1
|
Maines LW, Keller SN, Smith RA, Schrecengost RS, Smith CD. Opaganib Downregulates N-Myc Expression and Suppresses In Vitro and In Vivo Growth of Neuroblastoma Cells. Cancers (Basel) 2024; 16:1779. [PMID: 38730731 PMCID: PMC11082966 DOI: 10.3390/cancers16091779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Neuroblastoma (NB), the most common cancer in infants and the most common solid tumor outside the brain in children, grows aggressively and responds poorly to current therapies. We have identified a new drug (opaganib, also known as ABC294640) that modulates sphingolipid metabolism by inhibiting the synthesis of sphingosine 1-phosphate (S1P) by sphingosine kinase-2 and elevating dihydroceramides by inhibition of dihydroceramide desaturase. The present studies sought to determine the potential therapeutic activity of opaganib in cell culture and xenograft models of NB. Cytotoxicity assays demonstrated that NB cells, including cells with amplified MYCN, are effectively killed by opaganib concentrations well below those that accumulate in tumors in vivo. Opaganib was shown to cause dose-dependent decreases in S1P and hexosylceramide levels in Neuro-2a cells, while concurrently elevating levels of dihydroceramides. As with other tumor cells, opaganib reduced c-Myc and Mcl-1 protein levels in Neuro-2a cells, and also reduced the expression of the N-Myc protein. The in vivo growth of xenografts of human SK-N-(BE)2 cells with amplified MYCN was suppressed by oral administration of opaganib at doses that are well tolerated in mice. Combining opaganib with temozolomide plus irinotecan, considered the backbone for therapy of relapsed or refractory NB, resulted in increased antitumor activity in vivo compared with temozolomide plus irinotecan or opaganib alone. Mice did not lose additional weight when opaganib was combined with temozolomide plus irinotecan, indicating that the combination is well tolerated. Opaganib has additive antitumor activity toward Neuro-2a tumors when combined with the checkpoint inhibitor anti-CTLA-4 antibody; however, the combination of opaganib with anti-PD-1 or anti-PD-L1 antibodies did not provide increased antitumor activity over that seen with opaganib alone. Overall, the data demonstrate that opaganib modulates sphingolipid metabolism and intracellular signaling in NB cells and inhibits NB tumor growth alone and in combination with other anticancer drugs. Amplified MYCN does not confer resistance to opaganib, and, in fact, the drug attenuates the expression of both c-Myc and N-Myc. The safety of opaganib has been established in clinical trials with adults with advanced cancer or severe COVID-19, and so opaganib has excellent potential for treating patients with NB, particularly in combination with temozolomide and irinotecan or anti-CTLA-4 antibody.
Collapse
Affiliation(s)
| | | | | | | | - Charles D. Smith
- Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA 17036, USA
| |
Collapse
|
2
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Wajapeyee N, Beamon TC, Gupta R. Roles and therapeutic targeting of ceramide metabolism in cancer. Mol Metab 2024; 83:101936. [PMID: 38599378 PMCID: PMC11031839 DOI: 10.1016/j.molmet.2024.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Ceramides are sphingolipids that act as signaling molecules involved in regulating cellular processes including apoptosis, proliferation, and metabolism. Deregulation of ceramide metabolism contributes to cancer development and progression. Therefore, regulation of ceramide levels in cancer cells is being explored as a new approach for cancer therapy. SCOPE OF THE REVIEW This review discusses the multiple roles of ceramides in cancer cells and strategies to modulate ceramide levels for cancer therapy. Ceramides attenuate cell survival signaling and metabolic pathways, while activating apoptotic mechanisms, making them tumor-suppressive. Approaches to increase ceramide levels in cancer cells include using synthetic analogs, inhibiting ceramide degradation, and activating ceramide synthesis. We also highlight combination therapies such as use of ceramide modulators with chemotherapies, immunotherapies, apoptosis inducers, and anti-angiogenics, which offer synergistic antitumor effects. Additionally, we also describe ongoing clinical trials evaluating ceramide nanoliposomes and analogs. Finally, we discuss the challenges of these therapeutic approaches including the complexity of ceramide metabolism, targeted delivery, cancer heterogeneity, resistance mechanisms, and long-term safety. MAJOR CONCLUSIONS Ceramide-based therapy is a potentially promising approach for cancer therapy. However, overcoming hurdles in pharmacokinetics, specificity, and resistance is needed to optimize its efficacy and safety. This requires comprehensive preclinical/clinical studies into ceramide signaling, formulations, and combination therapies. Ceramide modulation offers opportunities for developing novel cancer treatments, but a deeper understanding of ceramide biology is vital to advance its clinical applications.
Collapse
Affiliation(s)
- Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | - Teresa Chiyanne Beamon
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
4
|
Zinc transport from the endoplasmic reticulum to the cytoplasm via Zip7 is necessary for barrier dysfunction mediated by inflammatory signaling in RPE cells. PLoS One 2022; 17:e0271656. [PMID: 35901031 PMCID: PMC9333247 DOI: 10.1371/journal.pone.0271656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Inflammatory signaling induces barrier dysfunction in retinal-pigmented epithelium (RPE) cells and plays a role in the pathology of age-related macular degeneration (AMD). We studied the role of Zn flux from the endoplasmic reticulum (ER) to the cytoplasm via Zip7 during inflammatory signaling in RPE cells. In ARPE-19 cells, Zip7 inhibition reduced impedance loss, FITC-dextran permeability and cytokine induction caused by challenge with IL-1β/TNF-α. Zip7 inhibition in iPS-derived RPE cells challenged with TNF- α reduced barrier loss in TER assays. In ARPE-19 cells, a Zn ionophore restored cytokine induction and barrier loss in cells challenged with IL-1 β /TNF- α despite Zip7 inhibition. A cell permeable Zn chelator demonstrated that Zn is essential for IL-1 β /TNF- α signaling. ER stress caused by Zip7 inhibition in ARPE-19 cells was found to partially contribute to reducing barrier dysfunction caused by IL-1 β /TNF- α. Overall, it was shown that Zn flux through Zip7 from the ER to the cytoplasm plays a critical role in driving barrier dysfunction caused by inflammatory cytokines in RPE cells.
Collapse
|
5
|
Cytokine-Mediated Inflammation in the Oral Cavity and Its Effect on Lipid Nanocarriers. NANOMATERIALS 2021; 11:nano11051330. [PMID: 34070004 PMCID: PMC8157841 DOI: 10.3390/nano11051330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 01/17/2023]
Abstract
Topical drug administration to the oral mucosa proves to be a promising treatment alternative for inflammatory diseases. However, disease-related changes in the cell barrier must be considered when developing such delivery systems. This study aimed at investigating the changes in the lining mucosa caused by inflammation and evaluating the consequences on drug delivery systems such as nanostructured lipid carriers (NLC). For this, TR146 cells were treated with inflammatory cytokines and bacterial components. Cell viability and integrity, reactive oxygen species (ROS), and interleukin (IL)-8 release were used as endpoints to assess inflammation. Translocation of phosphatidylserine, cytoskeletal arrangement, opening of desmosomes, and cell proliferation were examined. Transport studies with NLC were performed considering active and passive pathways. The results showed that IL-1ß and tumor necrosis factor α induced inflammation by increasing IL-8 and ROS production (22-fold and 2-fold). Morphologically, loss of cell–cell connections and formation of stress fibers and hyperplasia were observed. The charge of the cell membrane shifted from neutral to negative, which increased the absorption of NLC due to the repulsive interactions between the hydrophobic negative particles and the cell membrane on the one hand, and interactions with lipophilic membrane proteins such as caveolin on the other.
Collapse
|
6
|
Strauss RE, Gourdie RG. Cx43 and the Actin Cytoskeleton: Novel Roles and Implications for Cell-Cell Junction-Based Barrier Function Regulation. Biomolecules 2020; 10:E1656. [PMID: 33321985 PMCID: PMC7764618 DOI: 10.3390/biom10121656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Barrier function is a vital homeostatic mechanism employed by epithelial and endothelial tissue. Diseases across a wide range of tissue types involve dynamic changes in transcellular junctional complexes and the actin cytoskeleton in the regulation of substance exchange across tissue compartments. In this review, we focus on the contribution of the gap junction protein, Cx43, to the biophysical and biochemical regulation of barrier function. First, we introduce the structure and canonical channel-dependent functions of Cx43. Second, we define barrier function and examine the key molecular structures fundamental to its regulation. Third, we survey the literature on the channel-dependent roles of connexins in barrier function, with an emphasis on the role of Cx43 and the actin cytoskeleton. Lastly, we discuss findings on the channel-independent roles of Cx43 in its associations with the actin cytoskeleton and focal adhesion structures highlighted by PI3K signaling, in the potential modulation of cellular barriers. Mounting evidence of crosstalk between connexins, the cytoskeleton, focal adhesion complexes, and junctional structures has led to a growing appreciation of how barrier-modulating mechanisms may work together to effect solute and cellular flux across tissue boundaries. This new understanding could translate into improved therapeutic outcomes in the treatment of barrier-associated diseases.
Collapse
Affiliation(s)
- Randy E. Strauss
- Virginia Tech, Translational Biology Medicine and Health (TBMH) Program, Roanoke, VA 24016, USA
| | - Robert G. Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
7
|
Abstract
Sphingosine kinases (SK1 and SK2) are key, druggable targets within the sphingolipid metabolism pathway that promote tumor growth and pathologic inflammation. A variety of isozyme-selective and dual inhibitors of SK1 and SK2 have been described in the literature, and at least one compound has reached clinical testing in cancer patients. In this chapter, we will review the rationale for targeting SKs and summarize the preclinical and emerging clinical data for ABC294640 as the first-in-class selective inhibitor of SK2.
Collapse
|
8
|
Kowluru A, Kowluru RA. RACking up ceramide-induced islet β-cell dysfunction. Biochem Pharmacol 2018; 154:161-169. [PMID: 29715450 DOI: 10.1016/j.bcp.2018.04.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
Abstract
The International Diabetes Federation predicts that by 2045 the number of individuals afflicted with diabetes will increase to 629 million. Furthermore, ∼352 million individuals with impaired glucose tolerance are at increased risk for developing diabetes. Several mechanisms have been proposed for the onset of metabolic dysfunction and demise of the islet β-cell leading to the pathogenesis of diabetes. It is widely accepted that the onset of type 2 diabetes is due to an intricate interplay between genetic expression of the disease and a multitude of factors including increased oxidative and endoplasmic reticulum stress consequential to glucolipotoxicity and inflammation. Compelling experimental evidence from in vitro and in vivo studies implicates intracellular generation of ceramide (CER), a biologically-active sphingolipid, as a trigger in the onset of β-cell demise under above pathological conditions. Recent pharmacological and molecular biological evidence affirms regulatory roles for Ras-related C3 botulinum toxin substrate 1 (Rac1), a small G protein, in the islet β-cell function in health and diabetes. In this Commentary, we overviewed the emerging evidence implicating potential cross-talk between Rac1 and ceramide signaling pathways in the onset of metabolic dysregulation of the islet β-cell culminating in impaired physiological insulin secretion, loss of β-cell mass and the onset of diabetes. Further, we propose a model depicting contributory roles of defective protein lipidation (prenylation) pathway in the induction of metabolic defects in the β-cell under metabolic stress conditions. Potential avenues for the identification of novel therapeutic targets for the prevention/treatment of diabetes and its associated complications are highlighted.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Renu A Kowluru
- Department of Ophthalmology and Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
9
|
Hoffman PL, Saba LM, Vanderlinden LA, Tabakoff B. Voluntary exposure to a toxin: the genetic influence on ethanol consumption. Mamm Genome 2017; 29:128-140. [PMID: 29196862 DOI: 10.1007/s00335-017-9726-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023]
Abstract
Ethyl alcohol is a toxin that, when consumed at high levels, produces organ damage and death. One way to prevent or ameliorate this damage in humans is to reduce the exposure of organs to alcohol by reducing alcohol ingestion. Both the propensity to consume large volumes of alcohol and the susceptibility of human organs to alcohol-induced damage exhibit a strong genetic influence. We have developed an integrative genetic/genomic approach to identify transcriptional networks that predispose complex traits, including propensity for alcohol consumption and propensity for alcohol-induced organ damage. In our approach, the phenotype is assessed in a panel of recombinant inbred (RI) rat strains, and quantitative trait locus (QTL) analysis is performed. Transcriptome data from tissues/organs of naïve RI rat strains are used to identify transcriptional networks using Weighted Gene Coexpression Network Analysis (WGCNA). Correlation of the first principal component of transcriptional coexpression modules with the phenotype across the rat strains, and overlap of QTLs for the phenotype and the QTLs for the coexpression modules (module eigengene QTL) provide the criteria for identification of the functionally related groups of genes that contribute to the phenotype (candidate modules). While we previously identified a brain transcriptional module whose QTL overlapped with a QTL for levels of alcohol consumption in HXB/BXH RI rat strains and 12 selected rat lines, this module did not account for all of the genetic variation in alcohol consumption. Our search for QTL overlap and correlation of coexpression modules with phenotype can, however, be applied to any organ in which the transcriptome has been measured, and this represents a holistic approach in the search for genetic contributors to complex traits. Previous work has implicated liver/brain interactions, particularly involving inflammatory/immune processes, as influencing alcohol consumption levels. We have now analyzed the liver transcriptome of the HXB/BXH RI rat panel in relation to the behavioral trait of alcohol consumption. We used RNA-Seq and microarray data to construct liver transcriptional networks, and identified a liver candidate transcriptional coexpression module that explained 24% of the genetic variance in voluntary alcohol consumption. The transcripts in this module focus attention on liver secretory products that influence inflammatory and immune signaling pathways. We propose that these liver secretory products can interact with brain mechanisms that affect alcohol consumption, and targeting these pathways provides a potential approach to reducing high levels of alcohol intake and also protecting the integrity of the liver and other organs.
Collapse
Affiliation(s)
- Paula L Hoffman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA
| | - Lauren A Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, 80045, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA. .,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Campus Box: C238, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Singh RK, Haka AS, Brumfield A, Grosheva I, Bhardwaj P, Chin HF, Xiong Y, Hla T, Maxfield FR. Ceramide activation of RhoA/Rho kinase impairs actin polymerization during aggregated LDL catabolism. J Lipid Res 2017; 58:1977-1987. [PMID: 28814641 PMCID: PMC5625121 DOI: 10.1194/jlr.m076398] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/11/2017] [Indexed: 01/22/2023] Open
Abstract
Macrophages use an extracellular, hydrolytic compartment formed by local actin polymerization to digest aggregated LDL (agLDL). Catabolism of agLDL promotes foam cell formation and creates an environment rich in LDL catabolites, including cholesterol and ceramide. Increased ceramide levels are present in lesional LDL, but the effect of ceramide on macrophage proatherogenic processes remains unknown. Here, we show that macrophages accumulate ceramide in atherosclerotic lesions. Using macrophages from sphingosine kinase 2 KO (SK2KO) mice to mimic ceramide-rich conditions of atherosclerotic lesions, we show that SK2KO macrophages display impaired actin polymerization and foam cell formation in response to contact with agLDL. C16-ceramide treatment impaired wild-type but not SK2KO macrophage actin polymerization, confirming that this effect is due to increased ceramide levels. We demonstrate that knockdown of RhoA or inhibition of Rho kinase restores agLDL-induced actin polymerization in SK2KO macrophages. Activation of RhoA in macrophages was sufficient to impair actin polymerization and foam cell formation in response to agLDL. Finally, we establish that during catabolism, macrophages take up ceramide from agLDL, and inhibition of ceramide generation modulates actin polymerization. These findings highlight a critical regulatory pathway by which ceramide impairs actin polymerization through increased RhoA/Rho kinase signaling and regulates foam cell formation.
Collapse
Affiliation(s)
- Rajesh K Singh
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Abigail S Haka
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | | | - Inna Grosheva
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Priya Bhardwaj
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Harvey F Chin
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Yuquan Xiong
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
11
|
Lim J, Ehsanipour A, Hsu JJ, Lu J, Pedego T, Wu A, Walthers CM, Demer LL, Seidlits SK, Tintut Y. Inflammation Drives Retraction, Stiffening, and Nodule Formation via Cytoskeletal Machinery in a Three-Dimensional Culture Model of Aortic Stenosis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2378-89. [PMID: 27392969 DOI: 10.1016/j.ajpath.2016.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/27/2016] [Accepted: 05/05/2016] [Indexed: 12/26/2022]
Abstract
In calcific aortic valve disease, the valve cusps undergo retraction, stiffening, and nodular calcification. The inflammatory cytokine, tumor necrosis factor (TNF)-α, contributes to valve disease progression; however, the mechanisms of its actions on cusp retraction and stiffening are unclear. We investigated effects of TNF-α on murine aortic valvular interstitial cells (VICs) within three-dimensional, free-floating, compliant, collagen hydrogels, simulating their natural substrate and biomechanics. TNF-α increased retraction (percentage of diameter), stiffness, and formation of macroscopic, nodular structures with calcification in the VIC-laden hydrogels. The effects of TNF-α were attenuated by blebbistatin inhibition of myosin II-mediated cytoskeletal contraction. Inhibition of actin polymerization with cytochalasin-D, but not inhibition of Rho kinase with Y27632, blocked TNF-α-induced retraction in three-dimensional VIC hydrogels, suggesting that actin stress fibers mediate TNF-α-induced effects. In the hydrogels, inhibitors of NF-κB blocked TNF-α-induced retraction, whereas simultaneous inhibition of c-Jun N-terminal kinase was required to block TNF-α-induced stiffness. TNF-α also significantly increased collagen deposition, as visualized by Masson's trichrome staining, and up-regulated mRNA expression of discoidin domain receptor tyrosine kinase 2, fibronectin, and α-smooth muscle actin. In human aortic valves, calcified cusps were stiffer and had more collagen deposition than noncalcified cusps. These findings suggest that inflammation, through stimulation of cytoskeletal contractile activity, may be responsible for valvular cusp retraction, stiffening, and formation of calcified nodules.
Collapse
Affiliation(s)
- Jina Lim
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, California
| | - Arshia Ehsanipour
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Jeffrey J Hsu
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jinxiu Lu
- Department of Physiology, University of California, Los Angeles, Los Angeles, California
| | - Taylor Pedego
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Alexander Wu
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Chris M Walthers
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Linda L Demer
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California; Department of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Physiology, University of California, Los Angeles, Los Angeles, California
| | - Stephanie K Seidlits
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Yin Tintut
- Department of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Physiology, University of California, Los Angeles, Los Angeles, California; Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
12
|
Issop L, Ostuni MA, Lee S, Laforge M, Péranzi G, Rustin P, Benoist JF, Estaquier J, Papadopoulos V, Lacapère JJ. Translocator Protein-Mediated Stabilization of Mitochondrial Architecture during Inflammation Stress in Colonic Cells. PLoS One 2016; 11:e0152919. [PMID: 27054921 PMCID: PMC4824355 DOI: 10.1371/journal.pone.0152919] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/21/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Chronic inflammation of the gastrointestinal tract increasing the risk of cancer has been described to be linked to the high expression of the mitochondrial translocator protein (18 kDa; TSPO). Accordingly, TSPO drug ligands have been shown to regulate cytokine production and to improve tissue reconstruction. We used HT-29 human colon carcinoma cells to evaluate the role of TSPO and its drug ligands in tumor necrosis factor (TNF)-induced inflammation. TNF-induced interleukin (IL)-8 expression, coupled to reactive oxygen species (ROS) production, was followed by TSPO overexpression. TNF also destabilized mitochondrial ultrastructure, inducing cell death by apoptosis. Treatment with the TSPO drug ligand PK 11195 maintained the mitochondrial ultrastructure, reducing IL-8 and ROS production and cell death. TSPO silencing and overexpression studies demonstrated that the presence of TSPO is essential to control IL-8 and ROS production, so as to maintain mitochondrial ultrastructure and to prevent cell death. Taken together, our data indicate that inflammation results in the disruption of mitochondrial complexes containing TSPO, leading to cell death and epithelia disruption. SIGNIFICANCE This work implicates TSPO in the maintenance of mitochondrial membrane integrity and in the control of mitochondrial ROS production, ultimately favoring tissue regeneration.
Collapse
Affiliation(s)
- Leeyah Issop
- Sorbonne Universités – Université Pierre et Marie Curie Université de Paris VI, École Normale Supérieure – PSL Research University, Département de Chimie, CNRS UMR 7203 LBM, 4 Place Jussieu, F-75005, Paris, France
- The Research Institute of the McGill University Health Center and the Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Mariano A. Ostuni
- INSERM UMRS 1134, Institut National de la Transfusion Sanguine, 6 rue Alexandre Cabanel, Université Paris 7 Denis Diderot, F-75015 Paris, France
| | - Sunghoon Lee
- The Research Institute of the McGill University Health Center and the Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | | | - Gabriel Péranzi
- Sorbonne Universités – Université Pierre et Marie Curie Université de Paris VI, École Normale Supérieure – PSL Research University, Département de Chimie, CNRS UMR 7203 LBM, 4 Place Jussieu, F-75005, Paris, France
| | - Pierre Rustin
- INSERM UMR 1141, Hôpital Robert Debré, and Université Paris 7 Denis Diderot, F-75019, Paris, France
| | - Jean-François Benoist
- INSERM UMR 1141, Hôpital Robert Debré, and Université Paris 7 Denis Diderot, F-75019, Paris, France
| | - Jérome Estaquier
- CNRS FR 3636, Université Paris Descartes, Paris, France
- Université Laval, Faculté de Médecine, Département de microbiologie-infectiologie et d’immunologie, Quebec City, Quebec, G1V06A, Canada
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Center and the Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Jean-Jacques Lacapère
- Sorbonne Universités – Université Pierre et Marie Curie Université de Paris VI, École Normale Supérieure – PSL Research University, Département de Chimie, CNRS UMR 7203 LBM, 4 Place Jussieu, F-75005, Paris, France
- * E-mail:
| |
Collapse
|
13
|
Marcos-Ramiro B, García-Weber D, Millán J. TNF-induced endothelial barrier disruption: beyond actin and Rho. Thromb Haemost 2014; 112:1088-102. [PMID: 25078148 DOI: 10.1160/th14-04-0299] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/16/2014] [Indexed: 11/05/2022]
Abstract
The decrease of endothelial barrier function is central to the long-term inflammatory response. A pathological alteration of the ability of endothelial cells to modulate the passage of cells and solutes across the vessel underlies the development of inflammatory diseases such as atherosclerosis and multiple sclerosis. The inflammatory cytokine tumour necrosis factor (TNF) mediates changes in the barrier properties of the endothelium. TNF activates different Rho GTPases, increases filamentous actin and remodels endothelial cell morphology. However, inhibition of actin-mediated remodelling is insufficient to prevent endothelial barrier disruption in response to TNF, suggesting that additional molecular mechanisms are involved. Here we discuss, first, the pivotal role of Rac-mediated generation of reactive oxygen species (ROS) to regulate the integrity of endothelial cell-cell junctions and, second, the ability of endothelial adhesion receptors such as ICAM-1, VCAM-1 and PECAM-1, involved in leukocyte transendothelial migration, to control endothelial permeability to small molecules, often through ROS generation. These adhesion receptors regulate endothelial barrier function in ways both dependent on and independent of their engagement by immune cells, and orchestrate the crosstalk between leukocyte transendothelial migration and endothelial permeability during inflammation.
Collapse
Affiliation(s)
| | | | - J Millán
- Jaime Millán, Centro de Biología Molecular Severo Ochoa, C/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain, Tel.: +34 911964713, Fax: +34 911964420, E-mail:
| |
Collapse
|
14
|
Abstract
The binding of tumour necrosis factor α (TNFα) to cell surface receptors engages multiple signal transduction pathways, including three groups of mitogen-activated protein (MAP) kinases: extracellular-signal-regulated kinases (ERKs); the cJun NH2-terminal kinases (JNKs); and the p38 MAP kinases. These MAP kinase signalling pathways induce a secondary response by increasing the expression of several inflammatory cytokines (including TNFα) that contribute to the biological activity of TNFα. MAP kinases therefore function both upstream and down-stream of signalling by TNFα receptors. Here we review mechanisms that mediate these actions of MAP kinases during the response to TNFα.
Collapse
Affiliation(s)
- Guadalupe Sabio
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Roger J Davis
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
15
|
Babahosseini H, Roberts PC, Schmelz EM, Agah M. Bioactive sphingolipid metabolites modulate ovarian cancer cell structural mechanics. Integr Biol (Camb) 2013; 5:1385-92. [PMID: 24056950 DOI: 10.1039/c3ib40121a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer progression is associated with an increased deformability of cancer cells and reduced resistance to mechanical forces, enabling motility and invasion. This is important for metastases survival and outgrowth and as such could be a target for chemopreventive strategies. In this study, we determined the differential effects of exogenous sphingolipid metabolites on the elastic modulus of mouse ovarian surface epithelial cells as they transition to cancer. Treatment with ceramide or sphingosine-1-phosphate in non-toxic concentrations decreased the average elastic modulus by 21% (p≤ 0.001) in transitional and 15% (p≤ 0.02) in aggressive stages while exerting no appreciable effect on non-malignant cells. In contrast, sphingosine treatment on average increased the elastic modulus by 33% (p≤ 0.0002) in aggressive cells while not affecting precursor cells. These results indicate that tumor-supporting sphingolipid metabolites act by making cells softer, while the anti-cancer metabolite sphingosine partially reverses the decreased elasticity associated with cancer progression. Thus, sphingosine may be a valid alternative to conventional chemotherapeutics in ovarian cancer prevention or treatment.
Collapse
Affiliation(s)
- Hesam Babahosseini
- Department of Mechanical Engineering, 100 Randolph Hall, Blacksburg, VA, USA.
| | | | | | | |
Collapse
|
16
|
Babahosseini H, Roberts PC, Schmelz EM, Agah M. Roles of bioactive sphingolipid metabolites in ovarian cancer cell biomechanics. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:2436-9. [PMID: 23366417 DOI: 10.1109/embc.2012.6346456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bioactive sphingolipid metabolites have emerged as important lipid second messengers in the regulation of cell growth, death, motility and many other events. These processes are important in cancer development and progression; thus, sphingolipid metabolites have been implicated in both cancer development and cancer prevention. Despite recent considerable progress in understanding the multi-faceted functions of these bioactive metabolites, little is known about their influence on the biomechanical property of cells. The biomechanical properties of cancer cells change during progression with aggressive and invasive cells being softer compared to their benign counterparts. In this paper, we investigated the effects of exogenous sphingolipid metabolites on the Young's modulus and cytoskeletal organization of cells representing aggressive ovarian cancer. Our findings demonstrate that the elasticity of aggressive ovarian cancer cells decreased ∼15% after treatment with ceramide and sphingosine-1-phosphate. In contrast, sphingosine treatment caused a ∼30% increase in the average elasticity which was associated with a more defined actin cytoskeleton organization. This indicates that sphingolipid metabolites differentially modulate the biomechanic properties of cancer cells which may have a critical impact on cancer cell survival and progression, and the use of sphingolipid metabolites as chemopreventive or chemo-therapeutic agents.
Collapse
Affiliation(s)
- Hesam Babahosseini
- VT MEMS Lab, Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA.
| | | | | | | |
Collapse
|
17
|
Regulation of cytoskeleton organization by sphingosine in a mouse cell model of progressive ovarian cancer. Biomolecules 2013; 3:386-407. [PMID: 24970173 PMCID: PMC4030958 DOI: 10.3390/biom3030386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 01/16/2023] Open
Abstract
Ovarian cancer is a multigenic disease and molecular events driving ovarian cancer progression are not well established. We have previously reported the dysregulation of the cytoskeleton during ovarian cancer progression in a syngeneic mouse cell model for progressive ovarian cancer. In the present studies, we investigated if the cytoskeleton organization is a potential target for chemopreventive treatment with the bioactive sphingolipid metabolite sphingosine. Long-term treatment with non-toxic concentrations of sphingosine but not other sphingolipid metabolites led to a partial reversal of a cytoskeleton architecture commonly associated with aggressive cancer phenotypes towards an organization reminiscent of non-malignant cell phenotypes. This was evident by increased F-actin polymerization and organization, a reduced focal adhesion kinase expression, increased α-actinin and vinculin levels which together led to the assembly of more mature focal adhesions. Downstream focal adhesion signaling, the suppression of myosin light chain kinase expression and hypophosphorylation of its targets were observed after treatment with sphingosine. These results suggest that sphingosine modulate the assembly of actin stress fibers via regulation of focal adhesions and myosin light chain kinase. The impact of these events on suppression of ovarian cancer by exogenous sphingosine and their potential as molecular markers for treatment efficacy warrants further investigation.
Collapse
|
18
|
Salmanzadeh A, Elvington ES, Roberts PC, Schmelz EM, Davalos RV. Sphingolipid metabolites modulate dielectric characteristics of cells in a mouse ovarian cancer progression model. Integr Biol (Camb) 2013; 5:843-52. [PMID: 23609351 PMCID: PMC3704134 DOI: 10.1039/c3ib00008g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Currently, conventional cancer treatment regimens often rely upon highly toxic chemotherapeutics or target oncogenes that are variably expressed within the heterogeneous cell population of tumors. These challenges highlight the need for novel treatment strategies that (1) are non-toxic yet able to at least partially reverse the aggressive phenotype of the disease to a benign or very slow-growing state, and (2) act on the cells independently of variably expressed biomarkers. Using a label-independent rapid microfluidic cell manipulation strategy known as contactless dielectrophoresis (cDEP), we investigated the effect of non-toxic concentrations of two bioactive sphingolipid metabolites, sphingosine (So), with potential anti-tumor properties, and sphingosine-1-phosphate (S1P), a tumor-promoting metabolite, on the intrinsic electrical properties of early and late stages of mouse ovarian surface epithelial (MOSE) cancer cells. Previously, we demonstrated that electrical properties change as cells progress from a benign early stage to late malignant stages. Here, we demonstrate an association between So treatment and a shift in the bioelectrical characteristics of late stage MOSE (MOSE-L) cells towards a profile similar to that of benign MOSE-E cells. Particularly, the specific membrane capacitance of MOSE-L cells shifted toward that of MOSE-E cells, decreasing from 23.94 ± 2.75 to 16.46 ± 0.62 mF m(-2) after So treatment, associated with a decrease in membrane protrusions. In contrast, S1P did not reverse the electrical properties of MOSE-L cells. This work is the first to indicate that treatment with non-toxic doses of So correlates with changes in the electrical properties and surface roughness of cells. It also demonstrates the potential of cDEP to be used as a new, rapid technique for drug efficacy studies, and for eventually designing more personalized treatment regimens.
Collapse
Affiliation(s)
- Alireza Salmanzadeh
- Bioelectromechanical Systems Laboratory, School of Biomedical Engineering and
Sciences, Virginia Tech – Wake Forest University, Blacksburg, VA, 24061, USA. Tel:
+1-540-231-1979
- Engineering Science and Mechanics Department, Virginia Tech, Blacksburg, VA, 24061,
USA
| | - Elizabeth S. Elvington
- Bioelectromechanical Systems Laboratory, School of Biomedical Engineering and
Sciences, Virginia Tech – Wake Forest University, Blacksburg, VA, 24061, USA. Tel:
+1-540-231-1979
| | - Paul C. Roberts
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA,
24061, USA
| | - Eva M. Schmelz
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA,
24061, USA. Tel: +1-540-231-3649
| | - Rafael V. Davalos
- Bioelectromechanical Systems Laboratory, School of Biomedical Engineering and
Sciences, Virginia Tech – Wake Forest University, Blacksburg, VA, 24061, USA. Tel:
+1-540-231-1979
- Engineering Science and Mechanics Department, Virginia Tech, Blacksburg, VA, 24061,
USA
| |
Collapse
|
19
|
Boecke A, Carstens AC, Neacsu CD, Baschuk N, Haubert D, Kashkar H, Utermöhlen O, Pongratz C, Krönke M. TNF-receptor-1 adaptor protein FAN mediates TNF-induced B16 melanoma motility and invasion. Br J Cancer 2013; 109:422-32. [PMID: 23674089 PMCID: PMC3721409 DOI: 10.1038/bjc.2013.242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Locomotion of cancer cells can be induced by TNF and other motogenic factors secreted by cells of the tumour microenvironment such as macrophages. Based on our recent findings that the TNF receptor adaptor protein FAN mediates TNF-induced actin reorganisation and regulates the directed migration of immune cells responding to chemotactic cues, we addressed the role of FAN in cancer cell motility and the formation of invadopodia, a crucial feature in tumour invasion. METHODS In B16 mouse melanoma cells, FAN was downregulated and the impact on FAN on cell motility and invasion was determined using in vitro assays and in vivo animal models. RESULTS Like FAN(-/-) murine embryonic fibroblasts, FAN-deficient B16 melanoma cells showed defective motility responses to TNF in vitro. In vivo FAN-deficient B16 melanoma cells produced significantly less disseminated tumours after i.v. injection into mice. Danio rerio used as a second in vivo model also revealed impaired spreading of FAN-deficient B16 melanoma cells. Furthermore, FAN mediated TNF-induced paxillin phosphorylation, metalloproteinase activation and increased extracellular matrix degradation, the hallmarks of functionally active invadopodia. CONCLUSION The results of our study suggest that FAN through promoting melanoma cellular motility and tumour invasiveness is critical for the tumour-promoting action of TNF.
Collapse
Affiliation(s)
- A Boecke
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Köln, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cinq-Frais C, Coatrieux C, Grazide MH, Hannun YA, Nègre-Salvayre A, Salvayre R, Augé N. A signaling cascade mediated by ceramide, src and PDGFRβ coordinates the activation of the redox-sensitive neutral sphingomyelinase-2 and sphingosine kinase-1. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1344-56. [PMID: 23651497 DOI: 10.1016/j.bbalip.2013.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/08/2013] [Accepted: 04/30/2013] [Indexed: 01/14/2023]
Abstract
Stress-inducing agents, including oxidative stress, generate the sphingolipid mediators ceramide (Cer) and sphingosine-1-phosphate (S1P) that are involved in stress-induced cellular responses. The two redox-sensitive neutral sphingomyelinase-2 (nSMase2) and sphingosine kinase-1 (SK1) participate in transducing stress signaling to ceramide and S1P, respectively; however, whether these key enzymes are coordinately regulated is not known. We investigated whether a signaling link coordinates nSMase2 and SK1 activation by H2O2. In mesenchymal cells, H2O2 elicits a dose-dependent biphasic effect, mitogenic at low concentration (5μM), and anti-proliferative and toxic at high concentration (100μM). Low H2O2 concentration triggered activation of nSMase2 and SK1 through a nSMase2/Cer-dependent signaling pathway that acted upstream of activation of SK1. Further results implicated src and the trans-activation of PDGFRβ, as supported by the blocking effect of specific siRNAs, pharmacological inhibitors, and genetically deficient cells for nSMase2, src and SK1. The H2O2-induced src/PDGFRβ/SK1 signaling cascade was impaired in nSMase2-deficient fro/fro cells and was rescued by exogenous C2Cer that activated src/PDGFRβ/SK1. Thus, the results define a nSMase2/SK1 signaling pathway implicated in the mitogenic response to low oxidative stress. On the other hand, high oxidative stress induced inhibition of SK1. The results also showed that the toxicity of high H2O2 concentration was comparable in control and nSMase2-deficient cells. Taken together the results identify a tightly coordinated nSMase2/SK1 pathway that mediates the mitogenic effects of H2O2 and may sense the degree of oxidative stress.
Collapse
|
21
|
Chaudhry SI, Hooper S, Nye E, Williamson P, Harrington K, Sahai E. Autocrine IL-1β-TRAF6 signalling promotes squamous cell carcinoma invasion through paracrine TNFα signalling to carcinoma-associated fibroblasts. Oncogene 2013; 32:747-58. [PMID: 22450746 PMCID: PMC3446864 DOI: 10.1038/onc.2012.91] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 01/25/2012] [Accepted: 02/12/2012] [Indexed: 12/13/2022]
Abstract
The invasion of squamous cell carcinoma (SCC) is a significant cause of morbidity and mortality. Here, we identify an E3 ligase, Traf6 and a de-ubiquitinating enzyme, Cezanne/ZA20D1, as important regulators of this process in organotypic models. Traf6 can promote the formation of Cdc42-dependent F-actin microspikes. Furthermore, Traf6 has a key role in autocrine interleukin-1β signalling in SCC cells, which in turn is required to drive the expression of tumour necrosis factor α (TNFα). TNFα acts in a paracrine manner to increase the invasion-promoting potential of carcinoma-associated fibroblasts (CAFs). Exogenous TNFα signalling can restore invasion in cells depleted of Traf6. In conclusion, Traf6 has two important roles in SCC invasion: it promotes cell intrinsic Cdc42-dependent regulation of the actin cytoskeleton and enables production of the paracrine signal, TNFα, that enhances the activity of CAFs.
Collapse
Affiliation(s)
- S I Chaudhry
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, London, UK
| | | | | | | | | | | |
Collapse
|
22
|
Kok BPC, Venkatraman G, Capatos D, Brindley DN. Unlike two peas in a pod: lipid phosphate phosphatases and phosphatidate phosphatases. Chem Rev 2012; 112:5121-46. [PMID: 22742522 DOI: 10.1021/cr200433m] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bernard P C Kok
- Signal Transduction Research Group, Department of Biochemistry, School of Translational Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
23
|
Serrano D, Bhowmick T, Chadha R, Garnacho C, Muro S. Intercellular adhesion molecule 1 engagement modulates sphingomyelinase and ceramide, supporting uptake of drug carriers by the vascular endothelium. Arterioscler Thromb Vasc Biol 2012; 32:1178-85. [PMID: 22328778 PMCID: PMC3331944 DOI: 10.1161/atvbaha.111.244186] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Engagement of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells by ICAM-1-targeted carriers induces cell adhesion molecule-mediated endocytosis, providing intraendothelial delivery of therapeutics. This pathway differs from classical endocytic mechanisms and invokes aspects of endothelial signaling during inflammation. ICAM-1 interacts with Na(+)/H(+) exchanger NHE1 during endocytosis, but it is unclear how this regulates plasmalemma and cytoskeletal changes. We studied such aspects in this work. METHODS AND RESULTS We used fluorescence and electron microscopy, inhibitors and knockout tools, cell culture, and mouse models. ICAM-1 engagement by anti-ICAM carriers induced sphingomyelin-enriched engulfment structures. Acid sphingomyelinase (ASM), an acidic enzyme that hydrolyzes sphingomyelin into ceramide (involved in plasmalemma deformability and cytoskeletal reorganization), redistributed to ICAM-1-engagement sites at ceramide-enriched areas. This induced actin stress fibers and carrier endocytosis. Inhibiting ASM impaired ceramide enrichment, engulfment structures, cytoskeletal reorganization, and carrier uptake, which was rescued by supplying this enzyme activity exogenously. Interfering with NHE1 rendered similar outcomes, suggesting that Na(+)/H(+) exchange might provide an acidic microenvironment for ASM at the plasmalemma. CONCLUSIONS These findings are consistent with the ability of endothelial cells to internalize relatively large ICAM- 1--targeted drug carriers and expand our knowledge on the regulation of the sphingomyelin/ceramide pathway by the vascular endothelium.
Collapse
Affiliation(s)
- Daniel Serrano
- Department of Cell Biology & Molecular Genetics and Biological Sciences Graduate Program, University of Maryland, College Park, MD
| | - Tridib Bhowmick
- Institute for Biosciences & Biotechnology Research, University of Maryland, College Park, MD
| | - Rishi Chadha
- Institute for Biosciences & Biotechnology Research, University of Maryland, College Park, MD
| | - Carmen Garnacho
- Institute for Biosciences & Biotechnology Research, University of Maryland, College Park, MD
| | - Silvia Muro
- Institute for Biosciences & Biotechnology Research, University of Maryland, College Park, MD
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| |
Collapse
|
24
|
Kant S, Swat W, Zhang S, Zhang ZY, Neel BG, Flavell RA, Davis RJ. TNF-stimulated MAP kinase activation mediated by a Rho family GTPase signaling pathway. Genes Dev 2011; 25:2069-78. [PMID: 21979919 DOI: 10.1101/gad.17224711] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The biological response to tumor necrosis factor (TNF) involves activation of MAP kinases. Here we report a mechanism of MAP kinase activation by TNF that is mediated by the Rho GTPase family members Rac/Cdc42. This signaling pathway requires Src-dependent activation of the guanosine nucleotide exchange factor Vav, activation of Rac/Cdc42, and the engagement of the Rac/Cdc42 interaction site (CRIB motif) on mixed-lineage protein kinases (MLKs). We show that this pathway is essential for full MAP kinase activation during the response to TNF. Moreover, this MLK pathway contributes to inflammation in vivo.
Collapse
Affiliation(s)
- Shashi Kant
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Vallenius T, Vaahtomeri K, Kovac B, Osiceanu AM, Viljanen M, Mäkelä TP. An association between NUAK2 and MRIP reveals a novel mechanism for regulation of actin stress fibers. J Cell Sci 2011; 124:384-93. [PMID: 21242312 DOI: 10.1242/jcs.072660] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Actin stress fiber assembly and contractility in nonmuscle motile cells requires phosphorylation of myosin regulatory light chain (MLC). Dephosphorylation and disassembly are mediated by MLC phosphatase, which is targeted to actin fibers by the association of its regulatory subunit MYPT1 with myosin phosphatase Rho-interacting protein (MRIP). In the present study, we identify the kinase NUAK2 as a second protein targeted by MRIP to actin fibers. Association of NUAK2 with MRIP increases MLC phosphorylation and promotes formation of stress fibers. This activity does not require the kinase activity of NUAK2 but is dependent on both MRIP and MYPT1, indicating that the NUAK2-MRIP association inhibits fiber disassembly and MYPT1-mediated MLC dephosphorylation. NUAK2 levels are strongly induced by stimuli increasing actomyosin fiber formation, and NUAK2 is required for fiber maintenance in exponentially growing cells, implicating NUAK2 in a positive-feedback loop regulating actin stress fibers independently of the MLC kinase Rho-associated protein kinase (ROCK). The identified MRIP-NUAK2 association reveals a novel mechanism for the maintenance of actin stress fibers through counteracting MYPT1 and, together with recent results, implicates the NUAK proteins as important regulators of the MLC phosphatase acting in both a kinase-dependent and kinase-independent manner.
Collapse
Affiliation(s)
- Tea Vallenius
- Institute of Biotechnology and Genome-Scale Biology Program, University of Helsinki, PO Box 56 Viikinkaari 9, 00014 University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
26
|
Kakiashvili E, Dan Q, Vandermeer M, Zhang Y, Waheed F, Pham M, Szászi K. The epidermal growth factor receptor mediates tumor necrosis factor-alpha-induced activation of the ERK/GEF-H1/RhoA pathway in tubular epithelium. J Biol Chem 2011; 286:9268-79. [PMID: 21212278 PMCID: PMC3059019 DOI: 10.1074/jbc.m110.179903] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 01/05/2011] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF)-α induces cytoskeleton and intercellular junction remodeling in tubular epithelial cells; the underlying mechanisms, however, are incompletely explored. We have previously shown that ERK-mediated stimulation of the RhoA GDP/GTP exchange factor GEF-H1/Lfc is critical for TNF-α-induced RhoA stimulation. Here we investigated the upstream mechanisms of ERK/GEF-H1 activation. Surprisingly, TNF-α-induced ERK and RhoA stimulation in tubular cells were prevented by epidermal growth factor receptor (EGFR) inhibition or silencing. TNF-α also enhanced phosphorylation of the EGFR. EGF treatment mimicked the effects of TNF-α, as it elicited potent, ERK-dependent GEF-H1 and RhoA activation. Moreover, EGF-induced RhoA activation was prevented by GEF-H1 silencing, indicating that GEF-H1 is a key downstream effector of the EGFR. The TNF-α-elicited EGFR, ERK, and RhoA stimulation were mediated by the TNF-α convertase enzyme (TACE) that can release EGFR ligands. Further, EGFR transactivation also required the tyrosine kinase Src, as Src inhibition prevented TNF-α-induced activation of the EGFR/ERK/GEF-H1/RhoA pathway. Importantly, a bromodeoxyuridine (BrdU) incorporation assay and electric cell substrate impedance-sensing (ECIS) measurements revealed that TNF-α stimulated cell growth in an EGFR-dependent manner. In contrast, TNF-α-induced NFκB activation was not prevented by EGFR or Src inhibition, suggesting that TNF-α exerts both EGFR-dependent and -independent effects. In summary, in the present study we show that the TNF-α-induced activation of the ERK/GEF-H1/RhoA pathway in tubular cells is mediated through Src- and TACE-dependent EGFR activation. Such a mechanism could couple inflammatory and proliferative stimuli and, thus, may play a key role in the regulation of wound healing and fibrogenesis.
Collapse
Affiliation(s)
- Eli Kakiashvili
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Qinghong Dan
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Matthew Vandermeer
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Yuqian Zhang
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Faiza Waheed
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Monica Pham
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Katalin Szászi
- From the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
27
|
Petrusca DN, Gu Y, Adamowicz JJ, Rush NI, Hubbard WC, Smith PA, Berdyshev EV, Birukov KG, Lee CH, Tuder RM, Twigg HL, Vandivier RW, Petrache I. Sphingolipid-mediated inhibition of apoptotic cell clearance by alveolar macrophages. J Biol Chem 2010; 285:40322-32. [PMID: 20956540 DOI: 10.1074/jbc.m110.137604] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A decreased clearance of apoptotic cells (efferocytosis) by alveolar macrophages (AM) may contribute to inflammation in emphysema. The up-regulation of ceramides in response to cigarette smoking (CS) has been linked to AM accumulation and increased detection of apoptotic alveolar epithelial and endothelial cells in lung parenchyma. We hypothesized that ceramides inhibit the AM phagocytosis of apoptotic cells. Release of endogenous ceramides via sphingomyelinase or exogenous ceramide treatments dose-dependently impaired apoptotic Jurkat cell phagocytosis by primary rat or human AM, irrespective of the molecular species of ceramide. Similarly, in vivo augmentation of lung ceramides via intratracheal instillation in rats significantly decreased the engulfment of instilled target apoptotic thymocytes by resident AM. The mechanism of ceramide-induced efferocytosis impairment was dependent on generation of sphingosine via ceramidase. Sphingosine treatment recapitulated the effects of ceramide, dose-dependently inhibiting apoptotic cell clearance. The effect of ceramide on efferocytosis was associated with decreased membrane ruffle formation and attenuated Rac1 plasma membrane recruitment. Constitutively active Rac1 overexpression rescued AM efferocytosis against the effects of ceramide. CS exposure significantly increased AM ceramides and recapitulated the effect of ceramides on Rac1 membrane recruitment in a sphingosine-dependent manner. Importantly, CS profoundly inhibited AM efferocytosis via ceramide-dependent sphingosine production. These results suggest that excessive lung ceramides may amplify lung injury in emphysema by causing both apoptosis of structural cells and inhibition of their clearance by AM.
Collapse
Affiliation(s)
- Daniela N Petrusca
- Department of Medicine, Indiana University, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Samadi N, Bekele R, Capatos D, Venkatraman G, Sariahmetoglu M, Brindley DN. Regulation of lysophosphatidate signaling by autotaxin and lipid phosphate phosphatases with respect to tumor progression, angiogenesis, metastasis and chemo-resistance. Biochimie 2010; 93:61-70. [PMID: 20709140 DOI: 10.1016/j.biochi.2010.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 12/21/2022]
Abstract
Evidence from clinical, animal and cell culture studies demonstrates that increased autotaxin (ATX) expression is responsible for enhancing tumor progression, cell migration, metastases, angiogenesis and chemo-resistance. These effects depend mainly on the rapid formation of lysophosphatidate (LPA) by ATX. Circulating LPA has a half-life of about 3 min in mice and it is degraded by the ecto-activities of lipid phosphate phosphatases (LPPs). These enzymes also hydrolyze extracellular sphingosine 1-phosphate (S1P), a potent signal for cell division, survival and angiogenesis. Many aggressive tumor cells express high ATX levels and low LPP activities. This favors the formation of locally high LPA and S1P concentrations. Furthermore, LPPs attenuate signaling downstream of the activation of G-protein coupled receptors and receptor tyrosine kinases. Therefore, we propose that the low expression of LPPs in many tumor cells makes them hypersensitive to growth promoting and survival signals that are provided by LPA, S1P, platelet-derived growth factor (PDGF) and epidermal growth factor (EGF). One of the key signaling pathways in this respect appears to be activation of phospholipase D (PLD) and phosphatidate (PA) production. This is required for the transactivations of the EGFR and PDGFR and also for LPA-induced cell migration. PA also increases the activities of ERK, mTOR, myc and sphingosine kinase-1 (SK-1), which provide individual signals for cells division, survival, chemo-resistance and angiogenesis. This review focuses on the balance of signaling by bioactive lipids including LPA, phosphatidylinositol 3,4,5-trisphosphate, PA and S1P versus the action of ceramides. We will discuss how these lipid mediators interact to produce an aggressive neoplastic phenotype.
Collapse
Affiliation(s)
- Nasser Samadi
- Signal Transduction Research Group, Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, T6G 2S2 Alberta, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Brindley DN, Kok BPC, Kienesberger PC, Lehner R, Dyck JRB. Shedding light on the enigma of myocardial lipotoxicity: the involvement of known and putative regulators of fatty acid storage and mobilization. Am J Physiol Endocrinol Metab 2010; 298:E897-908. [PMID: 20103741 DOI: 10.1152/ajpendo.00509.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Excessive fatty acid (FA) uptake by cardiac myocytes is often associated with adverse changes in cardiac function. This is especially evident in diabetic individuals, where increased intramyocardial triacylglycerol (TG) resulting from the exposure to high levels of circulating FA has been proposed to be a major contributor to diabetic cardiomyopathy. At present, our knowledge of how the heart regulates FA storage in TG and the hydrolysis of this TG is limited. This review concentrates on what is known about TG turnover within the heart and how this is likely to be regulated by extrapolating results from other tissues. We also assess the evidence as to whether increased TG accumulation protects against FA-induced lipotoxicity through limiting the accumulations of ceramides and diacylglycerols versus whether it is a maladaptive response that contributes to cardiac dysfunction.
Collapse
Affiliation(s)
- David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | |
Collapse
|
30
|
Hu W, Xu R, Sun W, Szulc ZM, Bielawski J, Obeid LM, Mao C. Alkaline ceramidase 3 (ACER3) hydrolyzes unsaturated long-chain ceramides, and its down-regulation inhibits both cell proliferation and apoptosis. J Biol Chem 2010; 285:7964-76. [PMID: 20068046 DOI: 10.1074/jbc.m109.063586] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ceramides with different fatty acyl chains may vary in their physiological or pathological roles; however, it remains unclear how cellular levels of individual ceramide species are regulated. Here, we demonstrate that our previously cloned human alkaline ceramidase 3 (ACER3) specifically controls the hydrolysis of ceramides carrying unsaturated long acyl chains, unsaturated long-chain (ULC) ceramides. In vitro, ACER3 only hydrolyzed C(18:1)-, C(20:1)-, C(20:4)-ceramides, dihydroceramides, and phytoceramides. In cells, ACER3 overexpression decreased C(18:1)- and C(20:1)-ceramides and dihydroceramides, whereas ACER3 knockdown by RNA interference had the opposite effect, suggesting that ACER3 controls the catabolism of ULC ceramides and dihydroceramides. ACER3 knockdown inhibited cell proliferation and up-regulated the cyclin-dependent kinase inhibitor p21(CIP1/WAF1). Blocking p21(CIP1/WAF1) up-regulation attenuated the inhibitory effect of ACER3 knockdown on cell proliferation, suggesting that ACER3 knockdown inhibits cell proliferation because of p21(CIP1/WAF1) up-regulation. ACER3 knockdown inhibited cell apoptosis in response to serum deprivation. ACER3 knockdown up-regulated the expression of the alkaline ceramidase 2 (ACER2), and the ACER2 up-regulation decreased non-ULC ceramide species while increasing both sphingosine and its phosphate. Collectively, these data suggest that ACER3 catalyzes the hydrolysis of ULC ceramides and dihydroceramides and that ACER3 coordinates with ACER2 to regulate cell proliferation and survival.
Collapse
Affiliation(s)
- Wei Hu
- Departments of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Yamamoto Y, Olson DM, van Bennekom M, Brindley DN, Hemmings DG. Increased expression of enzymes for sphingosine 1-phosphate turnover and signaling in human decidua during late pregnancy. Biol Reprod 2009; 82:628-35. [PMID: 20007411 DOI: 10.1095/biolreprod.109.081497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
An appropriate balance between uterine quiescence and activation during pregnancy is essential for a successful outcome. Sphingosine 1-phosphate (S1P), a bioactive lipid, increases cell survival, proliferation, and angiogenesis, all important to maintain the pregnancy. Indeed progesterone increases sphingosine kinase 1 (SPHK1) mRNA, which produces S1P. In contrast, induction of prostaglandin endoperoxide synthase 2 by S1P and stimulation of SPHK1 by estradiol and cytokines suggests a role for S1P in the termination of pregnancy. Human decidua is important for regulating the maintenance and termination of pregnancy with production of progesterone receptors, cytokines, and prostaglandins. We hypothesized that S1P is produced by and acts on the decidua to stimulate production of mediators that induce labor. Our objective was to investigate the metabolism of S1P and its receptors in human decidua during pregnancy. We found that SPHK1 protein and activity positively correlated with increasing gestational age in human decidua parietalis. This was accompanied at term by increased expression of the S1P lyase, which irreversibly degrades S1P. This implies increased S1P turnover in the decidua at term. Although the mRNA level of phosphatidic acid phosphatase type 2A and 2B (PPAP2A,B), which dephosphorylate extracellular S1P, were increased at term, PPAP2 activity did not change. Sphingosine 1-phosphate receptor 3 protein expression also increased at term, indicating increased signaling by S1P in the decidua. There were no differences in any parameter tested in decidua from women in labor compared to those who were not. This work provides the first evidence of increased S1P synthesis, degradation, and signaling in human decidua during gestation.
Collapse
Affiliation(s)
- Yuka Yamamoto
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
32
|
Mathew SJ, Haubert D, Krönke M, Leptin M. Looking beyond death: a morphogenetic role for the TNF signalling pathway. J Cell Sci 2009; 122:1939-46. [PMID: 19494121 DOI: 10.1242/jcs.044487] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumour necrosis factor alpha (TNFalpha) is a pro-inflammatory mediator with the capacity to induce apoptosis. An integral part of its apoptotic and inflammatory programmes is the control of cell shape through modulation of the cytoskeleton, but it is now becoming apparent that this morphogenetic function of TNF signalling is also employed outside inflammatory responses and is shared by the signalling pathways of other members of the TNF-receptor superfamily. Some proteins that are homologous to the components of the TNF signalling pathway, such as the adaptor TNF-receptor-associated factor 4 and the ectodysplasin A receptor (and its ligand and adaptors), have dedicated morphogenetic roles. The mechanism by which TNF signalling affects cell shape is not yet fully understood, but Rho-family GTPases have a central role. The fact that the components of the TNF signalling pathway are evolutionarily old suggests that an ancestral cassette from unicellular organisms has diversified its functions into partly overlapping morphogenetic, inflammatory and apoptotic roles in multicellular higher organisms.
Collapse
Affiliation(s)
- Sam J Mathew
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, D-50674 Köln, Germany
| | | | | | | |
Collapse
|
33
|
Barth BM, Stewart-Smeets S, Kuhn TB. Proinflammatory cytokines provoke oxidative damage to actin in neuronal cells mediated by Rac1 and NADPH oxidase. Mol Cell Neurosci 2009; 41:274-85. [PMID: 19344766 DOI: 10.1016/j.mcn.2009.03.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/10/2009] [Accepted: 03/24/2009] [Indexed: 01/13/2023] Open
Abstract
The proinflammatory cytokines TNFalpha and Il-1beta orchestrate the progression of CNS inflammation, which substantially contributes to neurodegeneration in many CNS pathologies. TNFalpha and Il-1beta stimulate actin filament reorganization in non-neuronal cells often accompanied by the formation of reactive oxygen species (ROS). Actin filament dynamics is vital for cellular plasticity, mitochondrial function, and gene expression despite being highly susceptible to oxidative damage. We demonstrated that, in neuronal cells, TNFalpha and Il-1beta stimulate a transient, redox-dependent reorganization of the actin cytoskeleton into lamellipodia under the regulation of Rac1 and a neuronal NADPH oxidase as the source of ROS. The persistent presence of intracellular ROS provoked oxidative damage (carbonylation) to actin coinciding with the loss of lamellipodia and arrest of cellular plasticity. Inhibition of NADPH oxidase activity or Rac1 abolished the adverse effects of cytokines. These findings suggest that oxidative damage to the neuronal actin cytoskeleton could represent a key step in CNS neurodegeneration.
Collapse
Affiliation(s)
- Brian M Barth
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, 900 Yukon Drive, REIC 194, Fairbanks, AK 99775, USA
| | | | | |
Collapse
|
34
|
Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:424-34. [PMID: 18619555 DOI: 10.1016/j.bbalip.2008.06.002] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 11/22/2022]
Abstract
Ceramidases catalyze hydrolysis of ceramides to generate sphingosine (SPH), which is phosphorylated to form sphingosine-1-phosphate (S1P). Ceramide, SPH, and S1P are bioactive lipids that mediate cell proliferation, differentiation, apoptosis, adhesion, and migration. Presently, 5 human ceramidases encoded by 5 distinct genes have been cloned: acid ceramidase (AC), neutral ceramidase (NC), alkaline ceramidase 1 (ACER1), alkaline ceramidase 2 (ACER2), and alkaline ceramidase 3 (ACER3). Each human ceramidase has a mouse counterpart. AC, NC, and ACER1-3 have maximal activities in acidic, neutral, and alkaline environments, respectively. ACER1-3 have similar protein sequences but no homology to AC and NC. AC and NC also have distinct protein sequences. The human AC (hAC) was implicated in Farber disease, and hAC may be important for cell survival. The mouse AC (mAC) is needed for early embryo survival. NC is protective against inflammatory cytokines, and the mouse NC (mNC) is required for the catabolism of ceramides in the digestive tract. ACER1 is critical in mediating cell differentiation by controlling the generation of SPH and S1P and that ACER2's role in cell proliferation and survival depends on its expression or the cell type in which it is found. Here, we discuss the role of each ceramidase in regulating cellular responses mediated by ceramides, SPH, and S1P.
Collapse
|
35
|
Bieberich E. Smart drugs for smarter stem cells: making SENSe (sphingolipid-enhanced neural stem cells) of ceramide. Neurosignals 2008; 16:124-39. [PMID: 18253053 DOI: 10.1159/000111558] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ceramide and its derivative sphingosine-1-phosphate (S1P) are important signaling sphingolipids for neural stem cell apoptosis and differentiation. Most recently, our group has shown that novel ceramide analogs can be used to eliminate teratoma (stem cell tumor)-forming cells from a neural stem cell graft. In new studies, we found that S1P promotes survival of specific neural precursor cells that undergo differentiation to cells expressing oligodendroglial markers. Our studies suggest that a combination of novel ceramide and S1P analogs eliminates tumor-forming stem cells and at the same time, triggers oligodendroglial differentiation. This review discusses recent studies on the function of ceramide and S1P for the regulation of apoptosis, differentiation, and polarity in stem cells. We will also discuss results from ongoing studies in our laboratory on the use of sphingolipids in stem cell therapy.
Collapse
Affiliation(s)
- Erhard Bieberich
- Program in Developmental Neurobiology, Institute of Molecular Medicine and Genetics, School of Medicine, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
36
|
Shen QW, Zhu MJ, Tong J, Ren J, Du M. Ca2+/calmodulin-dependent protein kinase kinase is involved in AMP-activated protein kinase activation by alpha-lipoic acid in C2C12 myotubes. Am J Physiol Cell Physiol 2007; 293:C1395-403. [PMID: 17687000 DOI: 10.1152/ajpcell.00115.2007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
alpha-Lipoic acid (ALA) widely exists in foods and is an antidiabetic agent. ALA stimulates glucose uptake and increases insulin sensitivity by the activation of AMP-activated protein kinase (AMPK) in skeletal muscle, but the underlying mechanism for AMPK activation is unknown. Here, we investigated the mechanism through which ALA activates AMPK in C2C12 myotubes. Incubation of C2C12 myotubes with 200 and 500 microM ALA increased the activity and phosphorylation of the AMPK alpha-subunit at Thr(172). Phosphorylation of the AMPK substrate, acetyl CoA carboxylase (ACC), at Ser(79) was also increased. No difference in ATP, AMP, and the calculated AMP-to-ATP ratio was observed among the different treatment groups. Since the upstream AMPK kinase, LKB1, requires an alteration of the AMP-to-ATP ratio to activate AMPK, this data showed that LKB1 might not be involved in the activation of AMPK induced by ALA. Treatment of ALA increased the intracellular Ca(2+) concentration measured by fura-2 fluorescent microscopy (P < 0.05), showing that ALA may activate AMPK through enhancing Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) signaling. Indeed, chelation of intracellular free Ca(2+) by loading cells with 25 microM BAPTA-AM for 30 min abolished the ALA-induced activation of AMPK and, in turn, phosphorylation of ACC at Ser(79). Furthermore, inhibition of CaMKK using its selective inhibitor, STO-609, abolished ALA-stimulated AMPK activation, with an accompanied reduction of ACC phosphorylation at Ser(79). In addition, ALA treatment increased the association of AMPK with CaMKK. To further show the role of CaMKK in AMPK activation, short interfering RNA was used to silence CaMKK, which abolished the ALA-induced AMPK activation. These data show that CaMKK is the kinase responsible for ALA-induced AMPK activation in C2C12 myotubes.
Collapse
Affiliation(s)
- Qingwu W Shen
- Department of Animal Science, Interdepartmental Molecular and Cellular Life Science Program, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | |
Collapse
|
37
|
Kusner DJ, Thompson CR, Melrose NA, Pitson SM, Obeid LM, Iyer SS. The Localization and Activity of Sphingosine Kinase 1 Are Coordinately Regulated with Actin Cytoskeletal Dynamics in Macrophages. J Biol Chem 2007; 282:23147-62. [PMID: 17519232 DOI: 10.1074/jbc.m700193200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The physiologic and pathologic functions of sphingosine kinase (SK) require translocation to specific membrane compartments. We tested the hypothesis that interactions with actin filaments regulate the localization of SK1 to membrane surfaces, including the plasma membrane and phagosome. Macrophage activation is accompanied by a marked increase in association of SK1 with actin filaments. Catalytically-inactive (CI)- and phosphorylation-defective (PD)-SK1 mutants exhibited reductions in plasma membrane translocation, colocalization with cortical actin filaments, membrane ruffling, and lamellipodia formation, compared with wild-type (WT)-SK1. However, translocation of CI- and PD-SK1 to phagosomes were equivalent to WT-SK1. SK1 exhibited constitutive- and stimulus-enhanced association with actin filaments and F-actin-enriched membrane fractions in both intact macrophages and a novel in vitro assay. In contrast, SK1 bound G-actin only under stimulated conditions. Actin inhibitors disrupted SK1 localization and modulated its activity. Conversely, reduction of SK1 levels or activity via RNA interference or specific chemical inhibition resulted in dysregulation of actin filaments. Thus, the localization and activity of SK1 are coordinately regulated with actin dynamics during macrophage activation.
Collapse
Affiliation(s)
- David J Kusner
- Inflammation Program, Division of Infectious Diseases, Department of Internal Medicine, University of Iowa Carver College of Medicine and Veterans Affairs Medical Center, Iowa City, Iowa 52245, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Haubert D, Gharib N, Rivero F, Wiegmann K, Hösel M, Krönke M, Kashkar H. PtdIns(4,5)P-restricted plasma membrane localization of FAN is involved in TNF-induced actin reorganization. EMBO J 2007; 26:3308-21. [PMID: 17599063 PMCID: PMC1933409 DOI: 10.1038/sj.emboj.7601778] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 06/06/2007] [Indexed: 11/08/2022] Open
Abstract
The WD-repeat protein factor associated with nSMase activity (FAN) is a member of the family of TNF receptor adaptor proteins that are coupled to specific signaling cascades. However, the precise functional involvement of FAN in specific cellular TNF responses remain unclear. Here, we report the involvement of FAN in TNF-induced actin reorganization and filopodia formation mediated by activation of Cdc42. The pleckstrin-homology (PH) domain of FAN specifically binds to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P), which targets FAN to the plasma membrane. Site-specific mutagenesis revealed that the ability of FAN to mediate filopodia formation was blunted either by the destruction of the PtdIns(4,5)P binding motif, or by the disruption of intramolecular interactions between the PH domain and the adjacent beige and Chediak-Higashi (BEACH) domain. Furthermore, FAN was shown to interact with the actin cytoskeleton in TNF-stimulated cells via direct filamentous actin (F-actin) binding. The results of this study suggest that PH-mediated plasma membrane targeting of FAN is critically involved in TNF-induced Cdc42 activation and cytoskeleton reorganization.
Collapse
Affiliation(s)
- Dirk Haubert
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
| | - Nina Gharib
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
| | - Francisco Rivero
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Katja Wiegmann
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
| | - Marianna Hösel
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935 Köln, Germany. Tel.: +49 221 478 7286; Fax: +49 221 478 7288; E-mail:
| |
Collapse
|
39
|
El-Sibai M, Backer JM. Phospholipase C gamma negatively regulates Rac/Cdc42 activation in antigen-stimulated mast cells. Eur J Immunol 2007; 37:261-70. [PMID: 17163445 DOI: 10.1002/eji.200635875] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Rho GTPases Rac and Cdc42 play a central role in the regulation of secretory and cytoskeletal responses in antigen-stimulated mast cells. In this study, we examine the kinetics and mechanism of Rac and Cdc42 activation in the rat basophilic leukemia RBL-2H3 cells. The activation kinetics of both Rac and Cdc42 show a biphasic profile, consisting of an early transient peak at 1 min and a late sustained activation phase at 20-40 min. The inhibition of phospholipase C (PLC)gamma causes a twofold increase in Rac and Cdc42 activation that coincides with a dramatic production of atypical filopodia-like structures. Inhibition of protein kinase C using bisindolylmaleimide mimics the effect of PLCgamma inhibition on Rac activation, but not on Cdc42 activation. In contrast, depletion of intracellular calcium leads to a complete inhibition of the early activation peak of both Rac and Cdc42, without significant effects on the late sustained activation. These data suggest that PLCgamma is involved in a negative feedback loop that leads to the inhibition of Rac and Cdc42. They also suggest that the presence of intracellular calcium is a prerequisite for both Rac and Cdc42 activation.
Collapse
Affiliation(s)
- Mirvat El-Sibai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
40
|
JeBailey L, Wanono O, Niu W, Roessler J, Rudich A, Klip A. Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells. Diabetes 2007; 56:394-403. [PMID: 17259384 DOI: 10.2337/db06-0823] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In muscle cells, insulin elicits recruitment of the glucose transporter GLUT4 to the plasma membrane. This process engages sequential signaling from insulin receptor substrate (IRS)-1 to phosphatidylinositol (PI) 3-kinase and the serine/threonine kinase Akt. GLUT4 translocation also requires an Akt-independent but PI 3-kinase-and Rac-dependent remodeling of filamentous actin. Although IRS-1 phosphorylation is often reduced in insulin-resistant states in vivo, several conditions eliciting insulin resistance in cell culture spare this early step. Here, we show that insulin-dependent Rac activation and its consequent actin remodeling were abolished upon exposure of L6 myotubes beginning at doses of C2-ceramide or oxidant-producing glucose oxidase as low as 12.5 micromol/l and 12.5 mU/ml, respectively. At 25 micromol/l and 25 mU/ml, glucose oxidase and C2-ceramide markedly reduced GLUT4 translocation and glucose uptake and lowered Akt phosphorylation on Ser473 and Thr308, yet they affected neither IRS-1 tyrosine phosphorylation nor its association with p85 and PI 3-kinase activity. Small interfering RNA-dependent Rac1 knockdown prevented actin remodeling and GLUT4 translocation but spared Akt phosphorylation, suggesting that Rac and actin remodeling do not contribute to overall Akt activation. We propose that ceramide and oxidative stress can each affect two independent arms of insulin signaling to GLUT4 at distinct steps, Rac-GTP loading and Akt phosphorylation.
Collapse
Affiliation(s)
- Lellean JeBailey
- Programme in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|
41
|
Takemura A, Nakagawa I, Kawai S, Inaba H, Kato T, Hamada S, Amano A. Inhibitory Effects of Tumor Necrosis Factor-Alpha on Migration of Human Periodontal Ligament Cells. J Periodontol 2006; 77:883-90. [PMID: 16671882 DOI: 10.1902/jop.2006.050192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Tumor necrosis factor-alpha (TNF-alpha) is associated with chronic gingival inflammation and is suspected to influence periodontal destruction. However, the exact roles of TNF-alpha in wound healing and periodontal tissue regeneration are largely unknown. In the present study, we examined the effects of TNF-alpha on migration and proliferation of human periodontal ligament (PDL) cells. METHODS PDL cells were cultured in the presence of TNF-alpha to determine its effects on cellular migration and proliferation. The protein expression profiles of alpha5 and beta1 integrin subunits and their related molecules, paxillin and focal adhesion kinases (FAK), were investigated. Gene expression of fibronectin also was assayed. Further, the activation of Rho-family small guanosine triphosphate (GTP)-binding protein (RhoA) was evaluated using a GTP-loading pull-down assay, and focal adhesion formation by PDL cells after transfection with the expression vector of paxillin-fused green fluorescent protein (GFP) also was observed with confocal microscopy. RESULTS Cellular migration was impaired by TNF-alpha and recovered following the addition of anti-TNF-alpha antibodies. In contrast, PDL cell proliferation was not affected by TNF-alpha. TNF-alpha upregulated the expression of the alpha5 and beta1 integrin subunits, whereas fibronectin was not overexpressed. Phosphorylation of paxillin and FAK by PDL cells was induced, and RhoA activation also was induced. Confocal microscopic analysis revealed that TNF-alpha induced focal adhesion and stress fiber formation in all parts of the cells. CONCLUSION Our results suggested that TNF-alpha impairs cellular migration by enhancing cellular adhesive ability following significant focal adhesion and stress fiber formation.
Collapse
Affiliation(s)
- Akane Takemura
- Department of Oral Frontier Biology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Olivera A, Urtz N, Mizugishi K, Yamashita Y, Gilfillan AM, Furumoto Y, Gu H, Proia RL, Baumruker T, Rivera J. IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J Biol Chem 2005; 281:2515-25. [PMID: 16316995 DOI: 10.1074/jbc.m508931200] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Engagement of the high affinity receptor for IgE (FcepsilonRI) on mast cells results in the production and secretion of sphingosine 1-phosphate (S1P), a lipid metabolite present in the lungs of allergen-challenged asthmatics. Herein we report that two isoforms of sphingosine kinase (SphK1 and SphK2) are expressed and activated upon FcepsilonRI engagement of bone marrow-derived mast cells (BMMC). Fyn kinase is required for FcepsilonRI coupling to SphK1 and -2 and for subsequent S1P production. Normal activation of SphK1 and -2 was restored by expression of wild type Fyn but only partly with a kinase-defective Fyn, indicating that induction of SphK1 and SphK2 depended on both catalytic and noncatalytic properties of Fyn. Downstream of Fyn, the requirements for SphK1 activation differed from that of SphK2. Whereas SphK1 was considerably dependent on the adapter Grb2-associated binder 2 and phosphatidylinositol 3-OH kinase, SphK2 showed minimal dependence on these molecules. Fyn-deficient BMMC were defective in chemotaxis and, as previously reported, in degranulation. These functional responses were partly reconstituted by the addition of exogenous S1P to FcepsilonRI-stimulated cells. Taken together with our previous study, which demonstrated delayed SphK activation in Lyn-deficient BMMC, we propose a cooperative role between Fyn and Lyn kinases in the activation of SphKs, which contributes to mast cell responses.
Collapse
Affiliation(s)
- Ana Olivera
- Molecular Inflammation Section, Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kanda T, Wakino S, Homma K, Yoshioka K, Tatematsu S, Hasegawa K, Takamatsu I, Sugano N, Hayashi K, Saruta T. Rho-kinase as a molecular target for insulin resistance and hypertension. FASEB J 2005; 20:169-71. [PMID: 16267124 DOI: 10.1096/fj.05-4197fje] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rho-kinase plays an important role in hypertension and is reported to interfere with insulin signaling through serine phosphorylation of insulin receptor substrate-1 (IRS-1) in cultured vascular smooth muscle cells. We therefore examined the role of Rho-kinase in the development of insulin resistance in Zucker obese rats. In skeletal muscles and aortic tissues of Zucker obese rats, activation of RhoA/Rho-kinase was observed. Long-term Rho-kinase inhibition by 4 wk treatment with fasudil (a Rho-kinase inhibitor) not only reduced blood pressure but corrected glucose and lipid metabolism, with improvement in serine phosphorylation of IRS-1 and insulin signaling in skeletal muscles. Direct visualization of skeletal muscle arterioles with an intravital CCD videomicroscope demonstrated that both acetylcholine- and sodium nitroprusside-induced vasodilations were blunted, which were restored by the fasudil treatment. Furthermore, both fasudil and Y-27632 prevented the serine phosphorylation of IRS-1 induced by insulin and/or tumor necrosis factor-alpha in skeletal muscle cells. Collectively, Rho-kinase is responsible for the impairment of insulin signaling and may constitute a critical mediator linking between metabolic and hemodynamic abnormalities in insulin resistance.
Collapse
Affiliation(s)
- Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fillet M, Cren-Olivé C, Renert AF, Piette J, Vandermoere F, Rolando C, Merville MP. Differential Expression of Proteins in Response to Ceramide-Mediated Stress Signal in Colon Cancer Cells by 2-D Gel Electrophoresis and MALDI-TOF−MS. J Proteome Res 2005; 4:870-80. [PMID: 15952734 DOI: 10.1021/pr050006t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Comparative cancer cell proteome analysis is a strategy to study the implication of ceramides in the transmission of stress signals. To better understand the mechanisms by which ceramide regulate some physiological or pathological events and the response to the pharmacological treatment of cancer, we performed a differential analysis of the proteome of HCT-116 (human colon carcinoma) cells in response to these substances. We first established the first 2-dimensional map of the HCT-116 proteome. Then, HCT116 cell proteome treated or not with C6-ceramide have been compared using two-dimensional electrophoresis, matrix-assisted laser desorption/ionization-mass spectrometry and bioinformatic (genomic databases). 2-DE gel analysis revealed more than fourty proteins that were differentially expressed in control cells and cells treated with ceramide. Among them, we confirmed the differential expression of proteins involved in apoptosis and cell adhesion.
Collapse
Affiliation(s)
- M Fillet
- Laboratories of Clinical Chemistry and Virology, Center for Biomedical Integrated Genoproteomic, University of Liège, Sart-Tilman, Belgium.
| | | | | | | | | | | | | |
Collapse
|
45
|
Papaharalambus C, Sajjad W, Syed A, Zhang C, Bergo MO, Alexander RW, Ahmad M. Tumor necrosis factor alpha stimulation of Rac1 activity. Role of isoprenylcysteine carboxylmethyltransferase. J Biol Chem 2005; 280:18790-6. [PMID: 15647276 DOI: 10.1074/jbc.m410081200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that both isoprenylcysteine carboxylmethyltransferase (ICMT) and one of its substrates, the RhoGTPase Rac1, are critical for the tumor necrosis factor alpha (TNF alpha) stimulation of vascular cell adhesion molecule-1 expression in endothelial cells (EC). Here, we have shown that ICMT regulates TNF alpha stimulation of Rac1 activity. TNF alpha stimulation of EC increased the membrane association of Rac1, an event that is essential for Rac1 activity. ICMT inhibitor N-acetyl-S-farnesyl-L-cysteine (AFC) blocked the accumulation of Rac1 into the membrane both in resting and TNF alpha-stimulated conditions. Similarly, the membrane-associated Rac1 was lower in Icmt-deficient versus wild-type mouse embryonic fibroblasts (MEFs). TNF alpha also increased the level of GTP-Rac1, the active form of Rac1, in EC. AFC completely suppressed the TNF alpha stimulation of increase in GTP-Rac1 levels. Confocal microscopy revealed resting EC Rac1 was present in the plasma membrane and also in the perinuclear region. AFC mislocalized Rac1, both from the plasma membrane and the perinuclear region. Mislocalization of Rac1 was also observed in Icmt-deficient versus wild-type MEFs. To determine the consequences of ICMT inhibition, we investigated the effect of AFC on p38 mitogen-activated protein (MAP) kinase phosphorylation, which is downstream of Rac1. AFC inhibited the TNF alpha stimulation of p38 MAP kinase phosphorylation in EC. TNF alpha stimulation of p38 MAP kinase phosphorylation was also significantly attenuated in Icmt-deficient versus wild-type MEFs. To understand the mechanism of inhibition of Rac1 activity, we examined the effect of ICMT inhibition on the interaction of Rac1 with its inhibitor, Rho guanine nucleotide dissociation inhibitor (RhoGDI). The association of Rac1 with its inhibitor RhoGDI was dramatically increased in the Icmt-deficient versus wild-type MEFs both in resting as well as in TNF alpha-stimulated conditions, suggesting that RhoGDI was involved in inhibiting Rac1 activity under the conditions of ICMT inhibition. These results suggest that ICMT regulates Rac1 activity by controlling the interaction of Rac1 with RhoGDI. We hypothesize that ICMT regulates the release of Rac1 from RhoGDI.
Collapse
Affiliation(s)
- Christopher Papaharalambus
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Kim HJ, Shin W, Park CS, Kim HO, Kim TY. Differential Regulation of Cyclooxygenase-2 Expression by Phytosphingosine Derivatives, NAPS and TAPS, and its Role in the NAPS or TAPS-Mediated Apoptosis. J Invest Dermatol 2003; 121:1126-34. [PMID: 14708615 DOI: 10.1046/j.1523-1747.2003.12554.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the effect of novel phytosphingosine derivatives, N-acetyl phytosphingosine (NAPS) and tetra-acetyl phytosphingosine (TAPS), on induction of apoptosis in HaCaT cells in comparison with C2-ceramide. NAPS/TAPS effectively decreased cell viability in a dose dependent manner mainly due to apoptosis. An apoptosis expression array analysis showed that in the TAPS treated cells 13 genes including COX-2 encoding cyclooxygenase-2, the most induced by TAPS, were up-regulated while 23 others down-regulated. Therefore, we examined the mechanism underlying the altered expression of COX-2. Assays with inhibitors and antibodies against proteins involved in signal transduction demonstrated that NAPS and TAPS elevated COX-2 expression via tyrosine kinase, src, PI-3 kinase and PKC, followed by ERK activation. However, P38 was not involved in the NAPS-mediated COX-2 expression but in the TAPS-mediated. We further demonstrated by FACS analyses that NAPS- or TAPS-mediated apoptosis was greatly increased in cells treated with celecoxib, a selective COX-2 inhibitor. Inhibition of the ERK pathway apparently involved in the NAPS/TAPS-mediated COX-2 expression enhanced the NAPS/TAPS-mediated apoptosis, whereas inhibition of the P38 pathway did not. These results suggest that expression of COX-2 in the TAPS- or NAPS-treated cells may be increased to counteract the effect of those compounds on apoptosis.
Collapse
Affiliation(s)
- Hye Jung Kim
- Department of Dermato-Immunology, The Catholic University of Korea, Seoul, South Korea
| | | | | | | | | |
Collapse
|
47
|
Zhou L, Tan A, Iasvovskaia S, Li J, Lin A, Hershenson MB. Ras and mitogen-activated protein kinase kinase kinase-1 coregulate activator protein-1- and nuclear factor-kappaB-mediated gene expression in airway epithelial cells. Am J Respir Cell Mol Biol 2003; 28:762-9. [PMID: 12600818 DOI: 10.1165/rcmb.2002-0261oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In 16HBE14o- human bronchial epithelial cells, maximal tumor necrosis factor (TNF)-alpha-induced interleukin (IL)-8 expression depends on the activation of two distinct signaling pathways, one constituted in part by activator protein (AP)-1 and the other by nuclear factor (NF)-kappaB. We examined the upstream signaling intermediates responsible for IL-8 and granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in this system, hypothesizing that p21 Ras and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase (MEKK)-1 function as common upstream activators of both the AP-1 and NF-kappaB pathways. TNF-alpha treatment induced both Ras and MEKK1 activation. Dominant-negative forms of Ras (N17Ras) and MEKK1 (MEKK1-KM) each inhibited TNF-alpha-induced transcription from IL-8 and GM-CSF promoters. Ras was required for maximal activation of extracellular signal-regulated kinase (ERK) and Jun amino terminal kinase (JNK) as well as AP-1 and NF-kappaB transcriptional activities, but not for activation of IkappaB kinase (IKK)-beta, an upstream activator of NF-kappaB. MEKK1 was required for maximal activation of ERK, JNK, and IKK, as well as for maximal AP-1 and NF-kappaB transcriptional activities. We conclude that Ras regulates TNF-alpha-induced chemokine expression by activating the AP-1 pathway and enhancing transcriptional function of NF-kappaB, whereas MEKK1 activates both the AP-1 and NF-kappaB pathways.
Collapse
Affiliation(s)
- Limei Zhou
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109-0212, USA
| | | | | | | | | | | |
Collapse
|
48
|
van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M, Borst J. Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 2003; 369:199-211. [PMID: 12408751 PMCID: PMC1223095 DOI: 10.1042/bj20021528] [Citation(s) in RCA: 335] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Revised: 10/30/2002] [Accepted: 10/31/2002] [Indexed: 12/18/2022]
Abstract
The physiological role of ceramide formation in response to cell stimulation remains controversial. Here, we emphasize that ceramide is not a priori an apoptotic signalling molecule. Recent work points out that the conversion of sphingomyelin into ceramide can play a membrane structural (physical) role, with consequences for membrane microdomain function, membrane vesiculation, fusion/fission and vesicular trafficking. These processes contribute to cellular signalling. At the Golgi, ceramide takes part in a metabolic flux towards sphingomyelin, diacylglycerol and glycosphingolipids, which drives lipid raft formation and vesicular transport towards the plasma membrane. At the cell surface, receptor clustering in lipid rafts and the formation of endosomes can be facilitated by transient ceramide formation. Also, signalling towards mitochondria may involve glycosphingolipid-containing vesicles. Ceramide may affect the permeability of the mitochondrial outer membrane and the release of cytochrome c. In the effector phase of apoptosis, the breakdown of plasma membrane sphingomyelin to ceramide is a consequence of lipid scrambling, and may regulate apoptotic body formation. Thus ceramide formation serves many different functions at distinct locations in the cell. Given the limited capacity for spontaneous intracellular diffusion or membrane flip-flop of natural ceramide species, the topology and membrane sidedness of ceramide generation are crucial determinants of its impact on cell biology.
Collapse
Affiliation(s)
- Wim J van Blitterswijk
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
49
|
Mei J, Wang CN, O'Brien L, Brindley DN. Cell-permeable ceramides increase basal glucose incorporation into triacylglycerols but decrease the stimulation by insulin in 3T3-L1 adipocytes. Int J Obes (Lond) 2003; 27:31-9. [PMID: 12532151 DOI: 10.1038/sj.ijo.0802183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2002] [Revised: 07/10/2002] [Accepted: 07/16/2002] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To investigate mechanisms for the regulation of glucose incorporation into triacylgycerols in adipocytes by ceramides, which mediate some actions of tumour necrosis factor-alpha (TNFalpha). DESIGN The effects of C(2)- and C(6)-ceramides (N-acetyl- and N-hexanoyl-sphingosines, respectively) on glucose uptake and incorporation into triacylglycerols and pathways of signal tansduction were measured in 3T3-L1 adipocytes. RESULTS C(6)-ceramide increased basal 2-deooxyglucose uptake but decreased insulin-stimulated uptake without changing the EC(50) for insulin. Incubating 3T3-L1 adipocytes from 2 to 24 h with C(2)-ceramide progressively increased glucose incorporation into the fatty acid and especially the glycerol moieties of triacylglycerol. These effects were accompanied by increased GLUT1 synthesis resulting from ceramide-induced activation phosphatidylinositol 3-kinase, ribosomal S6 kinase and mitogen-activated protein kinase. C(2)-ceramide also increased p21-activated kinase and protein kinase B activities. However, C(2)-ceramide decreased the insulin-stimulated component of these signalling pathways and also glucose incorporation into triacylglycerol after 2 h. CONCLUSIONS Cell-permeable ceramides can mimic some effects of TNFalpha in producing insulin resistance. However, ceramides also mediate long-term effects that enable 3T3 L1 adipocytes to take up glucose and store triacylglycerols in the absence of insulin. These observations help to explain part of the nature and consequence of TNFalpha-induced insulin resistance and the control of fat accumulation in adipocytes in insulin resistance and obesity.
Collapse
Affiliation(s)
- J Mei
- Department of Biochemistry (Signal Transduction Research Group), University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
50
|
Johnson KR, Becker KP, Facchinetti MM, Hannun YA, Obeid LM. PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J Biol Chem 2002; 277:35257-62. [PMID: 12124383 DOI: 10.1074/jbc.m203033200] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a highly bioactive sphingolipid involved in diverse biological processes leading to changes in cell growth, differentiation, motility, and survival. S1P generation is regulated via sphingosine kinase (SK), and many of its effects are mediated through extracelluar action on G-protein-coupled receptors. In this study, we have investigated the mechanisms regulating SK, where this occurs in the cell, and whether this leads to release of S1P extracellularly. The protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), induced early activation of SK in HEK 293 cells, and this activation was more specific to the membrane-associated SK. Therefore, we next investigated whether PMA induced translocation of SK to the plasma membrane. PMA induced translocation of both endogenous and green fluorescent protein (GFP)-tagged human SK1 (hSK1) to the plasma membrane. PMA also induced phosphorylation of GFP-hSK1. The PMA-induced translocation was abrogated by preincubation with known PKC inhibitors (bisindoylmaleimide and calphostin-c) as well as by the indirect inhibitor of PKC, C(6)-ceramide, supporting a role for PKC in mediating translocation of SK to the plasma membrane. SK activity was not necessary for translocation, because a dominant negative G82D mutation also translocated in response to PMA. Importantly, PKC regulation of SK was accompanied by a 4-fold increase in S1P in the media. These results demonstrate a novel mechanism by which PKC regulates SK and increases secretion of S1P, allowing for autocrine/paracrine signaling.
Collapse
Affiliation(s)
- Korey R Johnson
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|