1
|
Mi J, Tong Y, Zhang Q, Wang Q, Wang Y, Wang Y, Lin G, Ma Q, Li T, Huang S. Alginate Oligosaccharides Enhance Gut Microbiota and Intestinal Barrier Function, Alleviating Host Damage Induced by Deoxynivalenol in Mice. J Nutr 2024; 154:3190-3202. [PMID: 39357672 DOI: 10.1016/j.tjnut.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Alginate oligosaccharides (AOS) exhibits notable effects in terms of anti-inflammatory, antibacterial, and antioxidant properties. Deoxynivalenol (DON) has the potential to trigger intestinal inflammation by upregulating pro-inflammatory cytokines and apoptosis, thereby compromising the integrity of the intestinal barrier function and perturbing the balance of the gut microbiota. OBJECTIVES We assessed the impact of AOS on mitigating DON-induced intestinal damage and systemic inflammation in mice. METHODS After a 1-wk acclimatization period, the mice were divided into 4 groups. For 3 wk, the AOS and AOS + DON groups were gavaged daily with 200 μL of AOS [200 mg/kg body weight (BW)], whereas the CON and DON groups received an equivalent volume of sterile Phosphate-Buffered Saline (PBS). Subsequently, for 1 wk, the DON and AOS + DON groups received 100 μL of DON (4.8 mg/kg BW) daily, whereas the control (CON) and AOS groups continued receiving PBS. RESULTS After administering DON via gavage to mice, there was a significant decrease (P < 0.05) in body weights compared with the CON group. Interestingly, AOS exhibited a tendency to mitigate this weight loss in the AOS + DON group. In the feces of mice treated with both AOS and DON, the concentration of DON significantly increased (P < 0.05) compared with the DON group alone. Histological analysis revealed that DON exposure caused increased intestinal damage, including shortened villi and eroded epithelial cells, which was ameliorated by presupplementation with AOS, alleviating harm to the intestinal barrier function. In both jejunum and colon tissues, DON exposure significantly reduced (P < 0.05) the expression of tight junction proteins (claudin and occludin in the colon) and the mucin protein mucin 2, compared with the CON group. Prophylactic administration of AOS alleviated these reductions, thereby improving the expression levels of these key proteins. Additionally, AOS supplementation protected DON-exposed mice by increasing the abundance of probiotics such as Bifidobacterium, Faecalibaculum, and Romboutsia. These gut microbes are known to enhance (P < 0.05) anti-inflammatory responses and the production of short-chain fatty acids (SCFAs), including total SCFAs, acetate, and valerate, compared with the DON group. CONCLUSIONS This study unveils that AOS not only enhances gut microbiota and intestinal barrier function but also significantly mitigates DON-induced intestinal damage.
Collapse
Affiliation(s)
- Jinqiu Mi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yaoyi Tong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiyue Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China; College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qingfeng Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yanwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China; School of Life Science, Shanxi University, Taiyuan, Shanxi, China
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Science, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Tiantian Li
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China.
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China; Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China.
| |
Collapse
|
2
|
Awad WA, Grenier B, Ruhnau D, Hess C, Schatzmayr D, Hess M. Diametral influence of deoxynivalenol (DON) and deepoxy-deoxynivalenol (DOM-1) on the growth of Campylobacter jejuni with consequences on the bacterial transcriptome. BMC Microbiol 2024; 24:306. [PMID: 39152378 PMCID: PMC11328440 DOI: 10.1186/s12866-024-03452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Deoxynivalenol (DON) is a type B trichothecene mycotoxin that is commonly found in cereals and grains worldwide. The presence of this fungal secondary-metabolite raises public-health concerns at both the agriculture and food industry level. Recently, we have shown that DON has a negative impact on gut integrity, a feature also noticed for Campylobacter (C.) jejuni. We further demonstrated that DON increased the load of C. jejuni in the gut and inner organs. In contrast, feeding the less toxic DON metabolite deepoxy-deoxynivalenol (DOM-1) to broilers reduced the Campylobacter load in vivo. Consequently, it can be hypothesized that DON and DOM-1 have a direct effect on the growth profile of C. jejuni. The aim of the present study was to further resolve the nature of this interaction in vitro by co-incubation and RNA-sequencing. RESULTS The co-incubation of C. jejuni with DON resulted in significantly higher bacterial growth rates from 30 h of incubation onwards. On the contrary, the co-incubation of C. jejuni with DOM-1 reduced the CFU counts, indicating that this DON metabolite might contribute to reduce the burden of C. jejuni in birds, altogether confirming in vivo data. Furthermore, the transcriptomic profile of C. jejuni following incubation with either DON or DOM-1 differed. Co-incubation of C. jejuni with DON significantly increased the expression of multiple genes which are critical for Campylobacter growth, particularly members of the Flagella gene family, frr (ribosome-recycling factor), PBP2 futA-like (Fe3+ periplasmic binding family) and PotA (ATP-binding subunit). Flagella are responsible for motility, biofilm formation and host colonization, which may explain the high Campylobacter load in the gut of DON-fed broiler chickens. On the contrary, DOM-1 downregulated the Flagella gene family and upregulated ribosomal proteins. CONCLUSION The results highlight the adaptive mechanisms involved in the transcriptional response of C. jejuni to DON and its metabolite DOM-1, based on the following effects: (a) ribosomal proteins; (b) flagellar proteins; (c) engagement of different metabolic pathways. The results provide insight into the response of an important intestinal microbial pathogen against DON and lead to a better understanding of the luminal or environmental acclimation mechanisms in chickens.
Collapse
Affiliation(s)
- Wageha A Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria.
| | - Bertrand Grenier
- DSM Animal Nutrition and Health, Research Center Tulln, Technopark 1, Tulln, Austria
| | - Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria
| | - Dian Schatzmayr
- DSM Animal Nutrition and Health, Research Center Tulln, Technopark 1, Tulln, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, A-1210, Austria
| |
Collapse
|
3
|
Muhmood A, Tang J, Li J, Liu S, Hou L, Le G, Liu D, Huang K. No-observed adverse effect levels of deoxynivalenol and aflatoxin B1 in combination induced immune inhibition and apoptosis in vivo and in vitro. Food Chem Toxicol 2024; 189:114745. [PMID: 38763499 DOI: 10.1016/j.fct.2024.114745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Mycotoxins are toxic metabolites produced by fungal species, commonly exist in animal feeds, and pose a serious risk to human as well as animal health. But limited studies have focused on combined effects of no-observed adverse effect levels. In vivo study, 6 weeks old twenty-four mice were individually exposed to Deoxynivalenol (DON) at 0.1 mg/kg BW, Aflatoxin B1 (AFB1) at 0.01 mg/kg BW, and mixture of DON and AFB1 (0.1 mg/kg BW and 0.01 mg/kg BW, respectively) for 28 days. Then, DON at 0.5 μg/mL, AFB1 at 0.04 μg/mL, and mixtures of DON and AFB1 (0.5 μg/mL, 0.04 μg/mL, respectively) were applied to porcine alveolar macrophages (PAMs) in vitro study. Our in vivo results revealed that the combined no-observed adverse effect levels of DON and AFB1 administration decreased IgA and IgG levels in the serum, the splenic TNF-α, IFN-γ, IL-2 and IL-6 mRNA expression and T-lymphocyte subset levels (CD4+ and CD8+) in the spleen. Additionally, the combined administration increased caspase-3, caspase-9, Bax, Cyt-c, and decreased Bcl-2 protein expression. Taken together, the combined no-observed adverse effect levels of DON and AFB1 could induce immunosuppression, which may be related to apoptosis. This study provides new insights into the combined immune toxicity (DON and AFB1).
Collapse
Affiliation(s)
- Azhar Muhmood
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jiangyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
4
|
Gonya S, Kallmerten P, Dinapoli P. Are Infants and Children at Risk of Adverse Health Effects from Dietary Deoxynivalenol Exposure? An Integrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:808. [PMID: 38929054 PMCID: PMC11204095 DOI: 10.3390/ijerph21060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Deoxynivalenol (DON) is a foodborne mycotoxin produced by Fusarium molds that commonly infect cereal grains. It is a potent protein synthesis inhibitor that can significantly impact humans' gastrointestinal, immune, and nervous systems and can alter the microbiome landscape. Low-dose, chronic exposure to DON has been found to stimulate the immune system, inhibit protein synthesis, and cause appetite suppression, potentially leading to growth failure in children. At higher doses, DON has been shown to cause immune suppression, nausea, vomiting, abdominal pain, headache, diarrhea, gastroenteritis, the malabsorption of nutrients, intestinal hemorrhaging, dizziness, and fever. A provisional maximum tolerable daily intake (PMTDI) limit of 1 µg/kg/body weight has been established to protect humans, underscoring the potential health risks associated with DON intake. While the adverse effects of dietary DON exposure have been established, healthcare communities have not adequately investigated or addressed this threat to child health, possibly due to the assumption that current regulatory exposure limits protect the public appropriately. This integrative review investigated whether current dietary DON exposure rates in infants and children regularly exceed PMTDI limits, placing them at risk of negative health effects. On a global scale, the routine contamination of cereal grains, bakery products, pasta, and human milk with DON could lead to intake levels above PMTDI limits. Furthermore, evidence suggests that other food commodities, such as soy, coffee, tea, dried spices, nuts, certain seed oils, animal milk, and various water reservoirs, can be intermittently contaminated, further amplifying the scope of the issue. Better mitigation strategies and global measures are needed to safeguard vulnerable youth from this harmful toxicant.
Collapse
Affiliation(s)
- Susan Gonya
- Department of Nursing, College of Health and Human Services, University of New Hampshire, Durham, NH 03824, USA
| | | | - Pamela Dinapoli
- Department of Nursing, College of Health and Human Services, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
5
|
Armer VJ, Urban M, Ashfield T, Deeks MJ, Hammond-Kosack KE. The trichothecene mycotoxin deoxynivalenol facilitates cell-to-cell invasion during wheat-tissue colonization by Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2024; 25:e13485. [PMID: 38877764 PMCID: PMC11178975 DOI: 10.1111/mpp.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Fusarium head blight disease on small-grain cereals is primarily caused by the ascomycete fungal pathogen Fusarium graminearum. Infection of floral spike tissues is characterized by the biosynthesis and secretion of potent trichothecene mycotoxins, of which deoxynivalenol (DON) is widely reported due to its negative impacts on grain quality and consumer safety. The TRI5 gene encodes an essential enzyme in the DON biosynthesis pathway and the single gene deletion mutant, ΔTri5, is widely reported to restrict disease progression to the inoculated spikelet. In this study, we present novel bioimaging evidence revealing that DON facilitates the traversal of the cell wall through plasmodesmata, a process essential for successful colonization of host tissue. Chemical complementation of ΔTri5 did not restore macro- or microscopic phenotypes, indicating that DON secretion is tightly regulated both spatially and temporally. A comparative qualitative and quantitative morphological cellular analysis revealed infections had no impact on plant cell wall thickness. Immunolabelling of callose at plasmodesmata during infection indicates that DON can increase deposits when applied exogenously but is reduced when F. graminearum hyphae are present. This study highlights the complexity of the interconnected roles of mycotoxin production, cell wall architecture and plasmodesmata in this highly specialized interaction.
Collapse
Affiliation(s)
- Victoria J Armer
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
- Biosciences, University of Exeter, Exeter, UK
| | - Martin Urban
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - Tom Ashfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
- Crop Health and Protection (CHAP), Rothamsted Research, Harpenden, UK
| | | | | |
Collapse
|
6
|
de Sales-Neto JM, Rodrigues-Mascarenhas S. Immunosuppressive effects of the mycotoxin patulin in macrophages. Arch Microbiol 2024; 206:166. [PMID: 38485821 DOI: 10.1007/s00203-024-03928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Patulin (PAT) is a fungi-derived secondary metabolite produced by numerous fungal species, especially within Aspergillus, Byssochlamys, and Penicillium genera, amongst which P. expansum is the foremost producer. Similar to other fungi-derived metabolites, PAT has been shown to have diverse biological features. Initially, PAT was used as an effective antimicrobial agent against Gram-negative and Gram-positive bacteria. Then, PAT has been shown to possess immunosuppressive properties encompassing humoral and cellular immune response, immune cell function and activation, phagocytosis, nitric oxide and reactive oxygen species production, cytokine release, and nuclear factor-κB and mitogen-activated protein kinases activation. Macrophages are a heterogeneous population of immune cells widely distributed throughout organs and connective tissue. The chief function of macrophages is to engulf and destroy foreign bodies through phagocytosis; this ability was fundamental to his discovery. However, macrophages play other well-established roles in immunity. Thus, considering the central role of macrophages in the immune response, we review the immunosuppressive effects of PAT in macrophages and provide the possible mechanisms of action.
Collapse
Affiliation(s)
- José Marreiro de Sales-Neto
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil.
| |
Collapse
|
7
|
Tang R, Ju X, Niu X, Liu X, Li Y, Yu Z, Ma X, Gao Y, Li Y, Xie H, Zhou Q, Yong Y. Protective Effects of Carbonated Chitosan Montmorillonite on Vomitoxin-Induced Intestinal Inflammation. Polymers (Basel) 2024; 16:715. [PMID: 38475397 DOI: 10.3390/polym16050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/04/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Exposure to vomitoxin (DON) can negatively impact the intestinal health of livestock and poultry, leading to compromised nutrient absorption and utilization, resulting in slowed growth and reduced production efficiency. In this study, we synthesized carbonated chitosan montmorillonite intercalation complexes (CCM) through solution precipitation. The successful formation of intercalation complexes was confirmed by examining functional groups and surface features using infrared spectroscopy and scanning electron microscopy. To assess the impact of CCM on DON-infected mice, we established an experimental mouse model of jejunal inflammation induced by DON infection. We analyzed the effects of CCM on blood biochemical and conventional indices, jejunal inflammatory factors, pathological changes, and the expression of proteins in the MAPK pathways in DON-infected mice. Our results indicate that CCM effectively mitigates the adverse effects of DON on growth performance, jejunal injury, and the inflammatory response in mice. CCM supplementation alleviated the negative effects of DON infection on growth performance and reduced intestinal inflammation in mice. Moreover, CCM supplementation successfully inhibited the activation of the mitogen-activated protein kinase (MAPK) signaling pathway induced by DON. These findings suggest that the mitigating effect of CCM on DON-induced inflammatory injury in the murine jejunum is closely linked to the regulation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Ruifan Tang
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xianghong Ju
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xueting Niu
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoxi Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Youquan Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhichao Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xingbin Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuan Gao
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yin Li
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huili Xie
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qiu Zhou
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yanhong Yong
- Marine Medical Research and Development Centre, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
8
|
Saghir SA, Ansari RA. HLA gene variations and mycotoxin toxicity: Four case reports. Mycotoxin Res 2024; 40:159-173. [PMID: 38198040 DOI: 10.1007/s12550-023-00517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Mycotoxins are produced by certain molds that can cause many health effects. We present four human cases of prolonged consistent mycotoxins exposure linked to genetic variations in human leukocyte antigen (HLA) alleles. The HLA-DR/DQ isotype alleles are linked to mycotoxins susceptibility due to the lack of proper immune response; individuals with these alleles are poor eliminators of mycotoxins from their system. Four subjects with variations in their HLA-DR alleles were exposed to mycotoxins from living in mold-infested houses and experienced persistent mold-related symptoms long after moving out from the mold-infested houses and only exposed to the levels of molds found in the ambient air. From one of the subjects, two urine samples were collected ~ 18 months apart after the cessation of exposure. Urinary elimination rate was extremely slow for two of the mycotoxins (ochratoxin A [OTA] and mycophenolic acid [MPA]) detected in both samples. In 18 months, decline in OTA level was only ~ 3-fold (estimated t½ of ~ 311 days) and decline in MPA level was ~ 11-fold (estimated t½ of ~ 160 days), which was ~ 10- and ~ 213-fold slower than expected in individuals without HLA-DR alleles, respectively. We estimated that ~ 4.3 and ~ 2.2 years will be required for OTA and MPA to reach < LLQ in urine, respectively. Three other subjects with variations in HLA-DR alleles were members of a family who lived in a mold-infested house for 4 years. They kept experiencing mold-related issues >2 years after moving to a non-mold-infested house. Consistent exposure was confirmed by the presence of several mycotoxins in urine >2 years after the secession of higher than background (from outdoor ambient air) exposure. This was consistent with the extremely slow elimination of mycotoxins from their system. Variations in HLA-DR alleles can, consequently, make even short periods of exposure to chronic exposure scenarios with related adverse health effects. It is, therefore, important to determine genetic predisposition as a reason for prolonged/lingering mold-related symptoms long after the cessation of higher than background exposure. Increased human exposure to mycotoxins is expected from increased mold infestation that is anticipated due to rising CO2, temperature, and humidity from the climate change with possibly increased adverse health effects, especially in individuals with genetic susceptibility to mold toxicity.
Collapse
Affiliation(s)
- Shakil Ahmed Saghir
- ToxInternational Inc, Hilliard, OH, USA.
- Mold Law Group, Atlanta, GA, USA.
- Department of Biological & Biomedical Sciences, Aga Khan Univ, Karachi, Pakistan.
- Institute of Environmental Science and Meteorology, College of Science, University of the Philippines-Diliman, Quezon City, Philippines.
| | - Rais Ahmed Ansari
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Health Professions Division, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
9
|
Fernández-Lainez C, Aan de Stegge M, Silva-Lagos LA, López-Velázquez G, de Vos P. β(2 → 1)-β(2 → 6) and β(2 → 1) fructans protect from impairment of intestinal tight junction's gene expression and attenuate human dendritic cell responses in a fructan-dependent fashion. Carbohydr Polym 2023; 320:121259. [PMID: 37659831 DOI: 10.1016/j.carbpol.2023.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/12/2023] [Accepted: 08/02/2023] [Indexed: 09/04/2023]
Abstract
β(2 → 1)-β(2 → 6) branched graminan-type fructans (GTFs) and β(2 → 1) linear fructans (ITFs) possess immunomodulatory properties and protect human intestinal barrier function, however the mechanisms underlying these effects are not well studied. Herein, GTFs and ITFs effects with different degree of polymerization (DP) values on tight junctions (TJs) genes CLDN-1, -2 and -3, CDH1, OCLN and TJP1 were studied in Caco-2 gut epithelial cells, under homeostatic and inflammatory conditions. Also, cytokine production in dendritic cells (DCs) was studied. Higher DP fructans decreased the expression of the pore forming CLDN-2. Higher DP GTFs enhanced CLDN-3, OCLN, and TJP-1. Fructans prevented mRNA dysregulation of CLDN-1, -2 and -3 induced by the barrier disruptors A23187 and deoxynivalenol in a fructan-type dependent fashion. The production of pro-inflammatory cytokines MCP-1/CCL2, MIP-1α/CCL3 and TNFα by DCs was also attenuated in a fructan-type dependent manner and was strongly attenuated by DCs cultured with medium of Caco-2 cells which were pre-exposed to fructans. Our data show that specific fructans have TJs and DCs modulating effects and contribute to gut homeostasis. This might serve to design effective dietary means to prevent intestinal inflammation.
Collapse
Affiliation(s)
- Cynthia Fernández-Lainez
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Laboratorio de Errores innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Cuidad de México, Mexico.
| | - Myrthe Aan de Stegge
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Luis Alfredo Silva-Lagos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Cuidad de México, Mexico.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Hou L, Yuan H, Liu Y, Sun X, Chang J, Zhang H, Zhang J, Sun J, Wang Q, Chen F. Effect of deoxynivalenol on inflammatory injury on the glandular stomach in chick embryos. Poult Sci 2023; 102:102870. [PMID: 37660451 PMCID: PMC10491726 DOI: 10.1016/j.psj.2023.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 09/05/2023] Open
Abstract
Deoxynivalenol (DON) has a strong toxic effect on the gastrointestinal mucosa of poultry. In this study, we evaluated chicken embryo development and glandular stomach damage to clarify the immunotoxic effects of DON injected through the allantoic cavity of chicken embryos. The glandular stomach index, routine blood indices, plasma inflammatory factors, pathological changes in the glandular stomach, and transcriptome results were analyzed in the hatching chicks. The results showed that DON was supertoxic to chicken embryos, causing edema, shedding, and bleeding of the mucosa of the glandular stomach, which triggered inflammatory reactions. As the toxin concentration increased, the immune system was successively activated and inhibited, and regulation was carried out by the differential regulation of the mitogen-activated protein kinase (MAPK) signal pathway. These results suggested that the immunotoxic effect of DON on the glandular stomach of chicken embryos was closely related to the regulation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Lele Hou
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Hao Yuan
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Yang Liu
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Xinyuan Sun
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Jiagao Chang
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Hao Zhang
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Junchao Zhang
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Jieyu Sun
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Qiang Wang
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Fu Chen
- Institute of Animal Nutritional Metabolic Disease and Poisoning Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China.
| |
Collapse
|
11
|
Zhang J, Zhao Q, Xue Z, Zhang S, Ren Z, Chen S, Zhou A, Chen H, Liu Y. Deoxynivalenol induces endoplasmic reticulum stress-associated apoptosis via the IRE1/JNK/CHOP pathway in porcine alveolar macrophage 3D4/21 cells. Food Chem Toxicol 2023; 180:114033. [PMID: 37739053 DOI: 10.1016/j.fct.2023.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
The interplay between cell apoptosis and endoplasmic reticulum (ER) stress has garnered increasing attention. Nevertheless, the precise involvement of the unfolded protein response (UPR) signaling in the apoptosis of porcine macrophage cells induced by Deoxynivalenol (DON) remains enigmatic. In this study, we revealed that exposure to 2 μM DON resulted in a substantial decline in cell viability, concomitant with the initiation of cell apoptosis and the halting of the G1 phase cell cycle in the porcine alveolar macrophage line 3D4/21. Transcriptomic analysis of DON-exposed cells showed distinct expression patterns in 3104 genes, with notable upregulation of ER stress-related genes, including IRE1, CHOP, XBP1 and JNK. Our subsequent validation via qPCR and Western blot analyses confirmed the attenuation of GRP78 and BCL-2, coupled with the upregulation of IRE1, CHOP, JNK, p-JNK, and Bax in DON-induced cells, indicating the instigation of ER stress-associated apoptosis by DON. The addition of 5 mM 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, decreased levels of CHOP, IRE1, JNK, p-JNK, and Bax, while increasing levels of GRP78 and Bcl-2, suggesting that 4-PBA alleviated DON-induced ER stress and apoptosis. Overall, our findings provide new insights into DON-induced ER stress via the IRE1/JNK/CHOP pathway, leading to subsequent cellular apoptosis.
Collapse
Affiliation(s)
- Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qingbo Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhihui Xue
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Siyi Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zeyu Ren
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ao Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hongbo Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
12
|
Liu Y, Xu L, Shi Z, Wang R, Liu Y, Gong Y, Tian Y, Kang X, Sun X, Wang Y. Identification of an Acinetobacter pittii acyltransferase involved in transformation of deoxynivalenol to 3-acetyl-deoxynivalenol by transcriptomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115395. [PMID: 37611475 DOI: 10.1016/j.ecoenv.2023.115395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Deoxynivalenol (DON), a mycotoxin primarily produced by Fusarium graminearum (F. graminearum), is widely present in food and feed, posing great hazards to human and livestock health. In this study, a strain of Acinetobacter pittii (A. pittii) S12 capable of degrading DON was isolated from soil samples and identified through morphological characterization, biochemistry analysis, and 16 S rRNA gene sequencing. The results of HPLC-MS indicated that the degradation products underwent a conversion from [M-H]- to [M+CH3CO], with concomitant transformation of the hydroxyl group into an acetyl moiety. Based on transcriptome sequencing analysis, the acyltransferase encoded by DLK06_RS13370 was predicted to be the pivotal gene responsible for DON biotransformation. The result of molecular docking analysis suggest a high affinity between the enzyme and DON. The recombinant protein encoded by DLK06_RS13370 was expressed in Escherichia coli (E. coli) and demonstrated the capacity to catalyze the conversion of DON into 3-Acetyl-deoxynivalenol (3-ADON), as confirmed by HPLC analysis. In conclusion, our findings confirm that the acyltransferase encoded by DLK06-RS13370 is responsible for the acetylation of DON. This sheds light on the co-occurrence of DON and its acetyl-derivatives in wheat-based products. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Yuxuan Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, People's Republic of China
| | - Laipeng Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, People's Republic of China
| | - Ziyao Shi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, People's Republic of China
| | - Ruolin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, People's Republic of China
| | - Yang Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, People's Republic of China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450000, People's Republic of China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450000, People's Republic of China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450000, People's Republic of China
| | - Xiangli Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450000, People's Republic of China.
| | - Yanbin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, People's Republic of China.
| |
Collapse
|
13
|
Liu Q, He Q, Zhu W. Deoxynivalenol Mycotoxin Inhibits Rabies Virus Replication In Vitro. Int J Mol Sci 2023; 24:ijms24097793. [PMID: 37175500 PMCID: PMC10178062 DOI: 10.3390/ijms24097793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Rabies is a highly fatal disease, and it is vital to find effective ways to manage and control infection. There is a need for new effective antiviral drugs that are particularly effective treatments for rabies. Deoxynivalenol (DON) is known mainly for its toxicity, but at the molecular level, it can inhibit RNA and DNA replication, and there is increasing evidence that different doses of DON have a positive effect on inhibiting virus replication. Based on this, we evaluated the effect of DON on inhibiting the rabies virus in vitro. The inhibitory effect of DON on rabies virus activity was dose- and time-dependent, and 0.25 μg/mL of DON could inhibit 99% of rabies virus activity within 24 h. Furthermore, DON could inhibit the adsorption, entry, replication, and release of rabies virus but could not inactivate the virus. The inhibitory effect of DON on rabies virus may be achieved by promoting apoptosis. Our study provides a new perspective for the study of anti-rabies virus and expands the direction of action of mycotoxins.
Collapse
Affiliation(s)
- Qian Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qing He
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wuyang Zhu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
14
|
Wu Q, You L, Wu W, Long M, Kuca K. Mycotoxins: Emerging toxic mechanisms, and unanswered research questions. Food Chem Toxicol 2023; 174:113673. [PMID: 36796619 DOI: 10.1016/j.fct.2023.113673] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Recently, a series of toxic mechanisms have been explored in mycotoxins. Emerging evidence show that mycotoxins may induce human neurodegenerative diseases (ND); however, this idea is still unproven. Besides to identify this hypothesis, some questions, for example, how the mycotoxins induce this disease and what the molecular mechanism is, as well as whether the brain-gut axis is involved in this context, should be answered. Very recent studies further reported an "immune evasion" mechanism in trichothecenes; moreover, hypoxia seems to play important function in this process; nevertheless, whether this "immune evasion" process is present in other mycotoxins, especially in aflatoxins, should be tested. In this work, we mainly discussed some key scientific questions that need to be answered in the toxic mechanisms of mycotoxins. We especially focused on the research questions in the key signaling pathways, balance mechanism of immunostimulatory and immunosuppressive effects, and the relationship between autophagy and apoptosis. Interesting topics such as mycotoxins and aging, cytoskeleton and immunotoxicity are also discussed. More importantly, we compile a special issue: "New insight into mycotoxins and bacterial toxins: toxicity assessment, molecular mechanism and food safety" for Food and Chemical Toxicology. Researchers are encouraged to submit their newest work to this special issue.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic.
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, 401520, China
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic
| |
Collapse
|
15
|
Reyes-Perea AD, Guerrero-Netro HM, Meza-Serrano E, Estienne A, Price CA. The Mycotoxin De-Epoxy-Deoxynivalenol (DOM-1) Increases Endoplasmic Reticulum Stress in Ovarian Theca Cells. Toxins (Basel) 2023; 15:toxins15030228. [PMID: 36977119 PMCID: PMC10057718 DOI: 10.3390/toxins15030228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Deoxynivalenol (DON) is a major mycotoxin present in animal feed and negatively affects growth and reproduction in farm species, including pigs and cattle. The mechanism of DON action involves the ribotoxic stress response (RSR), and it acts directly on ovarian granulosa cells to increase cell death. In ruminants, DON is metabolized to de-epoxy-DON (DOM-1), which cannot activate the RSR but has been shown to increase cell death in ovarian theca cells. In the present study, we determined if DOM-1 acts on bovine theca cells through endoplasmic stress using an established serum-free cell culture model and to assess whether also DON activates endoplasmic stress in granulosa cells. The results show that DOM-1 increased the cleavage of ATF6 protein, increased the phosphorylation of EIF2AK3, and increased the abundance of cleaved XBP1 mRNA. Activation of these pathways led to an increased abundance of mRNA of the ER stress target genes GRP78, GRP94, and CHOP. Although CHOP is widely associated with autophagy, inhibition of autophagy did not alter the response of theca cells to DOM-1. The addition of DON to granulosa cells partially increased ER stress pathways but failed to increase the abundance of mRNA of ER stress target genes. We conclude that the mechanism of action of DOM-1, at least in bovine theca cells, is through the activation of ER stress.
Collapse
Affiliation(s)
- Angelica D Reyes-Perea
- Centre de Recherche en Reproduction et Fertilité (CRRF), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Hilda M Guerrero-Netro
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Europa Meza-Serrano
- Centre de Recherche en Reproduction et Fertilité (CRRF), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Anthony Estienne
- Centre de Recherche en Reproduction et Fertilité (CRRF), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Christopher A Price
- Centre de Recherche en Reproduction et Fertilité (CRRF), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
16
|
Habrowska-Górczyńska DE, Kowalska K, Urbanek KA, Domińska K, Kozieł MJ, Piastowska-Ciesielska AW. Effect of the mycotoxin deoxynivalenol in combinational therapy with TRAIL on prostate cancer cells. Toxicol Appl Pharmacol 2023; 461:116390. [PMID: 36690084 DOI: 10.1016/j.taap.2023.116390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is reported as a promising anti-cancer therapeutic target. Unfortunately, prostate cancer cells (PCa) are partially resistant to TRAIL-induced apoptosis limiting its therapeutic potential. The existing body of knowledge suggests that naturally produced compounds, such as mycotoxin deoxynivalenol (DON), might potentially sensitize cells to TRAIL treatment and improve the efficiency of therapy. Previously, we observed that DON induces oxidative stress and apoptosis in PCa cell lines. Thus we addressed here whether DON can sensitize PCa cells to TRAIL-induced apoptosis. Our data demonstrates that three out of four tested PCa cell lines pretreated with DON increased TRAIL-induced apoptosis detected with flow cytometry. This effect was associated with oxidative stress (LNCaP and DU-145 cell line) and elevated DNA damage (DU-145, LNCaP, and 22Rv1 cell lines). Next, in the animal model we inoculated PC tumor to SCKID mice followed by administration of DON intraperitoneally and/or TRIAL intravenously. During 21 days monitoring of tumor growth, the animals received 7 doses of DON, TRAIL, DON+TRAIL or control injections. No significant reduction in tumor mass was observed after combinational treatment of TRAIL and DON compared to 1 μg/kg of body weight DON treatment alone, which itself decreased the tumor growth. However, despite the lack of the TRAIL + DON effect, DON itself inducing apoptosis is an interesting compound worth investigating in the context of other combination therapies.
Collapse
Affiliation(s)
| | - Karolina Kowalska
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Kinga Anna Urbanek
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | - Marta Justyna Kozieł
- Department of Cell Cultures and Genomic Analysis, Medical University of Lodz, Zeligowskiego 7/9, Lodz 90-752, Poland
| | | |
Collapse
|
17
|
Simultaneous Analysis of Mycotoxins, Potentially Toxic Elements, and Pesticides in Rice: A Health Risk Assessment Study. Toxins (Basel) 2023; 15:toxins15020102. [PMID: 36828417 PMCID: PMC9966141 DOI: 10.3390/toxins15020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Rice is a widely consumed food worldwide; however, it can be a source of pollutants, such as potentially toxic elements (PTEs), mycotoxins, and pesticides. Sixty rice samples imported from Pakistan (PAK), India (IND), and Thailand (THAI), as well as domestic Iranian (IRN) rice, were collected from Bushehr, Iran, and investigated for the contamination of PTEs, including arsenic (As), lead (Pb), cadmium (Cd), and nickel (Ni); pesticides, including chlorpyrifos, trichlorfon, diazinon, fenitrothion, and chlorothalonil; mycotoxins, such as aflatoxin B1 (AFB1), zearalenone (ZEN), ochratoxin A (OTA), and deoxynivalenol (DON); and molds. Estimated daily intake (EDI) and hazard quotient (HQ) of pollutants and hazard index (HI) and incremental lifetime cancer risk (ILCR) of rice types for the Iranian adult population were calculated. The content of PTEs in Iranian rice was not higher than Iran's national standard limits. In contrast, other types of rice (imported) had at least one PTE above the permissible level. OTA content was below the detection limit, and all other mycotoxins were within the allowable range in all rice types. Thai rice was the only group without pesticides. The HI order of rice types was as follows: HIPAK = 2.1 > HIIND = 1.86 > HIIRN = 1.01 > HITHAI = 0.98. As was the biggest contributor to the HI of Iranian and Thai rice, and diazinon in the HI of Pakistani and Indian rice. The calculation of ILCR confirmed that the concentrations of Ni and Pb in Pakistani and Ni and As in Indian, Thai, and Iranian rice were not acceptable in terms of lifetime carcinogenic health risks.
Collapse
|
18
|
Gab-Allah MA, Choi K, Kim B. Type B Trichothecenes in Cereal Grains and Their Products: Recent Advances on Occurrence, Toxicology, Analysis and Post-Harvest Decontamination Strategies. Toxins (Basel) 2023; 15:85. [PMID: 36828399 PMCID: PMC9963506 DOI: 10.3390/toxins15020085] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Type B trichothecenes (deoxynivalenol, nivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol) and deoxynivalenol-3-glucoside (DON-3G) are secondary toxic metabolites produced mainly by mycotoxigenic Fusarium fungi and have been recognized as natural contaminants in cereals and cereal-based foods. The latest studies have proven the various negative effects of type B trichothecenes on human health. Due to the widespread occurrence of Fusarium species, contamination by these mycotoxins has become an important aspect for public health and agro-food systems worldwide. Hence, their monitoring and surveillance in various foods have received a significant deal of attention in recent years. In this review, an up-to-date overview of the occurrence profile of major type B trichothecenes and DON-3G in cereal grains and their toxicological implications are outlined. Furthermore, current trends in analytical methodologies for their determination are overviewed. This review also covers the factors affecting the production of these mycotoxins, as well as the management strategies currently employed to mitigate their contamination in foods. Information presented in this review provides good insight into the progress that has been achieved in the last years for monitoring type B trichothecenes and DON-3G, and also would help the researchers in their further investigations on metabolic pathway analysis and toxicological studies of these Fusarium mycotoxins.
Collapse
Affiliation(s)
- Mohamed A. Gab-Allah
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Reference Materials Lab, National Institute of Standards, P.O. Box 136, Giza 12211, Egypt
| | - Kihwan Choi
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Byungjoo Kim
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
19
|
Potekhina RM, Tarasova EY, Matrosova LE, Khammadov NI, Saifutdinov AM, Ermolaeva OK, Tanaseva SA, Mishina NN, Nigmatulin GN, Mukharlyamova AZ, Smolentsev SY, Semenov EI. A Case of Laying Hens Mycosis Caused by Fusarium proliferatum. Vet Med Int 2023; 2023:5281260. [PMID: 37168542 PMCID: PMC10164870 DOI: 10.1155/2023/5281260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/09/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023] Open
Abstract
In this article, we present the first case report of a chicken mycosis caused by F. proliferatum occurred on a private farm in the Russian Federation. Lesions on the skin of the legs and scallops were reported. The object of this study was samples of feed and pathological material from sick hens-layers. Mycological analysis included determination of the total number of fungi (TNF) and identification and determination of the toxicity and pathogenicity of the isolates. The identification of the isolate was carried out taking into account direct microscopy, morphological features, and the method of molecular genetic analysis. Microscopic fungi of the genus Penicillium and Rhizopus were isolated by mycological analysis of the feed. The test feed was nontoxic. Mycological examination of pathological material (scrapings from the combs and affected legs) identified an isolate of Fusarium proliferatum, which showed toxicity on biological objects (protozoa, rabbits) and pathogenicity (white mice). Dermal application of F. proliferatum suspension was accompanied by reddening of the rabbit skin. Intraperitoneal injection of fungal spores caused mycosis in white mice. Polymerase chain reaction (PCR) made it possible to identify this type of microscopic fungus (F. proliferatum) with high accuracy in the samples under study. The research results allow us to consider F. proliferatum as a cause of poultry disease against the background of predisposing factors in the form of desquamation of the stratum corneum of the skin against the background of immunosuppression and metabolic disorders caused by an imbalance in the diet.
Collapse
Affiliation(s)
- Ramziya M. Potekhina
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Evgenya Yu. Tarasova
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Lilia E. Matrosova
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Nail I. Khammadov
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Alexander M. Saifutdinov
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Olga K. Ermolaeva
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Svetlana A. Tanaseva
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Nailya N. Mishina
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Gali N. Nigmatulin
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Aisylu Z. Mukharlyamova
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | | | - Eduard I. Semenov
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| |
Collapse
|
20
|
Xu R, Shandilya UK, Yiannikouris A, Karrow NA. Traditional and emerging Fusarium mycotoxins disrupt homeostasis of bovine mammary cells by altering cell permeability and innate immune function. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:388-397. [PMID: 36733782 PMCID: PMC9883199 DOI: 10.1016/j.aninu.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 12/05/2022]
Abstract
High incidence of traditional and emerging Fusarium mycotoxins in cereal grains and silages can be a potential threat to feed safety and ruminants. Inadequate biodegradation of Fusarium mycotoxins by rumen microflora following ingestion of mycotoxin-contaminated feeds can lead to their circulatory transport to target tissues such as mammary gland. The bovine udder plays a pivotal role in maintaining milk yield and composition, thus, human health. However, toxic effects of Fusarium mycotoxins on bovine mammary gland are rarely studied. In this study, the bovine mammary epithelial cell line was used as an in-vitro model of bovine mammary epithelium to investigate effects of deoxynivalenol (DON), enniatin B (ENB) and beauvericin (BEA) on bovine mammary gland homeostasis. Results indicated that exposure to DON, ENB and BEA for 48 h significantly decreased cell viability in a concentration-dependent manner (P < 0.001). Exposure to DON at 0.39 μmol/L and BEA at 2.5 μmol/L for 48 h also decreased paracellular flux of FITC-40 kDa dextran (P < 0.05), whereas none of the mycotoxins affected transepithelial electrical resistance after 48 h exposure. The qPCR was performed for assessment of expression of gene coding tight junction (TJ) proteins, toll-like receptor 4 (TLR4) and cytokines after 4, 24 and 48 h of exposure. DON, ENB and BEA significantly upregulated the TJ protein zonula occludens-1, whereas markedly downregulated claudin 3 (P < 0.05). Exposure to DON at 1.35 μmol/L for 4 h significantly increased expression of occludin (P < 0.01). DON, ENB and BEA significant downregulated TLR4 (P < 0.05). In contrast, ENB markedly increased expression of cytokines interleukin-6 (IL-6) (P < 0.001), tumor necrosis factor α (TNF-a) (P < 0.05) and transforming growth factor-β (TGF-β) (P < 0.01). BEA significantly upregulated IL- 6 (P < 0.001) and TGF-β (P = 0.01), but downregulated TNF-α (P < 0.001). These results suggest that DON, ENB and BEA can disrupt mammary gland homeostasis by inducing cell death as well as altering its paracellular permeability and expression of genes involved in innate immune function.
Collapse
Affiliation(s)
- Ran Xu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexandros Yiannikouris
- Alltech Inc., Center for Animal Nutrigenomics and Applied Animal Nutrition, Nicholasville, KY 40356, USA
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada,Corresponding author.
| |
Collapse
|
21
|
Qiu Y, Nie X, Yang J, Wang L, Zhu C, Yang X, Jiang Z. Effect of Resveratrol Supplementation on Intestinal Oxidative Stress, Immunity and Gut Microbiota in Weaned Piglets Challenged with Deoxynivalenol. Antioxidants (Basel) 2022; 11:antiox11091775. [PMID: 36139849 PMCID: PMC9495672 DOI: 10.3390/antiox11091775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 12/26/2022] Open
Abstract
(1) Background: Deoxynivalenol (DON) is a general mycotoxin that induces severe intestinal barrier injury in humans and animals. Resveratrol (RES) efficiently exerts anti-inflammatory and antioxidant effects. However, the information regarding RES protecting against DON-induced oxidative stress and intestinal inflammation in piglets is limited. (2) Methods: A total of 64 weaned piglets (Duroc × (Landrace × Yorkshire), 21-d-old, barrow) were randomly allocated to four groups (eight replicate pens per group, each pen containing two piglets) for 28 d. The piglets were fed a control diet (CON) or the CON diet supplemented with 300 mg RES/kg diet (RES group), 3.8 mg DON/kg diet (DON) or both (DON+RES) in a 2 × 2 factorial design. (3) Compared with unsupplemented DON-challenged piglets, RES supplementation in DON-challenged piglets increased ileal villus height and the abundance of ileal SOD1, GCLC and PG1-5 transcripts and Muc2 protein (p < 0.05), while decreasing the mRNA and proteins expression of ileal IL-1β, IL-6 and TNF-α, and malondialdehyde (MDA) levels in plasma and ileum in DON-challenged piglets (p < 0.05). Moreover, the abundances of class Bacilli, order Lactobacillales, family Lactobacillaceae and species Lactobacillus gasseri were increased in DON-challenged piglets fed a RES-supplemented diet compared with those in DON-challenged piglets(p ≤ 0.05). (4) Conclusions: our results indicated that RES supplementation in DON-challenged piglets efficiently attenuated intestinal inflammation and oxidative stress and improved gut microbiota, thereby alleviating DON-induced intestinal barrier injury.
Collapse
Affiliation(s)
- Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Xinzhi Nie
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Jun Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
- Correspondence: (X.Y.); (Z.J.)
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
- Correspondence: (X.Y.); (Z.J.)
| |
Collapse
|
22
|
Wan S, Sun N, Li H, Khan A, Zheng X, Sun Y, Fan R. Deoxynivalenol damages the intestinal barrier and biota of the broiler chickens. BMC Vet Res 2022; 18:311. [PMID: 35965338 PMCID: PMC9377127 DOI: 10.1186/s12917-022-03392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background In the livestock feed industry, feed and feed raw materials are extremely susceptible to mycotoxin contamination. Deoxynivalenol (DON) is one of the main risk factors for mycotoxin contamination in broiler feed and feedstuff, however, there is still little knowledge about this. Hence, the purpose of this study was to explore the toxicity effect of DON on the intestinal barrier and the microecological balance of the biota in broiler chickens. Results In our present study, we compared the pathological scores of the small intestines of broilers on the 5th, 7th, and 10th day, and chose the 7th day to analyze the small intestine histomorphology, tight junctions, and cecal biota of the broilers. The results showed the damage to the small intestine worsened over time, the small intestinal villi of broilers were breakage, the tight junctions of the small intestine were destroyed, the cecal biota was unbalanced, and the growth performance of broilers was reduced on the 7th day. Conclusions DON could damage the functional and structural completeness of the intestinal tract, disorder the Intestinal biota, and finally lead to declined broiler performance. Our study provided a basis for the prevention and treatment of DON in broiler production. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03392-4.
Collapse
Affiliation(s)
- Shuangxiu Wan
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.,College of Pharmacy, Heze University, Heze, Shangdong, 274000, People's Republic of China
| | - Na Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hongquan Li
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ajab Khan
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaozhong Zheng
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Yaogui Sun
- Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
23
|
Mokhtar HE, Xu A, Xu Y, Fadlalla MH, Wang S. Preparation of Monoclonal Antibody against Deoxynivalenol and Development of Immunoassays. Toxins (Basel) 2022; 14:toxins14080533. [PMID: 36006195 PMCID: PMC9415657 DOI: 10.3390/toxins14080533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium toxins are the largest group of mycotoxins, which contain more than 140 known secondary metabolites of fungi. Deoxynivalenol (DON) is one of the most important compounds of this class due to its high toxicity and its potential to harm mankind and animals and a widespread contaminant of agricultural commodities, such as wheat, corn, barley, oats, bread, and biscuits. Herein, a hybridoma cell 8G2 secreting mAb against DON was produced by fusing the splenocytes with a tumor cell line Sp2/0. The obtained mAb had a high affinity (2.39 × 109 L/mol) to DON. An indirect competitive Enzyme-Linked Immunosorbent Assay (ic-ELISA) showed that the linear range for DON detection was 3.125–25 μg/mL, and the minimum inhibitory concentration (IC50) was 18.125 μg/mL with a limit of detection (LOD) of 7.875 μg/mL. A colloidal gold nanoparticle (AuNP) with 20 nm in diameter was synthesized for on-site detection of DON within 10 min with vLOD of 20 μg/mL. To improve the limit of detection, the gold nanoflower (AuNF) with a larger size (75 nm) was used to develop the AuNF-based strip with vLOD of 6.67 μg/mL. Compared to the vLOD of a convectional AuNP-based strip, the AuNF-based strip was three times lower. Herein, three immunoassay methods (ic-ELISA and AuNP/AuNF-based strips) were successfully developed, and these methods could be applied for the DON detection in agricultural products.
Collapse
|
24
|
Yang X, Yu X, Sun N, Shi X, Niu C, Shi A, Cheng Y. Glyphosate-based herbicide causes spermatogenesis disorder and spermatozoa damage of the Chinese mitten crab (Eriocheir sinensis) by affecting testes characteristic enzymes, antioxidant capacities and inducing apoptosis. Toxicol Appl Pharmacol 2022; 447:116086. [PMID: 35643123 DOI: 10.1016/j.taap.2022.116086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Glyphosate-based herbicide (GBH) is a popular herbicide, which may contaminate the water environment and affect aquatic animals. In this study, testes morphology, physiology function, apoptosis pathway, and spermatozoa quality of Chinese mitten crab (Eriocheir sinensis) were evaluated after 7 days of GBH exposure (48.945 mg/l,1/2 of the 96 h LC50 value of GBH). Results showed that GBH induced spermatogenesis disorder by H.E. staining. The obvious vacuolar degenerations and fewer spermatids of the testes accompanied by decreased primary spermatocytes-type seminiferous tubules (PSc-STs) were observed. The extensive apoptosis of spermatids by TUNEL staining was visible. Meanwhile, testes'' characteristic enzyme activities associated with spermatogenesis, including lactate dehydrogenase (LDH) and acid phosphatase (ACP) were significantly decreased. Testes suffered oxidative damage as reflected by the significant decrease in superoxide dismutase (SOD) activities, the significant increase in malondialdehyde (MDA) contents, and heat shock proteins (HSP-70) mRNA expression. Further studies demonstrated that GBH induced apoptosis of testes through the mitochondrial apoptotic pathway by upregulating the relative mRNA expression of cysteinyl aspartate specific proteinase 3 (Caspase-3), Bcl-2-associated X protein (Bax), and downregulating B-cell lymphoma 2 (Bcl-2). Oxidative damage may be one of the causes of GBH-induced apoptosis in testes. After GBH exposure, the morphology of spermatophores was changed. The survival and the acrosome reaction (AR) ratio of spermatozoa was significantly decreased. Altogether, these results demonstrated that GBH affects spermatogenesis, spermatophore and spermatozoa quality of E.sinensis, which provides novel knowledge about the toxic effects of GBH on the reproductive system of crustaceans.
Collapse
Affiliation(s)
- Xiaozhen Yang
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Xiaowen Yu
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Ningbo Sun
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xingliang Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Chao Niu
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Aoya Shi
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
25
|
Wang H, Zhou Y, Xu C, Cao Y, Xiao Y, Cai D, Uemoto Y, Wu S, Bao W. Genome-wide transcriptional profiling and functional analysis reveal miR-330-MAPK15 axis involving in cellular responses to deoxynivalenol exposure. CHEMOSPHERE 2022; 298:134199. [PMID: 35278444 DOI: 10.1016/j.chemosphere.2022.134199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Deoxynivalenol (DON) is one of the mycotoxins that is toxic to agricultural environment, which poses high risks to human and farm animal health. Noncoding RNAs have been shown to be crucial regulators of toxicological processes and as promising biomarkers for toxicity monitoring and prevention of mycotoxin contamination. Herein, we characterized genome-wide transcriptional profiling of porcine intestinal epithelial cells upon DON exposure and illustrated a subset of miRNAs and lncRNAs involved in the cellular processes by targeting genes associated with stress responses. A total of 110 differential expression miRNAs and 143 differential expression lncRNAs were identified between the DON exposure and control cell samples. Interactive network analysis showed that miR-330 was one hub noncoding RNA, expression of which was significantly increased upon DON exposure. Functional enrichment analysis indicated that the genes involved in the networks were mainly enriched in the terms of plasma membrane bounded cell projection assembly, mRNA processing, and regulation of mitochondrion organization. Further functional analysis revealed that high expression of miR-330 inhibits the reactive oxygen species production, cell apoptosis, and autophagic flux in cells upon DON exposure. Luciferase assay further indicated that miR-330 could directly target MAPK15. Knockdown of MAPK15 resulted in decreased reactive oxygen species level and cell apoptosis induced by DON, indicating the existence of miR-330-MAPK15 regulatory axis in regulating DON toxicity. Our work shed novel insights into the mode of action of DON at cellular level and indicated the potential of miR-330 as a biomarker for toxicity monitoring of DON contamination, which contributes to the development of effective biomonitoring and prevention strategies to reduce the toxicological effects of DON.
Collapse
Affiliation(s)
- Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yajing Zhou
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chao Xu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yue Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yeyi Xiao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yoshinobu Uemoto
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
26
|
Garofalo M, Payros D, Oswald E, Nougayrède JP, Oswald IP. The foodborne contaminant deoxynivalenol exacerbates DNA damage caused by a broad spectrum of genotoxic agents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153280. [PMID: 35066032 DOI: 10.1016/j.scitotenv.2022.153280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Humans are exposed to different contaminants including mycotoxins. Deoxynivalenol (DON), a potent ribosome inhibitor, is a highly prevalent mycotoxin in the food chain worldwide. Although DON is not genotoxic, we previously showed that it exacerbates the genotoxicity of colibactin, a DNA-crosslinking toxin produced by bacteria in the gut. In the present study, we investigated whether this phenotype can be extended to other genotoxic compounds with different modes of action. Our data showed that, at a dose that can be found in food, DON exacerbated the DNA damage caused by etoposide, cisplatin and phleomycin. In contrast, de-epoxy-deoxynivalenol (DOM-1), a modified form of DON that does not induce ribotoxic stress, did not exacerbate DNA damage. The effect of DON was mimicked with other ribosome inhibitors such as anisomycin and cycloheximide, suggesting that ribotoxicity plays a key role in exacerbating DNA damage. In conclusion, a new effect of DON was identified, this toxin aggravates the DNA damage induced by a broad spectrum of genotoxic agents with different modes of action. These results are of utmost importance as our food can be co-contaminated with DON and DNA-damaging agents.
Collapse
Affiliation(s)
- Marion Garofalo
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Delphine Payros
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France; CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | | | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
27
|
Dey DK, Kang JI, Bajpai VK, Kim K, Lee H, Sonwal S, Simal-Gandara J, Xiao J, Ali S, Huh YS, Han YK, Shukla S. Mycotoxins in food and feed: toxicity, preventive challenges, and advanced detection techniques for associated diseases. Crit Rev Food Sci Nutr 2022; 63:8489-8510. [PMID: 35445609 DOI: 10.1080/10408398.2022.2059650] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mycotoxins are produced primarily as secondary fungal metabolites. Mycotoxins are toxic in nature and naturally produced by various species of fungi, which usually contaminate food and feed ingredients. The growth of these harmful fungi depends on several environmental factors, such as pH, humidity, and temperature; therefore, the mycotoxin distribution also varies among global geographical areas. Various rules and regulations regarding mycotoxins are imposed by the government bodies of each country, which are responsible for addressing global food and health security concerns. Despite this legislation, the incidence of mycotoxin contamination is continuously increasing. In this review, we discuss the geographical regulatory guidelines and recommendations that are implemented around the world to control mycotoxin contamination of food and feed products. Researchers and inventors from various parts of the world have reported several innovations for controlling mycotoxin-associated health consequences. Unfortunately, most of these techniques are restricted to laboratory scales and cannot reach users. Consequently, to date, no single device has been commercialized that can detect all mycotoxins that are naturally available in the environment. Therefore, in this study, we describe severe health hazards that are associated with mycotoxin exposure, their molecular signaling pathways and processes of toxicity, and their genotoxic and cytotoxic effects toward humans and animals. We also discuss recent developments in the construction of a sensitive and specific device that effectively implements mycotoxin identification and detection methods. In addition, our study comprehensively examines the recent advancements in the field for mitigating the health consequences and links them with the molecular and signaling pathways that are activated upon mycotoxin exposure.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Gyeongsan, Republic of Korea
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ji In Kang
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul, Republic of Korea
| | - Kwanwoo Kim
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Sonam Sonwal
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Yong-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, Seoul, Republic of Korea
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, India
| |
Collapse
|
28
|
Holanda DM, Kim SW. Impacts of weaning weights and mycotoxin challenges on jejunal mucosa-associated microbiota, intestinal and systemic health, and growth performance of nursery pigs. J Anim Sci Biotechnol 2022; 13:43. [PMID: 35413935 PMCID: PMC9006406 DOI: 10.1186/s40104-022-00691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background This study aimed at investigating the effects of mycotoxin challenge on the growth and physiology of nursery pigs with different weaning weights. Results At weaning, 10 pigs were euthanized to collect jejunal mucosa and 90 pigs were assigned following a randomized complete block design in a 2 × 2 factorial arrangement of treatments with 3 pigs per pen. Factors were: weaning weight (light: body weight, BW < 7.5 kg or heavy: BW > 9.0 kg); and dietary mycotoxins (supplementation of 0.2 mg/kg aflatoxins, 2.0 mg/kg deoxynivalenol). All diets had titanium dioxide as an external marker at 0.5%. Growth performance and fecal score were recorded until pigs achieved 20 kg BW (light pigs average BW = 21.1 kg and heavy pigs average BW = 20.5 kg). Pigs were sampled for blood, ileal digesta, jejunal tissue and mucosa at 20 kg BW. Data were analyzed using the mixed procedure of SAS. At weaning, light pigs had decreased (P < 0.05) jejunal interleukin-8, increased (P < 0.05) tumor necrosis factor-α, and increased (P < 0.05) α-diversity indexes of jejunal mucosa-associated microbiota. At 20 kg of BW, light pigs had decreased (P < 0.05) average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G/F). Mycotoxins decreased (P < 0.05) BW, ADG, ADFI, and G/F. Light pigs tended to have increased fecal score on d 0 (P = 0.080), d 10 (P = 0.069), and increased (P < 0.05) fecal score at 20 kg. Mycotoxins decreased the apparent ileal digestibility of nitrogen (P < 0.05). Light pigs had increased (P < 0.05) intestinal malondialdehydes and interleukin 8. Mycotoxins tended to increase (P = 0.060) intestinal tumor necrosis factor-α. Conclusions Nursery pigs with light weaning weight were more susceptible to jejunal inflammation and had impaired intestinal health due to weaning stress, whereas mycotoxins diminished the health and growth of nursery pigs regardless of weaning weight.
Collapse
Affiliation(s)
- D M Holanda
- Department of Animal Science, North Carolina State University, Raleigh, 27695, USA
| | - S W Kim
- Department of Animal Science, North Carolina State University, Raleigh, 27695, USA.
| |
Collapse
|
29
|
Awuchi CG, Ondari EN, Nwozo S, Odongo GA, Eseoghene IJ, Twinomuhwezi H, Ogbonna CU, Upadhyay AK, Adeleye AO, Okpala COR. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins (Basel) 2022; 14:toxins14030167. [PMID: 35324664 PMCID: PMC8949390 DOI: 10.3390/toxins14030167] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Mycotoxins are well established toxic metabolic entities produced when fungi invade agricultural/farm produce, and this happens especially when the conditions are favourable. Exposure to mycotoxins can directly take place via the consumption of infected foods and feeds; humans can also be indirectly exposed from consuming animals fed with infected feeds. Among the hundreds of mycotoxins known to humans, around a handful have drawn the most concern because of their occurrence in food and severe effects on human health. The increasing public health importance of mycotoxins across human and livestock environments mandates the continued review of the relevant literature, especially with regard to understanding their toxicological mechanisms. In particular, our analysis of recently conducted reviews showed that the toxicological mechanisms of mycotoxins deserve additional attention to help provide enhanced understanding regarding this subject matter. For this reason, this current work reviewed the mycotoxins’ toxicological mechanisms involving humans, livestock, and their associated health concerns. In particular, we have deepened our understanding about how the mycotoxins’ toxicological mechanisms impact on the human cellular genome. Along with the significance of mycotoxin toxicities and their toxicological mechanisms, there are associated health concerns arising from exposures to these toxins, including DNA damage, kidney damage, DNA/RNA mutations, growth impairment in children, gene modifications, and immune impairment. More needs to be done to enhance the understanding regards the mechanisms underscoring the environmental implications of mycotoxins, which can be actualized via risk assessment studies into the conditions/factors facilitating mycotoxins’ toxicities.
Collapse
Affiliation(s)
- Chinaza Godseill Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
- Correspondence: (C.G.A.); (C.O.R.O.)
| | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Sarah Nwozo
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Grace Akinyi Odongo
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Ifie Josiah Eseoghene
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | | | - Chukwuka U. Ogbonna
- Department of Biochemistry, Federal University of Agriculture, P.M.B. 2240, Abeokuta 110124, Ogun State, Nigeria;
| | - Anjani K. Upadhyay
- Heredity Healthcare & Lifesciences, 206-KIIT TBI, Patia, Bhubaneswar 751024, Odisha, India;
| | - Ademiku O. Adeleye
- Faith Heroic Generation, No. 36 Temidire Street, Azure 340251, Ondo State, Nigeria;
| | - Charles Odilichukwu R. Okpala
- Department of Functional Foods Product Development, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
- Correspondence: (C.G.A.); (C.O.R.O.)
| |
Collapse
|
30
|
Pierron A, Neves M, Puel S, Lippi Y, Soler L, Miller JD, Oswald IP. Intestinal toxicity of the new type A trichothecenes, NX and 3ANX. CHEMOSPHERE 2022; 288:132415. [PMID: 34600008 DOI: 10.1016/j.chemosphere.2021.132415] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
NX and its acetylated form 3ANX are two new type A trichothecenes produced by Fusarium graminearum whose toxicity is poorly documented. The aim of this study was to obtain a general view of the intestinal toxicity of these toxins. Deoxynivalenol (DON), which differs from NX by the keto group at C8, served as a benchmark. The viability of human intestinal Caco-2 cells decreased after 24 h of exposure to 3 μM NX (-21.4%), 3 μM DON (-20.2%) or 10 μM 3ANX (-17.4%). Histological observations of porcine jejunal explants exposed for 4 h to 10 μM of the different toxins showed interstitial edema and cellular debris. Explants exposed to NX also displayed cell vacuolization, a broken epithelial barrier and high loss of villi. Whole transcriptome profiling revealed that NX, DON and 3ANX modulated 369, 146 and 55 genes, respectively. Functional analyses indicated that the three toxins regulate the same gene networks and signaling pathways mainly; cell proliferation, differentiation, apoptosis and growth, and particularly immune and pro-inflammatory responses. Greater transcriptional impacts were observed with NX than with DON. In conclusion, our data revealed that the three toxins have similar impacts on the intestine but of different magnitude: NX > DON ≫ 3ANX. NX and 3ANX should consequently be included in overall risk analysis linked to the presence of trichothecenes in our diet.
Collapse
Affiliation(s)
- Alix Pierron
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Manon Neves
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Sylvie Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Yannick Lippi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Laura Soler
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - J David Miller
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Isabelle P Oswald
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France.
| |
Collapse
|
31
|
Jia B, Yu S, Yu D, Liu N, Zhang S, Wu A. Mycotoxin deoxynivalenol affects myoblast differentiation via downregulating cytoskeleton and ECM-integrin-FAK-RAC-PAK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112850. [PMID: 34607188 DOI: 10.1016/j.ecoenv.2021.112850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
As a common mycotoxin, deoxynivalenol (DON) contaminates cereal grains and feed in field or during processing and storage. DON elicits a spectrum of adverse effects in animals including anorexia and growth retardation. Especially, the presence of DON has also been detected in muscle, suggesting that DON may has the potential to affect the development of muscle. However, the relevant research is very rare and the molecular mechanism remains unclear. Myoblasts differentiation into multinucleated myotubes is one of the crucial steps of skeletal muscle development. In the present study, we investigated the effects of DON on differentiation of myoblasts using murine C2C12 cells model. The results indicated that DON dose-dependent inhibited the formation of myotubes in C2C12 cells. After performing omics techniques, a total of 149 differentially expressed genes were identified. The expression of cytoskeleton proteins and extracellular matrix (ECM) proteins were downregulated by DON. Furthermore, DON significantly downregulated the expression of integrin αv and integrin β5, leading to inhibition of the ECM-integrin receptor interaction. The focal adhesion kinase (FAK) and phosphorylated forms, ras-related C3 botulinum toxin substrate (RAC) and p21-activated kinases 1 (PAK1) were also downregulated by DON. Taken together, our findings suggest that DON has the potent to affect the differentiation of myoblasts via downregulating of cytoskeleton and ECM-integrin-FAK-RAC-PAK signaling pathway.
Collapse
Affiliation(s)
- Bingxuan Jia
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Song Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuo Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
32
|
Arabidopsis P4 ATPase-mediated cell detoxification confers resistance to Fusarium graminearum and Verticillium dahliae. Nat Commun 2021; 12:6426. [PMID: 34741039 PMCID: PMC8571369 DOI: 10.1038/s41467-021-26727-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Many toxic secondary metabolites produced by phytopathogens can subvert host immunity, and some of them are recognized as pathogenicity factors. Fusarium head blight and Verticillium wilt are destructive plant diseases worldwide. Using toxins produced by the causal fungi Fusarium graminearum and Verticillium dahliae as screening agents, here we show that the Arabidopsis P4 ATPases AtALA1 and AtALA7 are responsible for cellular detoxification of mycotoxins. Through AtALA1-/AtALA7-mediated vesicle transport, toxins are sequestered in vacuoles for degradation. Overexpression of AtALA1 and AtALA7 significantly increases the resistance of transgenic plants to F. graminearum and V. dahliae, respectively. Notably, the concentration of deoxynivalenol, a mycotoxin harmful to the health of humans and animals, was decreased in transgenic Arabidopsis siliques and maize seeds. This vesicle-mediated cell detoxification process provides a strategy to increase plant resistance against different toxin-associated diseases and to reduce the mycotoxin contamination in food and feed.
Collapse
|
33
|
Eslamizad S, Yazdanpanah H, Hadian Z, Tsitsimpikou C, Goumenou M, Shojaee AliAbadi MH, Kamalabadi M, Tsatsakis A. Exposure to multiple mycotoxins in domestic and imported rice commercially traded in Tehran and possible risk to public health. Toxicol Rep 2021; 8:1856-1864. [PMID: 34820291 PMCID: PMC8599926 DOI: 10.1016/j.toxrep.2021.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/10/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Abstract
Mycotoxins are secondary fungi metabolites that induce acute and chronic toxic effects in humans and animals. In the present study, nine mycotoxins including aflatoxins (AFB1, AFB2, AFG1 and AFG2), fumonisins (FB1 and FB2), Ochratoxin A (OTA), deoxynivalenol (DON), and zearalenone (ZEN) were determined in one hundred rice samples collected from Tehran using high performance liquid chromatography (HPLC) with fluorescence or photodiode array detector. In addition, possible risk to public health was investigated by assessing dietary exposure through rice consumption, the margin of exposure (MOE), respective risk of cancer and hazard index (HI) of the monitored mycotoxins in children and adults. The higher mean levels were determined for DON (102.22 μg.Kg-1), followed by FB1 (85.00 μg.Kg-1). For the rests of mycotoxins the levels did not exceed 20 μg.Kg-1. The estimated AFB1 intake for the adults and children through rice consumption exceeds the safe levels established for both carriers and non-carriers of hepatitis B virus. The mean and median determined exposure levels of OTA, DON ZEN and FB1, were found lower than the Provisional Maximum Tolerable Daily Intake (PMTDI) value for both adults and children of Tehran that consuming domestic and imported rice. The mean HI for adults and median HI for adults and children were below one, and mean HI for children was close to one. All the mean, median and maximum MoE values were <10,000 in adults and children, indicating a risk due to AFB1 exposure through rice consumption in Tehran. In addition, the calculated mean cancer risk in adult and child populations of Tehran were 0.27 and 0.64 cases per year per 105 individuals, respectively, that shows population in Tehran could be at risk of cancer due to AFB1 exposure through rice consumption as calculated. So further studies are necessary for the monitoring mycotoxins in rice and different food products as well as estimating average dietary exposure and cumulative exposure assessment of mycotoxins for main foods in IR Iran.
Collapse
Affiliation(s)
- Samira Eslamizad
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hassan Yazdanpanah
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zahra Hadian
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Farahzadi Blv. West Hafezi, No 7. P. O. Box 19395-4741, Tehran, Islamic Republic of Iran
| | | | - Marina Goumenou
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | | | - Mahdie Kamalabadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Islamic Republic of Iran
| | - Aristides Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
34
|
Hooft JM, Bureau DP. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species. Food Chem Toxicol 2021; 157:112616. [PMID: 34662691 DOI: 10.1016/j.fct.2021.112616] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022]
Abstract
Deoxynivalenol, a type B trichothecene mycotoxin produced by Fusarium species of fungi, is a ubiquitious contaminant of cereal grains worldwide. Chronic, low dose consumption of feeds contaminated with DON is associated with a wide range of symptoms in terrestrial and aquatic species including decreased feed intake and feed refusal, reduced weight gain, and altered nutritional efficiency. Acute, high dose exposure to DON may be associated with more severe symptoms such as vomiting, diarrhea, intestinal inflammation and gastrointestinal hemorrhage. The toxicity of DON is partly related to its ability to disrupt eukaryotic protein synthesis via binding to the peptidyl transferase site of the ribosome. Moreover, DON exerts its effects at the cellular level by activating mitogen activated protein kinases (MAPK) through a process known as the ribotoxic stress response (RSR). The outcome of DON-associated MAPK activation is dose and duration dependent; acute low dose exposure results in immunostimulation characterized by the upregulation of cytokines, chemokines and other proinflammatory-related proteins, whereas longer term exposure to higher doses generally results in apoptosis, cell cycle arrest, and immunosuppression. The order of decreasing sensitivity to DON is considered to be: swine > rats > mice > poultry ≈ ruminants. However, studies conducted within the past 10 years have demonstrated that some species of fish, such as rainbow trout, are highly sensitive to DON. The aims of this review are to explore the effects of DON on terrestrial and aquatic species as well as its mechanisms of action, metabolism, and interaction with other Fusarium mycotoxins. Notably, a considerable emphasis is placed on reviewing the effects of DON on different species of fish.
Collapse
Affiliation(s)
- Jamie M Hooft
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada.
| | - Dominique P Bureau
- Wittaya Aqua International, 1 University Ave, Floor 5, Toronto, ON, M5J 2P1, Canada; Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
35
|
Roberts HL, Bionaz M, Jiang D, Doupovec B, Faas J, Estill CT, Schatzmayr D, Duringer JM. Effects of Deoxynivalenol and Fumonisins Fed in Combination to Beef Cattle: Immunotoxicity and Gene Expression. Toxins (Basel) 2021; 13:714. [PMID: 34679007 PMCID: PMC8541374 DOI: 10.3390/toxins13100714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
We evaluated the effects of a treatment diet contaminated with 1.7 mg deoxynivalenol and 3.5 mg fumonisins (B1, B2 and B3) per kg ration on immune status and peripheral blood gene expression profiles in finishing-stage Angus steers. The mycotoxin treatment diet was fed for a period of 21 days followed by a two-week washout period during which time all animals consumed the control diet. Whole-blood leukocyte differentials were performed weekly throughout the experimental and washout period. Comparative profiles of CD4+ and CD8+ T cells, along with bactericidal capacity of circulating neutrophils and monocytes were evaluated at 0, 7, 14, 21 and 35 days. Peripheral blood gene expression was measured at 0, 7, 21 and 35 days via RNA sequencing. Significant increases in the percentage of CD4-CD8+ T cells were observed in treatment-fed steers after two weeks of treatment and were associated with decreased CD4:CD8 T-cell ratios at this same timepoint (p ≤ 0.10). No significant differences were observed as an effect of treatment in terms of bactericidal capacity at any timepoint. Dietary treatments induced major changes in transcripts associated with endocrine, metabolic and infectious diseases; protein digestion and absorption; and environmental information processing (inhibition of signaling and processing), as evaluated by dynamic impact analysis. DAVID analysis also suggested treatment effects on oxygen transport, extra-cellular signaling, cell membrane structure and immune system function. These results indicate that finishing-stage beef cattle are susceptible to the immunotoxic and transcript-inhibitory effects of deoxynivalenol and fumonisins at levels which may be realistically encountered in feedlot situations.
Collapse
Affiliation(s)
- Heaven L. Roberts
- Department of Animal & Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA; (H.L.R.); (M.B.)
| | - Massimo Bionaz
- Department of Animal & Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA; (H.L.R.); (M.B.)
| | - Duo Jiang
- Department of Statistics, College of Science, Oregon State University, Corvallis, OR 97331, USA;
| | - Barbara Doupovec
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.D.); (J.F.); (D.S.)
| | - Johannes Faas
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.D.); (J.F.); (D.S.)
| | - Charles T. Estill
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
| | - Dian Schatzmayr
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.D.); (J.F.); (D.S.)
| | - Jennifer M. Duringer
- Department of Environmental & Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
36
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. The toxicity mechanisms of DON to humans and animals and potential biological treatment strategies. Crit Rev Food Sci Nutr 2021; 63:790-812. [PMID: 34520302 DOI: 10.1080/10408398.2021.1954598] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Deoxynivalenol, also known as vomitotoxin, is produced by Fusarium, belonging to the group B of the trichothecene family. DON is widely polluted, mainly polluting cereal crops such as wheat, barley, oats, corn and related cereal products, which are closely related to lives of people and animals. At present, there have been articles summarizing DON induced toxicity, biological detoxification and the protective effect of natural products, but there is no systematic summary of this information. In addition to ribosome and endoplasmic reticulum, recent investigations support that mitochondrion is also organelles that DON can damage. DON can't directly act on mitochondria, but can indirectly cause mitochondrial damage and changes through other means. DON can indirectly inhibit mitochondrial biogenesis and mitochondrial electron transport chain activity, ATP production, and mitochondrial transcription and translation. This review will provide the latest progress on mitochondria as the research object, and systematically summarizes all the toxic mechanisms of DON. Here, we discuss DON induced mitochondrial-mediated apoptosis and various mitochondrial toxicity. For the toxicity of DON, many methods have been derived to prevent or reduce the toxicity. Biological detoxification and the antioxidant effect of natural products are potentially effective treatments for DON toxicity.
Collapse
Affiliation(s)
- Silu Hou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
da Silva E, Santos J, Morey A, Yamauchi L, Bracarense AL. Phytic acid modulates the morphology, immunological response of cytokines and β-defensins in porcine intestine exposed to deoxynivalenol and fumonisin B1. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Occurrence of mycotoxins in agricultural products represents a risk for human and animal health. Therefore, there is a requirement of strategies to mitigate their harmful impacts. This study investigated the effects of phytic acid (IP6) on the immunological response of pro-(interleukin (IL)-1β, IL-6, IL-8, IL-10, interferon (IFN)-γ, tumour necrosis factor (TNF)-α) and anti-inflammatory (IL-10) cytokines and β-defensins 1 (pBD-1) and 2 (pBD-2) in porcine jejunal explants exposed to deoxynivalenol (DON) and fumonisin B1 (FB1). The explants were exposed to the following treatments: control, DON (10 μM), DON plus IP6 2.5 mM or 5 mM, FB1 (70 μM), FB1 IP6 plus 2.5 or 5 mM. The expression levels of the cytokines were measured by RT-qPCR. The exposure to FB1 and DON induced intestinal lesions. The presence of 2.5 and 5 mM IP6 inhibited the morphological changes induced by the mycotoxins. The explants exposed to DON showed an increase in the expression of IL-1β and IL-8 and a decrease in the levels of IL-6, IFN-γ, IL-10 and pBD-2. IP6 (5 mM) decreased the expression of IL-8 and increased the expression in pBD-1 and 2 compared to DON alone. FB1 induced a significant decrease in the levels of most of the pro-inflammatory cytokines, IL-10 and pBD-1, and an increase in IL-1β expression. The addition of IP6 5 mM induced significant increase in TNF-α expression compared to FB1. Taken together, the results suggest IP6 modulates immunological changes induced by DON and FB1 on intestinal mucosa resulting in beneficial effects that contribute to intestinal homeostasis and health.
Collapse
Affiliation(s)
- E.O. da Silva
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, rodovia Celso Garcia Cid, km 380, 86057-970, Londrina, Paraná, Brazil
| | - J.P. Santos
- Laboratory of Molecular Biology of Microorganisms, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - A.T. Morey
- Laboratory of Molecular Biology of Microorganisms, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Instituto Federal do Rio Grande do Sul, Campus Canoas, Canoas, Rio Grande do Sul, Brazil
| | - L.M. Yamauchi
- Laboratory of Molecular Biology of Microorganisms, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - A.P.F.R. Loureiro Bracarense
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, rodovia Celso Garcia Cid, km 380, 86057-970, Londrina, Paraná, Brazil
| |
Collapse
|
38
|
Zha A, Cui Z, Qi M, Liao S, Chen L, Liao P, Tan B. Dietary Baicalin Zinc Supplementation Alleviates Oxidative Stress and Enhances Nutrition Absorption in Deoxynivalenol Challenged Pigs. Curr Drug Metab 2021; 21:614-625. [PMID: 32116187 DOI: 10.2174/1389200221666200302124102] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/19/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Deoxynivalenol contamination is increasing worldwide, presenting great challenges to food security and causing great economic losses in the livestock industry. OBJECTIVE This study was conducted to determine the protective effect of baicalin zinc as a dietary supplement on pigs fed with a deoxynivalenol contaminated diet. METHODS A total of 40 weaned pigs (21 d of age; 6.13 ± 0.42 kg average BW) were randomly assigned (10 pigs/group) to 4 dietary treatments: basal diet (Con group), basal diet + 4 mg/kg DON (DON group), basal diet + 5 g/kg BZN (BZN group), and basal diet + 5 g/kg BZN + 4 mg/kg DON (DBZN group) for a 14-d period. Seven randomly-selected pigs from each treatment were killed for blood and tissue sampling. RESULTS The results showed that piglets challenged with DON exhibited significantly reduced levels of ADG, ADFI, and F/G (p < 0.05). BZN supplemented diets significantly suppressed the protein expression of p-Nrf2, p-NF-kB, and HO-1 in the jejunum of DON challenged piglets (p < 0.05). In liver, DON markedly increased the mRNA expression of P70S6K and HSP70 in piglets fed the basal diet, but significantly reduced that of HO-1, NQO-1, NF-kB, AMPKα2 and HSP70 in piglets fed the BZN supplemented diet (p < 0.05). Dietary supplementation with BZN markedly increased the T-AOC level of serum in weaned piglets (p < 0.05). In jejunum, dietary supplementation with BZN activated the mRNA expression of ZIP4 in piglets (p < 0.05), BZN supplementation significantly suppressed the activity of sucrose and increased the protein concentration in chyme (p < 0.05). CONCLUSION BZN can play a protective role by reducing oxidative stress and enhancing nutrient absorption in pigs fed DON-contaminated diets.
Collapse
Affiliation(s)
- Andong Zha
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhijuan Cui
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Ming Qi
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Simeng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lixin Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China,Shaodong Animal Husbandry and Fisheries Bureau, Hunan, 422800, China
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Bie Tan
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| |
Collapse
|
39
|
Recent Achievements in Electrochemical and Surface Plasmon Resonance Aptasensors for Mycotoxins Detection. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mycotoxins are secondary metabolites of fungi that contaminate agriculture products. Their release in the environment can cause severe damage to human health. Aptasensors are compact analytical devices that are intended for the fast and reliable detection of various species able to specifically interact with aptamers attached to the transducer surface. In this review, assembly of electrochemical and surface plasmon resonance (SPR) aptasensors are considered with emphasis on the mechanism of signal generation. Moreover, the properties of mycotoxins and the aptamers selected for their recognition are briefly considered. The analytical performance of biosensors developed within last three years makes it possible to determine mycotoxin residues in water and agriculture/food products on the levels below their maximal admissible concentrations. Requirements for the development of sample treatment and future trends in aptasensors are also discussed.
Collapse
|
40
|
Rehder Silinski MA, Gilliam JA, Fernando RA, Robinson VG, Germolec D, Cunny H, Huang MC, Furr J, Waidyanatha S. Development of an Analytical Method for Quantitation of Deoxynivalenol by UPLC-MS-MS: A Preliminary Assessment of Gestational and Lactational Transfer in Rats. J Anal Toxicol 2021; 45:566-572. [PMID: 32886793 DOI: 10.1093/jat/bkaa119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/06/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023] Open
Abstract
Deoxynivalenol (DON) is the most widely distributed trichothecene mycotoxin in grain-based foods and animal feed. Exposure to DON is widespread as it has been detected in food sources from around the world. The objective of this work was to develop a method to quantitate DON in biological matrices and apply it in a preliminary assessment of gestational and lactational transfer of DON following exposure of pregnant rats. The method used protein precipitation followed by ultra-performance liquid chromatography-tandem mass spectrometry. The method was evaluated in male Sprague Dawley rat plasma over the concentration range ∼2-1,000 ng/mL. The method was linear (r ≥ 0.99), accurate (mean relative error ≤ ±4.9%) and precise (relative standard deviation ≤ 5.5%). The mean absolute recovery was 85.9%. The limit of detection was 0.35 ng/mL. The method was also evaluated in gestational day (GD) 18 Hsd:Sprague Dawley®SD® dam plasma and fetal homogenate (mean % relative error ≤ ±16.9; % relative standard deviation ≤ 9.5). Concentrations of DON in dam plasma stored at -80°C for at least 29 days and in fetal homogenate for at least 43 days were within 97.9 to 120% of Day 0 concentrations, demonstrating that DON is stable in these matrices. The method was used to quantitate DON in rat maternal plasma, amniotic fluid, GD 18 fetuses and postnatal day (PND) 4 pups following exposure of dams to 0 (control) and 1 mg/kg DON beginning on GD 6 and continuing through gestation and lactation for a preliminary assessment of maternal transfer. In animals exposed to 1 mg/kg/day, similar concentration of DON was found in GD 18 dam plasma and fetuses, demonstrating significant gestational transfer. The concentration of DON in PND 4 dam plasma was similar to that in GD 18 dam plasma. However, DON was not detected in PND 4 pup plasma above the limit of detection of the assay, demonstrating absence of transfer of DON to pups via lactation.
Collapse
Affiliation(s)
| | - Jennifer A Gilliam
- RTI International, P.O. Box 12194, Research Triangle Park, NC 27709, USA
| | - Reshan A Fernando
- RTI International, P.O. Box 12194, Research Triangle Park, NC 27709, USA
| | - Veronica G Robinson
- Division of the National Toxicology Program, NIEHS, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Dori Germolec
- Division of the National Toxicology Program, NIEHS, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Helen Cunny
- Division of the National Toxicology Program, NIEHS, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Madelyn C Huang
- Division of the National Toxicology Program, NIEHS, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | | - Suramya Waidyanatha
- Division of the National Toxicology Program, NIEHS, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| |
Collapse
|
41
|
Qiu Y, Yang J, Wang L, Yang X, Gao K, Zhu C, Jiang Z. Dietary resveratrol attenuation of intestinal inflammation and oxidative damage is linked to the alteration of gut microbiota and butyrate in piglets challenged with deoxynivalenol. J Anim Sci Biotechnol 2021; 12:71. [PMID: 34130737 PMCID: PMC8207658 DOI: 10.1186/s40104-021-00596-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/11/2021] [Indexed: 12/17/2022] Open
Abstract
Background Deoxynivalenol (DON) is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals. Resveratrol (RES) effectively exerts anti-inflammatory and antioxidant effects. However, the protective effects of RES on alleviating DON toxicity in piglets and the underlying mechanism remain unclear. Therefore, this study aimed to investigate the effect of RES on growth performance, gut health and the gut microbiota in DON-challenged piglets. A total of 64 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 6.97 ± 0.10 kg body weight (BW)] were randomly allocated to 4 treatment groups (8 replicate pens per treatment, each pen containing 2 males; n = 16 per treatment) for 28 d. The piglets were fed a control diet (CON) or the CON diet supplemented with 300 mg RES/kg diet (RES group), 3.8 mg DON/kg diet (DON) or both (DON+RES) in a 2 × 2 factorial design. Results DON-challenged piglets fed the RES-supplemented diet had significantly decreased D-lactate concentrations and tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) mRNA and protein expression, and increased zonula occludens-1 (ZO-1) mRNA and protein expression compared with those of DON-challenged piglets fed the unsupplemented diet (P < 0.05). Compared with unsupplemented DON-challenged piglets, infected piglets fed a diet with RES showed significantly decreased malondialdehyde (MDA) levelsand increased mRNA expression of antioxidant enzymes and antioxidant genes (i.e., GCLC, GCLM, HO-1, SOD1 and NQO-1) and glutamate-cysteine-ligase modulatory subunit (GCLM) protein expression (P < 0.05). Moreover, RES supplementation significantly abrogated the increase in the proportion of TUNEL-positive cells and the protein expression of caspase3 in DON-challenged piglets (P < 0.05). Finally, RES supplementation significantly increased the abundance of Roseburia and butyrate concentrations, while decreasing the abundances of Bacteroides and unidentified-Enterobacteriaceae in DON-challenged piglets compared with DON-challenged piglets alone (P < 0.05). Conclusions RES supplementation improved gut health in DON-challenged piglets by strengthening intestinal barrier function, alleviating intestinal inflammation and oxidative damage, and positively modulating the gut microbiota. The protective effects of RES on gut health may be linked to increased Roseburia and butyrate concentrations, and decreased levels of Bacteroides and unidentified-Enterobacteriaceae.
Collapse
Affiliation(s)
- Yueqin Qiu
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Yang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xuefen Yang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Kaiguo Gao
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Cui Zhu
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. .,School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
42
|
Azizi T, Daneshyar M, Allymehr M, Jalali AS, Behroozyar HK, Tukmechi A. The impact of deoxynivalenol contaminated diet on performance, immune response, intestine morphology and jejunal gene expression in broiler chicken. Toxicon 2021; 199:72-78. [PMID: 34111455 DOI: 10.1016/j.toxicon.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was to determine the effects of deoxynivalenol (DON) contaminated diet on performance, immune system, gut morphology and jejunal gene expression in broiler chickens. Eighty-one-day old chicks were randomly allotted into two treatments with 4 replicates (10 birds in each replication). Experimental diets were the control diet (maize-soybean meal) and an experimentally contaminated diet with 10 mg/kg DON. The results indicated that DON-challenged birds had decreased (P < 0.05) average feed intake (AFI) during starter period as compared to control group. Also, average daily gain (ADG), AFI and feed conversion ratio (FCR) were not affected (P > 0.05) by inclusion of DON contaminated diet during the whole experimental period. Dietary addition of DON to the basal diet caused Fabricius bursa relative weight reduction, while increased the abdominal fat and serum triglyceride (TG) concentration (P < 0.05). Dietary DON feeding caused an enhancement (P < 0.05) in the blood aspartate aminotransferase (AST) and gamma glutamytransferase (GGT) contents. Moreover, DON decreased the serum total protein (TP) and albumin (ALB) concentrations. Inclusion of DON in diet reduced (P < 0.05) the white blood cell (WBC) count, lymphocyte number and antibody titer against Newcastle disease virus, but increased (P < 0.05) the blood heterophil count. The DON consumption also diminished (P < 0.05) the villus height, villus to crypt ratio, mucosa thickness and villus surface area in the duodenum. Mucin-2 expression was decreased (P < 0.05) by DON consumption, but toll-like receptor-4 (TLR-4) and claudin-5 (CLDN-5) expressions were not affected (P > 0.05) by dietary treatments. In conclusion, although DON could not influence the performance attributes in broiler chickens, it adversely affected the immune response, muc-2 gene expressions in the jejunum and gut morphology, enhanced the liver enzyme indices and lessened the blood protein contents.
Collapse
Affiliation(s)
- Tayebe Azizi
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, P. O. Box 165, Urmia, Iran
| | - Mohsen Daneshyar
- Department of Animal Science, Faculty of Agricultural Science, Urmia University, P. O. Box 165, Urmia, Iran.
| | - Manoochehr Allymehr
- Department of Poultry Health and Diseases, Faculty of Veterinary Medicine, Urmia University, P. O. Box 165, Urmia, Iran
| | - Ali Shalizar Jalali
- Department of Veterinary Basic Sciences, Faculty of Veterinary Medicine, Urmia University, P. O. Box 165, Urmia, Iran
| | | | - Amir Tukmechi
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, P. O. Box 165, Urmia, Iran
| |
Collapse
|
43
|
Koletsi P, Schrama JW, Graat EAM, Wiegertjes GF, Lyons P, Pietsch C. The Occurrence of Mycotoxins in Raw Materials and Fish Feeds in Europe and the Potential Effects of Deoxynivalenol (DON) on the Health and Growth of Farmed Fish Species-A Review. Toxins (Basel) 2021; 13:403. [PMID: 34198924 PMCID: PMC8226812 DOI: 10.3390/toxins13060403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
The first part of this study evaluates the occurrence of mycotoxin patterns in feedstuffs and fish feeds. Results were extrapolated from a large data pool derived from wheat (n = 857), corn (n = 725), soybean meal (n = 139) and fish feed (n = 44) samples in European countries and based on sample analyses by liquid chromatography/tandem mass spectrometry (LC-MS/MS) in the period between 2012-2019. Deoxynivalenol (DON) was readily present in corn (in 47% of the samples) > wheat (41%) > soybean meal (11%), and in aquafeeds (48%). Co-occurrence of mycotoxins was frequently observed in feedstuffs and aquafeed samples. For example, in corn, multi-mycotoxin occurrence was investigated by Spearman's correlations and odd ratios, and both showed co-occurrence of DON with its acetylated forms (3-AcDON, 15-AcDON) as well as with zearalenone (ZEN). The second part of this study summarizes the existing knowledge on the effects of DON on farmed fish species and evaluates the risk of DON exposure in fish, based on data from in vivo studies. A meta-analytical approach aimed to estimate to which extent DON affects feed intake and growth performance in fish. Corn was identified as the ingredient with the highest risk of contamination with DON and its acetylated forms, which often cannot be detected by commonly used rapid detection methods in feed mills. Periodical state-of-the-art mycotoxin analyses are essential to detect the full spectrum of mycotoxins in fish feeds aimed to prevent detrimental effects on farmed fish and subsequent economic losses for fish farmers. Because levels below the stated regulatory limits can reduce feed intake and growth performance, our results show that the risk of DON contamination is underestimated in the aquaculture industry.
Collapse
Affiliation(s)
- Paraskevi Koletsi
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands; (J.W.S.); (G.F.W.)
| | - Johan W. Schrama
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands; (J.W.S.); (G.F.W.)
| | - Elisabeth A. M. Graat
- Adaptation Physiology Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands;
| | - Geert F. Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands; (J.W.S.); (G.F.W.)
| | - Philip Lyons
- Alltech Biotechnology Inc., A86 X006 Dunboyne, Ireland;
| | - Constanze Pietsch
- School of Agricultural, Forest and Food Sciences (HAFL), Applied University Berne (BFH), 3052 Zollikofen, Switzerland
| |
Collapse
|
44
|
Awuchi CG, Ondari EN, Ogbonna CU, Upadhyay AK, Baran K, Okpala COR, Korzeniowska M, Guiné RPF. Mycotoxins Affecting Animals, Foods, Humans, and Plants: Types, Occurrence, Toxicities, Action Mechanisms, Prevention, and Detoxification Strategies-A Revisit. Foods 2021; 10:1279. [PMID: 34205122 PMCID: PMC8228748 DOI: 10.3390/foods10061279] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 01/05/2023] Open
Abstract
Mycotoxins are produced by fungi and are known to be toxic to humans and animals. Common mycotoxins include aflatoxins, ochratoxins, zearalenone, patulin, sterigmatocystin, citrinin, ergot alkaloids, deoxynivalenol, fumonisins, trichothecenes, Alternaria toxins, tremorgenic mycotoxins, fusarins, 3-nitropropionic acid, cyclochlorotine, sporidesmin, etc. These mycotoxins can pose several health risks to both animals and humans, including death. As several mycotoxins simultaneously occur in nature, especially in foods and feeds, the detoxification and/or total removal of mycotoxins remains challenging. Moreover, given that the volume of scientific literature regarding mycotoxins is steadily on the rise, there is need for continuous synthesis of the body of knowledge. To supplement existing information, knowledge of mycotoxins affecting animals, foods, humans, and plants, with more focus on types, toxicity, and prevention measures, including strategies employed in detoxification and removal, were revisited in this work. Our synthesis revealed that mycotoxin decontamination, control, and detoxification strategies cut across pre-and post-harvest preventive measures. In particular, pre-harvest measures can include good agricultural practices, fertilization/irrigation, crop rotation, using resistant varieties of crops, avoiding insect damage, early harvesting, maintaining adequate humidity, and removing debris from the preceding harvests. On the other hand, post-harvest measures can include processing, chemical, biological, and physical measures. Additionally, chemical-based methods and other emerging strategies for mycotoxin detoxification can involve the usage of chitosan, ozone, nanoparticles, and plant extracts.
Collapse
Affiliation(s)
- Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda;
- School of Natural and Applied Sciences, Kampala International University, Kampala P.O. Box 20000, Uganda
| | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda;
| | - Chukwuka U. Ogbonna
- Department of Biochemistry, Federal University of Agriculture Abeokuta, Abeokuta P.M.B. 2240, Ogun State, Nigeria;
| | - Anjani K. Upadhyay
- School of Biotechnology, KIIT University, Bhubaneswar 751019, Odisha, India;
| | - Katarzyna Baran
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.B.); (M.K.)
| | - Charles Odilichukwu R. Okpala
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.B.); (M.K.)
| | - Małgorzata Korzeniowska
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.B.); (M.K.)
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
45
|
Luo S, Terciolo C, Neves M, Puel S, Naylies C, Lippi Y, Pinton P, Oswald IP. Comparative sensitivity of proliferative and differentiated intestinal epithelial cells to the food contaminant, deoxynivalenol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116818. [PMID: 33752036 DOI: 10.1016/j.envpol.2021.116818] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The intestinal epithelium is a functional and physical barrier formed by a cell monolayer that constantly differentiates from a stem cell in the crypt. This is the first target for food contaminants, especially mycotoxins. Deoxynivalenol (DON) is one of the most prevalent mycotoxins. This study compared the effects of DON (0-100 μM) on proliferative and differentiated intestinal epithelial cells. Three cell viability assays (LDH release, ATP content and neutral red uptake) indicated that proliferative Caco-2 cells are more sensitive to DON than differentiated ones. The establishment of transepithelial electrical resistance (TEER), as a read out of the differentiation process, was delayed in proliferative cells after exposure to 1 μM DON. Transcriptome analysis of proliferative and differentiated exposure to 0-3 μM DON for 24 h revealed 4862 differentially expressed genes (DEG) and indicated an effect of both the differentiation status and the DON treatment. KEGG enrichment analysis indicated involvement of metabolism, ECM receptors and tight junctions in the differentiation process, while ribosome biogenesis, mRNA surveillance, and the MAPK pathway were involved in the response to DON. The number of differentially expressed genes and the amplitude of the effect were higher in proliferative cells exposed to DON than that in differentiated cells. In conclusion, our study shows that proliferative cells are more susceptible than differentiated ones to DON and that the mycotoxin delays the differentiation process.
Collapse
Affiliation(s)
- Su Luo
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Chloe Terciolo
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Manon Neves
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sylvie Puel
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Claire Naylies
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Yannick Lippi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Philippe Pinton
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Isabelle P Oswald
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
46
|
Awapak D, Petchkongkaew A, Sulyok M, Krska R. Co-occurrence and toxicological relevance of secondary metabolites in dairy cow feed from Thailand. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1013-1027. [PMID: 33861173 DOI: 10.1080/19440049.2021.1905186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The occurrence of secondary metabolites and co-contaminants in dairy cow feed samples (n = 115), concentrate, roughage, and mixed feed, collected from Ratchaburi and Kanjanaburi provinces, Thailand, between August 2018 and March 2019 were investigated using LC-MS/MS based multi-toxin method. A total of 113 metabolites were found in the samples. Fungal metabolites were the predominant compounds, followed by plant metabolites. Among major mycotoxins, zearalenone and fumonisins were most frequently detected in concentrate and mixed feed samples, while deoxynivalenol and aflatoxin B1 were found at the frequency lower than 50%. Other metabolites, produced by Aspergillus, Fusarium, Penicillium, and Alternaria species, occurred in the samples. Flavoglaucin, 3-nitropropionic acid, averufin, and sterigmatocystin were the most prevalent Aspergillus metabolites. Common Fusarium metabolites occurring in the samples included moniliformin, beauvericin, and enniatins. For Penicillium metabolites, mycophenolic acid, questiomycin A, quinolactacin A, oxaline, citrinin, and dihydrocitrinone were frequently detected. The toxic Alternaria metabolites, alternariol, and alternariol monomethyl ether showed the high incidence in the samples. Plant metabolites were commonly found, mainly cyanogenic compounds and isoflavones, from cassava and soybean meal used as feed ingredients. Overall, 96.6% of feed samples contained at least two metabolites, in a range from 2 to 69. According to co-contamination of mycotoxins found in feed samples, zearalenone were mostly found in combination with fumonisin B1, deoxynivalenol, and aflatoxin B1. Fumonisin B1 co-occurred with aflatoxin B1 and deoxynivalenol. The mixtures of deoxynivalenol and aflatoxin B1, and of zearalenone, fumonisin B1 and deoxynivalenol were also found. Due to known individual toxicity of fungal and plant metabolites and possible additive or synergistic toxic effects of multi-mycotoxins, the occurrence of these metabolites and co-contaminants should be monitored continuously to ensure food safety through the dairy supply chain.
Collapse
Affiliation(s)
- Darika Awapak
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Khong Luang, Thailand
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Khong Luang, Thailand
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| |
Collapse
|
47
|
Riahi I, Pérez-Vendrell AM, Ramos AJ, Brufau J, Esteve-Garcia E, Schulthess J, Marquis V. Biomarkers of Deoxynivalenol Toxicity in Chickens with Special Emphasis on Metabolic and Welfare Parameters. Toxins (Basel) 2021; 13:217. [PMID: 33803037 PMCID: PMC8002947 DOI: 10.3390/toxins13030217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022] Open
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium species, is the most widespread mycotoxin in poultry feed worldwide. Long term-exposure from low to moderate DON concentrations can produce alteration in growth performance and impairment of the health status of birds. To evaluate the efficacy of mycotoxin-detoxifying agent alleviating the toxic effects of DON, the most relevant biomarkers of toxicity of DON in chickens should be firstly determined. The specific biomarker of exposure of DON in chickens is DON-3 sulphate found in different biological matrices (plasma and excreta). Regarding the nonspecific biomarkers called also biomarkers of effect, the most relevant ones are the impairment of the productive parameters, the intestinal morphology (reduction of villus height) and the enlargement of the gizzard. Moreover, the biomarkers of effect related to physiology (decrease of blood proteins, triglycerides, hemoglobin, erythrocytes, and lymphocytes and the increase of alanine transaminase (ALT)), immunity (response to common vaccines and release of some proinflammatory cytokines) and welfare status of the birds (such as the increase of Thiobarbituric acid reactive substances (TBARS) and the stress index), has been reported. This review highlights the available information regarding both types of biomarkers of DON toxicity in chickens.
Collapse
Affiliation(s)
- Insaf Riahi
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Anna Maria Pérez-Vendrell
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Antonio J. Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio, Av. Rovira Roure 191, 25198 Lleida, Spain;
| | - Joaquim Brufau
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Enric Esteve-Garcia
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Julie Schulthess
- Phileo by Lesaffre, 137 Rue Gabriel Péri, 59700 Marcq en Baroeul, France; (J.S.); (V.M.)
| | - Virginie Marquis
- Phileo by Lesaffre, 137 Rue Gabriel Péri, 59700 Marcq en Baroeul, France; (J.S.); (V.M.)
| |
Collapse
|
48
|
Pomothy JM, Gatt K, Jerzsele Á, Gere EP. The impact of quercetin on a porcine intestinal epithelial cell line exposed to deoxynivalenol. Acta Vet Hung 2021; 68:380-386. [PMID: 33625383 DOI: 10.1556/004.2020.00052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/20/2020] [Indexed: 11/19/2022]
Abstract
Quercetin (Que) is present in many vegetables and fruits as a secondary antioxidant metabolite. Deoxynivalenol (DON) produced by various Fusarium mould species can induce cytotoxicity and oxidative stress in the gastrointestinal tracts of humans and farm animals. The aim of this study was to investigate the effects of Que on DON-induced oxidative stress in a non-tumourigenic porcine IPEC-J2 cell line. Two experimental designs were used in our experiments as follows: (a) pretreatment with 20 µmol/L Que for 24 h followed by 1-h 1 µmol/L DON treatment and (b) simultaneous application of 20 µmol/L Que and 1 µmol/L DON for 1 h. Cell cytotoxicity, transepithelial electrical resistance (TER) of cell monolayers and extracellular/intracellular redox status were studied. It was found that DON significantly decreased TER and triggered oxidative stress, while Que pretreatments were beneficial in maintaining the integrity of the monolayers and alleviated oxidative stress. However, co-treatment with Que was unable to preserve the integrity and redox balance of the cells exposed to DON. These results indicate that only the 24-h preincubation of cells with 20 µmol/L Que was beneficial in compensating for the disruption caused by DON in extracellular oxidative status.
Collapse
Affiliation(s)
- Judit Mercédesz Pomothy
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, István u. 2, H-1078 Budapest, Hungary
| | - Katrina Gatt
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, István u. 2, H-1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, István u. 2, H-1078 Budapest, Hungary
| | - Erzsébet Pászti Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, István u. 2, H-1078 Budapest, Hungary
| |
Collapse
|
49
|
Huang MC, Furr JR, Robinson VG, Betz L, Shockley K, Cunny H, Witt K, Waidyanatha S, Germolec D. Oral deoxynivalenol toxicity in Harlan Sprague Dawley (Hsd:Sprague Dawley® SD®) rat dams and their offspring. Food Chem Toxicol 2021; 148:111963. [PMID: 33388407 PMCID: PMC7923685 DOI: 10.1016/j.fct.2020.111963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
There is widespread human exposure to deoxynivalenol (DON), a fungal mycotoxin found globally in many grain-based foods and animal feed. Acute exposures to high levels of DON are associated with gastrointestinal effects and emesis in humans and some animals, but the effects of low-dose exposures throughout the lifetime, a more likely exposure scenario in humans, are understudied. Therefore, this study was designed to identify doses of DON that could be used to evaluate long-term toxicity following perinatal exposure. Time-mated Harlan Sprague Dawley (Hsd:Sprague Dawley® SD®) rats were administered 0, 0.03, 0.1, 0.3, 1, or 3 mg/kg/day of DON once daily via gavage starting on gestational day 6 through postnatal day (PND) 27. F1 animals were administered the same dose as their respective dams via gavage starting on PND 12 until PND 27. Animals were euthanized on PND 28. DON had no effect on maternal body weight or feed consumption at any dose. Findings were limited to the 3 mg/kg/day group: F0 females had smaller live litter sizes than controls and F1 pups had lower body weight (4-13%) compared to controls. By PND 28, F1 body weight, after adjustments for litter effects, was 10-13% lower than controls. Blood samples obtained on PND 28 showed no increases in frequencies of micronucleated immature erythrocytes in either F0 or F1 animals. In summary, doses of DON up to 3 mg/kg/day did not affect maternal survival or body weight. Doses of 3 mg/kg/day resulted in slight toxicity manifested as decreased body weight in the offspring. The no-observed effect level was 1 mg/kg/day.
Collapse
Affiliation(s)
- Madelyn C Huang
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | | | - Veronica G Robinson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Laura Betz
- Social and Scientific Systems, Durham, NC, USA
| | - Keith Shockley
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Helen Cunny
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Kristine Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Dori Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
50
|
Azizi T, Daneshyar M, Allymehr M, Tukmechi A, Khalilvandi Behroozyar H, Shalizar Jalali A. Combination of Lactobacillus species and yeast ameliorates adverse effect of deoxynivalenol contaminated diet on immune system, gut morphology and jejunal gene expression in broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2020.1865845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tayebe Azizi
- Department of Animal Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mohsen Daneshyar
- Department of Animal Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Amir Tukmechi
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | | |
Collapse
|