1
|
Dilhari A, Campbell PM, Munasinghe A, Brown H, Kaluarachchi TDJ, Gunasekara C, Pathirage S, Fernando N, Weerasekara D, Humphreys GJ, McBain AJ, Weerasekera M. Biofilms and microbiome profiles in chronic wounds: links to antibiotic use and wound severity in a Sri Lankan cohort. J Appl Microbiol 2024; 135:lxae262. [PMID: 39420474 DOI: 10.1093/jambio/lxae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
AIMS We have characterized the microbiome of infected chronic diabetic wounds (CDWs), exploring associations with antibiotic use and wound severity in a Sri Lankan cohort. METHODS AND RESULTS Fifty CDW patients were enrolled, 38 of whom received antibiotics. Tissue biopsies were analysed by microbiome profiling, and wounds were graded using the University of Texas Wound Grading System. Biofilm presence was assessed in 20 wounds. The microbiome was largely dominated by Enterobacteriaceae, Pseudomonadaceae, Streptococcaceae, and Corynebacteriaceae. Proteobacteria levels were significantly higher in antibiotic-treated wounds (P = .019), with increased Pseudomonas abundance. Wounds were categorized as grade 1 (10), grade 2 (29), and grade 3 (11). Alpha diversity varied by wound grade (P = .015), with grade 2 wounds showing the highest diversity and grade 3 the lowest. All 20 tested wounds were biofilm-positive, and community composition varied more in antibiotic-treated wounds (P = .004). CONCLUSIONS CDW microbiomes were dominated by Enterobacteriaceae and Pseudomonadaceae, with elevated Proteobacteria in antibiotic-treated wounds. Alpha diversity correlated with wound severity, peaking in grade 2 wounds. The high prevalence of biofilms in wounds underscores the need for management of CDWs that address microbial complexity.
Collapse
Affiliation(s)
- Ayomi Dilhari
- Department of Basic Sciences, Faculty of Allied Health Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| | - Paul M Campbell
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | | | - Hannah Brown
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Dublin, D04W6F6, Ireland
| | - Thilini D J Kaluarachchi
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| | - Chinthika Gunasekara
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| | - Sujatha Pathirage
- Department of Bacteriology, Medical Research Institute, Colombo 08, 00800, Sri Lanka
| | - Neluka Fernando
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| | - Deepaka Weerasekara
- Department of Surgery, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Manjula Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| |
Collapse
|
2
|
Liu T, Qu L, Zhu C, Guo M, Ma X, Lei H, Fan D. Oxygen-generating hydrogels combined with electrical stimulation: A dual approach for promoting diabetic wound healing. Acta Biomater 2024:S1742-7061(24)00640-8. [PMID: 39489203 DOI: 10.1016/j.actbio.2024.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Chronic wounds resulting from hyperglycemia and hypoxia are common complications in diabetic patients, posing significant challenges for clinical treatment. In this study, we developed a hydrogel (PVNP-SP) using [VBIM]Br, NIPAM, PEGDA, and spirulina, which exhibited strong antioxidant properties. The incorporation of [VBIM]Br endowed the hydrogel with electrical conductivity, allowing it to activate voltage-gated ion channels under an external electric field, thereby promoting cell survival and migration. The hydrogel also enhanced cellular antioxidant capacity by providing sustained oxygenation, inhibiting HIF-1α nuclear translocation, and activating the Nrf2/HO-1 pathway. Notably, in a chronic wound model, the combined effects of oxygen production and electrical stimulation from the PVNP-SP hydrogel significantly reduced wound inflammation, promoted collagen deposition and angiogenesis, and facilitated early wound closure. This therapeutic strategy, which mitigates hypoxia while integrating electrical stimulation, offers a highly effective strategy for improving chronic wound healing in diabetic patients. STATEMENT OF SIGNIFICANCE: Inspired by photoautotrophic organisms, we combined microalgae with a conductive hydrogel and we demonstrated the synergistic promotion of chronic wound healing by electrical stimulation combined with microalgae oxygen-producing hydrogel. The approach of combining microalgae hydrogel patches with electrical stimulation demonstrates the feasibility of delivering oxygen to tissues while combining electrical stimulation for synergistic tissue repair. The hydrogel is easy to fabricate and handle, and may be suitable for a variety of treatments, such as myocardial infarction, lower limb ischemia, and drug delivery. The potential applicability of this hydrogel in a variety of treatments suggests that it has promising applications in regenerative medicine.
Collapse
Affiliation(s)
- Taishan Liu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Linlin Qu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China; Xi'an Giant Biotechnology Co., Ltd., Xi'an 710076, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Mengdi Guo
- Xi'an Giant Biotechnology Co., Ltd., Xi'an 710076, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Athmuri DN, Bhattacharyya J, Bhatnagar N, Shiekh PA. Alleviating hypoxia and oxidative stress for treatment of cardiovascular diseases: a biomaterials perspective. J Mater Chem B 2024; 12:10490-10515. [PMID: 39302443 DOI: 10.1039/d4tb01126k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A state of hypoxia (lack of oxygen) persists in the initial and later phases of healing in cardiovascular diseases, which can alter the tissue's repair or regeneration, ultimately affecting the structure and functionality of the related organ. Consequently, this results in a cascade of events, leading to metabolic stress and the production of reactive oxygen species (ROS) and autophagy. This unwanted situation not only limits the oxygen supply to the needy tissues but also creates an inflammatory state, limiting the exchange of nutrients and other supplements. Consequently, biomaterials have gained considerable attention to alleviate hypoxia and oxidative stress in cardiovascular diseases. Numerous oxygen releasing and antioxidant biomaterials have been developed and proven to alleviate hypoxia and oxidative stress. This review article summarizes the mechanisms involved in cardiovascular pathologies due to hypoxia and oxidative stress, as well as the treatment modalities currently in practice. The applications, benefits and possible shortcomings of these approaches have been discussed. Additionally, the review explores the role of novel biomaterials in combating the limitations of existing approaches, primarily focusing on the development of oxygen-releasing and antioxidant biomaterials for cardiac repair and regeneration. It also directs attention to various other potential applications with critical insights for further advancement in this area.
Collapse
Affiliation(s)
- Durga Nandini Athmuri
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Jayanta Bhattacharyya
- Bio-therapeutics Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Naresh Bhatnagar
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Parvaiz Ahmad Shiekh
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
4
|
Lumban Gaol LM, Purba A, Diposarosa R, Pratiwi YS. Role of Hypoxic Secretome from Mesenchymal Stem Cells in Enhancing Tissue Repair: Regulatory Effects on HIF-1α, VEGF, and Fibroblast in a Sphincterotomy Rat Model. J Inflamm Res 2024; 17:7463-7484. [PMID: 39464333 PMCID: PMC11505569 DOI: 10.2147/jir.s480061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Background Fecal incontinence (FI) is the inability to control bowel movements, resulting in fecal leakage. If left untreated, FI can seriously impact the long-term well-being of individuals affected. Recently, using secretome has become a promising new treatment method. The secretome combines growth factors released outside cells during stem cell development, such as mesenchymal stem cells. It consists of soluble proteins, nucleic acids, fats, and extracellular vesicles, which contribute to different cell processes. The primary aim is to assess the impact of hypoxic secretome administration on accelerating wound healing through the HIF-1α pathway in a post-sphincterotomy rat model. Methods The study was conducted with two distinct groups of 10 rats each, the control and treatment groups, which were injected with hypoxic secretome at 0.3 mL. The inclusion criteria for the rats were as follows: male gender, belonging to the Sprague-Dawley strain, aged between 12 to 16 weeks, with an average body weight ranging from 240 to 250 grams. Results There was an increase in HIF-1α gene expression in both groups. The treatment group 37 was significantly higher on day 42 (p = 0.001). VEGF increased significantly in the treatment 38 group on day 42 (p = 0.015). The neovascularization score increased significantly in the treatment 39 group during the first 24 hours (p = 0.004). The fibroblast score increased significantly in the 40 treatment group in the first 24 hours (p = 0.000) and 42 days (p = 0.035). After being given secretome, there was a higher increase in % collagen area and collagen area (µm2) in the treatment group compared to the control group (27,77 vs 11.01) and (419.027,66 vs 186.694,16). Conclusion The use of hypoxic secretome has a significant effect as a choice for the treatment of anal sphincter injury after sphincterotomy through the HIF-1α-VEGF-Fibroblast pathway.
Collapse
Affiliation(s)
- Leecarlo Millano Lumban Gaol
- Faculty of Medicine Padjadjaran University, Bandung, Indonesia
- Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
- Faculty of Medicine Krida Wacana Christian University, Jakarta, Indonesia
| | - Ambrosius Purba
- Faculty of Medicine Padjadjaran University, Bandung, Indonesia
| | - Rizki Diposarosa
- Faculty of Medicine Padjadjaran University, Bandung, Indonesia
- Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | | |
Collapse
|
5
|
Xie H, Qian Y, Ding J, Zhao R, Huang L, Shen J, Zhou Z. Double Enzyme Active Hydrogel Program Regulates the Microenvironment of Staphylococcus aureus-Infected Pressure Ulcers. Adv Healthc Mater 2024:e2402363. [PMID: 39390845 DOI: 10.1002/adhm.202402363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/14/2024] [Indexed: 10/12/2024]
Abstract
The treatment of infected pressure ulcers (IUPs) requires addressing diverse microenvironments. A pressing challenge is to effectively enhance the regenerative microenvironment at different stages of the healing process, tailoring interventions as needed. Here, a dual enzyme mimetic and bacterial responsive self-activating antimicrobial hydrogel designed to enhance IPUs healing is introduced. This hydrogel incorporates pH-responsive dual enzyme-active nanoplatforms (HNTs-Fe-Ag) encapsulated within a methacrylate-modified silk fibroin (SFMA) and dopamine methacrylamide (DMA) matrix. This composite hydrogel exhibits adaptive microenvironment regulation capabilities. Under the low pH microenvironment of bacterial infection, it has excellent antimicrobial activity by self-activating the •OH generation in conjunction with photothermal effects. Under the neutral and alkaline microenvironment of chronic inflammation, it catalyzes the decomposition of hydrogen peroxide (H2O2) to produce oxygen (O2), thereby alleviating hypoxia and scavenging reactive oxygen species (ROS), which in turn remodulates the phenotype of macrophages. The composite hydrogel demonstrates on-demand therapeutic effects in the microenvironment of infected wounds, significantly enhancing the regenerative microenvironment of IUPs by promoting wound closure, inflammation regulation, and collagen deposition through self-activated antimicrobial action during infection and adaptive hypoxia relief during recovery. This approach offers a novel strategy for developing smart wound dressings.
Collapse
Affiliation(s)
- Hailin Xie
- School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yuna Qian
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou, Zhejiang, 325001, China
| | - Jiayi Ding
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou, Zhejiang, 325001, China
| | - Rui Zhao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou, Zhejiang, 325001, China
| | - Linwei Huang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou, Zhejiang, 325001, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences Wenzhou, Zhejiang, 325001, China
| | - Zhihua Zhou
- School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Xiangtan, 411201, China
- Key Laboratory of Theoretical Organic Chemistry, Functional Molecule of the Ministry of Education, Xiangtan, 411201, China
| |
Collapse
|
6
|
Hajj J, Sizemore B, Singh K. Impact of Epigenetics, Diet, and Nutrition-Related Pathologies on Wound Healing. Int J Mol Sci 2024; 25:10474. [PMID: 39408801 PMCID: PMC11476922 DOI: 10.3390/ijms251910474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic wounds pose a significant challenge to healthcare. Stemming from impaired wound healing, the consequences can be severe, ranging from amputation to mortality. This comprehensive review explores the multifaceted impact of chronic wounds in medicine and the roles that diet and nutritional pathologies play in the wound-healing process. It has been well established that an adequate diet is crucial to proper wound healing. Nutrients such as vitamin D, zinc, and amino acids play significant roles in cellular regeneration, immune functioning, and collagen synthesis and processing. Additionally, this review discusses how patients with chronic conditions like diabetes, obesity, and nutritional deficiencies result in the formation of chronic wounds. By integrating current research findings, this review highlights the significant impact of the genetic make-up of an individual on the risk of developing chronic wounds and the necessity for adequate personalized dietary interventions. Addressing the nutritional needs of individuals, especially those with chronic conditions, is essential for improving wound outcomes and overall patient care. With new developments in the field of genomics, there are unprecedented opportunities to develop targeted interventions that can precisely address the unique metabolic needs of individuals suffering from chronic wounds, thereby enhancing treatment effectiveness and patient outcomes.
Collapse
Affiliation(s)
- John Hajj
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
| | - Brandon Sizemore
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.H.); (B.S.)
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
7
|
Huang W, Zhang Z, Li X, Zheng Q, Wu C, Liu L, Chen Y, Zhang J, Jiang X. CD9 promotes TβR2-TβR1 association driving the transition of human dermal fibroblasts to myofibroblast under hypoxia. Mol Med 2024; 30:162. [PMID: 39333849 PMCID: PMC11428569 DOI: 10.1186/s10020-024-00925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND During wound healing, fibroblast to myofibroblast transition is required for wound contraction and remodeling. While hypoxia is an important biophysical factor in wound microenvironment, the exact regulatory mechanism underlying hypoxia and fibroblast-to-myofibroblast transition remains unclear. We previously found that tetraspanin CD9 plays an important role in oxygen sensing and wound healing. Herein, we investigated the effects of physiological hypoxia on fibroblast-to-myofibroblast transition and the biological function and mechanism of CD9 in it. METHODS Human skin fibroblasts (HSF) and mouse dermis wounds model were established under physiological hypoxia (2% O2). The cell viability and contractility of HSF under hypoxia were evaluated by CCK8 and collagen gel retraction, respectively. The expression and distribution of fibroblast-to-myofibroblast transition markers and CD9 in HSF were detected by Western blotting and immunofluorescence. CD9 slicing and overexpressing HSFs were constructed to determine the role of CD9 by small interfering RNA and recombinant adenovirus vector. The association of TβR2 and TβR1 was measured by immunoprecipitation to explore the regulatory mechanism. Additionally, further validation was conducted on mouse dermis wounds model through histological analysis. RESULTS Enhanced fibroblast-to-myofibroblast transition and upregulated CD9 expression was observed under hypoxia in vitro and in vivo. Besides, reversal of fibroblast-to-myofibroblast transition under hypoxia was observed when silencing CD9, suggesting that CD9 played a key role in this hypoxia-induced transition. Moreover, hypoxia increased fibroblast-to-myofibroblast transition by activating TGF-β1/Smad2/3 signaling, especially increased interaction of TβR2 and TβR1. Ultimately, CD9 was determined to directly affect TβR1-TβR2 association in hypoxic fibroblast. CONCLUSION Collectively, these findings suggest that CD9 promotes TβR2-TβR1 association, thus driving the transition of human dermal fibroblasts to myofibroblast under hypoxia.
Collapse
Affiliation(s)
- Wanqi Huang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xin Li
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qingqing Zheng
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Luojia Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
8
|
Soheili S, Dolatyar B, Adabi MR, Lotfollahi D, Shahrousvand M, Zahedi P, Seyedjafari E, Mohammadi-Rovshandeh J. Fabrication of fiber-particle structures by electrospinning/electrospray combination as an intrinsic antioxidant and oxygen-releasing wound dressing. J Mater Chem B 2024; 12:9074-9097. [PMID: 39171375 DOI: 10.1039/d4tb00270a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In this study, we employed a combination of electrospinning and electrospray techniques to fabricate wound dressings with a particle-fiber structure, providing dual characteristics of oxygen-releasing and intrinsic antioxidant properties, simultaneously. The electrospun part of the dressing was prepared from a blend of polycaprolactone/gallic acid-grafted-gelatin (GA-g-GE), enabling intrinsic ROS scavenging. To the best of our knowledge, this is the first time that PCL/GA-g-GE was fabricated by electrospinning. Furthermore, polyvinyl pyrrolidone (PVP) microparticles, containing calcium peroxide nanoparticles (CNPs), were considered as the oxygen production agent through the electrospray part. The CNP content was 1% and 3% w/w of PVP while biopolymer:PCL was 10% w/w. The fabricated structures were characterized in terms of fiber/particle morphology, elemental analysis, oxygen release behavior, ROS inhibition capacity, and water contact angle assessments. The covalent bonding of gallic acid to gelatin was confirmed by 1H-NMR, UV spectroscopy, and FTIR. According to the SEM results, the morphology of the prepared PCL/biopolymer fibers was bead-free and with a uniform average diameter. The analysis of released oxygen showed that by increasing the weight percentage of CNPs from 1 to 3 wt%, the amount of released oxygen increased from 120 mmHg to 195 mmHg in 24 h, which remained almost constant until 72 h. The obtained DPPH assay results revealed that the introduction of GA-g-GE into the fibrous structure could significantly improve the antioxidant properties of wound dressing compared to the control group without CNPs and modified gelatine. In vitro, the fabricated wound dressings were evaluated in terms of biocompatibility and the potential of the dressing to protect human dermal fibroblasts under oxidative stress and hypoxia conditions by an MTT assay. The presence of GA-g-GE led to remarkable protection of the cells against oxidative stress and hypoxia conditions. In vivo studies revealed that the incorporation of intrinsic ROS inhibition and oxygen-releasing properties could significantly accelerate the wound closure rate during the experimental period (7, 14, and 21 days). Additionally, histopathological investigations in terms of H&E and Masson's trichrome staining showed that the incorporation of the two mentioned capabilities remarkably facilitated the wound-healing process.
Collapse
Affiliation(s)
- Shima Soheili
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran.
| | - Banafsheh Dolatyar
- Department of Cell and Developmental Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Darya Lotfollahi
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Gilan, Iran.
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran.
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | |
Collapse
|
9
|
Gawronska-Kozak B, Machcinska-Zielinska S, Walendzik K, Kopcewicz M, Pääkkönen M, Wisniewska J. Hypoxia and Foxn1 alter the proteomic signature of dermal fibroblasts to redirect scarless wound healing to scar-forming skin wound healing in Foxn1 -/- mice. BMC Biol 2024; 22:193. [PMID: 39256768 PMCID: PMC11389453 DOI: 10.1186/s12915-024-01990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Foxn1-/- deficient mice are a rare model of regenerative skin wound healing among mammals. In wounded skin, the transcription factor Foxn1 interacting with hypoxia-regulated factors affects re-epithelialization, epithelial-mesenchymal transition (EMT) and dermal white adipose tissue (dWAT) reestablishment and is thus a factor regulating scar-forming/reparative healing. Here, we hypothesized that transcriptional crosstalk between Foxn1 and Hif-1α controls the switch from scarless (regenerative) to scar-present (reparative) skin wound healing. To verify this hypothesis, we examined (i) the effect of hypoxia/normoxia and Foxn1 signalling on the proteomic signature of Foxn1-/- (regenerative) dermal fibroblasts (DFs) and then (ii) explored the effect of Hif-1α or Foxn1/Hif-1α introduced by a lentiviral (LV) delivery vector to injured skin of regenerative Foxn1-/- mice with particular attention to the remodelling phase of healing. RESULTS We showed that hypoxic conditions and Foxn1 stimulation modified the proteome of Foxn1-/- DFs. Hypoxic conditions upregulated DF protein profiles, particularly those related to extracellular matrix (ECM) composition: plasminogen activator inhibitor-1 (Pai-1), Sdc4, Plod2, Plod1, Lox, Loxl2, Itga2, Vldlr, Ftl1, Vegfa, Hmox1, Fth1, and F3. We found that Pai-1 was stimulated by hypoxic conditions in regenerative Foxn1-/- DFs but was released by DFs to the culture media exclusively upon hypoxia and Foxn1 stimulation. We also found higher levels of Pai-1 protein in DFs isolated from Foxn1+/+ mice (reparative/scar-forming) than in DFs isolated from Foxn1-/- (regenerative/scarless) mice and triggered by injury increase in Foxn1 and Pai-1 protein in the skin of mice with active Foxn1 (Foxn1+/+ mice). Then, we demonstrated that the introduction of Foxn1 and Hif-1α via lentiviral injection into the wounded skin of regenerative Foxn1-/- mice activates reparative/scar-forming healing by increasing the wounded skin area and decreasing hyaluronic acid deposition and the collagen type III to I ratio. We also identified a stimulatory effect of LV-Foxn1 + LV-Hif-1α injection in the wounded skin of Foxn1-/- mice on Pai-1 protein levels. CONCLUSIONS The present data highlight the effect of hypoxia and Foxn1 on the protein profile and functionality of regenerative Foxn1-/- DFs and demonstrate that the introduction of Foxn1 and Hif-1α into the wounded skin of regenerative Foxn1-/- mice activates reparative/scar-forming healing.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Ul. Tuwima 10, 10-748, Olsztyn, Poland.
| | - Sylwia Machcinska-Zielinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Mirva Pääkkönen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, Biocity 5 Floor, 20520, Turku, Finland
| | - Joanna Wisniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Ul. Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
10
|
Wang T, Li Y, Yu C, Lv X, Weng Y, Zhang Z, Xu H, Liang R, Wang M, Weng Z, Zhang C, Lv Y, Zhang Y. Magnamosis improves the healing of gastrojejunal anastomosis and down-regulates TGF-β1 and HIF-1α in rats. Sci Rep 2024; 14:20367. [PMID: 39223174 PMCID: PMC11369180 DOI: 10.1038/s41598-024-71215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
This study elucidated the unique pathological features of tissue healing by magnamosis and revealed the changes in landmark molecule expression levels related to collagen synthesis and tissue hypoxia. Forty-eight male Sprague-Dawley rats were divided into the magnamosis and suture anastomosis groups, and gastrojejunal anastomosis surgery was performed. Rats were dissected at 6, 24, and 48 h and 5, 6, 8, 10, and 12 days postoperatively. Hematoxylin, eosin, and Masson's trichrome staining were used to evaluate granulation tissue proliferation and collagen synthesis density at the anastomosis site. Immunohistochemistry was used to measure TGF-β1 and HIF-1α expression levels. Magnamosis significantly shortened the operation time, resulting in weaker postoperative abdominal adhesions (P < 0.0001). Histopathological results showed a significantly lower granulation area in the magnamosis group than in the suture anastomosis group (P = 0.0388), with no significant difference in the density of collagen synthesis (P = 0.3631). Immunohistochemistry results indicated that the magnamosis group had significantly lower proportions of TGF-β1-positive cells at 24 (P = 0.0052) and 48 h (P = 0.0385) postoperatively and HIF-1α-positive cells at 24 (P = 0.0402) and 48 h postoperatively (P = 0.0005). In a rat model of gastrojejunal anastomosis, magnamosis leads to improved tissue healing at the gastrojejunal anastomosis, associated with downregulated expression levels of TGF-β1 and HIF-1α.
Collapse
Affiliation(s)
- Tianren Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710067, China
| | - Yunhao Li
- Department of Geriatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710067, China
| | - Chenao Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710067, China
| | - Xinru Lv
- Xi'an Jiaotong University Medical Science Center, Xi'an, 710067, China
| | - Yuxuan Weng
- Xi'an Jiaotong University Medical Science Center, Xi'an, 710067, China
| | - Zhixuan Zhang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Haozhen Xu
- Xi'an Jiaotong University Medical Science Center, Xi'an, 710067, China
| | - Runjia Liang
- Xi'an Jiaotong University Medical Science Center, Xi'an, 710067, China
| | - Mengyue Wang
- Xi'an Jiaotong University Medical Science Center, Xi'an, 710067, China
| | - Zhenzhen Weng
- Xi'an Jiaotong University Medical Science Center, Xi'an, 710067, China
| | - Cheng Zhang
- Xi'an Jiaotong University Medical Science Center, Xi'an, 710067, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710067, China.
| | - Yong Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710067, China.
| |
Collapse
|
11
|
Guo N, Chen J, Kong F, Gao Y, Bian J, Liu T, Hong G, Zhao Z. 5-aminolevulinic acid photodynamic therapy for chronic wound infection in rats with diabetes. Biomed Pharmacother 2024; 178:117132. [PMID: 39047418 DOI: 10.1016/j.biopha.2024.117132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Recent research indicated that ulcers and peripheral vascular disease resulting from drug-resistant bacterial infections are the main causes of delayed healing in chronic diabetic wounds. 5-Aminolevulinic acid (ALA) is a second-generation endogenous photosensitizer. The therapeutic effect and mechanism of ALA-mediated photodynamic therapy (ALA-PDT) on methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds in diabetic rats were investigated in this study. The results revealed the promising antibacterial effects of ALA-PDT MRSA in vitro, with a minimum inhibitory concentration and minimum bactericidal concentration of 250 and 500 μM, respectively. ALA-PDT also changed the permeability and structural integrity of bacterial cell membranes by producing reactive oxygen species. Meanwhile, ALA-PDT accelerated wound healing in MRSA-infected diabetic rats, with 5 % ALA-PDT achieving complete sterilization in 14 days and wound closure in 21 days. Treatment with 5 % ALA-PDT additionally improved the histopathological appearance of skin tissue, as well as fibrosis, inflammatory cytokine release, and angiogenesis-related protein expression. These findings indicated that ALA-PDT significantly promoted the healing of MRSA-infected wounds in diabetic rats by eliminating bacteria, inhibiting inflammation, generating granulation tissues, promoting neovascularization, and restoring damaged nerves. In addition, the healing mechanism was related to the activation of inflammatory and angiogenesis pathways through the regulation of tumor necrosis factor-alpha and interleukin-6 expression and upregulation of CD206, CD31, and VEGF. These findings underscored the potential role of ALA-PDT in promoting the healing of chronic diabetic wounds.
Collapse
Affiliation(s)
- Ning Guo
- School of Basic Medical Sciences, Hebei University, China; Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Jingyu Chen
- Tianjin University of Traditional Chinese Medicine, China.
| | - Feiyan Kong
- School of Basic Medical Sciences, Hebei University, China.
| | | | | | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Zhanjuan Zhao
- School of Basic Medical Sciences, Hebei University, China.
| |
Collapse
|
12
|
Chowdhury A, Mitra Mazumder P. Unlocking the potential of flavonoid-infused drug delivery systems for diabetic wound healing with a mechanistic exploration. Inflammopharmacology 2024:10.1007/s10787-024-01561-5. [PMID: 39217278 DOI: 10.1007/s10787-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Diabetes is one of the common endocrine disorders generally characterized by elevated levels of blood sugar. It can originate either from the inability of the pancreas to synthesize insulin, which is considered as an autoimmune disorder, or the reduced production of insulin, considered as insulin resistivity. A wound can be defined as a condition of damage to living tissues including skin, mucous membrane and other organs as well. Wounds get complicated with respect to time based on specific processes like diabetes mellitus, obesity and immunocompromised conditions. Proper growth and functionality of the epidermis gets sustained due to impaired diabetic wound healing which shows a sign of dysregulated wound healing process. In comparison with synthetic medications, phytochemicals like flavonoids, tannins, alkaloids and glycosides have gained enormous importance relying on their distinct potential to heal diabetic wounds. Flavonoids are one of the most promising and important groups of natural compounds which can be used to treat acute as well as chronic wounds. Flavonoids show excellent properties due to the presence of hydroxyl groups in their chemical structure, which makes this class of compounds different from others. Based on the novel principles of nanotechnology via utilizing suitable drug delivery systems, the delivery of bioactive constituents from plant source amplifies the wound-healing mechanism, minimizes complexities and enhances bioavailability. Hence, the encapsulation and applicability of flavonoids with an emphasis on mechanistic route and wound-healing therapeutics have been highlighted in the subsequent study with focus on multiple drug delivery systems.
Collapse
Affiliation(s)
- Ankit Chowdhury
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
13
|
Tombulturk FK, Soydas T, Kanigur-Sultuybek G. Metformin as a Modulator of Autophagy and Hypoxia Responses in the Enhancement of Wound Healing in Diabetic Rats. Inflammation 2024:10.1007/s10753-024-02129-9. [PMID: 39186177 DOI: 10.1007/s10753-024-02129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/28/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
The molecular mechanisms underlying delayed wound repair in diabetes involve dysregulation of key cellular processes, including autophagy and hypoxia response pathways. Herein, we investigated the role of topical metformin, an established anti-diabetic drug with potential autophagy-inducing properties, in improving wound healing outcomes under hypoxic conditions. Full-thickness skin wounds were created in streptozotocin-induced diabetic rats, and tissue samples were collected at regular intervals for molecular and histological analysis. The expression levels of autophagy markers LC3B and Beclin-1 were evaluated via immunohistochemistry and qRT-PCR, while the amount of AMP-activated protein kinase (AMPK) and hypoxia-inducible factor-1α (HIF-1α) were determined via ELISA. Our results demonstrated that metformin administration resulted in the upregulation of LC3B and Beclin-1 in the wound bed, suggesting induction of autophagy in response to the treatment. Mechanistically, metformin treatment also led to the increased amount of AMPK, a critical regulator of cellular energy homeostasis, and a subsequent reduction in HIF-1α amount under hypoxic conditions. In conclusion, our findings demonstrate that metformin promotes wound healing in diabetes mellitus by enhancing autophagy through AMPK activation and modulating HIF-1α amount in a hypoxic microenvironment. This study offers a new therapeutic approach by shedding light on the potential benefits of metformin as adjunctive therapy in diabetic wound management.
Collapse
Affiliation(s)
- Fatma Kubra Tombulturk
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Istinye University, Istanbul, Türkiye.
| | - Tugba Soydas
- Department of Medical Biology and Genetics, Medical Faculty, Istanbul Aydin University, Istanbul, Türkiye
| | - Gönül Kanigur-Sultuybek
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| |
Collapse
|
14
|
Polito MP, Romaldini A, Rinaldo S, Enzo E. Coordinating energy metabolism and signaling pathways in epithelial self-renewal and differentiation. Biol Direct 2024; 19:63. [PMID: 39113077 PMCID: PMC11308432 DOI: 10.1186/s13062-024-00510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Epidermal stem cells (EPSCs) are essential for maintaining skin homeostasis and ensuring a proper wound healing. During in vitro cultivations, EPSCs give rise to transient amplifying progenitors and differentiated cells, finally forming a stratified epithelium that can be grafted onto patients. Epithelial grafts have been used in clinics to cure burned patients or patients affected by genetic diseases. The long-term success of these advanced therapies relies on the presence of a correct amount of EPSCs that guarantees long-term epithelial regeneration. For this reason, a deeper understanding of self-renewal and differentiation is fundamental to fostering their clinical applications.The coordination between energetic metabolism (e.g., glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and amino acid synthesis pathways), molecular signalling pathways (e.g., p63, YAP, FOXM1, AMPK/mTOR), and epigenetic modifications controls fundamental biological processes as proliferation, self-renewal, and differentiation. This review explores how these signalling and metabolic pathways are interconnected in the epithelial cells, highlighting the distinct metabolic demands and regulatory mechanisms involved in skin physiology.
Collapse
Affiliation(s)
- Maria Pia Polito
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Alessio Romaldini
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, 00185, Italy
| | - Elena Enzo
- Centre for Regenerative Medicine "Stefano Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| |
Collapse
|
15
|
Yadav JP, Verma A, Pathak P, Dwivedi AR, Singh AK, Kumar P, Khalilullah H, Jaremko M, Emwas AH, Patel DK. Phytoconstituents as modulators of NF-κB signalling: Investigating therapeutic potential for diabetic wound healing. Biomed Pharmacother 2024; 177:117058. [PMID: 38968797 DOI: 10.1016/j.biopha.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
The NF-κB pathway plays a pivotal role in impeding the diabetic wound healing process, contributing to prolonged inflammation, diminished angiogenesis, and reduced proliferation. In contrast to modern synthetic therapies, naturally occurring phytoconstituents are well-studied inhibitors of the NF-κB pathway that are now attracting increased attention in the context of diabetic wound healing because of lower toxicity, better safety and efficacy, and cost-effectiveness. This study explores recent research on phytoconstituent-based therapies and delve into their action mechanisms targeting the NF-κB pathway and potential for assisting effective healing of diabetic wounds. For this purpose, we have carried out surveys of recent literature and analyzed studies from prominent databases such as Science Direct, Scopus, PubMed, Google Scholar, EMBASE, and Web of Science. The classification of phytoconstituents into various categorie such as: alkaloids, triterpenoids, phenolics, polyphenols, flavonoids, monoterpene glycosides, naphthoquinones and tocopherols. Noteworthy phytoconstituents, including Neferine, Plumbagin, Boswellic acid, Genistein, Luteolin, Kirenol, Rutin, Vicenin-2, Gamma-tocopherol, Icariin, Resveratrol, Mangiferin, Betulinic acid, Berberine, Syringic acid, Gallocatechin, Curcumin, Loureirin-A, Loureirin-B, Lupeol, Paeoniflorin, and Puerarin emerge from these studies as promising agents for diabetic wound healing through the inhibition of the NF-κB pathway. Extensive research on various phytoconstituents has revealed how they modulate signalling pathways, including NF-κB, studies that demonstrate the potential for development of therapeutic phytoconstituents to assist healing of chronic diabetic wounds.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India; Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur 209217, India; Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Ashish R Dwivedi
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, 502329, India
| | - Ankit Kumar Singh
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| |
Collapse
|
16
|
Norton P, Trus P, Wang F, Thornton MJ, Chang C. Understanding and treating diabetic foot ulcers: Insights into the role of cutaneous microbiota and innovative therapies. SKIN HEALTH AND DISEASE 2024; 4:e399. [PMID: 39104636 PMCID: PMC11297444 DOI: 10.1002/ski2.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 08/07/2024]
Abstract
Background Notoriously known as the silent pandemic, chronic, non-healing diabetic foot ulcers (DFUs), pose a significant rate of incidence for amputation and are a major cause of morbidity. Alarmingly, the treatment and management strategies of chronic wounds represent a significant economic and health burden as well as a momentous drain on resources with billions per annum being spent in the US and UK alone. Defective wound healing is a major pathophysiological condition which propagates an acute wound to a chronic wound, further propelled by underlying conditions such as diabetes and vascular complications which are more prevalent amongst the elderly. Chronic wounds are prone to infection, which can exacerbate the condition, occasionally resulting in amputation for the patient, despite the intervention of modern therapies. However, amputation can only yield a 5-year survival rate for 50% of patients, highlighting the need for new treatments for chronic wounds. Findings The dynamic cutaneous microbiota is comprised of diverse microorganisms that often aid wound healing. Conversely, the chronic wound microbiome consists of a combination of common skin commensals such as Staphylococcus aureus and Staphylococcus epidermidis, as well as the opportunistic pathogen Pseudomonas aeruginosa. These bacteria have been identified as the most prevalent bacterial pathogens isolated from chronic wounds and contribute to prolific biofilm formation decreasing the efficiency of antimicrobials and further perpetuating a hyper-inflammatory state. Discussion and Conclusion Here, we review recent advances and provide a new perspective on alternative treatments including phage and microbiome transplant therapies and how the definitive role of the cutaneous microbiota impacts the aetiology of DFUs.
Collapse
Affiliation(s)
- Paul Norton
- School of Dental SciencesFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Biosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Centre for Skin SciencesFaculty of Life SciencesUniversity of BradfordBradfordUK
| | - Pavlos Trus
- School of Dental SciencesFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Biosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Fengyi Wang
- School of Dental SciencesFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Biosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - M. Julie Thornton
- Centre for Skin SciencesFaculty of Life SciencesUniversity of BradfordBradfordUK
| | - Chien‐Yi Chang
- School of Dental SciencesFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Biosciences InstituteFaculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| |
Collapse
|
17
|
Putri IL, Alyssa A, Aisyah IF, Permatasari AAIY, Pramanasari R, Wungu CDK. The efficacy of topical oxygen therapy for wound healing: A meta-analysis of randomized controlled trials and observational studies. Int Wound J 2024; 21:e14960. [PMID: 38984473 PMCID: PMC11234139 DOI: 10.1111/iwj.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
In preclinical studies, topical oxygen treatment (TOT) was shown to enhance wound healing by applying supplemental oxygen topically to the surface of a moist wound at normobaric conditions. The objective of this systematic review and meta-analysis is to provide a thorough evaluation of published RCTs and observational studies that compare supplemental TOT with standard wound care. A total of 1077 studies were obtained from a variety of databases, including PubMed, ScienceDirect, Web of Science, ProQuest, Scopus, ClinicalTrials.gov, EU Clinical Trial Registers, and Preprints.org. The Jadad scale was employed to assess the reliability of RCT studies, while the Newcastle-Ottawa Scale (NOS) was employed to assess the quality of observational studies. Seven RCT studies (n = 692) and two controlled observational studies (n = 111) were analysed. The rate of healed wounds was 25.8% in the control group and 43.25% in the adjuvant TOT group, which shows the use of TOT significantly increased the number of healed wounds (RR = 1.77; 95% CI 1.18-2.64; p = 0.005). A significant decrease in the percentage of wound area was found in the TOT group in RCT studies (mean difference = 15.64; 95% CI 5.22-26.06; p = 0.003). In observational studies, the rate of healed wounds was 37.5% in the standard care group and 80.95% in the adjuvant TOT group, which shows a significant increase in the number of healed wounds in the adjuvant TOT group (RR = 2.15; 95% CI 1.46-3.15; p < 0.00001). Topical oxygen therapy is considered a great adjuvant therapy for chronic wound healing, particularly wounds with vascular compromise such as diabetic ulcers and pressure ulcers. Further studies on this topic are still needed as there are a lot of potential uses for this technology in various types of wounds.
Collapse
Affiliation(s)
- Indri Lakhsmi Putri
- Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
- Plastic Reconstructive and Aesthetic Surgery Unit, Airlangga University Hospital, Surabaya, Indonesia
| | - Agnesia Alyssa
- Plastic Reconstructive and Aesthetic Surgery Unit, Airlangga University Hospital, Surabaya, Indonesia
| | - Imaniar Fitri Aisyah
- Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | | | - Rachmaniar Pramanasari
- Plastic Reconstructive and Aesthetic Surgery Unit, Airlangga University Hospital, Surabaya, Indonesia
| | - Citrawati Dyah Kencono Wungu
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
18
|
Zhao YD, Huang YC, Li WS. Searching for the optimal precondition procedure for mesenchymal stem/stromal cell treatment: Facts and perspectives. World J Stem Cells 2024; 16:615-618. [PMID: 38948100 PMCID: PMC11212554 DOI: 10.4252/wjsc.v16.i6.615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/06/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
Mesenchymal stem/stromal cells are potential optimal cell sources for stem cell therapies, and pretreatment has proven to enhance cell vitality and function. In a recent publication, Li et al explored a new combination of pretreatment conditions. Here, we present an editorial to comment on their work and provide our view on mesenchymal stem/stromal cell precondition.
Collapse
Affiliation(s)
- Yu-Dong Zhao
- Department of Orthopedic, Peking University Third Hospital, Beijing 100191, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Orthopaedic Research Center, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Wei-Shi Li
- Department of Orthopedic, Peking University Third Hospital, Beijing 100191, China. puh3
| |
Collapse
|
19
|
Stoodley P, Toelke N, Schwermer C, de Beer D. Bioenergetics of simultaneous oxygen and nitrate respiration and nitric oxide production in a Pseudomonas aeruginosa agar colony biofilm. Biofilm 2024; 7:100181. [PMID: 38425549 PMCID: PMC10902143 DOI: 10.1016/j.bioflm.2024.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Pseudomonas aeruginosa is a biofilm forming pathogen commonly associated with infection of the cystic fibrosis (CF) lung, chronic wounds and indwelling medical devices. P. aeruginosa is a facultative aerobe that can use nitrate (NO3-) found in healthy and infected tissues and body fluids to generate energy through denitrification. Further, P. aeruginosa the expression of denitrification genes has been found in specimens from people with CF. The main aim of this study was to determine the relative energy contribution of oxygen (O2) respiration and denitrification in single Pseudomonas aeruginosa PAO1 biofilm colonies under different O2 concentrations to estimate the possible relative importance of these metabolic processes in the context of biofilm infections. We showed that the used strain PAO1 in biofilms denitrified with nitrous oxide (N2O), and not nitrogen (N2), as the end product in our incubations. From simultaneous O2 and N2O microprofiles measured with high spatial resolution by microsensors in agar colony biofilms under air, N2 and pure O2, the rates of aerobic respiration and denitrification were calculated and converted to ATP production rates. Denitrification occurred both in the oxic and anoxic zones, and became increasingly dominant with decreasing O2 concentrations. At O2 concentrations characteristic for tissues and wounds (20-60 μM), denitrification was responsible for 50% of the total energy conservation in the biofilm. In addition the formation of nitric oxide (NO), a precursor of N2O and an important regulator of many cellular processes, was strongly influenced by the local O2 concentrations. NO production was inhibited under pure O2, present under anoxia (∼1 μM) and remarkably high (up to 6 μM) under intermediate O2 levels, which can be found in infected tissues. Possible impacts of such NO levels on both the host and the biofilm bacteria are discussed.
Collapse
Affiliation(s)
- Paul Stoodley
- National Centre for Advanced Tribology at Southampton, (NCATS), Mechanical Engineering, University of Southampton, Southampton, SO17 1BJ, UK
- Department of Microbial Infection and Immunity, Department of Orthopaedics, The Ohio State University, 716 Biomedical Research Tower (BRT), 460 W 12th Ave, Columbus OH, 43210, United States
| | - Nina Toelke
- Max Planck Institute for Marine Microbiology (MPI), Microsensor Group and Molecular Ecology Group, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Carsten Schwermer
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology (MPI), Microsensor Group and Molecular Ecology Group, Celsiusstrasse 1, D-28359, Bremen, Germany
| |
Collapse
|
20
|
Petrenko O, Badziukh S, Korsa V, Kolosovych I, Tykhomyrov A. Topical Application of Autologous Plasma-Derived Plasminogen Accelerates Healing of Chronic Foot Ulcers in Type 2 Diabetes Patients. INT J LOW EXTR WOUND 2024:15347346241256025. [PMID: 38758187 DOI: 10.1177/15347346241256025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Plasminogen (Pg) is currently considered a master regulator of wound healing, but the molecular mechanisms of its efficacy in improving impaired closure of chronic skin ulcers in type 2 diabetes patients remain unclear. Here, we investigated wound healing effects of autologous plasma-derived Pg in diabetes patients with chronic foot ulcers and evaluated Pg-induced changes in levels of key protein markers related to wound repair. Type 2 diabetes patients with chronic wounds of lower extremities were included in the study and received topical applications of Pg in a dose of 1.0 mg/mL every 2 days during 20 days, in addition to the standard wound management treatment. Patients treated only according to conventional protocol served as a control. Wound closure rates were monitored by digital planimetry of wound areas. Plasminogen supplementary treatment significantly accelerated relative wound closure as compared with diabetes patients from the control group (24 ± 4 days vs 120 ± 17 days, respectively, P < .01). As shown by Western blot, Pg application reduced expression of protein regulators of hypoxia events, angiogenesis, and autophagy such as hypoxia-inducible factor-1α (by 6.3-folds, P < .01), angiostatins (by 2.5-folds, P < .05), and autophagy marker LC3-II/LC3-I (by 8.6-folds, P < .05), while increasing vascular endothelial growth factor level by 1.9-folds (P < .05). Gelatin zymography showed that Pg-supplemented therapy decreased activity of matrix metalloproteinase-9 (MMP-9) by 3.5-folds at the end of treatment period (P < .01). We report here for the first time that topically applied plasma-derived Pg has a pronounced beneficial effect in promoting foot ulcer healing in patients with type 2 diabetes through preventing hypoxia-induced signaling, reducing autophagy flux, diminishing excessive MMP activity, and enhancing angiogenesis.
Collapse
Affiliation(s)
- Oleg Petrenko
- Department of Surgery, Bogomolets National Medical University, Kyiv, Ukraine
| | - Sergiy Badziukh
- Department of Surgery, Bogomolets National Medical University, Kyiv, Ukraine
| | - Victoria Korsa
- Department of Enzyme Chemistry & Biochemistry, Palladin Institute of Biochemistry of NAS of Ukraine, Kyiv, Ukraine
| | - Ihor Kolosovych
- Department of Surgery, Bogomolets National Medical University, Kyiv, Ukraine
| | - Artem Tykhomyrov
- Department of Enzyme Chemistry & Biochemistry, Palladin Institute of Biochemistry of NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
21
|
Pascal W, Smoliński A, Gotowiec M, Wojtkiewicz M, Stachura A, Pełka K, Kopka M, Quinn KP, Woessner AE, Grzelecki D, Włodarski P. Pre-Incisional and Multiple Intradermal Injection of N-Acetylcysteine Slightly Improves Incisional Wound Healing in an Animal Model. Int J Mol Sci 2024; 25:5200. [PMID: 38791242 PMCID: PMC11121603 DOI: 10.3390/ijms25105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The objective of this study was to investigate if delivering multiple doses of N-acetylcysteine (NAC) post-surgery in addition to pre-incisional administration significantly impacts the wound healing process in a rat model. Full-thickness skin incisions were carried out on the dorsum of 24 Sprague-Dawley rats in six locations. Fifteen minutes prior to the incision, half of the sites were treated with a control solution, with the wounds on the contralateral side treated with solutions containing 0.015%, 0.03% and 0.045% of NAC. In the case of the NAC treated group, further injections were given every 8 h for three days. On days 3, 7, 14 and 60 post-op, rats were sacrificed to gather material for the histological analysis, which included histomorphometry, collagen fiber organization analysis, immunohistochemistry and Abramov scale scoring. It was determined that scars treated with 0.015% NAC had significantly lower reepithelization than the control at day 60 post-op (p = 0.0018). Scars treated with 0.045% NAC had a significantly lower collagen fiber variance compared to 0.015% NAC at day 14 post-op (p = 0.02 and p = 0.04) and a lower mean scar width than the control at day 60 post-op (p = 0.0354 and p = 0.0224). No significant differences in the recruitment of immune cells and histological parameters were found. The results point to a limited efficacy of multiple NAC injections post-surgery in wound healing.
Collapse
Affiliation(s)
- Wiktor Pascal
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.S.); (M.G.); (M.W.); (A.S.); (K.P.); (M.K.); (P.W.)
| | - Antoni Smoliński
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.S.); (M.G.); (M.W.); (A.S.); (K.P.); (M.K.); (P.W.)
| | - Mateusz Gotowiec
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.S.); (M.G.); (M.W.); (A.S.); (K.P.); (M.K.); (P.W.)
| | - Marta Wojtkiewicz
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.S.); (M.G.); (M.W.); (A.S.); (K.P.); (M.K.); (P.W.)
| | - Albert Stachura
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.S.); (M.G.); (M.W.); (A.S.); (K.P.); (M.K.); (P.W.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Kacper Pełka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.S.); (M.G.); (M.W.); (A.S.); (K.P.); (M.K.); (P.W.)
| | - Michał Kopka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.S.); (M.G.); (M.W.); (A.S.); (K.P.); (M.K.); (P.W.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Kyle P. Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (K.P.Q.); (A.E.W.)
| | - Alan E. Woessner
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (K.P.Q.); (A.E.W.)
| | - Dariusz Grzelecki
- Department of Orthopedics and Rheumoorthopedics, Centre of Postgraduate Medical Education, Professor Adam Gruca Orthopedic and Trauma Teaching Hospital, 05-400 Otwock, Poland;
| | - Paweł Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.S.); (M.G.); (M.W.); (A.S.); (K.P.); (M.K.); (P.W.)
| |
Collapse
|
22
|
Cao H, Wang J, Hao Z, Zhao D. Gelatin-based biomaterials and gelatin as an additive for chronic wound repair. Front Pharmacol 2024; 15:1398939. [PMID: 38751781 PMCID: PMC11094280 DOI: 10.3389/fphar.2024.1398939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Disturbing or disrupting the regular healing process of a skin wound may result in its progression to a chronic state. Chronic wounds often lead to increased infection because of their long healing time, malnutrition, and insufficient oxygen flow, subsequently affecting wound progression. Gelatin-the main structure of natural collagen-is widely used in biomedical fields because of its low cost, wide availability, biocompatibility, and degradability. However, gelatin may exhibit diverse tailored physical properties and poor antibacterial activity. Research on gelatin-based biomaterials has identified the challenges of improving gelatin's poor antibacterial properties and low mechanical properties. In chronic wounds, gelatin-based biomaterials can promote wound hemostasis, enhance peri-wound antibacterial and anti-inflammatory properties, and promote vascular and epithelial cell regeneration. In this article, we first introduce the natural process of wound healing. Second, we present the role of gelatin-based biomaterials and gelatin as an additive in wound healing. Finally, we present the future implications of gelatin-based biomaterials.
Collapse
Affiliation(s)
- Hongwei Cao
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingren Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of China Medical University, Shenyang, China
| | - Zhanying Hao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Danyang Zhao
- Department of emergency Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Han X, Saengow C, Ju L, Ren W, Ewoldt RH, Irudayaraj J. Exosome-coated oxygen nanobubble-laden hydrogel augments intracellular delivery of exosomes for enhanced wound healing. Nat Commun 2024; 15:3435. [PMID: 38653959 PMCID: PMC11039765 DOI: 10.1038/s41467-024-47696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Wound healing is an obvious clinical concern that can be hindered by inadequate angiogenesis, inflammation, and chronic hypoxia. While exosomes derived from adipose tissue-derived stem cells have shown promise in accelerating healing by carrying therapeutic growth factors and microRNAs, intracellular cargo delivery is compromised in hypoxic tissues due to activated hypoxia-induced endocytic recycling. To address this challenge, we have developed a strategy to coat oxygen nanobubbles with exosomes and incorporate them into a polyvinyl alcohol/gelatin hybrid hydrogel. This approach not only alleviates wound hypoxia but also offers an efficient means of delivering exosome-coated nanoparticles in hypoxic conditions. The self-healing properties of the hydrogel, along with its component, gelatin, aids in hemostasis, while its crosslinking bonds facilitate hydrogen peroxide decomposition, to ameliorate wound inflammation. Here, we show the potential of this multifunctional hydrogel for enhanced healing, promoting angiogenesis, facilitating exosome delivery, mitigating hypoxia, and inhibiting inflammation in a male rat full-thickness wound model.
Collapse
Affiliation(s)
- Xiaoxue Han
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
- Holonyak Micro and Nanotechnology Laboratory, Carle R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA
| | - Chaimongkol Saengow
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leah Ju
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Wen Ren
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Randy H Ewoldt
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA.
- Holonyak Micro and Nanotechnology Laboratory, Carle R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
24
|
Costantini E, Aielli L, Gualdi G, Baronio M, Monari P, Amerio P, Reale M. Pulsed Radiofrequency Electromagnetic Fields as Modulators of Inflammation and Wound Healing in Primary Dermal Fibroblasts of Ulcers. Bioengineering (Basel) 2024; 11:357. [PMID: 38671778 PMCID: PMC11047973 DOI: 10.3390/bioengineering11040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Venous leg ulcers are one of the most common nonhealing conditions and represent an important clinical problem. The application of pulsed radiofrequency electromagnetic fields (PRF-EMFs), already applied for pain, inflammation, and new tissue formation, can represent a promising approach for venous leg ulcer amelioration. This study aims to evaluate the effect of PRF-EMF exposure on the inflammatory, antioxidant, cell proliferation, and wound healing characteristics of human primary dermal fibroblasts collected from venous leg ulcer patients. The cells' proliferative and migratory abilities were evaluated by means of a BrdU assay and scratch assay, respectively. The inflammatory response was investigated through TNFα, TGFβ, COX2, IL6, and IL1β gene expression analysis and PGE2 and IL1β production, while the antioxidant activity was tested by measuring GSH, GSSG, tGSH, and GR levels. This study emphasizes the ability of PRF-EMFs to modulate the TGFβ, COX2, IL6, IL1β, and TNFα gene expression in exposed ulcers. Moreover, it confirms the improvement of the proliferative index and wound healing ability presented by PRF-EMFs. In conclusion, exposure to PRF-EMFs can represent a strategy to help tissue repair, regulating mediators involved in the wound healing process.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy; (G.G.); (P.A.)
| | - Lisa Aielli
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, 66100 Chieti, Italy; (L.A.); (M.R.)
| | - Giulio Gualdi
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy; (G.G.); (P.A.)
| | - Manuela Baronio
- Pediatrics Clinic and Institute for Molecular Medicine A. Novivelli, Department of Clinical and Expermental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Paola Monari
- Department of Dermatology, Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Paolo Amerio
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy; (G.G.); (P.A.)
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, 66100 Chieti, Italy; (L.A.); (M.R.)
| |
Collapse
|
25
|
Khoswanto C, Dewi IK. The role of Wnt signaling on Tooth Extraction Wound Healing: Narrative review. Saudi Dent J 2024; 36:516-520. [PMID: 38690381 PMCID: PMC11056418 DOI: 10.1016/j.sdentj.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 05/02/2024] Open
Abstract
Compared to an incisional skin or mucosal wound, a tooth extraction wound results in far more soft tissue loss. A blood clot instantly fills the gap left by the extracted tooth. An embryonic type of bone forms during the healing of extraction wounds, and mature bone only later replaces it. Osteocytes in embryonic bone, also known as coarse fibrillar bone or immature bone, differ from those in adult bone in terms of number, size, and irregular arrangement. This immature bone is more radiolucent than mature bone due to the higher cell density and the smaller volume of calcified intercellular material. The Wnt gene family contains genes that encode secreted signaling proteins that have good promise for promoting bone regeneration. However, we still have a limited understanding the interplay of the molecular elements of the Wnt pathway in signal transduction, from ligand detection on the cell surface to transcription of target genes in the nucleus. We discuss the function of Wnt signaling molecules in this review, in tissue repair following tooth extraction and present recent results about these molecules. Conclusions: Wnt signaling activity helps to hasten bone regeneration while bone healing is slowed down by mutations in LRP5/6 or β-catenin.
Collapse
Affiliation(s)
- Christian Khoswanto
- Department of Oral Biology Faculty of Dentistry, Airlangga University Surabaya, Indonesia
| | | |
Collapse
|
26
|
Chen F, Wu P, Zhang H, Sun G. Signaling Pathways Triggering Therapeutic Hydrogels in Promoting Chronic Wound Healing. Macromol Biosci 2024; 24:e2300217. [PMID: 37831962 DOI: 10.1002/mabi.202300217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/08/2023] [Indexed: 10/15/2023]
Abstract
In recent years, there has been a significant increase in the prevalence of chronic wounds, such as pressure ulcers, diabetic foot ulcers, and venous ulcers of the lower extremities. The main contributors to chronic wound formation are bacterial infection, prolonged inflammation, and peripheral vascular disease. However, effectively treating these chronic wounds remains a global challenge. Hydrogels have extensively explored as wound healing dressing because of their excellent biocompatibility and structural similarity to extracellular matrix (ECM). Nonetheless, much is still unknown how the hydrogels promote wound repair and regeneration. Signaling pathways play critical roles in wound healing process by controlling and coordinating cells and biomolecules. Hydrogels, along with their therapeutic ingredients that impact signaling pathways, have the potential to significantly enhance the wound healing process and its ultimate outcomes. Understanding this interaction will undoubtedly provide new insights into developing advanced hydrogels for wound repair and regeneration. This paper reviews the latest studies on classical signaling pathways and potential targets influenced by hydrogel scaffolds in chronic wound healing. This work hopes that it will offer a different perspective in developing more efficient hydrogels for treating chronic wounds.
Collapse
Affiliation(s)
- Fang Chen
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, 071000, China
- First Department of Bone Injury, Luzhou Municipal Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, 646000, China
| | - Pingli Wu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Haisong Zhang
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Guoming Sun
- Sunogel Biotechnologies Inc., Lutherville Timonium, 9 W Ridgely Road Ste 270, Maryland, 21093, USA
| |
Collapse
|
27
|
Bayraktar S, Üstün C, Kehr NS. Oxygen Delivery Biomaterials in Wound Healing Applications. Macromol Biosci 2024; 24:e2300363. [PMID: 38037316 DOI: 10.1002/mabi.202300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/06/2023] [Indexed: 12/02/2023]
Abstract
Oxygen (O2 ) delivery biomaterials have attracted great interest in the treatment of chronic wounds due to their potential applications in local and continuous O2 generation and delivery, improving cell viability until vascularization occurs, promoting structural growth of new blood vessels, simulating collagen synthesis, killing bacteria and reducing hypoxia-induced tissue damage. Therefore, different types of O2 delivery biomaterials including thin polymer films, fibers, hydrogels, or nanocomposite hydrogels have been developed to provide controlled, sufficient and long-lasting O2 to prevent hypoxia and maintain cell viability until the engineered tissue is vascularized by the host system. These biomaterials are made by various approaches, such as encapsulating O2 releasing molecules into hydrogels, polymer microspheres and 3D printed hydrogel scaffolds and adsorbing O2 carrying reagents into polymer films of fibers. In this article, different O2 generating sources such as solid inorganic peroxides, liquid peroxides, and photosynthetic microalgae, and O2 carrying perfluorocarbons and hemoglobin are presented and the applications of O2 delivery biomaterials in promoting wound healing are discussed. Furthermore, challenges encountered and future perspectives are highlighted.
Collapse
Affiliation(s)
- Sema Bayraktar
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkey
| | - Cansu Üstün
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkey
| | - Nermin Seda Kehr
- Department of Chemistry, Izmir Institute of Technology, Urla/Izmir, 35430, Turkey
| |
Collapse
|
28
|
Ding C, Yang J, Wang N, Ding Q, Sun S, Gao Y, Shen L, Zhao T, Wang Y. Sodium alginate/polyvinyl alcohol nanofibers loaded with Shikonin for diabetic wound healing: In vivo and in vitro evaluation. Int J Biol Macromol 2024; 262:129937. [PMID: 38325683 DOI: 10.1016/j.ijbiomac.2024.129937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Diabetic wounds are typically chronic wounds and the healing process is limited by problems such as high blood glucose levels, bacterial infections, and other issues that make wound healing difficult. Designing drug-loaded wound dressings is an effective way to promote diabetic wound healing. In this study, we developed an SA/PVA nanofiber (SPS) containing Shikonin (SK) for the treatment of diabetic wounds. The prepared nanofibers were uniform in diameter, had good hydrophilicity and high water vapor permeability, and effectively promoted gas exchange between the wound site and the outside world. The results of in vitro experiments showed that SPS was effective in antimicrobial, antioxidant, and biocompatible. In vivo tests showed that the wound healing rate of mice treated with SPS reached 85.5 %. Immunohistochemical staining results showed that SPS was involved in the diabetic wound healing process through the up-regulation of growth factors (CD31, HIF-1α) and the down-regulation of inflammatory factors (CD68). Western blotting experiments showed that SPS attenuated the inflammation through the inhibition of the IκBα/NF-κB signaling pathway. These results suggest that SPS is a promising candidate for future clinical application of chronic wound dressings.
Collapse
Affiliation(s)
- Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yang Gao
- Jilin Jianwei Natural Biotechnology Co., Ltd, LinJiang 134600, China
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Ltd, LinJiang 134600, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Yue Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
29
|
Valamvanos TF, Dereka X, Katifelis H, Gazouli M, Lagopati N. Recent Advances in Scaffolds for Guided Bone Regeneration. Biomimetics (Basel) 2024; 9:153. [PMID: 38534838 DOI: 10.3390/biomimetics9030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The rehabilitation of alveolar bone defects of moderate to severe size is often challenging. Currently, the therapeutic approaches used include, among others, the guided bone regeneration technique combined with various bone grafts. Although these techniques are widely applied, several limitations and complications have been reported such as morbidity, suboptimal graft/membrane resorption rate, low structural integrity, and dimensional stability. Thus, the development of biomimetic scaffolds with tailor-made characteristics that can modulate cell and tissue interaction may be a promising tool. This article presents a critical consideration in scaffold's design and development while also providing information on various fabrication methods of these nanosystems. Their utilization as delivery systems will also be mentioned.
Collapse
Affiliation(s)
- Theodoros-Filippos Valamvanos
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Xanthippi Dereka
- Department of Periodontology, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Hector Katifelis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Greece Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
30
|
Hasan MM, Sekiya R, Zhang X, Yassouf MY, Li TS. Comparison of hypoxia- and hyperoxia-induced alteration of epigene expression pattern in lungs of Pleurodeles waltl and Mus musculus. PLoS One 2024; 19:e0299661. [PMID: 38416753 PMCID: PMC10901355 DOI: 10.1371/journal.pone.0299661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Epigenetics is an emerging field of research because of its involvement in susceptibility to diseases and aging. Hypoxia and hyperoxia are known to be involved widely in various pathophysiologies. Here, we compared the differential epigene expression pattern between Pleurodeles waltl and Mus musculus (commonly known as Iberian ribbed newt and mouse, respectively) exposed to hypoxia and hyperoxia. Adult healthy newts and mice were exposed to normobaric hypoxia (8% O2) and hyperoxia (80% O2) for 2 hours. We collected the lungs and analyzed the expression of hypoxia-inducible factor 1 alpha (Hif1α) and several key epigenes from DNA methyltransferase (DNMT) family, histone deacetylase (HDAC) family, and methyl-CpG binding domain (MBD) family. The exposure to hypoxia significantly increased the mRNA levels of DNA methyltransferase 3 alpha (Dnmt3α), methyl-CpG binding domain protein 2 (Mbd2), Mbd3, and histone deacetylase 2 (Hdac2) in lungs of newts, but decreased the mRNA levels of DNA methyltransferase 1 (Dnmt1) and Dnmt3α in lungs of mice. The exposure to hyperoxia did not significantly change the expression of any gene in either newts or mice. The differential epigene expression pattern in response to hypoxia between newts and mice may provide novel insights into the prevention and treatment of disorders developed due to hypoxia exposure.
Collapse
Affiliation(s)
- Md. Mahmudul Hasan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Reiko Sekiya
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Xu Zhang
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Mhd Yousuf Yassouf
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Sakamoto, Nagasaki, Japan
| |
Collapse
|
31
|
Zhu D, Wei W, Zhang J, Zhao B, Li Q, Jin P. Mechanism of damage of HIF-1 signaling in chronic diabetic foot ulcers and its related therapeutic perspectives. Heliyon 2024; 10:e24656. [PMID: 38318060 PMCID: PMC10839564 DOI: 10.1016/j.heliyon.2024.e24656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Diabetic foot ulcer (DFU) is a chronic complication of diabetes. Wound healing in patients with DFU is generally very slow, with a high recurrence rate even after the ulcer healed. The DFU remains a major clinical challenge due to a lack of understanding of its pathogenesis. Given the significant impact of DFU on patient health and medical costs, enhancing our understanding of pathophysiological alterations and wound healing in DFU is critical. A growing body of research has shown that impaired activation of the HIF-1 pathway in diabetics, which weakens HIF-1 mediated responses to hypoxia and leads to down-regulation of its downstream target genes, leading to incurable diabetic foot ulcers. By analyzing and summarizing the literature in recent years, this review summarizes the mechanism of HIF-1 signaling pathway damage in the development of DFU, analyzes and compares the application of PHD inhibitors, VHL inhibitors, biomaterials and stem cell therapy in chronic wounds of diabetes, and proposes a new treatment scheme mediated by participation in the HIF-1 signaling pathway, which provides new ideas for the treatment of DFU.
Collapse
Affiliation(s)
- Dong Zhu
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wuhan Wei
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyu Zhang
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bingkun Zhao
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiang Li
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peisheng Jin
- Department of Plastic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
32
|
Linawati L, Sitam S, Mulyawan W, Purba A, Syawqie A, Handharyani E, Subiakto Y, Amaliya A. Effect of Intermittent Hypobaric Hypoxia Exposure on HIF-1α, VEGF, and Angiogenesis in the Healing Process of Post-Tooth Extraction Sockets in Rats. Eur J Dent 2024; 18:304-313. [PMID: 37295455 PMCID: PMC10959591 DOI: 10.1055/s-0043-1768639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effect of intermittent hypobaric hypoxia (IHH) exposure on the expression of hypoxia-induced factor-1α (HIF-1α) messenger RNA (mRNA), vascular endothelial growth factor-a (VEGF-a) mRNA, and angiogenesis after tooth extraction in rats. MATERIALS AND METHODS On 45 male Sprague-Dawley rats were performed the removal of the maxillary left first molar, and then they were randomly divided into 9 groups, namely: 4 groups that were exposed to IHH for 30 minutes every day in the Hypobaric Chamber at an altitude of 18,000 feet, with 1 time hypobaric hypoxia (HH), 3 times HH, 5 times HH, and 7 times HH; 4 normoxia groups that were terminated on days 1, 3, 5, and 7 after tooth extraction; and the 1 control group. Real-time polymerase chain reaction measured the molecular changes in the socket tissue after tooth extraction in rats to evaluate the expression of HIF-1α mRNA and VEGF mRNA. Histological changes with hematoxylin and eosin staining were noted to evaluate the amount of angiogenesis in the socket after tooth extraction. Molecular and histological parameters were calculated at the end of each experiment on days 0, 1, 3, 5, and 7 after tooth extraction, which exhibited the improvement phase of the wound-healing process. RESULTS Increases in the expression of HIF-1α mRNA, VEGF mRNA, and angiogenesis were found in the IHH group compared with the normoxia group and the control group. The expression of HIF-1α mRNA increased significantly (p < 0.05) in the group after one time HH exposure on day 1, then decreased in the IHH group (three times HH exposure, five times HH exposure, and seven times HH exposure) approaching the control group. The expression of VEGF mRNA and angiogenesis began to increase after one time HH exposure on day 1, and increased again after three times HH exposure on day 3, then increased even more after five times HH exposure on day 5, and increased very significantly (**p < 0.05) after seven times HH exposure on day 7. It showed that repeated or intermittent exposure to HH conditions induced a protective response that made cells adapt under hypoxia conditions. CONCLUSION IHH exposure accelerates the socket healing of post-tooth extraction, which is proven by changes in HIF-1α mRNA expression and increase in VEGF mRNA expression as stimuli for angiogenesis in post-tooth extraction sockets under hypobaric hypoxic condition, which also stimulates the formation of new blood vessels, thereby increasing blood supply and accelerating wound healing.
Collapse
Affiliation(s)
- Linawati Linawati
- Doctoral Degree Study Program in Military Dentistry Science, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
| | - Suhardjo Sitam
- Department of Radiology, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
| | - Wawan Mulyawan
- Department of Community Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ambrosius Purba
- Division of Physiology, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Achmad Syawqie
- Department of Oral Biology, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
| | - Ekowati Handharyani
- Department of Veterinary Clinic Reproduction and Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Yuli Subiakto
- Military Pharmacy Faculty, Universitas Pertahanan, Jakarta, Indonesia
| | - Amaliya Amaliya
- Departement of Periodontology, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
- Centre for Military Dentistry Research, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
33
|
Gomathy M, Paul AJ, Krishnakumar V. A Systematic Review of Fish-Based Biomaterial on Wound Healing and Anti-Inflammatory Processes. Adv Wound Care (New Rochelle) 2024; 13:83-96. [PMID: 37166397 DOI: 10.1089/wound.2022.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Objective: To conduct a systematic literature review to study the effects of fish-based biomaterials on wound healing in both in vivo and in vitro animal models. Approach: This review covers the study reported in different articles between 2016 and August 2022 concentrating mainly on the cytotoxicity evaluation of different fish-based biomaterials on inflammation, reepithelialization and wound healing. Significance: This review shows considerable amount of research work carried out with fish-based biomaterials and collagen for treating burn wounds. Surprisingly there are only a few commercial products developed so far in this particular regard for surgical purpose and therefore, there is a way out and need for developing medical support product from fish-based biomaterials to treat and cure wounds. Recent Advances: Three-dimensional skin bioprinting technique is a large-scale solution for severe burn wounds that requires collagen as a raw material for printing, wherein fish collagen can be used in place of bovine and porcine, as it is biocompatible, promotes cell proliferation, adhesion, and migration, and degrades enzymatically. In the recent times, there are a few fish-based surgical products that have been formulated by Kerecis in United States. Critical Issues: The different fish-based biomaterial products are all mere supplements taken in orally as food or supplements till date and there is no proper proven medications that has been formulated so far in the field of wound healing and inflammation based on fish biomaterials except the surgical products that can be finger counted. Future Directions: Fish-based biomaterials are known for the medicinal properties that are used throughout the world and further investigations should be carried out to understand the actual physiochemical properties of its derivatives for the discovery of novel products and drugs.
Collapse
Affiliation(s)
- M Gomathy
- Department of Life Science, CHRIST (Deemed to be University), Bangalore Central Campus, Karnataka, India
| | - A John Paul
- Department of Zoology, St. Joseph's University, Bengaluru, India
| | - V Krishnakumar
- Department of Life Science, CHRIST (Deemed to be University), Bangalore Central Campus, Karnataka, India
| |
Collapse
|
34
|
Kohlhauser M, Tuca A, Kamolz LP. The efficacy of adipose-derived stem cells in burn injuries: a systematic review. Cell Mol Biol Lett 2024; 29:10. [PMID: 38182971 PMCID: PMC10771009 DOI: 10.1186/s11658-023-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Burn injuries can be associated with prolonged healing, infection, a substantial inflammatory response, extensive scarring, and eventually death. In recent decades, both the mortality rates and long-term survival of severe burn victims have improved significantly, and burn care research has increasingly focused on a better quality of life post-trauma. However, delayed healing, infection, pain and extensive scar formation remain a major challenge in the treatment of burns. ADSCs, a distinct type of mesenchymal stem cells, have been shown to improve the healing process. The aim of this review is to evaluate the efficacy of ADSCs in the treatment of burn injuries. METHODS A systematic review of the literature was conducted using the electronic databases PubMed, Web of Science and Embase. The basic research question was formulated with the PICO framework, whereby the usage of ADSCs in the treatment of burns in vivo was determined as the fundamental inclusion criterion. Additionally, pertinent journals focusing on burns and their treatment were screened manually for eligible studies. The review was registered in PROSPERO and reported according to the PRISMA statement. RESULTS Of the 599 publications screened, 21 were considered relevant to the key question and were included in the present review. The included studies were almost all conducted on rodents, with one exception, where pigs were investigated. 13 of the studies examined the treatment of full-thickness and eight of deep partial-thickness burn injuries. 57,1 percent of the relevant studies have demonstrated that ADSCs exhibit immunomodulatory effects during the inflammatory response. 16 studies have shown improved neovascularisation with the use of ADSCs. 14 studies report positive influences of ADSCs on granulation tissue formation, while 11 studies highlight their efficacy in promoting re-epithelialisation. 11 trials demonstrated an improvement in outcomes during the remodelling phase. CONCLUSION In conclusion, it appears that adipose-derived stem cells demonstrate remarkable efficacy in the field of regenerative medicine. However, the usage of ADSCs in the treatment of burns is still at an early experimental stage, and further investigations are required in order to examine the potential usage of ADSCs in future clinical burn care.
Collapse
Affiliation(s)
- Michael Kohlhauser
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria.
| | - Alexandru Tuca
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- Department of Surgery, State Hospital Güssing, Güssing, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria
| |
Collapse
|
35
|
Yang Z, Ren K, Chen Y, Quanji X, Cai C, Yin J. Oxygen-Generating Hydrogels as Oxygenation Therapy for Accelerated Chronic Wound Healing. Adv Healthc Mater 2024; 13:e2302391. [PMID: 37899694 DOI: 10.1002/adhm.202302391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/26/2023] [Indexed: 10/31/2023]
Abstract
Hypoxia in chronic wounds impairs the activities of reparative cells, resulting in tissue necrosis, bacterial infections, decreased angiogenesis, and delayed wound healing. To achieve effective oxygenation therapy and restore oxygen homeostasis, oxygen-generating hydrogels based on different oxygen sources have been developed to release dissolved oxygen in the wound bed, which not only alleviate hypoxia, but also accelerate chronic wound healing. This review first discusses the vital role of oxygen and hypoxia in the wound healing process. The advancements in oxygen-generating hydrogels, which produce oxygen through the decomposition of hydrogen peroxide, metal peroxides, glucose-activated cascade reactions, and photosynthesis of algae microorganisms for chronic wound healing, are discussed and summarized. The therapeutic effects and challenges of using oxygen-generating hydrogels for the clinical treatment of chronic wounds are concluded and prospected.
Collapse
Affiliation(s)
- Zhixuan Yang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Kaixuan Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Yehao Chen
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyan Quanji
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Chengfeng Cai
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
36
|
Taş D, Kurgan Ş, Güney Z, Serdar MA, Tatakis DN. The effect of smoking on clinical and biochemical early healing outcomes of coronally advanced flap with connective tissue graft: Prospective cohort study. J Periodontol 2024; 95:17-28. [PMID: 37436705 DOI: 10.1002/jper.23-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND This study aimed to determine the effects of smoking on early (≤3 months) clinical outcomes and relevant molecular biomarkers following root coverage surgery. METHODS Eighteen smokers and 18 nonsmokers, status biochemically verified, with RT1 gingival recession defects were recruited and completed study procedures. All patients received coronally advanced flap plus connective tissue graft. Baseline and 3 month recession depth (RD), recession width (RW), keratinized tissue width (KTW), clinical attachment level (CAL), and gingival phenotype (GP) were recorded. Root coverage (RC) percentage and complete root coverage (CRC) were calculated. Recipient (gingival crevicular fluid) and donor (wound fluid) site VEGF-A, HIF-1α, 8-OHdG, and ANG levels were determined. RESULTS There were no significant intergroup differences for any baseline or postoperative clinical parameters (P > 0.05), except for whole mouth gingival index (increased in nonsmokers at 3 months; P < 0.05). Compared to baseline, RD, RW, CAL, KTW, and GP significantly improved postoperatively, without significant intergroup differences. There were no significant intergroup differences for RC (smokers = 83%, nonsmokers = 91%, P = 0.069), CRC (smokers = 50%, nonsmokers = 72%, P = 0.177), and CAL gain (P = 0.193). The four biomarker levels significantly increased postoperatively (day 7; P ≤ 0.042) in both groups and returned to baseline (day 28) without significant intergroup differences (P > 0.05). Similarly, donor site parameters were not different between groups. Strong correlations, consistent over time, were found between biomarkers implicated in angiogenesis (VEGF-A, HIF-1α, and ANG). CONCLUSIONS The early (3 month) clinical and molecular changes after root coverage surgery utilizing a coronally advanced flap plus connective tissue graft are similar between smokers and nonsmokers.
Collapse
Affiliation(s)
- Duygu Taş
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Şivge Kurgan
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Zeliha Güney
- Department of Periodontology, Faculty of Dentistry, Ankara Medipol University, Ankara, Turkey
| | - Muhittin A Serdar
- Department of Medical Biochemistry, School of Medicine, Acıbadem University, Ankara, Turkey
| | - Dimitris N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
37
|
Bonnici L, Suleiman S, Schembri-Wismayer P, Cassar A. Targeting Signalling Pathways in Chronic Wound Healing. Int J Mol Sci 2023; 25:50. [PMID: 38203220 PMCID: PMC10779022 DOI: 10.3390/ijms25010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wounds fail to achieve complete closure and are an economic burden to healthcare systems due to the limited treatment options and constant medical attention. Chronic wounds are characterised by dysregulated signalling pathways. Research has focused on naturally derived compounds, stem-cell-based therapy, small molecule drugs, oligonucleotide delivery nanoparticles, exosomes and peptide-based platforms. The phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT), Wingless-related integration (Wnt)/β-catenin, transforming growth factor-β (TGF-β), nuclear factor erythroid 2-related factor 2 (Nrf2), Notch and hypoxia-inducible factor 1 (HIF-1) signalling pathways have critical roles in wound healing by modulating the inflammatory, proliferative and remodelling phases. Moreover, several regulators of the signalling pathways were demonstrated to be potential treatment targets. In this review, the current research on targeting signalling pathways under chronic wound conditions will be discussed together with implications for future studies.
Collapse
Affiliation(s)
| | | | | | - Analisse Cassar
- Department of Anatomy, University of Malta, MSD 2080 Msida, Malta; (L.B.); (S.S.); (P.S.-W.)
| |
Collapse
|
38
|
Li H, Ji XQ, Zhang SM, Bi RH. Hypoxia and inflammatory factor preconditioning enhances the immunosuppressive properties of human umbilical cord mesenchymal stem cells. World J Stem Cells 2023; 15:999-1016. [PMID: 38058960 PMCID: PMC10696190 DOI: 10.4252/wjsc.v15.i11.999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have great potential for the treatment of various immune diseases due to their unique immunomodulatory properties. However, MSCs exposed to the harsh inflammatory environment of damaged tissue after intravenous transplantation cannot exert their biological effects, and therefore, their therapeutic efficacy is reduced. In this challenging context, an in vitro preconditioning method is necessary for the development of MSC-based therapies with increased immunomodulatory capacity and transplantation efficacy. AIM To determine whether hypoxia and inflammatory factor preconditioning increases the immunosuppressive properties of MSCs without affecting their biological characteristics. METHODS Umbilical cord MSCs (UC-MSCs) were pretreated with hypoxia (2% O2) exposure and inflammatory factors (interleukin-1β, tumor necrosis factor-α, interferon-γ) for 24 h. Flow cytometry, polymerase chain reaction, enzyme-linked immunosorbent assay and other experimental methods were used to evaluate the biological characteristics of pretreated UC-MSCs and to determine whether pretreatment affected the immunosuppressive ability of UC-MSCs in coculture with immune cells. RESULTS Pretreatment with hypoxia and inflammatory factors caused UC-MSCs to be elongated but did not affect their viability, proliferation or size. In addition, pretreatment significantly decreased the expression of coagulation-related tissue factors but did not affect the expression of other surface markers. Similarly, mitochondrial function and integrity were retained. Although pretreatment promoted UC-MSC apoptosis and senescence, it increased the expression of genes and proteins related to immune regulation. Pretreatment increased peripheral blood mononuclear cell and natural killer (NK) cell proliferation rates and inhibited NK cell-induced toxicity to varying degrees. CONCLUSION In summary, hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics.
Collapse
Affiliation(s)
- Hang Li
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xiao-Qing Ji
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Shu-Ming Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Ri-Hui Bi
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Hospital Affiliated to Shanxi Medical University, The Third Hospital of Shanxi Medical University, Taiyuan 030002, Shanxi Province, China.
| |
Collapse
|
39
|
Sharma A, Mohapatra H, Arora K, Babbar R, Arora R, Arora P, Kumar P, Algın Yapar E, Rani K, Meenu M, Babu MA, Kaur M, Sindhu RK. Bioactive Compound-Loaded Nanocarriers for Hair Growth Promotion: Current Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:3739. [PMID: 37960095 PMCID: PMC10649697 DOI: 10.3390/plants12213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
Hair loss (alopecia) has a multitude of causes, and the problem is still poorly defined. For curing alopecia, therapies are available in both natural and synthetic forms; however, natural remedies are gaining popularity due to the multiple effects of complex phytoconstituents on the scalp with fewer side effects. Evidence-based hair growth promotion by some plants has been reported for both traditional and advanced treatment approaches. Nanoarchitectonics may have the ability to evolve in the field of hair- and scalp-altering products and treatments, giving new qualities to hair that can be an effective protective layer or a technique to recover lost hair. This review will provide insights into several plant and herbal formulations that have been reported for the prevention of hair loss and stimulation of new hair growth. This review also focuses on the molecular mechanisms of hair growth/loss, several isolated phytoconstituents with hair growth-promoting properties, patents, in vivo evaluation of hair growth-promoting activity, and recent nanoarchitectonic technologies that have been explored for hair growth.
Collapse
Affiliation(s)
- Arvind Sharma
- School of Pharmaceutical and Health Sciences, Bhoranj (Tikker–Kharwarian), Hamirpur 176041, India;
| | - Harapriya Mohapatra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Kanika Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Evren Algın Yapar
- Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas 58140, Türkiye;
| | - Kailash Rani
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Maninder Meenu
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute, Mohali 143005, India;
| | | | - Maninderjit Kaur
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India;
| | - Rakesh K. Sindhu
- School of Pharmacy, Sharda University, Greater Noida 201306, India
| |
Collapse
|
40
|
Turan TL, Klein HJ, Hackler J, Hoerner L, Rijntjes E, Graf TR, Plock JA, Schomburg L. Serum Selenium-Binding Protein 1 (SELENBP1) in Burn Injury: A Potential Biomarker of Disease Severity and Clinical Course. Antioxidants (Basel) 2023; 12:1927. [PMID: 38001780 PMCID: PMC10669776 DOI: 10.3390/antiox12111927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress, systemic inflammation, and metabolic derangements are hallmarks of burn pathophysiology. Severely burned patients are highly susceptible to infectious complications. Selenium-binding protein 1 (SELENBP1) modulates intracellular redox homeostasis, and elevated serum concentrations have been associated with adverse clinical outcomes in trauma patients. We hypothesized that serum SELENBP1 at hospital admission and during hospitalization may constitute a meaningful biomarker of disease severity and the clinical course in burn injury, with pulmonary infection as primary endpoint. To this end, we conducted a prospective cohort study that included 90 adult patients admitted to the Burn Center of the University Hospital Zurich, Switzerland. Patients were treated according to the local standard of care, with high-dose selenium supplementation during the first week. Serum SELENBP1 was determined at nine time-points up to six months postburn and the data were correlated to clinical parameters. SELENBP1 was initially elevated and rapidly declined within the first day. Baseline SELENBP1 levels correlated positively with the Abbreviated Burn Severity Index (ABSI) (R = 0.408; p < 0.0001). In multiple logistic regression, a higher ABSI was significantly associated with increased pulmonary infection risk (OR, 14.4; 95% CI, 3.2-88.8; p = 0.001). Similarly, baseline SELENBP1 levels constituted a novel but less accurate predictor of pulmonary infection risk (OR, 2.5; 95% CI, 0.7-8.9; p = 0.164). Further studies are needed to explore the additional value of serum SELENBP1 when stratifying patients with respect to the clinical course following major burns and, potentially, for monitoring therapeutic measures aimed at reducing tissue damage and oxidative stress.
Collapse
Affiliation(s)
- Tabael L. Turan
- Institute for Experimental Endocrinology, Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (T.L.T.); (L.H.); (E.R.)
| | - Holger J. Klein
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (H.J.K.); (J.A.P.)
- Department of Plastic Surgery and Hand Surgery, Cantonal Hospital Aarau, 5001 Aarau, Switzerland
| | - Julian Hackler
- Institute for Experimental Endocrinology, Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (T.L.T.); (L.H.); (E.R.)
| | - Livia Hoerner
- Institute for Experimental Endocrinology, Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (T.L.T.); (L.H.); (E.R.)
| | - Eddy Rijntjes
- Institute for Experimental Endocrinology, Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (T.L.T.); (L.H.); (E.R.)
| | - Theresia Reding Graf
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jan A. Plock
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (H.J.K.); (J.A.P.)
- Department of Plastic Surgery and Hand Surgery, Cantonal Hospital Aarau, 5001 Aarau, Switzerland
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (T.L.T.); (L.H.); (E.R.)
| |
Collapse
|
41
|
Janker L, Schuster D, Bortel P, Hagn G, Meier-Menches SM, Mohr T, Mader JC, Slany A, Bileck A, Brunmair J, Madl C, Unger L, Hennlich B, Weitmayr B, Del Favero G, Pils D, Pukrop T, Pfisterer N, Feichtenschlager T, Gerner C. Multiomics-empowered Deep Phenotyping of Ulcerative Colitis Identifies Biomarker Signatures Reporting Functional Remission States. J Crohns Colitis 2023; 17:1514-1527. [PMID: 36961872 PMCID: PMC10588787 DOI: 10.1093/ecco-jcc/jjad052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 03/25/2023]
Abstract
INTRODUCTION Ulcerative colitis [UC] is a chronic disease with rising incidence and unclear aetiology. Deep molecular phenotyping by multiomics analyses may provide novel insights into disease processes and characteristic features of remission states. METHODS UC pathomechanisms were assessed by proteome profiling of human tissue specimens, obtained from five distinct colon locations for each of the 12 patients included in the study. Systemic disease-associated alterations were evaluated thanks to a cross-sectional setting of mass spectrometry-based multiomics analyses comprising proteins, metabolites, and eicosanoids of plasma obtained from UC patients during acute episodes and upon remission, in comparison with healthy controls. RESULTS Tissue proteome profiling indicated colitis-associated activation of neutrophils, macrophages, B and T cells, fibroblasts, endothelial cells and platelets, and hypoxic stress, and suggested a general downregulation of mitochondrial proteins accompanying the establishment of apparent wound healing-promoting activities including scar formation. Whereas pro-inflammatory proteins were apparently upregulated by immune cells, the colitis-associated epithelial cells, fibroblasts, endothelial cells, and platelets seemed to predominantly contribute anti-inflammatory and wound healing-promoting proteins. Blood plasma proteomics indicated chronic inflammation and platelet activation, whereas plasma metabolomics identified disease-associated deregulations of gut and gut microbiome-derived metabolites. Upon remission several, but not all, molecular candidate biomarker levels recovered back to normal. CONCLUSION The findings may indicate that microvascular damage and platelet deregulation hardly resolve upon remission, but apparently persist as disease-associated molecular signatures. This study presents local and systemic molecular alterations integrated in a model for UC pathomechanisms, potentially supporting the assessment of disease and remission states in UC patients.
Collapse
Affiliation(s)
- Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Dina Schuster
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Patricia Bortel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Gerhard Hagn
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Samuel M Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Vienna, Austria
| | - Johanna C Mader
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Astrid Slany
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Vienna, Austria
| | - Julia Brunmair
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian Madl
- Institute of Pathology and Microbiology, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - Lukas Unger
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Hennlich
- Institute of Pathology and Microbiology, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - Barbara Weitmayr
- Institute of Pathology and Microbiology, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - Giorgia Del Favero
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Dietmar Pils
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Nikolaus Pfisterer
- Institute of Pathology and Microbiology, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | | | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Chen M, Chang C, Levian B, Woodley DT, Li W. Why Are There So Few FDA-Approved Therapeutics for Wound Healing? Int J Mol Sci 2023; 24:15109. [PMID: 37894789 PMCID: PMC10606455 DOI: 10.3390/ijms242015109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Since the only and the milestone FDA approval of becaplermin gel (RegranexTM, 0.01% human recombinant PDGF-BB) as a (diabetic) wound healing therapeutic more than 25 years ago, no new therapeutic (excluding physical therapies, devices, dressings, anti-microbial agents, or other preventive treatments) for any type of wound healing has advanced to clinical applications. During the same period of time, the FDA has approved additional 250 new drugs for various human tumors, which were famously described as "wounds that do not heal". Two similar pathological conditions have experienced such a dramatic difference in therapeutics. More surprisingly, few in the wound healing community seem to be alarmed by this mysterious deficit. As it is often said, "damaging is far easier than re-building". In contrast to the primary duty of a cancer drug to damage a single molecule of the signaling network, a wound healing drug must be able to re-build the multi-level damages in the wound. No known single molecule alone is capable of repairing multi-cell-type and multi-pathway damages all at once. We argue that the previous single molecule-based strategy for developing wound healing therapeutics is profoundly flawed in theory. The future success of effective wound healing therapeutics requires a fundamental change in the paradigm.
Collapse
Affiliation(s)
| | | | | | | | - Wei Li
- Department of Dermatology, USC-Norris Comprehensive Cancer Center, University of Southern California Keck Medical Center, Los Angeles, CA 90033, USA; (M.C.); (B.L.)
| |
Collapse
|
43
|
Ghahremani-Nasab M, Del Bakhshayesh AR, Akbari-Gharalari N, Mehdipour A. Biomolecular and cellular effects in skin wound healing: the association between ascorbic acid and hypoxia-induced factor. J Biol Eng 2023; 17:62. [PMID: 37784137 PMCID: PMC10546749 DOI: 10.1186/s13036-023-00380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
The skin serves as a barrier to protect the body from environmental microorganisms and is the largest tissue of the body and any damage must be quickly and effectively repaired. The fundamental purpose of dermal fibroblasts is to produce and secrete extracellular matrix, which is crucial for healing wounds. The production of collagen by dermal fibroblasts requires the cofactor ascorbic acid, a free radical scavenger. In skin wounds, the presence of Ascorbic acid (AA) decreases the expression of pro-inflammatory factors and increases the expression of wound-healing factors. In addition, AA plays an important role in all three phases of wound healing, including inflammation, proliferation, and regeneration. On the other hand, growing evidence indicates that hypoxia improves the wound healing performance of mesenchymal stem cell-conditioned medium compared to the normoxic-conditioned medium. In a hypoxic-conditioned medium, the proliferation and migration of endothelial cells, fibroblasts, and keratinocytes (important cells in accelerating skin wound healing) increase. In this review, the role of AA, hypoxia, and their interactions on wound healing will be discussed and summarized by the in vitro and in vivo studies conducted to date.
Collapse
Affiliation(s)
- Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naeimeh Akbari-Gharalari
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
44
|
Manchanda M, Torres M, Inuossa F, Bansal R, Kumar R, Hunt M, Wheelock CE, Bachar-Wikstrom E, Wikstrom JD. Metabolic Reprogramming and Reliance in Human Skin Wound Healing. J Invest Dermatol 2023; 143:2039-2051.e10. [PMID: 37061123 DOI: 10.1016/j.jid.2023.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 04/17/2023]
Abstract
Impaired skin wound healing is a significant global health issue, especially among the elderly. Wound healing is a well-orchestrated process involving the sequential phases of inflammation, proliferation, and tissue remodeling. Although wound healing is a highly dynamic and energy-requiring process, the role of metabolism remains largely unexplored. By combining transcriptomics and metabolomics of human skin biopsy samples, we mapped the core bioenergetic and metabolic changes in normal acute as well as chronic wounds in elderly subjects. We found upregulation of glycolysis, the tricarboxylic acid cycle, glutaminolysis, and β-oxidation in the later stages of acute wound healing and in chronic wounds. To ascertain the role of these metabolic pathways on wound healing, we targeted each pathway in a wound healing assay as well as in a human skin explant model using metabolic inhibitors and stimulants. Enhancement or inhibition of glycolysis and, to a lesser extent, glutaminolysis had a far greater impact on wound healing than similar manipulations of oxidative phosphorylation and fatty acid β-oxidation. These findings increase the understanding of wound metabolism and identify glycolysis and glutaminolysis as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mansi Manchanda
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Farydah Inuossa
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Ritu Bansal
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Rahul Kumar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, India
| | - Matthew Hunt
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Research Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden; Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
45
|
Xu X, Fu Y, Bao M. Comparison Between the Efficacy of Spinal Cord Stimulation and of Endovascular Revascularization in the Treatment of Diabetic Foot Ulcers: A Retrospective Observational Study. Neuromodulation 2023; 26:1424-1432. [PMID: 37610397 DOI: 10.1016/j.neurom.2023.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE We aimed to compare the effects of spinal cord stimulation (SCS) with those of endovascular revascularization on the treatment of diabetic foot ulcers. MATERIALS AND METHODS A total of 104 patients with diabetic foot ulcers who met the inclusion criteria were retrospectively analyzed and classified to the SCS treatment group (n = 46) and endovascular revascularization treatment group (n = 46). The quality-of-life scores (Quality of Life Scale for Patients with Liver Cancer v2.0), visual pain analog scale score, lower limb skin temperature, lower limb arterial ultrasound results, and lower extremity electromyography results were analyzed to compare the efficacy of the two treatments for diabetic foot ulcers in the two groups before surgery and six months after surgery. RESULTS A total of 92 patients (men: 73.9%, mean age: 66.51 ± 11.67 years) completed the six-month postoperative follow-up period. The patients in the SCS treatment group had a higher quality-of-life score (25.54% vs 13.77%, p < 0.05), a larger reduction in pain scores (69.18% vs 37.21%, p < 0.05), and a larger reduction in foot temperature (18.56% vs 7.24%, p < 0.05) than those of the endovascular revascularization treatment group at six months after surgery. The degree of vasodilation in the lower limbs on color Doppler arterial ultrasound and the nerve conduction velocity were higher in the SCS treatment group than in the endovascular revascularization treatment group at six months after surgery (p < 0.05). CONCLUSION SCS was more effective than endovascular revascularization in improving quality of life, relieving pain, improving lower limb skin temperature, increasing lower limb blood flow, and improving nerve conduction in patients with diabetic foot ulcers at six months after surgery.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Fu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Bao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
46
|
Lauterbach AL, Slezak AJ, Wang R, Cao S, Raczy MM, Watkins EA, Jimenez CJM, Hubbell JA. Mannose-Decorated Co-Polymer Facilitates Controlled Release of Butyrate to Accelerate Chronic Wound Healing. Adv Healthc Mater 2023; 12:e2300515. [PMID: 37503634 PMCID: PMC11468131 DOI: 10.1002/adhm.202300515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Indexed: 07/29/2023]
Abstract
Butyrate is a key bacterial metabolite that plays an important and complex role in modulation of immunity and maintenance of epithelial barriers. Its translation to clinic is limited by poor bioavailability, pungent smell, and the need for high doses, and effective delivery strategies have yet to realize clinical potential. Here, a novel polymeric delivery platform for tunable and sustainable release of butyrate consisting of a methacrylamide backbone with butyryl ester or phenyl ester side chains as well as mannosyl side chains, which is also applicable to other therapeutically relevant metabolites is reported. This platform's utility in the treatment of non-healing diabetic wounds is explored. This butyrate-containing material modulated immune cell activation in vitro and induced striking changes in the milieu of soluble cytokine and chemokine signals present within the diabetic wound microenvironment in vivo. This novel therapy shows efficacy in the treatment of non-healing wounds through the modulation of the soluble signals present within the wound, and importantly accommodates the critical temporal regulation associated with the wound healing process. Currently, the few therapies to address non-healing wounds demonstrate limited efficacy. This novel platform is positioned to address this large unmet clinical need and improve the closure of otherwise non-healing wounds.
Collapse
Affiliation(s)
| | - Anna J. Slezak
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Ruyi Wang
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Shijie Cao
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Michal M. Raczy
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Elyse A. Watkins
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | | | - Jeffrey A. Hubbell
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| |
Collapse
|
47
|
Lu Z, Yu D, Nie F, Wang Y, Chong Y. Iron Nanoparticles Open Up New Directions for Promoting Healing in Chronic Wounds in the Context of Bacterial Infection. Pharmaceutics 2023; 15:2327. [PMID: 37765295 PMCID: PMC10537899 DOI: 10.3390/pharmaceutics15092327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Metal nanoparticles play an outstanding role in the field of wound healing due to their excellent properties, and the significance of iron, one of the most widely used metals globally, cannot be overlooked. The purpose of this review is to determine the importance of iron nanoparticles in wound-healing dressings. Prolonged, poorly healing wounds may induce infections; wound infections are a major cause of chronic wound formation. The primary components of iron nanoparticles are iron oxide nanoparticles, which promote wound healing by being antibacterial, releasing metal ions, and overcoming bacterial resistance. The diameter of iron oxide nanoparticles typically ranges between 1 and 100 nm. Magnetic nanoparticles with a diameter of less than 30 nm are superparamagnetic and are referred to as superparamagnetic iron oxide nanoparticles. This subset of iron oxide nanoparticles can use an external magnetic field for novel functions such as magnetization and functionalization. Iron nanoparticles can serve clinical purposes not only to enhance wound healing through the aforementioned means but also to ameliorate anemia and glucose irregularities, capitalizing on iron's properties. Iron nanoparticles positively impact the healing process of chronic wounds, potentially extending beyond wound management.
Collapse
Affiliation(s)
- Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China; (Z.L.); (D.Y.); (F.N.)
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China; (Z.L.); (D.Y.); (F.N.)
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Fengsong Nie
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China; (Z.L.); (D.Y.); (F.N.)
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225000, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China; (Z.L.); (D.Y.); (F.N.)
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
48
|
Sarlak Z, Eidi A, Ghorbanzadeh V, Moghaddasi M, Mortazavi P. miR-34a/SIRT1/HIF-1α axis is involved in cardiac angiogenesis of type 2 diabetic rats: The protective effect of sodium butyrate combined with treadmill exercise. Biofactors 2023; 49:1085-1098. [PMID: 37560982 DOI: 10.1002/biof.1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/11/2023] [Indexed: 08/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common metabolic disorders worldwide. Recent research has indicated that sodium butyrate (NaB) affects glucose metabolism and exercise has an anti-hyperglycemic effect in diabetes. This study aimed to evaluate the effects of NaB and treadmill exercise on heart angiogenesis through the miR-34a/SIRT1/FOXO1-HIF-1α pathway. Diabetic animals received NaB (400 mg/kg daily, orally) and treadmill exercise for 6 weeks. The effect of NaB and treadmill exercise, alone or combined, on miR-34a expression, SIRT1, FOXO1, HIF-1α levels, and angiogenesis in diabetic heart tissue was measured. Diabetes caused increased miR-34a (p < 0.01) and FOXO1 (p < 0.001) expression levels. Also, SIRT1 (p < 0.001) and HIF-1α (not significant) expression levels were reduced in diabetic rats. NaB and treadmill exercise decreased miR-34a (respectively p < 0.05 and not significant) and FOXO1 (both p < 0.001) expression levels and improved SIRT1 (both not significant) and HIF-1α (respectively p < 0.01 and p < 0.001) levels. Also, NaB combined with treadmill exercise decreased miR-34a (p < 0.001) and FOXO1 (p < 0.001) expression levels, and elevated SIRT1 (p < 0.05) and HIF-1α (p < 0.001) levels in comparison with the diabetic group. NaB and treadmill exercises modulate the expression of miR-34a and the levels of SIRT1, FOXO1, and HIF-1α proteins, thus increasing angiogenesis in the heart tissue of diabetic rats. It can be concluded that NaB and treadmill exercise, alone or combined, may be useful in the treatment of diabetes through the miR-34a/SIRT1/FOXO1-HIF-1α pathway.
Collapse
Affiliation(s)
- Zeynab Sarlak
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vajihe Ghorbanzadeh
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mehrnoush Moghaddasi
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Pejman Mortazavi
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
49
|
Vu R, Dragan M, Sun P, Werner S, Dai X. Epithelial-Mesenchymal Plasticity and Endothelial-Mesenchymal Transition in Cutaneous Wound Healing. Cold Spring Harb Perspect Biol 2023; 15:a041237. [PMID: 36617638 PMCID: PMC10411868 DOI: 10.1101/cshperspect.a041237] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial and endothelial cells possess the inherent plasticity to undergo morphological, cellular, and molecular changes leading to their resemblance of mesenchymal cells. A prevailing notion has been that cutaneous wound reepithelialization involves partial epithelial-to-mesenchymal transition (EMT) of wound-edge epidermal cells to enable their transition from a stationary state to a migratory state. In this review, we reflect on past findings that led to this notion and discuss recent studies that suggest a refined view, focusing predominantly on in vivo results using mammalian excisional wound models. We highlight the concept of epithelial-mesenchymal plasticity (EMP), which emphasizes a reversible conversion of epithelial cells across multiple intermediate states within the epithelial-mesenchymal spectrum, and discuss the critical importance of restricting EMT for effective wound reepithelialization. We also outline the current state of knowledge on EMP in pathological wound healing, and on endothelial-to-mesenchymal transition (EndMT), a process similar to EMT, as a possible mechanism contributing to wound fibrosis and scar formation. Harnessing epithelial/endothelial-mesenchymal plasticity may unravel opportunities for developing new therapeutics to treat human wound healing pathologies.
Collapse
Affiliation(s)
- Remy Vu
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| | - Morgan Dragan
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| | - Peng Sun
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, 8093 ETH Zurich, Switzerland
| | - Xing Dai
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| |
Collapse
|
50
|
Mirzaei S, Ranjbar B, Tackallou SH, Aref AR. Hypoxia inducible factor-1α (HIF-1α) in breast cancer: The crosstalk with oncogenic and onco-suppressor factors in regulation of cancer hallmarks. Pathol Res Pract 2023; 248:154676. [PMID: 37454494 DOI: 10.1016/j.prp.2023.154676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Low oxygen level at tumor microenvironment leads to a condition, known as hypoxia that is implicated in cancer progression. Upon hypoxia, HIF-1α undergoes activation and due to its oncogenic function and interaction with other molecular pathways, promotes tumor progression. The HIF-1α role in regulating breast cancer progression is described, Overall, HIF-1α has upregulation in breast tumor and due to its tumor-promoting function, its upregulation is in favor of breast tumor progression. HIF-1α overexpression prevents apoptosis in breast tumor and it promotes cell cycle progression. Silencing HIF-1α triggers cycle arrest and decreases growth. Migration of breast tumor enhances by HIF-1α signaling and it mainly induces EMT in providing metastasis. HIF-1α upregulation stimulates drug resistance and radio-resistance in breast tumor. Furthermore, HIF-1α signaling induces immune evasion of breast cancer. Berberine and pharmacological intervention suppress HIF-1α signaling in breast tumor and regulation of HIF-1α by non-coding RNAs occurs. Furthermore, HIF-1α is a biomarker in clinic.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | | | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|