutic targets.
Collapse
Affiliation(s)
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California.,Research Division, Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Valery I Shestopalov
- Bascom Eye Institute, Department of Ophthalmology, University of Miami, Miami, FL, USA.,Vavilov Institute for General Genetics, Russian Academy of Sciences.,Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
26
|
Xu J, He J, Huang H, Peng R, Xi J. MicroRNA-423-3p promotes glioma growth by targeting PANX2. Oncol Lett 2018; 16:179-188. [PMID: 29928399 PMCID: PMC6006452 DOI: 10.3892/ol.2018.8636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/15/2018] [Indexed: 01/08/2023] Open
Abstract
Previously, a number of microRNAs (miRs) have been identified to participate in the development and progression of glioma via the regulation of their target genes. However, the molecular mechanisms underlying the effect of miR-423-3p in glioma growth remain unclear. In the present study, the reverse transcription-quantitative polymerase chain reaction and western blotting were used to assess the mRNA and protein expression levels of miR-423-3p, respectively. An MTT assay and flow cytometry were performed to determine cell proliferation and apoptosis, respectively. A luciferase reporter gene assay was performed to determine the target association between pannexin 2 (PANX2) and miR-423-3p. It was revealed that miR-423-3p was significantly upregulated in glioma tissues compared with normal brain tissues, and the increased expression of miR-423-3p was significantly associated with an advanced grade as well as a poorer prognosis of patients with glioma. Inhibition of miR-423-3p using an miR-423-3p inhibitor resulted in the decreased proliferation of glioma U251 and U87MG Uppsala cells, and the induction of apoptosis. PANX2 was identified as a novel target gene of miR-423-3p, and the expression of PANX2 was revealed to be increased in U251 and U87MG Uppsala cells when miR-423-3p was inhibited. Knockdown of PANX2 attenuated the effects of miR-423-3p inhibition on glioma cell proliferation and apoptosis. Furthermore, PANX2 was significantly downregulated in glioma tissues compared with normal brain tissues, and its levels were markedly lower in World Health Organization (WHO) stage III–IV gliomas compared with WHO stage I–II gliomas. Additionally, the expression levels of PANX2 were identified to be inversely correlated with miR-423-3p expression levels in glioma tissues. Consequently, targeting miR-423-3p may inhibit glioma growth via the upregulation of PANX2.
Collapse
Affiliation(s)
- Jing Xu
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian He
- Department of Otolaryngology, Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - He Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Renjun Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian Xi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
27
|
Labra VC, Santibáñez CA, Gajardo-Gómez R, Díaz EF, Gómez GI, Orellana JA. The Neuroglial Dialog Between Cannabinoids and Hemichannels. Front Mol Neurosci 2018; 11:79. [PMID: 29662436 PMCID: PMC5890195 DOI: 10.3389/fnmol.2018.00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
The formation of gap junctions was initially thought to be the central role of connexins, however, recent evidence had brought to light the high relevance of unopposed hemichannels as an independent mechanism for the selective release of biomolecules during physiological and pathological conditions. In the healthy brain, the physiological opening of astrocyte hemichannels modulates basal excitatory synaptic transmission. At the other end, the release of potentially neurotoxic compounds through astroglial hemichannels and pannexons has been insinuated as one of the functional alterations that negatively affect the progression of multiple brain diseases. Recent insights in this matter have suggested encannabinoids (eCBs) as molecules that could regulate the opening of these channels during diverse conditions. In this review, we discuss and hypothesize the possible interplay between the eCB system and the hemichannel/pannexon-mediated signaling in the inflamed brain and during event of synaptic plasticity. Most findings indicate that eCBs seem to counteract the activation of major neuroinflammatory pathways that lead to glia-mediated production of TNF-α and IL-1β, both well-known triggers of astroglial hemichannel opening. In contrast to the latter, in the normal brain, eCBs apparently elicit the Ca2+-activation of astrocyte hemichannels, which could have significant consequences on eCB-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Valeria C Labra
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Cristian A Santibáñez
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Rosario Gajardo-Gómez
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Esteban F Díaz
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Gonzalo I Gómez
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| |
Collapse
|
28
|
Expression of pannexin 1 and 2 in cortical lesions from intractable epilepsy patients with focal cortical dysplasia. Oncotarget 2018; 8:6883-6895. [PMID: 28036289 PMCID: PMC5351677 DOI: 10.18632/oncotarget.14317] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/16/2016] [Indexed: 02/01/2023] Open
Abstract
Focal cortical dysplasia (FCD) is a major cause of intractable epilepsy in children however the mechanisms underlying the pathogenesis of FCD and FCD induced epilepsy remain unclear. Increasing evidence suggests that the large-pore ion channels, pannexin 1 (Panx1) and 2 (Panx2), are involved in epilepsy and brain development. In this study, we investigated the expression of Panx1 and Panx2 in surgical samples from patients with FCD type Ia (FCDIa), type IIa (FCDIIa), and type IIb (FCDIIb) and in age-matched autopsy control samples. We found Panx1 mRNA and protein levels were both increased in all these FCD samples. Immunohistochemical analyses revealed that Panx1 was mainly distributed in microcolumn neurons, dysmorphic neurons (DNs), balloon cells (BCs) and reactive astrocytes. Double-labeled staining showed that the Panx1-positive neurons were mostly glutamatergic DNs and occasionally GABAergic normal-appearing neurons. Importantly, the protein levels of Panx1 positively correlated with the frequency of seizures. Intriguingly, the Panx2 mRNA and protein levels were only upregulated in FCDIIb lesions and characteristically expressed on SOX2-positive multipotential BCs. Immunofluorescent experiments identified that Panx2-positive BCs mainly expressed the neuronal differentiation transcription factor MASH1 but not the immature glial marker vimentin. Taken together, our results established a potential role of the specific expression and cellular distribution patterns of Panx1 and Panx2 in FCD-associated epileptogenesis and pathogenesis.
Collapse
|
29
|
Chiu YH, Schappe MS, Desai BN, Bayliss DA. Revisiting multimodal activation and channel properties of Pannexin 1. J Gen Physiol 2017; 150:19-39. [PMID: 29233884 PMCID: PMC5749114 DOI: 10.1085/jgp.201711888] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022] Open
Abstract
Pannexin 1 (Panx1) forms plasma membrane ion channels that are widely expressed throughout the body. Panx1 activation results in the release of nucleotides such as adenosine triphosphate and uridine triphosphate. Thus, these channels have been implicated in diverse physiological and pathological functions associated with purinergic signaling, such as apoptotic cell clearance, blood pressure regulation, neuropathic pain, and excitotoxicity. In light of this, substantial attention has been directed to understanding the mechanisms that regulate Panx1 channel expression and activation. Here we review accumulated evidence for the various activation mechanisms described for Panx1 channels and, where possible, the unitary channel properties associated with those forms of activation. We also emphasize current limitations in studying Panx1 channel function and propose potential directions to clarify the exciting and expanding roles of Panx1 channels.
Collapse
Affiliation(s)
- Yu-Hsin Chiu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Michael S Schappe
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
30
|
Horton SM, Luna Lopez C, Blevins E, Howarth H, Weisberg J, Shestopalov VI, Makarenkova HP, Shah SB. Pannexin 1 Modulates Axonal Growth in Mouse Peripheral Nerves. Front Cell Neurosci 2017; 11:365. [PMID: 29213230 PMCID: PMC5702652 DOI: 10.3389/fncel.2017.00365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/06/2017] [Indexed: 01/29/2023] Open
Abstract
The pannexin family of channels consists of three members—pannexin-1 (Panx1), pannexin-2 (Panx2), and pannexin-3 (Panx3) that enable the exchange of metabolites and signaling molecules between intracellular and extracellular compartments. Pannexin-mediated release of intracellular ATP into the extracellular space has been tied to a number of cellular activities, primarily through the activity of type P2 purinergic receptors. Previous work indicates that the opening of Panx1 channels and activation of purinergic receptors by extracellular ATP may cause inflammation and apoptosis. In the CNS (central nervous system) and PNS (peripheral nervous system), coupled pannexin, and P2 functions have been linked to peripheral sensitization (pain) pathways. Purinergic pathways are also essential for other critical processes in the PNS, including myelination and neurite outgrowth. However, whether such pathways are pannexin-dependent remains to be determined. In this study, we use a Panx1 knockout mouse model and pharmacological inhibitors of the Panx1 and the ATP-mediated signaling pathway to fill gaps in our understanding of Panx1 localization in peripheral nerves, roles for Panx1 in axonal outgrowth and myelination, and neurite extension. Our data show that Panx1 is localized to axonal, myelin, and vascular compartments of the peripheral nerves. Knockout of Panx1 gene significantly increased axonal caliber in vivo and axonal growth rate in cultured dorsal root ganglia (DRG) neurons. Furthermore, genetic knockout of Panx1 or inhibition of components of purinergic signaling, by treatment with probenecid and apyrase, resulted in denser axonal outgrowth from cultured DRG explants compared to untreated wild-types. Our findings suggest that Panx1 regulates axonal growth in the peripheral nervous system.
Collapse
Affiliation(s)
- Steven M Horton
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Carlos Luna Lopez
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Elisabeth Blevins
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, United States
| | - Holly Howarth
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jake Weisberg
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
| | | | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Sameer B Shah
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, United States.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
31
|
Lohman AW, Weilinger NL, Santos SM, Bialecki J, Werner AC, Anderson CL, Thompson RJ. Regulation of pannexin channels in the central nervous system by Src family kinases. Neurosci Lett 2017; 695:65-70. [PMID: 28911820 DOI: 10.1016/j.neulet.2017.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/24/2017] [Accepted: 09/10/2017] [Indexed: 02/06/2023]
Abstract
Pannexins form single membrane channels that regulate the passage of ions, small molecules and metabolites between the intra- and extracellular compartments. In the central nervous system, these channels are integrated into numerous signaling cascades that shape brain physiology and pathology. Post-translational modification of pannexins is complex, with phosphorylation emerging as a prominent form of functional regulation. While much is still not known regarding the specific kinases and modified amino acids, recent reports support a role for Src family tyrosine kinases (SFK) in regulating pannexin channel activity. This review outlines the current evidence supporting SFK-dependent pannexin phosphorylation in the CNS and examines the importance of these modifications in the healthy and diseased brain.
Collapse
Affiliation(s)
- Alexander W Lohman
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas L Weilinger
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Silva Mf Santos
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Bialecki
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Allison C Werner
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Connor L Anderson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Roger J Thompson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
32
|
Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 925:57-73. [PMID: 27518505 DOI: 10.1007/5584_2016_53] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pannexins are newly discovered channels that are now recognized as mediators of adenosine triphosphate release from several cell types allowing communication with the extracellular environment. Pannexins have been associated with various physiological and pathological processes including apoptosis, inflammation, and cancer. However, it is only recently that our work has unveiled a role for Pannexin 1 and Pannexin 3 as novel regulators of skeletal muscle myoblast proliferation and differentiation. Myoblast differentiation is an ordered multistep process that includes withdrawal from the cell cycle and the expression of key myogenic factors leading to myoblast differentiation and fusion into multinucleated myotubes. Eventually, myotubes will give rise to the diverse muscle fiber types that build the complex skeletal muscle architecture essential for body movement, postural behavior, and breathing. Skeletal muscle cell proliferation and differentiation are crucial processes required for proper skeletal muscle development during embryogenesis, as well as for the postnatal skeletal muscle regeneration that is necessary for muscle repair after injury or exercise. However, defects in skeletal muscle cell differentiation and/or deregulation of cell proliferation are involved in various skeletal muscle pathologies. In this review, we will discuss the expression of pannexins and their post-translational modifications in skeletal muscle, their known functions in various steps of myogenesis, including myoblast proliferation and differentiation, as well as their possible roles in skeletal muscle development, regeneration, and diseases such as Duchenne muscular dystrophy.
Collapse
|
33
|
Berchtold LA, Miani M, Diep TA, Madsen AN, Cigliola V, Colli M, Krivokapic JM, Pociot F, Eizirik DL, Meda P, Holst B, Billestrup N, Størling J. Pannexin-2-deficiency sensitizes pancreatic β-cells to cytokine-induced apoptosis in vitro and impairs glucose tolerance in vivo. Mol Cell Endocrinol 2017; 448:108-121. [PMID: 28390953 DOI: 10.1016/j.mce.2017.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/20/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023]
Abstract
Pannexins (Panx's) are membrane proteins involved in a variety of biological processes, including cell death signaling and immune functions. The role and functions of Panx's in pancreatic β-cells remain to be clarified. Here, we show Panx1 and Panx2 expression in isolated islets, primary β-cells, and β-cell lines. The expression of Panx2, but not Panx1, was downregulated by interleukin-1β (IL-1β) plus interferon-γ (IFNγ), two pro-inflammatory cytokines suggested to contribute to β-cell demise in type 1 diabetes (T1D). siRNA-mediated knockdown (KD) of Panx2 aggravated cytokine-induced apoptosis in rat INS-1E cells and primary rat β-cells, suggesting anti-apoptotic properties of Panx2. An anti-apoptotic function of Panx2 was confirmed in isolated islets from Panx2-/- mice and in human EndoC-βH1 cells. Panx2 KD was associated with increased cytokine-induced activation of STAT3 and higher expression of inducible nitric oxide synthase (iNOS). Glucose-stimulated insulin release was impaired in Panx2-/- islets, and Panx2-/- mice subjected to multiple low-dose Streptozotocin (MLDS) treatment, a model of T1D, developed more severe diabetes compared to wild type mice. These data suggest that Panx2 is an important regulator of the insulin secretory capacity and apoptosis in pancreatic β-cells.
Collapse
Affiliation(s)
- Lukas A Berchtold
- Copenhagen Diabetes Research Center, Pediatric Department, University Hospital Herlev, Denmark; Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Michela Miani
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Belgium
| | - Thi A Diep
- Department of Neurosciences and Pharmacology, University of Copenhagen, Denmark
| | - Andreas N Madsen
- Department of Neurosciences and Pharmacology, University of Copenhagen, Denmark
| | - Valentina Cigliola
- Department of Genetic Medicine and Development, University of Geneva, Switzerland
| | - Maikel Colli
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Belgium
| | | | - Flemming Pociot
- Copenhagen Diabetes Research Center, Pediatric Department, University Hospital Herlev, Denmark
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Belgium
| | - Paolo Meda
- Department of Cellular Physiology and Metabolism, University of Geneva, Switzerland
| | - Birgitte Holst
- Department of Neurosciences and Pharmacology, University of Copenhagen, Denmark
| | - Nils Billestrup
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Joachim Størling
- Copenhagen Diabetes Research Center, Pediatric Department, University Hospital Herlev, Denmark.
| |
Collapse
|
34
|
P2X7 receptor cross-talk regulates ATP-induced pannexin 1 internalization. Biochem J 2017; 474:2133-2144. [PMID: 28495860 DOI: 10.1042/bcj20170257] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
Abstract
In the nervous system, extracellular ATP levels transiently increase in physiological and pathophysiological circumstances, effecting key signalling pathways in plasticity and inflammation through purinergic receptors. Pannexin 1 (Panx1) forms ion- and metabolite-permeable channels that mediate ATP release and are particularly enriched in the nervous system. Our recent study demonstrated that elevation of extracellular ATP triggers Panx1 internalization in a concentration- and time-dependent manner. Notably, this effect was sensitive to inhibition of ionotropic P2X7 purinergic receptors (P2X7Rs). Here, we report our novel findings from the detailed investigation of the mechanism underlying P2X7R-Panx1 cross-talk in ATP-stimulated internalization. We demonstrate that extracellular ATP triggers and is required for the clustering of P2X7Rs and Panx1 on Neuro2a cells through an extracellular physical interaction with the Panx1 first extracellular loop (EL1). Importantly, disruption of P2X7R-Panx1 clustering by mutation of tryptophan 74 within the Panx1 EL1 inhibits Panx1 internalization. Notably, P2X7R-Panx1 clustering and internalization are independent of P2X7R-associated intracellular signalling pathways (Ca2+ influx and Src activation). Further analysis revealed that cholesterol is required for ATP-stimulated P2X7R-Panx1 clustering at the cell periphery. Taken together, our data suggest that extracellular ATP induces and is required for Panx1 EL1-mediated, cholesterol-dependent P2X7R-Panx1 clustering and endocytosis. These findings have important implications for understanding the role of Panx1 in the nervous system and provide important new insights into Panx1-P2X7R cross-talk.
Collapse
|
35
|
Gunton AN, Sanchez-Arias JC, Carmona-Wagner EO, Wicki-Stordeur LE, Swayne LA. Upregulation of inflammatory mediators in the ventricular zone after cortical stroke. Proteomics Clin Appl 2017; 11. [PMID: 28508575 DOI: 10.1002/prca.201600092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 04/07/2017] [Accepted: 05/09/2017] [Indexed: 01/25/2023]
Abstract
PURPOSE After cortical stroke, neural precursor cells (NPCs) in the distal ventricular zone (VZ) proliferate more rapidly and migrate toward the injured cortex. While evidence suggests this can enhance stroke recovery, the underlying molecular mechanisms initiating the response are poorly understood. Here we identified changes in protein expression in the ipsilateral VZ early (4 h) after stroke to gain insight into the initial mechanisms involved in NPC activation post-stroke. EXPERIMENTAL DESIGN Four hours after photothrombotic stroke (or sham surgery control) in the sensorimotor cortex, adult mice (10 stroke, 10 sham) were subjected to cardiac perfusion with PBS, and ipsilateral and contralateral VZ tissue was microdissected. Two separate sets of ipsilateral and contralateral VZ tissues (from 5 pooled surgery or 5 pooled sham mice) were analyzed simultaneously using 8-plex iTRAQ. We used Western blotting and confocal microscopy to confirm changes in protein expression in the VZ ipsilateral to stroke in a separate cohort of mice. RESULTS We identified nine proteins which exhibited a significant mean increase (by ≥ 2-fold) in stroke ipsilateral compared to sham ipsilateral. Many of these proteins were antiproteases or cytokine/growth factor binding proteins that are known to act as inflammatory responders or effectors and play roles in modulating tissue growth and remodeling. CONCLUSION AND CLINICAL RELEVANCE These novel findings support a growing body of literature that inflammatory signaling is involved in the NPC response to brain injury and identifies novel potential targets that could be exploited to better understand and to optimize this regenerative response.
Collapse
Affiliation(s)
- Adrianna N Gunton
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Juan C Sanchez-Arias
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | | | - Leigh E Wicki-Stordeur
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Department of Biology, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Maes M, McGill MR, da Silva TC, Abels C, Lebofsky M, Weemhoff JL, Tiburcio T, Veloso Alves Pereira I, Willebrords J, Crespo Yanguas S, Farhood A, Beschin A, Van Ginderachter JA, Penuela S, Jaeschke H, Cogliati B, Vinken M. Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity. Arch Toxicol 2017; 91:2245-2261. [PMID: 27826632 PMCID: PMC5654513 DOI: 10.1007/s00204-016-1885-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023]
Abstract
Pannexins constitute a relatively new family of transmembrane proteins that form channels linking the cytoplasmic compartment with the extracellular environment. The presence of pannexin1 in the liver has been documented previously, where it underlies inflammatory responses, such as those occurring upon ischemia-reperfusion injury. In the present study, we investigated whether pannexin1 plays a role in acute drug-induced liver toxicity. Hepatic expression of pannexin1 was characterized in a mouse model of acetaminophen-induced hepatotoxicity. Subsequently, mice were overdosed with acetaminophen followed by treatment with the pannexin1 channel inhibitor 10Panx1. Sampling was performed 1, 3, 6, 24 and 48 h after acetaminophen administration. Evaluation of the effects of pannexin1 channel inhibition was based on a number of clinically relevant readouts, including protein adduct formation, measurement of aminotransferase activity and histopathological examination of liver tissue as well as on a series of markers of inflammation, oxidative stress and regeneration. Although no significant differences were found in histopathological analysis, pannexin1 channel inhibition reduced serum levels of alanine and aspartate aminotransferase. This was paralleled by a reduced amount of neutrophils recruited to the liver. Furthermore, alterations in the oxidized status were noticed with upregulation of glutathione levels upon suppression of pannexin1 channel opening. Concomitant promotion of regenerative activity was detected as judged on increased proliferating cell nuclear antigen protein quantities in 10Panx1-treated mice. Pannexin1 channels are important actors in liver injury triggered by acetaminophen. Inhibition of pannexin1 channel opening could represent a novel approach for the treatment of drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Chloé Abels
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - James L Weemhoff
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Taynã Tiburcio
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, TX, USA
| | - Alain Beschin
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
37
|
Kim Y, Davidson JO, Green CR, Nicholson LFB, O'Carroll SJ, Zhang J. Connexins and Pannexins in cerebral ischemia. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:224-236. [PMID: 28347700 DOI: 10.1016/j.bbamem.2017.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/24/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
Abstract
A common cause of mortality and long-term adult disability, cerebral ischemia or brain ischemia imposes a significant health and financial burden on communities worldwide. Cerebral ischemia is a condition that arises from a sudden loss of blood flow and consequent failure to meet the high metabolic demands of the brain. The lack of blood flow initiates a sequelae of cell death mechanisms, including the activation of the inflammatory pathway, which can ultimately result in irreversible brain tissue damage. In particular, Connexins and Pannexins are non-selective channels with a large pore that have shown to play time-dependent roles in the perpetuation of ischaemic injury. This review highlights the roles of Connexin and Pannexin channels in cell death mechanisms as a promising therapeutic target in cerebral ischemia, and in particular connexin hemichannels which may contribute most of the ATP release as a result of ischemia as well as during reperfusion. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Yeri Kim
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland
| | - Joanne O Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland
| | - Colin R Green
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland
| | - Louise F B Nicholson
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland
| | - Simon J O'Carroll
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland
| | - Jie Zhang
- Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland.
| |
Collapse
|
38
|
Scemes E, Velíšková J. Exciting and not so exciting roles of pannexins. Neurosci Lett 2017; 695:25-31. [PMID: 28284836 DOI: 10.1016/j.neulet.2017.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/24/2023]
Abstract
It is the current view that purinergic signaling regulates many physiological functions. Pannexin1 (Panx1), a member of the gap junction family of proteins is an ATP releasing channel that plays important physio-pathological roles in various tissues, including the CNS. Upon binding to purinergic receptors expressed in neural cells, ATP triggers cellular responses including increased cell proliferation, cell morphology changes, release of cytokines, and regulation of neuronal excitability via release of glutamate, GABA and ATP itself. Under pathological conditions such as ischemia, trauma, inflammation, and epilepsy, extracellular ATP concentrations increases drastically but the consequences of this surge is still difficult to characterize due to its rapid metabolism in ADP and adenosine, the latter having inhibitory action on neuronal activity. For seizures, for instance, the excitatory effect of ATP on neuronal activity is mainly related to its action of P2X receptors, while the inhibitory effects are related to activation of P1, adenosine receptors. Here we provide a mini review on the properties of pannexins with a main focus on Panx1 and its involvement in seizure activity. Although there are only few studies implicating Panx1 in seizures, they are illustrative of the dual role that Panx1 has on neuronal excitability.
Collapse
Affiliation(s)
- Eliana Scemes
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Jana Velíšková
- Departments of Cell Biology & Anatomy, Obstetrics & Gynecology and Neurology, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
39
|
Boyce AKJ, Epp AL, Nagarajan A, Swayne LA. Transcriptional and post-translational regulation of pannexins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:72-82. [PMID: 28279657 DOI: 10.1016/j.bbamem.2017.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/21/2022]
Abstract
Pannexins are a 3-membered family of proteins that form large pore ion and metabolite channels in vertebrates. The impact of pannexins on vertebrate biology is intricately tied to where and when they are expressed, and how they are modified, once produced. The purpose of this review is therefore to outline our current understanding of transcriptional and post-translational regulation of pannexins. First, we briefly summarize their discovery and characteristics. Next, we describe several aspects of transcriptional regulation, including cell and tissue-specific expression, dynamic expression over development and disease, as well as new insights into the underlying molecular machinery involved. Following this, we delve into the role of post-translational modifications in the regulation of trafficking and channel properties, highlighting important work on glycosylation, phosphorylation, S-nitrosylation and proteolytic cleavage. Embedded throughout, we also highlight important knowledge gaps and avenues of future research. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Andrew K J Boyce
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
| | - Anna L Epp
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
| | - Archana Nagarajan
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada.
| |
Collapse
|
40
|
Gawlik M, Wagner M, Pfuhlmann B, Stöber G. The role of Pannexin gene variants in schizophrenia: systematic analysis of phenotypes. Eur Arch Psychiatry Clin Neurosci 2016. [PMID: 26223428 DOI: 10.1007/s00406-015-0619-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pannexins are a group of brain-expressed channel proteins thought to be regulators of schizophrenia-linked pathways including glutamate release, synaptic plasticity and neural stem proliferation. We got evidence for linkage of a catatonic phenotype to the PANX2 locus in a family study. Aim of our study was to evaluate the role of Pannexins in schizophrenia and clinical phenotypes, particularly with regard to periodic catatonia. We genotyped six single-nucleotide polymorphisms at PANX1, five at PANX2 and three at PANX3 in 1173 German cases with schizophrenia according to DSM-5 and 480 controls. Our sample included 338 cases with periodic catatonia corresponding to Leonhard's classification. Association with schizophrenia according to DSM-5 was limited to genotype rs4838858-TT [p = 0.02, odds ratio (OR) 3.1] and haplotype rs4838858T-rs5771206G (p = 0.02, OR 2.7) at PANX2. We found no significant association with clinical phenotypes. Our limited findings do not support a major contribution of PANX1-3 to disease risk of schizophrenia according to DSM-5. We cannot confirm an association of the PANX2 loci at chromosome 22q13 with periodic catatonia.
Collapse
Affiliation(s)
- Micha Gawlik
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstraße 15, 97080, Würzburg, Germany.
| | - Martin Wagner
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstraße 15, 97080, Würzburg, Germany
| | - Bruno Pfuhlmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstraße 15, 97080, Würzburg, Germany
| | - Gerald Stöber
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Füchsleinstraße 15, 97080, Würzburg, Germany
| |
Collapse
|
41
|
Diezmos EF, Bertrand PP, Liu L. Purinergic Signaling in Gut Inflammation: The Role of Connexins and Pannexins. Front Neurosci 2016; 10:311. [PMID: 27445679 PMCID: PMC4925662 DOI: 10.3389/fnins.2016.00311] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Purinergic receptors play an important role in inflammation, and can be activated by ATP released via pannexin channels and/or connexin hemichannels. The purinergic P2X7 receptor (P2X7R) is of interest since it is involved in apoptosis when activated. Most studies focus on the influence of pannexin-1 (Panx1) and connexin 43 (Cx43) on ATP release and how it affects P2X7R function during inflammation. Inflammatory bowel disease (IBD) is characterized by uncontrolled inflammation within the gastrointestinal system. At present, the pathophysiology of this disease remains largely unknown but it may involve the interplay between P2X7R, Panx1, and Cx43. There are two main types of IBD, ulcerative colitis and Crohn's disease, that are classified by their location and frequency of inflammation. Current research suggests that alterations to normal functioning of innate and adaptive immunity may be a factor in disease progression. The involvement of purinergic receptors, connexins, and pannexins in IBD is a relatively novel notion in the context of gastrointestinal inflammation, and has been explored by various research groups. Thus, the present review focuses on the current research involving connexins, pannexins, and purinergic receptors within the gut and enteric nervous system, and will examine their involvement in inflammation and the pathophysiology of IBD.
Collapse
Affiliation(s)
- Erica F Diezmos
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| | - Paul P Bertrand
- School of Medical Sciences, University of New South WalesSydney, NSW, Australia; School of Medical Sciences, RMIT UniversityBundoora, VIC, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
42
|
Pannexin 1 Differentially Affects Neural Precursor Cell Maintenance in the Ventricular Zone and Peri-Infarct Cortex. J Neurosci 2016; 36:1203-10. [PMID: 26818508 DOI: 10.1523/jneurosci.0436-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED We demonstrated previously that Pannexin 1 (Panx1), an ion and metabolite channel, promotes the growth and proliferation of ventricular zone (VZ) neural precursor cells (NPCs) in vitro. To investigate its role in vivo, we used floxed Panx1 mice in combination with viruses to delete Panx1 in VZ NPCs and to track numbers of Panx1-null and Panx1-expressing VZ NPCs over time. Two days after virus injection, Panx1-null cells were less abundant than Panx1-expressing cells, suggesting that Panx1 is required for the maintenance of VZ NPCs. We also investigated the effect of Panx1 deletion in VZ NPCs after focal cortical stroke via photothrombosis. Panx1 is essential for maintaining elevated VZ NPC numbers after stroke. In contrast, Panx1-null NPCs were more abundant than Panx1-expressing NPCs in the peri-infarct cortex. Together, these findings suggest that Panx1 plays an important role in NPC maintenance in the VZ niche in the naive and stroke brain and could be a key target for improving NPC survival in the peri-infarct cortex. SIGNIFICANCE STATEMENT Here, we demonstrate that Pannexin 1 (Panx1) maintains a consistent population size of neural precursor cells in the ventricular zone, both in the healthy brain and in the context of stroke. In contrast, Panx1 appears to be detrimental to the survival of neural precursor cells that surround damaged cortical tissue in the stroke brain. This suggests that targeting Panx1 in the peri-infarct cortex, in combination with other therapies, could improve cell survival around the injury site.
Collapse
|
43
|
Abstract
Communication among cells via direct cell-cell contact by connexin gap junctions, or between cell and extracellular environment via pannexin channels or connexin hemichannels, is a key factor in cell function and tissue homeostasis. Upon malignant transformation in different cancer types, the dysregulation of these connexin and pannexin channels and their effect in cellular communication, can either enhance or suppress tumorigenesis and metastasis. In this review, we will highlight the latest reports on the role of the well characterized connexin family and its ability to form gap junctions and hemichannels in cancer. We will also introduce the more recently discovered family of pannexin channels and our current knowledge about their involvement in cancer progression.
Collapse
Affiliation(s)
- Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A5C1, Canada.
| |
Collapse
|
44
|
Abstract
Connexins and pannexins share very similar structures and functions; they also exhibit overlapping expression in many stages of neuronal development. Here, we review evidence implicating connexin- and pannexin-mediated communication in the regulation of the birth and development of neurons, specifically Cx26, Cx30, Cx32, Cx36, Cx43, Cx45, Panx1, and Panx2. We begin by dissecting the involvement of these proteins in the generation and development of new neurons in the embryonic, postnatal, and adult brain. Next we briefly outline common mechanisms employed by both pannexins and connexins in these roles, including modulation of purinergic receptor signalling and signalling nexus functions. Throughout this review we highlight developing themes as well as important gaps in knowledge to be bridged.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- />Division of Medical Sciences, University of Victoria, Medical Sciences Building Rm 224, 3800 Finnerty Rd, Victoria, BC V8P5C2 Canada
| | - Steffany A. L. Bennett
- />Department of Biochemistry, Microbiology and Immunology, Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
45
|
Cogliati B, Mennecier G, Willebrords J, Da Silva TC, Maes M, Pereira IVA, Crespo-Yanguas S, Hernandez-Blazquez FJ, Dagli MLZ, Vinken M. Connexins, Pannexins, and Their Channels in Fibroproliferative Diseases. J Membr Biol 2016; 249:199-213. [PMID: 26914707 DOI: 10.1007/s00232-016-9881-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/16/2016] [Indexed: 12/13/2022]
Abstract
Cellular and molecular mechanisms of wound healing, tissue repair, and fibrogenesis are established in different organs and are essential for the maintenance of function and tissue integrity after cell injury. These mechanisms are also involved in a plethora of fibroproliferative diseases or organ-specific fibrotic disorders, all of which are associated with the excessive deposition of extracellular matrix components. Fibroblasts, which are key cells in tissue repair and fibrogenesis, rely on communicative cellular networks to ensure efficient control of these processes and to prevent abnormal accumulation of extracellular matrix into the tissue. Despite the significant impact on human health, and thus the epidemiologic relevance, there is still no effective treatment for most fibrosis-related diseases. This paper provides an overview of current concepts and mechanisms involved in the participation of cellular communication via connexin-based pores as well as pannexin-based channels in the processes of tissue repair and fibrogenesis in chronic diseases. Understanding these mechanisms may contribute to the development of new therapeutic strategies to clinically manage fibroproliferative diseases and organ-specific fibrotic disorders.
Collapse
Affiliation(s)
- Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Gregory Mennecier
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tereza Cristina Da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Sara Crespo-Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Maria Lúcia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
46
|
Decrock E, De Bock M, Wang N, Bultynck G, Giaume C, Naus CC, Green CR, Leybaert L. Connexin and pannexin signaling pathways, an architectural blueprint for CNS physiology and pathology? Cell Mol Life Sci 2015; 72:2823-51. [PMID: 26118660 PMCID: PMC11113968 DOI: 10.1007/s00018-015-1962-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023]
Abstract
The central nervous system (CNS) is composed of a highly heterogeneous population of cells. Dynamic interactions between different compartments (neuronal, glial, and vascular systems) drive CNS function and allow to integrate and process information as well as to respond accordingly. Communication within this functional unit, coined the neuro-glio-vascular unit (NGVU), typically relies on two main mechanisms: direct cell-cell coupling via gap junction channels (GJCs) and paracrine communication via the extracellular compartment, two routes to which channels composed of transmembrane connexin (Cx) or pannexin (Panx) proteins can contribute. Multiple isoforms of both protein families are present in the CNS and each CNS cell type is characterized by a unique Cx/Panx portfolio. Over the last two decades, research has uncovered a multilevel platform via which Cxs and Panxs can influence different cellular functions within a tissue: (1) Cx GJCs enable a direct cell-cell communication of small molecules, (2) Cx hemichannels and Panx channels can contribute to autocrine/paracrine signaling pathways, and (3) different structural domains of these proteins allow for channel-independent functions, such as cell-cell adhesion, interactions with the cytoskeleton, and the activation of intracellular signaling pathways. In this paper, we discuss current knowledge on their multifaceted contribution to brain development and to specific processes in the NGVU, including synaptic transmission and plasticity, glial signaling, vasomotor control, and blood-brain barrier integrity in the mature CNS. By highlighting both physiological and pathological conditions, it becomes evident that Cxs and Panxs can play a dual role in the CNS and that an accurate fine-tuning of each signaling mechanism is crucial for normal CNS physiology.
Collapse
Affiliation(s)
- Elke Decrock
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| | - Marijke De Bock
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| | - Nan Wang
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signalling, Department of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium
| | - Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, 75231 Paris Cedex 05, France
- University Pierre et Marie
Curie, ED, N°158, 75005 Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005 Paris, France
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Colin R. Green
- Department of Ophthalmology, The University of Auckland, Auckland, New Zealand
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Ghent University, De Pintelaan 185 (Block B, 3rd floor), 9000 Ghent, Belgium
| |
Collapse
|
47
|
Plotkin LI, Stains JP. Connexins and pannexins in the skeleton: gap junctions, hemichannels and more. Cell Mol Life Sci 2015; 72:2853-67. [PMID: 26091748 PMCID: PMC4503509 DOI: 10.1007/s00018-015-1963-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Regulation of bone homeostasis depends on the concerted actions of bone-forming osteoblasts and bone-resorbing osteoclasts, controlled by osteocytes, cells derived from osteoblasts surrounded by bone matrix. The control of differentiation, viability and function of bone cells relies on the presence of connexins. Connexin43 regulates the expression of genes required for osteoblast and osteoclast differentiation directly or by changing the levels of osteocytic genes, and connexin45 may oppose connexin43 actions in osteoblastic cells. Connexin37 is required for osteoclast differentiation and its deletion results in increased bone mass. Less is known on the role of connexins in cartilage, ligaments and tendons. Connexin43, connexin45, connexin32, connexin46 and connexin29 are expressed in chondrocytes, while connexin43 and connexin32 are expressed in ligaments and tendons. Similarly, although the expression of pannexin1, pannexin2 and pannexin3 has been demonstrated in bone and cartilage cells, their function in these tissues is not fully understood.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., MS 5035, Indianapolis, IN, 46202, USA,
| | | |
Collapse
|
48
|
Faniku C, Wright CS, Martin PE. Connexins and pannexins in the integumentary system: the skin and appendages. Cell Mol Life Sci 2015; 72:2937-47. [PMID: 26091749 PMCID: PMC11113313 DOI: 10.1007/s00018-015-1969-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
The integumentary system comprises the skin and its appendages, which includes hair, nails, feathers, sebaceous and eccrine glands. In this review, we focus on the expression profile of connexins and pannexins throughout the integumentary system in mammals, birds and fish. We provide a picture of the complexity of the connexin/pannexin network illustrating functional importance of these proteins in maintaining the integrity of the epidermal barrier. The differential regulation and expression of connexins and pannexins during skin renewal, together with a number of epidermal, hair and nail abnormalities associated with mutations in connexins, emphasize that the correct balance of connexin and pannexin expression is critical for maintenance of the skin and its appendages with both channel and non-channel functions playing profound roles. Changes in connexin expression during both hair and feather regeneration provide suggestions of specialized communication compartments. Finally, we discuss the potential use of zebrafish as a model for connexin skin biology, where evidence mounts that differential connexin expression is involved in skin patterning and pigmentation.
Collapse
Affiliation(s)
- Chrysovalantou Faniku
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow, G4 0BA UK
| | - Catherine S. Wright
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow, G4 0BA UK
| | - Patricia E. Martin
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow, G4 0BA UK
| |
Collapse
|
49
|
Abstract
The different types of cells in the lung, from the conducting airway epithelium to the alveolar epithelium and the pulmonary vasculature, are interconnected by gap junctions. The specific profile of gap junction proteins, the connexins, expressed in these different cell types forms compartments of intercellular communication that can be further shaped by the release of extracellular nucleotides via pannexin1 channels. In this review, we focus on the physiology of connexins and pannexins and describe how this lung communication network modulates lung function and host defenses in conductive and respiratory airways.
Collapse
Affiliation(s)
- Davide Losa
- Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
- The ithree Institute, University of Technology Sydney, 2007 Ultimo, NSW Australia
| | - Marc Chanson
- Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
50
|
Abstract
The ubiquitous pannexin 1 (Panx1) ion- and metabolite-permeable channel mediates the release of ATP, a potent signalling molecule. In the present study, we provide striking evidence that ATP, in turn, stimulates internalization of Panx1 to intracellular membranes. These findings hold important implications for understanding the regulation of Panx1 when extracellular ATP is elevated. In the nervous system, this includes phenomena such as synaptic plasticity, pain, precursor cell development and stroke; outside of the nervous system, this includes things like skeletal and smooth muscle activity and inflammation. Within 15 min, ATP led to significant Panx1-EGFP internalization. In a series of experiments, we determined that hydrolysable ATP is the most potent stimulator of Panx1 internalization. We identified two possible mechanisms for Panx1 internalization, including activation of ionotropic purinergic (P2X) receptors and involvement of a putative ATP-sensitive residue in the first extracellular loop of Panx1 (Trp(74)). Internalization was cholesterol-dependent, but clathrin, caveolin and dynamin independent. Detailed analysis of Panx1 at specific endosome sub-compartments confirmed that Panx1 is expressed in endosome membranes of the classical degradation pathway under basal conditions and that elevation of ATP levels diverts a sub-population to recycling endosomes. This is the first report detailing endosome localization of Panx1 under basal conditions and the potential for ATP regulation of its surface expression. Given the ubiquitous expression profile of Panx1 and the importance of ATP signalling, these findings are of critical importance for understanding the role of Panx1 in health and disease.
Collapse
|