1
|
Alarcón-Aldana JS, Visser L, Rueda-Forero NJ, Pinzón-Reyes EH, Rondón-Villarreal P, Suárez-Barrera MO. Enhancing the Cytotoxicity and Apoptotic Efficacy of Parasporin-2-Derived Variants (Mpp46Aa1) on Cancer Cell Lines. Toxins (Basel) 2024; 16:415. [PMID: 39453191 PMCID: PMC11511244 DOI: 10.3390/toxins16100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Parasporin PS2Aa1, recently renamed Mpp46Aa1, is an anti-cancer protein known for its selectivity against various human cancer cell lines. We genetically modified native PS2Aa1 to create a library of approximately 100 mutants. From this library, we selected promising mutants based on their half-maximal inhibitory concentration (IC50) and sequence variations. In this study, Variant 3-35, with the G257V substitution, demonstrated increased cytotoxicity and selectivity against the colon cancer cell line SW480. Conversely, Variant N65, featuring substitutions N92D, K175R, and S218G, yielded the most favorable results against the cancer cell lines SW-620, MOLT-4, and Jurkat. The caspase 3/7 and 9, Annexin V-Cy3 and 6-GFDA activities, and, most notably, mitochondrial membrane permeabilization assays confirmed the apoptotic marker elevation. These findings indicate that residues 92, 175, 218, and 257 may play a critical role in the cytotoxic activity and selectivity. We successfully obtained genetically improved variants with substitutions at these key amino acid positions. Additionally, we conducted molecular dynamic simulations to explore the potential interactions between PS2Aa1 and the CD59 GPI-anchored protein. The simulation results revealed that residues 57, 92, and 101 were consistently present, suggesting their possible significance in the interactions between parasporin and the CD59 protein.
Collapse
Affiliation(s)
- Juan S. Alarcón-Aldana
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación MASIRA, Universidad de Santander, Bucaramanga 680002, Colombia; (J.S.A.-A.); (N.J.R.-F.); (E.H.P.-R.); (P.R.-V.)
| | - Lydia Visser
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands;
| | - Nohora J. Rueda-Forero
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación MASIRA, Universidad de Santander, Bucaramanga 680002, Colombia; (J.S.A.-A.); (N.J.R.-F.); (E.H.P.-R.); (P.R.-V.)
| | - Efraín H. Pinzón-Reyes
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación MASIRA, Universidad de Santander, Bucaramanga 680002, Colombia; (J.S.A.-A.); (N.J.R.-F.); (E.H.P.-R.); (P.R.-V.)
| | - Paola Rondón-Villarreal
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación MASIRA, Universidad de Santander, Bucaramanga 680002, Colombia; (J.S.A.-A.); (N.J.R.-F.); (E.H.P.-R.); (P.R.-V.)
| | - Miguel O. Suárez-Barrera
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación MASIRA, Universidad de Santander, Bucaramanga 680002, Colombia; (J.S.A.-A.); (N.J.R.-F.); (E.H.P.-R.); (P.R.-V.)
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands;
| |
Collapse
|
2
|
Chen X, Wang Y, Li C, Hua Z, Cui H, Lin L. Antibacterial effect of protease-responsive cationic eugenol liposomes modified by gamma-polyglutamic acid against Staphylococcus aureus. J Liposome Res 2024; 34:411-420. [PMID: 37966062 DOI: 10.1080/08982104.2023.2280829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
Eugenol, as a natural antibacterial agent, has been widely studied for its inhibitory effect on the common food-borne pathogen Staphylococcus aureus (S. aureus). However, the widespread application of eugenol is still limited by its instability and volatility. Herein, γ-polyglutamic acid coated eugenol cationic liposomes (pGA-ECLPs) were successfully constructed by self-assembly with an average particle size of 170.7 nm and an encapsulation efficiency of 36.2%. The formation of pGA shell significantly improved the stability of liposomes, and the encapsulation efficiency of eugenol only decreased by 20.7% after 30 days of storage at 4 °C. On the other hand, the pGA layer can be hydrolyzed by S. aureus, achieving effective control of release through response to bacterial stimuli. The application experiments further confirmed that pGA-ECLPs effectively prolonged the antibacterial effect of eugenol in fresh chicken without causing obvious sensory effects on the food. The above results of this study provide an important reference for extending the action time of natural antibacterial substances and developing new stimuli-responsive antibacterial systems.
Collapse
Affiliation(s)
- Xiaochen Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yiwei Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Zichun Hua
- School of Life Sciences, Nanjing University, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University, Changzhou China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
3
|
Pereira-Santos AR, Candeias E, Magalhães JD, Empadinhas N, Esteves AR, Cardoso SM. Neuronal control of microglia through the mitochondria. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167167. [PMID: 38626829 DOI: 10.1016/j.bbadis.2024.167167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
The microbial toxin β-N-methylamino-L-alanine (BMAA), which is derived from cyanobacteria, targets neuronal mitochondria, leading to the activation of neuronal innate immunity and, consequently, neurodegeneration. Although known to modulate brain inflammation, the precise role of aberrant microglial function in the neurodegenerative process remains elusive. To determine if neurons signal microglial cells, we treated primary cortical neurons with BMAA and then co-cultured them with the N9 microglial cell line. Our observations indicate that microglial cell activation requires initial neuronal priming. Contrary to what was observed in cortical neurons, BMAA was not able to activate inflammatory pathways in N9 cells. We observed that microglial activation is dependent on mitochondrial dysfunction signaled by BMAA-treated neurons. In this scenario, the NLRP3 pro-inflammatory pathway is activated due to mitochondrial impairment in N9 cells. These results demonstrate that microglia activation in the presence of BMAA is dependent on neuronal signaling. This study provides evidence that neurons may trigger microglia activation and subsequent neuroinflammation. In addition, we demonstrate that microglial activation may have a protective role in ameliorating neuronal innate immune activation, at least in the initial phase. This work challenges the current understanding of neuroinflammation by assigning the primary role to neurons.
Collapse
Affiliation(s)
- A R Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - J D Magalhães
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
González MI, González-Arjona M, Cussó L, Morcillo MÁ, Aguilera-Correa JJ, Esteban J, Kestler M, Calle D, Cerón C, Cortes-Canteli M, Muñoz P, Bouza E, Desco M, Salinas B. In Vivo Detection of Staphylococcus aureus Infections Using Radiolabeled Antibodies Specific for Bacterial Toxins. Int J Biomed Imaging 2024; 2024:3655327. [PMID: 38665417 PMCID: PMC11045290 DOI: 10.1155/2024/3655327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 04/28/2024] Open
Abstract
Purpose The Gram-positive Staphylococcus aureus bacterium is one of the leading causes of infection in humans. The lack of specific noninvasive techniques for diagnosis of staphylococcal infection together with the severity of its associated complications support the need for new specific and selective diagnostic tools. This work presents the successful synthesis of an immunotracer that targets the α-toxin released by S. aureus. Methods [89Zr]Zr-DFO-ToxAb was synthesized based on radiolabeling an anti-α-toxin antibody with zirconium-89. The physicochemical characterization of the immunotracer was performed by high-performance liquid chromatography (HPLC), radio-thin layer chromatography (radio-TLC), and electrophoretic analysis. Its diagnostic ability was evaluated in vivo by positron emission tomography/computed tomography (PET/CT) imaging in an animal model of local infection-inflammation (active S. aureus vs. heat-killed S. aureus) and infective osteoarthritis. Results Chemical characterization of the tracer established the high radiochemical yield and purity of the tracer while maintaining antibody integrity. In vivo PET/CT image confirmed the ability of the tracer to detect active foci of S. aureus. Those results were supported by ex vivo biodistribution studies, autoradiography, and histology, which confirmed the ability of [89Zr]Zr-DFO-ToxAb to detect staphylococcal infectious foci, avoiding false-positives derived from inflammatory processes. Conclusions We have developed an immuno-PET tracer capable of detecting S. aureus infections based on a radiolabeled antibody specific for the staphylococcal alpha toxins. The in vivo assessment of [89Zr]Zr-DFO-ToxAb confirmed its ability to selectively detect staphylococcal infectious foci, allowing us to discern between infectious and inflammatory processes.
Collapse
Affiliation(s)
- María Isabel González
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Mario González-Arjona
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Lorena Cussó
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Ángel Morcillo
- Unidad de Aplicaciones Médicas de las Radiaciones Ionizantes, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
| | - John Jairo Aguilera-Correa
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Servicio de Microbiología Clínica Instituto de Investigación Sanitaria Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Jaime Esteban
- Servicio de Microbiología Clínica Instituto de Investigación Sanitaria Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Martha Kestler
- Servicio de Microbiología y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Daniel Calle
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Carlos Cerón
- Cardiovascular Risk Factors and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | - Marta Cortes-Canteli
- Cardiovascular Risk Factors and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), 28040 Madrid, Spain
| | - Patricia Muñoz
- CIBER de Salud Mental, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Microbiología y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Emilio Bouza
- CIBER de Salud Mental, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Microbiología y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Manuel Desco
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, 28911 Madrid, Spain
| | - Beatriz Salinas
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, 28911 Madrid, Spain
| |
Collapse
|
5
|
Ishak MI, Delint RC, Liu X, Xu W, Tsimbouri PM, Nobbs AH, Dalby MJ, Su B. Nanotextured titanium inhibits bacterial activity and supports cell growth on 2D and 3D substrate: A co-culture study. BIOMATERIALS ADVANCES 2024; 158:213766. [PMID: 38232578 DOI: 10.1016/j.bioadv.2024.213766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Medical implant-associated infections pose a significant challenge to modern medicine, with aseptic loosening and bacterial infiltration being the primary causes of implant failure. While nanostructured surfaces have demonstrated promising antibacterial properties, the translation of their efficacy from 2D to 3D substrates remains a challenge. Here, we used scalable alkaline etching to fabricate nanospike and nanonetwork topologies on 2D and laser powder-bed fusion printed 3D titanium. The fabricated surfaces were compared with regard to their antibacterial properties against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and mesenchymal stromal cell responses with and without the presence of bacteria. Finite elemental analysis assessed the mechanical properties and permeability of the 3D substrate. Our findings suggest that 3D nanostructured surfaces have potential to both prevent implant infections and allow host cell integration. This work represents a significant step towards developing effective and scalable fabrication methods on 3D substrates with consistent and reproducible antibacterial activity, with important implications for the future of medical implant technology.
Collapse
Affiliation(s)
- Mohd I Ishak
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Rosalia Cuahtecontzi Delint
- Centre for the Cellular Microenvironment, School of Biomedical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Xiayi Liu
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Wei Xu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, School of Biomedical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Biomedical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bo Su
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK.
| |
Collapse
|
6
|
Maurice NM, Sadikot RT. Mitochondrial Dysfunction in Bacterial Infections. Pathogens 2023; 12:1005. [PMID: 37623965 PMCID: PMC10458073 DOI: 10.3390/pathogens12081005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Mitochondria are critical in numerous cellular processes, including energy generation. Bacterial pathogens target host cell mitochondria through various mechanisms to disturb the host response and improve bacterial survival. We review recent advances in the understanding of how bacteria cause mitochondrial dysfunction through perturbations in mitochondrial cell-death pathways, energy production, mitochondrial dynamics, mitochondrial quality control, DNA repair, and the mitochondrial unfolded protein response. We also briefly highlight possible therapeutic approaches aimed at restoring the host mitochondrial function as a novel strategy to enhance the host response to bacterial infection.
Collapse
Affiliation(s)
- Nicholas M. Maurice
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA 30033, USA
| | - Ruxana T. Sadikot
- VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Recent advances in microbial toxin-related strategies to combat cancer. Semin Cancer Biol 2022; 86:753-768. [PMID: 34271147 DOI: 10.1016/j.semcancer.2021.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023]
Abstract
It is a major concern to treat cancer successfully, due to the distinctive pathophysiology of cancer cells and the gradual manifestation of resistance. Specific action, adverse effects and development of resistance has prompted the urgent requirement of exploring alternative anti-tumour treatment therapies. The naturally derived microbial toxins as a therapy against cancer cells are a promisingly new dimension. Various important microbial toxins such as Diphtheria toxin, Vibrio cholera toxin, Aflatoxin, Patulin, Cryptophycin-55, Chlorella are derived from several bacterial, fungal and algal species. These agents act on different biotargets such as inhibition of protein synthesis, reduction in cell growth, regulation of cell cycle and many cellular processes. Bacterial toxins produce actions primarily by targeting protein moieties and some immunomodulation and few acts through DNA. Fungal toxins appear to have more DNA damaging activity and affect the cell cycle. Algal toxins produce alteration in mitochondrial phosphorylation. In conclusion, microbial toxins and their metabolites appear to have a great potential to provide a promising option for the treatment and management to combat cancer.
Collapse
|
8
|
Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel) 2022; 14:toxins14070464. [PMID: 35878202 PMCID: PMC9318596 DOI: 10.3390/toxins14070464] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. This paper describes the types of virulence factors involved, the inflammatory cells activated, the process of host cell death, and the associated diseases caused by S. aureus. S. aureus can secrete a variety of enterotoxins and other toxins to trigger inflammatory responses and activate inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells, macrophages, dendritic cells, mast cells, neutrophils, eosinophils, and basophils. Activated inflammatory cells can express various cytokines and induce an inflammatory response. S. aureus can also induce host cell death through pyroptosis, apoptosis, necroptosis, autophagy, etc. This article discusses S. aureus and MRSA (methicillin-resistant S. aureus) in atopic dermatitis, psoriasis, pulmonary cystic fibrosis, allergic asthma, food poisoning, sarcoidosis, multiple sclerosis, and osteomyelitis. Summarizing the pathogenic mechanism of Staphylococcus aureus provides a basis for the targeted treatment of Staphylococcus aureus infection.
Collapse
|
9
|
Shaghayegh G, Cooksley C, Ramezanpour M, Wormald PJ, Psaltis AJ, Vreugde S. Chronic Rhinosinusitis, S. aureus Biofilm and Secreted Products, Inflammatory Responses, and Disease Severity. Biomedicines 2022; 10:1362. [PMID: 35740385 PMCID: PMC9220248 DOI: 10.3390/biomedicines10061362] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a persistent inflammation of the nasal cavity and paranasal sinuses associated with tissue remodelling, dysfunction of the sinuses' natural defence mechanisms, and induction of different inflammatory clusters. The etiopathogenesis of CRS remains elusive, and both environmental factors, such as bacterial biofilms and the host's general condition, are thought to play a role. Bacterial biofilms have significant clinical relevance due to their potential to cause resistance to antimicrobial therapy and host defenses. Despite substantial medical advances, some CRS patients suffer from recalcitrant disease that is unresponsive to medical and surgical treatments. Those patients often have nasal polyps with tissue eosinophilia, S. aureus-dominant mucosal biofilm, comorbid asthma, and a severely compromised quality of life. This review aims to summarise the contemporary knowledge of inflammatory cells/pathways in CRS, the role of bacterial biofilm, and their impact on the severity of the disease. Here, an emphasis is placed on S. aureus biofilm and its secreted products. A better understanding of these factors might offer important diagnostic and therapeutic perceptions for recalcitrant disease.
Collapse
Affiliation(s)
- Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Clare Cooksley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Mahnaz Ramezanpour
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| |
Collapse
|
10
|
Cytolysin A (ClyA): A Bacterial Virulence Factor with Potential Applications in Nanopore Technology, Vaccine Development, and Tumor Therapy. Toxins (Basel) 2022; 14:toxins14020078. [PMID: 35202106 PMCID: PMC8880466 DOI: 10.3390/toxins14020078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
Cytolysin A (ClyA) is a pore-forming toxin that is produced by some bacteria from the Enterobacteriaceae family. This review provides an overview of the current state of knowledge regarding ClyA, including the prevalence of the encoding gene and its transcriptional regulation, the secretion pathway used by the protein, and the mechanism of protein assembly, and highlights potential applications of ClyA in biotechnology. ClyA expression is regulated at the transcriptional level, primarily in response to environmental stressors, and ClyA can exist stably both as a soluble monomer and as an oligomeric membrane complex. At high concentrations, ClyA induces cytolysis, whereas at low concentrations ClyA can affect intracellular signaling. ClyA is secreted in outer membrane vesicles (OMVs), which has important implications for biotechnology applications. For example, the native pore-forming ability of ClyA suggests that it could be used as a component of nanopore-based technologies, such as sequencing platforms. ClyA has also been exploited in vaccine development owing to its ability to present antigens on the OMV surface and provoke a robust immune response. In addition, ClyA alone or OMVs carrying ClyA fusion proteins have been investigated for their potential use as anti-tumor agents.
Collapse
|
11
|
Zaborowska M, Vazirisani F, Shah FA, Firdaus R, Omar O, Ekström K, Trobos M, Thomsen P. Immunomodulatory effects exerted by extracellular vesicles from Staphylococcus epidermidis and Staphylococcus aureus isolated from bone-anchored prostheses. Biomaterials 2021; 278:121158. [PMID: 34619562 DOI: 10.1016/j.biomaterials.2021.121158] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/11/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are the bacteria that most frequently cause osteomyelitis. This study aimed to determine whether staphylococci isolated from osteomyelitis associated with septic loosening of orthopedic prostheses release extracellular vesicles (EVs) and, if so, to determine tentative immunomodulatory effects on the human monocytic cell line THP-1. EVs were isolated from bacterial cultures using filtration and ultracentrifugation and characterized by scanning electron microscopy, nanoparticle tracking analysis and Western Blot. The cytotoxic effect of EVs was analyzed by NucleoCounter and lactate dehydrogenase (LDH) analyses. Confocal laser scanning microscopy was employed to visualize the uptake of EVs by THP-1 cells. Activation of the transcription factor nuclear factor-κB (NF-κB) was determined in THP1-Blue™ NF-κB cells, and the gene expression and secretion of cytokines were determined by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. All investigated strains, irrespective of their biofilm formation ability, were able to secrete EVs in vitro. The S. aureus strains produced significantly more EVs than the S. epidermidis strains. Both S. aureus-derived EVs and S. epidermidis-derived EVs were internalized by THP-1 cells, upregulated Toll-like receptor 3 (TLR3) gene expression, activated NF-κB, and promoted the gene expression and secretion of interleukin (IL)-8, monocyte chemoattractant protein (MCP)-1, matrix metallopeptidase (MMP)-9 and IL-10. Whereas EVs from both staphylococcal species upregulated the proapoptotic DNA damage-inducible transcript 4 (DDIT4) gene and downregulated the antiapoptotic B-cell lymphoma 2 (Bcl-2) gene, cytolysis was preferentially induced in S. aureus EV-stimulated cells, possibly related to the expression of cytolytic proteins predominantly in S. aureus EVs. In conclusion, staphylococcal EVs possess potent cytolytic and immunomodulatory properties.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Forugh Vazirisani
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rininta Firdaus
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Ekström
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
12
|
Dey R, Mukherjee S, Barman S, Haldar J. Macromolecular Nanotherapeutics and Antibiotic Adjuvants to Tackle Bacterial and Fungal Infections. Macromol Biosci 2021; 21:e2100182. [PMID: 34351064 DOI: 10.1002/mabi.202100182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2021] [Indexed: 12/19/2022]
Abstract
The escalating rise in the population of multidrug-resistant (MDR) pathogens coupled with their biofilm forming ability has struck the global health as nightmare. Alongwith the threat of aforementioned menace, the sluggish development of new antibiotics and the continuous deterioration of the antibiotic pipeline has stimulated the scientific community toward the search of smart and innovative alternatives. In near future, membrane targeting antimicrobial polymers, inspired from antimicrobial peptides, can stand out significantly to combat against the MDR superbugs. Many of these amphiphilic polymers can form nanoaggregates through self-assembly with superior and selective antimicrobial efficacy. Additionally, these macromolecular nanoaggregrates can be utilized to engineer smart antibiotic-delivery system for on-demand drug-release, exploiting the infection site's micoenvironment. This strategy substantially increases the local concentration of antibiotics and reduces the associated off-target toxicity. Furthermore, amphiphilc macromolecules can be utilized to rejuvinate obsolete antibiotics to tackle the drug-resistant infections. This review article highlights the recent developments in macromolecular architecture to design numerous nanostructures with broad-spectrum antimicrobial activity, their application in fabricating smart drug delivery systems and their efficacy as antibiotic adjuvants to circumvent antimicrobial resistance. Finally, the current challenges and future prospects are briefly discussed for further exploration and their practical application in clinical settings.
Collapse
Affiliation(s)
- Rajib Dey
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Swagatam Barman
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India.,Antimicrobial Research Laboratory, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| |
Collapse
|
13
|
Staphylococcus aureus isolates from hospital clinics induce ROS-mediated DNA damage, apoptosis and gene expression alterations in male mice. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Lee YS, Kim KW, Yoon D, Kim GS, Kwon DY, Kang OH, Lee DY. Comparison of Antivirulence Activities of Black Ginseng against Methicillin-Resistant Staphylococcus aureus According to the Number of Repeated Steaming and Drying Cycles. Antibiotics (Basel) 2021; 10:antibiotics10060617. [PMID: 34064076 PMCID: PMC8224340 DOI: 10.3390/antibiotics10060617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Korean ginseng has been widely used in Eastern medicine for thousands of years. The contents of the compounds in ginseng roots change depending on the amount of steaming and drying, and the drying method used. Black ginseng (BG) is the Korean ginseng processed by repeated steaming and drying. In this study, 5-year-old fresh Korean ginseng roots were steamed and dried 3 or 5 times, and we investigated how many cycles of steaming and drying are preferable for antivirulence activities against methicillin-resistant Staphylococcus aureus (MRSA). As a result, the antivirulence activities was increased by the treatment of BG that was steamed and dried three times, and the effect was further increased by five-time processed BG. Moreover, an ELISA showed that the TNF-α production of RAW264.7 cells stimulated by MRSA supernatants was inhibited by subinhibitory concentrations of BG extract. The expression of Hla, staphylococcal enterotoxin A (SEA), and staphylococcal enterotoxin B (SEB), an important virulence factor in the pathogenicity of MRSA, was found to decrease when bacterial cells were treated with BG extract. The antivirulence activities of BG were not simply due to pathogen growth inhibition; the BG extract was shown to decrease agrA, hla, sea, and seb expression in MRSA. Therefore, BG strongly reduces the secretion of the virulence factors produced by Staphylococcus aureus, suggesting that a BG-based structure may be used for the development of drugs aimed at staphylococcal virulence-related exoproteins. This study suggests that BG could be used as a promising natural compound in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Chungbuk 27709, Korea; (Y.-S.L.); (K.-W.K.); (D.Y.); (G.-S.K.)
| | - Kwan-Woo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Chungbuk 27709, Korea; (Y.-S.L.); (K.-W.K.); (D.Y.); (G.-S.K.)
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Chungbuk 27709, Korea; (Y.-S.L.); (K.-W.K.); (D.Y.); (G.-S.K.)
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Chungbuk 27709, Korea; (Y.-S.L.); (K.-W.K.); (D.Y.); (G.-S.K.)
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Korea; (D.-Y.K.); (O.-H.K.)
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Korea; (D.-Y.K.); (O.-H.K.)
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Chungbuk 27709, Korea; (Y.-S.L.); (K.-W.K.); (D.Y.); (G.-S.K.)
- Correspondence:
| |
Collapse
|
15
|
Soe YM, Bedoui S, Stinear TP, Hachani A. Intracellular Staphylococcus aureus and host cell death pathways. Cell Microbiol 2021; 23:e13317. [PMID: 33550697 DOI: 10.1111/cmi.13317] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is a major opportunistic human pathogen that is globally prevalent. Although S. aureus and humans may have co-evolved to the point of commensalism, the bacterium is equipped with virulence factors causing devastating infections. The adoption of an intracellular lifestyle by S. aureus is an important facet of its pathogenesis. Occupying a privileged intracellular compartment permits evasion from the bactericidal actions of host immunity and antibiotics. However, this localization exposes S. aureus to cell-intrinsic processes comprising autophagy, metabolic challenges and clearance mechanisms orchestrated by host programmed cell death pathways (PCDs), including apoptosis, pyroptosis and necroptosis. Mounting evidence suggests that S. aureus deploys pathoadaptive mechanisms that modulate the expression of its virulence factors to prevent elimination through PCD pathways. In this review, we critically analyse the current literature on the interplay between S. aureus virulence factors with the key, intertwined nodes of PCD. We discuss how S. aureus adaptation to the human host plays an essential role in the evasion of PCD, and we consider future directions to study S. aureus-PCD interactions.
Collapse
Affiliation(s)
- Ye Mon Soe
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Missiakas D, Winstel V. Selective Host Cell Death by Staphylococcus aureus: A Strategy for Bacterial Persistence. Front Immunol 2021; 11:621733. [PMID: 33552085 PMCID: PMC7859115 DOI: 10.3389/fimmu.2020.621733] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Host cell death programs are fundamental processes that shape cellular homeostasis, embryonic development, and tissue regeneration. Death signaling and downstream host cell responses are not only critical to guide mammalian development, they often act as terminal responses to invading pathogens. Here, we briefly review and contrast how invading pathogens and specifically Staphylococcus aureus manipulate apoptotic, necroptotic, and pyroptotic cell death modes to establish infection. Rather than invading host cells, S. aureus subverts these cells to produce diffusible molecules that cause death of neighboring hematopoietic cells and thus shapes an immune environment conducive to persistence. The exploitation of cell death pathways by S. aureus is yet another virulence strategy that must be juxtaposed to mechanisms of immune evasion, autophagy escape, and tolerance to intracellular killing, and brings us closer to the true portrait of this pathogen for the design of effective therapeutics and intervention strategies.
Collapse
Affiliation(s)
- Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Department of Microbiology, University of Chicago, Lemont, IL, United States
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Asadi S, Soleimani N. Anticancer Effect of Fractions From Staphylococcus aureus and Bacillus atrophaeus on the Proliferation and Death of Human Breast Cancer Cell Line (MCF-7). INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2020. [DOI: 10.34172/ijep.2020.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Nowadays, breast cancer is known to be one of the most common cancers among women. Due to the side effects of chemotherapy and the high probability of recurrences in surgery, it is essential to identify and introduce new anticancer drugs of natural origin with fewer complications. In this regard, secondary bacterial metabolites and other microbial products have been considered. In the meantime, pathogenic and environmental bacteria have been investigated. Objective: The aim of this study is to examine the effects of the interaction between cytoplasmic extract and the cell wall of Staphylococcus aureus and Bacillus atrophaeus on the proliferation rate of human breast cancer cells. Materials and Methods: In this experimental study, cytoplasmic and cell wall extracts of bacteria were prepared. Then, SDS-PAGE was used to examine their protein contents. MCF-7 cells, as human breast cancer cells, with bacterial cytoplasmic extract and bacterial cell wall, were treated at different concentrations. Mesenchymal stem cells derived from adipose tissue were treated with different concentrations of bacterial cell wall extract. The effects of cytotoxicity were assessed by MTT assay at 24 and 48-hour intervals. The results were analyzed by SPSS. Results: The results showed that bacterial cytoplasmic extract had a concentration-dependent cytotoxic effect on cancer cells, suggesting that the increase of concentration significantly (P<0.05) increased cell death. Additionally, the bacterial cell wall extract showed a proliferative effect on cell growth (P<0.05) Conclusion: The bacterial cytoplasmic extract has a lethal effect and can, therefore, be considered as an anticancer compound in the future. This feature of the bacterium is attributed to the presence of a novel bioactive compound that can be used as an adjunct to other chemotherapy compounds. The bacterial cell wall extract, on the other hand, has cell growth-promoting components and can, therefore, be adopted as a compound for the proliferation of mesenchymal stem cells or wound healing in future studies.
Collapse
Affiliation(s)
- Sepideh Asadi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
18
|
Mulcahy ME, O'Brien EC, O'Keeffe KM, Vozza EG, Leddy N, McLoughlin RM. Manipulation of Autophagy and Apoptosis Facilitates Intracellular Survival of Staphylococcus aureus in Human Neutrophils. Front Immunol 2020; 11:565545. [PMID: 33262756 PMCID: PMC7686353 DOI: 10.3389/fimmu.2020.565545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 01/13/2023] Open
Abstract
Polymorphonuclear neutrophils (PMN) are critical for first line innate immune defence against Staphylococcus aureus. Mature circulating PMN maintain a short half-life ending in constitutive apoptotic cell death. This makes them unlikely candidates as a bacterial intracellular niche. However, there is significant evidence to suggest that S. aureus can survive intracellularly within PMN and this contributes to persistence and dissemination during infection. The precise mechanism by which S. aureus parasitizes these cells remains to be established. Herein we propose a novel mechanism by which S. aureus subverts both autophagy and apoptosis in PMN in order to maintain an intracellular survival niche during infection. Intracellular survival of S. aureus within primary human PMN was associated with an accumulation of the autophagic flux markers LC3-II and p62, while inhibition of the autophagy pathway led to a significant reduction in intracellular survival of bacteria. This intracellular survival of S. aureus was coupled with a delay in neutrophil apoptosis as well as increased expression of several anti-apoptotic factors. Importantly, blocking autophagy in infected PMN partially restored levels of apoptosis to that of uninfected PMN, suggesting a connection between the autophagic and apoptotic pathways during intracellular survival. These results provide a novel mechanism for S. aureus intracellular survival and suggest that S. aureus may be subverting crosstalk between the autophagic and apoptosis pathways in order to maintain an intracellular niche within human PMN.
Collapse
Affiliation(s)
- Michelle E Mulcahy
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Eóin C O'Brien
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Kate M O'Keeffe
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Emilio G Vozza
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Neal Leddy
- bioTEM, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Lorenz D, Maurer F, Philipp D, Albrecht F, Hüppe T, Sessler DI, Wolf B, Volk T, Kreuer S, Fink T. Changes in volatile organic compounds provoked by lipopolysaccharide- or alpha toxin-induced inflammation in ventilated rats. J Breath Res 2020; 15:016003. [PMID: 33103661 DOI: 10.1088/1752-7163/abb449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inflammation may alter volatile organic compounds (VOCs) in exhaled breath. We therefore used ion mobility spectrometry (IMS) to evaluate exhaled breath components in two non-infectious inflammatory models. Fifty male Sprague Dawley rats were anesthetized and ventilated for 24 h. Five treatments were randomly assigned: (1) lipopolysaccharide low dose [5 mg/kg]; (2) lipopolysaccharide high dose [10 mg/kg]; (3) alpha toxin low dose [40 µg/kg]; (4) alpha toxin high dose [80 µg/kg]; and, (5) NaCl 0.9% as control group. Gas was sampled from the expiratory line of the ventilator every 20 min and analyzed with IMS combined with a multi-capillary column. VOCs were identified by comparison with an established database. Survival analysis was performed by log-rank test, other analyses by one-way or paired ANOVA-tests and post-hoc analysis according to Holm-Sidak. Rats given NaCl and low-dose alpha toxin survived 24 h. The median survival time in alpha toxin high-dose group was 23 (95%-confidence interval (CI): 21, 24) h. In contrast, the median survival time in rats given high-dose lipopolysaccharide was 12 (95% CI: 9, 14) and only 13 (95% CI: 10, 16) h in those given high-dose lipopolysaccharide. 73 different VOCs were detected, of which 35 were observed only in the rats, 38 could be found both in the blank measurements of ventilator air and in the exhaled air of the rats. Forty-nine of the VOCs were identifiable from a registry of compounds. Exhaled volatile compounds were comparable in each group before injection of lipopolysaccharide and alpha toxin. In the LPS groups, 1-pentanol increased and 2-propanol decreased. After alpha toxin treatment, 1-butanol and 1-pentanol increased whereas butanal and isopropylamine decreased. Induction of a non-infectious systemic inflammation (niSI) by lipopolysaccharide and alpha toxin changes VOCs in exhaled breath. Exhalome analysis may help identify niSI.
Collapse
Affiliation(s)
- Dominik Lorenz
- CBR - Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Building 57, 66421, Homburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nakamura Y, Kanemaru K, Shoji M, Totoki K, Nakamura K, Nakaminami H, Nakase K, Noguchi N, Fukami K. Phosphatidylinositol-specific phospholipase C enhances epidermal penetration by Staphylococcus aureus. Sci Rep 2020; 10:17845. [PMID: 33082376 PMCID: PMC7575579 DOI: 10.1038/s41598-020-74692-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus (S. aureus) commonly colonizes the human skin and nostrils. However, it is also associated with a wide variety of diseases. S. aureus is frequently isolated from the skin of patients with atopic dermatitis (AD), and is linked to increased disease severity. S. aureus impairs the skin barrier and triggers inflammation through the secretion of various virulence factors. S. aureus secretes phosphatidylinositol-specific phospholipase C (PI-PLC), which hydrolyses phosphatidylinositol and cleaves glycosylphosphatidylinositol-anchored proteins. However, the role of S. aureus PI-PLC in the pathogenesis of skin diseases, including AD, remains unclear. In this study, we sought to determine the role of S. aureus PI-PLC in the pathogenesis of skin diseases. PI-PLC was observed to enhance the invasion and persistence of S. aureus in keratinocytes. Besides, PI-PLC promoted the penetration of S. aureus through the epidermal barrier in a mouse model of AD and the human organotypic epidermal equivalent. Furthermore, the loss of PI-PLC attenuated epidermal hyperplasia and the infiltration of Gr-1+ cells and CD4+ cells induced by S. aureus infection in the mouse model of AD. Collectively, these results indicate that PI-PLC eases the entry of S. aureus into the dermis and aggravates acanthosis and immune cell infiltration in infected skin.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan. .,PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan. .,Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| | - Kaori Kanemaru
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan.,Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Madoka Shoji
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kengo Totoki
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Karen Nakamura
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hidemasa Nakaminami
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Keisuke Nakase
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Norihisa Noguchi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| |
Collapse
|
21
|
Johansson C, Rautelin H, Kaden R. Staphylococcus argenteus and Staphylococcus schweitzeri are cytotoxic to human cells in vitro due to high expression of alpha-hemolysin Hla. Virulence 2020; 10:502-510. [PMID: 31131704 PMCID: PMC6550535 DOI: 10.1080/21505594.2019.1620062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus argenteus and Staphylococcus schweitzeri are newly identified species of the S. aureus-related complex. S. argenteus, as occurring globally and showing significant prevalence and comparable infection and morbidity rates compared to S. aureus, is becoming clinically important. Whole genome sequencing has revealed the presence of several virulence genes but the molecular mechanisms of S. argenteus infection and virulence are largely unknown. Here, we studied the effect of a previously characterized clinical S. argenteus isolate on human cells in vitro. The clinical isolate, together with the S. argenteus type strain MSHR1132T and the S. schweitzeri type strain FSA084T, had a cytotoxic effect on the cells, which showed necrotic cell death after a few hours of treatment. The protein causing the cytotoxic effect was purified and identified by mass spectrometry as alpha-hemolysin, Hla, which is awell-known pore-forming toxin in S.aureus. The cytotoxic effect could be blocked with an antibody against Hla. S.argenteus showed 12–15 fold higher expression levels of hla at the RNA level and 4–6 fold higher expression levels at the protein level compared to S.aureus. The higher expression levels of hla were supported by higher RNA levels of the regulatory factors sarA and saeR. Also, the RNAIII component of the accessory gene regulator (agr) quorum sensing system was 8,000–10,000 fold higher in the S.argenteus isolates compared to S.aureus. This is the first study on the effect of S.argenteus on ahuman cell line and strengthens the idea of significant virulence of S.argenteus.
Collapse
Affiliation(s)
- Cecilia Johansson
- a Clinical Microbiology, Department of Medical Sciences , Uppsala University , Uppsala , Sweden
| | - Hilpi Rautelin
- a Clinical Microbiology, Department of Medical Sciences , Uppsala University , Uppsala , Sweden
| | - René Kaden
- a Clinical Microbiology, Department of Medical Sciences , Uppsala University , Uppsala , Sweden
| |
Collapse
|
22
|
Podešvová L, Leštinová T, Horáková E, Lukeš J, Volf P, Yurchenko V. Suicidal Leishmania. Pathogens 2020; 9:pathogens9020079. [PMID: 31991768 PMCID: PMC7168676 DOI: 10.3390/pathogens9020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Leishmania are obligate intracellular parasites known to have developed successful ways of efficient immunity evasion. Because of this, leishmaniasis, a disease caused by these flagellated protists, is ranked as one of the most serious tropical infections worldwide. Neither prophylactic medication, nor vaccination has been developed thus far, even though the infection has usually led to strong and long-lasting immunity. In this paper, we describe a “suicidal” system established in Leishmania mexicana, a human pathogen causing cutaneous leishmaniasis. This system is based on the expression and (de)stabilization of a basic phospholipase A2 toxin from the Bothrops pauloensis snake venom, which leads to the inducible cell death of the parasites in vitro. Furthermore, the suicidal strain was highly attenuated during macrophage infection, regardless of the toxin stabilization. Such a deliberately weakened parasite could be used to vaccinate the host, as its viability is regulated by the toxin stabilization, causing a profoundly reduced pathogenesis.
Collapse
Affiliation(s)
- Lucie Podešvová
- Life Science Research Centre and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Eva Horáková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
- Correspondence: ; Tel.: +420-597-092-326
| |
Collapse
|
23
|
Wu Y, Song Z, Wang H, Han H. Endogenous stimulus-powered antibiotic release from nanoreactors for a combination therapy of bacterial infections. Nat Commun 2019; 10:4464. [PMID: 31578336 PMCID: PMC6775118 DOI: 10.1038/s41467-019-12233-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
The use of an endogenous stimulus instead of external trigger has an advantage for targeted and controlled release in drug delivery. Here, we report on cascade nanoreactors for bacterial toxin-triggered antibiotic release by wrapping calcium peroxide (CaO2) and antibiotic in a eutectic mixture of two fatty acids and a liposome coating. When encountering pathogenic bacteria in vivo these nanoreactors capture the toxins, without compromising their structural integrity, and the toxins form pores. Water enters the nanoreactors through the pores to react with CaO2 and produce hydrogen peroxide which decomposes to oxygen and drives antibiotic release. The bound toxins reduce the toxicity and also stimulate the body's immune response. This works to improve the therapeutic effect in bacterially infected mice. This strategy provides a Domino Effect approach for treating infections caused by bacteria that secrete pore-forming toxins.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| | - Huajuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China.
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China.
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China.
| |
Collapse
|
24
|
Dou J, Zeng J, Wu K, Tan W, Gao L, Lu J. Microbiosis in pathogenesis and intervention of atopic dermatitis. Int Immunopharmacol 2019; 69:263-269. [DOI: 10.1016/j.intimp.2019.01.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
|
25
|
Abstract
Atopic dermatitis is characterized by the interplay of skin barrier defects with the immune system and skin microbiome that causes patients to be at risk for infectious complications. This article reviews the pathogenesis of atopic dermatitis and the mechanisms through which patients are at risk for infection from bacterial, viral, and fungal pathogens. Although these complications may be managed acutely, prevention of secondary infections depends on a multipronged approach in the maintenance of skin integrity, control of flares, and microbial pathogens.
Collapse
Affiliation(s)
- Di Sun
- Department of Pediatrics, Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Peck Y Ong
- Department of Pediatrics, Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA; Division of Clinical Immunology and Allergy, Children's Hospital Los Angeles, 4650 Sunset Boulevard, MS 75, Los Angeles, CA 90027, USA.
| |
Collapse
|
26
|
Zhang X, Hu X, Rao X. Apoptosis induced by Staphylococcus aureus toxins. Microbiol Res 2017; 205:19-24. [DOI: 10.1016/j.micres.2017.08.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
|
27
|
Bzowska M, Nogieć A, Bania K, Zygmunt M, Zarębski M, Dobrucki J, Guzik K. Involvement of cell surface 90 kDa heat shock protein (HSP90) in pattern recognition by human monocyte-derived macrophages. J Leukoc Biol 2017; 102:763-774. [PMID: 28550115 DOI: 10.1189/jlb.2ma0117-019r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/20/2017] [Accepted: 04/29/2017] [Indexed: 12/25/2022] Open
Abstract
Heat shock proteins (HSPs) are typical intracellular chaperones which also appear on the cell surface and in extracellular milieu. HSP90, which chaperones many proteins involved in signal transduction, is also a regular component of LPS-signaling complexes on Mϕ. As LPS is a prototypical PAMP, we speculated that HSP90 is engaged in pattern recognition by professional phagocytes. In this report, we provide the first evidence, to our knowledge, of the geldanamycin (Ge)-inhibitable HSP90 on the surface of live monocyte-derived Mϕs (hMDMs). Using cytometry and specific Abs, we showed both HSP90 isoforms (α and β) on the surface of human monocytes and hMDMs. The cell-surface HSP90 pool was also labeled with cell-impermeable Ge derivatives. Confocal analysis of hMDMs revealed that HSP90-inhibitor complexes were rapidly clustered on the cell surface and recycled through the endosomal compartment. This finding suggests that the N-terminal (ATPase) domain of HSP90 is exposed and accessible from the extracellular space. To study the role of cell-surface HSP90 in pattern recognition, we used pathogen (PAMPs)- or apoptotic cell-associated molecular patterns (ACAMPs). We showed that blocking the cell-surface HSP90 pool leads to a dramatic decrease in TNF production by monocytes and hMDMs exposed to soluble (TLRs-specific ligands) and particulate [bacteria Staphylococcus aureus (SA) and Porphyromonas gingivalis (PG)] PAMPs. Surprisingly, in hMDMs the functional cell-surface HSP90 was not necessary for the engulfment of either apoptotic neutrophils or bacteria. The presented data suggest that the cell-surface HSP90 is a "signaling complex chaperone," with activity that is essential for cytokine response but not for target engulfment by Mϕ.
Collapse
Affiliation(s)
- Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland; and
| | - Anna Nogieć
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland; and
| | - Krystian Bania
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland; and
| | - Magdalena Zygmunt
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland; and
| | - Mirosław Zarębski
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jerzy Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Guzik
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland; and
| |
Collapse
|
28
|
Kratochvil MJ, Yang T, Blackwell HE, Lynn DM. Nonwoven Polymer Nanofiber Coatings That Inhibit Quorum Sensing in Staphylococcus aureus: Toward New Nonbactericidal Approaches to Infection Control. ACS Infect Dis 2017; 3:271-280. [PMID: 28118541 PMCID: PMC5392134 DOI: 10.1021/acsinfecdis.6b00173] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the fabrication and biological evaluation of nonwoven polymer nanofiber coatings that inhibit quorum sensing (QS) and virulence in the human pathogen Staphylococcus aureus. Our results demonstrate that macrocyclic peptide 1, a potent and synthetic nonbactericidal quorum sensing inhibitor (QSI) in S. aureus, can be loaded into degradable polymer nanofibers by electrospinning and that this approach can deposit QSI-loaded nanofiber coatings onto model nonwoven mesh substrates. The QSI was released over ∼3 weeks when these materials were incubated in physiological buffer, retained its biological activity, and strongly inhibited agr-based QS in a GFP reporter strain of S. aureus for at least 14 days without promoting cell death. These materials also inhibited production of hemolysins, a QS-controlled virulence phenotype, and reduced the lysis of erythrocytes when placed in contact with wild-type S. aureus growing on surfaces. This approach is modular and can be used with many different polymers, active agents, and processing parameters to fabricate nanofiber coatings on surfaces important in healthcare contexts. S. aureus is one of the most common causative agents of bacterial infections in humans, and strains of this pathogen have developed significant resistance to conventional antibiotics. The QSI-based strategies reported here thus provide springboards for the development of new anti-infective materials and novel treatment strategies that target virulence as opposed to growth in S. aureus. This approach also provides porous scaffolds for cell culture that could prove useful in future studies on the influence of QS modulation on the development and structure of bacterial communities.
Collapse
Affiliation(s)
- Michael J. Kratochvil
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Tian Yang
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - Helen E. Blackwell
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
| | - David M. Lynn
- Department of Chemistry, 1101 University Avenue, University of Wisconsin–Madison, Madison, Wisconsin 53706
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin–Madison, Madison, Wisconsin 53706
| |
Collapse
|
29
|
Guerra AD, Rose WE, Hematti P, Kao WJ. Minocycline enhances the mesenchymal stromal/stem cell pro-healing phenotype in triple antimicrobial-loaded hydrogels. Acta Biomater 2017; 51:184-196. [PMID: 28069512 PMCID: PMC5704963 DOI: 10.1016/j.actbio.2017.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/12/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties including an anti-inflammatory cytokine profile and the promotion of angiogenesis via expression of growth factors in pre-clinical models. MSCs encapsulated in poly(ethylene glycol) diacrylate (PEGdA) and thiolated gelatin poly(ethylene glycol) (Gel-PEG-Cys) crosslinked hydrogels have led to controlled cellular presentation at wound sites with favorable wound healing outcomes. However, the therapeutic potential of MSC-loaded hydrogels may be limited by non-specific protein adsorption on the delivery matrix that could facilitate the initial adhesion of microorganisms and subsequent virulent biofilm formation. Antimicrobials loaded concurrently in the hydrogels with MSCs could reduce microbial bioburden and promote healing, but the antimicrobial effect on the MSC wound healing capacity and the antibacterial efficacy of the hydrogels is unknown. We demonstrate that minocycline specifically induces a favorable change in MSC migration capacity, proliferation, gene expression, extracellular matrix (ECM) attachment, and adhesion molecule and growth factor release with subsequent increased angiogenesis. We then demonstrate that hydrogels loaded with MSCs, minocycline, vancomycin, and linezolid can significantly decrease bacterial bioburden. Our study suggests that minocycline can serve as a dual mechanism for the regenerative capacity of MSCs and the reduction of bioburden in triple antimicrobial-loaded hydrogels. STATEMENT OF SIGNIFICANCE Wound healing is a complex biological process that can be hindered by bacterial infection, excessive inflammation, and inadequate microvasculature. In this study, we develop a new formulation of poly(ethylene glycol) diacrylate and thiolated gelatin poly(ethylene glycol) crosslinked hydrogels loaded with minocycline, vancomycin, linezolid, and mesenchymal stromal/stem cells that induces a favorable wound healing phenotype in mesenchymal stromal/stem cells and prevents bacterial bioburden on the hydrogel. This combinatorial approach to biomaterial development has the potential to impact wound healing for contaminated full thickness cutaneous wounds.
Collapse
Affiliation(s)
- Alberto Daniel Guerra
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.
| | - Warren E Rose
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.
| | - Peiman Hematti
- School of Medicine and Public Health, Department of Medicine, Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA.
| | - W John Kao
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA; College of Engineering, Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA; School of Medicine and Public Health, Department of Surgery, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
30
|
Fitzpatrick EA, You D, Shrestha B, Siefker D, Patel VS, Yadav N, Jaligama S, Cormier SA. A Neonatal Murine Model of MRSA Pneumonia. PLoS One 2017; 12:e0169273. [PMID: 28060871 PMCID: PMC5218573 DOI: 10.1371/journal.pone.0169273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 11/17/2016] [Indexed: 12/24/2022] Open
Abstract
Pneumonia due to methicillin-resistant Staphylococcus aureus (MRSA) is a significant cause of morbidity and mortality in infants particularly following lower respiratory tract viral infections such as Respiratory Syncytial Virus (RSV). However, the mechanisms by which co-infection of infants by MRSA and RSV cause increased lung pathology are unknown. Because the infant immune system is qualitatively and quantitatively different from adults we developed a model of infant MRSA pneumonia which will allow us to investigate the effects of RSV co-infection on disease severity. We infected neonatal and adult mice with increasing doses of MRSA and demonstrate that neonatal mice have delayed kinetics in clearing the bacteria in comparison to adult mice. There were differences in recruitment of immune cells into the lung following infection. Adult mice exhibited an increase in neutrophil recruitment that coincided with reduced bacterial titers followed by an increase in macrophages. Neonatal mice, however, exhibited an early increase in neutrophils that did not persist despite continued presence of the bacteria. Unlike the adult mice, neonatal mice failed to exhibit an increase in macrophages. Neonates exhibited a decrease in phagocytosis of MRSA suggesting that the decrease in clearance was partially due to deficient phagocytosis of the bacteria. Both neonates and adults responded with an increase in pro-inflammatory cytokines following infection. However, in contrast to the adult mice, neonates did not express constitutive levels of the anti-microbial peptide Reg3γ in the lung. Infection of neonates did not stimulate expression of the co-stimulatory molecule CD86 by dendritic cells and neonates exhibited a diminished T cell response compared to adult mice. Overall, we have developed a neonatal model of MRSA pneumonia that displays a similar delay in bacterial clearance as is observed in the neonatal intensive care unit and will be useful for performing co-infection studies.
Collapse
Affiliation(s)
- Elizabeth A. Fitzpatrick
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Dahui You
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Bishwas Shrestha
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - David Siefker
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Vivek S. Patel
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Nikki Yadav
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Sridhar Jaligama
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Stephania A. Cormier
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
- * E-mail:
| |
Collapse
|
31
|
Yates NJ, Giacci MK, O'Hare Doig RL, Chiha W, Ashworth BE, Kenna J, Bartlett CA, Fitzgerald M. Delayed treatment of secondary degeneration following acute optic nerve transection using a combination of ion channel inhibitors. Neural Regen Res 2017; 12:307-316. [PMID: 28400815 PMCID: PMC5361517 DOI: 10.4103/1673-5374.200814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Studies have shown that a combined application of several ion channel inhibitors immediately after central nervous system injury can inhibit secondary degeneration. However, for clinical use, it is necessary to determine how long after injury the combined treatment of several ion channel inhibitors can be delayed and efficacy maintained. In this study, we delivered Ca2+ entry-inhibiting P2X7 receptor antagonist oxidized-ATP and AMPA receptor antagonist YM872 to the optic nerve injury site via an iPRECIO@ pump immediately, 6 hours, 24 hours and 7 days after partial optic nerve transection surgery. In addition, all of the ion channel inhibitor treated rats were administered with calcium channel antagonist lomerizine hydrochloride. It is important to note that as a result of implantation of the particular pumps required for programmable delivery of therapeutics directly to the injury site, seromas occurred in a significant proportion of animals, indicating infection around the pumps in these animals. Improvements in visual function were observed only when treatment was delayed by 6 hours; phosphorylated Tau was reduced when treatment was delayed by 24 hours or 7 days. Improvements in structure of node/paranode of Ranvier and reductions in oxidative stress indicators were also only observed when treatment was delayed for 6 hours, 24 hours, or 7 days. Benefits of ion channel inhibitors were only observed with time-delayed treatment, suggesting that delayed therapy of Ca2+ ion channel inhibitors produces better neuroprotective effects on secondary degeneration, at least in the presence of seromas.
Collapse
Affiliation(s)
- Nathanael J Yates
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Marcus K Giacci
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ryan L O'Hare Doig
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia; Department of Experimental and Regenerative Neurosciences, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Wissam Chiha
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia; Department of Experimental and Regenerative Neurosciences, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Bethany E Ashworth
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Jade Kenna
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Carole A Bartlett
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Melinda Fitzgerald
- Department of Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
32
|
Portugal L, Muñóz-Garay C, Martínez de Castro DL, Soberón M, Bravo A. Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 80:21-31. [PMID: 27867074 DOI: 10.1016/j.ibmb.2016.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/12/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Bacillus thuringiensis (Bt) bacteria produce Cry toxins that are able to kill insect pests. Different models explaining the mode of action of these toxins have been proposed. The pore formation model proposes that the toxin creates pores in the membrane of the larval midgut cells after interaction with different receptors such as cadherin, aminopeptidase N and alkaline phosphatase and that this pore formation activity is responsible for the toxicity of these proteins. The alternative model proposes that interaction with cadherin receptor triggers an intracellular cascade response involving protein G, adenylate cyclase (AC) and protein kinase A (PKA). In addition, it was shown that Cry toxins induce a defense response in the larvae involving the activation of mitogen-activated kinases such as MAPK p38 in different insect orders. Here we analyzed the mechanism of action of Cry1Ab and Cry1Ac toxins and a collection of mutants from these toxins in the insect cell line CF1 from Choristoneura fumiferana, that is naturally sensitive to these toxins. Our results show that both toxins induced permeability of K+ ions into the cells. The initial response after intoxication with Cry1Ab and Cry1Ac toxins involves the activation of a defense response that involves the phosphorylation of MAPK p38. Analysis of activation of PKA and AC activities indicated that the signal transduction involving PKA, AC and cAMP was not activated during Cry1Ab or Cry1Ac intoxication. In contrast we show that Cry1Ab and Cry1Ac activate apoptosis. These data indicate that Cry toxins can induce an apoptotic death response not related with AC/PKA activation. Since Cry1Ab and Cry1Ac toxins affected K+ ion permeability into the cells, and that mutant toxins affected in pore formation are not toxic to CF1, we propose that pore formation activity of the toxins is responsible of triggering cell death response in CF1cells.
Collapse
Affiliation(s)
- Leivi Portugal
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250 Morelos, Mexico
| | - Carlos Muñóz-Garay
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250 Morelos, Mexico
| | - Diana L Martínez de Castro
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250 Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250 Morelos, Mexico
| | - Alejandra Bravo
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250 Morelos, Mexico.
| |
Collapse
|
33
|
Liu X, Ding S, Shi P, Dietrich R, Märtlbauer E, Zhu K. Non-hemolytic enterotoxin of Bacillus cereus induces apoptosis in Vero cells. Cell Microbiol 2016; 19. [PMID: 27762484 DOI: 10.1111/cmi.12684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
Bacillus cereus is an opportunistic pathogen that often causes foodborne infectious diseases and food poisoning. Non-hemolytic enterotoxin (Nhe) is the major toxin found in almost all enteropathogenic B. cereus and B. thuringiensis isolates. However, little is known about the cellular response after Nhe triggered pore formation on cell membrane. Here, we demonstrate that Nhe induced cell cycle arrest at G0 /G1 phase and provoked apoptosis in Vero cells, most likely associated with mitogen-activated protein kinase (MAPK) and death receptor pathways. The influx of extracellular calcium ions and increased level of reactive oxygen species in cytoplasm were sensed by apoptosis signal-regulating kinase 1 (ASK1) and p38 MAPK. Extrinsic death receptor Fas could also promote the activation of p38 MAPK. Subsequently, ASK1 and p38 MAPK triggered downstream caspase-8 and 3 to initiate apoptosis. Our results clearly demonstrate that ASK1, and Fas-p38 MAPK-mediated caspase-8 dependent pathways are involved in apoptotic cell death provoked by the pore-forming enterotoxin Nhe.
Collapse
Affiliation(s)
- Xiaoye Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peijie Shi
- The Children's Hospital of Fudan University, Shanghai, China
| | - Richard Dietrich
- Institute of Food Safety, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | - Erwin Märtlbauer
- Institute of Food Safety, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, Oberschleißheim, Germany
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Baaske R, Richter M, Möller N, Ziesemer S, Eiffler I, Müller C, Hildebrandt JP. ATP Release from Human Airway Epithelial Cells Exposed to Staphylococcus aureus Alpha-Toxin. Toxins (Basel) 2016; 8:toxins8120365. [PMID: 27929417 PMCID: PMC5198559 DOI: 10.3390/toxins8120365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/20/2022] Open
Abstract
Airway epithelial cells reduce cytosolic ATP content in response to treatment with S. aureus alpha-toxin (hemolysin A, Hla). This study was undertaken to investigate whether this is due to attenuated ATP generation or to release of ATP from the cytosol and extracellular ATP degradation by ecto-enzymes. Exposure of cells to rHla did result in mitochondrial calcium uptake and a moderate decline in mitochondrial membrane potential, indicating that ATP regeneration may have been attenuated. In addition, ATP may have left the cells through transmembrane pores formed by the toxin or through endogenous release channels (e.g., pannexins) activated by cellular stress imposed on the cells by toxin exposure. Exposure of cells to an alpha-toxin mutant (H35L), which attaches to the host cell membrane but does not form transmembrane pores, did not induce ATP release from the cells. The Hla-mediated ATP-release was completely blocked by IB201, a cyclodextrin-inhibitor of the alpha-toxin pore, but was not at all affected by inhibitors of pannexin channels. These results indicate that, while exposure of cells to rHla may somewhat reduce ATP production and cellular ATP content, a portion of the remaining ATP is released to the extracellular space and degraded by ecto-enzymes. The release of ATP from the cells may occur directly through the transmembrane pores formed by alpha-toxin.
Collapse
Affiliation(s)
- Romina Baaske
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Mandy Richter
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Nils Möller
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Sabine Ziesemer
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Ina Eiffler
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Christian Müller
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| |
Collapse
|
35
|
Mun SH, Kong R, Seo YS, Zhou T, Kang OH, Shin DW, Kwon DY. Subinhibitory concentrations of punicalagin reduces expression of virulence-related exoproteins by Staphylococcus aureus. FEMS Microbiol Lett 2016; 363:fnw253. [PMID: 27974390 DOI: 10.1093/femsle/fnw253] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/27/2016] [Accepted: 11/08/2016] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus produces a number of virulence factors. The major virulence factors exhibited by S aureus include various antigens, enzymes, cytotoxins and exotoxins (e.g. hemolysins, enterotoxins and toxic shock syndrome toxin). In this report, we show the influence of punicalagin on the secretion of exoprotein from S aureus by western blotting, tumor necrosis factor (TNF) release assay and quantitative RT-PCR. When added to S aureus cultures at an OD600 of 0.9, graded subinhibitory concentrations of punicalagin reduced the production of α-toxin, SEA and SEB in methicillin-resistant Staphylococcus aureus in a dose-dependent manner. Consistently, punicalagin reduced TNF-inducing activity by S aureus culture supernatants. Here, the transcriptional level of agr (accessory gene regulator) in S aureus was inhibited by punicalagin, suggesting that the reduced transcription may affect the secretion of exotoxins. These findings suggest that the expression of α-toxin and enterotoxins in S aureus is sensitive to the action of punicalagin, which may be an advantageous candidate in the treatment of toxigenic staphylococcal disease.
Collapse
Affiliation(s)
- Su-Hyun Mun
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Ryong Kong
- Department of Oriental Medicine Resources, Sunchon National University, Suncheon, Jeonnam 540-742, Korea
| | - Yun-Soo Seo
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Tian Zhou
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Ok-Hwa Kang
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Dong-Won Shin
- Department of Oriental Medicine Resources, Sunchon National University, Suncheon, Jeonnam 540-742, Korea
| | - Dong-Yeul Kwon
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang Oriental Medicines Research Institute, Institute of Biotechnology, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| |
Collapse
|
36
|
Williams MR, Nakatsuji T, Sanford JA, Vrbanac AF, Gallo RL. Staphylococcus aureus Induces Increased Serine Protease Activity in Keratinocytes. J Invest Dermatol 2016; 137:377-384. [PMID: 27765722 DOI: 10.1016/j.jid.2016.10.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/22/2016] [Accepted: 10/08/2016] [Indexed: 01/08/2023]
Abstract
Bacteria that reside on the skin can influence the behavior of the cutaneous immune system, but the mechanisms responsible for these effects are incompletely understood. Colonization of the skin by Staphylococcus aureus (S. aureus) is increased in atopic dermatitis and can result in increased severity of the disease. In this study, we show that S. aureus stimulates human keratinocytes to increase their endogenous protease activity, including specific increases in trypsin activity. This increased protease activity coincided with increased expression of mRNA for kallikreins (KLKs), with KLK6, 13, and 14 showing the greatest induction after exposure to S. aureus. Suppression of mRNA for these KLKs in keratinocytes by targeted small interfering RNA silencing before S. aureus exposure blocked the increase in protease activity. Keratinocytes exposed to S. aureus showed enhanced degradation of desmoglein-1 and filaggrin, whereas small interfering RNA for KLK6, KLK13, and KLK14 partially blocked this degradation. These data illustrate how S. aureus directly influences the skin barrier integrity by stimulating endogenous proteolytic activity and defines a previously unknown mechanism by which S. aureus may influence skin diseases.
Collapse
Affiliation(s)
- Michael R Williams
- Department of Dermatology, University of California, San Diego, California, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, California, USA
| | - James A Sanford
- Department of Dermatology, University of California, San Diego, California, USA
| | - Alison F Vrbanac
- Department of Dermatology, University of California, San Diego, California, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, California, USA.
| |
Collapse
|
37
|
Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus α-hemolysin-mediated toxicity. Sci Rep 2016; 6:24242. [PMID: 27066838 PMCID: PMC4828653 DOI: 10.1038/srep24242] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/23/2016] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus causes a wide variety of infections and antibiotic resistant strains are a major problem in hospitals. One of the best studied virulence factors of S. aureus is the pore-forming toxin alpha hemolysin (αHL) whose mechanism of action is incompletely understood. We performed a genome-wide loss-of-function screen using CRISPR/Cas9 technology to identify host targets required for αHL susceptibility in human myeloid cells. We found gRNAs for ten genes enriched after intoxication with αHL and focused on the top five hits. Besides a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), the host receptor for αHL, we identified three proteins, Sys1 golgi trafficking protein (SYS1), ADP-ribosylation factor 1 (ARFRP1), and tetraspanin-14 (TSPAN14) which regulate the presentation of ADAM10 on the plasma membrane post-translationally. Interestingly, we also showed that cells lacking sphingomyelin synthase 1 (SGMS1) resist αHL intoxication, but have only a slightly reduced ADAM10 surface expression. SGMS1 regulates lipid raft formation, suggesting that αHL requires these membrane microdomains for attachment and cytotoxicity.
Collapse
|
38
|
Exploiting death: apoptotic immunity in microbial pathogenesis. Cell Death Differ 2016; 23:990-6. [PMID: 26943319 DOI: 10.1038/cdd.2016.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/27/2022] Open
Abstract
Innate immunity typically is responsible for initial host responses against infections. Independently, nucleated cells that die normally as part of the physiological process of homeostasis in mammals (including humans) suppress immunity. Specifically, the physiological process of cell death (apoptosis) generates cells that are recognized specifically by viable cells of all types and elicit a profound transient suppression of host immunity (termed 'innate apoptotic immunity' (IAI)). IAI appears to be important normally for the maintenance of self-tolerance and for the resolution of inflammation. In addition, pathogens are able to take advantage of IAI through a variety of distinct mechanisms, to enable their proliferation within the host and enhance pathogenicity. For example, the protist pathogen Leishmania amazonensis, at its infective stage, mimics apoptotic cells by expressing apoptotic-like protein determinants on the cell surface, triggering immunosuppression directly. In contrast, the pathogenic bacterium Listeria monocytogenes triggers cell death in host lymphocytes, relying on those apoptotic cells to suppress host immune control and facilitate bacterial expansion. Finally, although the inhibition of apoptotic cell death is a common attribute of many viruses which facilitates their extended replication, it is clear that adenoviruses also reprogram the non-apoptotic dead cells that arise subsequently to manifest apoptotic-like immunosuppressive properties. These three instances represent diverse strategies used by microbial pathogens to exploit IAI, focusing attention on the potency of this facet of host immune control. Further examination of these cases will be revealing both of varied mechanisms of pathogenesis and the processes involved in IAI control.
Collapse
|
39
|
Abstract
Atopic dermatitis (AD) is a common skin disease that affects a large proportion of the population worldwide. The incidence of AD has increased over the last several decades along with AD's burden on the physical and psychological health of the patient and family. However, current advances in understanding the mechanisms behind the pathophysiology of AD are leading to a hopeful outlook for the future. Staphylococcus aureus (S. aureus) colonization on AD skin has been directly correlated to disease severity but the functions of other members of the skin bacterial community may be equally important. Applying knowledge gained from understanding the role of the skin microbiome in maintaining normal skin immune function, and addressing the detrimental consequences of microbial dysbiosis in driving inflammation, is a promising direction for development of new treatments. This review discusses current preclinical and clinical research focused on determining how the skin microbiome may influence the development of AD.
Collapse
|
40
|
Goldmann O, Tuchscherr L, Rohde M, Medina E. α-Hemolysin enhances Staphylococcus aureus internalization and survival within mast cells by modulating the expression of β1 integrin. Cell Microbiol 2016; 18:807-19. [PMID: 26595647 DOI: 10.1111/cmi.12550] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Abstract
Mast cells (MCs) are important sentinels of the host defence against invading pathogens. We previously reported that Staphylococcus aureus evaded the extracellular antimicrobial activities of MCs by promoting its internalization within these cells via β1 integrins. Here, we investigated the molecular mechanisms governing this process. We found that S. aureus responded to the antimicrobial mediators released by MCs by up-regulating the expression of α-hemolysin (Hla), fibronectin-binding protein A and several regulatory systems. We also found that S. aureus induced the up-regulation of β1 integrin expression on MCs and that this effect was mediated by Hla-ADAM10 (a disintegrin and metalloproteinase 10) interaction. Thus, deletion of Hla or inhibition of Hla-ADAM10 interaction significantly impaired S. aureus internalization within MCs. Furthermore, purified Hla but not the inactive HlaH35L induced up-regulation of β1 integrin expression in MCs in a dose-dependent manner. Our data support a model in which S. aureus counter-reacts the extracellular microbicidal mechanisms of MCs by increasing expression of fibronectin-binding proteins and by inducing Hla-ADAM10-mediated up-regulation of β1 integrin in MCs. The up-regulation of bacterial fibronectin-binding proteins, concomitantly with the increased expression of its receptor β1 integrin on the MCs, resulted in enhanced S. aureus internalization through the binding of fibronectin-binding proteins to integrin β1 via fibronectin.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, University Hospital of Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| |
Collapse
|
41
|
Global translation variations in host cells upon attack of lytic and sublytic Staphylococcus aureus α-haemolysin1. Biochem J 2015; 472:83-95. [DOI: 10.1042/bj20150284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/11/2015] [Indexed: 02/07/2023]
Abstract
Staphylococcal alpha-hemolysin (AHL) is a clinically relevant toxin, whose effects on host translation are poorly understood. We characterized genome-wide alterations induced at transcriptional and transational levels by lytic and sublytic AHL, pinpointing the importance of translational control during host-pathogen interaction.
Collapse
|
42
|
Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol 2015; 13:620-30. [PMID: 26324094 DOI: 10.1038/nrmicro3480] [Citation(s) in RCA: 776] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are produced by all domains of life. In Gram-negative bacteria, EVs are produced by the pinching off of the outer membrane; however, how EVs escape the thick cell walls of Gram-positive bacteria, mycobacteria and fungi is still unknown. Nonetheless, EVs have been described in a variety of cell-walled organisms, including Staphylococcus aureus, Mycobacterium tuberculosis and Cryptococcus neoformans. These EVs contain varied cargo, including nucleic acids, toxins, lipoproteins and enzymes, and have important roles in microbial physiology and pathogenesis. In this Review, we describe the current status of vesiculogenesis research in thick-walled microorganisms and discuss the cargo and functions associated with EVs in these species.
Collapse
Affiliation(s)
- Lisa Brown
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | - Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205, USA
| |
Collapse
|
43
|
Khilwani B, Chattopadhyay K. Signaling beyond Punching Holes: Modulation of Cellular Responses by Vibrio cholerae Cytolysin. Toxins (Basel) 2015; 7:3344-58. [PMID: 26308054 PMCID: PMC4549754 DOI: 10.3390/toxins7083344] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 01/20/2023] Open
Abstract
Pore-forming toxins (PFTs) are a distinct class of membrane-damaging cytolytic proteins that contribute significantly towards the virulence processes employed by various pathogenic bacteria. Vibrio cholerae cytolysin (VCC) is a prominent member of the beta-barrel PFT (beta-PFT) family. It is secreted by most of the pathogenic strains of the intestinal pathogen V. cholerae. Owing to its potent membrane-damaging cell-killing activity, VCC is believed to play critical roles in V. cholerae pathogenesis, particularly in those strains that lack the cholera toxin. Large numbers of studies have explored the mechanistic basis of the cell-killing activity of VCC. Consistent with the beta-PFT mode of action, VCC has been shown to act on the target cells by forming transmembrane oligomeric beta-barrel pores, thereby leading to permeabilization of the target cell membranes. Apart from the pore-formation-induced direct cell-killing action, VCC exhibits the potential to initiate a plethora of signal transduction pathways that may lead to apoptosis, or may act to enhance the cell survival/activation responses, depending on the type of target cells. In this review, we will present a concise view of our current understanding regarding the multiple aspects of these cellular responses, and their underlying signaling mechanisms, evoked by VCC.
Collapse
Affiliation(s)
- Barkha Khilwani
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences Indian Institute of Science Education and Research Mohali Sector 81, S. A. S. Nagar, Manauli PO 140306, Punjab, India.
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences Indian Institute of Science Education and Research Mohali Sector 81, S. A. S. Nagar, Manauli PO 140306, Punjab, India.
| |
Collapse
|
44
|
Surmann K, Simon M, Hildebrandt P, Pförtner H, Michalik S, Stentzel S, Steil L, Dhople VM, Bernhardt J, Schlüter R, Depke M, Gierok P, Lalk M, Bröker BM, Schmidt F, Völker U. A proteomic perspective of the interplay of Staphylococcus aureus and human alveolar epithelial cells during infection. J Proteomics 2015; 128:203-17. [PMID: 26244908 DOI: 10.1016/j.jprot.2015.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 12/24/2022]
Abstract
Infectious diseases caused by pathogens such as Staphylococcus aureus are still a major threat for human health. Proteome analyses allow detailed monitoring of the molecular interplay between pathogen and host upon internalization. However, the investigation of the responses of both partners is complicated by the large excess of host cell proteins compared to bacterial proteins as well as by the fact that only a fraction of host cells are infected. In the present study we infected human alveolar epithelial A549 cells with S. aureus HG001 pMV158GFP and separated intact bacteria from host cell debris or infected from non-infected A549 cells by cell sorting to enable detailed proteome analysis. During the first 6.5h in the intracellular milieu S. aureus displayed reduced growth rate, induction of the stringent response, adaptation to microaerobic conditions as well as cell wall stress. Interestingly, both truly infected host cells and those not infected but exposed to secreted S. aureus proteins and host cell factors showed differences in the proteome pattern compared to A549 cells which had never been in contact with S. aureus. However, adaptation reactions were more pronounced in infected compared to non-infected A549 bystander cells.
Collapse
Affiliation(s)
- Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475 Greifswald, Germany
| | - Marjolaine Simon
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475 Greifswald, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475 Greifswald, Germany; ZIK-FunGene Junior Research Group Applied Proteomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475 Greifswald, Germany
| | - Henrike Pförtner
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475 Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475 Greifswald, Germany; ZIK-FunGene Junior Research Group Applied Proteomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475 Greifswald, Germany
| | - Sebastian Stentzel
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Sauerbruchstr. DZ7, 17475 Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475 Greifswald, Germany
| | - Vishnu M Dhople
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475 Greifswald, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Rabea Schlüter
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Maren Depke
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475 Greifswald, Germany; ZIK-FunGene Junior Research Group Applied Proteomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475 Greifswald, Germany
| | - Philipp Gierok
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Straße 4, 17487 Greifswald, Germany
| | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, Felix-Hausdorff-Straße 4, 17487 Greifswald, Germany
| | - Barbara M Bröker
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Sauerbruchstr. DZ7, 17475 Greifswald, Germany
| | - Frank Schmidt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475 Greifswald, Germany; ZIK-FunGene Junior Research Group Applied Proteomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475 Greifswald, Germany.
| |
Collapse
|
45
|
Tuchscherr L, Bischoff M, Lattar SM, Noto Llana M, Pförtner H, Niemann S, Geraci J, Van de Vyver H, Fraunholz MJ, Cheung AL, Herrmann M, Völker U, Sordelli DO, Peters G, Löffler B. Sigma Factor SigB Is Crucial to Mediate Staphylococcus aureus Adaptation during Chronic Infections. PLoS Pathog 2015; 11:e1004870. [PMID: 25923704 PMCID: PMC4414502 DOI: 10.1371/journal.ppat.1004870] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/09/2015] [Indexed: 12/26/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen that causes a range of infections from acute invasive to chronic and difficult-to-treat. Infection strategies associated with persisting S. aureus infections are bacterial host cell invasion and the bacterial ability to dynamically change phenotypes from the aggressive wild-type to small colony variants (SCVs), which are adapted for intracellular long-term persistence. The underlying mechanisms of the bacterial switching and adaptation mechanisms appear to be very dynamic, but are largely unknown. Here, we analyzed the role and the crosstalk of the global S. aureus regulators agr, sarA and SigB by generating single, double and triple mutants, and testing them with proteome analysis and in different in vitro and in vivo infection models. We were able to demonstrate that SigB is the crucial factor for adaptation in chronic infections. During acute infection, the bacteria require the simultaneous action of the agr and sarA loci to defend against invading immune cells by causing inflammation and cytotoxicity and to escape from phagosomes in their host cells that enable them to settle an infection at high bacterial density. To persist intracellularly the bacteria subsequently need to silence agr and sarA. Indeed agr and sarA deletion mutants expressed a much lower number of virulence factors and could persist at high numbers intracellularly. SigB plays a crucial function to promote bacterial intracellular persistence. In fact, ΔsigB-mutants did not generate SCVs and were completely cleared by the host cells within a few days. In this study we identified SigB as an essential factor that enables the bacteria to switch from the highly aggressive phenotype that settles an acute infection to a silent SCV-phenotype that allows for long-term intracellular persistence. Consequently, the SigB-operon represents a possible target to develop preventive and therapeutic strategies against chronic and therapy-refractory infections.
Collapse
Affiliation(s)
- Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, University of Saarland Medical Center, Homburg, Germany
| | - Santiago M. Lattar
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM UBA-CONICET) y Facultad de Medicina, University of Buenos Aires, Buenos Aires, Argentina
| | - Mariangeles Noto Llana
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM UBA-CONICET) y Facultad de Medicina, University of Buenos Aires, Buenos Aires, Argentina
| | - Henrike Pförtner
- Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Jennifer Geraci
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Hélène Van de Vyver
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Martin J. Fraunholz
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ambrose L. Cheung
- Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Mathias Herrmann
- Institute of Medical Microbiology and Hygiene, University of Saarland Medical Center, Homburg, Germany
| | - Uwe Völker
- Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Daniel O. Sordelli
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM UBA-CONICET) y Facultad de Medicina, University of Buenos Aires, Buenos Aires, Argentina
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
- * E-mail:
| |
Collapse
|
46
|
Ma Y, Weiss LM, Huang H. Inducible suicide vector systems for Trypanosoma cruzi. Microbes Infect 2015; 17:440-50. [PMID: 25899945 DOI: 10.1016/j.micinf.2015.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/01/2022]
Abstract
Chagas disease caused by Trypanosoma cruzi is a major neglected tropical parasitic disease. The pathogenesis of this infection remains disputable. There is no suitable vaccine for the prevention. Attenuated live vaccines can provide strong protection against infection; however, there are the concerns about latent infection or reversion to virulence in such attenuated strains. A method to induce T. cruzi death would provide a critical tool for research into the pathophysiological mechanisms and provide a novel design of safe live attenuated vaccines. We established effective inducible systems for T. cruzi employing the degradation domain based on the Escherichia coli dihydrofolate reductase (ecDHFR). The DHFR degradation domain (DDD) can be stabilized by trimethoprim-lactate and can be used to express detrimental or toxic proteins. T. cruzi lines with Alpha-toxin, Cecropin A and GFP under the control of DDD with a hemagglutinin tag (HA) were developed. Interestingly, amastigotes bearing GFP-DDDHA, Alpha-toxin-DDDHA, Cecropin A-DDDHA and DDDHA all resulted in inducible cell death with these fusions, indicating that DDDHA protein is also detrimental to amastigotes. Furthermore, these strains were attenuated in mouse experiments producing no pathological changes and inoculation with these DDDHA strains in mice provided strong protection against lethal wild type infection.
Collapse
Affiliation(s)
- Yanfen Ma
- Department of Pathology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Huan Huang
- Department of Pathology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
47
|
Guerra AD, Cantu DA, Vecchi JT, Rose WE, Hematti P, Kao WJ. Mesenchymal Stromal/Stem Cell and Minocycline-Loaded Hydrogels Inhibit the Growth of Staphylococcus aureus that Evades Immunomodulation of Blood-Derived Leukocytes. AAPS JOURNAL 2015; 17:620-30. [PMID: 25716147 DOI: 10.1208/s12248-015-9728-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/28/2015] [Indexed: 01/03/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) have demonstrated favorable wound healing properties in addition to their differentiation capacity. MSCs encapsulated in biomaterials such as gelatin and polyethylene glycol (PEG) composite hydrogels have displayed an immunophenotype change that leads to the release of cytokines and growth factors to accelerate wound healing. However, therapeutic potential of implanted MSC-loaded hydrogels may be limited by non-specific protein adsorption that facilitates adhesion of bacterial pathogens such as planktonic Staphylococcus aureus (SA) to the surface with subsequent biofilm formation resistant to immune cell recognition and antibiotic activity. In this study, we demonstrate that blood-derived primary leukocytes and bone marrow-derived MSCs cannot inhibit colony-forming abilities of planktonic or biofilm-associated SA. However, we show that hydrogels loaded with MSCs and minocycline significantly inhibit colony-forming abilities of planktonic SA while maintaining MSC viability and multipotency. Our results suggest that minocycline and MSC-loaded hydrogels may decrease the bioburden of SA at implant sites in wounds, and may improve the wound healing capabilities of MSC-loaded hydrogels.
Collapse
Affiliation(s)
- Alberto Daniel Guerra
- School of Pharmacy, Division of Pharmaceutical Sciences, Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 7123 Rennebohm Hall, Madison, WI, 53705, USA
| | | | | | | | | | | |
Collapse
|
48
|
Knop J, Hanses F, Leist T, Archin NM, Buchholz S, Gläsner J, Gessner A, Wege AK. Staphylococcus aureus Infection in Humanized Mice: A New Model to Study Pathogenicity Associated With Human Immune Response. J Infect Dis 2015; 212:435-44. [PMID: 25657257 DOI: 10.1093/infdis/jiv073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/29/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a common pathogen among humans worldwide, with an increasing prevalence of multidrug resistance. The understanding of virulence factors inducing pathogenicity is still incomplete, and thus far the transfer of results from animal studies into successful clinical trials has been difficult. METHODS In this study, we established an S. aureus infection model in mice engrafted with a human immune system, compared it with infected wild-type and nonhumanized mice, and investigated pathogenesis in these models. RESULTS Staphylococcus aureus infection was aggravated in humanized mice, compared with wild-type or nonengrafted mice. The humanized mice displayed a significantly reduced survival percentage, increased weight loss, and a more-rapid increase in bacterial burden. In addition, S. aureus infection induced T-cell activation, apoptosis, and Fas receptor expression in humanized but not wild-type mice. CONCLUSIONS Our findings demonstrate the different pathogenetic mechanisms in wild-type and humanized mice and the possible benefit of including humanized mice in future studies involving S. aureus as a prior step to human clinical trials.
Collapse
Affiliation(s)
- Janin Knop
- Department of Gynecology and Obstetrics, University Medical Center Regensburg
| | - Frank Hanses
- Department of Internal Medicine I, University Hospital Regensburg
| | - Teresa Leist
- Department of Gynecology and Obstetrics, University Medical Center Regensburg
| | - Nancie M Archin
- Department of Medicine, University of North Carolina-Chapel Hill
| | - Stefan Buchholz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg
| | - Joachim Gläsner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Germany
| | - André Gessner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Germany
| | - Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg
| |
Collapse
|
49
|
Okano M, Fujiwara T, Kariya S, Higaki T, Haruna T, Matsushita O, Noda Y, Makihara S, Kanai K, Noyama Y, Taniguchi M, Nishizaki K. Cellular responses to Staphylococcus aureus alpha-toxin in chronic rhinosinusitis with nasal polyps. Allergol Int 2014; 63:563-73. [PMID: 25056228 DOI: 10.2332/allergolint.14-oa-0703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/25/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In contrast to Staphylococcus aureus-derived superantigenic exotoxins, the role of non-superantigenic exotoxins in the pathogenesis of eosinophilic airway diseases remains obscure. We sought to characterize S. aureus alpha-toxin-induced cellular responses in chronic rhinosinusitis with nasal polyps (CRSwNP). METHODS Dispersed nasal polyp cells and uncinate tissue cells were prepared from patients with CRS with and without nasal polyps, respectively. Cells were incubated with various concentrations of alpha-toxin or staphylococcal enterotoxin B and then the levels of IL-5, IL-13, IFN-γ, IL-17A, and IL-10 in the cell supernatants were determined. The pathophysiological significance of alpha-toxin-induced cytokine production was also determined including radiological severity of rhinosinusitis, tissue and blood eosinophilia, serum total IgE level, and 1-s forced expiratory volume/forced vital capacity ratio (FEV1/FVC). RESULTS Nasal polyp cells produced substantial amounts of IL-5, IL-13, IFN-γ, IL-17A, and IL-10 in response to alpha-toxin. Cytokine production was higher in nasal polyp cells than in uncinate tissue cells. The potency of alpha-toxin in stimulating IL-5, IL-13, and IL-10 production was comparable to that of enterotoxin. Alpha-toxin-induced IFN-γ, IL-17A, and IL-10 production significantly and negatively correlated with the degree of eosinophil infiltration into nasal polyps. Conversely, alpha-toxin-induced IFN-γ and IL-10 production significantly and positively correlated with FEV1/FVC. IL-10 production was significantly lower in asthmatic patients compared to non-asthmatics CONCLUSIONS S. aureus-derived alpha-toxin can provoke cellular responses in nasal polyps. These responses, especially failure to synthesize IL-10, may play a role in the pathophysiology of CRSwNP.
Collapse
Affiliation(s)
- Mitsuhiro Okano
- Department of Otolaryngology-Head & Neck Surgery, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tazuko Fujiwara
- Department of Otolaryngology-Head & Neck Surgery, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Kariya
- Department of Otolaryngology-Head & Neck Surgery, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takaya Higaki
- Department of Otolaryngology-Head & Neck Surgery, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takenori Haruna
- Department of Otolaryngology-Head & Neck Surgery, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Osamu Matsushita
- Department of Microbiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yohei Noda
- Department of Otolaryngology-Head & Neck Surgery, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Kengo Kanai
- Department of Otorhinolaryngology, Kagawa Prefectural Central Hospital, Kagawa, Japan
| | - Yasuyuki Noyama
- Department of Otolaryngology-Head & Neck Surgery, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masami Taniguchi
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Kazunori Nishizaki
- Department of Otolaryngology-Head & Neck Surgery, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
50
|
Koziel J, Chmiest D, Bryzek D, Kmiecik K, Mizgalska D, Maciag-Gudowska A, Shaw LN, Potempa J. The Janus face of α-toxin: a potent mediator of cytoprotection in staphylococci-infected macrophages. J Innate Immun 2014; 7:187-98. [PMID: 25358860 DOI: 10.1159/000368048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 09/02/2014] [Indexed: 12/26/2022] Open
Abstract
After phagocytosis by macrophages, Staphylococcus aureus evades killing in an α-toxin-dependent manner, and then prevents apoptosis of infected cells by upregulating expression of antiapoptotic genes like MCL-1 (myeloid cell leukemia-1). Here, using purified α-toxin and a set of hla-deficient strains, we show that α-toxin is critical for the induction of MCL-1 expression and the cytoprotection of infected macrophages. Extracellular or intracellular treatment of macrophages with α-toxin alone did not induce cytoprotection conferred by increased Mcl-1, suggesting that the process is dependent on the production of α-toxin by intracellular bacteria. The increased expression of MCL-1 in infected cells was associated with enhanced NFκB activation, and subsequent IL-6 secretion. This effect was only partially inhibited by blocking TLR2, which suggests the participation of intracellular receptors in the specific recognition of S. aureus strains secreting α-toxin. Thus, S. aureus recognition by intracellular receptors and/or activation of downstream pathways leading to Mcl-1 expression is facilitated by α-toxin released by intracellular bacteria which permeabilize phagosomes, ensuring pathogen access to the cytoplasmatic compartment. Given that the intracellular survival of S. aureus depends on α-toxin, we propose a novel role for this agent in the protection of the intracellular niche, and further dissemination of staphylococci by infected macrophages.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|