1
|
Zheng B, Yan J, Li T, Zhao Y, Xu Z, Rao R, Zhu J, Hu R, Li Y, Yang Y. Hydrophilic/hydrophobic modified microchip for detecting multiple gene doping candidates using CRISPR-Cas12a and RPA. Biosens Bioelectron 2024; 263:116631. [PMID: 39111252 DOI: 10.1016/j.bios.2024.116631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
With significant advancements in understanding gene functions and therapy, the potential misuse of gene technologies, particularly in the context of sports through gene doping (GD), has come to the forefront. This raises concerns regarding the need for point-of-care testing of various GD candidates to counter illicit practices in sports. However, current GD detection techniques, such as PCR, lack the portability required for on-site multiplexed detection. In this study, we introduce an integrated microfluidics-based chip for multiplexed gene doping detection, termed MGD-Chip. Through the strategic design of hydrophilic and hydrophobic channels, MGD-Chip enables the RPA and CRISPR-Cas12a assays to be sequentially performed on the device, ensuring minimal interference and cross-contamination. Six potential GD candidates were selected and successfully tested simultaneously on the platform within 1 h. Demonstrating exceptional specificity, the platform achieved a detection sensitivity of 0.1 nM for unamplified target plasmids and 1 aM for amplified ones. Validation using mouse models established by injecting IGFI and EPO transgenes confirmed the platform's efficacy in detecting gene doping in real samples. This technology, capable of detecting multiple targets using portable elements, holds promise for real-time GD detection at sports events, offering a rapid, highly sensitive, and user-friendly solution to uphold the integrity of sports competitions.
Collapse
Affiliation(s)
- Bingxin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jiayu Yan
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; Shanghai Institute of Doping Analyses, Shanghai University of Sport, Shanghai 200438, China
| | - Tao Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan 430065, China
| | - Yin Zhao
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhichen Xu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ruotong Rao
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan 430065, China; Hubei Shizhen Laboratory, 16 Huangjia Lake West Road, Wuhan 430065, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
2
|
Chae JH, Eom SH, Lee SK, Jung JH, Kim CH. Association between Complex ACTN3 and ACE Gene Polymorphisms and Elite Endurance Sports in Koreans: A Case-Control Study. Genes (Basel) 2024; 15:1110. [PMID: 39336701 PMCID: PMC11431688 DOI: 10.3390/genes15091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
ACTN3 R577X and ACE I/D polymorphisms are associated with endurance exercise ability. This case-control study explored the association of ACTN3 and ACE gene polymorphisms with elite pure endurance in Korean athletes, hypothesizing that individuals with both ACTN3 XX and ACE II genotypes would exhibit superior endurance. We recruited 934 elite athletes (713 males, 221 females) and selected 45 pure endurance athletes (36 males, 9 females) requiring "≥90% aerobic energy metabolism during sports events", in addition to 679 healthy non-athlete Koreans (361 males, 318 females) as controls. Genomic DNA was extracted and genotyped for ACTN3 R577X and ACE I/D polymorphisms. ACE ID (p = 0.090) and ACTN3 RX+XX (p = 0.029) genotype distributions were significantly different between the two groups. Complex ACTN3-ACE genotypes also exhibited significant differences (p = 0.014), with dominant complex genotypes positively affecting endurance (p = 0.039). The presence of RX+II or XX+II was associated with a 1.763-fold higher likelihood of possessing a superior endurance capacity than that seen in healthy controls (90% CI = 1.037-3.089). Our findings propose an association of combined ACTN3 RX+XX and ACE II genotypes with enhanced endurance performance in elite Korean athletes. While causality remains to be confirmed, our study highlights the potential of ACTN3-ACE polymorphisms in predicting elite endurance.
Collapse
Affiliation(s)
- Ji Heon Chae
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| | - Seon-Ho Eom
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| | - Sang-Ki Lee
- Department of Physical Education, Korea National Sports University, Seoul 05541, Republic of Korea;
| | - Joo-Ha Jung
- Center for Sport Science in Chungnam, Asan 31580, Republic of Korea
| | - Chul-Hyun Kim
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| |
Collapse
|
3
|
Pedroza Matute S, Iyavoo S. Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Front Nutr 2023; 10:1225120. [PMID: 37867494 PMCID: PMC10585655 DOI: 10.3389/fnut.2023.1225120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiota is a rich and dynamic ecosystem that actively interacts with the human body, playing a significant role in the state of health and disease of the host. Diet, exercise, mental health, and other factors have exhibited the ability to influence the gut bacterial composition, leading to changes that can prevent and improve, or favor and worsen, both intestinal and extra-intestinal conditions. Altered gut microbial states, or 'dysbiosis', associated with conditions and diseases are often characterized by shifts in bacterial abundance and diversity, including an impaired Firmicutes to Bacteroidetes ratio. By understanding the effect of lifestyle on the gut microbiota, personalized advice can be generated to suit each individual profile and foster the adoption of lifestyle changes that can both prevent and ameliorate dysbiosis. The delivery of effective and reliable advice, however, depends not only on the available research and current understanding of the topic, but also on the methods used to assess individuals and to discover the associations, which can introduce bias at multiple stages. The aim of this review is to summarize how human gut microbial variability is defined and what lifestyle choices and diseases have shown association with gut bacterial composition. Furthermore, popular methods to investigate the human gut microbiota are outlined, with a focus on the possible bias caused by the lack of use of standardized methods. Finally, an overview of the current state of personalized advice based on gut microbiota testing is presented, underlining its power and limitations.
Collapse
Affiliation(s)
| | - Sasitaran Iyavoo
- Nkaarco Diagnostics Limited, Norwich, United Kingdom
- School of Chemistry, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
4
|
Konopka MJ, Sperlich B, Rietjens G, Zeegers MP. Genetics and athletic performance: a systematic SWOT analysis of non-systematic reviews. Front Genet 2023; 14:1232987. [PMID: 37621703 PMCID: PMC10445150 DOI: 10.3389/fgene.2023.1232987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Exercise genetics/genomics is a growing research discipline comprising several Strengths and Opportunities but also deals with Weaknesses and Threats. This "systematic SWOT overview of non-systematic reviews" (sSWOT) aimed to identify the Strengths, Weaknesses, Opportunities, and Threats linked to exercise genetics/genomics. A systematic search was conducted in the Medline and Embase databases for non-systematic reviews to provide a comprehensive overview of the current literature/research area. The extracted data was thematically analyzed, coded, and categorized into SWOT clusters. In the 45 included reviews five Strengths, nine Weaknesses, six Opportunities, and three Threats were identified. The cluster of Strengths included "advances in technology", "empirical evidence", "growing research discipline", the "establishment of consortia", and the "acceptance/accessibility of genetic testing". The Weaknesses were linked to a "low research quality", the "complexity of exercise-related traits", "low generalizability", "high costs", "genotype scores", "reporting bias", "invasive methods", "research progress", and "causality". The Opportunities comprised of "precision exercise", "omics", "multicenter studies", as well as "genetic testing" as "commercial"-, "screening"-, and "anti-doping" detection tool. The Threats were related to "ethical issues", "direct-to-consumer genetic testing companies", and "gene doping". This overview of the present state of the art research in sport genetics/genomics indicates a field with great potential, while also drawing attention to the necessity for additional advancement in methodological and ethical guidance to mitigate the recognized Weaknesses and Threats. The recognized Strengths and Opportunities substantiate the capability of genetics/genomics to make significant contributions to the performance and wellbeing of athletes.
Collapse
Affiliation(s)
- Magdalena Johanna Konopka
- Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
| | - Billy Sperlich
- Integrative and Experimental Exercise Science and Training, Institute of Sport Science, University of Würzburg, Würzburg, Germany
| | - Gerard Rietjens
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maurice Petrus Zeegers
- Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
- School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
Varillas-Delgado D, Gutierrez-Hellín J, Maestro A. Genetic Profile in Genes Associated with Sports Injuries in Elite Endurance Athletes. Int J Sports Med 2023; 44:64-71. [PMID: 35921847 DOI: 10.1055/a-1917-9212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Injuries are a complex trait that can stem from the interaction of several genes. The aim of this research was to examine the relationship between muscle performance-related genes and overuse injury risk in elite endurance athletes, and to examine the feasibility of determining a total genotype score that significantly correlates with injury. A cohort of 100 elite endurance athletes (50 male and 50 female) was selected. AMPD1 (rs17602729), ACE (rs4646994), ACTN3 (rs1815739), CKM (rs8111989) and MLCK ([rs2849757] and [rs2700352]) polymorphisms were genotyped by using real-time polymerase chain reaction (real time-PCR). Injury characteristics during the athletic season were classified following the Consensus Statement for injuries evaluation. The mean total genotype score (TGS) in non-injured athletes (68.263±13.197 arbitrary units [a.u.]) was different from that of injured athletes (50.037±17.293 a.u., p<0.001). The distribution of allelic frequencies in the AMPD1 polymorphism was also different between non-injured and injured athletes (p<0.001). There was a TGS cut-off point (59.085 a.u.) to discriminate non-injured from injured athletes with an odds ratio of 7.400 (95% CI 2.548-21.495, p<0.001). TGS analysis appears to correlate with elite endurance athletes at higher risk for injury. Further study may help to develop this as one potential tool to help predict injury risk in this population.
Collapse
|
6
|
Maestro A, Del Coso J, Aguilar-Navarro M, Gutiérrez-Hellín J, Morencos E, Revuelta G, Ruiz Casares E, Perucho T, Varillas-Delgado D. Genetic profile in genes associated with muscle injuries and injury etiology in professional soccer players. Front Genet 2022; 13:1035899. [DOI: 10.3389/fgene.2022.1035899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Many causes define injuries in professional soccer players. In recent years, the study of genetics in association with injuries has been of great interest. The purpose of this study was to examine the relationship between muscle injury-related genes, injury risk and injury etiology in professional soccer players. In a cross-sectional cohort study, one hundred and twenty-two male professional football players were recruited. AMPD1 (rs17602729), ACE (rs4646994), ACTN3 (rs1815739), CKM (rs8111989) and MLCK (rs2849757 and rs2700352) polymorphisms were genotyped by using Single Nucleotide Primer Extension (SNPE). The combined influence of the six polymorphisms studied was calculated using a total genotype score (TGS). A genotype score (GS) of 2 was assigned to the “protective” genotype for injuries, a GS of 1 was assigned to the heterozygous genotype while a GS of 0 was assigned to the “worst” genotype. Injury characteristics and etiology during the 2021/2022 season were classified following a Consensus Statement for injuries recording. The distribution of allelic frequencies in the AMPD1 and MLCK c.37885C>A polymorphisms were different between non-injured and injured soccer players (p < 0.001 and p = 0.003, respectively). The mean total genotype score (TGS) in non-injured soccer players (57.18 ± 14.43 arbitrary units [a.u.]) was different from that of injured soccer players (51.71 ± 12.82 a.u., p = 0.034). There was a TGS cut-off point (45.83 a.u.) to discriminate non-injured from injured soccer players. Players with a TGS beyond this cut-off had an odds ratio of 1.91 (95%CI: 1.14–2.91; p = 0.022) to suffer an injury when compared with players with lower TGS. In conclusion, TGS analysis in muscle injury-related genes presented a relationship with professional soccer players at increased risk of injury. Future studies will help to develop this TGS as a potential tool to predict injury risk and perform prevention methodology in this cohort of football players.
Collapse
|
7
|
Pan J, Purev C, Zhao H, Zhang Z, Wang F, Wendoule N, Qi G, Liu Y, Zhou H. Discovery of exercise-related genes and pathway analysis based on comparative genomes of Mongolian originated Abaga and Wushen horse. Open Life Sci 2022; 17:1269-1281. [PMID: 36249530 PMCID: PMC9518662 DOI: 10.1515/biol-2022-0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The Mongolian horses have excellent endurance and stress resistance to adapt to the cold and harsh plateau conditions. Intraspecific genetic diversity is mainly embodied in various genetic advantages of different branches of the Mongolian horse. Since people pay progressive attention to the athletic performance of horse, we expect to guide the exercise-oriented breeding of horses through genomics research. We obtained the clean data of 630,535,376,400 bp through the entire genome second-generation sequencing for the whole blood of four Abaga horses and ten Wushen horses. Based on the data analysis of single nucleotide polymorphism, we severally detected that 479 and 943 positively selected genes, particularly exercise related, were mainly enriched on equine chromosome 4 in Abaga horses and Wushen horses, which implied that chromosome 4 may be associated with the evolution of the Mongolian horse and athletic performance. Four hundred and forty genes of positive selection were enriched in 12 exercise-related pathways and narrowed in 21 exercise-related genes in Abaga horse, which were distinguished from Wushen horse. So, we speculated that the Abaga horse may have oriented genes for the motorial mechanism and 21 exercise-related genes also provided a molecular genetic basis for exercise-directed breeding of the Mongolian horse.
Collapse
Affiliation(s)
- Jing Pan
- Faculty of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
- Department of Reproductive Medicine, Inner Mongolia Maternal and Child Health Care Hospitaly, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Chimge Purev
- Mongolia-China Joint Laboratory of Applied Molecular Biology, “Administration of the Science Park” CSTI, Ulaanbaatar, Mongolia
| | - Hongwei Zhao
- Beijing 8omics Gene Technology Co. Ltd, Beijing, People’s Republic of China
| | - Zhipeng Zhang
- Faculty of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Feng Wang
- Faculty of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Nashun Wendoule
- Animal Husbandry Workstation of Ewenki Autonomous County, Hulun Buir, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Guichun Qi
- Bayanta Village of Animal Husbandry and Veterinary Station of Ewenki Autonomous County, Hulun Buir, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Yongbin Liu
- Sheep Collaboration and Innovation Center, Inner Mongolia Universityy, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| | - Huanmin Zhou
- Faculty of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
- Sheep Collaboration and Innovation Center, Inner Mongolia Universityy, Hohhot, Inner Mongolia Autonomous Region, People’s Republic of China
| |
Collapse
|
8
|
Genetic profiles to identify talents in elite endurance athletes and professional football players. PLoS One 2022; 17:e0274880. [PMID: 36112609 PMCID: PMC9480996 DOI: 10.1371/journal.pone.0274880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
The genetic profile that is needed to identify talents has been studied extensively in recent years. The main objective of this investigation was to approach, for the first time, the study of genetic variants in several polygenic profiles and their role in elite endurance and professional football performance by comparing the allelic and genotypic frequencies to the non-athlete population. In this study, genotypic and allelic frequencies were determined in 452 subjects: 292 professional athletes (160 elite endurance athletes and 132 professional football players) and 160 non-athlete subjects. Genotyping of polymorphisms in liver metabolisers (CYP2D6, GSTM1, GSTP and GSTT), iron metabolism and energy efficiency (HFE, AMPD1 and PGC1a), cardiorespiratory fitness (ACE, NOS3, ADRA2A, ADRB2 and BDKRB2) and muscle injuries (ACE, ACTN3, AMPD1, CKM and MLCK) was performed by Polymerase Chain Reaction-Single Nucleotide Primer Extension (PCR-SNPE). The combination of the polymorphisms for the “optimal” polygenic profile was quantified using the genotype score (GS) and total genotype score (TGS). Statistical differences were found in the genetic distributions between professional athletes and the non-athlete population in liver metabolism, iron metabolism and energy efficiency, and muscle injuries (p<0.001). The binary logistic regression model showed a favourable OR (odds ratio) of being a professional athlete against a non-athlete in liver metabolism (OR: 1.96; 95% CI: 1.28–3.01; p = 0.002), iron metabolism and energy efficiency (OR: 2.21; 95% CI: 1.42–3.43; p < 0.001), and muscle injuries (OR: 2.70; 95% CI: 1.75–4.16; p < 0.001) in the polymorphisms studied. Genetic distribution in professional athletes as regards endurance (professional cyclists and elite runners) and professional football players shows genetic selection in these sports disciplines.
Collapse
|
9
|
The Effect of Selected Polymorphisms of the ACTN3, ACE, HIF1A and PPARA Genes on the Immediate Supercompensation Training Effect of Elite Slovak Endurance Runners and Football Players. Genes (Basel) 2022; 13:genes13091525. [PMID: 36140693 PMCID: PMC9498790 DOI: 10.3390/genes13091525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023] Open
Abstract
We aimed to evaluate the effect of selected polymorphisms of the ACTN3, ACE, HIF1A and PPARA genes on the immediate supercompensation training effect of elite Slovak endurance runners and football players compared with a sedentary control group. Adaptation effect levels were evaluated by 10 s continuous vertical jump test parameters measured by Optojump. Genetic polymorphisms were determined by PCR and Sanger sequencing. We found significant differences in the effect of PPARA genotypes in the experimental group. C allele genotypes represented an advantage in immediate supercompensation (p < 0.05). We observed a significant combined effect of multiple genes on immediate supercompensation (p < 0.05): the RR genotype of the ACTN3 gene, the ID genotype of the ACE gene, the Pro/Pro genotype of HIF1A, and the GC and GG genotypes of PPARA genes. In the control group, we found a significant effect (p < 0.05) on immediate supercompensation of the II genotype of the ACE gene and the Pro/Ser genotype of the HIF1A gene. We found significant differences in genotype frequency of ACE (p < 0.01) and PPARA (p < 0.001) genes. We confirmed that individual genetic polymorphisms of ACTN3, ACE, HIF1A and PPARA genes have a different effect on the level of immediate supercompensation of the lower limbs depending on the training adaptation of the probands and the combination of genotypes.
Collapse
|
10
|
Using artificial neural networks to help in the process of sports selection and orientation through morphological and biodynamic parameters: a pilot study. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Varillas-Delgado D, Del Coso J, Gutiérrez-Hellín J, Aguilar-Navarro M, Muñoz A, Maestro A, Morencos E. Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. Eur J Appl Physiol 2022; 122:1811-1830. [PMID: 35428907 PMCID: PMC9012664 DOI: 10.1007/s00421-022-04945-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/29/2022] [Indexed: 12/19/2022]
Abstract
The impact of genetics on physiology and sports performance is one of the most debated research aspects in sports sciences. Nearly 200 genetic polymorphisms have been found to influence sports performance traits, and over 20 polymorphisms may condition the status of the elite athlete. However, with the current evidence, it is certainly too early a stage to determine how to use genotyping as a tool for predicting exercise/sports performance or improving current methods of training. Research on this topic presents methodological limitations such as the lack of measurement of valid exercise performance phenotypes that make the study results difficult to interpret. Additionally, many studies present an insufficient cohort of athletes, or their classification as elite is dubious, which may introduce expectancy effects. Finally, the assessment of a progressively higher number of polymorphisms in the studies and the introduction of new analysis tools, such as the total genotype score (TGS) and genome-wide association studies (GWAS), have produced a considerable advance in the power of the analyses and a change from the study of single variants to determine pathways and systems associated with performance. The purpose of the present study was to comprehensively review evidence on the impact of genetics on endurance- and power-based exercise performance to clearly determine the potential utility of genotyping for detecting sports talent, enhancing training, or preventing exercise-related injuries, and to present an overview of recent research that has attempted to correct the methodological issues found in previous investigations.
Collapse
Affiliation(s)
- David Varillas-Delgado
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain.
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, 28933, Madrid, Spain
| | - Jorge Gutiérrez-Hellín
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Millán Aguilar-Navarro
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Alejandro Muñoz
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| | | | - Esther Morencos
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
12
|
Appel M, Zentgraf K, Krüger K, Alack K. Effects of Genetic Variation on Endurance Performance, Muscle Strength, and Injury Susceptibility in Sports: A Systematic Review. Front Physiol 2021; 12:694411. [PMID: 34366884 PMCID: PMC8334364 DOI: 10.3389/fphys.2021.694411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
The aim of this systematic review was to assess the effects of genetic variations and polymorphisms on endurance performance, muscle strength and injury susceptibility in competitive sports. The electronic databases PubMed and Web of Science were searched for eligible studies. The study quality was assessed using the RoBANS tool. Studies were included if they met the following criteria: (1) human study in English or German; (2) published in the period 2015–2019; (3) investigation of an association between genetic variants and endurance performance and/or muscle strength and/or endurance/strength training status as well as ligament, tendon, or muscle injuries; (4) participants aged 18–60 years and national or international competition participation; (5) comparison with a control group. Nineteen studies and one replication study were identified. Results revealed that the IGF-1R 275124 A>C rs1464430 polymorphism was overrepresented in endurance trained athletes. Further, genotypes of PPARGC1A polymorphism correlated with performance in endurance exercise capacity tests in athletes. Moreover, the RR genotype of ACTN3 R577X polymorphism, the C allele of IGF-1R polymorphism and the gene variant FTO T>A rs9939609 and/or their AA genotype were linked to muscle strength. In addition, gene variants of MCT1 (T1470A rs1049434) and ACVR1B (rs2854464) were also positively associated with strength athletes. Among others, the gene variants of the MMP group (rs591058 and rs679620) as well as the polymorphism COL5A1 rs13946 were associated with susceptibility to injuries of competitive athletes. Based on the identified gene variants, individualized training programs for injury prevention and optimization of athletic performance could be created for competitive athletes using gene profiling techniques.
Collapse
Affiliation(s)
- Milena Appel
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Karen Zentgraf
- Department of Exercise and Movement Science, Institute of Sports Sciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Katharina Alack
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
13
|
Naureen Z, Perrone M, Paolacci S, Maltese PE, Dhuli K, Kurti D, Dautaj A, Miotto R, Casadei A, Fioretti B, Beccari T, Romeo F, Bertelli M. Genetic test for the personalization of sport training. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020012. [PMID: 33170162 PMCID: PMC8023127 DOI: 10.23750/abm.v91i13-s.10593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 11/23/2022]
Abstract
Genetic variants may contribute to confer elite athlete status. However, this does not mean that a person with favourable genetic traits would become a champion because multiple genetic interactions and epigenetic contributions coupled with confounding environmental factors shape the overall phenotype. This opens up a new area in sports genetics with respect to commercial genetic testing. The analysis of genetic polymorphisms linked to sport performance would provide insights into the potential of becoming an elite endurance or power performer. This mini-review aims to highlight genetic interactions that are associated with performance phenotypes and their potentials to be used as markers for talent identification and trainability.
Collapse
Affiliation(s)
- Zakira Naureen
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman.
| | - Marco Perrone
- Division of Cardiology, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | | | | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| | - Francesco Romeo
- Division of Cardiology, University of Rome Tor Vergata, Rome, Italy.
| | - Matteo Bertelli
- MAGI'S LAB, Rovereto (TN), Italy; EBTNA-LAB, Rovereto (TN), Italy; MAGI EUREGIO, Bolzano, Italy.
| |
Collapse
|
14
|
Kakavas G, Malliaropoulos N, Pruna R, Maffulli N. Artificial intelligence: A tool for sports trauma prediction. Injury 2020; 51 Suppl 3:S63-S65. [PMID: 31472985 DOI: 10.1016/j.injury.2019.08.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/17/2019] [Indexed: 02/02/2023]
Abstract
Injuries exert an enormous impact on athletes and teams. This is seen especially in professional soccer, with a marked negative impact on team performance and considerable costs of rehabilitation for players. Existing studies provide some preliminary understanding of which factors are mostly associated with injury risk, but scientific systematic evaluation of the potential of statistical models in forecasting injuries is still missing. Some factors raise the risk of a sport injury, but there are also elements that predispose athletes to sports injuries. The biological mechanisms involved in non-contact musculoskeletal soft tissue injuries are poorly understood. Genetic risk factors may be associated with susceptibility to injuries, and may exert marked influence on recovery times. Athletes are complex systems, and depend on internal and external factors to attain and maintain stability of their health and their performance. Organisms, participants or traits within a dynamic system adapt and change when factors within that system change. Scientists routinely predict risk in a variety of dynamic systems, including weather, political forecasting and projecting traffic fatalities and the last years have started the use of predictive models in the human health industry. We propose that the use of artificial intelligence may well help in assessing risk and help to predict the occurrence of sport injuries.
Collapse
Affiliation(s)
| | - Nikolaos Malliaropoulos
- Queen Mary University of London, Centre for Sports and Exercise Medicine, London, UK; Thessaloniki MSK Sports Medicine Clinic Thessaloniki, Greece; National Sports Medicine Clinic, SEGAS, Thessaloniki, Greece.
| | - Ricard Pruna
- FC Barcelona, FIFA Medical Center of Excellence, St Joan Despi, Barcelona, Spain.
| | - Nicola Maffulli
- Queen Mary University of London, Centre for Sports and Exercise Medicine, London, UK; Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Salerno, Italy; Keele University, School of Medicine, Institute of Science and Technology in Medicine, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, England, UK.
| |
Collapse
|
15
|
Sorrenti V, Fortinguerra S, Caudullo G, Buriani A. Deciphering the Role of Polyphenols in Sports Performance: From Nutritional Genomics to the Gut Microbiota toward Phytonutritional Epigenomics. Nutrients 2020; 12:nu12051265. [PMID: 32365576 PMCID: PMC7281972 DOI: 10.3390/nu12051265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
The individual response to nutrients and non-nutrient molecules can be largely affected by three important biological layers. The gut microbiome can alter the bioavailability of nutrients and other substances, the genome can influence molecule kinetics and dynamics, while the epigenome can modulate or amplify the properties of the genome. Today the use of omic techniques and bioinformatics, allow the construction of individual multilayer networks and thus the identification of personalized strategies that have recently been considered in all medical fields, including sports medicine. The composition of each athlete’s microbiome influences sports performance both directly by acting on energy metabolism and indirectly through the modulation of nutrient or non-nutrient molecule availability that ultimately affects the individual epigenome and the genome. Among non-nutrient molecules polyphenols can potentiate physical performances through different epigenetic mechanisms. Polyphenols interact with the gut microbiota, undergoing extensive metabolism to produce bioactive molecules, which act on transcription factors involved in mitochondrial biogenesis, antioxidant systems, glucose and lipid homeostasis, and DNA repair. This review focuses on polyphenols effects in sports performance considering the individual microbiota, epigenomic asset, and the genomic characteristics of athletes to understand how their supplementation could potentially help to modulate muscle inflammation and improve recovery.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
- Correspondence:
| | - Stefano Fortinguerra
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
| | - Giada Caudullo
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
| | - Alessandro Buriani
- Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy; (S.F.); (G.C.); (A.B.)
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy
| |
Collapse
|
16
|
Bisaccia DR, Aicale R, Tarantino D, Peretti GM, Maffulli N. Biological and chemical changes in fluoroquinolone-associated tendinopathies: a systematic review. Br Med Bull 2019; 130:39-49. [PMID: 30811525 DOI: 10.1093/bmb/ldz006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/04/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The present systematic review investigates the biological and chemical mechanisms that affect the health and structure of tendons following the use of fluoroquinolones (FQs). SOURCES OF DATA A total of 12 articles were included, organized, and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. AREAS OF AGREEMENT Five mechanisms were identified: arrest of proliferation through a decreased activity of cyclin B, CDK-1, CHK-1, and increased PK-1; decrease tenocytes migration through decreased phosphorylation of FAK; decrease type I collagen metabolism through increased MMP-2; chelate effect on ions that influence epigenetics and several enzymes; fluoroquinolones-induced ROS (radical oxygen species) production in mitochondria. AREAS OF CONTROVERSY There is no definite structure-damage relationship. The dose-effect relationship is unclear. GROWING POINTS Knowing and defining the damage exerted by FQs plays a role in clinical practice, replacing FQs with other antibacterial drugs or using antioxidants to attenuate their pathological effects. AREAS TIMELY FOR DEVELOPING RESEARCH Clinical and basic sciences studies for each FQs are necessary.
Collapse
Affiliation(s)
- Domenico Rocco Bisaccia
- Department of Pharmacology, School of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Rocco Aicale
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Domiziano Tarantino
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Giuseppe M Peretti
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Salerno, Italy
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London, England
- Institute of Science and Technology in Medicine, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, England
| |
Collapse
|
17
|
Abstract
Recent reviews have attempted to refute the efficacy of applying Selye's general adaptation syndrome (GAS) as a conceptual framework for the training process. Furthermore, the criticisms involved are regularly used as the basis for arguments against the periodization of training. However, these perspectives fail to consider the entirety of Selye's work, the evolution of his model, and the broad applications he proposed. While it is reasonable to critically evaluate any paradigm, critics of the GAS have yet to dismantle the link between stress and adaptation. Disturbance to the state of an organism is the driving force for biological adaptation, which is the central thesis of the GAS model and the primary basis for its application to the athlete's training process. Despite its imprecisions, the GAS has proven to be an instructive framework for understanding the mechanistic process of providing a training stimulus to induce specific adaptations that result in functional enhancements. Pioneers of modern periodization have used the GAS as a framework for the management of stress and fatigue to direct adaptation during sports training. Updates to the periodization concept have retained its founding constructs while explicitly calling for scientifically based, evidence-driven practice suited to the individual. Thus, the purpose of this review is to provide greater clarity on how the GAS serves as an appropriate mechanistic model to conceptualize the periodization of training.
Collapse
|
18
|
Abstract
We found that hundreds of years of selection by humans have produced sport-hunting breeds of superior speed and athleticism through strong selection on multiple genes relating to cardiovascular, muscle, and neuronal functions. We further substantiated these findings by showing that genes under selection significantly enhanced athleticism, as measured by racing speed and obstacle course success, using standardized measures from dogs competing in national competitions. Overall these results reveal both the evolutionary processes and the genetic pathways putatively involved in athletic success. Modern dogs are distinguished among domesticated species by the vast breadth of phenotypic variation produced by strong and consistent human-driven selective pressure. The resulting breeds reflect the development of closed populations with well-defined physical and behavioral attributes. The sport-hunting dog group has long been employed in assistance to hunters, reflecting strong behavioral pressures to locate and pursue quarry over great distances and variable terrain. Comparison of whole-genome sequence data between sport-hunting and terrier breeds, groups at the ends of a continuum in both form and function, reveals that genes underlying cardiovascular, muscular, and neuronal functions are under strong selection in sport-hunting breeds, including ADRB1, TRPM3, RYR3, UTRN, ASIC3, and ROBO1. We also identified an allele of TRPM3 that was significantly associated with increased racing speed in Whippets, accounting for 11.6% of the total variance in racing performance. Finally, we observed a significant association of ROBO1 with breed-specific accomplishments in competitive obstacle course events. These results provide strong evidence that sport-hunting breeds have been adapted to their occupations by improved endurance, cardiac function, blood flow, and cognitive performance, demonstrating how strong behavioral selection alters physiology to create breeds with distinct capabilities.
Collapse
|
19
|
Contrò V, Schiera G, Abbruzzo A, Bianco A, Amato A, Sacco A, Macchiarella A, Palma A, Proia P. An innovative way to highlight the power of each polymorphism on elite athletes phenotype expression. Eur J Transl Myol 2018; 28:7186. [PMID: 29686814 PMCID: PMC5895983 DOI: 10.4081/ejtm.2018.7186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/17/2017] [Accepted: 11/16/2017] [Indexed: 01/28/2023] Open
Abstract
The purpose of this study was to determine the probability of soccer players having the best genetic background that could increase performance, evaluating the polymorphism that are considered Performance Enhancing Polymorphism (PEPs) distributed on five genes: PPARα, PPARGC1A, NRF2, ACE e CKMM. Particularly, we investigated how each polymorphism works directly or through another polymorphism to distinguish elite athletes from non-athletic population. Sixty professional soccer players (age 22.5 ± 2.2) and sixty healthy volunteers (age 21.2± 2.3) were enrolled. Samples of venous blood was used to prepare genomic DNA. The polymorphic sites were scanned using PCR-RFLP protocols with different enzyme. We used a multivariate logistic regression analysis to demonstrate an association between the five PEPs and elite phenotype. We found statistical significance in NRF2 (AG/GG genotype) polymorphism/soccer players association (p < 0.05) as well as a stronger association in ACE polymorphism (p =0.02). Particularly, we noticed that the ACE ID genotype and even more the II genotype are associated with soccer player phenotype. Although the other PEPs had no statistical significance, we proved that some of these may work indirectly, amplifying the effect of another polymorphism; for example, seems that PPARα could acts on NRF2 (GG) enhancing the effect of the latter, notwithstanding it had not shown a statistical significance. In conclusion, to establish if a polymorphism can influence the performance, it is necessary to understand how they act and interact, directly and indirectly, on each other.
Collapse
Affiliation(s)
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo
| | | | - Antonino Bianco
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Italy
| | - Alessandra Amato
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Italy
| | - Alessia Sacco
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Italy
| | - Alessandra Macchiarella
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Italy
| | - Antonio Palma
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Italy
| | - Patrizia Proia
- Department of Psychological, Pedagogical and Educational Sciences, Sport and Exercise Sciences Research Unit, University of Palermo, Italy
| |
Collapse
|
20
|
Deprés-Tremblay G, Chevrier A, Hurtig MB, Snow M, Rodeo S, Buschmann MD. Freeze-Dried Chitosan-Platelet-Rich Plasma Implants for Rotator Cuff Tear Repair: Pilot Ovine Studies. ACS Biomater Sci Eng 2017; 4:3737-3746. [DOI: 10.1021/acsbiomaterials.7b00354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Mark B Hurtig
- Department of Clinical Studies, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Martyn Snow
- The Royal Orthopaedic Hospital, Birmingham B31 2Ap, United Kingdom
| | - Scott Rodeo
- Sports Medicine and Shoulder Service, The Hospital for Special Surgery, New York, New York 10021, United States
| | | |
Collapse
|
21
|
Pruna R, Artells R, Lundblad M, Maffulli N. Genetic biomarkers in non-contact muscle injuries in elite soccer players. Knee Surg Sports Traumatol Arthrosc 2017; 25:3311-3318. [PMID: 27085366 DOI: 10.1007/s00167-016-4081-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/03/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE Damage to skeletal muscle necessitates regeneration to maintain proper muscle form and function. Interindividual differences in injury severity, recovery time, and injury rate could be explained by the presence of single nucleotide polymorphisms (SNPs) in genes involved in the reparation and regeneration of connective tissue . We wished to identify new genetic biomarkers that could help to prevent or minimize the risk of non-contact muscle injuries and are associated with a predisposition to developing muscle injuries. METHODS Using allelic discrimination techniques, we analysed 12 SNPs in selected genes from the genomic DNA of 74 elite soccer players. RESULTS SNPs in the hepatocyte growth factor (HGF) gene showed evidence of a statistically significant association with injury incidence, severity, and recovery time. SNPs in the SOX15 gene showed evidence of a statistically significant association with injury incidence. SNPs in the GEFT and LIF genes showed evidence of a statistically significant association with recovery time. CONCLUSIONS Genetic profile could explain why some elite soccer players are predisposed to suffer more injuries than others and why they need more time to recover from a particular injury. SNPs in HGF genes have an important role as biomarkers of biological processes fragility within muscle injuries related to injury rate, severity, and long recovery time.
Collapse
Affiliation(s)
- Ricard Pruna
- F.C. Barcelona Medical Services, FIFA Medical Center of Excellence, Barcelona, Spain
| | | | - Matilda Lundblad
- Department of Orthopaedics, Sahlgrenska University, Gothenburg, Sweden
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London, England
| |
Collapse
|
22
|
Abate M, Di Carlo L, Salini V, Schiavone C. Risk factors associated to bilateral rotator cuff tears. Orthop Traumatol Surg Res 2017; 103:841-845. [PMID: 28578100 DOI: 10.1016/j.otsr.2017.03.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/21/2017] [Accepted: 03/31/2017] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Overuse, micro-traumas, and impingement, isolated or combined, are the more common etiological factors for rotator cuff tears. Metabolic disorders (diabetes, adiposity, hypercholesterolemia), hypertension, cigarette smoking and a genetic predisposition are considered risk factors. However, no study has compared the prevalence of these risk factors in subjects with bilateral and monolateral tears. HYPOTHESIS Controlateral tears can be observed in patients with symptomatic monolateral rotator cuff lesions, especially in those with comorbidities. MATERIAL AND METHODS In patients with symptomatic rotator cuff tear, the controlateral shoulders were evaluated by means of ultrasound imaging. Age, BMI, diabetes, hypercholesterolemia, hypertension, cigarette smoking, work habits were registered. Risk factors in subjects with bilateral tears were compared with those with monolateral lesions. RESULTS Of the 180 subjects recruited, 69 had a tear in the controlateral shoulder. Higher age and BMI values, heavy repetitive work and diabetes were significantly prevalent in these patients. At multivariate analysis, these factors were independently related to a higher probability to detect bilateral tears. DISCUSSION Metabolic risk factors are more heavily involved in presence of bilateral rotator cuff tears, in comparison to monolateral. TYPE OF STUDY Original study. LEVEL OF PROOF IV.
Collapse
Affiliation(s)
- M Abate
- Department of medical science and aging, 31, via dei vestini, 66013 Chieti, Italy.
| | - L Di Carlo
- Department of medical science and aging, 31, via dei vestini, 66013 Chieti, Italy
| | - V Salini
- Department of medical science and aging, 31, via dei vestini, 66013 Chieti, Italy
| | - C Schiavone
- Department of medical science and aging, 31, via dei vestini, 66013 Chieti, Italy
| |
Collapse
|
23
|
Maffulli N, Oliva F, Loppini M, Aicale R, Spiezia F, King JB. The Royal London Hospital Test for the clinical diagnosis of patellar tendinopathy. Muscles Ligaments Tendons J 2017; 7:315-322. [PMID: 29264343 DOI: 10.11138/mltj/2017.7.2.315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose To ascertain whether the Royal London Hospital test is reproducible, sensitive, and specific for diagnosis of patellar tendinopathy. Methods Fifteen consecutive athletes with patellar tendinopathy were prospectively enrolled and compared with a control group of 15 non consecutive athletes with Achilles tendinopathy. Two testers examined separately each patient, using manual palpation and the Royal London Hospital test for diagnosis of patellar tendinopathy. High resolution real time ultrasonography was used as standard for diagnosis of tendinopathy and assessment of tendon thickness. Results The palpation test presented significantly higher sensitivity compared to the Royal London Hospital test (98 vs 88%; P=0.01); specificity was 94% for the palpation test and 98% for the Royal London Hospital test (P>0.05). Positive and negative predictive values were 94 and 98% for palpation test, 98 and 89% for the Royal London Hospital test, respectively. The two tests showed good to very good intra-tester and inter-tester agreement. At ultrasonography, pathological patellar tendons were significantly thicker compared to controlateral healthy tendon (P<0.001). Conclusions In symptomatic patients with patellar tendinopathy, the Royal London Hospital test showed lower sensitivity and higher specificity than manual palpation. Both tests should be performed for a correct clinical diagnosis of patellar tendinopathy. Imaging assessment should be performed as a confirmatory test. Level of Evidence III.
Collapse
Affiliation(s)
- Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Salerno, Italy.,Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospita, London, England
| | - Francesco Oliva
- Department of Orthopedics and Traumatology, University of Rome "Tor Vergata" School of Medicine, Rome, Italy
| | - Mattia Loppini
- Department of Orthopaedic and Trauma Surgery, Campus Biomedico University, Rome, Italy
| | - Rocco Aicale
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Filippo Spiezia
- Department Upper and Lower Limb Surgery Unit, University Campus Bio-Medico, Rome, Italy
| | - John B King
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospita, London, England
| |
Collapse
|
24
|
Comparison of Muscle-Specific Creatine Kinase (CK-MM) Gene Polymorphism (rs8111989) Among Professional, Amateur Athletes and Non-athlete Karatekas. Asian J Sports Med 2017. [DOI: 10.5812/asjsm.43210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Abstract
BACKGROUND Posterior tibial tendinopathy (PTT) is the most common cause of acquired (progressive) flatfoot deformity in adults. To date, PTT research has mainly focused on management rather than on causal mechanisms. The etiology of PTT is likely to be multifactorial because both intrinsic and extrinsic risk factors have been reported. We sought to critically evaluate reported etiologic factors for PTT and consider the concept of genetic risk factors. METHODS A detailed review of the literature published after 1936 was undertaken using English-language medical databases. RESULTS No clear consensus exists as to the relative importance of the risk factors reported, and neither has any consideration been given to a possible genetic basis for PTT. CONCLUSIONS To date, studies have examined various intrinsic and extrinsic risk factors implicated in the etiology of PTT. The interaction of these factors with an individual's genetic background may provide valuable data and help offer a more complete risk profile for PTT. A properly constructed genetic association study to determine the genetic basis of PTT would provide a novel and alternative approach to understanding this condition.
Collapse
Affiliation(s)
- Paul Beeson
- Division of Podiatry, The University of Northampton, Park Campus, Boughton Green Road, Northampton, Northamptonshire, NN2 7AL, England. (E-mail: )
| |
Collapse
|
26
|
Jung H, Lee N, Park S. Interaction of ACTN3 gene polymorphism and muscle imbalance effects on kinematic efficiency in combat sports athletes. J Exerc Nutrition Biochem 2016; 20:1-7. [PMID: 27508148 PMCID: PMC4977906 DOI: 10.20463/jenb.2016.06.20.2.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/02/2022] Open
Abstract
[Purpose] The purpose of this study was to determine the interaction of ACTN3 gene polymorphism and muscle imbalance effects on kinematic efficiency changes in combat sports athletes. [Methods] Six types of combat sports athletes (Judo, Taekwondo, boxing, kendo, wrestling, and Korean Ssi-reum) participated in the study. ATCN3 gene polymorphism and muscle imbalance in lower extremity were evaluated followed by analysis of differences of moment in hip, knee, and ankle joint during V-cut jumping and stop. To examine the moment difference due to an interaction of ATCN3 polymorphism and muscle imbalance, all participants were divided into 4 groups (R+MB, R+MIB, X+MB, and X+MIB). [Results] There was no significant difference of hip, knee, and ankle joint moment in R allele and X allele during V-cut jumping and stop based on ACTN3 gene polymorphism. Otherwise, muscle imbalance of knee moment in X-axis and ground reaction force of knee in Z-axis showed a higher significance in muscle imbalance during V-cut jumping and stop compared to muscle balance (p<0.05). In addition, joint analysis showed that muscle imbalance in X allele group had significantly higher knee moment of V-cut ground reaction force in X-axis and higher ankle moment of jumping ground reaction force in X and Z-axis compared to muscle balance with R and/or X group (p <0.05). [Conclusion] This study confirmed that muscle imbalance in lower extremity of combat athletes might induce higher risk factors of sports injury incidence than genetic factor and training might reduce the ratio of sports injury risk incidence.
Collapse
Affiliation(s)
- Hansang Jung
- College of Sports Science, Kangnam University, Yongin-si, Gyoenggi-do Republic of Korea
| | - Namju Lee
- Department of Sports Health Medicine, School of Sports Science, Jungwon University, Goesan-gun, Chungbuk Republic of Korea
| | - Sok Park
- Department of Sports Leadership, College of Natural Science, Kwangwoon University, Seoul Republic of Korea
| |
Collapse
|
27
|
Mazzeo F, Santamaria S, Iavarone A. "Boosting" in Paralympic athletes with spinal cord injury: doping without drugs. FUNCTIONAL NEUROLOGY 2016; 30:91-8. [PMID: 26415788 DOI: 10.11138/fneur/2015.30.2.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The intentional activation of autonomic dysreflexia (AD, also called "boosting"), a practice sometimes used by athletes affected by spinal cord injury (SCI), is banned by the International Paralympic Committee (IPC). Although various studies have addressed doping and AD as separate issues, studies evaluating AD as a doping method are lacking. The aim of this brief review is to contribute to better understanding of the relationship between doping and AD. We conducted a literature search of the PubMed database (from 1994 onwards). The key search terms "autonomic dysreflexia" and "boosting" were crossreferenced with "sport performance". The official Paralympic website was also viewed. AD is a potent sympathetic reflex, due to a massive release of noradrenaline, that results in marked vasoconstriction distal to the level of the lesion. Athletes with SCI often self-inflict physical suffering in order to induce this phenomenon, which carries high health risks (i.e., hypertension, cerebral hemorrhage, stroke and sudden death). Boosting is a practice that can be compared to doping methods and the IPC expressly prohibits it. Any deliberate attempt to induce AD, if detected, will lead to disqualification from the sporting event and subsequent investigation by the IPC Legal and Ethics Committee.
Collapse
|
28
|
Filonzi L, Franchini N, Vaghi M, Chiesa S, Marzano FN. The potential role of myostatin and neurotransmission genes in elite sport performances. J Biosci 2016; 40:531-7. [PMID: 26333399 DOI: 10.1007/s12038-015-9542-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Elite athletes are those who represent their sport at such major competition as the Olympic Games or World contests. The most outstanding athletes appear to emerge as a result of endogenous biologic characteristics interacting with exogenous influences of the environment, often described as a 'Nature and Nurture' struggle. In this work, we assessed the contribution given by 4 genes involved in muscles development (MSTN) and behavioural insights (5HTT, DAT and MAOA) to athletic performances. As for neurotransmission, 5HTT, DAT and MAOA genes have been considered as directly involved in the management of aggressiveness and anxiety. Genotypes and allelic frequencies of 5HTTLPR, MAOA-u VNTR, DAT VNTR and MSTN K153R were determined in 50 elite athletes and compared with 100 control athletes. In this work we found a significant correlation between the dopamine transporter genotype 9/9 and allele 9 and elite sport performances. On the contrary, no association was found between muscle development regulation or serotonin pathway and elite performances. Our data, for the first time, suggest a strong role of dopamine neurotransmitter in determining sport success, highlighting the role of emotional control and psycological management to reach high-level performances.
Collapse
Affiliation(s)
- L Filonzi
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | | | | | | | | |
Collapse
|
29
|
Ghosh A, Mahajan PB. Can genotype determine the sports phenotype? A paradigm shift in sports medicine. J Basic Clin Physiol Pharmacol 2016; 27:333-9. [PMID: 26812785 DOI: 10.1515/jbcpp-2015-0090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 11/12/2015] [Indexed: 01/14/2023]
Abstract
In last two decades, there has been an evolution in sports medicine. Several researchers have worked on different domains of sports medicine, like strength, endurance, sports injury, and psychology. Besides this, several groups have explored the changes at cellular and molecular levels during exercise, which has led to the development of the new domain in sports science known as genetic medicine. Genetic medicine deals with the genotypic basis of sports phenotype. In this article, we try to provide an up-to-date review on genetic determinants of sports performance, which will be like a journey from the nostalgic past towards the traditional present and the romantic future of sports medicine. Endurance and power performance are two important domains of athletes. They vary in individuals, even among trained athletes. Researches indicate that the genetic makeup of sportsmen play a vital role in their performance. Several genetic factors are reported to be responsible for endurance, power, susceptibility to injury, and even psychology of the individual. Besides this, proper training, nutrition, and environment are also important in shaping their potential. The aim of this discussion is to understand the influence of the environment and the genetic makeup on the performance of the athletes. There is sufficient evidence to suggest that genotype determines the sports phenotype in an athlete. Choosing the right sports activity based on genetic endowment is the key for achieving excellence in sports.
Collapse
|
30
|
Association between angiotensin-converting enzyme gene polymorphism and competitive anxiety in Tunisian athlete. SPORT SCIENCES FOR HEALTH 2016. [DOI: 10.1007/s11332-016-0280-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Artells R, Pruna R, Dellal A, Maffulli N. Elastin: a possible genetic biomarker for more severe ligament injuries in elite soccer. A pilot study. Muscles Ligaments Tendons J 2016; 6:188-192. [PMID: 27900291 PMCID: PMC5115249 DOI: 10.11138/mltj/2016.6.2.188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The study of new genetic biomarkers in genes related to connective tissue repair and regeneration may help to identify individuals with greater predisposition to injury, who may benefit from targeted preventive measures, and those who require longer recovery time following a muscle, ligament or tendon injury. The present study investigated whether single nucleotide polymorphisms of the Elastin gene could be related to MCL injury. METHODS 60 top class football players were studied to identify single nucleotide polymorphisms for the Elastin (ELN) gene using Allelic Discrimination analysis. Each player was followed for 7 seasons, and each MCL injury was noted. RESULTS Ligament injury rate, severity and recovery time are related to specific genotypes observed in the elastin gene, especially the ELN-AA (16 MCL) and the ELN-AG (3 MCL). Players with the ELN-GG genotype sustained no MCL injury during the 7 seasons of the study. CONCLUSIONS The identification of polymorphisms in the ELN gene may be used as a novel tool to better define an athlete's genotype, and help to plan training and rehabilitation programmes to prevent or minimize MCL ligament injuries, and optimize the therapeutic and rehabilitation process after soft tissue injuries, and manage the workloads during trainings and matches.
Collapse
Affiliation(s)
- Rosa Artells
- SM Genomics, Barcelona Science Park, Barcelona, Spain
| | - Ricard Pruna
- FC Barcelona Medical Services, FIFA Medical Center of Excellence, Barcelona, Spain
| | - Alexandre Dellal
- FIFA Medical Center of Excellence, Centre Orhopedique Santy, Lyon, France
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders Faculty of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy; Centre for Sports and Exercise Medicine Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
32
|
Loland S. Against Genetic Tests for Athletic Talent: The Primacy of the Phenotype. Sports Med 2015; 45:1229-1233. [DOI: 10.1007/s40279-015-0352-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Longman D, Wells JCK, Stock JT. Can persistence hunting signal male quality? A test considering digit ratio in endurance athletes. PLoS One 2015; 10:e0121560. [PMID: 25853679 PMCID: PMC4390232 DOI: 10.1371/journal.pone.0121560] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 02/11/2015] [Indexed: 12/05/2022] Open
Abstract
Various theories have been posed to explain the fitness payoffs of hunting success among hunter-gatherers. ‘Having’ theories refer to the acquisition of resources, and include the direct provisioning hypothesis. In contrast, ‘getting’ theories concern the signalling of male resourcefulness and other desirable traits, such as athleticism and intelligence, via hunting prowess. We investigated the association between androgenisation and endurance running ability as a potential signalling mechanism, whereby running prowess, vital for persistence hunting, might be used as a reliable signal of male reproductive fitness by females. Digit ratio (2D:4D) was used as a proxy for prenatal androgenisation in 439 males and 103 females, while a half marathon race (21km), representing a distance/duration comparable with that of persistence hunting, was used to assess running ability. Digit ratio was significantly and positively correlated with half-marathon time in males (right hand: r = 0.45, p<0.001; left hand: r = 0.42, p<0.001) and females (right hand: r = 0.26, p<0.01; left hand: r = 0.23, p = 0.02). Sex-interaction analysis showed that this correlation was significantly stronger in males than females, suggesting that androgenisation may have experienced stronger selective pressure from endurance running in males. As digit ratio has previously been shown to predict reproductive success, our results are consistent with the hypothesis that endurance running ability may signal reproductive potential in males, through its association with prenatal androgen exposure. However, further work is required to establish whether and how females respond to this signalling for fitness.
Collapse
Affiliation(s)
- Daniel Longman
- Department of Archaeology and Anthropology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Jonathan C. K. Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Jay T. Stock
- Department of Archaeology and Anthropology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Kim K, Ahn N, Cheun W, Byun J, Joo Y. Association of Angiotensin Converting Enzyme I/D and α-actinin-3 R577X Genotypes with Growth Factors and Physical Fitness in Korean Children. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:131-9. [PMID: 25729275 PMCID: PMC4342733 DOI: 10.4196/kjpp.2015.19.2.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 01/01/2023]
Abstract
This study analyzed the differences in aerobic and anaerobic exercise ability and growth-related indicators, depending on the polymorphism of the ACE and the ACTN3 genes, to understand the genetic influence of exercise ability in the growth process of children. The subjects of the study consisted of elementary school students (n=856, age 10.32±0.07 yr). The anthropometric parameters, physical fitness and growth factors were compared among groups of the ACE I/D or the ACTN3 R577X polymorphisms. There were no significant differences between the anthropometric parameters, physical fitness and growth factors for the ACE gene ID or the ACTN3 gene R577X polymorphism. However, the DD type of ACE gene was highest in the side step test (p<0.05), and the DD type was significantly higher than the II+ID type (p<0.05) in the early bone age. The combined group of the ACE gene II+ID and the ACTN3 gene XX type significantly showed lower early bone age (p< 0.05). This study did not find any individual or compounding effects of the polymorphism in the ACE I/D or the ACTN3 R577X polymorphisms on the anthropometric parameters, physical fitness and growth factors of Korean children. However, the exercise experience and the DD type of the ACE gene may affect the early maturity of the bones.
Collapse
Affiliation(s)
- Kijin Kim
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 704-701, Korea
| | - Nayoung Ahn
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 704-701, Korea
| | - Wookwang Cheun
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 704-701, Korea
| | - Jayoung Byun
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 704-701, Korea
| | - Youngsik Joo
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 704-701, Korea
| |
Collapse
|
35
|
Pruna R, Ribas J, Montoro JB, Artells R. The impact of single nucleotide polymorphisms on patterns of non-contact musculoskeletal soft tissue injuries in a football player population according to ethnicity. Med Clin (Barc) 2015; 144:105-10. [DOI: 10.1016/j.medcli.2013.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 01/13/2023]
|
36
|
Lombardo MP, Emiah S. Scientometric analyses of studies on the role of innate variation in athletic performance. SPRINGERPLUS 2014; 3:307. [PMID: 25013748 PMCID: PMC4082256 DOI: 10.1186/2193-1801-3-307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/12/2014] [Indexed: 11/19/2022]
Abstract
Historical events have produced an ideologically charged atmosphere in the USA surrounding the potential influences of innate variation on athletic performance. We tested the hypothesis that scientific studies of the role of innate variation in athletic performance were less likely to have authors with USA addresses than addresses elsewhere because of this cultural milieu. Using scientometric data collected from 290 scientific papers published in peer-reviewed journals from 2000–2012, we compared the proportions of authors with USA addresses with those that listed addresses elsewhere that studied the relationships between athletic performance and (a) prenatal exposure to androgens, as indicated by the ratio between digits 2 and 4, and (b) the genotypes for angiotensin converting enzyme, α-actinin-3, and myostatin; traits often associated with athletic performance. Authors with USA addresses were disproportionately underrepresented on papers about the role of innate variation in athletic performance. We searched NIH and NSF databases for grant proposals solicited or funded from 2000–2012 to determine if the proportion of authors that listed USA addresses was associated with funding patterns. NIH did not solicit grant proposals designed to examine these factors in the context of athletic performance and neither NIH nor NSF funded grants designed to study these topics. We think the combined effects of a lack of government funding and the avoidance of studying controversial or non-fundable topics by USA based scientists are responsible for the observation that authors with USA addresses were underrepresented on scientific papers examining the relationships between athletic performance and innate variation.
Collapse
|
37
|
Breitbach S, Tug S, Simon P. Conventional and Genetic Talent Identification in Sports: Will Recent Developments Trace Talent? Sports Med 2014; 44:1489-503. [DOI: 10.1007/s40279-014-0221-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Araki T, Hirata M, Sugata H, Yanagisawa T, Onishi M, Watanabe Y, Omura K, Honda C, Hayakawa K, Yorifuji S. Genetic and environmental influences on motor function: a magnetoencephalographic study of twins. Front Hum Neurosci 2014; 8:455. [PMID: 24994981 PMCID: PMC4063293 DOI: 10.3389/fnhum.2014.00455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/03/2014] [Indexed: 11/18/2022] Open
Abstract
To investigate the effect of genetic and environmental influences on cerebral motor function, we determined similarities and differences of movement-related cortical fields (MRCFs) in middle-aged and elderly monozygotic (MZ) twins. MRCFs were measured using a 160-channel magnetoencephalogram system when MZ twins were instructed to repeat lifting of the right index finger. We compared latency, amplitude, dipole location, and dipole intensity of movement-evoked field 1 (MEF1) between 16 MZ twins and 16 pairs of genetically unrelated pairs. Differences in latency and dipole location between MZ twins were significantly less than those between unrelated age-matched pairs. However, amplitude and dipole intensity were not significantly different. These results suggest that the latency and dipole location of MEF1 are determined early in life by genetic and early common environmental factors, whereas amplitude and dipole intensity are influenced by long-term environmental factors. Improved understanding of genetic and environmental factors that influence cerebral motor function may contribute to evaluation and improvement for individual motor function.
Collapse
Affiliation(s)
- Toshihiko Araki
- Division of Functional Diagnostic Science, Osaka University Medical School , Suita , Japan
| | - Masayuki Hirata
- Division of Functional Diagnostic Science, Osaka University Medical School , Suita , Japan ; Department of Neurosurgery, Osaka University Medical School , Suita , Japan
| | - Hisato Sugata
- Department of Neurosurgery, Osaka University Medical School , Suita , Japan
| | - Takufumi Yanagisawa
- Division of Functional Diagnostic Science, Osaka University Medical School , Suita , Japan ; Department of Neurosurgery, Osaka University Medical School , Suita , Japan
| | - Mai Onishi
- Division of Functional Diagnostic Science, Osaka University Medical School , Suita , Japan
| | - Yoshiyuki Watanabe
- Department of Diagnostic and Interventional Radiology, Osaka University Medical School , Suita , Japan
| | - Kayoko Omura
- Center for Twin Research, Osaka University Medical School , Suita , Japan
| | - Chika Honda
- Center for Twin Research, Osaka University Medical School , Suita , Japan
| | - Kazuo Hayakawa
- Center for Twin Research, Osaka University Medical School , Suita , Japan
| | - Shiro Yorifuji
- Division of Functional Diagnostic Science, Osaka University Medical School , Suita , Japan
| |
Collapse
|
39
|
Vancini RL, Pesquero JB, Fachina RJ, Andrade MDS, Borin JP, Montagner PC, de Lira CAB. Genetic aspects of athletic performance: the African runners phenomenon. Open Access J Sports Med 2014; 5:123-7. [PMID: 24891818 PMCID: PMC4037248 DOI: 10.2147/oajsm.s61361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The current dominance of African runners in long-distance running is an intriguing phenomenon that highlights the close relationship between genetics and physical performance. Many factors in the interesting interaction between genotype and phenotype (eg, high cardiorespiratory fitness, higher hemoglobin concentration, good metabolic efficiency, muscle fiber composition, enzyme profile, diet, altitude training, and psychological aspects) have been proposed in the attempt to explain the extraordinary success of these runners. Increasing evidence shows that genetics may be a determining factor in physical and athletic performance. But, could this also be true for African long-distance runners? Based on this question, this brief review proposed the role of genetic factors (mitochondrial deoxyribonucleic acid, the Y chromosome, and the angiotensin-converting enzyme and the alpha-actinin-3 genes) in the amazing athletic performance observed in African runners, especially the Kenyans and Ethiopians, despite their environmental constraints.
Collapse
Affiliation(s)
- Rodrigo Luiz Vancini
- Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - João Bosco Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rafael Júlio Fachina
- Departamento de Ciência do Esporte, Faculdade de Educação Física, Universidade Estadual de Campinas, Campinas, Brazil ; Confederação Brasileira de Basquetebol, Rio de Janeiro, Brazil
| | - Marília Dos Santos Andrade
- Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - João Paulo Borin
- Departamento de Ciência do Esporte, Faculdade de Educação Física, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo César Montagner
- Departamento de Ciência do Esporte, Faculdade de Educação Física, Universidade Estadual de Campinas, Campinas, Brazil
| | - Claudio Andre Barbosa de Lira
- Setor de Fisiologia Humana e do Exercício, Faculdade de Educação Física, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
40
|
Yu B, Chen W, Wang R, Qi Q, Li K, Zhang W, Wang H. Association of apolipoprotein E polymorphism with maximal oxygen uptake after exercise training: a study of Chinese young adult. Lipids Health Dis 2014; 13:40. [PMID: 24571688 PMCID: PMC3941565 DOI: 10.1186/1476-511x-13-40] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 02/21/2014] [Indexed: 11/30/2022] Open
Abstract
Background Although a few studies have been conducted, it is still unclear whether the apolipoprotein E (APOE) polymorphism is associated with maximal oxygen uptake (VO2max) after exercise training. The objective of this study was to examine if the APOE gene polymorphisms affect VO2max after exercise training in Chinese young adult. Methods A total of 360 Chinese young adult (180 male and 180 female) were recruited into this gender-specific cohorts. Anthropometrics, serum lipids, and VO2max were measured pre and post 6 months of supervised exercise training. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) assay was applied to assess the APOE gene polymorphisms. Results VO2max after exercise training increased significantly higher in carriers of E2/E3 in male [odds ratio (OR) =0.68, 95% confidence interval (CI) = 0.04, 1.32; P = 0.04] and female (OR =0.62, 95% CI = 0.05, 1.18; P = 0.03). VO2max after exercise training increased significantly higher in carriers of E3/E4 in male (OR =0.60, 95% CI = 0.09, 1.11; P = 0.02) and female (OR =0.62, 95% CI = 0.09, 1.15; P = 0.02). No significant differences were found in carriers of E2/E2, E2/E4, E3/E3, E4/E4 in either male nor female. Conclusion Our study found that APOE gene polymorphism was associated with VO2max levels after exercise training in Chinese young adult. In the future, further experiments will be necessary to confirm this finding and to find the possible mechanism.
Collapse
Affiliation(s)
| | - Wenhua Chen
- Department of Rehabilitation Medicine, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, China.
| | | | | | | | | | | |
Collapse
|
41
|
GUNEL TUBA, GUMUSOGLU ECE, HOSSEINI MOHAMMADKAZEM, YILMAZYILDIRIM EDA, DOLEKCAP ISMAIL, AYDINLI KILIC. Effect of angiotensin I-converting enzyme and α-actinin-3 gene polymorphisms on sport performance. Mol Med Rep 2014; 9:1422-6. [PMID: 24566537 DOI: 10.3892/mmr.2014.1974] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/05/2014] [Indexed: 11/05/2022] Open
|
42
|
Ben-Zaken S, Meckel Y, Nemet D, Eliakim A. Genetic score of power-speed and endurance track and field athletes. Scand J Med Sci Sports 2013; 25:166-74. [PMID: 24283413 DOI: 10.1111/sms.12141] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2013] [Indexed: 12/20/2022]
Abstract
Athletic excelling capability in a specific sport results from the combined influence of hundreds of genetic polymorphisms. The aim of the current study was to characterize athletes' polygenetic scores. We developed two polygenetic scores: (a) Power Genetic Distance Score based on two polymorphisms (PGDS2; ACE(I/D), ACTN3(C/T)) or five polymorphisms (PGDS5; ACTN3(C/T), ACE(I/D), IL6(-174G/C), NOS3(T/C), AGT(MET235THR)); and (b) Endurance Genetic Distance Score based on two polymorphisms (EGDS2; ACEI / D , ACTN3C / T ) or five polymorphisms (EGDS5; PPARGC1(AGly482Ser), PPAR(Aintron7G/C), PPARD(T294C), NRF2(A/C), HIF(C/T)). Eighty-two power-speed athletes, 87 endurance athletes, and 119 nonathletic controls participated in the study. Genomic DNA was extracted from peripheral blood. Power-speed athletes' mean PGDS2 (46.1) and PGDS5 (29.4) were significantly higher compared with their mean EGDS2 (36.4) and EGDS5 (23.1; P < 0.05, P < 0.01, respectively); and compared with controls' mean PGDS2 (36.6) and PGDS5 (24.2; P < 0.05, P < 0.05, respectively). Endurance athletes' mean EGDS2 (60.3) and EGDS5 (35.3) were significantly higher compared with their mean PGDS2 (26.9) and PGDS5 (21.8; P < 0.001, P < 0.001, respectively); and compared with controls' mean EGDS2 (51.2) and EGDS5 (26.1; P < 0.05, P < 0.001, respectively). We conclude that polygenetic scores can differentiate power-speed from endurance athletes. Whether these scores may be used to identify elite power-speed or endurance athletes' needs to be addressed in future studies.
Collapse
Affiliation(s)
- S Ben-Zaken
- Genetics and Molecular Biology Laboratory, The Zinman College of Physical Education and Sports Sciences at the Wingate Institute, Netanya, Israel
| | | | | | | |
Collapse
|
43
|
Ben-Zaken S, Eliakim A, Nemet D, Kassem E, Meckel Y. Increased prevalence of MnSOD genetic polymorphism in endurance and power athletes. Free Radic Res 2013; 47:1002-8. [DOI: 10.3109/10715762.2013.838627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Pruna R, Artells R, Ribas J, Montoro B, Cos F, Muñoz C, Rodas G, Maffulli N. Single nucleotide polymorphisms associated with non-contact soft tissue injuries in elite professional soccer players: influence on degree of injury and recovery time. BMC Musculoskelet Disord 2013; 14:221. [PMID: 23890452 PMCID: PMC3726514 DOI: 10.1186/1471-2474-14-221] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The biological mechanisms involved in non-contact musculoskeletal soft tissue injuries (NCMSTI) are poorly understood. Genetic risk factors may be associated with susceptibility to injuries, and may exert marked influence on recovery times. METHODS Data on type and degree of injury and recovery time were collected in 73 male professional soccer players (43 White, 11 Black Africans and 19 Hispanics) who suffered total of 242 injuries (203 muscle, 24 ligament, and 15 tendon injuries). One single nucleotide polymorphism (SNPs) in the following genes were analyzed: Elastin (ELN); Titin (TTN); SRY-related HMG-box (SOX15); Insulin-like growth factor 2 (IGF2); Chemokine, CC motif, ligand 2 (CCL2); Collagen type 1 alpha 1(COL1A1); Collagen type 5 alpha 1 (COL5A1), and Tenascin C (TNC). RESULTS There was evidence of a statistically significant association between the degree of injury and the IGF2 genotype (P = 0.034). In addition, there was evidence of a statistically significant association between the degree of muscle injury and CCL2 (P = 0.026) Finally, there was evidence of a statistically significant association between ELN and degree of injury (p = 0.009) and recovery time (P = 0.043). There was no evidence of a statistically significant association between any of the genes studied and degree of injury or recovery time for tendon injuries. CONCLUSION SNPs in the IGF2, CCL2, and ELN genes may be associated to the degree and recovery time of NCMSTI.
Collapse
|
45
|
Pokrywka A, Kaliszewski P, Majorczyk E, Zembroń-Łacny A. Genes in sport and doping. Biol Sport 2013; 30:155-61. [PMID: 24744482 PMCID: PMC3944571 DOI: 10.5604/20831862.1059606] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2013] [Indexed: 11/19/2022] Open
Abstract
Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation, erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes’ genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes’ genotyping and gene doping possibilities, including their development and detection techniques.
Collapse
|
46
|
Li X, Yang Y, Fan Y, Feng Q, Cui FZ, Watari F. Biocomposites reinforced by fibers or tubes as scaffolds for tissue engineering or regenerative medicine. J Biomed Mater Res A 2013; 102:1580-94. [PMID: 23681610 DOI: 10.1002/jbm.a.34801] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/25/2013] [Accepted: 05/08/2013] [Indexed: 02/05/2023]
Abstract
As a dynamic and hierarchically organized composite, native extracellular matrix (ECM) not only supplies mechanical support, which the embedded cells need, but also regulates various cellular activities through interaction with them. On the basis of the ECM-mimetic principle, good biocompatibility and appropriate mechanical properties are the two basic requirements that the ideal scaffolds for the tissue engineering or regenerative medicine need. Some fibers and tubes have been shown effective to reinforce scaffolds for tissue engineering or regenerative medicine. In this review, three parts, namely properties affected by the addition of fibers or tubes, scaffolds reinforced by fibers or tubes for soft tissue repair, and scaffolds reinforced by fibers or tubes for hard tissue repair are stated, which shows that tissue repair or regeneration efficacy was enhanced significantly by fiber or tube reinforcement. In addition, it indicates that these reinforcing agents can improve the biocompatibility and biodegradation of the scaffolds in most cases. However, there are still some concerns, such as the homogeneousness in structure or composition throughout the reinforced scaffolds, the adhesive strength between the matrix and the fibers or tubes, cytotoxicity of nanoscaled reinforcing agents, etc., which were also discussed in the conclusion and perspectives part.
Collapse
Affiliation(s)
- Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | | | | | | | | | | |
Collapse
|
47
|
Willems H, Leiber F, Kohler M, Kreuzer M, Liesegang A. Altitude, pasture type, and sheep breed affect bone metabolism and serum 25-hydroxyvitamin D in grazing lambs. J Appl Physiol (1985) 2013; 114:1441-50. [PMID: 23471950 DOI: 10.1152/japplphysiol.01289.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to investigate the bone development of two mountain sheep breeds during natural summer grazing either in the lowlands or on different characteristic alpine pastures. Pasture types differed in topographic slope, plant species composition, general nutritional feeding value, Ca and P content, and Ca:P ratio of herbage. Twenty-seven Engadine sheep (ES) lambs and 27 Valaisian Black Nose sheep (VS) lambs were divided into four groups of 6 to 7 animals per breed and allocated to three contrasting alpine pasture types and one lowland pasture type. The lambs were slaughtered after 9 wk of experimental grazing. The steep alpine pastures in combination with a high (4.8) to very high (13.6) Ca:P ratio in the forage decreased total bone mineral content as measured in the middle of the left metatarsus of the lambs from both breeds, and cortical bone mineral content and cortical bone mineral density of ES lambs. Breed × pasture type interactions occurred in the development of total and cortical bone mineral content, and in cortical thickness, indicating that bone metabolism of different genotypes obviously profited differently from the varying conditions. An altitude effect occurred for 25-hydroxyvitamin D with notably higher serum concentrations on the three alpine sites, and a breed effect led to higher concentrations for ES than VS. Despite a high variance, there were pasture-type effects on serum markers of bone formation and resorption.
Collapse
Affiliation(s)
- Helen Willems
- ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Guimarães AC, Pereira RW, Lima RM, Silva MS, Reis VMD, Garrido ND, Maia R, Oliveira RJD. Association between IGF-2 gene and fat-free mass in response to resistance training. Health (London) 2013. [DOI: 10.4236/health.2013.56133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Longo UG, Trovato U, Loppini M, Rizzello G, Khan WS, Maffulli N, Denaro V. Tissue engineered strategies for pseudoarthrosis. Open Orthop J 2012; 6:564-70. [PMID: 23248729 PMCID: PMC3522502 DOI: 10.2174/1874325001206010564] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/14/2012] [Accepted: 09/22/2012] [Indexed: 11/22/2022] Open
Abstract
Numerous classification systems of non-union have been proposed based on: presence or absence of infection, radiographic features, clinical findings, biologic activity, location and shape. The management of pseudarthrosis is strongly related to the type of non-union (infected versus uninfected, atrophic versus hypertrophic). Surgical management of pseudarthrosis is generally effective with a success rate ranging from 75 to 100%. Nevertheless, in a relatively high number of instances several combined treatments are required for the fracture healing. The current gold standard to stimulate the bone regeneration is represented by the revision surgery with the application of autologous bone grafts. However, several approaches have been described to promote and enhance the bone tissue regeneration, including extracorporeal shock wave therapy (ESWT), ultrasound, electromagnetic, bone morphogenic proteins (BMPs) and platelet-rich-plasma (PRP).The aim of the present study was to perform a systematic review of the literature evaluating the current therapies to promote and enhance the bone tissue healing. The systematic review was performed according to PRISMA guidelines with a PRISMA checklist and algorithm.Limitations of the present systematic review are mainly related to the scanty quality of the studies available in the literature. Although the therapies previously described for the management of patients with non-unions seems to be effective, the limitations of the included studies, especially the extensive clinical heterogeneity, make not possible to provide clear recommendations regarding the application of these approaches. The problems remain the need to better understand the most effective treatment options, subject to surgical stabilization as a first step.
Collapse
Affiliation(s)
- Umile Giuseppe Longo
- Department of Orthopaedic and Trauma Surgery. Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy ; Centro Integrato di Ricerca (CIR) Campus Bio-Medico University, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|