1
|
Jasper RJ, Yeaman S. Local adaptation can cause both peaks and troughs in nucleotide diversity within populations. G3 (BETHESDA, MD.) 2024; 14:jkae225. [PMID: 39290136 PMCID: PMC11540321 DOI: 10.1093/g3journal/jkae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
The amount of standing variation present within populations is a fundamental quantity of interest in population genetics, commonly represented by calculating the average number of differences between pairs of nucleotide sequences (nucleotide diversity, π). It is well understood that both background and positive selection can cause reductions in nucleotide diversity, but less clear how local adaptation affects it. Depending on the assumptions and parameters, some theoretical studies have emphasized how local adaptation can reduce nucleotide diversity, while others have shown that it can increase it. Here, we explore how local adaptation shapes genome-wide patterns in within-population nucleotide diversity, extending previous work to study the effects of polygenic adaptation, genotypic redundancy, and population structure. We show that local adaptation produces two very different patterns depending on the relative strengths of migration and selection, either markedly decreasing or increasing within-population diversity at linked sites at equilibrium. At low migration, regions of depleted diversity can extend large distances from the causal locus, with substantially more diversity eroded than expected with background selection. With higher migration, peaks occur over much smaller genomic distances but with much larger magnitude changes in diversity. Across spatially extended environmental gradients, both patterns can be found within a single species, with increases in diversity at the center of the range and decreases towards the periphery. Our results demonstrate that there is no universal diagnostic signature of local adaptation based on within-population nucleotide diversity, so it will not be broadly useful for explaining increased FST. However, given that neither background nor positive selection inflate diversity, when peaks are found they suggest local adaptation may be acting on a causal allele in the region.
Collapse
Affiliation(s)
- Russ J Jasper
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
- Institute of Ecology and Evolution, Department of Biology, University of Bern, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
2
|
Gade F, Metz J. Competition, Drought, Season Length? Disentangling Key Factors for Local Adaptation in Two Mediterranean Annuals across Combined Macroclimatic and Microclimatic Aridity Gradients. Ecol Evol 2024; 14:e70513. [PMID: 39530034 PMCID: PMC11550922 DOI: 10.1002/ece3.70513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Competition in mesic sites and drought stress combined with short growing seasons in drier sites are key environmental factors along macroclimatic aridity gradients. They impose a triangular trade-off for local adaptation. However, as experiments have rarely disentangled their effects on plant fitness, uncertainty remained whether mesic populations are indeed better competitors and drier populations better adapted to drought stress and short season length. Aridity differs also at microclimatic scale between north (more mesic) and south (more arid) exposed hill-slopes. Little is known whether local adaptation occurs among exposures and whether south exposures harbor conspecifics better adapted to drier climates that could provide adaptive reservoirs under climate change. We sampled two Mediterranean annuals (Brachypodium hybridum, Hedypnois rhagadioloides) in 15 sites along a macroclimatic aridity gradient (89-926 mm rainfall) on corresponding north and south exposures. In a large greenhouse experiment, we measured their fitness under drought stress, competition, and short vs. long growing seasons. Along the macroclimatic gradient, mesic populations were better competitors under benign conditions. Drier populations performed no better under drought stress per se but coped better with the short growing seasons typical for drier macroclimates. At microclimatic scale, north exposure plants were slightly better competitors in H. rhagadioloides; in B. hybridum, south exposure plants coped better with drought under short season length. We demonstrate that local adaptation to drier macroclimates is trading-off with competitive ability under benign conditions and vice-versa. Drought escape via short life-cycles was the primary adaptation to drier macroclimates, suggesting that intensified drought stress within the growing season under climate change challenges arid and mesic populations alike. Moreover, the drier microclimates at south exposures exhibited some potential as nearby reservoirs of drier-adapted genotypes. This potential needs further investigation, yet may assist populations to persist under climate change and lessen the need for long-distance migration.
Collapse
Affiliation(s)
- Florian Gade
- Plant Ecology & Nature Conservation Group, Institute of Biology & ChemistryUniversity of HildesheimHildesheimGermany
| | - Johannes Metz
- Plant Ecology & Nature Conservation Group, Institute of Biology & ChemistryUniversity of HildesheimHildesheimGermany
| |
Collapse
|
3
|
Ravikanthachari N, Steward RA, Boggs CL. Patterns of genetic variation and local adaptation of a native herbivore to a lethal invasive plant. Mol Ecol 2024; 33:e17326. [PMID: 38515231 DOI: 10.1111/mec.17326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/03/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
Understanding the evolutionary processes that influence fitness is critical to predicting species' responses to selection. Interactions among evolutionary processes including gene flow, drift and the strength of selection can lead to either local adaptation or maladaptation, especially in heterogenous landscapes. Populations experiencing novel environments or resources are ideal for understanding the mechanisms underlying adaptation or maladaptation, specifically in locally co-evolved interactions. We used the interaction between a native herbivore that oviposits on a patchily distributed introduced plant that in turn causes significant mortality to the larvae to test for signatures of local adaptation in areas where the two co-occurred. We used whole-genome sequencing to explore population structure, patterns of gene flow and signatures of local adaptation. We found signatures of local adaptation in response to the introduced plant in the absence of strong population structure with no genetic differentiation and low genetic variation. Additionally, we found localized allele frequency differences within a single population between habitats with and without the lethal plant, highlighting the effects of strong selection. Finally, we identified that selection was acting on larval ability to feed on the plant rather than on females' ability to avoid oviposition, thus uncovering the specific ontogenetic target of selection. Our work highlights the potential for adaptation to occur in a fine-grained landscape in the presence of gene flow and low genetic variation.
Collapse
Affiliation(s)
- Nitin Ravikanthachari
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Rachel A Steward
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
- Department of Biology, Lund University, Lund, Sweden
| | - Carol L Boggs
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
- School of Earth, Ocean & Environment, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
4
|
Jones T, Monaco T. Using Empirical Performance Data to Source Bluebunch and Snake River Wheatgrass Plant Materials to Restoration Sites in the Eastern Great Basin, USA. Ecol Evol 2024; 14:e70392. [PMID: 39450153 PMCID: PMC11499301 DOI: 10.1002/ece3.70392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 10/26/2024] Open
Abstract
To infer adaptation of plant material, restoration practitioners often consider only surrogate geographic or climatic information. However, empirical biomass data could assist in deciding what material to use where. To test this approach, we transplanted seven bluebunch wheatgrass (BBWG; Pseudoroegneria spicata) and five Snake River wheatgrass (SRWG; Elymus wawawaiensis) populations to three sites ranging from low to high precipitation (LPPT, MPPT, and HPPT). We measured establishment-year (2011) biomass at all sites and 2012-16 biomass at MPPT and HPPT. When data were standardized by site, P-7 and Anatone produced the most BBWG biomass across sites and Wahluke the least in both 2011 and 2012-16, while E-58X produced the most SRWG biomass and Secar and E-49X the least in 2011 and 2012-16, respectively. Among BBWG populations in 2011, relative performance of P-7 (G6 generation) and Goldar increased and Whitmar decreased at wetter sites, while Columbia was stable (high) and Wahluke was stable (low) over sites. Among SRWG populations in 2011, Secar, Secar78, and E-58X increased at drier sites and Discovery at wetter sites. However, once established, populations of both species were much more similar for trend. In 2012-16, trend somewhat increased for five BBWG populations from MPPT to HPPT, was stable for Wahluke, but declined for Columbia, while all five SRWG populations declined at HPPT. These results suggest that, once established, BBWG is mostly stable across sites, while SRWG is less adapted to wetter sites. In 2012-16, BBWG populations originating at drier (or wetter) sites mostly performed relatively better at MPPT (or HPPT), suggesting adaptation to site. However, in the establishment year (2011), this relationship did not hold, suggesting seedling vigor and immature growth rate play a stronger role than precipitation at the site of origin.
Collapse
Affiliation(s)
- Thomas A. Jones
- Forage and Range Research LaboratoryUSDA‐Agricultural Research ServiceLoganUtahUSA
| | - Thomas A. Monaco
- Forage and Range Research LaboratoryUSDA‐Agricultural Research ServiceLoganUtahUSA
| |
Collapse
|
5
|
Cross RL, Eckert CG. Is adaptation associated with long-term persistence beyond a geographic range limit? Evolution 2024; 78:1527-1538. [PMID: 38869498 DOI: 10.1093/evolut/qpae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/04/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
Adaptation to new habitats might facilitate species' range shifts in response to climate change. In 2005, we transplanted experimental populations of coastal dune plant Camissoniopsis cheiranthifolia into 4 sites within and 1 site beyond its poleward range limit. Beyond-range transplants had high fitness but often delayed reproduction. To test for adaptation associated with experimental range expansion, we transplanted descendants from beyond- and within-range populations after 10 generations in situ into 2 sites within the range, 1 at the range edge, and 2 sites beyond the range. We expected to detect adaptation to beyond-range conditions due to substantial genetic variation within experimental populations and environmental variation among sites. However, individuals from beyond-range experimental populations were not fitter than those from within the range when planted at either beyond-range site, indicating no adaptation to the beyond-range site or beyond-range environments in general. Beyond-range descendants also did not suffer lower fitness within the range. Although reproduction was again delayed beyond the range, late reproduction was not favored more strongly beyond than within the range, and beyond-range descendants did not delay reproduction more than within-range descendants. Persistence in beyond-range environments may not require adaptation, which could allow a rapid response to climate change.
Collapse
Affiliation(s)
- Regan L Cross
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
6
|
Dong CM, Rolón BA, Sullivan JK, Tataru D, Deleon M, Dennis R, Dutton S, Machado Perez FJ, Montano L, Ferris KG. Short-term fluctuating and long-term divergent selection on sympatric Monkeyflowers: insights from decade-spanning reciprocal transplants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600870. [PMID: 38979251 PMCID: PMC11230446 DOI: 10.1101/2024.06.26.600870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sympatric species are often locally adapted to distinct microhabitats. However, temporal variation may cause local maladaptation and species boundary breakdown, especially during extreme climatic events leading to episodic selection. Repeated reciprocal transplants can reveal the interplay between short and long-term patterns of natural selection. To examine evolutionary trajectories of sympatric Monkeyflowers adapted to different niches, Mimulus guttatus and M. laciniatus, we performed three replicated transplants and combined them with previous experiments to leverage a dataset of five transplants spanning 10 years. We performed phenotypic selection analyses on parents and hybrids in parental habitats in Yosemite NP, CA during years of drastically differing snowpack. If there is ecological isolation, then we predicted divergent phenotypic selection between habitats in line with species' differences and local adaptation. We found interannual fluctuations in phenotypic selection, often in unpredicted directions. However, a combined-year analysis detected longer-term divergent selection on flowering time, a key temporally isolating and adaptative trait, suggesting that selection may reinforce species boundaries despite short-term fluctuations. Finally, we found temporal variation in local adaptation with M. laciniatus locally adapted in low snowpack years, while an extremely high snowpack year contributed to average local maladaptation of M. guttatus.
Collapse
Affiliation(s)
- Caroline M Dong
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
- Grinnell College, Department of Biology, Grinnell, IA
| | - Bolívar Aponte Rolón
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Juj K Sullivan
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Diana Tataru
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Max Deleon
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Rachael Dennis
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Spencer Dutton
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Fidel J Machado Perez
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
- University of California Merced, Life and Environmental Sciences Department, Merced, CA
| | - Lissette Montano
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| | - Kathleen G Ferris
- Tulane University, Department of Ecology and Evolutionary Biology, New Orleans, LA
| |
Collapse
|
7
|
Golo R, Santamaría J, Vergés A, Cebrian E. The role of species thermal plasticity for alien species invasibility in a changing climate: A case study of Lophocladia trichoclados. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106642. [PMID: 39024996 DOI: 10.1016/j.marenvres.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The Mediterranean Sea provides fertile ground for understanding the complex interplay between invasive species and native habitats, particularly within the context of climate change. This thermal tolerance study reveals the remarkable ability of Lophocladia trichoclados, a red algae species that has proven highly invasive, to adapt to varying temperatures, particularly thriving in colder Mediterranean waters, where it can withstand temperatures as low as 14 °C, a trait not observed in its native habitat. This rapid acclimation, occurring in less than a century, might entail a trade-off with high temperature resistance. Additionally, all sampled populations in the Mediterranean share the same haplotype, suggesting a common origin and the possibility that we might be facing an exceptionally acclimatable and invasive strain. This high degree of acclimatability could determine the future spread capacity in a changing scenario, highlighting the importance of considering both acclimation and adaptation in understanding the expansion of invasive species' ranges.
Collapse
Affiliation(s)
- R Golo
- Departament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - J Santamaría
- Centre d'Estudis Avançats de Blanes, CSIC, Accés Cala Sant Francesc 14, 17300, Blanes, Girona, Spain
| | - A Vergés
- Departament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Spain
| | - E Cebrian
- Centre d'Estudis Avançats de Blanes, CSIC, Accés Cala Sant Francesc 14, 17300, Blanes, Girona, Spain.
| |
Collapse
|
8
|
Ellis TJ, Ågren J. Adaptation to soil type contributes little to local adaptation in an Italian and a Swedish ecotype of Arabidopsis thaliana on contrasting soils. Biol Lett 2024; 20:20240236. [PMID: 39255844 PMCID: PMC11387056 DOI: 10.1098/rsbl.2024.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 09/12/2024] Open
Abstract
Natural populations are subject to selection caused by a range of biotic and abiotic factors in their native habitats. Identifying these agents of selection and quantifying their effects is key to understanding how populations adapt to local conditions. We performed a factorial reciprocal-transplant experiment using locally adapted ecotypes of Arabidopsis thaliana at their native sites to distinguish the contributions of adaptation to soil type and climate. Overall adaptive differentiation was strong at both sites. However, we found only very small differences in the strength of selection on local and non-local soil, and adaptation to soil type at most constituted only a few per cent of overall adaptive differentiation. These results indicate that local climatic conditions rather than soil type are the primary driver of adaptive differentiation between these ecotypes.
Collapse
Affiliation(s)
- Thomas James Ellis
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
- Gregor Mendel Institute of Molecular Plant Sciences, Austrian Academy of Sciences, Doktor-Bohr-Gasse 3, Vienna1010, Austria
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, EBC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Lind BM, Lotterhos KE. The accuracy of predicting maladaptation to new environments with genomic data. Mol Ecol Resour 2024:e14008. [PMID: 39212146 DOI: 10.1111/1755-0998.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Rapid environmental change poses unprecedented challenges to species persistence. To understand the extent that continued change could have, genomic offset methods have been used to forecast maladaptation of natural populations to future environmental change. However, while their use has become increasingly common, little is known regarding their predictive performance across a wide array of realistic and challenging scenarios. Here, we evaluate the performance of currently available offset methods (gradientForest, the Risk-Of-Non-Adaptedness, redundancy analysis with and without structure correction and LFMM2) using an extensive set of simulated data sets that vary demography, adaptive architecture and the number and spatial patterns of adaptive environments. For each data set, we train models using either all, adaptive or neutral marker sets and evaluate performance using in silico common gardens by correlating known fitness with projected offset. Using over 4,849,600 of such evaluations, we find that (1) method performance is largely due to the degree of local adaptation across the metapopulation (LA), (2) adaptive marker sets provide minimal performance advantages, (3) performance within the species range is variable across gardens and declines when offset models are trained using additional non-adaptive environments and (4) despite (1) performance declines more rapidly in globally novel climates (i.e. a climate without an analogue within the species range) for metapopulations with greater LA than lesser LA. We discuss the implications of these results for management, assisted gene flow and assisted migration.
Collapse
Affiliation(s)
- Brandon M Lind
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| |
Collapse
|
10
|
de Lima TM, da Silva SF, Sánchez-Vilas J, Júnior WLS, Mayer JLS, Ribeiro RV, Pinheiro F. Phenotypic plasticity rather than ecotypic differentiation explains the broad realized niche of a Neotropical orchid species. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38958955 DOI: 10.1111/plb.13684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Local adaptation is common in plant species, and knowing whether a population is locally adapted has fundamental and applied relevance. However, local adaptation in tropical plants remains largely less studied, and covering this gap is not simple since reciprocal transplantation - the gold standard for detecting local adaptation - is not feasible for most species. Here, we combined genetic, climatic and phenotypic data to investigate ecotypic differentiation, an important aspect of local adaptation, in coastal and inland populations of the orchid Epidendrum fulgens Brongn., a long-lived tropical plant for which reciprocal transplantation would not be feasible. We used nine microsatellite markers to estimate genetic divergence between inland and coastal populations. Moreover, occurrence data and climate data were used to test for differences in the realized niche of those populations. Finally, we assessed saturated water content, leaf specific area, height, and stomatal density in common garden and in situ to investigate the effects of ecotypic differentiation and plasticity on the phenotype. Coastal and inland groups' niches do not overlap, the former occupying a wetter and warmer area. However, this differentiation does not seem to be driven by ecotypic differentiation since there was no positive correlation between genetic structure and climate dissimilarity. Moreover, specific leaf area and leaf saturated water content, which are important phenotypic traits related to soil fertility and drought stress, were rather plastic. We conclude that ecotypic differentiation is absent, since phenotypic plasticity is an important mechanism explaining the niche broadness of this species.
Collapse
Affiliation(s)
- T M de Lima
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - S F da Silva
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - J Sánchez-Vilas
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building Museum Avenue, Cardiff, UK
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - W L S Júnior
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - J L S Mayer
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - R V Ribeiro
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Laboratory of Crop Physiology, Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - F Pinheiro
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
11
|
Mee JA, Carson B, Yeaman S. Conditionally Deleterious Mutation Load Accumulates in Genomic Islands of Local Adaptation but Can Be Purged with Sufficient Genotypic Redundancy. Am Nat 2024; 204:43-54. [PMID: 38857343 DOI: 10.1086/730186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
AbstractLocal adaptation frequently evolves in patches or environments that are connected via migration. In these cases, genomic regions that are linked to a locally adapted locus experience reduced effective migration rates. Via individual-based simulations of a two-patch system, we show that this reduced effective migration results in the accumulation of conditionally deleterious mutations, but not universally deleterious mutations, adjacent to adaptive loci. When there is redundancy in the genetic basis of local adaptation (i.e., genotypic redundancy), turnover of locally adapted polymorphisms allows conditionally deleterious mutation load to be purged. The amount of mutational load that accumulates adjacent to locally adapted loci is dependent on redundancy, recombination rate, migration rate, population size, strength of selection, and the phenotypic effect size of adaptive alleles. Our results highlight the need to be cautious when interpreting patterns of local adaptation at the level of phenotype or fitness, as the genetic basis of local adaptation can be transient, and evolution may confer a degree of maladaptation to nonlocal environments.
Collapse
|
12
|
Goldenberg J, Bisschop K, Bruni G, Di Nicola MR, Banfi F, Faraone FP. Melanin-based color variation in response to changing climates in snakes. Ecol Evol 2024; 14:e11627. [PMID: 38952653 PMCID: PMC11213819 DOI: 10.1002/ece3.11627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
Melanism, the process of heavier melanin deposition, can interact with climate variation at both micro and macro scales, ultimately influencing color evolution in organisms. While the ecological processes regulating melanin production in relation to climate have been extensively studied, intraspecific variations of melanism are seldom considered. Such scientific gap hampers our understanding of how species adapt to rapidly changing climates. For example, dark coloration may lead to higher heat absorption and be advantageous in cool climates, but also in hot environments as a UV or antimicrobial protection mechanism. To disentangle such opposing predictions, here we examined the effect of climate on shaping melanism variation in 150 barred grass snakes (Natrix helvetica) and 383 green whip snakes (Hierophis viridiflavus) across Italy. By utilizing melanistic morphs (charcoal and picturata in N. helvetica, charcoal and abundistic in H. viridiflavus) and compiling observations from 2002 to 2021, we predicted that charcoal morphs in H. viridiflavus would optimize heat absorption in cold environments, while offering protection from excessive UV radiation in N. helvetica within warm habitats; whereas picturata and abundistic morphs would thrive in humid environments, which naturally have a denser vegetation and wetter substrates producing darker ambient light, thus providing concealment advantages. While picturata and abundistic morphs did not align with our initial humidity expectations, the charcoal morph in N. helvetica is associated with UV environments, suggesting protection mechanisms against damaging solar radiation. H. viridiflavus is associated with high precipitations, which might offer antimicrobial protection. Overall, our results provide insights into the correlations between melanin-based color morphs and climate variables in snake populations. While suggestive of potential adaptive responses, future research should delve deeper into the underlying mechanisms regulating this relationship.
Collapse
Affiliation(s)
- J. Goldenberg
- Division of Biodiversity and Evolution, Department of BiologyLund UniversityLundSweden
- Evolution and Optics of Nanostructures Group, Department of BiologyGhent UniversityGhentBelgium
| | - K. Bisschop
- Division of Biodiversity and Evolution, Department of BiologyLund UniversityLundSweden
- Laboratory of Aquatic BiologyKU Leuven KulakKortrijkBelgium
- Terrestrial Ecology Unit, Department of BiologyGhent UniversityGhentBelgium
| | - G. Bruni
- Independent Researcher, Viale Palmiro TogliattiSesto FiorentinoFlorenceItaly
| | - M. R. Di Nicola
- Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology and Zoological Medicine, Wildlife Health GhentGhent UniversityMerelbekeBelgium
- Unit of Dermatology and CosmetologyIRCCS San Raffaele HospitalMilanItaly
| | - F. Banfi
- Laboratory of Functional Morphology, Department of BiologyUniversity of AntwerpWilrijkBelgium
| | - F. P. Faraone
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e FarmaceuticheUniversity of PalermoPalermoItaly
| |
Collapse
|
13
|
Benning JW, Clark EI, Hufbauer RA, Weiss-Lehman C. Environmental gradients mediate dispersal evolution during biological invasions. Ecol Lett 2024; 27:e14472. [PMID: 39011649 DOI: 10.1111/ele.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Rapid evolution of increased dispersal at the edge of a range expansion can accelerate invasions. However, populations expanding across environmental gradients often face challenging environments that reduce fitness of dispersing individuals. We used an eco-evolutionary model to explore how environmental gradients influence dispersal evolution and, in turn, modulate the speed and predictability of invasion. Environmental gradients opposed evolution of increased dispersal during invasion, even leading to evolution of reduced dispersal along steeper gradients. Counterintuitively, reduced dispersal could allow for faster expansion by minimizing maladaptive gene flow and facilitating adaptation. While dispersal evolution across homogenous landscapes increased both the mean and variance of expansion speed, these increases were greatly dampened by environmental gradients. We illustrate our model's potential application to prediction and management of invasions by parameterizing it with data from a recent invertebrate range expansion. Overall, we find that environmental gradients strongly modulate the effect of dispersal evolution on invasion trajectories.
Collapse
Affiliation(s)
- John W Benning
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - Eliza I Clark
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Ruth A Hufbauer
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | | |
Collapse
|
14
|
Dorey T, Frachon L, Rieseberg LH, Kreiner JM, Schiestl FP. Biotic interactions promote local adaptation to soil in plants. Nat Commun 2024; 15:5186. [PMID: 38890322 PMCID: PMC11189560 DOI: 10.1038/s41467-024-49383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
Although different ecological factors shape adaptative evolution in natural habitats, we know little about how their interactions impact local adaptation. Here we used eight generations of experimental evolution with outcrossing Brassica rapa plants as a model system, in eight treatment groups that varied in soil type, herbivory (with/without aphids), and pollination mode (hand- or bumblebee-pollination), to study how biotic interactions affect local adaptation to soil. First, we show that several plant traits evolved in response to biotic interactions in a soil-specific way. Second, using a reciprocal transplant experiment, we demonstrate that significant local adaptation to soil-type evolved in the "number of open flowers", a trait used as a fitness proxy, but only in plants that evolved with herbivory and bee pollination. Whole genome re-sequencing of experimental lines revealed that biotic interactions caused a 10-fold increase in the number of SNPs across the genome with significant allele frequency change, and that alleles with opposite allele frequency change in different soil types (antagonistic pleiotropy) were most common in plants with an evolutionary history of herbivory and bee pollination. Our results demonstrate that the interaction with mutualists and antagonists can facilitate local adaptation to soil type through antagonistic pleiotropy.
Collapse
Affiliation(s)
- Thomas Dorey
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Léa Frachon
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Julia M Kreiner
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
15
|
Gurguis CI, Kimm TS, Pigott TA. Perspective: the evolution of hormones and person perception-a quantitative genetic framework. Front Psychol 2024; 15:1395974. [PMID: 38952835 PMCID: PMC11215136 DOI: 10.3389/fpsyg.2024.1395974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024] Open
Abstract
Evolutionary biology provides a unifying theory for testing hypotheses about the relationship between hormones and person perception. Person perception usually receives attention from the perspective of sexual selection. However, because person perception is one trait in a suite regulated by hormones, univariate approaches are insufficient. In this Perspectives article, quantitative genetics is presented as an important but underutilized framework for testing evolutionary hypotheses within this literature. We note tacit assumptions within the current literature on psychiatric genetics, which imperil the interpretation of findings thus far. As regulators of a diverse manifold of traits, hormones mediate tradeoffs among an array of functions. Hormonal pleiotropy also provides the basis of correlational selection, a process whereby selection on one trait in a hormone-mediated suite generates selection on the others. This architecture provides the basis for conflicts between sexual and natural selection within hormone-mediated suites. Due to its role in person perception, psychiatric disorders, and reproductive physiology, the sex hormone estrogen is highlighted as an exemplar here. The implications of this framework for the evolution of person perception are discussed. Empirical quantification of selection on traits within hormone-mediated suites remains an important gap in this literature with great potential to illuminate the fundamental nature of psychiatric disorders.
Collapse
Affiliation(s)
- Christopher I. Gurguis
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School at UTHealth, Houston, TX, United States
| | | | | |
Collapse
|
16
|
Hendry AP, Barrett RDH, Bell AM, Bell MA, Bolnick DI, Gotanda KM, Haines GE, Lind ÅJ, Packer M, Peichel CL, Peterson CR, Poore HA, Massengill RL, Milligan‐McClellan K, Steinel NC, Sanderson S, Walsh MR, Weber JN, Derry AM. Designing eco-evolutionary experiments for restoration projects: Opportunities and constraints revealed during stickleback introductions. Ecol Evol 2024; 14:e11503. [PMID: 38932947 PMCID: PMC11199335 DOI: 10.1002/ece3.11503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Eco-evolutionary experiments are typically conducted in semi-unnatural controlled settings, such as mesocosms; yet inferences about how evolution and ecology interact in the real world would surely benefit from experiments in natural uncontrolled settings. Opportunities for such experiments are rare but do arise in the context of restoration ecology-where different "types" of a given species can be introduced into different "replicate" locations. Designing such experiments requires wrestling with consequential questions. (Q1) Which specific "types" of a focal species should be introduced to the restoration location? (Q2) How many sources of each type should be used-and should they be mixed together? (Q3) Which specific source populations should be used? (Q4) Which type(s) or population(s) should be introduced into which restoration sites? We recently grappled with these questions when designing an eco-evolutionary experiment with threespine stickleback (Gasterosteus aculeatus) introduced into nine small lakes and ponds on the Kenai Peninsula in Alaska that required restoration. After considering the options at length, we decided to use benthic versus limnetic ecotypes (Q1) to create a mixed group of colonists from four source populations of each ecotype (Q2), where ecotypes were identified based on trophic morphology (Q3), and were then introduced into nine restoration lakes scaled by lake size (Q4). We hope that outlining the alternatives and resulting choices will make the rationales clear for future studies leveraging our experiment, while also proving useful for investigators considering similar experiments in the future.
Collapse
Affiliation(s)
| | | | - Alison M. Bell
- School of Integrative BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Michael A. Bell
- Museum of PaleontologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Kiyoko M. Gotanda
- Department of Biological SciencesBrock UniversitySaint CatharinesOntarioCanada
| | - Grant E. Haines
- Aquaculture and Fish BiologyHólar University CollegeSauðárkrókurIceland
| | - Åsa J. Lind
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Michelle Packer
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | | | | | | | | | | | - Natalie C. Steinel
- Biological SciencesUniversity of Massachusetts LowellLowellMassachusettsUSA
| | | | - Matthew R. Walsh
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Jesse N. Weber
- Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Alison M. Derry
- Sciences BiologiquesUniversité du Québec á MontréalMontréalQuébecCanada
| |
Collapse
|
17
|
Goulet-Scott BE, Farnitano MC, Brown ALM, Hale CO, Blumstein M, Hopkins R. A multidimensional selective landscape drives adaptive divergence between and within closely related Phlox species. Nat Commun 2024; 15:4661. [PMID: 38821972 PMCID: PMC11143288 DOI: 10.1038/s41467-024-49075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Selection causes local adaptation across populations within species and simultaneously divergence between species. However, it is unclear if either the force of or the response to selection is similar across these scales. We show that natural selection drives divergence between closely related species in a pattern that is distinct from local adaptation within species. We use reciprocal transplant experiments across three species of Phlox wildflowers to characterize widespread adaptive divergence. Using provenance trials, we also find strong local adaptation between populations within a species. Comparing divergence and selection between these two scales of diversity we discover that one suite of traits predicts fitness differences between species and that an independent suite of traits predicts fitness variation within species. Selection drives divergence between species, contributing to speciation, while simultaneously favoring extensive diversity that is maintained across populations within a species. Our work demonstrates how the selection landscape is complex and multidimensional.
Collapse
Affiliation(s)
- Benjamin E Goulet-Scott
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Forest, Harvard University, Petersham, MA, 01366, USA
| | - Matthew C Farnitano
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Andrea L M Brown
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Charles O Hale
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA
| | - Meghan Blumstein
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
- Arnold Arboretum of Harvard University, Boston, MA, 02131, USA.
| |
Collapse
|
18
|
Wadgymar SM, Sheth S, Josephs E, DeMarche M, Anderson J. Defining fitness in evolutionary ecology. INTERNATIONAL JOURNAL OF PLANT SCIENCES 2024; 185:218-227. [PMID: 39035046 PMCID: PMC11257499 DOI: 10.1086/729360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
An understanding of biological fitness is central to theory and practice in ecology and evolution, yet fitness remains an elusive concept to define and challenging to measure accurately. Fitness reflects an individual's ability to pass its alleles on to subsequent generations. Researchers often quantify proxies for fitness, such as survival, growth or reproductive success. However, it can be difficult to determine lifetime fitness, especially for species with long lifespans. The abiotic and biotic environment strongly affects the expression of fitness, which means that fitness components can vary through both space and time. This spatial and temporal heterogeneity results in the impressive range of adaptations that we see in nature. Here, we review definitions of fitness and approaches to measuring fitness at the level of genes, individuals, genotypes, and populations and highlight that fitness is a key concept linking ecological and evolutionary thought.
Collapse
Affiliation(s)
| | - Seema Sheth
- Department of Plant and Microbial Biology, North Carolina State University
| | - Emily Josephs
- Department of Plant Biology, Michigan State University
| | | | - Jill Anderson
- Department of Genetics & Odum School of Ecology, University of Georgia
| |
Collapse
|
19
|
Martin PR, Ghalambor CK. Is competitive ability the key adaptation to benign environments? Revisiting experiments on closely related species of tidal plants. Biol Lett 2024; 20:20230509. [PMID: 38746982 PMCID: PMC11285840 DOI: 10.1098/rsbl.2023.0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 03/25/2024] [Indexed: 07/31/2024] Open
Abstract
A central goal in biology is to understand which traits underlie adaptation to different environments. Yet, few studies have examined the relative contribution of competitive ability towards adaptive divergence among species occupying distinct environments. Here, we test the relative importance of competitive ability as an adaptation to relatively benign versus challenging environments, using previously published studies of closely related species pairs of primarily tidal plants subjected to reciprocal removal with transplant experiments in nature. Subordinate species typically occupy more challenging environments and showed consistent evidence for adaptation to challenging conditions, with no significant competitive effect on non-local, dominant species. In contrast, dominant species typically occupy relatively benign environments and performed significantly better than non-local, subordinate species that faced competition from the dominant species. Surprisingly, when the two species were not allowed to compete, the subordinate species performed as well as the dominant species in the benign environments where the subordinate species do not occur. These results suggest that competitive ability is the most important adaptation distinguishing the species that occupy relatively benign environments. The limited scope and number of suitable experimental studies encourage future work to test if these results are generalizable across taxa and environments.
Collapse
Affiliation(s)
- Paul R. Martin
- Department of Biology, Queen’s University, KingstonK7L 3N6, Canada
| | - Cameron K. Ghalambor
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
20
|
Davies WJ, Saccheri IJ. Evolutionary trajectory of phenological escape in a flowering plant: Mechanistic insights from bidirectional avoidance of butterfly egg-laying pressure. Ecol Evol 2024; 14:e11330. [PMID: 38694753 PMCID: PMC11056787 DOI: 10.1002/ece3.11330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024] Open
Abstract
Phenological escape, whereby species alter the timing of life-history events to avoid seasonal antagonists, is usually analyzed either as a potential evolutionary outcome given current selection coefficients, or as a realized outcome in response to known enemies. We here gain mechanistic insights into the evolutionary trajectory of phenological escape in the brassicaceous herb Cardamine pratensis, by comparing the flowering schedules of two sympatric ecotypes in different stages of a disruptive response to egg-laying pressure imposed by the pierid butterfly Anthocharis cardamines, whose larvae are pre-dispersal seed predators (reducing realized fecundity by ~70%). When the focal point of highest intensity selection (peak egg-laying) occurs early in the flowering schedule, selection for late flowering dependent on reduced egg-laying combined with selection for early flowering dependent on reduced predator survival results in a symmetrical bimodal flowering curve; when the focal point occurs late, an asymmetrical flowering curve results with a large early flowering mode due to selection for reduced egg-laying augmented by selection for infested plants to outrun larval development and dehisce prior to seed-pod consumption. Unequal selection pressures on high and low fecundity ramets, due to asynchronous flowering and morphologically targeted (size-dependent) egg-laying, constrain phenological escape, with bimodal flowering evolving primarily in response to disruptive selection on high fecundity phenotypes. These results emphasize the importance of analyzing variation in selection coefficients among morphological phenotypes over the entire flowering schedule to predict how populations will evolve in response to altered phenologies resulting from climate change.
Collapse
Affiliation(s)
- W. James Davies
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | - Ilik J. Saccheri
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
21
|
Mullett MS, Harris AR, Scanu B, Van Poucke K, LeBoldus J, Stamm E, Bourret TB, Christova PK, Oliva J, Redondo MA, Talgø V, Corcobado T, Milenković I, Jung MH, Webber J, Heungens K, Jung T. Phylogeography, origin and population structure of the self-fertile emerging plant pathogen Phytophthora pseudosyringae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13450. [PMID: 38590129 PMCID: PMC11002350 DOI: 10.1111/mpp.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Phytophthora pseudosyringae is a self-fertile pathogen of woody plants, particularly associated with tree species from the genera Fagus, Notholithocarpus, Nothofagus and Quercus, which is found across Europe and in parts of North America and Chile. It can behave as a soil pathogen infecting roots and the stem collar region, as well as an aerial pathogen infecting leaves, twigs and stem barks, causing particular damage in the United Kingdom and western North America. The population structure, migration and potential outcrossing of a worldwide collection of isolates were investigated using genotyping-by-sequencing. Coalescent-based migration analysis revealed that the North American population originated from Europe. Historical gene flow has occurred between the continents in both directions to some extent, yet contemporary migration is overwhelmingly from Europe to North America. Two broad population clusters dominate the global population of the pathogen, with a subgroup derived from one of the main clusters found only in western North America. Index of association and network analyses indicate an influential level of outcrossing has occurred in this preferentially inbreeding, homothallic oomycete. Outcrossing between the two main population clusters has created distinct subgroups of admixed individuals that are, however, less common than the main population clusters. Differences in life history traits between the two main population clusters should be further investigated together with virulence and host range tests to evaluate the risk each population poses to natural environments worldwide.
Collapse
Affiliation(s)
- Martin S. Mullett
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | | | - Bruno Scanu
- Department of Agricultural SciencesUniversity of SassariSassariItaly
| | - Kris Van Poucke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences UnitMerelbekeBelgium
| | - Jared LeBoldus
- Department of Botany and Plant PathologyOregon State UniversityCorvallisOregonUSA
- Department of Forest Engineering, Resources, and ManagementOregon State UniversityCorvallisOregonUSA
| | - Elizabeth Stamm
- Department of Botany and Plant PathologyOregon State UniversityCorvallisOregonUSA
| | - Tyler B. Bourret
- USDA‐ARS Mycology and Nematology Genetic Diversity and Biology LaboratoryBeltsvilleMarylandUSA
- Department of Plant PathologyUC DavisDavisCaliforniaUSA
| | | | - Jonás Oliva
- Department of Agricultural and Forest Sciences and EngineeringUniversity of LleidaLleidaSpain
- Joint Research Unit CTFC–AGROTECNIO–CERCALleidaSpain
| | - Miguel A. Redondo
- National Bioinformatics Infrastructure Sweden, Science for Life LaboratorySweden
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Venche Talgø
- Division of Biotechnology and Plant HealthNorwegian Institute of Bioeconomy Research (NIBIO)ÅsNorway
| | - Tamara Corcobado
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | - Ivan Milenković
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | - Marília Horta Jung
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| | | | - Kurt Heungens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences UnitMerelbekeBelgium
| | - Thomas Jung
- Department of Forest Protection and Wildlife ManagementMendel University in BrnoBrnoCzech Republic
| |
Collapse
|
22
|
Gibson AK, Mundim FM, Ramirez AL, Timper P. Do biological control agents adapt to local pest genotypes? A multiyear test across geographic scales. Evol Appl 2024; 17:e13682. [PMID: 38617827 PMCID: PMC11009426 DOI: 10.1111/eva.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024] Open
Abstract
Parasite local adaptation has been a major focus of (co)evolutionary research on host-parasite interactions. Studies of wild host-parasite systems frequently find that parasites paired with local, sympatric host genotypes perform better than parasites paired with allopatric host genotypes. In contrast, there are few such tests in biological control systems to establish whether biological control parasites commonly perform better on sympatric pest genotypes. This knowledge gap prevents the optimal design of biological control programs: strong local adaptation could argue for the use of sympatric parasites to achieve consistent pest control. To address this gap, we tested for local adaptation of the biological control bacterium Pasteuria penetrans to the root-knot nematode Meloidogyne arenaria, a global threat to a wide range of crops. We measured the probability and intensity of P. penetrans infection on sympatric and allopatric M. arenaria over the course of 4 years. Our design accounted for variation in adaptation across scales by conducting tests within and across fields, and we isolated the signature of parasite adaptation by comparing parasites collected over the course of the growing season. Our results are largely inconsistent with local adaptation of P. penetrans to M. arenaria: in 3 of 4 years, parasites performed similarly well in sympatric and allopatric combinations. In 1 year, however, infection probability was 28% higher for parasites paired with hosts from their sympatric plot, relative to parasites paired with hosts from other plots within the same field. These mixed results argue for population genetic data to characterize the scale of gene flow and genetic divergence in this system. Overall, our findings do not provide strong support for using P. penetrans from local fields to enhance biological control of Meloidogyne.
Collapse
Affiliation(s)
| | - Fabiane M. Mundim
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of BiologyUtah State UniversityLoganUtahUSA
| | - Abbey L. Ramirez
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Patricia Timper
- United States Department of Agriculture Agricultural Research ServiceTiftonGeorgiaUSA
| |
Collapse
|
23
|
Alruiz JM, Peralta-Maraver I, Cavieres G, Bozinovic F, Rezende EL. Fitness surfaces and local thermal adaptation in Drosophila along a latitudinal gradient. Ecol Lett 2024; 27:e14405. [PMID: 38623056 DOI: 10.1111/ele.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 04/17/2024]
Abstract
Local adaptation is commonly cited to explain species distribution, but how fitness varies along continuous geographical gradients is not well understood. Here, we combine thermal biology and life-history theory to demonstrate that Drosophila populations along a 2500 km latitudinal cline are adapted to local conditions. We measured how heat tolerance and viability rate across eight populations varied with temperature in the laboratory and then simulated their expected cumulative Darwinian fitness employing high-resolution temperature data from their eight collection sites. Simulations indicate a trade-off between annual survival and cumulative viability, as both mortality and the recruitment of new flies are predicted to increase in warmer regions. Importantly, populations are locally adapted and exhibit the optimal combination of both traits to maximize fitness where they live. In conclusion, our method is able to reconstruct fitness surfaces employing empirical life-history estimates and reconstructs peaks representing locally adapted populations, allowing us to study geographic adaptation in silico.
Collapse
Affiliation(s)
- José M Alruiz
- Departamento de Ecología, Facultad de Ciencias Biológicas, Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Peralta-Maraver
- Departamento de Ecología e Instituto del Agua, Universidad de Granada, Granada, Spain
- Research Unit Modeling Nature (MNat), Universidad de Granada, Granada, Spain
| | - Grisel Cavieres
- Departamento de Ecología, Facultad de Ciencias Biológicas, Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Francisco Bozinovic
- Departamento de Ecología, Facultad de Ciencias Biológicas, Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrico L Rezende
- Departamento de Ecología, Facultad de Ciencias Biológicas, Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
24
|
McLaughlin CM, Li M, Perryman M, Heymans A, Schneider H, Lasky JR, Sawers RJH. Evidence that variation in root anatomy contributes to local adaptation in Mexican native maize. Evol Appl 2024; 17:e13673. [PMID: 38468714 PMCID: PMC10925829 DOI: 10.1111/eva.13673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Mexican native maize (Zea mays ssp. mays) is adapted to a wide range of climatic and edaphic conditions. Here, we focus specifically on the potential role of root anatomical variation in this adaptation. Given the investment required to characterize root anatomy, we present a machine-learning approach using environmental descriptors to project trait variation from a relatively small training panel onto a larger panel of genotyped and georeferenced Mexican maize accessions. The resulting models defined potential biologically relevant clines across a complex environment that we used subsequently for genotype-environment association. We found evidence of systematic variation in maize root anatomy across Mexico, notably a prevalence of trait combinations favoring a reduction in axial hydraulic conductance in varieties sourced from cooler, drier highland areas. We discuss our results in the context of previously described water-banking strategies and present candidate genes that are associated with both root anatomical and environmental variation. Our strategy is a refinement of standard environmental genome-wide association analysis that is applicable whenever a training set of georeferenced phenotypic data is available.
Collapse
Affiliation(s)
- Chloee M. McLaughlin
- Intercollege Graduate Degree Program in Plant BiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Meng Li
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Melanie Perryman
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Adrien Heymans
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
- Earth and Life InstituteUC LouvainLouvain‐la‐NeuveBelgium
| | - Hannah Schneider
- Department of Physiology and Cell BiologyLeibniz Institute for Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Jesse R. Lasky
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Ruairidh J. H. Sawers
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
25
|
Judson JM, Hoekstra LA, Janzen FJ. Demographic history and genomic signatures of selection in a widespread vertebrate ectotherm. Mol Ecol 2024; 33:e17269. [PMID: 38234254 PMCID: PMC10922411 DOI: 10.1111/mec.17269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Environmental conditions vary greatly across large geographic ranges, and yet certain species inhabit entire continents. In such species, genomic sequencing can inform our understanding of colonization history and the impact of selection on the genome as populations experience diverse local environments. As ectothermic vertebrates are among the most vulnerable to environmental change, it is critical to understand the contributions of local adaptation to population survival. Widespread ectotherms offer an opportunity to explore how species can successfully inhabit such differing environments and how future climatic shifts will impact species' survival. In this study, we investigated the widespread painted turtle (Chrysemys picta) to assess population genomic structure, demographic history, and genomic signatures of selection in the western extent of the range. We found support for a substantial role of serial founder effects in shaping population genomic structure: demographic analysis and runs of homozygosity were consistent with bottlenecks of increasing severity from eastern to western populations during and following the Last Glacial Maximum, and edge populations were more strongly diverged and had less genetic diversity than those from the centre of the range. We also detected outlier loci, but allelic patterns in many loci could be explained by either genetic surfing or selection. While range expansion complicates the identification of loci under selection, we provide candidates for future study of local adaptation in a long-lived, widespread ectotherm that faces an uncertain future as the global climate continues to rapidly change.
Collapse
Affiliation(s)
- Jessica M. Judson
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: W. K. Kellogg Biological Station, Departments of Fisheries and Wildlife & Integrative Biology, Michigan State University, Hickory Corners, MI 49060, USA
| | - Luke A. Hoekstra
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Fredric J. Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: W. K. Kellogg Biological Station, Departments of Fisheries and Wildlife & Integrative Biology, Michigan State University, Hickory Corners, MI 49060, USA
| |
Collapse
|
26
|
Quigley KM. Breeding and Selecting Corals Resilient to Global Warming. Annu Rev Anim Biosci 2024; 12:209-332. [PMID: 37931139 DOI: 10.1146/annurev-animal-021122-093315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Selective breeding of resilient organisms is an emerging topic in marine conservation. It can help us predict how species will adapt in the future and how we can help restore struggling populations effectively in the present. Scleractinian corals represent a potential tractable model system given their widescale phenotypic plasticity across fitness-related traits and a reproductive life history based on mass synchronized spawning. Here, I explore the justification for breeding in corals, identify underutilized pathways of acclimation, and highlight avenues for quantitative targeted breeding from the coral host and symbiont perspective. Specifically, the facilitation of enhanced heat tolerance by targeted breeding of plasticity mechanisms is underutilized. Evidence from theoretical genetics identifies potential pitfalls, including inattention to physical and genetic characteristics of the receiving environment. Three criteria for breeding emerge from this synthesis: selection from warm, variable reefs that have survived disturbance. This information will be essential to protect what we have and restore what we can.
Collapse
Affiliation(s)
- K M Quigley
- The Minderoo Foundation, Perth, Western Australia, Australia;
- James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
27
|
Lee G, Sanderson BJ, Ellis TJ, Dilkes BP, McKay JK, Ågren J, Oakley CG. A large-effect fitness trade-off across environments is explained by a single mutation affecting cold acclimation. Proc Natl Acad Sci U S A 2024; 121:e2317461121. [PMID: 38289961 PMCID: PMC10861903 DOI: 10.1073/pnas.2317461121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Identifying the genetic basis of local adaptation and fitness trade-offs across environments is a central goal of evolutionary biology. Cold acclimation is an adaptive plastic response for surviving seasonal freezing, and costs of acclimation may be a general mechanism for fitness trade-offs across environments in temperate zone species. Starting with locally adapted ecotypes of Arabidopsis thaliana from Italy and Sweden, we examined the fitness consequences of a naturally occurring functional polymorphism in CBF2. This gene encodes a transcription factor that is a major regulator of cold-acclimated freezing tolerance and resides within a locus responsible for a genetic trade-off for long-term mean fitness. We estimated the consequences of alternate genotypes of CBF2 on 5-y mean fitness and fitness components at the native field sites by comparing near-isogenic lines with alternate genotypes of CBF2 to their genetic background ecotypes. The effects of CBF2 were validated at the nucleotide level using gene-edited lines in the native genetic backgrounds grown in simulated parental environments. The foreign CBF2 genotype in the local genetic background reduced long-term mean fitness in Sweden by more than 10%, primarily via effects on survival. In Italy, fitness was reduced by more than 20%, primarily via effects on fecundity. At both sites, the effects were temporally variable and much stronger in some years. The gene-edited lines confirmed that CBF2 encodes the causal variant underlying this genetic trade-off. Additionally, we demonstrated a substantial fitness cost of cold acclimation, which has broad implications for potential maladaptive responses to climate change.
Collapse
Affiliation(s)
- Gwonjin Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Brian J. Sanderson
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Thomas J. Ellis
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, UppsalaSE-752 36, Sweden
| | - Brian P. Dilkes
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
| | - John K. McKay
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO80523
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, UppsalaSE-752 36, Sweden
| | - Christopher G. Oakley
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| |
Collapse
|
28
|
Reid JM, Dickel L, Keller LF, Nietlisbach P, Arcese P. Multi-generation genetic contributions of immigrants reveal cryptic elevated and sex-biased effective gene flow within a natural meta-population. Ecol Lett 2024; 27:e14377. [PMID: 38361472 DOI: 10.1111/ele.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
Impacts of immigration on micro-evolution and population dynamics fundamentally depend on net rates and forms of resulting gene flow into recipient populations. Yet, the degrees to which observed rates and sex ratios of physical immigration translate into multi-generational genetic legacies have not been explicitly quantified in natural meta-populations, precluding inference on how movements translate into effective gene flow and eco-evolutionary outcomes. Our analyses of three decades of complete song sparrow (Melospiza melodia) pedigree data show that multi-generational genetic contributions from regular natural immigrants substantially exceeded those from contemporary natives, consistent with heterosis-enhanced introgression. However, while contributions from female immigrants exceeded those from female natives by up to three-fold, male immigrants' lineages typically went locally extinct soon after arriving. Both the overall magnitude, and the degree of female bias, of effective gene flow therefore greatly exceeded those which would be inferred from observed physical arrivals, altering multiple eco-evolutionary implications of immigration.
Collapse
Affiliation(s)
- Jane M Reid
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Lisa Dickel
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Natural History Museum, University of Zurich, Zurich, Switzerland
| | - Pirmin Nietlisbach
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Peter Arcese
- Department of Forest & Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Syrotchen JM, Ferris KG. Local adaptation to an altitudinal gradient: the interplay between mean phenotypic trait variation and phenotypic plasticity in Mimulus laciniatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.02.551729. [PMID: 37577559 PMCID: PMC10418151 DOI: 10.1101/2023.08.02.551729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Organisms can adapt to environmental heterogeneity through two mechanisms: (1) expression of population genetic variation or (2) phenotypic plasticity. In this study we investigated whether patterns of variation in both trait means and phenotypic plasticity along elevational and latitudinal clines in a North American endemic plant, Mimulus laciniatus, were consistent with local adaptation. We grew inbred lines of M. laciniatus from across the species' range in two common gardens varying in day length to measure mean and plastic trait expression in several traits previously shown to be involved in adaptation to M. laciniatus's rocky outcrop microhabitat: flowering time, size-related traits, and leaf shape. We examined correlations between the mean phenotype and phenotypic plasticity, and tested for a relationship between trait variation and population elevation and latitude. We did not find a strong correlation between mean and plastic trait expression at the individual genotype level suggesting that they operate under independent genetic controls. We identified multiple traits that show patterns consistent with local adaptation to elevation: critical photoperiod, flowering time, flower size, mean leaf lobing, and leaf lobing plasticity. These trends occur along multiple geographically independent altitudinal clines indicating that selection is a more likely cause of this pattern than gene flow among nearby populations with similar trait values. We also found that population variation in mean leaf lobing is associated with latitude. Our results indicate that both having more highly lobed leaves and greater leaf shape plasticity may be adaptive at high elevation within M. laciniatus. Our data strongly suggest that traits known to be under divergent selection between M. laciniatus and close relative Mimulus guttatus are also under locally varying selection within M. laciniatus.
Collapse
Affiliation(s)
- Jill M. Syrotchen
- Department of Ecology and Evolutionary Biology, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118
| | - Kathleen G. Ferris
- Department of Ecology and Evolutionary Biology, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118
| |
Collapse
|
30
|
Schmid M, Rueffler C, Lehmann L, Mullon C. Resource Variation Within and Between Patches: Where Exploitation Competition, Local Adaptation, and Kin Selection Meet. Am Nat 2024; 203:E19-E34. [PMID: 38207145 DOI: 10.1086/727483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
AbstractIn patch- or habitat-structured populations, different processes can favor adaptive polymorphism at different scales. While spatial heterogeneity can generate spatially disruptive selection favoring variation between patches, local competition can lead to locally disruptive selection promoting variation within patches. So far, almost all theory has studied these two processes in isolation. Here, we use mathematical modeling to investigate how resource variation within and between habitats influences the evolution of variation in a consumer population where individuals compete in finite patches connected by dispersal. We find that locally and spatially disruptive selection typically act in concert, favoring polymorphism under a wider range of conditions than when in isolation. But when patches are small and dispersal between them is low, kin competition inhibits the emergence of polymorphism, especially when the latter is driven by local competition for resources. We further use our model to clarify what comparisons between trait and neutral genetic differentiation (Q ST / F ST comparisons) can tell about the nature of selection. Overall, our results help us understand the interaction between two major drivers of polymorphism: locally and spatially disruptive selection, and how this interaction is modulated by the unavoidable effects of kin selection under limited dispersal.
Collapse
|
31
|
Jordan R, Harrison PA, Breed M. The eco-evolutionary risks of not changing seed provenancing practices in changing environments. Ecol Lett 2024; 27:e14348. [PMID: 38288869 DOI: 10.1111/ele.14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 02/01/2024]
Abstract
Sourcing seed from local populations has been the long-standing default for native restoration plantings for numerous eco-evolutionary reasons. However, rapidly changing environments are revealing risks associated with both non-local and local provenancing. As alternative strategies gain interest, we argue to progress seed sourcing discussions towards developing risk-based decision-making that weighs the risks of changing and not changing in a changing environment, transcending historic default positions and local versus non-local debates.
Collapse
Affiliation(s)
| | - Peter A Harrison
- Australian Research Council Centre for Forest Value & School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - Martin Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
32
|
Hoste A, Capblancq T, Broquet T, Denoyelle L, Perrier C, Buzan E, Šprem N, Corlatti L, Crestanello B, Hauffe HC, Pellissier L, Yannic G. Projection of current and future distribution of adaptive genetic units in an alpine ungulate. Heredity (Edinb) 2024; 132:54-66. [PMID: 38082151 PMCID: PMC10798982 DOI: 10.1038/s41437-023-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 01/21/2024] Open
Abstract
Climate projections predict major changes in alpine environments by the end of the 21st century. To avoid climate-induced maladaptation and extinction, many animal populations will either need to move to more suitable habitats or adapt in situ to novel conditions. Since populations of a species exhibit genetic variation related to local adaptation, it is important to incorporate this variation into predictive models to help assess the ability of the species to survive climate change. Here, we evaluate how the adaptive genetic variation of a mountain ungulate-the Northern chamois (Rupicapra rupicapra)-could be impacted by future global warming. Based on genotype-environment association analyses of 429 chamois using a ddRAD sequencing approach, we identified genetic variation associated with climatic gradients across the European Alps. We then delineated adaptive genetic units and projected the optimal distribution of these adaptive groups in the future. Our results suggest the presence of local adaptation to climate in Northern chamois with similar genetic adaptive responses in geographically distant but climatically similar populations. Furthermore, our results predict that future climatic changes will modify the Northern chamois adaptive landscape considerably, with various degrees of maladaptation risk.
Collapse
Affiliation(s)
- Amélie Hoste
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Thibaut Capblancq
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Thomas Broquet
- CNRS, Sorbonne Université, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Laure Denoyelle
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Charles Perrier
- UMR CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, Montpellier, France
| | - Elena Buzan
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia
- Faculty of Environmental Protection, Trg mladosti 7, 3320, Velenje, Slovenia
| | - Nikica Šprem
- Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000, Zagreb, Croatia
| | - Luca Corlatti
- Stelvio National Park - ERSAF Lombardia, Via De Simoni 42, 23032, Bormio, Italy
- Chair of Wildlife Ecology and Management, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| | - Barbara Crestanello
- Conservation Genomics Unit, Research and Innovation Centre, Fondazione E. Mach, Via E. Mach 1, 38098 S, Michele all'Adige, TN, Italy
| | - Heidi Christine Hauffe
- Conservation Genomics Unit, Research and Innovation Centre, Fondazione E. Mach, Via E. Mach 1, 38098 S, Michele all'Adige, TN, Italy
| | - Loïc Pellissier
- Landscape Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zrich, Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Glenn Yannic
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| |
Collapse
|
33
|
Zettlemoyer MA. A continuum of selection on life-history traits under differential environmental heterogeneity. A commentary on 'Chasing the fitness optimum: temporal variation in genetic and environmental expression of life-history traits for a perennial plant'. ANNALS OF BOTANY 2023; 132:i-ii. [PMID: 38006328 PMCID: PMC10902886 DOI: 10.1093/aob/mcad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
This article comments on:
Mason W. Kulbaba, Zebadiah Yoko and Jill A. Hamilton. Chasing the fitness optimum: temporal variation in the genetic and environmental expression of life-history traits for a perennial plant, Annals of Botany, Volume 132, Issue 7, 1 December 2023, Pages 1191–1204 https://doi.org/10.1093/aob/mcad100
Collapse
|
34
|
Kulbaba MW, Yoko Z, Hamilton JA. Chasing the fitness optimum: temporal variation in the genetic and environmental expression of life-history traits for a perennial plant. ANNALS OF BOTANY 2023; 132:1191-1204. [PMID: 37493041 PMCID: PMC10902883 DOI: 10.1093/aob/mcad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND AND AIMS The ability of plants to track shifting fitness optima is crucial within the context of global change, where increasing environmental extremes may have dramatic consequences for life history, fitness, and ultimately population persistence. However, tracking changing conditions relies on the relationship between genetic and environmental variance, where selection may favour plasticity, the evolution of genetic differences, or both depending on the spatial and temporal scale of environmental heterogeneity. METHODS Over three years, we compared the genetic and environmental components of phenological and life-history variation in a common environment for the spring perennial Geum triflorum. Populations were sourced from alvar habitats that exhibit extreme but predictable annual flood-desiccation cycles and prairie habitats that exhibit similar but less predictable variation in water availability. KEY RESULTS Heritability was generally higher for early life-history (emergence probability) relative to later life-history traits (total seed mass), indicating that traits associated with establishment are under stronger genetic control relative to later life-history fitness expressions, where plasticity may play a larger role. This pattern was particularly notable in seeds sourced from environmentally extreme but predictable alvar habitats relative to less predictable prairie environments. Fitness landscapes based on seed source origin, largely characterized by varying water availability and flower production, described selection as the degree of maladaptation of seed source environment relative to the prairie common garden environment. Plants from alvar populations were consistently closer to the fitness optimum across all years. Annually, the breadth of the fitness optimum expanded primarily along a moisture gradient, with inclusion of more populations onto the expanding optimum. CONCLUSIONS These results highlight the importance of temporally and spatially varying selection in life-history evolution, indicating plasticity may become a primary mechanism needed to track fitness for later life-history events within perennial systems.
Collapse
Affiliation(s)
- Mason W Kulbaba
- Our Lady of the Lake University, Department of Mathematics and Science, San Antonio, TX 78207, USA
- St Mary’s University, Biology Area, 14500 Bannister Road SE, Calgary, Alberta, Canada, T2X 1Z4
| | - Zebadiah Yoko
- North Dakota State University, Department of Biological Sciences, Fargo, ND 58102, USA
| | - Jill A Hamilton
- North Dakota State University, Department of Biological Sciences, Fargo, ND 58102, USA
- Pennsylvania State University, Department of Ecosystem Science and Management, University Park, PA 16801, USA
| |
Collapse
|
35
|
Tan Y, Sun YX, Zhu YJ, Liao ML, Dong YW. The impacts of thermal heterogeneity across microhabitats on post-settlement selection of intertidal mussels. iScience 2023; 26:108376. [PMID: 38034360 PMCID: PMC10682278 DOI: 10.1016/j.isci.2023.108376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/08/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Rapid genetic selection is critical for allowing natural populations to adapt to different thermal environments such as those that occur across intertidal microhabitats with high degrees of thermal heterogeneity. To address the question of how thermal regimes influence selection and adaptation in the intertidal black mussel Mytilisepta virgata, we continuously recorded environmental temperatures in both tidal pools and emergent rock microhabitats and then assessed genetic differentiation, gene expression patterns, RNA editing level, and cardiac performance. Our results showed that the subpopulations in the tidal pool and on emergent rocks had different genetic structures and exhibited different physiological and molecular responses to high-temperature stress. These results indicate that environmental heterogeneity across microhabitats is important for driving genetic differentiation and shed light on the importance of post-settlement selection for adaptively modifying the genetic composition and thermal responses of these intertidal mussels.
Collapse
Affiliation(s)
- Yue Tan
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
| | - Yong-Xu Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ya-Jie Zhu
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
| | - Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, P.R. China
| |
Collapse
|
36
|
Beaty F, Gehman ALM, Brownlee G, Harley CDG. Not just range limits: Warming rate and thermal sensitivity shape climate change vulnerability in a species range center. Ecology 2023; 104:e4183. [PMID: 37786322 DOI: 10.1002/ecy.4183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Climate change manifests unevenly across space and time and produces complex patterns of stress for ecological systems. Species can also show substantial among-population variability in response to environmental change across their geographic range due to evolutionary processes. Explanatory factors or their proxies, such as temperature and latitude, help parse these sources of environmental and intraspecific variability; however, overemphasizing latitudinal trends can obscure the role of local environmental conditions in shaping population vulnerability to climate change. Focusing on the geographic center of a species range to disentangle latitude, we test the hypothesis that populations from warmer regions of a species range are more vulnerable to ocean warming. We conducted a mesocosm experiment and field reciprocal transplant with four populations of a marine snail, Nucella lamellosa, from two regions in British Columbia, Canada, that differ in thermal characteristics: the Central Coast, a cool region, and the Strait of Georgia, one of the warmest regions of this species' range and one that is warming faster than the Central Coast. Populations from the Strait of Georgia experienced growth reductions at contemporary summertime seawater temperatures in the laboratory and showed stark reductions in survival and growth under future seawater conditions and when outplanted at their native transplant sites. This indicates a high vulnerability to ocean warming, especially given the faster rate of ocean warming in this region. In contrast, populations from the cooler Central Coast demonstrated high performance at contemporary seawater temperatures and high growth and survival in projected future seawater temperatures and at their native outplant sites. Given their position within the geographic center of N. lamellosa's range, extirpation events in the vulnerable Strait of Georgia populations could compromise connectivity within the metapopulation and lead to gaps across this species' range. Overall, our study supports predictions that populations from warm regions of species ranges are more vulnerable to environmental warming, suggests that the Strait of Georgia and other inland or coastal seas could be focal points for climate change effects and ecological transformation, and emphasizes the importance of analyzing climate change vulnerability in the context of regional environmental data and throughout a species' range.
Collapse
Affiliation(s)
- Fiona Beaty
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Unceded xwməθkwəy̓əm (Musqueam) Territory, Vancouver, British Columbia, Canada
- Institute for the Ocean and Fisheries, University of British Columbia, Unceded xwməθkwəy̓əm (Musqueam) Territory, Vancouver, British Columbia, Canada
| | - Alyssa-Lois M Gehman
- Institute for the Ocean and Fisheries, University of British Columbia, Unceded xwməθkwəy̓əm (Musqueam) Territory, Vancouver, British Columbia, Canada
- Hakai Institute, Quadra Island, British Columbia, Canada
| | - Graham Brownlee
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Unceded xwməθkwəy̓əm (Musqueam) Territory, Vancouver, British Columbia, Canada
| | - Christopher D G Harley
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Unceded xwməθkwəy̓əm (Musqueam) Territory, Vancouver, British Columbia, Canada
- Institute for the Ocean and Fisheries, University of British Columbia, Unceded xwməθkwəy̓əm (Musqueam) Territory, Vancouver, British Columbia, Canada
| |
Collapse
|
37
|
Lindstrom J, Ahlering M, Hamilton J. Seed sourcing for climate-resilient grasslands: The role of seed source diversity during early restoration establishment. Ecol Evol 2023; 13:e10756. [PMID: 38020697 PMCID: PMC10663101 DOI: 10.1002/ece3.10756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Restoration advocates for the use of local seed in restoration, but theory suggests that diverse seed sources may enhance genetic diversity and longer term evolutionary potential within restored communities. However, few empirical studies have evaluated whether species and genetic diversity within species impacts plant community composition following restoration. The goal of this research is to compare the effects of single and multi-sourced seed mix treatments on plant community diversity following restoration. Species establishment, abundance, and diversity were compared following two restoration seed mix treatments created to include 14 species commonly used in grassland restoration. We compared the application of seed mixes designed using a single population per species with those containing five populations per species across sites in Minnesota and South Dakota, United States. Early plant establishment and richness mostly reflected non-seeded species across both sites, although seeded species established at a slightly higher rate in year two following restoration. At the South Dakota site, community composition largely reflected changes associated with establishment across the growing season as opposed to seed mix treatment. This contrasted with the Minnesota site, where community composition appeared to be strongly influenced by seed mix treatment. While there is some evidence seed mix treatment may be influencing the emergent community across sites, spatial heterogeneity across the Minnesota restoration site likely influenced diversity in early emergence over that of seed mix treatment. Indeed, varying land-use history across both sites likely contributed to differences in species composition observed at this early stage of the restoration. This suggests that seed mix treatment may have limited impact on early post-restoration emergence diversity relative to the importance of land-use history. However, future monitoring will be needed to evaluate whether the impact of seed mix treatment on community composition changes over time.
Collapse
Affiliation(s)
- Jessica Lindstrom
- Department of Biological SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
| | | | - Jill Hamilton
- Department of Biological SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
- Department of Ecosystem Science and ManagementPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
38
|
Williamson M, Gerhard D, Hulme PE, Millar A, Chapman H. High-performing plastic clones best explain the spread of yellow monkeyflower from lowland to higher elevation areas in New Zealand. J Evol Biol 2023; 36:1455-1470. [PMID: 37731241 DOI: 10.1111/jeb.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The relative contribution of adaptation and phenotypic plasticity can vary between core and edge populations, with implications for invasive success. We investigated the spread of the invasive yellow monkeyflower, Erythranthe gutatta in New Zealand, where it is spreading from lowland agricultural land into high-elevation conservation areas. We investigated the extent of phenotypic variation among clones from across the South Island, looked for adaptation and compared degrees of plasticity among lowland core versus montane range-edge populations. We grew 34 clones and measured their vegetative and floral traits in two common gardens, one in the core range at 9 m a.s.l. and one near the range-edge at 560 m a.s.l. Observed trait variation was explained by a combination of genotypic diversity (as identified through common gardens) and high phenotypic plasticity. We found a subtle signature of local adaptation to lowland habitats but all clones were plastic and able to survive and reproduce in both gardens. In the range-edge garden, above-ground biomass was on average almost double and stolon length almost half that of the same clone in the core garden. Clones from low-elevation sites showed higher plasticity on average than those from higher elevation sites. The highest performing clones in the core garden were also top performers in the range-edge garden. These results suggest some highly fit general-purpose genotypes, possibly pre-adapted to New Zealand montane conditions, best explains the spread of E. gutatta from lowland to higher elevation areas.
Collapse
Affiliation(s)
- Michelle Williamson
- Institute of Environmental Science and Research ESR Christchurch, Christchurch, New Zealand
| | - Daniel Gerhard
- School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
| | - Philip E Hulme
- Department of Pest Management and Conservation, Lincoln University, Lincoln, New Zealand
- Bioprotection Aotearoa, Lincoln University, Lincoln, New Zealand
| | - Aaron Millar
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Hazel Chapman
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
39
|
Dittmar EL, Schemske DW. Temporal Variation in Selection Influences Microgeographic Local Adaptation. Am Nat 2023; 202:471-485. [PMID: 37792918 DOI: 10.1086/725865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractEcological heterogeneity can lead to local adaptation when populations exhibit fitness trade-offs among habitats. However, the degree to which local adaptation is affected by the spatial and temporal scale of environmental variation is poorly understood. A multiyear reciprocal transplant experiment was performed with populations of the annual plant Leptosiphon parviflorus living on adjacent serpentine and nonserpentine soil. Local adaptation over this small geographic scale was observed, but there were differences in the temporal variability of selection across habitats. On serpentine soil, the local population had a consistently large survival advantage, presumably as a result of the temporal stability in selection imposed by soil cation content. In contrast, a fecundity advantage was observed for the sandstone population on its native soil type but only in the two study years with the highest rainfall. A manipulative greenhouse experiment demonstrated that the fitness advantage of the sandstone population in its native soil type depends critically on water availability. The temporal variability in local adaptation driven by variation in precipitation suggests that continued drought conditions have the potential to erode local adaptation in these populations. These results show how different selective factors can influence spatial and temporal patterns of variation in fitness trade-offs.
Collapse
|
40
|
Miller CL, Sun D, Thornton LH, McGuigan K. The Contribution of Mutation to Variation in Temperature-Dependent Sprint Speed in Zebrafish, Danio rerio. Am Nat 2023; 202:519-533. [PMID: 37792923 DOI: 10.1086/726011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractThe contribution of new mutations to phenotypic variation and the consequences of this variation for individual fitness are fundamental concepts for understanding genetic variation and adaptation. Here, we investigated how mutation influenced variation in a complex trait in zebrafish, Danio rerio. Typical of many ecologically relevant traits in ectotherms, swimming speed in fish is temperature dependent, with evidence of adaptive evolution of thermal performance. We chemically induced novel germline point mutations in males and measured sprint speed in their sons at six temperatures (between 16°C and 34°C). Heterozygous mutational effects on speed were strongly positively correlated among temperatures, resulting in statistical support for only a single axis of mutational variation, reflecting temperature-independent variation in speed (faster-slower mode). These results suggest pleiotropic effects on speed across different temperatures; however, spurious correlations arise via linkage or heterogeneity in mutation number when mutations have consistent directional effects on each trait. Here, mutation did not change mean speed, indicating no directional bias in mutational effects. The results contribute to emerging evidence that mutations may predominantly have synergistic cross-environment effects, in contrast to conditionally neutral or antagonistic effects that underpin thermal adaptation. We discuss several aspects of experimental design that may affect resolution of mutations with nonsynergistic effects.
Collapse
|
41
|
deMayo JA, Brennan RS, Pespeni MH, Finiguerra M, Norton L, Park G, Baumann H, Dam HG. Simultaneous warming and acidification limit population fitness and reveal phenotype costs for a marine copepod. Proc Biol Sci 2023; 290:20231033. [PMID: 37670582 PMCID: PMC10510449 DOI: 10.1098/rspb.2023.1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 07/25/2023] [Indexed: 09/07/2023] Open
Abstract
Phenotypic plasticity and evolutionary adaptation allow populations to cope with global change, but limits and costs to adaptation under multiple stressors are insufficiently understood. We reared a foundational copepod species, Acartia hudsonica, under ambient (AM), ocean warming (OW), ocean acidification (OA), and combined ocean warming and acidification (OWA) conditions for 11 generations (approx. 1 year) and measured population fitness (net reproductive rate) derived from six life-history traits (egg production, hatching success, survival, development time, body size and sex ratio). Copepods under OW and OWA exhibited an initial approximately 40% fitness decline relative to AM, but fully recovered within four generations, consistent with an adaptive response and demonstrating synergy between stressors. At generation 11, however, fitness was approximately 24% lower for OWA compared with the AM lineage, consistent with the cost of producing OWA-adapted phenotypes. Fitness of the OWA lineage was not affected by reversal to AM or low food environments, indicating sustained phenotypic plasticity. These results mimic those of a congener, Acartia tonsa, while additionally suggesting that synergistic effects of simultaneous stressors exert costs that limit fitness recovery but can sustain plasticity. Thus, even when closely related species experience similar stressors, species-specific costs shape their unique adaptive responses.
Collapse
Affiliation(s)
- James A. deMayo
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Reid S. Brennan
- Department of Biology, University of Vermont, Burlington, VT, USA
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Melissa H. Pespeni
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Michael Finiguerra
- Department of Ecology and Evolutionary Biology, University of Connecticut, Groton, CT, USA
| | - Lydia Norton
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Gihong Park
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Hannes Baumann
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Hans G. Dam
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
42
|
Ricks KD, Ricks NJ, Yannarell AC. Patterns of Plant Salinity Adaptation Depend on Interactions with Soil Microbes. Am Nat 2023; 202:276-287. [PMID: 37606945 DOI: 10.1086/725393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
AbstractAs plant-microbe interactions are both ubiquitous and critical in shaping plant fitness, patterns of plant adaptation to their local environment may be influenced by these interactions. Identifying the contribution of soil microbes to plant adaptation may provide insight into the evolution of plant traits and their microbial symbioses. To this end, we assessed the contribution of soil microbes to plant salinity adaptation by growing 10 populations of Bromus tectorum, collected from habitats differing in their salinity, in the greenhouse under either high-salinity or nonsaline conditions and with or without soil microbial partners. Across two live soil inoculum treatments, we found evidence for adaptation of these populations to their home salinity environment. However, when grown in sterile soils, plants were slightly maladapted to their home salinity environment. As plants were on average more fit in sterile soils, pathogenic microbes may have been significant drivers of plant fitness herein. Consequently, we hypothesized that the plant fitness advantage in their home salinity may have been due to increased plant resistance to pathogenic attack in those salinity environments. Our results highlight that plant-microbe interactions may partially mediate patterns of plant adaptation as well as be important selective agents in plant evolution.
Collapse
|
43
|
Oakley CG, Schemske DW, McKay JK, Ågren J. Ecological genetics of local adaptation in Arabidopsis: An 8-year field experiment. Mol Ecol 2023; 32:4570-4583. [PMID: 37317048 DOI: 10.1111/mec.17045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
There is considerable evidence for local adaptation in nature, yet important questions remain regarding its genetic basis. How many loci are involved? What are their effect sizes? What is the relative importance of conditional neutrality versus genetic trade-offs? Here we address these questions in the self-pollinating, annual plant Arabidopsis thaliana. We used 400 recombinant inbred lines (RILs) derived from two locally adapted populations in Italy and Sweden, grew the RILs and parents at the parental locations, and mapped quantitative trait loci (QTL) for mean fitness (fruits/seedling planted). We previously published results from the first 3 years of the study, and here add five additional years, providing a unique opportunity to assess how temporal variation in selection might affect QTL detection and classification. We found 10 adaptive and one maladaptive QTL in Italy, and six adaptive and four maladaptive QTL in Sweden. The discovery of maladaptive QTL at both sites suggests that even locally adapted populations are not always at their genotypic optimum. Mean effect sizes for adaptive QTL, 0.97 and 0.55 fruits in Italy and Sweden, respectively, were large relative to the mean fitness of the RILs (approximately 8 fruits/seedling planted at both sites). Both genetic trade-offs (four cases) and conditional neutrality (seven cases) contribute to local adaptation in this system. The 8-year dataset provided greater power to detect QTL and to estimate their locations compared to our previous 3-year study, identifying one new genetic trade-off and resolving one genetic trade-off into two conditionally adaptive QTL.
Collapse
Affiliation(s)
- Christopher G Oakley
- Department of Botany and Plant Pathology, and the Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Douglas W Schemske
- Department of Plant Biology and W. K. Kellogg Biological Station, Michigan State University, East Lansing, Michigan, USA
| | - John K McKay
- College of Agricultural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Christie MR, McNickle GG. Negative frequency dependent selection unites ecology and evolution. Ecol Evol 2023; 13:e10327. [PMID: 37484931 PMCID: PMC10361363 DOI: 10.1002/ece3.10327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/02/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
From genes to communities, understanding how diversity is maintained remains a fundamental question in biology. One challenging to identify, yet potentially ubiquitous, mechanism for the maintenance of diversity is negative frequency dependent selection (NFDS), which occurs when entities (e.g., genotypes, life history strategies, species) experience a per capita reduction in fitness with increases in relative abundance. Because NFDS allows rare entities to increase in frequency while preventing abundant entities from excluding others, we posit that negative frequency dependent selection plays a central role in the maintenance of diversity. In this review, we relate NFDS to coexistence, identify mechanisms of NFDS (e.g., mutualism, predation, parasitism), review strategies for identifying NFDS, and distinguish NFDS from other mechanisms of coexistence (e.g., storage effects, fluctuating selection). We also emphasize that NFDS is a key place where ecology and evolution intersect. Specifically, there are many examples of frequency dependent processes in ecology, but fewer cases that link this process to selection. Similarly, there are many examples of selection in evolution, but fewer cases that link changes in trait values to negative frequency dependence. Bridging these two well-developed fields of ecology and evolution will allow for mechanistic insights into the maintenance of diversity at multiple levels.
Collapse
Affiliation(s)
- Mark R. Christie
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndianaUSA
| | - Gordon G. McNickle
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
45
|
Carroll T, Cardou F, Dornelas M, Thomas CD, Vellend M. Biodiversity change under adaptive community dynamics. GLOBAL CHANGE BIOLOGY 2023; 29:3525-3538. [PMID: 36916852 DOI: 10.1111/gcb.16680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/26/2023] [Accepted: 03/02/2023] [Indexed: 06/06/2023]
Abstract
Compositional change is a ubiquitous response of ecological communities to environmental drivers of global change, but is often regarded as evidence of declining "biotic integrity" relative to historical baselines. Adaptive compositional change, however, is a foundational idea in evolutionary biology, whereby changes in gene frequencies within species boost population-level fitness, allowing populations to persist as the environment changes. Here, we present an analogous idea for ecological communities based on core concepts of fitness and selection. Changes in community composition (i.e., frequencies of genetic differences among species) in response to environmental change should normally increase the average fitnessof community members. We refer to compositional changes that improve the functional match, or "fit," between organisms' traits and their environment as adaptive community dynamics. Environmental change (e.g., land-use change) commonly reduces the fit between antecedent communities and new environments. Subsequent change in community composition in response to environmental changes, however, should normally increase community-level fit, as the success of at least some constituent species increases. We argue that adaptive community dynamics are likely to improve or maintain ecosystem function (e.g., by maintaining productivity). Adaptive community responses may simultaneously produce some changes that are considered societally desirable (e.g., increased carbon storage) and others that are undesirable (e.g., declines of certain species), just as evolutionary responses within species may be deemed desirable (e.g., evolutionary rescue of an endangered species) or undesirable (e.g., enhanced virulence of an agricultural pest). When assessing possible management interventions, it is important to distinguish between drivers of environmental change (e.g., undesired climate warming) and adaptive community responses, which may generate some desirable outcomes. Efforts to facilitate, accept, or resist ecological change require separate consideration of drivers and responses, and may highlight the need to reconsider preferences for historical baseline communities over communities that are better adapted to the new conditions.
Collapse
Affiliation(s)
- Tadhg Carroll
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
- Department of Biology, University of York, York, United Kingdom
| | - Françoise Cardou
- Department of Biological Sciences, University of Toronto Scarborough, Ontario, Toronto, Canada
| | - Maria Dornelas
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
| | - Chris D Thomas
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
- Department of Biology, University of York, York, United Kingdom
| | - Mark Vellend
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
- Département de Biologie, Université de Sherbrooke, Québec, Sherbrooke, Canada
| |
Collapse
|
46
|
Martin PR, Ghalambor CK. A Case for the "Competitive Exclusion-Tolerance Rule" as a General Cause of Species Turnover along Environmental Gradients. Am Nat 2023; 202:1-17. [PMID: 37384767 DOI: 10.1086/724683] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractClosely related, ecologically similar species often segregate their distributions along environmental gradients of time, space, and resources, but previous research suggests diverse underlying causes. Here, we review reciprocal removal studies in nature that experimentally test the role of interactions among species in determining their turnover along environmental gradients. We find consistent evidence for asymmetric exclusion coupled with differences in environmental tolerance causing the segregation of species pairs, where a dominant species excludes a subordinate from benign regions of the gradient but is unable to tolerate challenging regions to which the subordinate species is adapted. Subordinate species were consistently smaller and performed better in regions of the gradient typically occupied by the dominant species compared with their native distribution. These results extend previous ideas contrasting competitive ability with adaptation to abiotic stress to include a broader diversity of species interactions (intraguild predation, reproductive interference) and environmental gradients, including gradients of biotic challenge. Collectively, these findings suggest that adaptation to environmental challenge compromises performance in antagonistic interactions with ecologically similar species. The consistency of this pattern across diverse organisms, environments, and biomes suggests generalizable processes structuring the segregation of ecologically similar species along disparate environmental gradients, a phenomenon that we propose should be named the competitive exclusion-tolerance rule.
Collapse
|
47
|
Cross RL, Thompson HC. Combined empirical techniques reveal key role for variation in plasticity in a novel environment. THE NEW PHYTOLOGIST 2023; 239:10-12. [PMID: 37097214 DOI: 10.1111/nph.18922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Regan L Cross
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Hana C Thompson
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
48
|
Santos MA, Antunes MA, Grandela A, Quina AS, Santos M, Matos M, Simões P. Slow and population specific evolutionary response to a warming environment. Sci Rep 2023; 13:9700. [PMID: 37322066 PMCID: PMC10272154 DOI: 10.1038/s41598-023-36273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Adaptation to increasingly warmer environments may be critical to avoid extinction. Whether and how these adaptive responses can arise is under debate. Though several studies have tackled evolutionary responses under different thermal selective regimes, very few have specifically addressed the underlying patterns of thermal adaptation under scenarios of progressive warming conditions. Also, considering how much past history affects such evolutionary response is critical. Here, we report a long-term experimental evolution study addressing the adaptive response of Drosophila subobscura populations with distinct biogeographical history to two thermal regimes. Our results showed clear differences between the historically differentiated populations, with adaptation to the warming conditions only evident in the low latitude populations. Furthermore, this adaptation was only detected after more than 30 generations of thermal evolution. Our findings show some evolutionary potential of Drosophila populations to respond to a warming environment, but the response was slow and population specific, emphasizing limitations to the ability of ectotherms to adapt to rapid thermal shifts.
Collapse
Affiliation(s)
- Marta A Santos
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Marta A Antunes
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Afonso Grandela
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana S Quina
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- CESAM-Centre for Environmental and Marine Studies, Universidade de Aveiro, Aveiro, Portugal
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Margarida Matos
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Simões
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Lisbon, Portugal.
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
49
|
Jin M, Liu H, Liu X, Guo T, Guo J, Yin Y, Ji Y, Li Z, Zhang J, Wang X, Qiao F, Xiao Y, Zan Y, Yan J. Complex genetic architecture underlying the plasticity of maize agronomic traits. PLANT COMMUNICATIONS 2023; 4:100473. [PMID: 36642074 DOI: 10.1016/j.xplc.2022.100473] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/21/2022] [Accepted: 11/07/2022] [Indexed: 05/11/2023]
Abstract
Phenotypic plasticity is the ability of a given genotype to produce multiple phenotypes in response to changing environmental conditions. Understanding the genetic basis of phenotypic plasticity and establishing a predictive model is highly relevant to future agriculture under a changing climate. Here we report findings on the genetic basis of phenotypic plasticity for 23 complex traits using a diverse maize population planted at five sites with distinct environmental conditions. We found that latitude-related environmental factors were the main drivers of across-site variation in flowering time traits but not in plant architecture or yield traits. For the 23 traits, we detected 109 quantitative trait loci (QTLs), 29 for mean values, 66 for plasticity, and 14 for both parameters, and 80% of the QTLs interacted with latitude. The effects of several QTLs changed in magnitude or sign, driving variation in phenotypic plasticity. We experimentally validated one plastic gene, ZmTPS14.1, whose effect was likely mediated by the compensation effect of ZmSPL6 from a downstream pathway. By integrating genetic diversity, environmental variation, and their interaction into a joint model, we could provide site-specific predictions with increased accuracy by as much as 9.9%, 2.2%, and 2.6% for days to tassel, plant height, and ear weight, respectively. This study revealed a complex genetic architecture involving multiple alleles, pleiotropy, and genotype-by-environment interaction that underlies variation in the mean and plasticity of maize complex traits. It provides novel insights into the dynamic genetic architecture of agronomic traits in response to changing environments, paving a practical way toward precision agriculture.
Collapse
Affiliation(s)
- Minliang Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Haijun Liu
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Tingting Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jia Guo
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yuejia Yin
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yan Ji
- Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China
| | - Zhenxian Li
- Institute of Agricultural Sciences of Xishuangbanna Prefecture of Yunnan Province, Jinghong 666100, China
| | - Jinhong Zhang
- Institute of Agricultural Sciences of Xishuangbanna Prefecture of Yunnan Province, Jinghong 666100, China
| | - Xiaqing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Qiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yanjun Zan
- Umeå Plant Science Center, Department of Forestry Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90736 Umeå, Sweden; Key Laboratory of Tobacco Improvement and Biotechnology, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
50
|
Levell ST, Bedgood SA, Travis J. Plastic maternal effects of social density on reproduction and fitness in the least killifish, Heterandria formosa. Ecol Evol 2023; 13:e10074. [PMID: 37214609 PMCID: PMC10196423 DOI: 10.1002/ece3.10074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Environmental parental effects, also known as transgenerational plasticity, are widespread in plants and animals. Less well known is whether those effects contribute to maternal fitness in the same manner in different populations. We carried out a multigenerational laboratory experiment with females drawn from two populations of the least killifish, Heterandria formosa, to assess transgenerational plasticity in reproductive traits in response to differences in social density and its effects on maternal fitness. In the first and second generations, increased density decreased reproductive rate and increased offspring size in females from both populations. There were complicated patterns of transgenerational plasticity on maternal fitness that differed between females from different populations. Females from a population with historically low densities whose mothers experienced lower density had higher fitness than females whose mothers experienced higher density, regardless of their own density. The opposite pattern emerged in females from the population with historically high densities: Females whose mothers experienced higher density had higher fitness than females whose mothers experienced lower density. This transgenerational plasticity is not anticipatory but might be considered adaptive in both populations if providing those "silver spoons" enhances offspring fitness in all environments.
Collapse
Affiliation(s)
| | - Samuel A. Bedgood
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | - Joseph Travis
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|