1
|
Aljawish A, Souton E, Dahbi L, Severin I. Chemical and toxicological characterization of food contact recycled paperboard extracts. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1368-1384. [PMID: 39102379 DOI: 10.1080/19440049.2024.2387201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Food contact paperboard poses a potential risk of food contamination due to the possible release of chemicals (intentionally added or not), particularly in recycled paperboard. Water extractions were performed, according to wet food procedures, of paperboard samples collected from a manufacturer at the beginning and the end of a recycling production chain. Chemical analysis and hormonal activities in vitro of water extracts were studied. ICP-MS analysis confirmed the presence of 15 trace elements with lower concentrations after the recycling process, with the exception of chlorine. The chromatographic analyses demonstrated that the identified substances in the starting paperboard, before the recycling process, were approximately twice as high as in the end paperboard, after the recycling process. These substances included also natural wood products, chemical additives, and undesirable substances such as phthalates. Two major products (3,5-di-tert-butylphenol and methyl-2-pyrrolidone) were found in the starting and the end paperboard extracts, respectively. Two common substances were identified in both extracts: 2,4-di-tert-buthylphenol and dehydroabietic acid. Evaluation of potential endocrine disruption showed that the starting paperboard extract exhibited oestrogenic and antiandrogenic effects, while these effects nearly disappeared in the end paperboard extract. These results confirmed that the recycling process was effective in removing most of the contaminant substances.
Collapse
Affiliation(s)
- Abdulhadi Aljawish
- Conservatoire National des Arts et Métiers (CNAM), UMR SayFood, Paris, France
| | | | | | | |
Collapse
|
2
|
Menger F, Römerscheid M, Lips S, Klein O, Nabi D, Gandrass J, Joerss H, Wendt-Potthoff K, Bedulina D, Zimmermann T, Schmitt-Jansen M, Huber C, Böhme A, Ulrich N, Beck AJ, Pröfrock D, Achterberg EP, Jahnke A, Hildebrandt L. Screening the release of chemicals and microplastic particles from diverse plastic consumer products into water under accelerated UV weathering conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135256. [PMID: 39106725 DOI: 10.1016/j.jhazmat.2024.135256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
Photodegradation of plastic consumer products is known to accelerate weathering and facilitate the release of chemicals and plastic particles into the aquatic environment. However, these processes are complex. In our presented pilot study, eight plastic consumer products were leached in distilled water under strong ultraviolet (UV) light simulating eight months of Central European climate and compared to their respective dark controls (DCs). The leachates and formed plastic particles were exploratorily characterized using a range of chemical analytical tools to describe degradation and leaching processes. These techniques covered (a) microplastic analysis, showing substantial liberation of plastic particles further increased under UV exposure, (b) non-targeted mass spectrometric characterization of the leachates, revealing several hundreds of chemical features with typically only minor agreement between the UV exposure and the corresponding DCs, (c) target analysis of 71 organic analytes, of which 15 could be detected in at least one sample, and (d) metal(loid) analysis, which revealed substantial release of toxic metal(loid)s further enhanced under UV exposure. A data comparison with the US-EPA's ToxVal and ToxCast databases showed that the detected metals and organic additives might pose substantial health and environmental concerns, requiring further study and comprehensive impact assessments.
Collapse
Affiliation(s)
- Frank Menger
- Department of Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | - Mara Römerscheid
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stefan Lips
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Ole Klein
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Deedar Nabi
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Jürgen Gandrass
- Department of Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | - Hanna Joerss
- Department of Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | - Katrin Wendt-Potthoff
- Department of Lake Research, Helmholtz-Centre for Environmental Research - UFZ, Brueckstr. 3 a, 39114 Magdeburg, Germany
| | - Daria Bedulina
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Tristan Zimmermann
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Mechthild Schmitt-Jansen
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Carolin Huber
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Alexander Böhme
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Nadin Ulrich
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Aaron J Beck
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Daniel Pröfrock
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Eric P Achterberg
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Annika Jahnke
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, 52047 Aachen, Germany.
| | - Lars Hildebrandt
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| |
Collapse
|
3
|
Han B, Shang Y, Wang H, Shen Y, Li R, Wang M, Zhuang Z, Wang Z, Fang M, Jing T. Prevalence of synthetic phenolic antioxidants in food contact materials from China and their implications for human dietary exposure through take-away food. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134599. [PMID: 38788569 DOI: 10.1016/j.jhazmat.2024.134599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
The application of disposable tableware has increased substantially in recent times due to the rapidly growing food delivery business in China. Synthetic phenolic antioxidants (SPAs) are widely used in food contact materials (FCMs) to delay the process of oxidation; however, their compositions, concentrations, and potential health hazards remain unclear. Therefore, FCMs comprised of five materials obtained from 19 categories (n = 118) in China were analyzed for SPAs concentrations. FCMs have been found to contain a variety of SPAs, with ∑SPAs concentrations ranging from 44.18 to 69,485.12 μg/kg (median: 2615.63 μg/kg). The predominant congeners identified in the sample include 2,4-di-tert-butylphenol (2,4-DTBP), 2,6-di-tert-butylphenol (2,6-DTBP), and 2,6-di-tert-butyl-p-benzoquinone (BHT-Q) with a median concentration of 885.75, 555.45 and of 217.44 μg/kg, respectively. Milky tea paper cups, instant noodle buckets, milky teacups, and disposable cups showed high levels of SPAs. 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (AO 2246) was predominantly detected in polyethylene and polyethylene terephthalate-based products. The migration test identified disposable plastic cups and bowls as the predominant FCMs and 2,4-DTBP as the dominant SPA. The exposure risk of SPAs decreased with age. In children, the estimated daily intake of ∑SPAs from FCMs was determined to be 17.56 ng/kg body weight/day, which was 8.3 times higher than that of phthalic acid esters. The current findings indicate the potential ingestion risk of SPAs during the daily life application of multiple FCM categories.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yinzhu Shang
- Technology Center of Wuhan Customs, #15 Jinyinhu Road, Dongxihu District, Wuhan, Hubei 430050, China
| | - Hui Wang
- Technology Center of Wuhan Customs, #15 Jinyinhu Road, Dongxihu District, Wuhan, Hubei 430050, China
| | - Yang Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ruifang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Mengyi Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhijia Zhuang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Min Fang
- Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
4
|
Johnson VJ, Rider CV, Luster MI, Brix A, Burleson GR, Cora M, Elmore SA, Frawley RP, Lopez FR, Mutlu E, Shockley KR, Pierfelice J, Burback B, Co CA, Germolec DR. Immunotoxicity of N-butylbenzenesulfonamide: impacts on immune function in adult mice and developmentally exposed rats. Toxicol Sci 2023; 196:71-84. [PMID: 37584675 PMCID: PMC10613960 DOI: 10.1093/toxsci/kfad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
N-butylbenzenesulfonamide (NBBS) is a high-production volume plasticizer that is an emerging contaminant of concern for environmental and human health. To understand the risks and health effects of exposure to NBBS, studies were conducted in adult-exposed mice and developmentally exposed rats to evaluate the potential for NBBS to modulate the immune system. Beginning between 8 and 9 weeks of age, dosed feed containing NBBS at concentrations of 0, 313, 625, 1250, 2500, and 5000 ppm was continuously provided to B6C3F1/N female mice for 28 days. Dosed feed was also continuously provided to time-mated Harlan Sprague Dawley (Sprague Dawley SD) rats at concentrations of 0-, 250-, 500-, and 1000-ppm NBBS from gestation day 6 to postnatal day 28 and in F1 rats until 11-14 weeks of age. Functional assessments of innate, humoral, and cell-mediated immunity were conducted in adult female mice and F1 rats following exposure to NBBS. In female mice, NBBS treatment suppressed the antibody-forming cell (AFC) response to SRBC with small increases in T-cell responses and natural killer (NK)-cell activity. In developmentally exposed rats, NBBS treatment-related immune effects were sex dependent. A positive trend in NK-cell activity occurred in male F1 rats while a negative trend occurred in female F1 rats. The AFC response to SRBC was decreased in female F1 rats but not in male F1 rats. These data provide evidence that oral exposure to NBBS has the potential to produce immunomodulatory effects on both innate and adaptive immune responses, and these effects appear to have some dependence on species, sex, and period of exposure (developmental vs adult).
Collapse
Affiliation(s)
- Victor J Johnson
- Burleson Research Technologies, Inc, Morrisville, North Carolina 27560, United States
| | - Cynthia V Rider
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
| | - Michael I Luster
- Burleson Research Technologies, Inc, Morrisville, North Carolina 27560, United States
| | - Amy Brix
- Experimental Pathology Laboratories, Inc, Research Triangle Park, North Carolina 27709, United States
| | - Gary R Burleson
- Burleson Research Technologies, Inc, Morrisville, North Carolina 27560, United States
| | - Michelle Cora
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
| | - Susan A Elmore
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
| | - Rachel P Frawley
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
| | - Franklin R Lopez
- Charles River Laboratories, Durham, North Carolina 27703, United States
| | - Esra Mutlu
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
| | - Keith R Shockley
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
| | | | | | - Caroll A Co
- Social and Scientific Systems Inc., a DLH Holdings Corp Company, Durham, North Carolina 27703, United States
| | - Dori R Germolec
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
5
|
Bou-Maroun E, Dahbi L, Dujourdy L, Ferret PJ, Chagnon MC. Migration Studies and Endocrine Disrupting Activities: Chemical Safety of Cosmetic Plastic Packaging. Polymers (Basel) 2023; 15:4009. [PMID: 37836058 PMCID: PMC10574997 DOI: 10.3390/polym15194009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The endocrine activity and endocrine disruptor (ED) chemical profiles of eleven plastic packaging materials covering five major polymer types (3PET, 1HDPE, 4LDPE, 2 PP, and 1SAN) were investigated using in vitro cell-based reporter-gene assays and a non-targeted chemical analysis using gas chromatography coupled to mass spectrometry (GC-MS). To mimic cosmetic contact, six simulants (acidic, alkaline, neutral water, ethanol 30%, glycerin, and paraffin) were used in migration assays performed by filling the packaging with simulant. After 1 month at 50 °C, simulants were concentrated by Solid Phase Extraction (SPE) or Liquid-Liquid Extraction (LLE). The migration profiles of seven major endocrine disrupting chemicals detected from GC-MS in the different materials and simulants were compared with Estrogen Receptor (ER) and Androgen Receptor (AR) activities. With low extraction of ED chemicals in aqueous simulants, no endocrine activities were recorded in the leachates. Paraffin was shown to be the most extracting simulant of antiandrogenic chemicals, while glycerin has estrogenic activities. Overall, ED chemical migration in paraffin was correlated with hormonal activity. The NIAS 2,4-di-tert-butyl phenol and 7,9-di-tert-butyl1-oxaspiro (4,5) deca-6,9-diene-2,8-dione were two major ED chemicals present in all polymers (principally in PP and PE) and in the highest quantity in paraffin simulant. The use of glycerin and liquid paraffin as cosmetic product simulants was demonstrated to be relevant and complementary for the safety assessment of released compounds with endocrine activities in this integrated strategy combining bioassays and analytical chemistry approaches.
Collapse
Affiliation(s)
- Elias Bou-Maroun
- PAM UMR A 02.102, Food and Microbiological Processes, Institut Agro, Université Bourgogne Franche-Comté, 1 Esplanade Erasme, F-21000 Dijon, France
| | - Laurence Dahbi
- Derttech “Packtox”, NUTOX, INSERM U1231, Université Bourgogne Franche-Comté, F-21000 Dijon, France; (L.D.); (M.-C.C.)
| | - Laurence Dujourdy
- Institut Agro Dijon, Service d’Appui à la Recherche, F-21000 Dijon, France;
| | - Pierre-Jacques Ferret
- Safety Assessment Department, Pierre Fabre Dermo-Cosmétique, 3 Avenue Hubert Curien, 31035 Toulouse, France;
| | - Marie-Christine Chagnon
- Derttech “Packtox”, NUTOX, INSERM U1231, Université Bourgogne Franche-Comté, F-21000 Dijon, France; (L.D.); (M.-C.C.)
| |
Collapse
|
6
|
Kalweit C, Berger S, Kämpfe A, Rapp T. Quantification and stability assessment of 7,9-di‑tert‑butyl‑1-oxaspiro(4,5)deca-6,9-diene-2,8‑dione leaching from cross-linked polyethylene pipes using gas and liquid chromatography. WATER RESEARCH 2023; 243:120306. [PMID: 37566957 DOI: 10.1016/j.watres.2023.120306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 08/13/2023]
Abstract
This study assesses the formation and stability of the water contaminant 7,9-di‑tert‑butyl‑1-oxaspiro(4,5)deca-6,9-diene-2,8‑dione ([1]) which repeatedly occurs in the migration waters of cross-linked polyethylene (PE-X) pipes. In aqueous solution [1] is partially transformed to 3-(3,5-di‑tert‑butyl‑1‑hydroxy-4-oxo-2,5-cyclohexadien-1-yl)propionic acid ([2]). For a better understanding of the formation of [1] and its transformation into [2] an analytical method was established to allow the analysis of both species separately. Because of thermal instability [2] cannot be detected with GC-MS. Therefore, two methods were validated for a reliable and reproducible quantification: GC-MS for [1] and HPLC-MS/MS for both [1] and [2]. Comparative measurements of migration waters from PE-X pipes using GC-MS and HPLC-MS/MS methods showed that the concentrations of [1] detected with GC-MS corresponds to the sum of [1] and [2] measured with HPLC-MS/MS. In the migration waters [1] was detected in higher concentrations than [2]. The highest concentrations of [1], detected with GC-MS, were > 300 µg/L. The longer the materials are stored without contact with water, the more [1] is measured in the migration waters. Most of the previous values reported in the literature for [1] were based on semi-quantification. Hence, we compared results of the semi-quantitative determination according to EN 15768 with those of a quantitative method with a standard. The results gained with the semi-quantitative method represent less than 50% of the quantified values for the amount leaching from the pipes, which means that the semi-quantification method according to EN 15768 leads to a significant underestimation of [1]. Finally, stability assessment showed that [1] developed an equilibrium with [2] under acidic conditions, whereas it will completely be transferred to [2] at pH 10. At pH 7, it takes more than 50 days for [1] to reach an equilibrium with [2]. However, at increasing the temperature to 60 °C, [1] will be rapidly transformed into [2]. Besides [1] and [2], other currently unknown degradation products are formed. As there is no comprehensive toxicological assessment for both substances available today, our findings underline the need for regulatory consequences.
Collapse
Affiliation(s)
- Cynthia Kalweit
- Umweltbundesamt (German Environment Agency), Heinrich-Heine-Str. 12, Bad Elster 08645, Germany
| | - Sabrina Berger
- Umweltbundesamt (German Environment Agency), Heinrich-Heine-Str. 12, Bad Elster 08645, Germany
| | - Alexander Kämpfe
- Umweltbundesamt (German Environment Agency), Heinrich-Heine-Str. 12, Bad Elster 08645, Germany
| | - Thomas Rapp
- Umweltbundesamt (German Environment Agency), Heinrich-Heine-Str. 12, Bad Elster 08645, Germany.
| |
Collapse
|
7
|
Gerassimidou S, Geueke B, Groh KJ, Muncke J, Hahladakis JN, Martin OV, Iacovidou E. Unpacking the complexity of the polyethylene food contact articles value chain: A chemicals perspective. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131422. [PMID: 37099905 DOI: 10.1016/j.jhazmat.2023.131422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
Polyethylene (PE) is the most widely used type of plastic food packaging, in which chemicals can potentially migrate into packaged foods. The implications of using and recycling PE from a chemical perspective remain underexplored. This study is a systematic evidence map of 116 studies looking at the migration of food contact chemicals (FCCs) across the lifecycle of PE food packaging. It identified a total of 377 FCCs, of which 211 were detected to migrate from PE articles into food or food simulants at least once. These 211 FCCs were checked against the inventory FCCs databases and EU regulatory lists. Only 25% of the detected FCCs are authorized by EU regulation for the manufacture of food contact materials. Furthermore, a quarter of authorized FCCs exceeded the specific migration limit (SML) at least once, while one-third (53) of non-authorised FCCs exceeded the threshold value of 10 μg/kg. Overall, evidence on FCCs migration across the PE food packaging lifecycle is incomplete, especially at the reprocessing stage. Considering the EU's commitment to increase packaging recycling, a better understanding and monitoring of PE food packaging quality from a chemical perspective across the entire lifecycle will enable the transition towards a sustainable plastics value chain.
Collapse
Affiliation(s)
- Spyridoula Gerassimidou
- Sustainable Plastics Research Group (SPlasH), Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Birgit Geueke
- Food Packaging Forum (FPF), 8045 Zurich, Switzerland
| | - Ksenia J Groh
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Jane Muncke
- Food Packaging Forum (FPF), 8045 Zurich, Switzerland
| | - John N Hahladakis
- Food-Energy-Water-Waste Sustainability (FEWWS) Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Olwenn V Martin
- Plastic Waste Innovation Hub, Department of Arts and Science, University College London, London WC1E 6BT, United Kingdom.
| | - Eleni Iacovidou
- Sustainable Plastics Research Group (SPlasH), Brunel University London, Uxbridge UB8 3PH, United Kingdom; Division of Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| |
Collapse
|
8
|
Dương TB, Dwivedi R, Bain LJ. 2,4-di-tert-butylphenol exposure impairs osteogenic differentiation. Toxicol Appl Pharmacol 2023; 461:116386. [PMID: 36682590 PMCID: PMC9974311 DOI: 10.1016/j.taap.2023.116386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
2,4-di-tert-butylphenol (2,4-DTBP) is a synthetic antioxidant used in polyethylene crosspolymer (PEX) water distribution pipes and food-related plastics. 2,4-DTBP can leach from plastic materials and has been found in breast milk, cord blood, and placental tissue, giving rise to the concern that this compound may interfere with fetal development. The objective of this study is to assess the impacts of 2,4-DTBP on cellular differentiation. Human induced pluripotent stem (HiPS) cells were differentiated into osteoblasts or myoblasts over 40 days, and analyzed for markers of somite, dermomyotome, sclerotome, myoblast, and osteoblast development. When cultured as stem cells, 2,4-DTBP did not alter cell viability and expression of markers (NANOG, OCT4). However, upon differentiation into somite-like cells, 2,4-DTBP had reduced levels of MEOX1 and TBX6 transcripts, while NANOG and OCT4 were in turn upregulated in a dose-dependent manner. At the sclerotome-like stage, PAX9 mRNA decreased by 2-fold in the 0.5 μM and 1.0 μM 2,4-DTBP exposure groups. After 40 days of differentiation into an osteoblast-like lineage, exposure to 2,4-DTBP significantly reduced expression of the osteogenesis transcripts RUNX2 and OSX in a dose-dependent manner. Further, Alizarin Red staining of calcium deposits was decreased in the 0.5 μM and 1.0 μM treatment groups. In contrast, myogenesis was not affected by 2,4-DTBP exposure. Interestingly, KEAP1 expression was significantly increased in the sclerotomal-like cells, but decreased in the dermomytomal-like cells, which may suggest a mechanism of action. Overall, this study shows that 2,4-DTBP can delay key processes during sclerotome and osteoblast development, leading to a potential for bone developmental issues in exposed individuals.
Collapse
Affiliation(s)
- Thanh-Bình Dương
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Raj Dwivedi
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Lisa J Bain
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA.
| |
Collapse
|
9
|
Diera T, Thomsen AH, Tisler S, Karlby LT, Christensen P, Rosshaug PS, Albrechtsen HJ, Christensen JH. A non-target screening study of high-density polyethylene pipes revealed rubber compounds as main contaminant in a drinking water distribution system. WATER RESEARCH 2023; 229:119480. [PMID: 36528929 DOI: 10.1016/j.watres.2022.119480] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Polyethylene (PE) pipes are often the material of choice for water supply systems, thanks to their favorable properties, such as high strength-density ratio and corrosion resistance. However, previous studies have shown that organic compounds can migrate from PE pipes to the water. This study aimed to identify potential organic compounds migrating from high-density PE (HDPE) pipes used to distribute drinking water in Denmark, based on laboratory experiments and sampling in the distribution system using a two-tiered study design. In the first tier, migration of volatile and semi-volatile organic compounds (VOCs and semi-VOCs) from HDPE pipes were investigated over one, three, and nine days in laboratory experiments, performed according to modified standards for migration testing (EN 12,873-1). The analytical workflow consisted of solid-phase extraction (SPE) for 10,000 times enrichment and gas chromatography - mass spectrometry (GC-MS) analysis from the water phase after migration. A total of 133 compounds originating from the PE pipes were detected. Thirty-one compounds were detected by suspect screening (SS), while the remaining 102 compounds were detected by non-target screening (NTS) analysis. Among the detected compounds were also hindered amine stabilizers (HALS), flame retardant, and plasticizer tris(2-chloroethyl) phosphate. In the second tier, drinking water from a water distribution system in Copenhagen, Denmark, with a newly installed HDPE pipe was sampled and analyzed with GC-MS and liquid chromatography high-resolution mass spectrometry (LCHRMS). A total of 51 compounds were detected in the water, 12 of which were assigned to migration from HDPE. Surprisingly, HDPE antioxidants and their degradation products contributed only a relatively small percentage of the total measured compound intensities in the drinking water distribution system. Instead, a larger proportion of the compounds detected were assigned to rubber seals, used upstream in the water system from the abstraction site to delivery at the consumer tap. Seals are considered trifle in the larger picture of materials in contact with drinking water, however these results may cause a reconsideration of this position.
Collapse
Affiliation(s)
- Tomas Diera
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Anne Holm Thomsen
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Lone Tolstrup Karlby
- HOFOR, Greater Copenhagen Utility, Orestads Boulevard 35, 2300 Copenhagen S, Denmark
| | - Peter Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Per Sand Rosshaug
- HOFOR, Greater Copenhagen Utility, Orestads Boulevard 35, 2300 Copenhagen S, Denmark
| | - Hans-Jørgen Albrechtsen
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| |
Collapse
|
10
|
Zhao N, Zhu J, Zhao M, Jin H. Twenty bisphenol analogues in take-out polystyrene-made food containers: concentration levels, simulated migration, and risk evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10516-10526. [PMID: 36083374 DOI: 10.1007/s11356-022-22890-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is mainly used to produce polycarbonate consumer products. However, the occurrence of BPA and other bisphenol analogues (BPs) in polystyrene-made plastic products, such as white foam take-out containers (WFTOCs), has not been well investigated. In this study, occurrence of 20 BPs in WFTOC samples collected from China, Canada, and Poland were investigated with a sample size of 152. Results showed that 11 out of 20 BPs have been detected at least in one WFTOC sample. Among them, BPA was the most frequently detected BP, followed by bisphenol S (BPS) and bisphenol AF, while BPF was the least detected BP. Very high concentrations of BPA and BPS were detected in WFTOCs from China (mean 2694 and 552 ng/g), compared with Canada (81 and 45 ng/g, respectively) and Poland (95 and 16 ng/g). Other BPs, such as bisphenol TMC (BPTMC; detection frequency 65%, range < LOQ - 224 ng/g), bisphenol G (17%, < LOQ - 11 ng/g), and bisphenol BP (11%, < LOQ - 1.6 ng/g), were also detected in Chinese WFTOC samples. The mean partitioning coefficients of BPA, BPS, bisphenol AP, and BPTMC between WFTOCs and tap water, 10% ethanol, 50% ethanol, corn oil, or steamed rice were 0.22 - 2.9%, 0.16 - 5.1%, 0.11 - 7.5%, 2.3 - 6.5%, or 0.19 - 0.36%, respectively. The estimated daily intake of BPA, BPS, and BPTMC through using WFTOCs were 0.50 - 547, 0.054 - 229, and < 0.66 ng/kg bw/day, respectively, for general population in China, Canada, and Poland. Overall, this study first reveals the unexpected presence of BPs in WFTOCs made of polystyrene, which contributes to the better understanding of the sources of human exposure to BPs.
Collapse
Affiliation(s)
- Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianqiang Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
11
|
Courtier A, Roig B, Cariou S, Cadiere A, Bayle S. Evaluation of Coriolis Micro Air Sampling to Detect Volatile and Semi-Volatile Organic Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196462. [PMID: 36234999 PMCID: PMC9572053 DOI: 10.3390/molecules27196462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
There are several analytical procedures available for the monitoring of volatile organic compounds (VOCs) in the air, which differ mainly on sampling procedures. The Coriolis micro air sampler is a tool normally designed for biological air sampling. In this paper, the Coriolis micro bio collector is used to evaluate its ability to sample organic contaminants sampling and detecting them when combined GC-MS. We also compare the use of the Coriolis micro with a standardized sampling method, which is the use of a lung box with a Nalophan® bag. The results show that the Coriolis micro sampling method is suitable for the sampling of organic contaminants. Indeed, the Coriolis micro allows to sample and detect mainly semi-volatile molecules, while the lung box/Nalophan® bags allow to sample more volatile molecules (highly volatile and volatile). These results were confirmed in the controlled air lab with a slight difference with the field. The simultaneous use of the both techniques allow to sample and detect a larger number of molecules with specific physicochemical properties to each sampling technique. In conclusion, the Coriolis micro can sample and detect volatile organic compounds present in air. We have shown that the development of alternative sampling methods and the use of non-target analysis are essential for a more comprehensive risk assessment. Moreover, the use of the Coriolis micro allows the detection of emergent molecules around the Thau lagoon.
Collapse
Affiliation(s)
- Audrey Courtier
- UPR Chrome, University of Nimes, Rue du Dr G. Salan, CEDEX 1, 30021 Nimes, France
- Correspondence:
| | - Benoit Roig
- UPR Chrome, University of Nimes, Rue du Dr G. Salan, CEDEX 1, 30021 Nimes, France
| | - Stephane Cariou
- Laboratoire des Sciences des Risques (LSR), IMT Alès, 6 Av. de Clavières, 30100 Alès, France
| | - Axelle Cadiere
- UPR Chrome, University of Nimes, Rue du Dr G. Salan, CEDEX 1, 30021 Nimes, France
| | - Sandrine Bayle
- Laboratoire des Sciences des Risques (LSR), IMT Alès, 6 Av. de Clavières, 30100 Alès, France
| |
Collapse
|
12
|
Isolation and Identification of Cytotoxic Compounds Present in Biomaterial Life ®. MATERIALS 2022; 15:ma15030871. [PMID: 35160817 PMCID: PMC8838329 DOI: 10.3390/ma15030871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
Direct pulp capping consists of a procedure in which a material is directly placed over the exposed pulp to maintain dental vitality. Although still widely used in clinical practice, previous in vitro studies found that the biomaterial Life® presented high cytotoxicity, leading to cell death. This study aimed to identify the Life® constituents responsible for its cytotoxic effects on odontoblast-like cells (MDPC-23). Aqueous medium conditioned with Life® was subjected to liquid-liquid extraction with ethyl acetate. After solvent removal, cells were treated with residues isolated from the organic and aqueous fractions. MTT and Trypan blue assays were carried out to evaluate the metabolic activity and cell death. The organic phase residue promoted a significant decrease in metabolic activity and increased cell death. On the contrary, no cytotoxic effects were observed with the mixture from the aqueous fraction. Spectroscopic and spectrometric methods allowed the identification of the toxic compounds. A mixture of the regioisomers ortho, para, and meta of N-ethyl-toluenesulfonamide was identified as the agent responsible for the toxicity of biomaterial Life® in MDPC-23 cells. These findings contribute to improving biomaterial research and development.
Collapse
|
13
|
Chen ML, Chen CH, Huang YF, Chen HC, Chang JW. Cumulative Dietary Risk Assessment of Benzophenone-Type Photoinitiators from Packaged Foodstuffs. Foods 2022; 11:152. [PMID: 35053884 PMCID: PMC8774600 DOI: 10.3390/foods11020152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
Photoinitiators used in ultraviolet-cured ink may migrate from food packaging materials into food products. Therefore, we conducted a dietary risk assessment of exposure to benzophenone (BP)-type photoinitiators by quantifying and reducing uncertainties associated with the risk characterization. A total of 362 food packaging samples including 180 cereals, 136 fruit and vegetable juices, and 46 milk samples were subjected to fast pesticides extraction to determine photoinitiator residues. The average daily dose (ADD) of BP was the highest in the age group of zero to three years, with a P97.5 ADD of 2.56 × 10-4 mg/kg bw/day. The ADD of 2-hydroxybenzophenone (2-OHBP) was the highest in the age group of three to six years, with a P97.5 UB ADD of 3.52 × 10-5 mg/kg bw/day. The estimated UB P97.5 ADD for each age group was below the toxicological concern threshold of 0.0015 mg/kg bw/day. The cumulative toxicity of all BPs, evaluated using the MOET value, was at an acceptable level. Although the MOET value of BPs was above the safety limit in the foodstuffs studied herein, this result may be different if Taiwan were to follow regulation guidelines for BP-type photoinitiators based on the specific migration limit for the unmeasured BP residues in other foodstuffs.
Collapse
Affiliation(s)
- Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, Campus of Hsinchu, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
- Institute of Environmental and Occupational Health Sciences, School of Medicine, Campus of Taipei, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Hsien Chen
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Yu-Fang Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan;
| | - Hsin-Chang Chen
- Institute of Food Safety and Health, National Taiwan University, Taipei 11221, Taiwan;
| | - Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, Campus of Hsinchu, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
- Institute of Environmental and Occupational Health Sciences, School of Medicine, Campus of Taipei, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
14
|
Vázquez-Loureiro P, Lestido-Cardama A, Sendón R, López-Hernández J, Paseiro-Losada P, Rodríguez-Bernaldo de Quirós A. Identification of Volatile and Semi-Volatile Compounds in Polymeric Coatings Used in Metal Cans by GC-MS and SPME. MATERIALS 2021; 14:ma14133704. [PMID: 34279275 PMCID: PMC8269810 DOI: 10.3390/ma14133704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/12/2023]
Abstract
Polymeric coatings are used as a protective layer to preserve food or beverage quality and protect it from corrosion and avoid a metallic taste. These types of materials can contain some chemicals that are susceptible to migrate to food and constitute a risk for consumers’ health. This study is focused on the identification of volatile and semi-volatile low molecular weight compounds present in polymeric coatings used for metal food and beverage cans. A method based on solid–liquid extraction followed by gas chromatography–mass spectrometry (GC-MS) was optimized for the semi-volatile compounds. Different solvents were tried with the aim of extracting compounds with different polarities. Furthermore, a method based on solid-phase microextraction (SPME) in headspace (HS) mode and gas chromatography coupled with mass spectrometry (HSSPME-GC-MS) was developed for the identification of potential volatile migrants in polymeric coatings. Some parameters such as extraction time, equilibrium temperature, or the type of fiber were optimized. Different compounds, including aldehydes such as octanal or nonanal, alcohols such as α-terpineol or 2-butoxyethanol, ethers, alkenes, or phthalic compounds, among others, were identified and confirmed with analytical standards both via SPME analysis as well after solvent extraction.
Collapse
|
15
|
Paiva R, Wrona M, Nerín C, Bertochi Veroneze I, Gavril GL, Andrea Cruz S. Importance of profile of volatile and off-odors compounds from different recycled polypropylene used for food applications. Food Chem 2021; 350:129250. [PMID: 33607412 DOI: 10.1016/j.foodchem.2021.129250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
Nowadays, polypropylene is one of the most common polymers used in the food packaging industry due to its good functionality and relatively low cost. Nevertheless, usage of plastic disposable packaging can be a generator of plastic pollution having negative environmental effects. A feasible solution for this issue would be to recycle. The polypropylene samples were submitted to two processes, forced contamination, and recycling, and they were analyzed by solid-phase microextraction gas chromatograph-olfactometry-mass spectrometry. 45 different volatile compounds were identified and 9 of them presented distinct odoriferous activities. Among them, two important markers were detected: diethyl phthalate (probably coming from the catalyst of PP polymerization, intentionally added substance (IAS)), and glycerine (a marker of non-intentionally added substances (NIAS)).
Collapse
Affiliation(s)
- Robert Paiva
- Chemistry Department, Center for Exact Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 10 SP-310, São Carlos, Brazil
| | - Magdalena Wrona
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, CPS-University of Zaragoza, Torres Quevedo Building, María de Luna 3, 50018 Zaragoza, Spain
| | - Cristina Nerín
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, CPS-University of Zaragoza, Torres Quevedo Building, María de Luna 3, 50018 Zaragoza, Spain.
| | - Isabelly Bertochi Veroneze
- Chemistry Department, Center for Exact Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 10 SP-310, São Carlos, Brazil
| | - Georgiana-Luminita Gavril
- Department of Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, sector 6, 060031 Bucharest, Romania
| | - Sandra Andrea Cruz
- Chemistry Department, Center for Exact Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235, 10 SP-310, São Carlos, Brazil.
| |
Collapse
|
16
|
Application of chromatographic analysis for detecting components from polymeric can coatings and further determination in beverage samples. J Chromatogr A 2021; 1638:461886. [PMID: 33465586 DOI: 10.1016/j.chroma.2021.461886] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 11/23/2022]
Abstract
Major type of internal can coating used for food and beverages is made from epoxy resins, which contain among their components bisphenol A (BPA) or bisphenol A diglycidyl ether (BADGE). These components can be released and contaminate the food or beverage. There is no specific European legislation for coatings, but there is legislation on specific substances setting migration limits. Many investigations have paid attention to BPA due to its classification as endocrine disruptor, however, few studies are available concerning to other bisphenol analogues that have been used in the manufacture of these resins. To evaluate the presence of this family of compounds, ten cans of beverages were taken as study samples. Firstly, the type of coating was verified using an attenuated total reflectance-FTIR spectrometer to check the type of coating presents in most of the samples examined. A screening method was also performed to investigate potential volatiles from polymeric can coatings of beverages using Purge and Trap (P&T) technique coupled to gas chromatography with mass spectrometry detection (GC-MS). Moreover, a selective analytical method based on high performance liquid chromatography with fluorescence detection (HPLC-FLD) for the simultaneous identification and quantification of thirteen compounds including bisphenol analogues (BPA, BPB, BPC, BPE, BPF, BPG) and BADGEs (BADGE, BADGE.H2O, BADGE.2H2O, BADGE.HCl, BADGE.2HCl, BADGE.H2O.HCl, cyclo-di-BADGE) in the polymeric can coatings and in the beverage samples was applied. In addition, a liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) method was optimized for confirmation purposes. The method showed an adequate linearity (R2 >0.9994) and low detection levels down to 5 µg/L. Cyclo-di-BADGE was detected in all extracts of polymeric coatings. The concentrations ranged from 0.004 to 0.60 mg/dm2. No detectable amounts of bisphenol related compounds were found in any of the beverage samples at levels that may pose a risk to human health, suggesting a low intake of bisphenols from beverages.
Collapse
|
17
|
Blanco-Zubiaguirre L, Zabaleta I, Prieto A, Olivares M, Zuloaga O, Elizalde MP. Migration of photoinitiators, phthalates and plasticizers from paper and cardboard materials into different simulants and foodstuffs. Food Chem 2020; 344:128597. [PMID: 33214042 DOI: 10.1016/j.foodchem.2020.128597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022]
Abstract
The migration of photoinitiators, phthalates and plasticizers from two paper and cardboard materials into food simulants (50% and 95% EtOH and Tenax) and foodstuffs (rice, cereals and milk powder) was studied. In the case of liquid simulants migration was observed to reach the equilibrium after 60 min and depended on the material type and the physicochemical parameters of the migrants, whereas the temperature (room temperature and 60 °C) did not show significant effects. The study of migration of the compounds from a baking paper to Tenax at high temperatures (150 and 250 °C) evidenced an increment of migration when increasing temperature, except for the most volatile analytes. Finally, the migration to foodstuffs was studied using fully validated analytical protocols. Overall, the comparison of the migration rates demonstrated that Tenax was adequate for the simulation of the migration to rice and cereals, but underestimated the migration to infant milk powder, for which 95% EtOH resulted a more suitable simulant.
Collapse
Affiliation(s)
- L Blanco-Zubiaguirre
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - I Zabaleta
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620 Plentzia, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620 Plentzia, Spain
| | - O Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620 Plentzia, Spain
| | - M P Elizalde
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
18
|
Estimation of Dietary Exposure to Contaminants Transferred from the Packaging in Fatty Dry Foods Based on Cereals. Foods 2020; 9:foods9081038. [PMID: 32752291 PMCID: PMC7466214 DOI: 10.3390/foods9081038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Food packaging has received special attention from the food safety standpoint since it could be a potential source of contamination through the migration of chemical substances from the packaging material into food. The assessment of the exposure through the diet to these contaminants from food packaging is necessary. In this work, an estimation of dietary exposure of the young Spanish population (1–17 years) to target chemicals from packaging for fatty dried foods based on cereals was assessed. For this purpose, a gas chromatography coupled to mass spectrometry (GC–MS) method was developed for screening of volatile and semivolatile compounds, potential migrants from the packaging. Then, this technique was used to quantify 8 target analytes, which were previously identified in the packaging (including phthalates, acetyl tributyl citrate (ATBC), butylated hydroxytoluene (BHT) and octocrylene), in composite food samples of fatty cereals prepared according to the consumption data for different age groups. Among the phthalates, exposure to diethyl phthalate (DEP) was the highest for the three groups considered (0.0761–0.545 µg/kg body weight/day), followed by bis(2-ethylhxyl)phathalate (DEHP), while the lowest mean intake was found for di-n-octyl phathalate (DNOP; 0.00463–0.0209 µg/kg body weight/day). The estimated dietary exposures did not exceed for any of the analytes the corresponding established tolerable daily intakes.
Collapse
|
19
|
Tsochatzis ED, Gika H, Theodoridis G. Development and validation of a fast gas chromatography mass spectrometry method for the quantification of selected non-intentionally added substances and polystyrene/polyurethane oligomers in liquid food simulants. Anal Chim Acta 2020; 1130:49-59. [PMID: 32892938 DOI: 10.1016/j.aca.2020.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
A simple, fast, sensitive and reliable method was developed for the simultaneous determination of 13 food contact materials (FCM) regulated substances and non-intentionally added substances (NIAS) migrating into official food simulants. The method has been optimized to quantify the monomers styrene and α-methyl styrene, selected polystyrene oligomers (dimers, trimers) and polyester urethane-based oligomers (PU) cyclic oligomers, as well as cyclic NIAS originating from food packaging such as 2,6-Di-tert-butylbenzoquinone and 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione. The method employs liquid-liquid extraction of aqueous ethanol food simulants with dichloromethane, and analysis with gas chromatography coupled to mass spectrometry (GC-MS) with a total analysis time of less than 16 min, with limits of detections ranging from 0.32 ng mL-1 (1,1-diphenyl-ethylene) to 14.8 ng mL-1 for 7,9-di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione and respective limits of quantification from 1.0 ng mL-1 to 41.7 ng mL-1, for the same analytes. Accuracy and precision results showed that the method is sufficiently accurate for all target analytes, with recoveries ranging between 80 and 110% and relative standard deviations (RSDs) smaller than 16% at the three selected concentration levels. The method has been successfully applied to seven FCM. Results indicated that significant amounts of polystyrene monomers, dimers and trimers are migrating into food simulants; this is also the case for polyester urethane-based oligomers (PU). Exposure assessment estimation was performed using EFSA's approach on the total sum of migrating oligomers. In certain cases, amounts of PS and PU oligomers found to be in some cases higher than the respective limits, for the sum of oligomers with a MW lower than 1000 Da.
Collapse
Affiliation(s)
- Emmanouil D Tsochatzis
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark; FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece.
| | - Helen Gika
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece; Department of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Georgios Theodoridis
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece; Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
20
|
Waidyanatha S, Gibbs S, South N, Smith JP, Mutlu E, Burback B, Cao Y, Rider CV. Toxicokinetics of the plasticizer, N-butylbenzenesulfonamide, in plasma and brain following oral exposure in rodents: Route, species, and sex comparison. Toxicol Rep 2020; 7:711-722. [PMID: 32551233 PMCID: PMC7287195 DOI: 10.1016/j.toxrep.2020.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
N-Butylbenzenesulfonamide (NBBS) is a widely used plasticizer and hence there is potential for human exposure via oral routes. This work investigates the toxicokinetic behavior of NBBS in rodents following a single gavage (20, 60, and 200 mg/kg body weight) or multi-day feed administration (500, 1000, and 2000 ppm). In male and female rats following gavage administration, maximum plasma NBBS concentration, Cmax, was reached at ≤0.539 h. Cmax increased proportionally to the dose. Area under the curve (AUC) increased more than proportionally to the dose and was 4- to 5-fold higher in females than in males. In mice, plasma Cmax was reached at ≤0.136 h and increased proportionally to the dose in female mice and more than proportionally to the dose in males. AUC increased more than proportionally to the dose with no apparent sex difference. Elimination of NBBS in plasma was faster in mice (half-life (h); mice ≤0.432, rat ≤3.55). Oral bioavailability was higher in female rats (≥60%) than males (23-52%) with apparent saturation of clearance at ∼200 mg/kg body weight in females. In mice, bioavailability (5-14%) was lower with no apparent sex difference. NBBS was detected in brains of rats and mice but with low brain:plasma ratios (rats, ≤5; mice, ≤1) suggesting low potential to cross the blood brain barrier. Systemic exposure in male rats and mice following a single gavage administration was ≥48-fold higher than multi-day feed exposure. These data demonstrate potential species, sex, dose- and route-related difference in toxicokinetics of NBBS in rodents.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Seth Gibbs
- Battelle Memorial Institute, Columbus, OH, United States
| | - Natalie South
- Battelle Memorial Institute, Columbus, OH, United States
| | - Jeremy P Smith
- Battelle Memorial Institute, Columbus, OH, United States
| | - Esra Mutlu
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Brian Burback
- Battelle Memorial Institute, Columbus, OH, United States
| | - Yu Cao
- Battelle Memorial Institute, Columbus, OH, United States
| | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
21
|
Rider CV, Vallant M, Blystone C, Waidyanatha S, South NL, Xie G, Turner K. Short-term perinatal toxicity study in sprague Dawley rats with the plasticizer and emerging contaminant N-Butylbenzenesulfonamide. Toxicol Lett 2020; 330:159-166. [PMID: 32437845 PMCID: PMC9463652 DOI: 10.1016/j.toxlet.2020.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
N-Butylbenzenesulfonamide (NBBS) is a plasticizer and emerging contaminant that has been detected in a wide array of environmental samples. There are very little toxicity data available with which to evaluate potential risk from exposure to NBBS or other structurally-related sulfonamide plasticizers. To address this knowledge gap, NBBS was selected by the National Toxicology Program for evaluation. The current short-term pre- and post-natal (perinatal) study aims to provide preliminary toxicity and gestational transfer data for NBBS. NBBS was administered via dosed feed at concentrations of 0, 625, 1250, 2500, 5000, and 10,000 ppm to time-mated Sprague Dawley (Hsd:Sprague Dawley SD®) rats from gestation day (GD) 6 through postnatal day (PND) 28. The high concentration of 10,000 ppm NBBS was overtly toxic to dams, and the group was removed on GD 17-18. Exposure to NBBS resulted in lower maternal weights during the gestational period in the 5000 and 10,000 ppm groups as compared to control weights. Dams also displayed lower weights in the lactational period, which resolved to control levels by PND 28. NBBS exposure did not affect pregnancy or littering parameters in F0 dams. However, pup survival was lower in the 5000 ppm group, and pup weights were dose-responsively lower than control pup weights with the difference expanding over the postnatal period. The lowest observed effect level (LOEL) based on significantly lower body weights was 5000 ppm NBBS for F0 dams and 2500 ppm NBBS for F1 pups. Preliminary data for NBBS levels indicated that the chemical was transferred from dams to offspring during the gestational period.
Collapse
Affiliation(s)
- Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Molly Vallant
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Chad Blystone
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Guanhua Xie
- Social & Scientific Systems Inc, Public Health Sciences, Durham, NC, USA
| | - Katie Turner
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA, (current location Janssen R&D LLC, Spring House, PA, USA
| |
Collapse
|
22
|
Blanco-Zubiaguirre L, Zabaleta I, Usobiaga A, Prieto A, Olivares M, Zuloaga O, Elizalde M. Target and suspect screening of substances liable to migrate from food contact paper and cardboard materials using liquid chromatography-high resolution tandem mass spectrometry. Talanta 2020; 208:120394. [DOI: 10.1016/j.talanta.2019.120394] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/30/2022]
|
23
|
Waidyanatha S, Black SR, Patel PR, Rider CV, Watson SL, Snyder RW, Fennell TR. Disposition and metabolism of N-butylbenzenesulfonamide in Sprague Dawley rats and B6C3F1/N mice and in vitro in hepatocytes from rats, mice, and humans. Toxicol Lett 2020; 319:225-236. [PMID: 31760063 PMCID: PMC7028346 DOI: 10.1016/j.toxlet.2019.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/07/2019] [Accepted: 11/17/2019] [Indexed: 11/22/2022]
Abstract
N-Butylbenzenesulfonamide (NBBS) is a plasticizer detected in the environment suggesting potential human exposure. These studies investigated the in vitro hepatic clearance and disposition of [14C]NBBS in rodents following a single gavage (2, 20 or 200 mg/kg) or intravenous (IV) administration (20 mg/kg). NBBS was cleared slower in hepatocytes from humans compared to rodents. [14C]NBBS was well-absorbed in male rats following gavage administration and excreted extensively in urine (70-76 %) and feces (11-15 %) 72 h following administration. Following a 20 mg/kg gavage dose in male rats, 25 % of the dose was excreted in bile by 24 h suggesting that observed fecal excretion was due to biliary excretion. The radioactivity was distributed to tissues with 14 % and 8 % of the administered dose remaining in tissues at 24 and 72 h, respectively. There was no apparent dose-dependent effect in disposition in male rats. Disposition patterns were similar in female rats (urine, 83 %; feces, 14 %) and male (urine, 69 %; feces, 11 %) and female (urine, 72 %; feces, 9 %) mice following gavage administration of 20 mg/kg. The disposition following IV administration was similar to that of gavage. Urinary radiochemical profiles were similar between doses, routes, species, and sexes. Among numerous metabolites identified, oxidative metabolites of NBBS predominated.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Sherry R Black
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Purvi R Patel
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Scott L Watson
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Rodney W Snyder
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| | - Timothy R Fennell
- RTI International, Discovery Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
24
|
Lestido Cardama A, Sendón R, Bustos J, Santillana MI, Paseiro Losada P, Rodríguez Bernaldo de Quirós A. GC-MS Screening for the Identification of Potential Migrants Present in Polymeric Coatings of Food Cans. Polymers (Basel) 2019; 11:polym11122086. [PMID: 31847163 PMCID: PMC6960813 DOI: 10.3390/polym11122086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/11/2023] Open
Abstract
The coatings used in cans can release complex chemical mixtures into foodstuffs. Therefore, it is important to develop analytical methods for the identification of these potential migrant compounds in packaged food to guarantee the compliance with European food packaging legislation and ensure consumer safety. In the present work, the type of coating in a total of twelve cans collected in Santiago de Compostela (Spain) were evaluated using an ATR (attenuated total reflectance)-FTIR spectrometer. These samples were analysed after extraction with acetonitrile in order to identify potential migrants through a screening method by gas chromatography coupled to mass spectrometry (GC-MS). A total of forty-seven volatile and semi-volatile compounds were identified in these samples, including plasticizers, photoinitiators, antioxidants, lubricants, etc. Then, in a second step, a targeted analysis was carried out for the simultaneous determination of 13 compounds, including bisphenols (BPA, BPB, BPC, BPE, BPF, BPG) and BADGEs (BADGE, BADGE.H2O, BADGE.2H2O, BADGE.HCl, BADGE.2HCl, BADGE.H2O.HCl, cyclo-di-BADGE) by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) with atmospheric pressure chemical ionisation (APCI) source. Among all the bisphenols analysed, only the bisphenol A was detected in four samples; while cyclo-di-BADGE was the predominant compound detected in all the samples analysed.
Collapse
Affiliation(s)
- Antía Lestido Cardama
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain; (A.L.C.); (R.S.); (P.P.L.)
| | - Raquel Sendón
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain; (A.L.C.); (R.S.); (P.P.L.)
| | - Juana Bustos
- National Food Center, Spanish Agency of Food Safety and Nutrition, E-28220 Majadahonda, Spain; (J.B.); (M.I.S.)
| | - M. Isabel Santillana
- National Food Center, Spanish Agency of Food Safety and Nutrition, E-28220 Majadahonda, Spain; (J.B.); (M.I.S.)
| | - Perfecto Paseiro Losada
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain; (A.L.C.); (R.S.); (P.P.L.)
| | - Ana Rodríguez Bernaldo de Quirós
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain; (A.L.C.); (R.S.); (P.P.L.)
- Correspondence: ; Tel.: +34-881814965
| |
Collapse
|
25
|
García Ibarra V, Rodríguez Bernaldo de Quirós A, Paseiro Losada P, Sendón R. Non-target analysis of intentionally and non intentionally added substances from plastic packaging materials and their migration into food simulants. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100325] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Waidyanatha S, Black SR, Blystone CR, Patel PR, Watson SL, Snyder RW, Fennell TR. Disposition and metabolism of sulfolane in Harlan Sprague Dawley rats and B6C3F1/N mice and in vitro in hepatocytes from rats, mice, and humans. Xenobiotica 2019; 50:442-453. [PMID: 31184953 DOI: 10.1080/00498254.2019.1630786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sulfolane has been found as a ground water contaminant near refining sites. These studies investigated the in vitro hepatic clearance and in vivo disposition of [14C]sulfolane in rats and mice following a single oral administration (30, 100, or 300 mg/kg) and dermal application (100 mg/kg).[14C]Sulfolane was well-absorbed in male rats following oral administration and excreted extensively in urine (≥93%). Total radioactivity in tissues at 24 and 48 h was ∼7% and <2%. Disposition pattern was similar in female rats and male and female mice at 100 mg/kg oral dose.Dermally applied [14C]Sulfolane (covered dose site, 100 mg/kg) was poorly absorbed in male (∼16%) and female (∼19%) rats; absorption increased to 59% when the dose site was uncovered in male rats suggesting ingestion of dose via grooming of the dose site. Dermally applied [14C]sulfolane (100 mg/kg, covered dose site) was well absorbed in male (∼70%) and female (∼80%) mice.Urinary radiochemical profiles were similar between routes, species, and sexes; the main analytes present in urine were sulfolane and 3-hydroxysulfolane.Sulfolane was not cleared in hepatocytes from rodents or human suggesting sites other than liver might be involved in metabolism of sulfolane in vivo.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sherry R Black
- Discovery Sciences, RTI International, Research Triangle Park, NC, USA
| | - Chad R Blystone
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Purvi R Patel
- Discovery Sciences, RTI International, Research Triangle Park, NC, USA
| | - Scott L Watson
- Discovery Sciences, RTI International, Research Triangle Park, NC, USA
| | - Rodney W Snyder
- Discovery Sciences, RTI International, Research Triangle Park, NC, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
27
|
Determination of volatile non intentionally added substances coming from a starch-based biopolymer intended for food contact by different gas chromatography-mass spectrometry approaches. J Chromatogr A 2019; 1599:215-222. [PMID: 30975529 DOI: 10.1016/j.chroma.2019.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
Abstract
The rapid growth of polymer technology in the field of food contact materials (FCMs) needs to be supported by continuous improvement in material testing, in order to ensure the safety of foodstuff. In this work, a range of different starch-based biopolymer samples, in the shape of pellets and retail samples (cups and dishes) were studied. The optimized extraction process was performed on three different pellet shapes: pellets with no modification (spherical), pellets shattered under high pressure (lentils), and pellets cryogenically ground (powder). The analysis of unknown volatile and semi-volatile compounds was carried out by gas chromatography-mass spectrometry, using both electron ionization with a single quadrupole mass analyzer (GC-EI-MS), and atmospheric pressure gas chromatography with a quadrupole/time of flight mass analyzer (APGC-Q/ToF). The identification process was implemented using the latest advances in the understanding of APGC ionization pathways. Chemical migration was also assessed on prototype samples using the food simulants: ethanol 10% v/v, acetic acid 3% w/V, ethanol 95% v/v, isooctane, and vegetable oil. Each migration test was performed three consecutive times, as recommended for materials intended for repeated use.
Collapse
|
28
|
Galmán Graíño S, Sendón R, López Hernández J, Rodríguez-Bernaldo de Quirós A. GC-MS Screening Analysis for the Identification of Potential Migrants in Plastic and Paper-Based Candy Wrappers. Polymers (Basel) 2018; 10:E802. [PMID: 30960727 PMCID: PMC6403844 DOI: 10.3390/polym10070802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Abstract
Food packaging materials may be a potential source of contamination through the migration of components from the material into foodstuffs. Potential migrants can be known substances such as additives (e.g., plasticizers, stabilizers, antioxidants, etc.), monomers, and so on. However, they can also be unknown substances, which could be non-intentionally added substances (NIAS). In the present study, non-targeted analysis using mass spectrometry coupled to gas chromatography (GC-MS) for the identification of migrants in plastic and paper-based candy wrappers was performed. Samples were analyzed after extraction with acetonitrile. Numerous compounds including N-alkanes, phthalates, acetyl tributyl citrate, tributyl aconitate, bis(2-ethylhexyl) adipate, butylated hydroxytoluene, etc. were identified. Many of the compounds detected in plastic samples are not included in the positive list of the authorized substances. One non-intentionally added substance, 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6-9-diene-2,8-dione, which has been reported as a degradation product of the antioxidant Irganox 1010, was found in several samples of both plastic and paper packaging. The proposed method was shown to be a useful approach for the identification of potential migrants in packaging samples. The toxicity of the compounds identified was estimated according to Cramer rules. Then, a second targeted analysis was also conducted in order to identify photoinitiators; among the analyzed compounds, only 2-hydroxybenzophenone was found in five samples.
Collapse
Affiliation(s)
- Soraya Galmán Graíño
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| | - Raquel Sendón
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| | - Julia López Hernández
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| | - Ana Rodríguez-Bernaldo de Quirós
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| |
Collapse
|
29
|
Wang A, Gerona RR, Schwartz JM, Lin T, Sirota M, Morello-Frosch R, Woodruff TJ. A Suspect Screening Method for Characterizing Multiple Chemical Exposures among a Demographically Diverse Population of Pregnant Women in San Francisco. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:077009. [PMID: 30044231 PMCID: PMC6108847 DOI: 10.1289/ehp2920] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND In utero exposure to environmental chemicals can adversely impact pregnancy outcomes and childhood health, but minimal biomonitoring data exist on the majority of chemicals used in commerce. OBJECTIVES We aimed to profile exposure to multiple environmental organic acids (EOAs) and identify novel chemicals that have not been previously biomonitored in a diverse population of pregnant women. METHODS We used liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) to perform a suspect screen for 696 EOAs, (e.g., phenols and phthalate metabolites) on the maternal serum collected at delivery from 75 pregnant women delivering at two large San Francisco Hospitals. We examined demographic differences in peak areas and detection frequency (DF) of suspect EOAs using a Kruskal-Wallis Rank Sum test or Fisher's exact test. We confirmed selected suspects by comparison with their respective reference standards. RESULTS We detected, on average, 56 [standard deviation (SD)]: 8) suspect EOAs in each sample (range: 32-73). Twelve suspect EOAs with DF≥60 were matched to 21 candidate compounds in our EOA database, two-thirds of which are novel chemicals. We found demographic differences in DF for 13 suspect EOAs and confirmed the presence of 6 priority novel chemicals: 2,4-Di-tert-butylphenol, Pyrocatechol, 2,4-Dinitrophenol, 3,5-Di-tert-butylsalicylic acid, 4-Hydroxycoumarin, and 2'-Hydroxyacetophenone (or 3'-Hydroxyacetophenone). The first two are high-production-volume chemicals in the United States. CONCLUSION Suspect screening in human biomonitoring provides a viable method to characterize a broad spectrum of environmental chemicals to prioritize for targeted method development and quantification. https://doi.org/10.1289/EHP2920.
Collapse
Affiliation(s)
- Aolin Wang
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Roy R Gerona
- Clinical Toxicology and Environmental Biomonitoring Lab, University of California, San Francisco, California, USA
| | - Jackie M Schwartz
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California, USA
| | - Thomas Lin
- Clinical Toxicology and Environmental Biomonitoring Lab, University of California, San Francisco, California, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Rachel Morello-Frosch
- School of Public Health and Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California, USA
- Philip R Lee Institute for Health Policy Studies, University of California, San Francisco, California, USA
| |
Collapse
|
30
|
Pieke EN, Granby K, Teste B, Smedsgaard J, Rivière G. Prioritization before risk assessment: The viability of uncertain data on food contact materials. Regul Toxicol Pharmacol 2018; 97:134-143. [PMID: 29932981 DOI: 10.1016/j.yrtph.2018.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 11/17/2022]
Abstract
The shortage of data on non-intentionally added substances (NIAS) present in food contact material (FCM) limits the ability to ensure food safety. Recent strategies in analytical method development permit NIAS investigation by using chemical exploration, but this has not been sufficiently investigated in risk assessment context. Here, exploration is utilized and followed by risk prioritization on chemical compounds that can potentially migrate to food from two paperboard FCM samples. Concentration estimates from exploration are converted to tentative exposure assessment, while predicted chemical structures are assessed using quantitative structure-activity relationships (QSAR) models for carcinogenicity, mutagenicity, and reproductive toxicity. A selection of 60 chemical compounds from two FCMs is assessed by four risk assessors to classify compounds based on probable risk. For almost 60% of cases, the assessors classified compounds as either high priority or low priority. Unclassified compounds are due to disagreements between experts (18%) or due to a perceived lack of data (23%). Among the high priority substances are high-concentration compounds, benzophenone derivatives, and dyes. The low priority compounds contained e.g. oligomers from plasticizers and linear alkane amides. The classification scheme provides valuable information based on tentative data and is able to prioritize discovered chemical compounds for pending risk assessment.
Collapse
Affiliation(s)
- Eelco N Pieke
- Technical University of Denmark, National Food Institute, Research Group for Analytical Food Chemistry, Kemitorvet Building 202, 2800, Kgs. Lyngby, Denmark.
| | - Kit Granby
- Technical University of Denmark, National Food Institute, Research Group for Analytical Food Chemistry, Kemitorvet Building 202, 2800, Kgs. Lyngby, Denmark.
| | - Bruno Teste
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France.
| | - Jørn Smedsgaard
- Technical University of Denmark, National Food Institute, Research Group for Analytical Food Chemistry, Kemitorvet Building 202, 2800, Kgs. Lyngby, Denmark.
| | - Gilles Rivière
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France.
| |
Collapse
|
31
|
Di Carro M, Magi E, Massa F, Castellano M, Mirasole C, Tanwar S, Olivari E, Povero P. Untargeted approach for the evaluation of anthropic impact on the sheltered marine area of Portofino (Italy). MARINE POLLUTION BULLETIN 2018; 131:87-94. [PMID: 29887008 DOI: 10.1016/j.marpolbul.2018.03.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
Seawater passive sampling with Polar Organic Chemical Integrative Samplers (POCIS) combined with Gaschromatography-Mass Spectrometry analysis were employed as a tool for screening unknown contaminants in a complex Ligurian marine coastal area. The untargeted approach allowed recognizing different classes of compounds, mainly hydrocarbons from C20 to C30. Besides, two chemicals, deriving from anthropic activities, N-butylbenzenesulfonamide (NBBS) and diphenyl sulfone (DPS), were identified and quantified in all samples. Both analytes showed decreasing concentrations from the more confined site to the outer one. The oceanographic characterization of the area performed with multiparametric probes provided useful information, in agreement with chemical analyses. The presence of NBBS and DPS in the site presenting lower continental inputs demonstrated the usefulness of the integrative sampling approach for temporal and spatial monitoring, especially for low level and/or short-term pollution events that traditional monitoring can fail to detect.
Collapse
Affiliation(s)
- Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy.
| | - Francesco Massa
- Department for the Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Michela Castellano
- Department for the Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Cristiana Mirasole
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Shivani Tanwar
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Enrico Olivari
- Department for the Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Paolo Povero
- Department for the Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| |
Collapse
|
32
|
García Ibarra V, Rodríguez Bernaldo de Quirós A, Paseiro Losada P, Sendón R. Identification of intentionally and non-intentionally added substances in plastic packaging materials and their migration into food products. Anal Bioanal Chem 2018; 410:3789-3803. [PMID: 29732500 DOI: 10.1007/s00216-018-1058-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/26/2018] [Accepted: 03/29/2018] [Indexed: 11/29/2022]
Abstract
Plastic materials are widely used in food packaging applications; however, there is increased concern because of the possible release of undesirable components into foodstuffs. Migration of plastic constituents not only has the potential to affect product quality but also constitutes a risk to consumer health. In order to check the safety of food contact materials, analytical methodologies to identify potential migrants are required. In the first part of this work, a GC/MS screening method was developed for the identification of components from plastic packaging materials including intentionally and "non-intentionally added substances" (NIAS) as potential migrants. In the second part of this study, the presence of seven compounds (bis (2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), butylated hydroxytoluene (BHT), acetyl tributyl citrate (ATBC), benzophenone (BP)) previously identified in packaging materials were investigated in food products (corn and potatoes snacks, cookies, and cakes). For this purpose, a suitable extraction method was developed and quantification was performed using GC-MS. The developed method was validated in terms of linearity, recovery, repeatability, and limits of detection and quantification. The spiked recoveries varied between 82.7 and 116.1%, and relative standard deviation (RSD) was in the range of 2.22-15.9%. The plasticizer ATBC was the most detected compound (94% samples), followed by DEP (65%), DEHP (47%), BP (44%), DBP (35%), DIBP (21%), and BHT (12%). Regarding phthalates, DEP and DEHP were the most frequently detected compounds in concentrations up to 1.44 μg g-1. In some samples, only DBP exceeded the European SML of 0.3 mg kg-1 established in Regulation 10/2011. Graphical abstract Chemical migration from plastic packaging into food.
Collapse
Affiliation(s)
- Verónica García Ibarra
- Faculty of Pharmacy, Department of Analytical Chemistry, Nutrition and Food Science, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ana Rodríguez Bernaldo de Quirós
- Faculty of Pharmacy, Department of Analytical Chemistry, Nutrition and Food Science, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Perfecto Paseiro Losada
- Faculty of Pharmacy, Department of Analytical Chemistry, Nutrition and Food Science, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Raquel Sendón
- Faculty of Pharmacy, Department of Analytical Chemistry, Nutrition and Food Science, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
33
|
Blum KM, Andersson PL, Ahrens L, Wiberg K, Haglund P. Persistence, mobility and bioavailability of emerging organic contaminants discharged from sewage treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1532-1542. [PMID: 28915547 DOI: 10.1016/j.scitotenv.2017.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 05/06/2023]
Abstract
Little is known about the impact of emissions of micropollutants from small and large-scale sewage treatment plants (STPs) on drinking water source areas. We investigated a populated catchment that drains into Lake Mälaren, which is the drinking water source for around 2 million people including the inhabitants of Stockholm, Sweden. To assess the persistence, mobility, bioavailability and bioaccumulation of 32 structurally diverse emerging organic contaminants, sediment, integrated passive and grab water samples were collected along the catchment of the River Fyris, Sweden. The samples were complemented with STP effluent and fish samples from one sampling event. Contaminants identified as persistent, mobile, and bioavailable were 4,6,6,7,8,8-hexamethyl-1,3,4,7-tetrahydrocyclopenta[g]isochromene (galaxolide), 2,4,7,9-tetramethyl-5-decyn-4,7-diol, tris(2-chloro-ethyl) phosphate, tris(1,3-dichloro-2-propyl) phosphate, and tris(1-chloro-2-propyl) phosphate. Galaxolide and 2,4,7,9-tetramethyl-5-decyn-4,7-diol were additionally found to be bioaccumulative, whereas n-butylbenzenesulfonamide was found to be only persistent and mobile. The total median mass flux of the persistent and mobile target analytes from Lake Ekoln into the drinking water source area of Lake Mälaren was estimated to be 27kg per year. Additionally, 10 contaminants were tentatively identified by non-target screening using NIST library searches and manual review. Two of those were confirmed by reference standards and further two contaminants, propylene glycol and rose acetate, were discharged from STPs and travelled far from the source. Attenuation of mass fluxes was highest in the summer and autumn seasons, suggesting the importance of biological degradation and photodegradation for the persistence of the studied compounds.
Collapse
Affiliation(s)
- Kristin M Blum
- Dept. of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | | | - Lutz Ahrens
- Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, Uppsala, Sweden
| | - Karin Wiberg
- Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, Uppsala, Sweden
| | - Peter Haglund
- Dept. of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
34
|
Souton E, Severin I, Le Hegarat L, Hogeveen K, Aljawish A, Fessard V, Marie-Christine C. Genotoxic effects of food contact recycled paperboard extracts on two human hepatic cell lines. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:159-170. [PMID: 29076405 DOI: 10.1080/19440049.2017.1397774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Food contact paperboards may be a potential source of food contamination as they can release chemicals (intentionally added or not), especially recycled paperboards. This study assessed the in vitro genotoxicity of food contact paperboard samples from a manufacturer, collected at the beginning and at the end of a recycling production chain. Samples were extracted in water to mimic a wet food contact. Different genotoxic endpoints were evaluated in two human hepatic cell lines (HepG2 and HepaRG) using bioassays: γH2AX and p53 activation, primary DNA damage with the comet assay and micronucleus formation. It was found that the samples from the beginning and the end of the production chain induced, with the same potency, γH2AX and p53-ser15 activation and DNA damage with the comet assay. The micronucleus assay was negative with the paperboard extract from the beginning of the chain, whereas positive data were observed for the end paperboard extract. These results indicate that samples from recycled food contact paperboard can induce in vitro genotoxic effects in this study's experimental conditions.
Collapse
Affiliation(s)
- Emilie Souton
- a Agrosupdijon, Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231 , University of Bourgogne-Franche-Comté , Dijon , France
| | - Isabelle Severin
- a Agrosupdijon, Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231 , University of Bourgogne-Franche-Comté , Dijon , France
| | - Ludovic Le Hegarat
- b Toxicology of Contaminants Unit, ANSES-Fougères Laboratory , French Agency for Food, Environmental and Occupational Health & Safety , Fougères , France
| | - Kevin Hogeveen
- b Toxicology of Contaminants Unit, ANSES-Fougères Laboratory , French Agency for Food, Environmental and Occupational Health & Safety , Fougères , France
| | - Abdulhadi Aljawish
- a Agrosupdijon, Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231 , University of Bourgogne-Franche-Comté , Dijon , France
| | - Valérie Fessard
- b Toxicology of Contaminants Unit, ANSES-Fougères Laboratory , French Agency for Food, Environmental and Occupational Health & Safety , Fougères , France
| | - Chagnon Marie-Christine
- a Agrosupdijon, Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231 , University of Bourgogne-Franche-Comté , Dijon , France
| |
Collapse
|
35
|
Frazzoli C, Mazzanti F, Achu MB, Pouokam GB, Fokou E. Elements of kitchen toxicology to exploit the value of traditional (African) recipes: The case of Egusi Okra meal in the diet of HIV+/AIDS subjects. Toxicol Rep 2017; 4:474-483. [PMID: 28959677 PMCID: PMC5615167 DOI: 10.1016/j.toxrep.2017.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/18/2017] [Accepted: 06/22/2017] [Indexed: 01/07/2023] Open
Abstract
The Egusi Okra soup is a traditional African meal that is considered of high nutritional value and protective against weight loss. We introduce the concept of "kitchen toxicology" to analyse the recipe of the Egusi Okra soup and highlight possible mitigation measures for toxic and/or antinutritional effects in the wide spectrum of health and nutritional needs of HIV+/AIDS subjects. In particular, we focus on toxicants (environmental contaminants, process contaminants, substances leaching from food contact materials) dysregulating the immune status, as well as on interactions between nutrients, contaminants, and/or antinutrients which may lead to secondary/conditioned nutritional deficiencies or imbalances; in their turn, these can modulate the ability to cope with toxicants, and increase nutritional requirements. Recommendations are given for practices preserving the Egusi Okra soup from such risk factors, identifying points of particular attention during meal preparation, from purchase of raw ingredients through to food handling, cooking, storage, and consumption. The Egusi Okra soup is discussed in the context of a diet that is asked to mitigate complications (weight loss, opportunistic infections) and support antiretroviral therapy in African countries with high HIV/AIDS prevalence. The paper discusses how nutritional interventions benefit of the integration of kitchen toxicology practices in everyday life. Toxicological risk assessment is crucial to understand the history and status of the person exposed to or affected by infectious diseases.
Collapse
Affiliation(s)
- Chiara Frazzoli
- Dept. of Cardiovascular, Dysmetabolic and Aging-Associated Diseases, Istituto Superiore di Sanità, Rome, Italy
- Nutrition, Food Safety and Wholesomeness. Prevention, Education and Research Network1
| | - Francesca Mazzanti
- Nutrition, Food Safety and Wholesomeness. Prevention, Education and Research Network1
| | - Mercy Bih Achu
- Nutrition, Food Safety and Wholesomeness. Prevention, Education and Research Network1
- Laboratoire des Sciences Alimentaires et Métabolisme, Département de Biochimie, Faculté des Sciences, Université de Yaoundé I, Yaoundé, Cameroon
| | - Guy Bertrand Pouokam
- Nutrition, Food Safety and Wholesomeness. Prevention, Education and Research Network1
- Laboratory of Food Safety, Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Elie Fokou
- Nutrition, Food Safety and Wholesomeness. Prevention, Education and Research Network1
- Laboratoire des Sciences Alimentaires et Métabolisme, Département de Biochimie, Faculté des Sciences, Université de Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
36
|
Severin I, Souton E, Dahbi L, Chagnon MC. Use of bioassays to assess hazard of food contact material extracts: State of the art. Food Chem Toxicol 2017; 105:429-447. [PMID: 28476634 DOI: 10.1016/j.fct.2017.04.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/10/2017] [Accepted: 04/29/2017] [Indexed: 01/17/2023]
Abstract
This review focuses on the use of in vitro bioassays for the hazard assessment of food contact materials (FCM) as a relevant strategy, in complement to analytical methods. FCM may transfer constituents to foods, not always detected by analytical chemistry, resulting in low but measurable human exposures. Testing FCM extracts with bioassays represents the biological response of a combination of substances, able to be released from the finished materials. Furthermore, this approach is particularly useful regarding the current risk assessment challenges with unpredicted/unidentified non-intentionally added substances (NIAS) that can be leached from the FCM in the food. Bioassays applied to assess hazard of different FCM types are described for, to date, the toxicological endpoints able to be expressed at low levels; cytotoxicity, genotoxicity and endocrine disruption potential. The bioassay strengths and relative key points needed to correctly use and improve the performance of bioassays for an additional FCM risk assessment is developed. This review compiles studies showing that combining both chemical and toxicological analyses presents a very promising and pragmatic tool for identifying new undesirable NIAS (not predicted) which can represent a great part of the migrating substances and/or "cocktail effect".
Collapse
Affiliation(s)
- Isabelle Severin
- Derttech « Packtox », University of Bourgogne Franche-Comté, INSERM LNC UMR 1231, AgroSupDijon, F-21000 Dijon, France
| | - Emilie Souton
- Derttech « Packtox », University of Bourgogne Franche-Comté, INSERM LNC UMR 1231, AgroSupDijon, F-21000 Dijon, France
| | - Laurence Dahbi
- Derttech « Packtox », University of Bourgogne Franche-Comté, INSERM LNC UMR 1231, AgroSupDijon, F-21000 Dijon, France
| | - Marie Christine Chagnon
- Derttech « Packtox », University of Bourgogne Franche-Comté, INSERM LNC UMR 1231, AgroSupDijon, F-21000 Dijon, France.
| |
Collapse
|
37
|
Lago MA, Ackerman LK. Identification of print-related contaminants in food packaging. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:518-29. [DOI: 10.1080/19440049.2015.1136435] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Leeman W, Krul L. Non-intentionally added substances in food contact materials: how to ensure consumer safety. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2015.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Cherta L, Portolés T, Pitarch E, Beltran J, López F, Calatayud C, Company B, Hernández F. Analytical strategy based on the combination of gas chromatography coupled to time-of-flight and hybrid quadrupole time-of-flight mass analyzers for non-target analysis in food packaging. Food Chem 2015; 188:301-8. [DOI: 10.1016/j.foodchem.2015.04.141] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/10/2015] [Accepted: 04/30/2015] [Indexed: 11/27/2022]
|
40
|
Marrocco A, Meade BJ, Long CM, Lukomska E, Marshall NB, Anderson SE. Investigations into the Immunotoxicity and Allergic Potential Induced by Topical Application of N-Butylbenzenesulfonamide (NBBS) in a Murine Model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1122-1132. [PMID: 26291892 PMCID: PMC4605868 DOI: 10.1080/15287394.2015.1056898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
N-Butylbenzene sulfonamide (NBBS) is a commonly used plasticizer found in numerous products. Due to its extensive use, lack of adequate toxicological data, and suspicion of toxicity based on the presence of structural alerts, it was nominated to the National Toxicology Program for comprehensive toxicological testing. The purpose of this study was to evaluate the potential for hypersensitivity and immune suppression following dermal exposure to NBBS using a murine model. NBBS tested negative in a combined irritancy/local lymph node assay (LLNA), classifying it as nonirritating and nonsensitizing. To estimate the immunosuppressive potential of NBBS, assays that assessed immunotoxicity were performed, including the immumnoglobulin (Ig) M response to T-cell-dependent antigen sheep red blood cells (SRBC), using the plaque-forming cell (PFC) assay and immune cell phenotyping. After a 28-d treatment with NBBS, mice exposed to the lowest concentration (25% NBBS) showed a significant increase in IgM-producing B cells in the spleen. No marked changes were identified in immune cell markers in the lymph node. In contrast to body weight, a significant elevation in kidney and liver weight was observed following dermal exposure to all concentrations of NBBS. These results demonstrate that dermal exposure to NBBS, other than liver and kidney toxicity, did not apparently induce immunotoxicity in a murine model.
Collapse
Affiliation(s)
- Antonella Marrocco
- a National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - B Jean Meade
- a National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Carrie M Long
- a National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Ewa Lukomska
- a National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Nikki B Marshall
- a National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Stacey E Anderson
- a National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| |
Collapse
|
41
|
Jeddi MZ, Rastkari N, Ahmadkhaniha R, Yunesian M. Concentrations of phthalates in bottled water under common storage conditions: Do they pose a health risk to children? Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.11.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Determination of volatile organic compounds (VOCs) from wrapping films and wrapped PDO Italian cheeses by using HS-SPME and GC/MS. Molecules 2014; 19:8707-24. [PMID: 24968328 PMCID: PMC6271448 DOI: 10.3390/molecules19078707] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 11/16/2022] Open
Abstract
Nowadays food wrapping assures attractive presentation and simplifies self-service shopping. Polyvinylchloride (PVC)- and polyethylene (PE)-based cling-films are widely used worldwide for wrapping cheeses. For this purpose, films used in retail possess suitable technical properties such as clinginess and unrolling capacity, that are achieved by using specific plasticizers during their manufacturing process. In the present study, the main VOCs of three cling-films (either PVC-based or PE-based) for retail use were characterized by means of Solid-Phase Micro-Extraction and GC/MS. In addition, the effects of cling film type and contact time on the migration of VOCs from the films to four different PDO Italian cheeses during cold storage under light or dark were also investigated. Among the VOCs isolated from cling-films, PVC released 2-ethylhexanol and triacetin. These compounds can likely be considered as a “non-intentionally added substance”. These same compounds were also detected in cheeses wrapped in PVC films with the highest concentration found after 20 days storage. The PE cling-film was shown to possess a simpler VOC profile, lacking some molecules peculiar to PVC films. The same conclusions can be drawn for cheeses wrapped in the PE cling-film. Other VOCs found in wrapped cheeses were likely to have been released either by direct transfer from the materials used for the manufacture of cling-films or from contamination of the films. Overall, HS-SPME is shown to be a rapid and solvent free technique to screen the VOCs profile of cling-films, and to detect VOCs migration from cling-films to cheese under real retail storage conditions.
Collapse
|
43
|
Koster S, Rennen M, Leeman W, Houben G, Muilwijk B, van Acker F, Krul L. A novel safety assessment strategy for non-intentionally added substances (NIAS) in carton food contact materials. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:422-43. [PMID: 24237267 DOI: 10.1080/19440049.2013.866718] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
One of the main challenges in food contact materials research is to prove that the presence of non-intentionally added substances (NIAS) is not a safety issue. Migration extracts may contain many unknown substances present at low concentrations. It is difficult and time-consuming to identify all these potential NIAS and concurrently to assess their health risk upon exposure, whereas the health relevance at low exposure levels might not even be an issue. This paper describes a scientifically based, but pragmatic safety assessment approach for unknown substances present at low exposure levels in food contact matrices. This complex mixture safety assessment strategy (CoMSAS) enables one to distinguish toxicologically relevant from toxicologically less relevant substances, when related to their respective levels of exposure, and allows one to focus on the substances of potential health concern. In particular, substances for which exposure will be below certain thresholds may be considered not of health relevance in case specific classes of substances are excluded. This can reduce the amount of work needed for identification, characterisation and evaluation of unknown substances at low concentration. The CoMSAS approach is presented in this paper using a safety assessment of unknown NIAS that may migrate from three carton samples.
Collapse
|
44
|
Price P, Zaleski R, Hollnagel H, Ketelslegers H, Han X. Assessing the safety of co-exposure to food packaging migrants in food and water using the maximum cumulative ratio and an established decision tree. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:414-21. [DOI: 10.1080/19440049.2013.865145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Castillo R, Biedermann M, Riquet AM, Grob K. Comprehensive on-line HPLC-GC for screening potential migrants from polypropylene into food: The effect of pulsed light decontamination as an example. Polym Degrad Stab 2013. [DOI: 10.1016/j.polymdegradstab.2013.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Letter to the Editor and Response Jan 2013. Compr Rev Food Sci Food Saf 2013. [DOI: 10.1111/1541-4337.12009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Myers LP, Law BF, Fedorowicz A, Siegel PD, Butterworth LF, Anderson SE, Sussman G, Shapiro M, Meade BJ, Beezhold D. Identification of phenolic dermal sensitizers in a wound closure tape. J Immunotoxicol 2012; 4:303-10. [PMID: 18958741 DOI: 10.1080/15476910701680236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
A latex-allergic patient presented with a severe local reaction to a non-latex wound closure bandage following surgery. Extracts of the bandage were analyzed by gas chromatograph-electron impact-mass spectrometry (GC EI-MS) in the total ion monitoring mode. Components were identified by their ion mass fingerprint and elution time as a corresponding standard from the GC column. The chemicals identified were 4,4'-thiobis-(6-tert-butyl-m-cresol) (TBBC), 6-tert-Butyl-m-cresol (BC), 2,4-di-tert-butylphenol (BP) and erucamide (EA). Sensitization potential of these chemicals was evaluated using two quantitative structure-activity relationship (QSAR) programs. The phenol 2,6-di-tert-butyl-4-(hydroxymethyl)phenol (BHP) was also included in the test series. It was initially thought to be present in the bandage but detectable levels could not be confirmed. The potential for TBBC to induce a sensitization response was predicted by both Derek for Windows and TOPKAT 6.2. The potential for BC and BP to induce a sensitization response was predicted by Derek for Windows, but not TOPKAT. BHP and EA were not predicted to be sensitizers by either QSAR program. Local lymph node assay (LLNA) analysis of the chemicals identified TBBC, BP, and BC as potential sensitizers with EC3 values between 0.2 and 4.5%. None of the animals exhibited body weight loss or skin irritation at the concentrations tested. In agreement with the toxicological modeling, BHP did not induce a sensitization response in the LLNA. Following a positive LLNA response, TBBC, BP, and BC were further characterized by phenotypic analysis of the draining lymph nodes. A positive LLNA result coupled with a lack of increase in B220(+)IgE(+) cell and serum IgE characterize these chemicals as Type IV sensitizers. These studies used a multidisciplinary approach combining clinical observation, GC-EI-MS for chemical identification, QSAR modeling of chemicals prior to animal testing, and the LLNA for determination of the sensitization potential of chemicals in a manufactured product.
Collapse
Affiliation(s)
- L P Myers
- National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Evaluation of N-butylbenzenesulfonamide (NBBS) neurotoxicity in Sprague-Dawley male rats following 27-day oral exposure. Neurotoxicology 2012; 33:1528-1535. [PMID: 22824510 DOI: 10.1016/j.neuro.2012.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 11/21/2022]
Abstract
N-Butylbenzenesulfonamide (NBBS) is widely used as a plasticizer in polyacetals, polyamides, and polycarbonates and has been found in ground water and effluent from wastewater treatment sites. The compound is lipophilic and distributes rapidly to the brain but also clears rapidly and shows little evidence of accumulation. Limited studies in the literature report neurotoxicity of NBBS in rabbits and rats. Adult Sprague-Dawley male rats (Harlan) received corn oil vehicle or NBBS (100, 200, or 400mg/kg/d) via oral gavage (5 ml/kg bwt) daily/5d/week for 27 d. Deaths were observed in the 400mg/kg/d dose group in the first 5d and dosing was decreased to 300 mg/kg/d. No alterations were observed in gait, locomotor activity, and rearing behavior. No histological lesions were observed in the testis, seminal vesicles, coagulating gland, epididymis, and prostate. In the liver, minimal centrilobular hypertrophy was evident in all rats of the high dose group. Contrary to previous reports, there was no evidence of peripheral nerve lesions or gliosis in the hippocampus or cerebellum. mRNA levels for glial fibrillary acidic acid protein, interferon gamma, CXCR-3, intracellular adhesion molecule-1, and CD11b were not altered in the hippocampus while Iba-1 levels were decreased. These data do not support previous reports of neurotoxicity for NBBS within a 4-week exposure regimen; however, neuropathological injury occurring over an extended period of exposure cannot be ruled out and given the potential for human exposure requires further examination.
Collapse
|
49
|
Analytical tools for identification of non-intentionally added substances (NIAS) coming from polyurethane adhesives in multilayer packaging materials and their migration into food simulants. Anal Bioanal Chem 2012; 403:2869-82. [DOI: 10.1007/s00216-012-5965-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/01/2012] [Accepted: 03/21/2012] [Indexed: 11/27/2022]
|
50
|
Alin J, Hakkarainen M. Microwave heating causes rapid degradation of antioxidants in polypropylene packaging, leading to greatly increased specific migration to food simulants as shown by ESI-MS and GC-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5418-5427. [PMID: 21513311 DOI: 10.1021/jf1048639] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microwave heating of commercial microwavable polypropylene packaging in contact with fatty food simulants caused significant antioxidant degradation and increased specific migration as shown by electrospray ionization-mass spectrometry (ESI-MS) and gas chromatography-mass spectrometry (GC-MS). Degradation of the antioxidants Irgafos 168 and Irganox 1010 was not detected during conventional heating of polypropylene packaging at the same temperature. The migration into aqueous food simulants was primarily restricted by the water solubility of the migrants. Using isooctane as fatty food simulant caused significant swelling and greatly enhanced overall migration values compared to the other fatty food simulant, 99.9% ethanol, or the aqueous food simulants 10% ethanol, 3% acetic acid, or water. ESI-MS spectra clearly reflected the overall migration values, and the number and amount of compounds detected decreased as the hydrophilicity of the food simulant increased. ESI-MS was shown to be an excellent tool for the analysis of semivolatile migrants and a good complement to GC-MS analysis of volatile migrants.
Collapse
Affiliation(s)
- Jonas Alin
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | |
Collapse
|