1
|
Liu RJ, Yang GB. Molecular characteristics of rhesus macaque interferon-lambda receptor 1 (mmuIFNLR1): Sequence identity, distribution and alteration after simian-human immunodeficiency virus infection in the skin and buccal mucosa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 160:105236. [PMID: 39103005 DOI: 10.1016/j.dci.2024.105236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Interferon-lambda receptor 1 (IFNLR1) is the key to interferon-lambda's biological activities. Rhesus macaques (Macaca mulatta) are supposedly more suitable for translational studies on interferon lambda-associated human diseases, yet little is known about their IFNLR1 (mmuIFNLR1). In this study, we cloned the coding sequence of mmuIFNLR1, examined its variants, and determined the distribution of mmuIFNLR1 mRNA and immunoreactivity in the buccal mucosa and arm skin of normal and immunodeficiency virus (SHIV/SIV) infected rhesus macaques. It was found that mmuIFNLR1 has 93.1% amino acid sequence identity to that of humans; all the amino acid residues of mmuIFNLR1 signal peptide, transmembrane region, PxxLxF motif and those essential for ligand binding are identical to that of humans; 6 variants of mmuIFNLR1, including the ones corresponding to that of humans were detected; IFNLR1 immunoreactivity was localized in primarily the epithelia of buccal mucosa and arm skin; SHIV/SIV infection could affect the levels of mmuIFNLR1 mRNA and immunoreactivity. These data expanded our knowledge on mmuIFNLR1 and provided a scientific basis for rational use of rhesus macaques in studies of IFN-λ associated human diseases like AIDS. Future studies testing IFNLR1-targeting therapeutics in rhesus macaques were warranted.
Collapse
Affiliation(s)
- Rui-Jie Liu
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing, 102206, PR China
| | - Gui-Bo Yang
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing, 102206, PR China.
| |
Collapse
|
2
|
Feng J, Kim J, Wang VD, Chang D, Liu H, Bain WG, Robinson KM, Jie Z, Kotenko SV, Dela Cruz CS, Sharma L. Context-specific anti-inflammatory roles of type III interferon signaling in the lung in nonviral injuries. Physiol Rep 2024; 12:e70104. [PMID: 39455422 PMCID: PMC11511623 DOI: 10.14814/phy2.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Type III interferons (λ1, λ2, and λ3) are potent antiviral cytokines in the lung. However, their roles in nonviral lung injuries are less well understood. This study investigates the activation of type III interferon signaling in three distinct models of lung injuries caused by diverse stimuli: the bacterial pathogen Pseudomonas aeruginosa, bacterial endotoxin LPS, and the chemotherapeutic agent bleomycin. Our data show that, despite inducing a potent inflammatory response, Pseudomonas and LPS did not increase IFNλ secretion. In contrast, bleomycin instillation increased secretion of IFNλ in the airways at both early and late time points. Consistent with limited secretion, type III interferon signaling had a minimal role in the host response to both Pseudomonas and LPS, as measured by pathogen burden, inflammatory response, and lung injury. Conversely, a deficiency in type III interferon signaling led to increased inflammatory signaling and elevated acute lung injury in the bleomycin model on day 3. This elevated early injury resulted in impaired recovery in IFNLR1 knockout mice, as evidenced by their recovery from bleomycin-induced weight loss. Taken together, these data suggest a context-specific activation of type III interferon signaling, where it plays an anti-inflammatory role in the lung.
Collapse
Affiliation(s)
- Jingjing Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
- Section of Pulmonary, Critical Care and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Jooyoung Kim
- Section of Pulmonary, Critical Care and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Victoria D. Wang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - De Chang
- Section of Pulmonary, Critical Care and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
- Department of Pulmonary and Critical Care Medicine at the Seventh Medical Center, College of Pulmonary and Critical Care Medicine of the Eighth Medical CenterChinese PLA General HospitalBeijingChina
| | - Hongbo Liu
- Section of Pulmonary, Critical Care and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
| | - William G. Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Veterans Affairs Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Keven M. Robinson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
| | - Sergei V. Kotenko
- Department of Biochemistry and Molecular BiologyRutgers New Jersey Medical SchoolNew BrunswickNew JerseyUSA
| | - Charles S. Dela Cruz
- Section of Pulmonary, Critical Care and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Veterans Affairs Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
Dedloff MR, Lazear HM. Antiviral and Immunomodulatory Effects of Interferon Lambda at the Maternal-Fetal Interface. Annu Rev Virol 2024; 11:363-379. [PMID: 38848605 DOI: 10.1146/annurev-virology-111821-101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Interferon lambda (IFN-λ, type III IFN, IL-28/29) is a family of antiviral cytokines that are especially important at barrier sites, including the maternal-fetal interface. Recent discoveries have identified important roles for IFN-λ during pregnancy, particularly in the context of congenital infections. Here, we provide a comprehensive review of the activity of IFN-λ at the maternal-fetal interface, highlighting cell types that produce and respond to IFN-λ in the placenta, decidua, and endometrium. Further, we discuss the role of IFN-λ during infections with congenital pathogens including Zika virus, human cytomegalovirus, rubella virus, and Listeria monocytogenes. We discuss advances in experimental models that can be used to fill important knowledge gaps about IFN-λ-mediated immunity.
Collapse
Affiliation(s)
- Margaret R Dedloff
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| | - Helen M Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA;
| |
Collapse
|
4
|
Nguyen MU, Iqbal J, Potgieter S, Huang W, Pfeffer J, Woo S, Zhao C, Lawlor M, Yang R, Rizly R, Halstead A, Dent S, Sáenz JB, Zheng H, Yuan ZF, Sidoli S, Ellison CE, P. Verzi M. KAT2A and KAT2B prevent double-stranded RNA accumulation and interferon signaling to maintain intestinal stem cell renewal. SCIENCE ADVANCES 2024; 10:eadl1584. [PMID: 39110797 PMCID: PMC11305398 DOI: 10.1126/sciadv.adl1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Histone acetyltransferases KAT2A and KAT2B are paralogs highly expressed in the intestinal epithelium, but their functions are not well understood. In this study, double knockout of murine Kat2 genes in the intestinal epithelium was lethal, resulting in robust activation of interferon signaling and interferon-associated phenotypes including the loss of intestinal stem cells. Use of pharmacological agents and sterile organoid cultures indicated a cell-intrinsic double-stranded RNA trigger for interferon signaling. Acetyl-proteomics and sequencing of immunoprecipitated double-stranded RNA were used to interrogate the mechanism behind this response, which identified mitochondria-encoded double-stranded RNA as the source of intrinsic interferon signaling. Kat2a and Kat2b therefore play an essential role in regulating mitochondrial functions and maintaining intestinal health.
Collapse
Affiliation(s)
- Mai-Uyen Nguyen
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jahangir Iqbal
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Sarah Potgieter
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Winston Huang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Julie Pfeffer
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Sean Woo
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Caifeng Zhao
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Matthew Lawlor
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Richard Yang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Rahma Rizly
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Angela Halstead
- Division of Gastroenterology, Departments of Medicine and Molecular Cell Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Sharon Dent
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - José B. Sáenz
- Division of Gastroenterology, Departments of Medicine and Molecular Cell Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Zuo-Fei Yuan
- St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Simone Sidoli
- Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Christopher E. Ellison
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Michael P. Verzi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, Division of Environmental & Population Health Biosciences, EOHSI, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
5
|
Goto Y, Miyafusa T, Honda S. Designing monomeric IFNγ: The significance of domain-swapped dimer structure in IFNγ immune responses. J Biol Chem 2024; 300:107464. [PMID: 38879015 DOI: 10.1016/j.jbc.2024.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Interferon (IFN) γ can initiate immune responses by inducing the expression of major histocompatibility complex molecules, suggesting its potential for cancer immunotherapy. However, it also has an immunosuppressive function that limits its application as a therapeutic agent. IFNγ has a characteristic domain-swapped dimer structure with two of the six α-helices exchanged with each other. As we hypothesized that the contrasting functions of IFNγ could be attributed to its unique domain-swapped structure, we designed monomeric IFNγ by transforming the domain-swapped dimer structure of WT IFNγ. We conjectured the evolution of this domain-swapped dimer and hypothesized that the current IFNγ structure emerged through shortening of the loop structure at the base of the swapped domain and the accumulation of hydrophobic amino acids at the newly generated interface during domain-swapping. We then designed and generated a stable monomeric IFNγ by retracing this evolutionary process, complementing the lost loop structure with a linker, and replacing the accumulated hydrophobic amino acids with hydrophilic ones. We determined that the designed variant was a monomer based on molecular size and number of epitopes and exhibited activity in cell-based assays. Notably, the monomeric IFNγ showed a qualitatively similar balance between immunostimulatory and immunosuppressive gene expression as WT IFNγ. This study demonstrates that the structural format of IFNγ affects the strength of its activity rather than regulating the fate of downstream gene expression.
Collapse
Affiliation(s)
- Yota Goto
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan; Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takamitsu Miyafusa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shinya Honda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan; Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| |
Collapse
|
6
|
Azamor T, Cunha DP, Nobre Pires KS, Lira Tanabe EL, Melgaço JG, Vieira da Silva AM, Ribeiro-Alves M, Calvo TL, Tubarão LN, da Silva J, Fernandes CB, Fonseca de Souza A, Torrentes de Carvalho A, Avvad-Portari E, da Cunha Guida L, Gomes L, Lopes Moreira ME, Dinis Ano Bom AP, Cristina da Costa Neves P, Missailidis S, Vasconcelos Z, Borbely AU, Moraes MO. Decidual production of interferon lambda in response to ZIKV persistence: Clinical evidence and in vitro modelling. Heliyon 2024; 10:e30613. [PMID: 38737240 PMCID: PMC11087979 DOI: 10.1016/j.heliyon.2024.e30613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Zika virus (ZIKV) infections during pregnancy can result in Congenital Zika Syndrome (CZS), a range of severe neurological outcomes in fetuses that primarily occur during early gestational stages possibly due to placental damage. Although some placentas can maintain ZIKV persistence for weeks or months after the initial infection and diagnosis, the impact of this viral persistence is still unknown. Here, we aimed to investigate the immunological repercussion of ZIKV persistence in term placentas. As such, term placentas from 64 pregnant women diagnosed with Zika in different gestational periods were analyzed by ZIKV RT-qPCR, examination of decidua and placental villous histopathology, and expression of inflammation-related genes and IFNL1-4. Subsequently, we explored primary cultures of term decidual Extravillous Trophoblasts (EVTs) and Term Chorionic Villi (TCV) explants, as in vitro models to access the immunological consequences of placental ZIKV infection. Placenta from CZS cases presented low IFNL1-4 expression, evidencing the critical protective role of theses cytokines in the clinical outcome. Term placentas cleared for ZIKV showed increased levels of IFNL1, 3, and 4, whether viral persistence was related with a proinflammatory profile. Conversely, upon ZIKV persistence placentas with decidual inflammation showed high IFNL1-4 levels. In vitro experiments showed that term EVTs are more permissive, and secreted higher levels of IFN-α2 and IFN-λ1 compared to TCV explants. The results suggest that, upon ZIKV persistence, the maternal-skewed decidua contributes to placental inflammatory and antiviral signature, through chronic deciduitis and IFNL upregulation. Although further studies are needed to elucidate the mechanisms underlying the decidual responses against ZIKV. Hence, this study presents unique insights and valuable in vitro models for evaluating the immunological landscape of placentas upon ZIKV persistence.
Collapse
|
7
|
Wang X, Qiu W, Hu G, Diao X, Li Y, Li Y, Li P, Liu Y, Feng Y, Xue C, Cao Y, Xu Z. NS7a of SADS-CoV promotes viral infection via inducing apoptosis to suppress type III interferon production. J Virol 2024; 98:e0031724. [PMID: 38624231 PMCID: PMC11092342 DOI: 10.1128/jvi.00317-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 04/17/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered swine coronavirus with potential cross-species transmission risk. Although SADS-CoV-induced host cell apoptosis and innate immunity antagonization has been revealed, underlying signaling pathways remain obscure. Here, we demonstrated that infection of SADS-CoV induced apoptosis in vivo and in vitro, and that viral protein NS7a is mainly responsible for SADS-CoV-induced apoptosis in host cells. Furthermore, we found that NS7a interacted with apoptosis-inducing factor mitochondria associated 1 (AIFM1) to activate caspase-3 via caspase-6 in SADS-CoV-infected cells, and enhanced SADS-CoV replication. Importantly, NS7a suppressed poly(I:C)-induced expression of type III interferon (IFN-λ) via activating caspase-3 to cleave interferon regulatory factor 3 (IRF3), and caspase-3 inhibitor protects piglets against SADS-CoV infection in vivo. These findings reveal how SADS-CoV induced apoptosis to inhibit innate immunity and provide a valuable clue to the development of effective drugs for the clinical control of SADS-CoV infection.IMPORTANCEOver the last 20 years, multiple animal-originated coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2, have caused millions of deaths, seriously jeopardized human health, and hindered social development, indicating that the study of animal-originated coronaviruses with potential for cross-species transmission is particularly important. Bat-originated swine acute diarrhea syndrome coronavirus (SADS-CoV), discovered in 2017, can not only cause fatal diarrhea in piglets, but also infect multiple human cells, with a potential risk of cross-species transmission, but its pathogenesis is unclear. In this study, we demonstrated that NS7a of SADS-CoV suppresses IFN-λ production via apoptosis-inducing factor mitochondria associated 1 (AIFM1)-caspase-6-caspase-3-interferon regulatory factor 3 (IRF3) pathway, and caspase-3 inhibitor (Z-DEVD-FMK) can effectively inhibit SADS-CoV replication and protect infected piglets. Our findings in this study contribute to a better understanding of SADS-CoV-host interactions as a part of the coronaviruses pathogenesis and using apoptosis-inhibitor as a drug as potential therapeutic approaches for prevention and control of SADS-CoV infection.
Collapse
Affiliation(s)
- Xiaowei Wang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Qiu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Guangli Hu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyuan Diao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yunfei Li
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yue Li
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Peng Li
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, USA
| | - Yufang Liu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yongtong Feng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Sojati J, Parks OB, Zhang Y, Walters S, Lan J, Eddens T, Lou D, Fan L, Chen K, Oury TD, Williams JV. IFN-λ drives distinct lung immune landscape changes and antiviral responses in human metapneumovirus infection. mBio 2024; 15:e0055024. [PMID: 38530032 PMCID: PMC11077986 DOI: 10.1128/mbio.00550-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Human metapneumovirus (HMPV) is a primary cause of acute respiratory infection, yet there are no approved vaccines or antiviral therapies for HMPV. Early host responses to HMPV are poorly characterized, and further understanding could identify important antiviral pathways. Type III interferon (IFN-λ) displays potent antiviral activity against respiratory viruses and is being investigated for therapeutic use. However, its role in HMPV infection remains largely unknown. Here, we show that IFN-λ is highly upregulated during HMPV infection in vitro in human and mouse airway epithelial cells and in vivo in mice. We found through several immunological and molecular assays that type II alveolar cells are the primary producers of IFN-λ. Using mouse models, we show that IFN-λ limits lung HMPV replication and restricts virus spread from upper to lower airways but does not contribute to clinical disease. Moreover, we show that IFN-λ signaling is predominantly mediated by CD45- non-immune cells. Mice lacking IFN-λ signaling showed diminished loss of ciliated epithelial cells and decreased recruitment of lung macrophages in early HMPV infection along with higher inflammatory cytokine and interferon-stimulated gene expression, suggesting that IFN-λ may maintain immunomodulatory responses. Administration of IFN-λ for prophylaxis or post-infection treatment in mice reduced viral load without inflammation-driven weight loss or clinical disease. These data offer clinical promise for IFN-λ in HMPV treatment. IMPORTANCE Human metapneumovirus (HMPV) is a common respiratory pathogen and often contributes to severe disease, particularly in children, immunocompromised people, and the elderly. There are currently no licensed HMPV antiviral treatments or vaccines. Here, we report novel roles of host factor IFN-λ in HMPV disease that highlight therapeutic potential. We show that IFN-λ promotes lung antiviral responses by restricting lung HMPV replication and spread from upper to lower airways but does so without inducing lung immunopathology. Our data uncover recruitment of lung macrophages, regulation of ciliated epithelial cells, and modulation of inflammatory cytokines and interferon-stimulated genes as likely contributors. Moreover, we found these roles to be distinct and non-redundant, as they are not observed with knockout of, or treatment with, type I IFN. These data elucidate unique antiviral functions of IFN-λ and suggest IFN-λ augmentation as a promising therapeutic for treating HMPV disease and promoting effective vaccine responses.
Collapse
Affiliation(s)
- Jorna Sojati
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Olivia B. Parks
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sara Walters
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jie Lan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Taylor Eddens
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dequan Lou
- Department of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Li Fan
- Department of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kong Chen
- Department of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute for Infection, Immunity, and Inflammation in Children, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Geisert RD, Bazer FW, Lucas CG, Pfeiffer CA, Meyer AE, Sullivan R, Johns DN, Sponchiado M, Prather RS. Maternal recognition of pregnancy in the pig: A servomechanism involving sex steroids, cytokines and prostaglandins. Anim Reprod Sci 2024; 264:107452. [PMID: 38522133 DOI: 10.1016/j.anireprosci.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Maternal recognition of pregnancy (MRP) is a term utilized in mammals to describe pathways in which the conceptus alters the endometrial environment to prevent regression of corpora lutea to ensure continued production of progesterone (P4) required for establishment and maintenance of pregnancy. For nearly 40 years after publication of the endocrine/exocrine theory, conceptus estrogen (E2) was considered the primary maternal recognition signal in the pig. Conceptus production of prostaglandin E2 (PGE2) was also considered to be a major factor in preventing luteolysis. An addition to E2 and PGE2, pig conceptuses produce interleukin 1B2 (IL1B2) and interferons (IFN) delta (IFND) and gamma (IFNG). The present review provides brief history of the discovery of E2, PGs and IFNS which led to research investigating the role of these conceptus secreted factors in establishing and maintaining pregnancy in the pig. The recent utilization of gene editing technology allowed a more direct approach to investigate the in vivo roles of IL1B2, E2, PGE2, AND IFNG for establishment of pregnancy. These studies revealed unknown functions for IFNG and ILB2 in addition to PGE2 and E2. Thus, pregnancy recognition signal is via a servomechanism in requiring sequential effects of P4, E2, IL1B2, PGE2 and IFNG. Results indicate that the original established dogma for the role of conceptus E2 and PGs in MRP is a far too simplified model that involves the interplay of numerous mechanisms for inhibiting luteolysis, inducing critical elongation of the conceptuses and resolution of inflammation in pigs.
Collapse
Affiliation(s)
- Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caroline A Pfeiffer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ashley E Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Riley Sullivan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Mariana Sponchiado
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Xia C, Wang T, Hahm B. Triggering Degradation of Host Cellular Proteins for Robust Propagation of Influenza Viruses. Int J Mol Sci 2024; 25:4677. [PMID: 38731896 PMCID: PMC11083682 DOI: 10.3390/ijms25094677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Following infection, influenza viruses strive to establish a new host cellular environment optimized for efficient viral replication and propagation. Influenza viruses use or hijack numerous host factors and machinery not only to fulfill their own replication process but also to constantly evade the host's antiviral and immune response. For this purpose, influenza viruses appear to have formulated diverse strategies to manipulate the host proteins or signaling pathways. One of the most effective tactics is to specifically induce the degradation of the cellular proteins that are detrimental to the virus life cycle. Here, we summarize the cellular factors that are deemed to have been purposefully degraded by influenza virus infection. The focus is laid on the mechanisms for the protein ubiquitination and degradation in association with facilitated viral amplification. The fate of influenza viral infection of hosts is heavily reliant on the outcomes of the interplay between the virus and the host antiviral immunity. Understanding the processes of how influenza viruses instigate the protein destruction pathways could provide a foundation for the development of advanced therapeutics to target host proteins and conquer influenza.
Collapse
Affiliation(s)
- Chuan Xia
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ting Wang
- Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
11
|
Zhong C, She G, Zhao Y, Liu Y, Li J, Wei X, Chen Z, Zhao K, Zhao Z, Xu Z, Zhang H, Cao Y, Xue C. Swine acute diarrhea syndrome coronavirus Nsp1 suppresses IFN-λ1 production by degrading IRF1 via ubiquitin-proteasome pathway. Vet Res 2024; 55:45. [PMID: 38589958 PMCID: PMC11003034 DOI: 10.1186/s13567-024-01299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus that causes acute watery diarrhea, vomiting, and dehydration in newborn piglets. The type III interferon (IFN-λ) response serves as the primary defense against viruses that replicate in intestinal epithelial cells. However, there is currently no information available on how SADS-CoV modulates the production of IFN-λ. In this study, we utilized IPI-FX cells (a cell line of porcine ileum epithelium) as an in vitro model to investigate the potential immune evasion strategies employed by SADS-CoV against the IFN-λ response. Our results showed that SADS-CoV infection suppressed the production of IFN-λ1 induced by poly(I:C). Through screening SADS-CoV-encoded proteins, nsp1, nsp5, nsp10, nsp12, nsp16, E, S1, and S2 were identified as antagonists of IFN-λ1 production. Specifically, SADS-CoV nsp1 impeded the activation of the IFN-λ1 promoter mediated by MAVS, TBK1, IKKε, and IRF1. Both SADS-CoV and nsp1 obstructed poly(I:C)-induced nuclear translocation of IRF1. Moreover, SADS-CoV nsp1 degraded IRF1 via the ubiquitin-mediated proteasome pathway without interacting with it. Overall, our study provides the first evidence that SADS-CoV inhibits the type III IFN response, shedding light on the molecular mechanisms employed by SADS-CoV to evade the host immune response.
Collapse
Affiliation(s)
- Chunhui Zhong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Gaoli She
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yukun Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yufang Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jingmin Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaona Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zexin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Keyu Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhiqing Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Kalugotla G, Marmerstein V, Baldridge MT. Regulation of host/pathogen interactions in the gastrointestinal tract by type I and III interferons. Curr Opin Immunol 2024; 87:102425. [PMID: 38763032 PMCID: PMC11162908 DOI: 10.1016/j.coi.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 02/01/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Interferons (IFNs) are an integral component of the host innate immune response during viral infection. Recent advances in the study of type I and III IFNs suggest that though both types counteract viral infection, type III IFNs act predominantly at epithelial barrier sites, while type I IFNs drive systemic responses. The dynamics and specific roles of type I versus III IFNs have been studied in the context of infection by a variety of enteric pathogens, including reovirus, rotavirus, norovirus, astrovirus, and intestinal severe acute respiratory syndrome coronavirus 2, revealing shared patterns of regulatory influence. An important role for the gut microbiota, including the virome, in regulating homeostasis and priming of intestinal IFN responses has also recently emerged.
Collapse
Affiliation(s)
- Gowri Kalugotla
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vivien Marmerstein
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Guglielmo A, Zengarini C, Agostinelli C, Motta G, Sabattini E, Pileri A. The Role of Cytokines in Cutaneous T Cell Lymphoma: A Focus on the State of the Art and Possible Therapeutic Targets. Cells 2024; 13:584. [PMID: 38607023 PMCID: PMC11012008 DOI: 10.3390/cells13070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Cutaneous T cell lymphomas (CTCLs), encompassing mycosis fungoides (MF) and Sézary syndrome (SS), present a complex landscape influenced by cytokines and cellular responses. In this work, the intricate relationship between these inflammatory proteins and disease pathogenesis is examined, focusing on what is known at the clinical and therapeutic levels regarding the most well-known inflammatory mediators. An in-depth look is given to their possible alterations caused by novel immunomodulatory drugs and how they may alter disease progression. From this narrative review of the actual scientific landscape, Interferon-gamma (IFN-γ) emerges as a central player, demonstrating a dual role in both promoting and inhibiting cancer immunity, but the work navigates through all the major interleukins known in inflammatory environments. Immunotherapeutic perspectives are elucidated, highlighting the crucial role of the cutaneous microenvironment in shaping dysfunctional cell trafficking, antitumor immunity, and angiogenesis in MF, showcasing advancements in understanding and targeting the immune phenotype in CTCL. In summary, this manuscript aims to comprehensively explore the multifaceted aspects of CTCL, from the immunopathogenesis and cytokine dynamics centred around TNF-α and IFN-γ to evolving therapeutic modalities. Including all the major known and studied cytokines in this analysis broadens our understanding of the intricate interplay influencing CTCL, paving the way for improved management of this complex lymphoma.
Collapse
Affiliation(s)
- Alba Guglielmo
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
| | - Corrado Zengarini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Agostinelli
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giovanna Motta
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elena Sabattini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro Pileri
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
14
|
Liu YG, Jin SW, Zhang SS, Xia TJ, Liao YH, Pan RL, Yan MZ, Chang Q. Interferon lambda in respiratory viral infection: immunomodulatory functions and antiviral effects in epithelium. Front Immunol 2024; 15:1338096. [PMID: 38495892 PMCID: PMC10940417 DOI: 10.3389/fimmu.2024.1338096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Type III interferon (IFN-λ), a new member of the IFN family, was initially considered to possess antiviral functions similar to those of type I interferon, both of which are induced via the JAK/STAT pathway. Nevertheless, recent findings demonstrated that IFN-λ exerts a nonredundant antiviral function at the mucosal surface, preferentially produced in epithelial cells in contrast to type I interferon, and its function cannot be replaced by type I interferon. This review summarizes recent studies showing that IFN-λ inhibits the spread of viruses from the cell surface to the body. Further studies have found that the role of IFN-λ is not only limited to the abovementioned functions, but it can also can exert direct and/or indirect effects on immune cells in virus-induced inflammation. This review focuses on the antiviral activity of IFN-λ in the mucosal epithelial cells and its action on immune cells and summarizes the pathways by which IFN-λ exerts its action and differentiates it from other interferons in terms of mechanism. Finally, we conclude that IFN-λ is a potent epidermal antiviral factor that enhances the respiratory mucosal immune response and has excellent therapeutic potential in combating respiratory viral infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Wright AP, Nice TJ. Role of type-I and type-III interferons in gastrointestinal homeostasis and pathogenesis. Curr Opin Immunol 2024; 86:102412. [PMID: 38518661 PMCID: PMC11032256 DOI: 10.1016/j.coi.2024.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Interferon (IFN) was discovered based on interference with virus production, and three types of IFN are now defined. Since its discovery, IFN's roles have expanded beyond viruses to diverse pathogen types, tissue homeostasis, and inflammatory disease. The gastrointestinal (GI) tract is arguably the tissue where the roles of IFN types are most distinct, with a particularly prominent role for type-III IFN in antiviral protection of the intestinal epithelium. Current studies continue to deepen our understanding of the type- and tissue-specific roles of IFN. This review highlights these advances within the GI tract, including discovery of protective roles for type-III IFNs against nonviral GI pathogens, and discovery of an antiviral homeostatic type-III IFN response within the intestinal epithelium.
Collapse
Affiliation(s)
- Austin P Wright
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
16
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Mihaescu G, Chifiriuc MC, Filip R, Bleotu C, Ditu LM, Constantin M, Cristian RE, Grigore R, Bertesteanu SV, Bertesteanu G, Vrancianu CO. Role of interferons in the antiviral battle: from virus-host crosstalk to prophylactic and therapeutic potential in SARS-CoV-2 infection. Front Immunol 2024; 14:1273604. [PMID: 38288121 PMCID: PMC10822962 DOI: 10.3389/fimmu.2023.1273604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalians sense antigenic messages from infectious agents that penetrate the respiratory and digestive epithelium, as well as signals from damaged host cells through membrane and cytosolic receptors. The transduction of these signals triggers a personalized response, depending on the nature of the stimulus and the host's genetics, physiological condition, and comorbidities. Interferons (IFNs) are the primary effectors of the innate immune response, and their synthesis is activated in most cells within a few hours after pathogen invasion. IFNs are primarily synthesized in infected cells, but their anti-infective effect is extended to the neighboring cells by autocrine and paracrine action. The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2019 was a stark reminder of the potential threat posed by newly emerging viruses. This pandemic has also triggered an overwhelming influx of research studies aiming to unveil the mechanisms of protective versus pathogenic host immune responses induced by SARS-CoV-2. The purpose of this review is to describe the role of IFNs as vital players in the battle against SARS-CoV-2 infection. We will briefly characterize and classify IFNs, present the inductors of IFN synthesis, their sensors, and signaling pathways, and then discuss the role of IFNs in controlling the evolution of SARS-CoV-2 infection and its clinical outcome. Finally, we will present the perspectives and controversies regarding the prophylactic and therapeutic potential of IFNs in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Grigore Mihaescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Life, Medical and Agricultural Sciences, Biological Sciences Section, Academy of Romanian Scientists, Bucharest, Romania
| | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Microbiology Department, Suceava Emergency County Hospital, Suceava, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Lia Mara Ditu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Marian Constantin
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Raluca Grigore
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Gloria Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
18
|
Novotny LA, Evans JG, Guo H, Kappler CS, Meissner EG. Interferon lambda receptor-1 isoforms differentially influence gene expression and HBV replication in stem cell-derived hepatocytes. Antiviral Res 2024; 221:105779. [PMID: 38070830 PMCID: PMC10872352 DOI: 10.1016/j.antiviral.2023.105779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND In the tolerogenic liver, inadequate or ineffective interferon signaling fails to clear chronic HBV infection. Lambda IFNs (IFNL) bind the interferon lambda receptor-1 (IFNLR1) which dimerizes with IL10RB to induce transcription of antiviral interferon-stimulated genes (ISG). IFNLR1 is expressed on hepatocytes, but low expression may limit the strength and antiviral efficacy of IFNL signaling. Three IFNLR1 transcriptional variants are detected in hepatocytes whose role in regulation of IFNL signaling is unclear: a full-length and signaling-capable form (isoform 1), a form that lacks a portion of the intracellular JAK1 binding domain (isoform 2), and a secreted form (isoform 3), the latter two predicted to be signaling defective. We hypothesized that altering expression of IFNLR1 isoforms would differentially impact the hepatocellular response to IFNLs and HBV replication. METHODS Induced pluripotent stem-cell derived hepatocytes (iHeps) engineered to contain FLAG-tagged, doxycycline-inducible IFNLR1 isoform constructs were HBV-infected then treated with IFNL3 followed by assessment of gene expression, HBV replication, and cellular viability. RESULTS Minimal overexpression of IFNLR1 isoform 1 markedly augmented ISG expression, induced de novo proinflammatory gene expression, and enhanced inhibition of HBV replication after IFNL treatment without adversely affecting cell viability. In contrast, overexpression of IFNLR1 isoform 2 or 3 partially augmented IFNL-induced ISG expression but did not support proinflammatory gene expression and minimally impacted HBV replication. CONCLUSIONS IFNLR1 isoforms differentially influence IFNL-induced gene expression and HBV replication in hepatocytes. Regulated IFNLR1 expression in vivo could limit the capacity of this pathway to counteract HBV replication.
Collapse
Affiliation(s)
- Laura A Novotny
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - J Grayson Evans
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics, Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christiana S Kappler
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Eric G Meissner
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
19
|
Korwek Z, Czerkies M, Jaruszewicz-Błońska J, Prus W, Kosiuk I, Kochańczyk M, Lipniacki T. Nonself RNA rewires IFN-β signaling: A mathematical model of the innate immune response. Sci Signal 2023; 16:eabq1173. [PMID: 38085817 DOI: 10.1126/scisignal.abq1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Type I interferons (IFNs) are key coordinators of the innate immune response to viral infection, which, through activation of the transcriptional regulators STAT1 and STAT2 (STAT1/2) in bystander cells, induce the expression of IFN-stimulated genes (ISGs). Here, we showed that in cells transfected with poly(I:C), an analog of viral RNA, the transcriptional activity of STAT1/2 was terminated because of depletion of the interferon-β (IFN-β) receptor, IFNAR. Activation of RNase L and PKR, products of two ISGs, not only hindered the replenishment of IFNAR but also suppressed negative regulators of IRF3 and NF-κB, consequently promoting IFNB transcription. We incorporated these findings into a mathematical model of innate immunity. By coupling signaling through the IRF3-NF-κB and STAT1/2 pathways with the activities of RNase L and PKR, the model explains how poly(I:C) switches the transcriptional program from being STAT1/2 induced to being IRF3 and NF-κB induced, which converts IFN-β-responding cells to IFN-β-secreting cells.
Collapse
Affiliation(s)
- Zbigniew Korwek
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Maciej Czerkies
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Joanna Jaruszewicz-Błońska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Wiktor Prus
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Ilona Kosiuk
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marek Kochańczyk
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Tomasz Lipniacki
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
20
|
Kim HW, Ko MK, Park SH, Shin S, Kim SM, Park JH, Lee MJ. Bestatin, A Pluripotent Immunomodulatory Small Molecule, Drives Robust and Long-Lasting Immune Responses as an Adjuvant in Viral Vaccines. Vaccines (Basel) 2023; 11:1690. [PMID: 38006022 PMCID: PMC10675184 DOI: 10.3390/vaccines11111690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
An inactivated whole-virus vaccine is currently used to prevent foot-and-mouth disease (FMD). Although this vaccine is effective, it offers short-term immunity that requires regular booster immunizations and has several side effects, including local reactions at the vaccination site. To address these limitations, herein, we evaluated the efficacy of bestatin as a novel small molecule adjuvant for inactivated FMD vaccines. Our findings showed that the FMD vaccine formulated with bestatin enhanced early, intermediate-, and particularly long-term immunity in experimental animals (mice) and target animals (pigs). Furthermore, cytokines (interferon (IFN)α, IFNβ, IFNγ, and interleukin (IL)-29), retinoic acid-inducible gene (RIG)-I, and T-cell and B-cell core receptors (cluster of differentiation (CD)28, CD19, CD21, and CD81) markedly increased in the group that received the FMD vaccine adjuvanted with bestatin in pigs compared with the control. These results indicate the significant potential of bestatin to improve the efficacy of inactivated FMD vaccines in terms of immunomodulatory function for the simultaneous induction of potent cellular and humoral immune response and a long-lasting memory response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Ja Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea; (H.W.K.); (M.-K.K.); (S.H.P.); (S.S.); (S.-M.K.); (J.-H.P.)
| |
Collapse
|
21
|
He J, Zhao M, Ma X, Li D, Kong J, Yang F. The role and application of three IFN-related reactions in psoriasis. Biomed Pharmacother 2023; 167:115603. [PMID: 37776636 DOI: 10.1016/j.biopha.2023.115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
The pathophysiology of psoriasis is a highly complicated one. Due to the disease's specificity, it not only affects the patient's skin negatively but also manifests systemic pathological changes. These clinical symptoms seriously harm the patient's physical and mental health. IFN, a common immunomodulatory factor, has been increasingly demonstrated to have a significant role in the development of psoriatic skin disease. Psoriasis is connected with a variety of immunological responses. New targets for the therapy of autoimmune skin diseases may emerge from further research on the mechanics of the associated IFN upstream and downstream pathways. Different forms of IFNs do not behave in the same manner in psoriasis, and understanding how different types of IFNs are involved in psoriasis may provide a better notion for future research. This review focuses on the involvement of three types of IFNs in psoriasis and related therapeutic investigations, briefly describing the three IFNs' production and signaling, as well as the dual effects of IFNs on the skin. It is intended that it would serve as a model for future research.
Collapse
Affiliation(s)
- Jiaming He
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Minghui Zhao
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyu Ma
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dilong Li
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyan Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Fan Yang
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
22
|
Yadav S, Varma A, Muralidharan AO, Bhowmick S, Mondal S, Mallick AI. The immune-adjunctive potential of recombinant LAB vector expressing murine IFNλ3 (MuIFNλ3) against Type A Influenza Virus (IAV) infection. Gut Pathog 2023; 15:53. [PMID: 37904242 PMCID: PMC10617148 DOI: 10.1186/s13099-023-00578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The conventional means of controlling the recurring pandemics of Type A Influenza Virus (IAV) infections remain challenging primarily because of its high mutability and increasing drug resistance. As an alternative to control IAV infections, the prophylactic use of cytokines to drive immune activation of multiple antiviral host factors has been progressively recognized. Among them, Type III Interferons (IFNs) exhibit a pivotal role in inducing potent antiviral host responses by upregulating the expression of several antiviral genes, including the Interferon-Stimulated Genes (ISGs) that specifically target the virus replication machinery. To harness the immuno-adjunctive potential, we examined whether pre-treatment of IFNλ3, a Type III IFN, can activate antiviral host responses against IAV infections. METHODS In the present study, we bioengineered a food-grade lactic acid-producing bacteria (LAB), Lactococcus lactis (L. lactis), to express and secrete functional murine IFNλ3 (MuIFNλ3) protein in the extracellular milieu. To test the immune-protective potential of MuIFNλ3 secreted by recombinant L. lactis (rL. lactis), we used murine B16F10 cells as an in vitro model while mice (BALB/c) were used for in vivo studies. RESULTS Our study demonstrated that priming with MuIFNλ3 secreted by rL. lactis could upregulate the expression of several antiviral genes, including Interferon Regulatory Factors (IRFs) and ISGs, without exacerbated pulmonary or intestinal inflammatory responses. Moreover, we also showed that pre-treatment of B16F10 cells with MuIFNλ3 can confer marked immune protection against mice-adapted influenza virus, A/PR/8/1934 (H1N1) infection. CONCLUSION Since the primary target for IAV infections is the upper respiratory and gastrointestinal tract, immune activation without affecting the tissue homeostasis suggests the immune-adjunctive potential of IFNλ3 against IAV infections.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Aparna Varma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Aparna Odayil Muralidharan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Sucharita Bhowmick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Samiran Mondal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
23
|
Nguyen MU, Potgieter S, Huang W, Pfeffer J, Woo S, Zhao C, Lawlor M, Yang R, Halstead A, Dent S, Sáenz JB, Zheng H, Yuan ZF, Sidoli S, Ellison CE, Verzi M. KAT2 paralogs prevent dsRNA accumulation and interferon signaling to maintain intestinal stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556156. [PMID: 37732252 PMCID: PMC10508741 DOI: 10.1101/2023.09.04.556156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Histone acetyltransferases KAT2A and KAT2B are paralogs highly expressed in the intestinal epithelium, but their functions are not well understood. In this study, double knockout of murine Kat2 genes in the intestinal epithelium was lethal, resulting in robust activation of interferon signaling and interferon-associated phenotypes including the loss of intestinal stem cells. Use of pharmacological agents and sterile organoid cultures indicated a cell-intrinsic double-stranded RNA trigger for interferon signaling. Acetyl-proteomics and dsRIP-seq were employed to interrogate the mechanism behind this response, which identified mitochondria-encoded double-stranded RNA as the source of intrinsic interferon signaling. Kat2a and Kat2b therefore play an essential role in regulating mitochondrial functions as well as maintaining intestinal health.
Collapse
Affiliation(s)
- Mai-Uyen Nguyen
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Sarah Potgieter
- Department of Animal Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Winston Huang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Julie Pfeffer
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Sean Woo
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Caifeng Zhao
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Matthew Lawlor
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Richard Yang
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Angela Halstead
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Sharon Dent
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - José B. Sáenz
- Division of Gastroenterology, Departments of Medicine and Molecular Cell Biology, Washington University in St. Louis, St. Louis, MO
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Zuo-Fei Yuan
- St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | - Michael Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, Division of Environmental & Population Health Biosciences, EOHSI, Rutgers, The State University of New Jersey, Piscataway, NJ
| |
Collapse
|
24
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Wang C, Honce R, Salvatore M, Chow D, Randazzo D, Yang J, Twells NM, Mahal LK, Schultz-Cherry S, Ghedin E. Influenza Defective Interfering Virus Promotes Multiciliated Cell Differentiation and Reduces the Inflammatory Response in Mice. J Virol 2023; 97:e0049323. [PMID: 37255439 PMCID: PMC10308934 DOI: 10.1128/jvi.00493-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Influenza defective interfering (DI) viruses have long been considered promising antiviral candidates because of their ability to interfere with replication-competent viruses and induce antiviral immunity. However, the mechanisms underlying DI-mediated antiviral immunity have not been extensively explored. Here, we demonstrated the interferon (IFN)-independent protection conferred by the influenza DI virus against homologous virus infection in mice deficient in type I and III IFN signaling. We identified unique host signatures responding to DI coinfection by integrating transcriptional and posttranscriptional regulatory data. DI-treated mice exhibited reduced viral transcription, less intense inflammatory and innate immune responses, and primed multiciliated cell differentiation in their lungs at an early stage of infection, even in the absence of type I or III IFNs. This increased multiciliogenesis could also be detected at the protein level via the immunofluorescence staining of lung tissue from DI-treated mice. Overall, our study provides mechanistic insight into the protection mediated by DIs, implying a unifying theme involving inflammation and multiciliogenesis in maintaining respiratory homeostasis and revealing their IFN-independent antiviral activity. IMPORTANCE During replication, the influenza virus generates genetically defective viruses. These are found in natural infections as part of the virus population within the infected host. Some versions of these defective viruses are thought to have protective effects through their interference with replication-competent viruses and induction of antiviral immunity. To better determine the mechanisms underlying the protective effects of these defective interfering (DI) viruses, we tested a DI that we previously identified in vitro with mice. Mice that were infected with a mix of wild-type influenza and DI viruses had less intense inflammatory and innate immune responses than did mice that were infected with the wild-type virus only, even when type I or III interferons, which are cytokines that play a prominent role in defending the respiratory epithelial barrier, were absent. More interestingly, the DI-infected mice had primed multiciliated cell differentiation in their lungs, indicating the potential promotion of epithelial repair by DIs.
Collapse
Affiliation(s)
- Chang Wang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, USA
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Integrated Program in Biomedical Sciences, Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Population Health Sciences, Weill Cornell Medical College, New York, New York, USA
| | - Daniela Chow
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland, USA
| | - Davide Randazzo
- Light Imaging Section, NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | - Jianjun Yang
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Nicholas M. Twells
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, USA
- Systems Genomics Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Quiros-Roldan E, Sottini A, Signorini SG, Serana F, Tiecco G, Imberti L. Autoantibodies to Interferons in Infectious Diseases. Viruses 2023; 15:v15051215. [PMID: 37243300 DOI: 10.3390/v15051215] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Anti-cytokine autoantibodies and, in particular, anti-type I interferons are increasingly described in association with immunodeficient, autoimmune, and immune-dysregulated conditions. Their presence in otherwise healthy individuals may result in a phenotype characterized by a predisposition to infections with several agents. For instance, anti-type I interferon autoantibodies are implicated in Coronavirus Disease 19 (COVID-19) pathogenesis and found preferentially in patients with critical disease. However, autoantibodies were also described in the serum of patients with viral, bacterial, and fungal infections not associated with COVID-19. In this review, we provide an overview of anti-cytokine autoantibodies identified to date and their clinical associations; we also discuss whether they can act as enemies or friends, i.e., are capable of acting in a beneficial or harmful way, and if they may be linked to gender or immunosenescence. Understanding the mechanisms underlying the production of autoantibodies could improve the approach to treating some infections, focusing not only on pathogens, but also on the possibility of a low degree of autoimmunity in patients.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | | | - Federico Serana
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Giorgio Tiecco
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
27
|
Bills C, Xie X, Shi PY. The multiple roles of nsp6 in the molecular pathogenesis of SARS-CoV-2. Antiviral Res 2023; 213:105590. [PMID: 37003304 PMCID: PMC10063458 DOI: 10.1016/j.antiviral.2023.105590] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and adapt after its emergence in late 2019. As the causative agent of the coronavirus disease 2019 (COVID-19), the replication and pathogenesis of SARS-CoV-2 have been extensively studied by the research community for vaccine and therapeutics development. Given the importance of viral spike protein in viral infection/transmission and vaccine development, the scientific community has thus far primarily focused on studying the structure, function, and evolution of the spike protein. Other viral proteins are understudied. To fill in this knowledge gap, a few recent studies have identified nonstructural protein 6 (nsp6) as a major contributor to SARS-CoV-2 replication through the formation of replication organelles, antagonism of interferon type I (IFN-I) responses, and NLRP3 inflammasome activation (a major factor of severe disease in COVID-19 patients). Here, we review the most recent progress on the multiple roles of nsp6 in modulating SARS-CoV-2 replication and pathogenesis.
Collapse
Affiliation(s)
- Cody Bills
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, USA; World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
28
|
Chen J, Li P, Zou W, Jiang Y, Li L, Hao P, Gao Z, Qu Q, Pang Z, Zhuang X, Nan F, Jin N, Du S, Li C. Identification of a Novel Interferon Lambda Splice Variant in Chickens. J Virol 2023; 97:e0174322. [PMID: 36877044 PMCID: PMC10062172 DOI: 10.1128/jvi.01743-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/08/2023] [Indexed: 03/07/2023] Open
Abstract
Type III interferons (IFNLs) have critical roles in the host's innate immune system, also serving as the first line against pathogenic infections of mucosal surfaces. In mammals, several IFNLs have been reported; however, only limited data on the repertoire of IFNLs in avian species is available. Previous studies showed only one member in chicken (chIFNL3). Herein, we identified a novel chicken IFNL for the first time, termed chIFNL3a, which contains 354 bp, and encodes 118 amino acids. The predicted protein is 57.1% amino acid identity with chIFNL. Genetic, evolutionary, and sequence analyses indicated that the new open reading frame (ORF) groups with type III chicken IFNs represent a novel splice variant. Compared to IFNs from different species, the new ORF is clustered within the type III IFNs group. Further study showed that chIFNL3a could activate a panel of IFN-regulated genes and function mediated by the IFNL receptor, and chIFNL3a markedly inhibited the replication of Newcastle disease virus (NDV) and influenza virus in vitro. These data collectively shed light on the repertoire of IFNs in avian species and provide useful information that further elucidate the interaction of the chIFNLs and viral infection of poultry. IMPORTANCE Interferons (IFNs) are critical soluble factors in the immune system, and are composed of 3 types (I, II, and III) that utilize different receptor complexes (IFN-αR1/IFN-αR2, IFN-γR1/IFN-γR2, and IFN-λR1/IL-10R2, respectively). Herein, we identified IFNL from the genomic sequences of chicken and termed it chIFNL3a, located on chromosome 7 of chicken. Phylogenetically clustered with all known types of chicken IFNs, the finding of this IFN is considered a type III IFN. To further evaluate the biological properties of chIFNL3a, the target protein was prepared by the baculovirus expression system (BES), which could markedly inhibit the replication of NDV and influenza viruses. In this study, we uncovered a new interferon lambda splice variant of chicken, termed chIFNL3a, which could inhibit viral replication in cells. Importantly, these novel findings may extend to other viruses, offering a new direction for therapeutic interventions.
Collapse
Affiliation(s)
- Jing Chen
- College of Veterinary Medicine, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peiheng Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wancheng Zou
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuhang Jiang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zihan Gao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qiaoqiao Qu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhaoxia Pang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xinyu Zhuang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fulong Nan
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- College of Veterinary Medicine, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun, China
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shouwen Du
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
29
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
30
|
Chamani S, Moossavi M, Naghizadeh A, Abbasifard M, Kesharwani P, Sathyapalan T, Sahebkar A. Modulatory properties of curcumin in cancer: A narrative review on the role of interferons. Phytother Res 2023; 37:1003-1014. [PMID: 36744753 DOI: 10.1002/ptr.7734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 02/07/2023]
Abstract
The immune network is an effective network of cell types and chemical compounds established to maintain the body's homeostasis from foreign threats and to prevent the risk of a wide range of diseases; hence, its proper functioning and balance are essential. A dysfunctional immune system can contribute to various disorders, including cancer. Therefore, there has been considerable interest in molecules that can modulate the immune network. Curcumin, the active ingredient of turmeric, is one of these herbal remedies with many beneficial effects, including modulation of immunity. Curcumin is beneficial in managing various chronic inflammatory conditions, improving brain function, lowering cardiovascular disease risk, prevention and management of dementia, and prevention of aging. Several clinical studies have supported this evidence, suggesting curcumin to have an immunomodulatory and anti-inflammatory function; nevertheless, its mechanism of action is still not clear. In the current review, we aim to explore the modulatory function of curcumin through interferons in cancers.
Collapse
Affiliation(s)
- Sajjad Chamani
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moossavi
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research Jamia Hamdard, New Delhi, India
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Murillo-León M, Bastidas-Quintero AM, Endres NS, Schnepf D, Delgado-Betancourt E, Ohnemus A, Taylor GA, Schwemmle M, Staeheli P, Steinfeldt T. IFN-λ is protective against lethal oral Toxoplasma gondii infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529861. [PMID: 36865100 PMCID: PMC9980175 DOI: 10.1101/2023.02.24.529861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Interferons are essential for innate and adaptive immune responses against a wide variety of pathogens. Interferon lambda (IFN-λ) protects mucosal barriers during pathogen exposure. The intestinal epithelium is the first contact site for Toxoplasma gondii (T. gondii) with its hosts and the first defense line that limits parasite infection. Knowledge of very early T. gondii infection events in the gut tissue is limited and a possible contribution of IFN-λ has not been investigated so far. Here, we demonstrate with systemic interferon lambda receptor (IFNLR1) and conditional (Villin-Cre) knockout mouse models and bone marrow chimeras of oral T. gondii infection and mouse intestinal organoids a significant impact of IFN-λ signaling in intestinal epithelial cells and neutrophils to T. gondii control in the gastrointestinal tract. Our results expand the repertoire of interferons that contribute to the control of T. gondii and may lead to novel therapeutic approaches against this world-wide zoonotic pathogen.
Collapse
Affiliation(s)
- Mateo Murillo-León
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Aura M. Bastidas-Quintero
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Niklas S. Endres
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Current address:Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Current address: Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | | | - Annette Ohnemus
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Gregory A. Taylor
- Departments of Medicine; Molecular Genetics and Microbiology; and Immunology; and Center for the Study of Aging and Human Development, Duke University Medical Center, NC 27710 Durham, North Carolina, United States of America
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, NC 27705 Durham, North Carolina, United States of America
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias Steinfeldt
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
32
|
Mo Q, Feng K, Dai S, Wu Q, Zhang Z, Ali A, Deng F, Wang H, Ning YJ. Transcriptome profiling highlights regulated biological processes and type III interferon antiviral responses upon Crimean-Congo hemorrhagic fever virus infection. Virol Sin 2023; 38:34-46. [PMID: 36075566 PMCID: PMC10006212 DOI: 10.1016/j.virs.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a biosafety level-4 (BSL-4) pathogen that causes Crimean-Congo hemorrhagic fever (CCHF) characterized by hemorrhagic manifestation, multiple organ failure and high mortality rate, posing great threat to public health. Despite the recently increasing research efforts on CCHFV, host cell responses associated with CCHFV infection remain to be further characterized. Here, to better understand the cellular response to CCHFV infection, we performed a transcriptomic analysis in human kidney HEK293 cells by high-throughput RNA sequencing (RNA-seq) technology. In total, 496 differentially expressed genes (DEGs), including 361 up-regulated and 135 down-regulated genes, were identified in CCHFV-infected cells. These regulated genes were mainly involved in host processes including defense response to virus, response to stress, regulation of viral process, immune response, metabolism, stimulus, apoptosis and protein catabolic process. Therein, a significant up-regulation of type III interferon (IFN) signaling pathway as well as endoplasmic reticulum (ER) stress response was especially remarkable. Subsequently, representative DEGs from these processes were well validated by RT-qPCR, confirming the RNA-seq results and the typical regulation of IFN responses and ER stress by CCHFV. Furthermore, we demonstrate that not only type I but also type III IFNs (even at low dosages) have substantial anti-CCHFV activities. Collectively, the data may provide new and comprehensive insights into the virus-host interactions and particularly highlights the potential role of type III IFNs in restricting CCHFV, which may help inform further mechanistic delineation of the viral infection and development of anti-CCHFV strategies.
Collapse
Affiliation(s)
- Qiong Mo
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kuan Feng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Shiyu Dai
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qiaoli Wu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Zhong Zhang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Ashaq Ali
- University of Chinese Academy of Sciences, Beijing, 101408, China; Centre of Excellence in Science and Applied Technologies, Islamabad, 45320, Pakistan
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China.
| | - Hualin Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China.
| | - Yun-Jia Ning
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China.
| |
Collapse
|
33
|
Leon C, Tokarev A, Bouchnita A, Volpert V. Modelling of the Innate and Adaptive Immune Response to SARS Viral Infection, Cytokine Storm and Vaccination. Vaccines (Basel) 2023; 11:vaccines11010127. [PMID: 36679972 PMCID: PMC9861811 DOI: 10.3390/vaccines11010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
In this work, we develop mathematical models of the immune response to respiratory viral infection, taking into account some particular properties of the SARS-CoV infections, cytokine storm and vaccination. Each model consists of a system of ordinary differential equations that describe the interactions of the virus, epithelial cells, immune cells, cytokines, and antibodies. Conventional analysis of the existence and stability of stationary points is completed by numerical simulations in order to study the dynamics of solutions. The behavior of the solutions is characterized by large peaks of virus concentration specific to acute respiratory viral infections. At the first stage, we study the innate immune response based on the protective properties of interferon secreted by virus-infected cells. Viral infection down-regulates interferon production. This competition can lead to the bistability of the system with different regimes of infection progression with high or low intensity. After that, we introduce the adaptive immune response with antigen-specific T- and B-lymphocytes. The resulting model shows how the incubation period and the maximal viral load depend on the initial viral load and the parameters of the immune response. In particular, an increase in the initial viral load leads to a shorter incubation period and higher maximal viral load. The model shows that a deficient production of antibodies leads to an increase in the incubation period and even higher maximum viral loads. In order to study the emergence and dynamics of cytokine storm, we consider proinflammatory cytokines produced by cells of the innate immune response. Depending on the parameters of the model, the system can remain in the normal inflammatory state specific for viral infections or, due to positive feedback between inflammation and immune cells, pass to cytokine storm characterized by the excessive production of proinflammatory cytokines. Finally, we study the production of antibodies due to vaccination. We determine the dose-response dependence and the optimal interval of vaccine dose. Assumptions of the model and obtained results correspond to the experimental and clinical data.
Collapse
Affiliation(s)
- Cristina Leon
- Interdisciplinary Center for Mathematical Modelling in Biomedicine, S.M. Nikol’skii Mathematical Institute, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- M&S Decisions, 5 Naryshkinskaya Alley, 125167 Moscow, Russia
- Department of Foreign Languages No. 2, Plekhanov Russian University of Economics, 36 Stremyanny Lane, 115093 Moscow, Russia
- Correspondence:
| | - Alexey Tokarev
- Interdisciplinary Center for Mathematical Modelling in Biomedicine, S.M. Nikol’skii Mathematical Institute, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- Semenov Institute of Chemical Physics, 4 Kosygin St., 119991 Moscow, Russia
- Bukhara Engineering Technological Institute, 15 Murtazoyeva Street, Bukhara 200100, Uzbekistan
| | - Anass Bouchnita
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79902, USA
| | - Vitaly Volpert
- Interdisciplinary Center for Mathematical Modelling in Biomedicine, S.M. Nikol’skii Mathematical Institute, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
| |
Collapse
|
34
|
Lundstrom K, Hromić-Jahjefendić A, Bilajac E, Aljabali AAA, Baralić K, Sabri NA, Shehata EM, Raslan M, Ferreira ACBH, Orlandi L, Serrano-Aroca Á, Tambuwala MM, Uversky VN, Azevedo V, Alzahrani KJ, Alsharif KF, Halawani IF, Alzahrani FM, Redwan EM, Barh D. COVID-19 signalome: Pathways for SARS-CoV-2 infection and impact on COVID-19 associated comorbidity. Cell Signal 2023; 101:110495. [PMID: 36252792 PMCID: PMC9568271 DOI: 10.1016/j.cellsig.2022.110495] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has been the focus of research the past two years. The major breakthrough was made by discovering pathways related to SARS-CoV-2 infection through cellular interaction by angiotensin-converting enzyme (ACE2) and cytokine storm. The presence of ACE2 in lungs, intestines, cardiovascular tissues, brain, kidneys, liver, and eyes shows that SARS-CoV-2 may have targeted these organs to further activate intracellular signalling pathways that lead to cytokine release syndrome. It has also been reported that SARS-CoV-2 can hijack coatomer protein-I (COPI) for S protein retrograde trafficking to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), which, in turn, acts as the assembly site for viral progeny. In infected cells, the newly synthesized S protein in endoplasmic reticulum (ER) is transported first to the Golgi body, and then from the Golgi body to the ERGIC compartment resulting in the formation of specific a motif at the C-terminal end. This review summarizes major events of SARS-CoV-2 infection route, immune response following host-cell infection as an important factor for disease outcome, as well as comorbidity issues of various tissues and organs arising due to COVID-19. Investigations on alterations of host-cell machinery and viral interactions with multiple intracellular signaling pathways could represent a major factor in more effective disease management.
Collapse
Affiliation(s)
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Esma Bilajac
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan.
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Nagwa A Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11865, Egypt.
| | - Eslam M Shehata
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt.
| | - Mohamed Raslan
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt.
| | - Ana Cláudia B H Ferreira
- Campinas State University, Campinas, São Paulo, Brazil; University Center of Lavras (UNILAVRAS), Lavras, Minas Gerais, Brazil.
| | - Lidiane Orlandi
- University Center of Lavras (UNILAVRAS), Lavras, Minas Gerais, Brazil.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Khalaf F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| | - Debmalya Barh
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India.
| |
Collapse
|
35
|
Takeshita Y, To Y, Kurosawa Y, Kinouchi T, Tsuya K, Tada Y, Tsushima K. Relationship between Anti-SARS-CoV-2 S Abs and IFN-λ3 Levels in the Administration of Oxygen following COVID-19 Vaccination. Immunohorizons 2023; 7:97-105. [PMID: 36645852 PMCID: PMC10563441 DOI: 10.4049/immunohorizons.2200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
Although the effectiveness of vaccination at preventing hospitalization and severe coronavirus disease (COVID-19) has been reported in numerous studies, the detailed mechanism of innate immunity occurring in host cells by breakthrough infection is unclear. One hundred forty-six patients were included in this study. To determine the effects of vaccination and past infection on innate immunity following SARS-CoV-2 infection, we analyzed the relationship between anti-SARS-CoV-2 S Abs and biomarkers associated with the deterioration of COVID-19 (IFN-λ3, C-reactive protein, lactate dehydrogenase, ferritin, procalcitonin, and D-dimer). Anti-S Abs were classified into two groups according to titer: high titer (≥250 U/ml) and low titer (<250 U/ml). A negative correlation was observed between anti-SARS-CoV-2 S Abs and IFN-λ3 levels (r = -0.437, p < 0.001). A low titer of anti-SARS-CoV-2 S Abs showed a significant association with oxygen demand in patients, excluding aspiration pneumonia. Finally, in a multivariate analysis, a low titer of anti-SARS-CoV-2 S Abs was an independent risk factor for oxygen demand, even after adjusting for age, sex, body mass index, aspiration pneumonia, and IFN-λ3 levels. In summary, measuring anti-SARS-CoV-2 S Abs and IFN-λ3 may have clinical significance for patients with COVID-19. To predict the oxygen demand of patients with COVID-19 after hospitalization, it is important to evaluate the computed tomography findings to determine whether the pneumonia is the result of COVID-19 or aspiration pneumonia.
Collapse
Affiliation(s)
- Yuichiro Takeshita
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Chiba, Japan
| | - Yasuo To
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Chiba, Japan
| | - Yusuke Kurosawa
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Chiba, Japan
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Itabashiku, Tokyo, Japan; and
| | - Toru Kinouchi
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Chiba, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Kota Tsuya
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Itabashiku, Tokyo, Japan; and
| | - Yuji Tada
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Chiba, Japan
| | - Kenji Tsushima
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Chiba, Japan
| |
Collapse
|
36
|
Dai J, Zhou P, Li S, Qiu HJ. New Insights into the Crosstalk among the Interferon and Inflammatory Signaling Pathways in Response to Viral Infections: Defense or Homeostasis. Viruses 2022; 14:v14122798. [PMID: 36560803 PMCID: PMC9783938 DOI: 10.3390/v14122798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Innate immunity plays critical roles in eliminating viral infections, healing an injury, and restoring tissue homeostasis. The signaling pathways of innate immunity, including interferons (IFNs), nuclear factor kappa B (NF-κB), and inflammasome responses, are activated upon viral infections. Crosstalk and interplay among signaling pathways are involved in the complex regulation of antiviral activity and homeostasis. To date, accumulating evidence has demonstrated that NF-κB or inflammasome signaling exhibits regulatory effects on IFN signaling. In addition, several adaptors participate in the crosstalk between IFNs and the inflammatory response. Furthermore, the key adaptors in innate immune signaling pathways or the downstream cytokines can modulate the activation of other signaling pathways, leading to excessive inflammatory responses or insufficient antiviral effects, which further results in tissue injury. This review focuses on the crosstalk between IFN and inflammatory signaling to regulate defense and homeostasis. A deeper understanding of the functional aspects of the crosstalk of innate immunity facilitates the development of targeted treatments for imbalanced homeostasis.
Collapse
Affiliation(s)
- Jingwen Dai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Pingping Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Department of Immunology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (S.L.); (H.-J.Q.)
| |
Collapse
|
37
|
Chai H, Gu Q, Robertson DL, Hughes J. Defining the characteristics of interferon-alpha-stimulated human genes: insight from expression data and machine learning. Gigascience 2022; 11:6833046. [PMID: 36399061 PMCID: PMC9673497 DOI: 10.1093/gigascience/giac103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/07/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A virus-infected cell triggers a signalling cascade, resulting in the secretion of interferons (IFNs), which in turn induces the upregulation of the IFN-stimulated genes (ISGs) that play a role in antipathogen host defence. Here, we conducted analyses on large-scale data relating to evolutionary gene expression, sequence composition, and network properties to elucidate factors associated with the stimulation of human genes in response to IFN-α. RESULTS We find that ISGs are less evolutionary conserved than genes that are not significantly stimulated in IFN experiments (non-ISGs). ISGs show obvious depletion of GC content in the coding region. This influences the representation of some compositions following the translation process. IFN-repressed human genes (IRGs), downregulated genes in IFN experiments, can have similar properties to the ISGs. Additionally, we design a machine learning framework integrating the support vector machine and novel feature selection algorithm that achieves an area under the receiver operating characteristic curve (AUC) of 0.7455 for ISG prediction. Its application in other IFN systems suggests the similarity between the ISGs triggered by type I and III IFNs. CONCLUSIONS ISGs have some unique properties that make them different from the non-ISGs. The representation of some properties has a strong correlation with gene expression following IFN-α stimulation, which can be used as a predictive feature in machine learning. Our model predicts several genes as putative ISGs that so far have shown no significant differential expression when stimulated with IFN-α in the cell/tissue types in the available databases. A web server implementing our method is accessible at http://isgpre.cvr.gla.ac.uk/. The docker image at https://hub.docker.com/r/hchai01/isgpre can be downloaded to reproduce the prediction.
Collapse
Affiliation(s)
- Haiting Chai
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
| | - David L Robertson
- Correspondence address. David L. Robertson, MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK, E-mail:
| | | |
Collapse
|
38
|
Respiratory Syncytial Virus Protects Bystander Cells against Influenza A Virus Infection by Triggering Secretion of Type I and Type III Interferons. J Virol 2022; 96:e0134122. [DOI: 10.1128/jvi.01341-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Influenza A virus (IAV) and respiratory syncytial virus (RSV) are common recurrent respiratory infectants that show a relatively high coincidence. We demonstrated that preinfection with RSV partitions the cell population into a subpopulation susceptible to subsequent infection with IAV and an IAV-proof subpopulation.
Collapse
|
39
|
Lei B, Song H, Xu F, Wei Q, Wang F, Tan G, Ma H. When does hepatitis B virus meet long-stranded noncoding RNAs? Front Microbiol 2022; 13:962186. [PMID: 36118202 PMCID: PMC9479684 DOI: 10.3389/fmicb.2022.962186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/22/2022] [Indexed: 01/16/2023] Open
Abstract
Hepatitis B virus (HBV) infection in humans and its associated diseases are long-standing problems. HBV can produce a large number of non-self-molecules during its life cycle, which acts as targets for innate immune recognition and initiation. Among these, interferon and its large number of downstream interferon-stimulated gene molecules are important early antiviral factors. However, the development of an effective antiviral immune response is not simple and depends not only on the delicate regulation of the immune response but also on the various mechanisms of virus-related immune escape and immune tolerance. Therefore, despite there being a relatively well-established consensus on the major pathways of the antiviral response and their component molecules, the complete clearance of HBV remains a challenge in both basic and clinical research. Long-noncoding RNAs (lncRNAs) are generally >200 bp in length and perform different functions in the RNA strand encoding the protein. As an important part of the IFN-inducible genes, interferon-stimulated lncRNAs are involved in the regulation of several HBV infection-related pathways. This review traces the basic elements of such pathways and characterizes the various recent targets of lncRNAs, which not only complement the regulatory mechanisms of pathways related to chronic HBV infection, fibrosis, and cancer promotion but also present with new potential therapeutic targets for controlling HBV infection and the malignant transformation of hepatocytes.
Collapse
Affiliation(s)
- Bingxin Lei
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongxiao Song
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fengchao Xu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qi Wei
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Fei Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guangyun Tan
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Immunology, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Guangyun Tan,
| | - Haichun Ma
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
- Haichun Ma,
| |
Collapse
|
40
|
Duodu P, Sosa G, Canar J, Chhugani O, Gamero AM. Exposing the Two Contrasting Faces of STAT2 in Inflammation. J Interferon Cytokine Res 2022; 42:467-481. [PMID: 35877097 PMCID: PMC9527059 DOI: 10.1089/jir.2022.0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammation is a natural immune defense mechanism of the body's response to injury, infection, and other damaging triggers. Uncontrolled inflammation may become chronic and contribute to a range of chronic inflammatory diseases. Signal transducer and activator of transcription 2 (STAT2) is an essential transcription factor exclusive to type I and type III interferon (IFN) signaling pathways. Both pathways are involved in multiple biological processes, including powering the immune system as a means of controlling infection that must be tightly regulated to offset the development of persistent inflammation. While studies depict STAT2 as protective in promoting host defense, new evidence is accumulating that exposes the deleterious side of STAT2 when inappropriately regulated, thus prompting its reevaluation as a signaling molecule with detrimental effects in human disease. This review aims to provide a comprehensive summary of the findings based on literature regarding the inflammatory behavior of STAT2 in microbial infections, cancer, autoimmune, and inflammatory diseases. In conveying the extent of our knowledge of STAT2 as a proinflammatory mediator, the aim of this review is to stimulate further investigations into the role of STAT2 in diseases characterized by deregulated inflammation and the mechanisms responsible for triggering severe responses.
Collapse
Affiliation(s)
- Philip Duodu
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Geohaira Sosa
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Jorge Canar
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Olivia Chhugani
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Ana M. Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Moody CA. Regulation of the Innate Immune Response during the Human Papillomavirus Life Cycle. Viruses 2022; 14:v14081797. [PMID: 36016419 PMCID: PMC9412305 DOI: 10.3390/v14081797] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
High-risk human papillomaviruses (HR HPVs) are associated with multiple human cancers and comprise 5% of the human cancer burden. Although most infections are transient, persistent infections are a major risk factor for cancer development. The life cycle of HPV is intimately linked to epithelial differentiation. HPVs establish infection at a low copy number in the proliferating basal keratinocytes of the stratified epithelium. In contrast, the productive phase of the viral life cycle is activated upon epithelial differentiation, resulting in viral genome amplification, high levels of late gene expression, and the assembly of virions that are shed from the epithelial surface. Avoiding activation of an innate immune response during the course of infection plays a key role in promoting viral persistence as well as completion of the viral life cycle in differentiating epithelial cells. This review highlights the recent advances in our understanding of how HPVs manipulate the host cell environment, often in a type-specific manner, to suppress activation of an innate immune response to establish conditions supportive of viral replication.
Collapse
Affiliation(s)
- Cary A. Moody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
42
|
Takeshita Y, Terada J, Hirasawa Y, Kinoshita T, Tajima H, Koshikawa K, Kinouchi T, Isaka Y, Shionoya Y, Fujikawa A, Kato Y, To Y, Tada Y, Tsushima K. Development of a novel score model to predict hyperinflammation in COVID-19 as a forecast of optimal steroid administration timing. Front Med (Lausanne) 2022; 9:935255. [PMID: 36017008 PMCID: PMC9395649 DOI: 10.3389/fmed.2022.935255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/15/2022] [Indexed: 12/15/2022] Open
Abstract
ObjectivesThis study aims to create and validate a useful score system predicting the hyper-inflammatory conditions of COVID-19, by comparing it with the modified H-score.MethodsA total of 98 patients with pneumonia (without oxygen therapy) who received initial administration of casirivimab/imdevimab or remdesivir were included in the study. The enrolled patients were divided into two groups: patients who required corticosteroid due to deterioration of pneumonia, assessed by chest X-ray or CT or respiratory failure, and those who did not, and clinical parameters were compared.ResultsSignificant differences were detected in respiratory rate, breaths/min, SpO2, body temperature, AST, LDH, ferritin, and IFN-λ3 between the two groups. Based on the data, we created a corticosteroid requirement score: (1) the duration of symptom onset to treatment initiation ≥ 7 d, (2) the respiratory rate ≥ 22 breaths/min, (3) the SpO2 ≤ 95%, (4) BT ≥ 38.5°C, (5) AST levels ≥ 40 U/L, (6) LDH levels ≥ 340 U/L, (7) ferritin levels ≥ 800 ng/mL, and (8) IFN-λ3 levels ≥ 20 pg/mL. These were set as parameters of the steroid predicting score. Results showed that the area under the curve (AUC) of the steroid predicting score (AUC: 0.792, 95%CI: 0.698–0.886) was significantly higher than that of the modified H-score (AUC: 0.633, 95%CI: 0.502–0.764).ConclusionThe steroid predicting score may be useful to predict the requirement of corticosteroid therapy in patients with COVID-19. The data may provide important information to facilitate a prospective study on a larger scale in this field.
Collapse
Affiliation(s)
- Yuichiro Takeshita
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
- *Correspondence: Yuichiro Takeshita
| | - Jiro Terada
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasutaka Hirasawa
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Taku Kinoshita
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Hiroshi Tajima
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Ken Koshikawa
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toru Kinouchi
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuri Isaka
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yu Shionoya
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Atsushi Fujikawa
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Yasuyuki Kato
- Department of Infectious Disease, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Yasuo To
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Yuji Tada
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Kenji Tsushima
- Department of Pulmonary Medicine, International University of Health and Welfare Narita Hospital, Narita, Japan
| |
Collapse
|
43
|
Casazza RL, Philip DT, Lazear HM. Interferon Lambda Signals in Maternal Tissues to Exert Protective and Pathogenic Effects in a Gestational Stage-Dependent Manner. mBio 2022; 13:e0385721. [PMID: 35471083 PMCID: PMC9239100 DOI: 10.1128/mbio.03857-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/28/2022] [Indexed: 01/10/2023] Open
Abstract
Interferon lambda (IFN-λ) (type III IFN) is constitutively secreted from human placental cells in culture and reduces Zika virus (ZIKV) transplacental transmission in mice. However, the roles of IFN-λ during healthy pregnancy and in restricting congenital infection remain unclear. Here, we used mice lacking the IFN-λ receptor (Ifnlr1-/-) to generate pregnancies lacking either maternal or fetal IFN-λ responsiveness and found that the antiviral effect of IFN-λ resulted from signaling exclusively in maternal tissues. This protective effect depended on gestational stage, as infection earlier in pregnancy (E7 rather than E9) resulted in enhanced transplacental transmission of ZIKV. In Ifnar1-/- dams, which sustain robust ZIKV infection, maternal IFN-λ signaling caused fetal resorption and intrauterine growth restriction. Pregnancy pathology elicited by poly(I·C) treatment also was mediated by maternal IFN-λ signaling, specifically in maternal leukocytes, and also occurred in a gestational stage-dependent manner. These findings identify an unexpected effect of IFN-λ signaling, specifically in maternal (rather than placental or fetal) tissues, which is distinct from the pathogenic effects of IFN-αβ (type I IFN) during pregnancy. These results highlight the complexity of immune signaling at the maternal-fetal interface, where disparate outcomes can result from signaling at different gestational stages. IMPORTANCE Pregnancy is an immunologically complex situation, which must balance protecting the fetus from maternal pathogens with preventing maternal immune rejection of non-self fetal and placental tissue. Cytokines, such as interferon lambda (IFN-λ), contribute to antiviral immunity at the maternal-fetal interface. We found in a mouse model of congenital Zika virus infection that IFN-λ can have either a protective antiviral effect or cause immune-mediated pathology, depending on the stage of gestation when IFN-λ signaling occurs. Remarkably, both the protective and pathogenic effects of IFN-λ occurred through signaling exclusively in maternal immune cells rather than in fetal or placental tissues or in other maternal cell types, identifying a new role for IFN-λ at the maternal-fetal interface.
Collapse
Affiliation(s)
- Rebecca L. Casazza
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Drake T. Philip
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Helen M. Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
44
|
Sebina I, Rashid RB, Sikder MAA, Rahman MM, Ahmed T, Radford-Smith DE, Kotenko SV, Hill GR, Bald T, Phipps S. IFN-λ Diminishes the Severity of Viral Bronchiolitis in Neonatal Mice by Limiting NADPH Oxidase-Induced PAD4-Independent NETosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2806-2816. [PMID: 35675958 DOI: 10.4049/jimmunol.2100876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Infants with attenuated type III IFN (IFN-λ) responses are at increased risk of severe lower respiratory tract infection (sLRI). The IL-28Rα-chain and IL-10Rβ-chain form a heterodimeric receptor complex, necessary for IFN-λ signaling. Therefore, to better understand the immunopathogenic mechanisms through which an IFN-λlo microenvironment predisposes to a sLRI, we inoculated neonatal wild-type and IL-28R-deficient (IL-28R -/-) mice with pneumonia virus of mice, a rodent-specific pneumovirus. Infected IL-28R -/- neonates displayed an early, pronounced, and persistent neutrophilia that was associated with enhanced reactive oxygen species (ROS) production, NETosis, and mucus hypersecretion. Targeted deletion of the IL-28R in neutrophils was sufficient to increase neutrophil activation, ROS production, NET formation, and mucus production in the airways. Inhibition of protein-arginine deiminase type 4 (PAD4), a regulator of NETosis, had no effect on myeloperoxidase expression, citrullinated histones, and the magnitude of the inflammatory response in the lungs of infected IL-28R -/- mice. In contrast, inhibition of ROS production decreased NET formation, cellular inflammation, and mucus hypersecretion. These data suggest that IFN-λ signaling in neutrophils dampens ROS-induced NETosis, limiting the magnitude of the inflammatory response and mucus production. Therapeutics that promote IFN-λ signaling may confer protection against sLRI.
Collapse
Affiliation(s)
- Ismail Sebina
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ridwan B Rashid
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Md Al Amin Sikder
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Muhammed Mahfuzur Rahman
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Tufael Ahmed
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Daniel E Radford-Smith
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ
| | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, University of Washington, Seattle, WA
| | - Tobias Bald
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; and
- Institute for Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Simon Phipps
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia;
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
45
|
Farouq MAH, Acevedo R, Ferro VA, Mulheran PA, Al Qaraghuli MM. The Role of Antibodies in the Treatment of SARS-CoV-2 Virus Infection, and Evaluating Their Contribution to Antibody-Dependent Enhancement of Infection. Int J Mol Sci 2022; 23:6078. [PMID: 35682757 PMCID: PMC9181534 DOI: 10.3390/ijms23116078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Antibodies play a crucial role in the immune response, in fighting off pathogens as well as helping create strong immunological memory. Antibody-dependent enhancement (ADE) occurs when non-neutralising antibodies recognise and bind to a pathogen, but are unable to prevent infection, and is widely known and is reported as occurring in infection caused by several viruses. This narrative review explores the ADE phenomenon, its occurrence in viral infections and evaluates its role in infection by SARS-CoV-2 virus, which causes coronavirus disease 2019 (COVID-19). As of yet, there is no clear evidence of ADE in SARS-CoV-2, though this area is still subject to further study.
Collapse
Affiliation(s)
- Mohammed A. H. Farouq
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK; (P.A.M.); (M.M.A.Q.)
| | - Reinaldo Acevedo
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Valerie A. Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
| | - Paul A. Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK; (P.A.M.); (M.M.A.Q.)
| | - Mohammed M. Al Qaraghuli
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK; (P.A.M.); (M.M.A.Q.)
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| |
Collapse
|
46
|
Govers C, Calder PC, Savelkoul HFJ, Albers R, van Neerven RJJ. Ingestion, Immunity, and Infection: Nutrition and Viral Respiratory Tract Infections. Front Immunol 2022; 13:841532. [PMID: 35296080 PMCID: PMC8918570 DOI: 10.3389/fimmu.2022.841532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Respiratory infections place a heavy burden on the health care system, particularly in the winter months. Individuals with a vulnerable immune system, such as very young children and the elderly, and those with an immune deficiency, are at increased risk of contracting a respiratory infection. Most respiratory infections are relatively mild and affect the upper respiratory tract only, but other infections can be more serious. These can lead to pneumonia and be life-threatening in vulnerable groups. Rather than focus entirely on treating the symptoms of infectious disease, optimizing immune responsiveness to the pathogens causing these infections may help steer towards a more favorable outcome. Nutrition may have a role in such prevention through different immune supporting mechanisms. Nutrition contributes to the normal functioning of the immune system, with various nutrients acting as energy sources and building blocks during the immune response. Many micronutrients (vitamins and minerals) act as regulators of molecular responses of immune cells to infection. It is well described that chronic undernutrition as well as specific micronutrient deficiencies impair many aspects of the immune response and make individuals more susceptible to infectious diseases, especially in the respiratory and gastrointestinal tracts. In addition, other dietary components such as proteins, pre-, pro- and synbiotics, and also animal- and plant-derived bioactive components can further support the immune system. Both the innate and adaptive defense systems contribute to active antiviral respiratory tract immunity. The initial response to viral airway infections is through recognition by the innate immune system of viral components leading to activation of adaptive immune cells in the form of cytotoxic T cells, the production of neutralizing antibodies and the induction of memory T and B cell responses. The aim of this review is to describe the effects of a range different dietary components on anti-infective innate as well as adaptive immune responses and to propose mechanisms by which they may interact with the immune system in the respiratory tract.
Collapse
Affiliation(s)
- Coen Govers
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
| | | | - R. J. Joost van Neerven
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, Netherlands
- Research & Development, FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
47
|
Chen SN, Gan Z, Hou J, Yang YC, Huang L, Huang B, Wang S, Nie P. Identification and establishment of type IV interferon and the characterization of interferon-υ including its class II cytokine receptors IFN-υR1 and IL-10R2. Nat Commun 2022; 13:999. [PMID: 35194032 PMCID: PMC8863823 DOI: 10.1038/s41467-022-28645-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Interferons (IFNs) are critical soluble factors in the immune system and are composed of three types, (I, II and III) that utilize different receptor complexes IFN-αR1/IFN-αR2, IFN-γR1/IFN-γR2, and IFN-λR1/IL-10R2, respectively. Here we identify IFN-υ from the genomic sequences of vertebrates. The members of class II cytokine receptors, IFN-υR1 and IL-10R2, are identified as the receptor complex of IFN-υ, and are associated with IFN-υ stimulated gene expression and antiviral activity in zebrafish (Danio rerio) and African clawed frog (Xenopus laevis). IFN-υ and IFN-υR1 are separately located at unique and highly conserved loci, being distinct from all other three-type IFNs. IFN-υ and IFN-υR1 are phylogenetically clustered with class II cytokines and class II cytokine receptors, respectively. Therefore, the finding of this IFN ligand-receptor system may be considered as a type IV IFN, in addition to the currently recognized three types of IFNs in vertebrates. Interferons are critical soluble components of the inflammatory process and are composed of three types with associated receptor complexes. Here the authors identify and characterise the type IV interferon, IFN-υ, and identify its associated receptors, denote functionality during in vivo infection and ascertain its genomic localisation.
Collapse
Affiliation(s)
- Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Jing Hou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yue Cong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Lin Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Bei Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,College of Fisheries, Jimei University, 43 Yindou Road, Xiamen, Fujian, 361021, China
| | - Su Wang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China.,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China. .,Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China. .,Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China. .,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| |
Collapse
|
48
|
Van Winkle JA, Peterson ST, Kennedy EA, Wheadon MJ, Ingle H, Desai C, Rodgers R, Constant DA, Wright AP, Li L, Artyomov MN, Lee S, Baldridge MT, Nice TJ. A homeostatic interferon-lambda response to bacterial microbiota stimulates preemptive antiviral defense within discrete pockets of intestinal epithelium. eLife 2022; 11:74072. [PMID: 35137688 PMCID: PMC8853662 DOI: 10.7554/elife.74072] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Interferon-lambda (IFN-λ) protects intestinal epithelial cells (IECs) from enteric viruses by inducing expression of antiviral IFN-stimulated genes (ISGs). Here, we find that bacterial microbiota stimulate a homeostatic ISG signature in the intestine of specific pathogen-free mice. This homeostatic ISG expression is restricted to IECs, depends on IEC-intrinsic expression of IFN-λ receptor (Ifnlr1), and is associated with IFN-λ production by leukocytes. Strikingly, imaging of these homeostatic ISGs reveals localization to pockets of the epithelium and concentration in mature IECs. Correspondingly, a minority of mature IECs express these ISGs in public single-cell RNA sequencing datasets from mice and humans. Furthermore, we assessed the ability of orally administered bacterial components to restore localized ISGs in mice lacking bacterial microbiota. Lastly, we find that IECs lacking Ifnlr1 are hyper-susceptible to initiation of murine rotavirus infection. These observations indicate that bacterial microbiota stimulate ISGs in localized regions of the intestinal epithelium at homeostasis, thereby preemptively activating antiviral defenses in vulnerable IECs to improve host defense against enteric viruses.
Collapse
Affiliation(s)
- Jacob A Van Winkle
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, United States
| | - Stefan T Peterson
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Elizabeth A Kennedy
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Michael J Wheadon
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Harshad Ingle
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Chandni Desai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Rachel Rodgers
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - David A Constant
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, United States
| | - Austin P Wright
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, United States
| | - Lena Li
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, United States
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Sanghyun Lee
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Megan T Baldridge
- Department of Medicine, Washington University School of Medicine, St Louis, United States
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
49
|
Wirusanti NI, Baldridge MT, Harris VC. Microbiota regulation of viral infections through interferon signaling. Trends Microbiol 2022; 30:778-792. [PMID: 35135717 PMCID: PMC9344482 DOI: 10.1016/j.tim.2022.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022]
Abstract
The interferon (IFN) response is the major early innate immune response against invading viral pathogens and is even capable of mediating sterilizing antiviral immunity without the support of the adaptive immune system. Cumulative evidence suggests that the gut microbiota can modulate IFN responses, indirectly determining virological outcomes. This review outlines our current knowledge of the interactions between the gut microbiota and IFN responses and dissects the different mechanisms by which the gut microbiota may alter IFN expression to diverse viral infections. This knowledge offers a basis for translating experimental evidence from animal studies into the human context and identifies avenues for leveraging the gut microbiota–IFN–virus axis to improve control of viral infections and performance of viral vaccines.
Collapse
|
50
|
Sharma L, Peng X, Qing H, Hilliard BK, Kim J, Swaminathan A, Tian J, Israni-Winger K, Zhang C, Habet V, Wang L, Gupta G, Tian X, Ma Y, Shin HJ, Kim SH, Kang MJ, Ishibe S, Young LH, Kotenko S, Compton S, Wilen CB, Wang A, Dela Cruz CS. Distinct Roles of Type I and Type III Interferons during a Native Murine β Coronavirus Lung Infection. J Virol 2022; 96:e0124121. [PMID: 34705554 PMCID: PMC8791255 DOI: 10.1128/jvi.01241-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses are a major health care threat to humankind. Currently, the host factors that contribute to limit disease severity in healthy young patients are not well defined. Interferons are key antiviral molecules, especially type I and type III interferons. The role of these interferons during coronavirus disease is a subject of debate. Here, using mice that are deficient in type I (IFNAR1-/-), type III (IFNLR1-/-), or both (IFNAR1/LR1-/-) interferon signaling pathways and murine-adapted coronavirus (MHV-A59) administered through the intranasal route, we define the role of interferons in coronavirus infection. We show that type I interferons play a major role in host survival in this model, while a minimal role of type III interferons was manifested only in the absence of type I interferons or during a lethal dose of coronavirus. IFNAR1-/- and IFNAR1/LR1-/- mice had an uncontrolled viral burden in the airways and lung and increased viral dissemination to other organs. The absence of only type III interferon signaling had no measurable difference in the viral load. The increased viral load in IFNAR1-/- and IFNAR1/LR1-/- mice was associated with increased tissue injury, especially evident in the lung and liver. Type I but not type III interferon treatment was able to promote survival if treated during early disease. Further, we show that type I interferon signaling in macrophages contributes to the beneficial effects during coronavirus infection in mice. IMPORTANCE The antiviral and pathological potential of type I and type III interferons during coronavirus infection remains poorly defined, and opposite findings have been reported. We report that both type I and type III interferons have anticoronaviral activities, but their potency and organ specificity differ. Type I interferon deficiency rendered the mice susceptible to even a sublethal murine coronavirus infection, while the type III interferon deficiency impaired survival only during a lethal infection or during a sublethal infection in the absence of type I interferon signaling. While treatment with both type I and III interferons promoted viral clearance in the airways and lung, only type I interferons promoted the viral clearance in the liver and improved host survival upon early treatment (12 h postinfection). This study demonstrates distinct roles and potency of type I and type III interferons and their therapeutic potential during coronavirus lung infection.
Collapse
Affiliation(s)
- Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xiaohua Peng
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Qing
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Brandon K. Hilliard
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jooyoung Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anush Swaminathan
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Justin Tian
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kavita Israni-Winger
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Cuiling Zhang
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Victoria Habet
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lin Wang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gayatri Gupta
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yina Ma
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hyeon-Jun Shin
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sang-Hun Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shuta Ishibe
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lawrence H. Young
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sergei Kotenko
- Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, New Brunswick, New Jersey, USA
| | - Susan Compton
- Molecular and Serological Diagnostics, Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Craig B. Wilen
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Andrew Wang
- Section of Rheumatology, Allergy & Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Charles S. Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Medical Center, West Haven, Connecticut, USA
| |
Collapse
|