1
|
Cyr PEP, Lean RE, Kenley JK, Kaplan S, Meyer D, Neil JJ, Alexopoulos D, Brady RG, Shimony JS, Rodebaugh TL, Rogers CE, Smyser CD. Functional Connectivity Relationships to Longitudinal Motor Outcomes Differ in Very Preterm Children With and Without Brain Injury. Neurol Clin Pract 2025; 15:e200397. [PMID: 39439574 PMCID: PMC11492901 DOI: 10.1212/cpj.0000000000200397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024]
Abstract
Background and Objectives Children born very preterm (VPT) have high rates of motor disability, but mechanisms for early identification remain limited, especially for children who fall behind in early childhood. This study examines the relationship between functional connectivity (FC) measured at term-equivalent age and motor outcomes at 2 and 5 years. Methods In this longitudinal observational cohort study, VPT children (gestational age 30 weeks and younger) with and without high-grade brain injury underwent FC MRI at term-equivalent age. Motor development was assessed using the Bayley Scales of Infant Development, Third Edition, at corrected age 2 years and Movement Assessment Battery for Children, Second Edition, at age 5 years. Logistic and negative binomial/Poisson regression models examined relationships between FC measures and 5-year task scores, with and without 2-year scores as covariates. Infants were categorized as "injured" or "uninjured" based on structural MRI findings at term-equivalent age. Results In the injured group (n = 34), each 1 SD decrease in neonatal left-right motor cortex FC was related to approximately 4× increased odds of being unable to complete a fine motor task at age 5 (log odds = -1.34, p < 0.05). In the uninjured group (n = 41), stronger basal ganglia-motor cortex FC was related to poorer fine motor scores (Est = -0.40, p < 0.05) and stronger cerebellum-motor cortex FC was related to poorer balance and fine motor scores (Est = -0.05 to -0.23, p < 0.05), with balance persisting with adjustment for 2-year scores. Discussion In VPT children with brain injury, interhemispheric motor cortex FC was related to motor deficits at 5-year assessment, similar to previous findings at 2 years. In uninjured children, FC-measured disruption of the motor system during the neonatal period was associated with motor planning/coordination difficulties that were not apparent on 2-year assessment but emerged at 5 years, suggesting that the neural basis of these deficits was established very early in life. Subsequently, 2-year follow-up may not be sufficient to detect milder motor deficits in VPT children, and they should be monitored for motor difficulties throughout the preschool years. For all VPT children, FC at term-equivalent age has the potential to improve our ability to predict disability before it presents behaviorally.
Collapse
Affiliation(s)
- Peppar E P Cyr
- Departments of Neurology (PEPC, JKK, SK, DM, JJN, DA, RGB, CDS), and Psychiatry (REL, CER), Washington University School of Medicine; Mallinckrodt Institute of Radiology (JSS, CDS); Department of Psychology (TLR), Washington University in St. Louis; and Department of Pediatrics (CER, CDS), Washington University School of Medicine, St. Louis, MO
| | - Rachel E Lean
- Departments of Neurology (PEPC, JKK, SK, DM, JJN, DA, RGB, CDS), and Psychiatry (REL, CER), Washington University School of Medicine; Mallinckrodt Institute of Radiology (JSS, CDS); Department of Psychology (TLR), Washington University in St. Louis; and Department of Pediatrics (CER, CDS), Washington University School of Medicine, St. Louis, MO
| | - Jeanette K Kenley
- Departments of Neurology (PEPC, JKK, SK, DM, JJN, DA, RGB, CDS), and Psychiatry (REL, CER), Washington University School of Medicine; Mallinckrodt Institute of Radiology (JSS, CDS); Department of Psychology (TLR), Washington University in St. Louis; and Department of Pediatrics (CER, CDS), Washington University School of Medicine, St. Louis, MO
| | - Sydney Kaplan
- Departments of Neurology (PEPC, JKK, SK, DM, JJN, DA, RGB, CDS), and Psychiatry (REL, CER), Washington University School of Medicine; Mallinckrodt Institute of Radiology (JSS, CDS); Department of Psychology (TLR), Washington University in St. Louis; and Department of Pediatrics (CER, CDS), Washington University School of Medicine, St. Louis, MO
| | - Dominique Meyer
- Departments of Neurology (PEPC, JKK, SK, DM, JJN, DA, RGB, CDS), and Psychiatry (REL, CER), Washington University School of Medicine; Mallinckrodt Institute of Radiology (JSS, CDS); Department of Psychology (TLR), Washington University in St. Louis; and Department of Pediatrics (CER, CDS), Washington University School of Medicine, St. Louis, MO
| | - Jeffrey J Neil
- Departments of Neurology (PEPC, JKK, SK, DM, JJN, DA, RGB, CDS), and Psychiatry (REL, CER), Washington University School of Medicine; Mallinckrodt Institute of Radiology (JSS, CDS); Department of Psychology (TLR), Washington University in St. Louis; and Department of Pediatrics (CER, CDS), Washington University School of Medicine, St. Louis, MO
| | - Dimitrios Alexopoulos
- Departments of Neurology (PEPC, JKK, SK, DM, JJN, DA, RGB, CDS), and Psychiatry (REL, CER), Washington University School of Medicine; Mallinckrodt Institute of Radiology (JSS, CDS); Department of Psychology (TLR), Washington University in St. Louis; and Department of Pediatrics (CER, CDS), Washington University School of Medicine, St. Louis, MO
| | - Rebecca G Brady
- Departments of Neurology (PEPC, JKK, SK, DM, JJN, DA, RGB, CDS), and Psychiatry (REL, CER), Washington University School of Medicine; Mallinckrodt Institute of Radiology (JSS, CDS); Department of Psychology (TLR), Washington University in St. Louis; and Department of Pediatrics (CER, CDS), Washington University School of Medicine, St. Louis, MO
| | - Joshua S Shimony
- Departments of Neurology (PEPC, JKK, SK, DM, JJN, DA, RGB, CDS), and Psychiatry (REL, CER), Washington University School of Medicine; Mallinckrodt Institute of Radiology (JSS, CDS); Department of Psychology (TLR), Washington University in St. Louis; and Department of Pediatrics (CER, CDS), Washington University School of Medicine, St. Louis, MO
| | - Thomas L Rodebaugh
- Departments of Neurology (PEPC, JKK, SK, DM, JJN, DA, RGB, CDS), and Psychiatry (REL, CER), Washington University School of Medicine; Mallinckrodt Institute of Radiology (JSS, CDS); Department of Psychology (TLR), Washington University in St. Louis; and Department of Pediatrics (CER, CDS), Washington University School of Medicine, St. Louis, MO
| | - Cynthia E Rogers
- Departments of Neurology (PEPC, JKK, SK, DM, JJN, DA, RGB, CDS), and Psychiatry (REL, CER), Washington University School of Medicine; Mallinckrodt Institute of Radiology (JSS, CDS); Department of Psychology (TLR), Washington University in St. Louis; and Department of Pediatrics (CER, CDS), Washington University School of Medicine, St. Louis, MO
| | - Christopher D Smyser
- Departments of Neurology (PEPC, JKK, SK, DM, JJN, DA, RGB, CDS), and Psychiatry (REL, CER), Washington University School of Medicine; Mallinckrodt Institute of Radiology (JSS, CDS); Department of Psychology (TLR), Washington University in St. Louis; and Department of Pediatrics (CER, CDS), Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
2
|
López‐Guerrero N, Alcauter S. Developmental Trajectories and Differences in Functional Brain Network Properties of Preterm and At-Term Neonates. Hum Brain Mapp 2025; 46:e70126. [PMID: 39815687 PMCID: PMC11735747 DOI: 10.1002/hbm.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
Premature infants, born before 37 weeks of gestation can have alterations in neurodevelopment and cognition, even when no anatomical lesions are evident. Resting-state functional neuroimaging of naturally sleeping babies has shown altered connectivity patterns, but there is limited evidence on the developmental trajectories of functional organization in preterm neonates. By using a large dataset from the developing Human Connectome Project, we explored the differences in graph theory properties between at-term (n = 332) and preterm (n = 115) neonates at term-equivalent age, considering the age subgroups proposed by the World Health Organization for premature birth. Leveraging the longitudinal follow-up for some preterm participants, we characterized the developmental trajectories for preterm and at-term neonates, for this purpose linear, quadratic, and log-linear mixed models were constructed with gestational age at scan as an independent fixed-effect variable and random effects were added for the intercept and subject ID. Significance was defined at p < 0.05, and the model with the lowest Akaike Information Criterion (AIC) was selected as the best model. We found significant differences between groups in connectivity strength, clustering coefficient, characteristic path length and global efficiency. Specifically, at term-equivalent ages, higher connectivity, clustering coefficient and efficiency are identified for neonates born at later postmenstrual ages. Similarly, the characteristic path length showed the inverse pattern. These results were consistent for a variety of connectivity thresholds at both the global (whole brain) and local level (brain regions). The brain regions with the greatest differences between groups include primary sensory and motor regions and the precuneus which may relate to the risk factors for sensorimotor and behavioral deficits associated with premature birth. Our results also show non-linear developmental trajectories for premature neonates, but decreased integration and segregation even at term-equivalent age. Overall, our results confirm altered functional connectivity, integration and segregation properties of the premature brain despite showing rapid maturation after birth.
Collapse
Affiliation(s)
- N. López‐Guerrero
- Instituto de NeurobiologíaUniversidad Nacional Autónoma de MéxicoQuerétaroMexico
| | - Sarael Alcauter
- Instituto de NeurobiologíaUniversidad Nacional Autónoma de MéxicoQuerétaroMexico
| |
Collapse
|
3
|
Lin J, Zhao X, Qi X, Zhao W, Teng S, Mo T, Xiao X, Li P, Chen T, Yun G, Zeng H. Structural covariance alterations reveal motor damage in periventricular leukomalacia. Brain Commun 2024; 6:fcae405. [PMID: 39600524 PMCID: PMC11589463 DOI: 10.1093/braincomms/fcae405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/15/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Periventricular leukomalacia is a common neuroimaging finding in patients with spastic cerebral palsy. Myelin damage disrupts neuronal connectivity. However, specific alterations in the grey matter structure and their impact on the whole brain remain unclear, particularly when differentiating between preterm and full-term periventricular leukomalacia. This study investigated the grey matter network alterations following early white matter injury in infants and young children. High-resolution T1-weighted 3 T brain magnetic resonance imaging, clinical data and motor function scores were collected from 42 children with periventricular leukomalacia and 38 age- and sex-matched healthy controls. Based on gestational age, the periventricular leukomalacia group was stratified into preterm (n = 27) and full-term (n = 15) groups. Voxel-based morphometry was used to analyse whole-brain structural metrics, and motor-related regions were selected as nodes for network construction. Structural covariance analysis was used to quantify the strength of the structural connections between grey matter regions, and graph theory metrics were used to assess network properties. Motor assessments included gross and fine motor skills, and their associations with brain regions were analysed. Both preterm and full-term periventricular leukomalacia groups exhibited abnormal motor networks. Preterm periventricular leukomalacia showed more extensive central grey matter nuclei atrophy, whereas full-term periventricular leukomalacia was predominantly localized to the motor cortex. Children with periventricular leukomalacia displayed decreased connectivity between the central grey matter nuclei and other regions, coupled with increased connectivity between the motor cortex and cerebellar hemispheres. Thalamic volume correlated with gross motor scores in preterm infants. These findings suggest that ischaemic-hypoxic injury disrupts motor grey matter networks, with preterm infants being more severely affected. This study highlights the potential of structural covariance patterns for monitoring brain development and advancing our understanding of aberrant brain development in children with periventricular leukomalacia.
Collapse
Affiliation(s)
- Jieqiong Lin
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Xin Zhao
- China Medical University, Shenyang 110122, Liaoning Province, China
| | - Xinxin Qi
- China Medical University, Shenyang 110122, Liaoning Province, China
| | - Wen Zhao
- Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Songyu Teng
- China Medical University, Shenyang 110122, Liaoning Province, China
| | - Tong Mo
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Xin Xiao
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Peng Li
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Turong Chen
- Department of Rehabilitation, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Guojun Yun
- Department of Rehabilitation, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
- Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
4
|
Ouyang M, Whitehead MT, Mohapatra S, Zhu T, Huang H. Machine-learning based prediction of future outcome using multimodal MRI during early childhood. Semin Fetal Neonatal Med 2024; 29:101561. [PMID: 39528363 DOI: 10.1016/j.siny.2024.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The human brain undergoes rapid changes from the fetal stage to two years postnatally, during which proper structural and functional maturation lays the foundation for later cognitive and behavioral development. Multimodal magnetic resonance imaging (MRI) techniques, especially structural MRI (sMRI), diffusion MRI (dMRI), functional MRI (fMRI), and perfusion MRI (pMRI), provide unprecedented opportunities to non-invasively quantify these early brain changes at whole brain and regional levels. Each modality offers unique insights into the complex processes of both typical neurodevelopment and the pathological mechanisms underlying psychiatric and neurological disorders. Compared to a single modality, multimodal MRI enhances discriminative power and provides more comprehensive insights for understanding and improving neurodevelopmental and mental health outcomes, particularly in high-risk populations. Machine learning- and deep learning-based methods have demonstrated significant potential for predicting future outcomes using multimodal brain MRI acquired during early childhood. Here, we review the unique characteristics of various MRI techniques for imaging early brain development and describe the common approaches to analyze these modalities. We then discuss machine learning approaches in predicting future neurodevelopmental and clinical outcomes using multimodal MRI information during early childhood, highlighting the potential of identifying biomarkers for early detection and personalized interventions in atypical development.
Collapse
Affiliation(s)
- Minhui Ouyang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Matthew T Whitehead
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sovesh Mohapatra
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Tianjia Zhu
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
5
|
Tang X, Turesky TK, Escalante ES, Loh MY, Xia M, Yu X, Gaab N. Longitudinal associations between language network characteristics in the infant brain and school-age reading abilities are mediated by early-developing phonological skills. Dev Cogn Neurosci 2024; 68:101405. [PMID: 38875769 PMCID: PMC11225703 DOI: 10.1016/j.dcn.2024.101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
Reading acquisition is a prolonged learning process relying on language development starting in utero. Behavioral longitudinal studies reveal prospective associations between infant language abilities and preschool/kindergarten phonological development that relates to subsequent reading performance. While recent pediatric neuroimaging work has begun to characterize the neural network underlying language development in infants, how this neural network scaffolds long-term language and reading acquisition remains unknown. We addressed this question in a 7-year longitudinal study from infancy to school-age. Seventy-six infants completed resting-state fMRI scanning, and underwent standardized language assessments in kindergarten. Of this larger cohort, forty-one were further assessed on their emergent word reading abilities after receiving formal reading instructions. Hierarchical clustering analyses identified a modular infant language network in which functional connectivity (FC) of the inferior frontal module prospectively correlated with kindergarten-age phonological skills and emergent word reading abilities. These correlations were obtained when controlling for infant age at scan, nonverbal IQ and parental education. Furthermore, kindergarten-age phonological skills mediated the relationship between infant FC and school-age reading abilities, implying a critical mid-way milestone for long-term reading development from infancy. Overall, our findings illuminate the neurobiological mechanisms by which infant language capacities could scaffold long-term reading acquisition.
Collapse
Affiliation(s)
- Xinyi Tang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Ted K Turesky
- Harvard Graduate School of Education, Harvard University, Cambridge, MA 02138, USA
| | - Elizabeth S Escalante
- Harvard Graduate School of Education, Harvard University, Cambridge, MA 02138, USA; Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Megan Yf Loh
- Harvard Graduate School of Education, Harvard University, Cambridge, MA 02138, USA
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xi Yu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Nadine Gaab
- Harvard Graduate School of Education, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
6
|
Tang X, Turesky TK, Escalante ES, Loh MY, Xia M, Yu X, Gaab N. Longitudinal associations between language network characteristics in the infant brain and school-age reading abilities are mediated by early-developing phonological skills. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.22.546194. [PMID: 38895379 PMCID: PMC11185523 DOI: 10.1101/2023.06.22.546194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Reading acquisition is a prolonged learning process relying on language development starting in utero. Behavioral longitudinal studies reveal prospective associations between infant language abilities and preschool/kindergarten phonological development that relates to subsequent reading performance. While recent pediatric neuroimaging work has begun to characterize the neural network underlying language development in infants, how this neural network scaffolds long-term language and reading acquisition remains unknown. We addressed this question in a 7-year longitudinal study from infancy to school-age. Seventy-six infants completed resting-state fMRI scanning, and underwent standardized language assessments in kindergarten. Of this larger cohort, forty-one were further assessed on their emergent word reading abilities after receiving formal reading instructions. Hierarchical clustering analyses identified a modular infant language network in which functional connectivity (FC) of the inferior frontal module prospectively correlated with kindergarten-age phonological skills and emergent word reading abilities. These correlations were obtained when controlling for infant age at scan, nonverbal IQ and parental education. Furthermore, kindergarten-age phonological skills mediated the relationship between infant FC and school-age reading abilities, implying a critical mid-way milestone for long-term reading development from infancy. Overall, our findings illuminate the neurobiological mechanisms by which infant language capacities could scaffold long-term reading acquisition.
Collapse
Affiliation(s)
- Xinyi Tang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China, 100875
| | - Ted K. Turesky
- Harvard Graduate School of Education, Harvard University, Cambridge, Massachusetts, USA, 02138
| | - Elizabeth S. Escalante
- Harvard Graduate School of Education, Harvard University, Cambridge, Massachusetts, USA, 02138
| | - Megan Yf Loh
- Harvard Graduate School of Education, Harvard University, Cambridge, Massachusetts, USA, 02138
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China, 100875
| | - Xi Yu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China, 100875
| | - Nadine Gaab
- Harvard Graduate School of Education, Harvard University, Cambridge, Massachusetts, USA, 02138
| |
Collapse
|
7
|
Liu M, Lu M, Kim SY, Lee HJ, Duffy BA, Yuan S, Chai Y, Cole JH, Wu X, Toga AW, Jahanshad N, Gano D, Barkovich AJ, Xu D, Kim H. Brain age predicted using graph convolutional neural network explains neurodevelopmental trajectory in preterm neonates. Eur Radiol 2024; 34:3601-3611. [PMID: 37957363 PMCID: PMC11166741 DOI: 10.1007/s00330-023-10414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVES Dramatic brain morphological changes occur throughout the third trimester of gestation. In this study, we investigated whether the predicted brain age (PBA) derived from graph convolutional network (GCN) that accounts for cortical morphometrics in third trimester is associated with postnatal abnormalities and neurodevelopmental outcome. METHODS In total, 577 T1 MRI scans of preterm neonates from two different datasets were analyzed; the NEOCIVET pipeline generated cortical surfaces and morphological features, which were then fed to the GCN to predict brain age. The brain age index (BAI; PBA minus chronological age) was used to determine the relationships among preterm birth (i.e., birthweight and birth age), perinatal brain injuries, postnatal events/clinical conditions, BAI at postnatal scan, and neurodevelopmental scores at 30 months. RESULTS Brain morphology and GCN-based age prediction of preterm neonates without brain lesions (mean absolute error [MAE]: 0.96 weeks) outperformed conventional machine learning methods using no topological information. Structural equation models (SEM) showed that BAI mediated the influence of preterm birth and postnatal clinical factors, but not perinatal brain injuries, on neurodevelopmental outcome at 30 months of age. CONCLUSIONS Brain morphology may be clinically meaningful in measuring brain age, as it relates to postnatal factors, and predicting neurodevelopmental outcome. CLINICAL RELEVANCE STATEMENT Understanding the neurodevelopmental trajectory of preterm neonates through the prediction of brain age using a graph convolutional neural network may allow for earlier detection of potential developmental abnormalities and improved interventions, consequently enhancing the prognosis and quality of life in this vulnerable population. KEY POINTS •Brain age in preterm neonates predicted using a graph convolutional network with brain morphological changes mediates the pre-scan risk factors and post-scan neurodevelopmental outcomes. •Predicted brain age oriented from conventional deep learning approaches, which indicates the neurodevelopmental status in neonates, shows a lack of sensitivity to perinatal risk factors and predicting neurodevelopmental outcomes. •The new brain age index based on brain morphology and graph convolutional network enhances the accuracy and clinical interpretation of predicted brain age for neonates.
Collapse
Affiliation(s)
- Mengting Liu
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Minhua Lu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Sharon Y Kim
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Hyun Ju Lee
- Division of Neonatology, Department of Pediatrics, Hanyang University, Seoul, Korea
| | - Ben A Duffy
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Shiyu Yuan
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Yaqiong Chai
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA, 90033, USA
| | - James H Cole
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Xiaotong Wu
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Arthur W Toga
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Neda Jahanshad
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Dawn Gano
- Departments of Neurology and Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Anthony James Barkovich
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Duan Xu
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Hosung Kim
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA, 90033, USA.
| |
Collapse
|
8
|
Damera SR, De Asis-Cruz J, Cook KM, Kapse K, Spoehr E, Murnick J, Basu S, Andescavage N, Limperopoulos C. Regional homogeneity as a marker of sensory cortex dysmaturity in preterm infants. iScience 2024; 27:109662. [PMID: 38665205 PMCID: PMC11043889 DOI: 10.1016/j.isci.2024.109662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Atypical perinatal sensory experience in preterm infants is thought to increase their risk of neurodevelopmental disabilities by altering the development of the sensory cortices. Here, we used resting-state fMRI data from preterm and term-born infants scanned between 32 and 48 weeks post-menstrual age to assess the effect of early ex-utero exposure on sensory cortex development. Specifically, we utilized a measure of local correlated-ness called regional homogeneity (ReHo). First, we demonstrated that the brain-wide distribution of ReHo mirrors the known gradient of cortical maturation. Next, we showed that preterm birth differentially reduces ReHo across the primary sensory cortices. Finally, exploratory analyses showed that the reduction of ReHo in the primary auditory cortex of preterm infants is related to increased risk of autism at 18 months. In sum, we show that local connectivity within sensory cortices has different developmental trajectories, is differentially affected by preterm birth, and may be associated with later neurodevelopment.
Collapse
Affiliation(s)
- Srikanth R. Damera
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Josepheen De Asis-Cruz
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Kevin M. Cook
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Kushal Kapse
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Emma Spoehr
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Jon Murnick
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Sudeepta Basu
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Nickie Andescavage
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children’s National, 111 Michigan Avenue NW, Washington, DC 20010, USA
| |
Collapse
|
9
|
Ufkes S, Kennedy E, Poppe T, Miller SP, Thompson B, Guo J, Harding JE, Crowther CA. Prenatal Magnesium Sulfate and Functional Connectivity in Offspring at Term-Equivalent Age. JAMA Netw Open 2024; 7:e2413508. [PMID: 38805222 PMCID: PMC11134217 DOI: 10.1001/jamanetworkopen.2024.13508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
Importance Understanding the effect of antenatal magnesium sulfate (MgSO4) treatment on functional connectivity will help elucidate the mechanism by which it reduces the risk of cerebral palsy and death. Objective To determine whether MgSO4 administered to women at risk of imminent preterm birth at a gestational age between 30 and 34 weeks is associated with increased functional connectivity and measures of functional segregation and integration in infants at term-equivalent age, possibly reflecting a protective mechanism of MgSO4. Design, Setting, and Participants This cohort study was nested within a randomized placebo-controlled trial performed across 24 tertiary maternity hospitals. Participants included infants born to women at risk of imminent preterm birth at a gestational age between 30 and 34 weeks who participated in the MAGENTA (Magnesium Sulphate at 30 to 34 Weeks' Gestational Age) trial and underwent magnetic resonance imaging (MRI) at term-equivalent age. Ineligibility criteria included illness precluding MRI, congenital or genetic disorders likely to affect brain structure, and living more than 1 hour from the MRI center. One hundred and fourteen of 159 eligible infants were excluded due to incomplete or motion-corrupted MRI. Recruitment occurred between October 22, 2014, and October 25, 2017. Participants were followed up to 2 years of age. Analysis was performed from February 1, 2021, to February 27, 2024. Observers were blind to patient groupings during data collection and processing. Exposures Women received 4 g of MgSO4 or isotonic sodium chloride solution given intravenously over 30 minutes. Main Outcomes and Measures Prior to data collection, it was hypothesized that infants who were exposed to MgSO4 would show enhanced functional connectivity compared with infants who were not exposed. Results A total of 45 infants were included in the analysis: 24 receiving MgSO4 treatment and 21 receiving placebo; 23 (51.1%) were female and 22 (48.9%) were male; and the median gestational age at scan was 40.0 (IQR, 39.1-41.1) weeks. Treatment with MgSO4 was associated with greater voxelwise functional connectivity in the temporal and occipital lobes and deep gray matter structures and with significantly greater clustering coefficients (Hedge g, 0.47 [95% CI, -0.13 to 1.07]), transitivity (Hedge g, 0.51 [95% CI, -0.10 to 1.11]), local efficiency (Hedge g, 0.40 [95% CI, -0.20 to 0.99]), and global efficiency (Hedge g, 0.31 [95% CI, -0.29 to 0.90]), representing enhanced functional segregation and integration. Conclusions and Relevance In this cohort study, infants exposed to MgSO4 had greater voxelwise functional connectivity and functional segregation, consistent with increased brain maturation. Enhanced functional connectivity is a possible mechanism by which MgSO4 protects against cerebral palsy and death.
Collapse
Affiliation(s)
- Steven Ufkes
- Department of Pediatrics, British Columbia Children’s Hospital, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Eleanor Kennedy
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Tanya Poppe
- Centre for the Developing Brain, Department of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Steven P. Miller
- Department of Pediatrics, British Columbia Children’s Hospital, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Benjamin Thompson
- Liggins Institute, University of Auckland, Auckland, New Zealand
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
- Centre for Eye and Vision Research, Hong Kong
| | - Jessie Guo
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jane E. Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
10
|
Segal O, Moyal D. Listening Preference for Child-Directed Speech Versus Time-Reversed Speech in Moderate-Preterm Infants Compared to Full-Term Infants. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:900-916. [PMID: 38394254 DOI: 10.1044/2023_jslhr-23-00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
PURPOSE The purpose of the present study was to examine whether there is a listening preference for child-directed speech (CDS) over backward speech in moderate-preterm infants (MPIs). METHOD Eighteen MPIs of gestational age of 32.0 weeks (range: 32-34.06 weeks), chronological age of 8.09 months, and maturation age of 6.48 months served as the experimental group. The two control groups consisted of a total of 36 infants-20 full-term infants matched for chronological age and 16 full-term infants matched for maturation age. The infants were tested using the central fixation procedure and were presented with 16 trials of CDS and backward speech. A follow-up was conducted 5 years after the initial experiment using a developmental and a five-item parent questionnaire. RESULTS MPIs did not demonstrate a preference for CDS over backward speech, whereas both control groups demonstrated a listening preference for CDS over backward speech. MPIs showed a delayed use of first words and word combinations and lower scores on the five-item questionnaire compared to term infants. Twelve MPIs (67%) did not demonstrate a preference for CDS over backward speech. Four of them (33%) were later diagnosed with neurodevelopmental disorders. CONCLUSIONS The lack of preference for CDS over backward speech in the MPIs group suggests delayed developmental pattern of speech processing compared to full-term peers. Delays in neurological maturation as well as listening experience in an unregulated environment outside the uterus during a sensitive period of brain development may affect the recognition of phonological and prosodic patterns that support listening preference for speech over backward speech.
Collapse
|
11
|
Feng Y, Wang Y, Li X, Dai L, Zhang J. Differences in the amplitude of low-frequency fluctuations of spontaneous brain activity between preterm and term infants. Front Neurol 2024; 15:1346632. [PMID: 38497040 PMCID: PMC10941683 DOI: 10.3389/fneur.2024.1346632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
Objectives To date, the majority of research on resting-state functional magnetic resonance imaging (rs-fMRI) in the developing brain has primarily centered on adolescents and adults, leaving a gap in understanding variations in spontaneous brain activity at rest in preterm infants. This study aimed to uncover and comprehend the distinctions in spontaneous brain activity between preterm and term infants, with the goal of establishing a foundation for assessing the condition of preterm infants. Methods In this study, 14 term infants and 15 preterm infants with equivalent gestational age were carefully chosen from the neonatal unit of Anhui Provincial Children's Hospital. The amplitude of low-frequency fluctuations (ALFF) intensity was assessed using resting-state functional magnetic resonance imaging (rs-fMRI) to examine brain activity in both groups. Subsequently, the differences between the term and preterm infants were statistically analyzed using a two-sample t-test. A p-value of <0.05, corrected for the REST Gaussian Random Fields, was deemed to be statistically significant. Results In comparison to the term infant group, the preterm infant group exhibited a significant increase in the ALFF value in the left precuneus, left frontal superior orbital gyrus, and left calcarine cortex. Conclusion Significant variances in spontaneous brain activity have been observed in various regions between term infants and preterm infants of equivalent gestational age. These variations could potentially impact the emotional and cognitive development of preterm infants in the long term.
Collapse
Affiliation(s)
- Ye Feng
- Department of Neonatology, Anhui Provincial Children’s Hospital, Hefei, China
| | - Yuanchong Wang
- Department of Neonatology, Anhui Provincial Children’s Hospital, Hefei, China
- Department of Pediatric Medicine, Anhui Provincial Children’s Hospital, Hefei, China
| | - Xu Li
- Department of Imaging, Anhui Provincial Children’s Hospital, Hefei, China
| | - Liying Dai
- Neonate Follow-up Center, Anhui Provincial Children’s Hospital, Hefei, China
| | - Jian Zhang
- Department of Neonatology, Anhui Provincial Children’s Hospital, Hefei, China
- Neonate Follow-up Center, Anhui Provincial Children’s Hospital, Hefei, China
| |
Collapse
|
12
|
Myers MJ, Labonte AK, Gordon EM, Laumann TO, Tu JC, Wheelock MD, Nielsen AN, Schwarzlose RF, Camacho MC, Alexopoulos D, Warner BB, Raghuraman N, Luby JL, Barch DM, Fair DA, Petersen SE, Rogers CE, Smyser CD, Sylvester CM. Functional parcellation of the neonatal cortical surface. Cereb Cortex 2024; 34:bhae047. [PMID: 38372292 PMCID: PMC10875653 DOI: 10.1093/cercor/bhae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
The cerebral cortex is organized into distinct but interconnected cortical areas, which can be defined by abrupt differences in patterns of resting state functional connectivity (FC) across the cortical surface. Such parcellations of the cortex have been derived in adults and older infants, but there is no widely used surface parcellation available for the neonatal brain. Here, we first demonstrate that existing parcellations, including surface-based parcels derived from older samples as well as volume-based neonatal parcels, are a poor fit for neonatal surface data. We next derive a set of 283 cortical surface parcels from a sample of n = 261 neonates. These parcels have highly homogenous FC patterns and are validated using three external neonatal datasets. The Infomap algorithm is used to assign functional network identities to each parcel, and derived networks are consistent with prior work in neonates. The proposed parcellation may represent neonatal cortical areas and provides a powerful tool for neonatal neuroimaging studies.
Collapse
Affiliation(s)
- Michael J Myers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Alyssa K Labonte
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Evan M Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Timothy O Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Jiaxin C Tu
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Ashley N Nielsen
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Rebecca F Schwarzlose
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - M Catalina Camacho
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Nandini Raghuraman
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414, United States
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, United States
| | - Steven E Petersen
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Christopher D Smyser
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, United States
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, United States
| |
Collapse
|
13
|
Keles E, Bagci U. The past, current, and future of neonatal intensive care units with artificial intelligence: a systematic review. NPJ Digit Med 2023; 6:220. [PMID: 38012349 PMCID: PMC10682088 DOI: 10.1038/s41746-023-00941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023] Open
Abstract
Machine learning and deep learning are two subsets of artificial intelligence that involve teaching computers to learn and make decisions from any sort of data. Most recent developments in artificial intelligence are coming from deep learning, which has proven revolutionary in almost all fields, from computer vision to health sciences. The effects of deep learning in medicine have changed the conventional ways of clinical application significantly. Although some sub-fields of medicine, such as pediatrics, have been relatively slow in receiving the critical benefits of deep learning, related research in pediatrics has started to accumulate to a significant level, too. Hence, in this paper, we review recently developed machine learning and deep learning-based solutions for neonatology applications. We systematically evaluate the roles of both classical machine learning and deep learning in neonatology applications, define the methodologies, including algorithmic developments, and describe the remaining challenges in the assessment of neonatal diseases by using PRISMA 2020 guidelines. To date, the primary areas of focus in neonatology regarding AI applications have included survival analysis, neuroimaging, analysis of vital parameters and biosignals, and retinopathy of prematurity diagnosis. We have categorically summarized 106 research articles from 1996 to 2022 and discussed their pros and cons, respectively. In this systematic review, we aimed to further enhance the comprehensiveness of the study. We also discuss possible directions for new AI models and the future of neonatology with the rising power of AI, suggesting roadmaps for the integration of AI into neonatal intensive care units.
Collapse
Affiliation(s)
- Elif Keles
- Northwestern University, Feinberg School of Medicine, Department of Radiology, Chicago, IL, USA.
| | - Ulas Bagci
- Northwestern University, Feinberg School of Medicine, Department of Radiology, Chicago, IL, USA
- Northwestern University, Department of Biomedical Engineering, Chicago, IL, USA
- Department of Electrical and Computer Engineering, Chicago, IL, USA
| |
Collapse
|
14
|
Myers MJ, Labonte AK, Gordon EM, Laumann TO, Tu JC, Wheelock MD, Nielsen AN, Schwarzlose R, Camacho MC, Warner BB, Raghuraman N, Luby JL, Barch DM, Fair DA, Petersen SE, Rogers CE, Smyser CD, Sylvester CM. Functional parcellation of the neonatal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566629. [PMID: 37986902 PMCID: PMC10659431 DOI: 10.1101/2023.11.10.566629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The cerebral cortex is organized into distinct but interconnected cortical areas, which can be defined by abrupt differences in patterns of resting state functional connectivity (FC) across the cortical surface. Such parcellations of the cortex have been derived in adults and older infants, but there is no widely used surface parcellation available for the neonatal brain. Here, we first demonstrate that adult- and older infant-derived parcels are a poor fit with neonatal data, emphasizing the need for neonatal-specific parcels. We next derive a set of 283 cortical surface parcels from a sample of n=261 neonates. These parcels have highly homogenous FC patterns and are validated using three external neonatal datasets. The Infomap algorithm is used to assign functional network identities to each parcel, and derived networks are consistent with prior work in neonates. The proposed parcellation may represent neonatal cortical areas and provides a powerful tool for neonatal neuroimaging studies.
Collapse
Affiliation(s)
- Michael J Myers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Alyssa K Labonte
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, MO USA
| | - Evan M Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Jiaxin Cindy Tu
- Neurosciences Graduate Program, Washington University in St. Louis, St. Louis, MO USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
| | - Muriah D Wheelock
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
| | - Ashley N Nielsen
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Rebecca Schwarzlose
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - M Catalina Camacho
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Nandini Raghuraman
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Steven E Petersen
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Christopher D Smyser
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Ahmadzadeh E, Polglase GR, Stojanovska V, Herlenius E, Walker DW, Miller SL, Allison BJ. Does fetal growth restriction induce neuropathology within the developing brainstem? J Physiol 2023; 601:4667-4689. [PMID: 37589339 PMCID: PMC10953350 DOI: 10.1113/jp284191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Graeme R. Polglase
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Vanesa Stojanovska
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Eric Herlenius
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children´s HospitalKarolinska University Hospital StockholmSolnaSweden
| | - David W. Walker
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical SciencesRoyal Melbourne Institute of Technology (RMIT)MelbourneVictoriaAustralia
| | - Suzanne L. Miller
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Beth J. Allison
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
16
|
Nazari R, Salehi M. Early development of the functional brain network in newborns. Brain Struct Funct 2023; 228:1725-1739. [PMID: 37493690 DOI: 10.1007/s00429-023-02681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
During the prenatal period and the first postnatal years, the human brain undergoes rapid growth, which establishes a preliminary infrastructure for the subsequent development of cognition and behavior. To understand the underlying processes of brain functioning and identify potential sources of developmental disorders, it is essential to uncover the developmental rules that govern this critical period. In this study, graph theory modeling and network science analysis were employed to investigate the impact of age, gender, weight, and typical and atypical development on brain development. Local and global topologies of functional connectomes obtained from rs-fMRI data were collected from 421 neonates aged between 31 and 45 postmenstrual weeks who were in natural sleep without any sedation. The results showed that global efficiency, local efficiency, clustering coefficient, and small-worldness increased with age, while modularity and characteristic path length decreased with age. The normalized rich-club coefficient displayed a U-shaped pattern during development. The study also examined the global and local impacts of gender, weight, and group differences between typical and atypical cases. The findings presented some new insights into the maturation of functional brain networks and their relationship with cognitive development and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Reza Nazari
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mostafa Salehi
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
- School of Computer Science, Institute for Research in Fundamental Science (IPM), Tehran, P.O.Box 19395-5746, Iran.
| |
Collapse
|
17
|
Lean RE, Gerstein ED, Smyser TA, Smyser CD, Rogers CE. Socioeconomic disadvantage and parental mood/affective problems links negative parenting and executive dysfunction in children born very preterm. Dev Psychopathol 2023; 35:1092-1107. [PMID: 34725016 PMCID: PMC9058043 DOI: 10.1017/s0954579421000961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Poverty increases the risk of poorer executive function (EF) in children born full-term (FT). Stressors associated with poverty, including variability in parenting behavior, may explain links between poverty and poorer EF, but this remains unclear for children born very preterm (VPT). We examine socioeconomic and parental psychosocial adversity on parenting behavior, and whether these factors independently or jointly influence EF in children born VPT. At age five years, 154 children (VPT = 88, FT = 66) completed parent-child interaction and EF tasks. Parental sensitivity, intrusiveness, cognitive stimulation, and positive and negative regard were coded with the Parent-Child Interaction Rating Scale. Socioeconomic adversity spanned maternal demographic stressors, Income-to-Needs ratio, and Area Deprivation Index. Parents completed measures of depression, anxiety, inattention/hyperactivity, parenting stress, and social-communication interaction (SCI) problems. Parental SCI problems were associated with parenting behavior in parents of children born VPT, whereas socioeconomic adversity was significant in parents of FT children. Negative parenting behaviors, but not positive parenting behaviors, were related to child EF. This association was explained by parental depression/anxiety symptoms and socioeconomic adversity. Results persisted after adjustment for parent and child IQ. Findings may inform research on dyadic interventions that embed treatment for parental mood/affective symptoms and SCI problems to improve childhood EF.
Collapse
Affiliation(s)
- Rachel E Lean
- Psychiatry, Washington University School of Medicine, St. Louis, USA
| | - Emily D Gerstein
- Psychological Sciences, University Missouri-St. Louis, St. Louis, USA
| | - Tara A Smyser
- Psychiatry, Washington University School of Medicine, St. Louis, USA
| | - Christopher D Smyser
- Neurology, Washington University School of Medicine, St. Louis, USA
- Radiology, Washington University School of Medicine, St. Louis, USA
- Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Cynthia E Rogers
- Psychiatry, Washington University School of Medicine, St. Louis, USA
- Pediatrics, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
18
|
Nielsen AN, Kaplan S, Meyer D, Alexopoulos D, Kenley JK, Smyser TA, Wakschlag LS, Norton ES, Raghuraman N, Warner BB, Shimony JS, Luby JL, Neil JJ, Petersen SE, Barch DM, Rogers CE, Sylvester CM, Smyser CD. Maturation of large-scale brain systems over the first month of life. Cereb Cortex 2023; 33:2788-2803. [PMID: 35750056 PMCID: PMC10016041 DOI: 10.1093/cercor/bhac242] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 01/14/2023] Open
Abstract
The period immediately after birth is a critical developmental window, capturing rapid maturation of brain structure and a child's earliest experiences. Large-scale brain systems are present at delivery, but how these brain systems mature during this narrow window (i.e. first weeks of life) marked by heightened neuroplasticity remains uncharted. Using multivariate pattern classification techniques and functional connectivity magnetic resonance imaging, we detected robust differences in brain systems related to age in newborns (n = 262; R2 = 0.51). Development over the first month of life occurred brain-wide, but differed and was more pronounced in brain systems previously characterized as developing early (i.e. sensorimotor networks) than in those characterized as developing late (i.e. association networks). The cingulo-opercular network was the only exception to this organizing principle, illuminating its early role in brain development. This study represents a step towards a normative brain "growth curve" that could be used to identify atypical brain maturation in infancy.
Collapse
Affiliation(s)
- Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Sydney Kaplan
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Dominique Meyer
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Jeanette K Kenley
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Tara A Smyser
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Lauren S Wakschlag
- Institute for Innovations and Developmental Sciences, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
- Department of Medical Social Sciences, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
- Feinberg School of Medicine, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
| | - Elizabeth S Norton
- Institute for Innovations and Developmental Sciences, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
- Department of Medical Social Sciences, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
- Department of Communication Sciences and Disorders, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
| | - Nandini Raghuraman
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Joshua S Shimony
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Jeffery J Neil
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Steven E Petersen
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Cynthia E Rogers
- Department of Communication Sciences and Disorders, Northwestern University, 420 E Superior, Chicago, IL, 60611, USA
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Pediatrics, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
- Department of Radiology, Washington University in St. Louis, 660 S. Euclid Ave, St. Louis, MO, 63110, USA
| |
Collapse
|
19
|
Sylvester CM, Kaplan S, Myers MJ, Gordon EM, Schwarzlose RF, Alexopoulos D, Nielsen AN, Kenley JK, Meyer D, Yu Q, Graham AM, Fair DA, Warner BB, Barch DM, Rogers CE, Luby JL, Petersen SE, Smyser CD. Network-specific selectivity of functional connections in the neonatal brain. Cereb Cortex 2023; 33:2200-2214. [PMID: 35595540 PMCID: PMC9977389 DOI: 10.1093/cercor/bhac202] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The adult human brain is organized into functional brain networks, groups of functionally connected segregated brain regions. A key feature of adult functional networks is long-range selectivity, the property that spatially distant regions from the same network have higher functional connectivity than spatially distant regions from different networks. Although it is critical to establish the status of functional networks and long-range selectivity during the neonatal period as a foundation for typical and atypical brain development, prior work in this area has been mixed. Although some studies report distributed adult-like networks, other studies suggest that neonatal networks are immature and consist primarily of spatially isolated regions. Using a large sample of neonates (n = 262), we demonstrate that neonates have long-range selective functional connections for the default mode, fronto-parietal, and dorsal attention networks. An adult-like pattern of functional brain networks is evident in neonates when network-detection algorithms are tuned to these long-range connections, when using surface-based registration (versus volume-based registration), and as per-subject data quantity increases. These results help clarify factors that have led to prior mixed results, establish that key adult-like functional network features are evident in neonates, and provide a foundation for studies of typical and atypical brain development.
Collapse
Affiliation(s)
- Chad M Sylvester
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Sydney Kaplan
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Michael J Myers
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Evan M Gordon
- Department of Radiology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Rebecca F Schwarzlose
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeanette K Kenley
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Dominique Meyer
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Qiongru Yu
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, 6363 Alvarado Court, Suite 103, San Diego, CA 92120, USA
| | - Alice M Graham
- Department of Psychiatry, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, Department of Pediatrics, and Institute of Child Development, University of Minnesota, 2025 E. River Parkway, Minneapolis, MN 55414, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Radiology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Psychological and Brain Sciences, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Steven E Petersen
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Radiology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
20
|
Postnatal serum IGF-1 levels associate with brain volumes at term in extremely preterm infants. Pediatr Res 2023; 93:666-674. [PMID: 35681088 PMCID: PMC9988684 DOI: 10.1038/s41390-022-02134-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Growth factors important for normal brain development are low in preterm infants. This study investigated the link between growth factors and preterm brain volumes at term. MATERIAL/METHODS Infants born <28 weeks gestational age (GA) were included. Endogenous levels of insulin-like growth factor (IGF)-1, brain-derived growth factor, vascular endothelial growth factor, and platelet-derived growth factor (expressed as area under the curve [AUC] for serum samples from postnatal days 1, 7, 14, and 28) were utilized in a multivariable linear regression model. Brain volumes were determined by magnetic resonance imaging (MRI) at term equivalent age. RESULTS In total, 49 infants (median [range] GA 25.4 [22.9-27.9] weeks) were included following MRI segmentation quality assessment and AUC calculation. IGF-1 levels were independently positively associated with the total brain (p < 0.001, β = 0.90), white matter (p = 0.007, β = 0.33), cortical gray matter (p = 0.002, β = 0.43), deep gray matter (p = 0.008, β = 0.05), and cerebellar (p = 0.006, β = 0.08) volume adjusted for GA at birth and postmenstrual age at MRI. No associations were seen for other growth factors. CONCLUSIONS Endogenous exposure to IGF-1 during the first 4 weeks of life was associated with total and regional brain volumes at term. Optimizing levels of IGF-1 might improve brain growth in extremely preterm infants. IMPACT High serum levels of insulin-like growth factor (IGF)-1 during the first month of life were independently associated with increased total brain volume, white matter, gray matter, and cerebellar volume at term equivalent age in extremely preterm infants. IGF-1 is a critical regulator of neurodevelopment and postnatal levels are low in preterm infants. The effects of IGF-1 levels on brain development in extremely preterm infants are not fully understood. Optimizing levels of IGF-1 may benefit early brain growth in extremely preterm infants. The effects of systemically administered IGF-1/IGFBP3 in extremely preterm infants are now being investigated in a randomized controlled trial (Clinicaltrials.gov: NCT03253263).
Collapse
|
21
|
King G, Truzzi A, Cusack R. The confound of head position in within-session connectome fingerprinting in infants. Neuroimage 2023; 265:119808. [PMID: 36513291 PMCID: PMC9878437 DOI: 10.1016/j.neuroimage.2022.119808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/14/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Individuals differ in their functional connectome, which can be demonstrated using a "fingerprinting" analysis in which the connectome from an individual in one dataset is used to identify the same person from an independent dataset. Recently, the origin of these fingerprints has been studied by examining if they are present in infants. The results have varied considerably, with identification rates from 10 to 90%. When fingerprinting has been performed by splitting a single imaging session into two split-sessions (within session), identification rates were higher than when two full-sessions (between sessions) were compared. This study examined whether a methodological difference could account for this variation. It was hypothesized that the infant's exact head position in the head coil may affect the measured connectome, due to the gradual inhomogeneity of signal-to-noise in phased-array coils and the breadth of possible positions for a small infant head in a head coil. This study examined the impact of this using resting state functional MRI data from the Developing Human Connectome Project second release. Using functional timeseries, fingerprinting identification was high (84-91%) within a session while between sessions it was low (7%).Using N = 416 infants' head positions, a map of the average signal-to-noise across the physical volume of the head coil was calculated and was used (independent group of 44 infants with two scan sessions) to demonstrate a significant relationship between head position in the head coil and functional connectivity. Using only the head positions (signal-to-noise values extrapolated from the group average map) of the independent group of 44 infants, high identification success was achieved across split-sessions (within session) but not full-sessions (between sessions). Using a model examining factors influencing the stability of the functional connectome, head position was seen as the strongest of the explanatory variables. We conclude within-session fingerprinting is affected by head position and future infant functional fingerprint analyses must use a different strategy or account for this impact.
Collapse
Affiliation(s)
- Graham King
- Trinity College Institute of Neuroscience and School of Psychology, Rm 3.22 Lloyd Building, Trinity College Dublin, Dublin 2, Ireland; Neonatology Department, The Rotunda Hospital, Parnell Square, Dublin 1, Ireland.
| | - Anna Truzzi
- Trinity College Institute of Neuroscience and School of Psychology, Rm 3.22 Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience and School of Psychology, Rm 3.22 Lloyd Building, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
22
|
Cyr PEP, Lean RE, Kenley JK, Kaplan S, Meyer DE, Neil JJ, Alexopoulos D, Brady RG, Shimony JS, Rodebaugh TL, Rogers CE, Smyser CD. Neonatal motor functional connectivity and motor outcomes at age two years in very preterm children with and without high-grade brain injury. Neuroimage Clin 2022; 36:103260. [PMID: 36451363 PMCID: PMC9668638 DOI: 10.1016/j.nicl.2022.103260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/09/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
Preterm-born children have high rates of motor impairments, but mechanisms for early identification remain limited. We hypothesized that neonatal motor system functional connectivity (FC) would relate to motor outcomes at age two years; currently, this relationship is not yet well-described in very preterm (VPT; born <32 weeks' gestation) infants with and without brain injury. We recruited 107 VPT infants - including 55 with brain injury (grade III-IV intraventricular hemorrhage, cystic periventricular leukomalacia, post-hemorrhagic hydrocephalus) - and collected FC data at/near term-equivalent age (35-45 weeks postmenstrual age). Correlation coefficients were used to calculate the FC between bilateral motor and visual cortices and thalami. At two years corrected-age, motor outcomes were assessed with the Bayley Scales of Infant and Toddler Development, 3rd edition. Multiple imputation was used to estimate missing data, and regression models related FC measures to motor outcomes. Within the brain-injured group only, interhemispheric motor cortex FC was positively related to gross motor outcomes. Thalamocortical and visual FC were not related to motor scores. This suggests neonatal alterations in motor system FC may provide prognostic information about impairments in children with brain injury.
Collapse
Affiliation(s)
- Peppar E P Cyr
- Washington University School of Medicine, Department of Neurology, United States.
| | - Rachel E Lean
- Washington University School of Medicine, Department of Psychiatry, United States
| | - Jeanette K Kenley
- Washington University School of Medicine, Department of Neurology, United States
| | - Sydney Kaplan
- Washington University School of Medicine, Department of Neurology, United States
| | - Dominique E Meyer
- Washington University School of Medicine, Department of Neurology, United States
| | - Jeffery J Neil
- Washington University School of Medicine, Department of Neurology, United States
| | | | - Rebecca G Brady
- Washington University School of Medicine, Department of Neurology, United States
| | - Joshua S Shimony
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, United States
| | - Thomas L Rodebaugh
- Washington University in St. Louis, Department of Psychology, United States
| | - Cynthia E Rogers
- Washington University School of Medicine, Department of Psychiatry, United States; Washington University School of Medicine, Department of Pediatrics, United States
| | - Christopher D Smyser
- Washington University School of Medicine, Department of Neurology, United States; Washington University School of Medicine, Mallinckrodt Institute of Radiology, United States; Washington University School of Medicine, Department of Pediatrics, United States
| |
Collapse
|
23
|
Brady RG, Rogers CE, Prochaska T, Kaplan S, Lean RE, Smyser TA, Shimony JS, Slavich GM, Warner BB, Barch DM, Luby JL, Smyser CD. The Effects of Prenatal Exposure to Neighborhood Crime on Neonatal Functional Connectivity. Biol Psychiatry 2022; 92:139-148. [PMID: 35428496 PMCID: PMC9257309 DOI: 10.1016/j.biopsych.2022.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/20/2021] [Accepted: 01/29/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Maternal exposure to adversity during pregnancy has been found to affect infant brain development; however, the specific effect of prenatal crime exposure on neonatal brain connectivity remains unclear. Based on existing research, we hypothesized that living in a high-crime neighborhood during pregnancy would affect neonatal frontolimbic connectivity over and above other individual- and neighborhood-level adversity and that these associations would be mediated by maternal psychosocial stress. METHODS Participants included 399 pregnant women, recruited as part of the eLABE (Early Life Adversity, Biological Embedding, and Risk for Developmental Precursors of Mental Disorders) study. In the neonatal period, 319 healthy, nonsedated infants were scanned using resting-state functional magnetic resonance imaging (repetition time = 800 ms; echo time = 37 ms; voxel size = 2.0 × 2.0 × 2.0 mm3; multiband = 8) on a Prisma 3T scanner and had at least 10 minutes of high-quality data. Crime data at the block group level were obtained from Applied Geographic Solution. Linear regressions and mediation models tested associations between crime, frontolimbic connectivity, and psychosocial stress. RESULTS Living in a neighborhood with high property crime during pregnancy was related to weaker neonatal functional connectivity between the thalamus-anterior default mode network (aDMN) (β = -0.15, 95% CI = -0.25 to -0.04, p = .008). Similarly, high neighborhood violent crime was related to weaker functional connectivity between the thalamus-aDMN (β = -0.16, 95% CI = -0.29 to -0.04, p = .01) and amygdala-hippocampus (β = -0.16, 95% CI = -0.29 to -0.03, p = .02), controlling for other types of adversity. Psychosocial stress partially mediated relationships between the thalamus-aDMN and both violent and property crime. CONCLUSIONS These findings suggest that prenatal exposure to crime is associated with weaker neonatal limbic and frontal functional brain connections, providing another reason for targeted public policy interventions to reduce crime.
Collapse
Affiliation(s)
- Rebecca G Brady
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.
| | - Cynthia E Rogers
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Trinidi Prochaska
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Sydney Kaplan
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Rachel E Lean
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua S Shimony
- Mallinckrot Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Mallinckrot Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Joan L Luby
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Christopher D Smyser
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri; Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Mallinckrot Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
24
|
Sensory-based interventions in the NICU: systematic review of effects on preterm brain development. Pediatr Res 2022; 92:47-60. [PMID: 34508227 DOI: 10.1038/s41390-021-01718-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 07/12/2021] [Accepted: 08/17/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Infants born preterm are known to be at risk for abnormal brain development and adverse neurobehavioral outcomes. To improve early neurodevelopment, several non-pharmacological interventions have been developed and implemented in the neonatal intensive care unit (NICU). Sensory-based interventions seem to improve short-term neurodevelopmental outcomes in the inherently stressful NICU environment. However, how this type of intervention affects brain development in the preterm population remains unclear. METHODS A systematic review of the literature was conducted for published studies in the past 20 years reporting the effects of early, non-pharmacological, sensory-based interventions on the neonatal brain after preterm birth. RESULTS Twelve randomized controlled trials (RCT) reporting short-term effects of auditory, tactile, and multisensory interventions were included after the screening of 1202 articles. Large heterogeneity was identified among studies in relation to both types of intervention and outcomes. Three areas of focus for sensory interventions were identified: auditory-based, tactile-based, and multisensory interventions. CONCLUSIONS Diversity in interventions and outcome measures challenges the possibility to perform an integrative synthesis of results and to translate these for evidence-based clinical practice. This review identifies gaps in the literature and methodological challenges for the implementation of RCTs of sensory interventions in the NICU. IMPACT This paper represents the first systematic review to investigate the effect of non-pharmacological, sensory-based interventions in the NICU on neonatal brain development. Although reviewed RCTs present evidence on the impact of such interventions on the neonatal brain following preterm birth, it is not yet possible to formulate clear guidelines for clinical practice. This review integrates existing literature on the effect of sensory-based interventions on the brain after preterm birth and identifies methodological challenges for the conduction of high-quality RCTs.
Collapse
|
25
|
Lammertink F, van den Heuvel MP, Hermans EJ, Dudink J, Tataranno ML, Benders MJNL, Vinkers CH. Early-life stress exposure and large-scale covariance brain networks in extremely preterm-born infants. Transl Psychiatry 2022; 12:256. [PMID: 35717524 PMCID: PMC9206645 DOI: 10.1038/s41398-022-02019-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
The stressful extrauterine environment following premature birth likely has far-reaching and persistent adverse consequences. The effects of early "third-trimester" ex utero stress on large-scale brain networks' covariance patterns may provide a potential avenue to understand how early-life stress following premature birth increases risk or resilience. We evaluated the impact of early-life stress exposure (e.g., quantification of invasive procedures) on maturational covariance networks (MCNs) between 30 and 40 weeks of gestational age in 180 extremely preterm-born infants (<28 weeks of gestation; 43.3% female). We constructed MCNs using covariance of gray matter volumes between key nodes of three large-scale brain networks: the default mode network (DMN), executive control network (ECN), and salience network (SN). Maturational coupling was quantified by summating the number of within- and between-network connections. Infants exposed to high stress showed significantly higher SN but lower DMN maturational coupling, accompanied by DMN-SN decoupling. Within the SN, the insula, amygdala, and subthalamic nucleus all showed higher maturational covariance at the nodal level. In contrast, within the DMN, the hippocampus, parahippocampal gyrus, and fusiform showed lower coupling following stress. The decoupling between DMN-SN was observed between the insula/anterior cingulate cortex and posterior parahippocampal gyrus. Early-life stress showed longitudinal network-specific maturational covariance patterns, leading to a reprioritization of developmental trajectories of the SN at the cost of the DMN. These alterations may enhance the ability to cope with adverse stimuli in the short term but simultaneously render preterm-born individuals at a higher risk for stress-related psychopathology later in life.
Collapse
Affiliation(s)
- Femke Lammertink
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije University Amsterdam, Amsterdam, The Netherlands
- Department of Child Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erno J Hermans
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maria L Tataranno
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Christiaan H Vinkers
- Department of Anatomy & Neurosciences, Amsterdam UMC (location Vrije University Amsterdam), Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC (location Vrije University Amsterdam), Amsterdam, The Netherlands
| |
Collapse
|
26
|
Enguix V, Kenley J, Luck D, Cohen-Adad J, Lodygensky GA. NeoRS: A Neonatal Resting State fMRI Data Preprocessing Pipeline. Front Neuroinform 2022; 16:843114. [PMID: 35784189 PMCID: PMC9247272 DOI: 10.3389/fninf.2022.843114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/27/2022] [Indexed: 11/20/2022] Open
Abstract
Resting state functional MRI (rsfMRI) has been shown to be a promising tool to study intrinsic brain functional connectivity and assess its integrity in cerebral development. In neonates, where functional MRI is limited to very few paradigms, rsfMRI was shown to be a relevant tool to explore regional interactions of brain networks. However, to identify the resting state networks, data needs to be carefully processed to reduce artifacts compromising the interpretation of results. Because of the non-collaborative nature of the neonates, the differences in brain size and the reversed contrast compared to adults due to myelination, neonates can’t be processed with the existing adult pipelines, as they are not adapted. Therefore, we developed NeoRS, a rsfMRI pipeline for neonates. The pipeline relies on popular neuroimaging tools (FSL, AFNI, and SPM) and is optimized for the neonatal brain. The main processing steps include image registration to an atlas, skull stripping, tissue segmentation, slice timing and head motion correction and regression of confounds which compromise functional data interpretation. To address the specificity of neonatal brain imaging, particular attention was given to registration including neonatal atlas type and parameters, such as brain size variations, and contrast differences compared to adults. Furthermore, head motion was scrutinized, and motion management optimized, as it is a major issue when processing neonatal rsfMRI data. The pipeline includes quality control using visual assessment checkpoints. To assess the effectiveness of NeoRS processing steps we used the neonatal data from the Baby Connectome Project dataset including a total of 10 neonates. NeoRS was designed to work on both multi-band and single-band acquisitions and is applicable on smaller datasets. NeoRS also includes popular functional connectivity analysis features such as seed-to-seed or seed-to-voxel correlations. Language, default mode, dorsal attention, visual, ventral attention, motor and fronto-parietal networks were evaluated. Topology found the different analyzed networks were in agreement with previously published studies in the neonate. NeoRS is coded in Matlab and allows parallel computing to reduce computational times; it is open-source and available on GitHub (https://github.com/venguix/NeoRS). NeoRS allows robust image processing of the neonatal rsfMRI data that can be readily customized to different datasets.
Collapse
Affiliation(s)
- Vicente Enguix
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Canadian Neonatal Brain Platform, Montreal, QC, Canada
- *Correspondence: Vicente Enguix,
| | - Jeanette Kenley
- Washington University School of Medicine, St. Louis, MO, United States
| | - David Luck
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
- Canadian Neonatal Brain Platform, Montreal, QC, Canada
| | - Julien Cohen-Adad
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, QC, Canada
- Mila – Quebec AI Institute, Montreal, QC, Canada
| | - Gregory Anton Lodygensky
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
- Canadian Neonatal Brain Platform, Montreal, QC, Canada
| |
Collapse
|
27
|
Altered functional connectivity in children born very preterm at school age. Sci Rep 2022; 12:7308. [PMID: 35508563 PMCID: PMC9068715 DOI: 10.1038/s41598-022-11184-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Children born very preterm are at significant risk of neurodevelopmental impairment. This study sought to identify differences in cognitive function in children born very preterm compared to term-born controls and investigate alteration in white matter microstructure and functional connectivity (FC) based on tract-based spatial statistics (TBSS) and resting-state functional MRI, respectively. At 6 years of age, 36 children born very preterm (< 32 weeks' gestation) without major neurological disabilities and 26 term-born controls were tested using the Wechsler Intelligence Scale for Children, 4th edition, and Child Behavior Checklist. Whole-brain deterministic tractography and FC measurements were performed in both groups. The very preterm group had significantly lower intelligence scores than the term-born controls. The TBSS revealed no significant differences between the two groups, whereas FC was significantly increased between the frontoparietal network and the language network and was significantly decreased between the right salience network nodes in the very preterm group. The altered FC patterns between specific regions of the higher-order networks may reflect underlying deficits in the functional network architecture associated with cognitive function. Further studies are needed to demonstrate a direct connection between FC in these regions and cognitive function.
Collapse
|
28
|
D’Andrea CB, Kenley JK, Montez DF, Mirro AE, Miller RL, Earl EA, Koller JM, Sung S, Yacoub E, Elison JT, Fair DA, Dosenbach NU, Rogers CE, Smyser CD, Greene DJ. Real-time motion monitoring improves functional MRI data quality in infants. Dev Cogn Neurosci 2022; 55:101116. [PMID: 35636344 PMCID: PMC9157440 DOI: 10.1016/j.dcn.2022.101116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/24/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Imaging the infant brain with MRI has improved our understanding of early neurodevelopment. However, head motion during MRI acquisition is detrimental to both functional and structural MRI scan quality. Though infants are typically scanned while asleep, they commonly exhibit motion during scanning causing data loss. Our group has shown that providing MRI technicians with real-time motion estimates via Framewise Integrated Real-Time MRI Monitoring (FIRMM) software helps obtain high-quality, low motion fMRI data. By estimating head motion in real time and displaying motion metrics to the MR technician during an fMRI scan, FIRMM can improve scanning efficiency. Here, we compared average framewise displacement (FD), a proxy for head motion, and the amount of usable fMRI data (FD ≤ 0.2 mm) in infants scanned with (n = 407) and without FIRMM (n = 295). Using a mixed-effects model, we found that the addition of FIRMM to current state-of-the-art infant scanning protocols significantly increased the amount of usable fMRI data acquired per infant, demonstrating its value for research and clinical infant neuroimaging. MRI studies of the infant brain are critical for studying early neurodevelopment. Head motion diminishes MRI data quality, which can adversely affect infant imaging. We show that real-time head motion monitoring improves fMRI scan quality in infants. Being able to monitor motion during fMRI acquisition improves scanning efficiency.
Collapse
|
29
|
Snyder AZ, Nishino T, Shimony JS, Lenze EJ, Wetherell JL, Voegtle M, Miller JP, Yingling MD, Marcus D, Gurney J, Rutlin J, Scott D, Eyler L, Barch D. Covariance and Correlation Analysis of Resting State Functional Magnetic Resonance Imaging Data Acquired in a Clinical Trial of Mindfulness-Based Stress Reduction and Exercise in Older Individuals. Front Neurosci 2022; 16:825547. [PMID: 35368291 PMCID: PMC8971902 DOI: 10.3389/fnins.2022.825547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
We describe and apply novel methodology for whole-brain analysis of resting state fMRI functional connectivity data, combining conventional multi-channel Pearson correlation with covariance analysis. Unlike correlation, covariance analysis preserves signal amplitude information, which feature of fMRI time series may carry physiological significance. Additionally, we demonstrate that dimensionality reduction of the fMRI data offers several computational advantages including projection onto a space of manageable dimension, enabling linear operations on functional connectivity measures and exclusion of variance unrelated to resting state network structure. We show that group-averaged, dimensionality reduced, covariance and correlation matrices are related, to reasonable approximation, by a single scalar factor. We apply this methodology to the analysis of a large, resting state fMRI data set acquired in a prospective, controlled study of mindfulness training and exercise in older, sedentary participants at risk for developing cognitive decline. Results show marginally significant effects of both mindfulness training and exercise in both covariance and correlation measures of functional connectivity.
Collapse
Affiliation(s)
- Abraham Z. Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tomoyuki Nishino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Eric J. Lenze
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Julie Loebach Wetherell
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Michelle Voegtle
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - J. Philip Miller
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael D. Yingling
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States
| | - Daniel Marcus
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jenny Gurney
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Drew Scott
- Master of Social Welfare Program, University of California, Berkeley, Berkeley, CA, United States
| | - Lisa Eyler
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Deanna Barch
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, United States
| |
Collapse
|
30
|
Vo Van P, Alison M, Morel B, Beck J, Bednarek N, Hertz-Pannier L, Loron G. Advanced Brain Imaging in Preterm Infants: A Narrative Review of Microstructural and Connectomic Disruption. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9030356. [PMID: 35327728 PMCID: PMC8947160 DOI: 10.3390/children9030356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
Preterm birth disrupts the in utero environment, preventing the brain from fully developing, thereby causing later cognitive and behavioral disorders. Such cerebral alteration occurs beneath an anatomical scale, and is therefore undetectable by conventional imagery. Prematurity impairs the microstructure and thus the histological process responsible for the maturation, including the myelination. Cerebral MRI diffusion tensor imaging sequences, based on water’s motion into the brain, allows a representation of this maturation process. Similarly, the brain’s connections become disorganized. The connectome gathers structural and anatomical white matter fibers, as well as functional networks referring to remote brain regions connected one over another. Structural and functional connectivity is illustrated by tractography and functional MRI, respectively. Their organizations consist of core nodes connected by edges. This basic distribution is already established in the fetal brain. It evolves greatly over time but is compromised by prematurity. Finally, cerebral plasticity is nurtured by a lifetime experience at microstructural and macrostructural scales. A preterm birth causes a negative and early disruption, though it can be partly mitigated by positive stimuli based on developmental neonatal care.
Collapse
Affiliation(s)
- Philippe Vo Van
- Department of Neonatology, Hospices Civils de Lyon, Femme Mère Enfant Hospital, 59 Boulevard Pinel, 69500 Bron, France
- Correspondence:
| | - Marianne Alison
- Service d’Imagerie Pédiatrique, Hôpital Robert Debré, APHP, 75019 Paris, France;
- U1141 Neurodiderot, Équipe 5 inDev, Inserm, CEA, Université de Paris, 75019 Paris, France;
| | - Baptiste Morel
- Pediatric Radiology Department, Clocheville Hospital, CHRU of Tours, 37000 Tours, France;
- UMR 1253, iB-Rain, Université de Tours, Inserm, 37000 Tours, France
| | - Jonathan Beck
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Nathalie Bednarek
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Lucie Hertz-Pannier
- U1141 Neurodiderot, Équipe 5 inDev, Inserm, CEA, Université de Paris, 75019 Paris, France;
- NeuroSpin, CEA-Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Gauthier Loron
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| |
Collapse
|
31
|
Nosko D, Strindberg M, Svoboda J, Kvanta H, Broström L, Padilla N, Mårtensson G, Örtqvist M, Moreira NC, Ådén U. Discrete white matter abnormalities at age 8-11 years in children born extremely preterm are not associated with adverse cognitive or motor outcomes. Acta Paediatr 2022; 111:566-575. [PMID: 34665877 DOI: 10.1111/apa.16158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022]
Abstract
AIM Little is known about the prevalence of discrete white matter abnormalities (WMA) beyond the first years in children born extremely preterm (EPT) and the relation to neurodevelopmental outcomes. Our aim was to investigate the prevalence of discrete WMA in children born EPT and the relationship to neonatal white matter injuries (WMI), white matter (WM) volume, WM diffusivity and neurodevelopment. METHODS The study was a part of a longitudinal follow-up study of EPT neonates. All children were scanned at Karolinska University hospital 2004-2007 (neonates) and 2014-2015 (children at 8-11 years). WMA was qualitatively assessed by visual inspection. Developmental assessment was conducted at 12 years. RESULTS In total, 112 children (median age 10.3 years, 56 girls) underwent MRI of the brain (68 EPT, 45 controls). In the EPT group, a subset had MRI around term equivalent age (n = 61). In the EPT group, the prevalence of discrete WMA at 8-11 years was 52%. There was a positive association between WMI at TEA and 8-11 years. There was no association between WMI and WM volumes or diffusivity at 8-11 years. Discrete WMA was not related to neurodevelopmental outcomes. CONCLUSION Discrete WMA was prevalent in children born EPT at 8-11 years but were not related to neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Daniela Nosko
- Department of Paediatrics Örebro University Hospital Örebro Sweden
| | - Marika Strindberg
- Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| | - Jan Svoboda
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
| | - Hedvig Kvanta
- Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| | - Lina Broström
- Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| | - Nelly Padilla
- Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| | - Gustaf Mårtensson
- Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| | - Maria Örtqvist
- Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| | - Nuno Canto Moreira
- Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
| | - Ulrika Ådén
- Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
- Department of Neonatal Medicine Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
32
|
Early development of sleep and brain functional connectivity in term-born and preterm infants. Pediatr Res 2022; 91:771-786. [PMID: 33859364 DOI: 10.1038/s41390-021-01497-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022]
Abstract
The proper development of sleep and sleep-wake rhythms during early neonatal life is crucial to lifelong neurological well-being. Recent data suggests that infants who have poor quality sleep demonstrate a risk for impaired neurocognitive outcomes. Sleep ontogenesis is a complex process, whereby alternations between rudimentary brain states-active vs. wake and active sleep vs. quiet sleep-mature during the last trimester of pregnancy. If the infant is born preterm, much of this process occurs in the neonatal intensive care unit, where environmental conditions might interfere with sleep. Functional brain connectivity (FC), which reflects the brain's ability to process and integrate information, may become impaired, with ensuing risks of compromised neurodevelopment. However, the specific mechanisms linking sleep ontogenesis to the emergence of FC are poorly understood and have received little investigation, mainly due to the challenges of studying causal links between developmental phenomena and assessing FC in newborn infants. Recent advancements in infant neuromonitoring and neuroimaging strategies will allow for the design of interventions to improve infant sleep quality and quantity. This review discusses how sleep and FC develop in early life, the dynamic relationship between sleep, preterm birth, and FC, and the challenges associated with understanding these processes. IMPACT: Sleep in early life is essential for proper functional brain development, which is essential for the brain to integrate and process information. This process may be impaired in infants born preterm. The connection between preterm birth, early development of brain functional connectivity, and sleep is poorly understood. This review discusses how sleep and brain functional connectivity develop in early life, how these processes might become impaired, and the challenges associated with understanding these processes. Potential solutions to these challenges are presented to provide direction for future research.
Collapse
|
33
|
Kaplan S, Meyer D, Miranda-Dominguez O, Perrone A, Earl E, Alexopoulos D, Barch DM, Day TK, Dust J, Eggebrecht AT, Feczko E, Kardan O, Kenley JK, Rogers CE, Wheelock MD, Yacoub E, Rosenberg M, Elison JT, Fair DA, Smyser CD. Filtering respiratory motion artifact from resting state fMRI data in infant and toddler populations. Neuroimage 2022; 247:118838. [PMID: 34942363 PMCID: PMC8803544 DOI: 10.1016/j.neuroimage.2021.118838] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/30/2021] [Accepted: 12/18/2021] [Indexed: 11/24/2022] Open
Abstract
The importance of motion correction when processing resting state functional magnetic resonance imaging (rs-fMRI) data is well-established in adult cohorts. This includes adjustments based on self-limited, large amplitude subject head motion, as well as factitious rhythmic motion induced by respiration. In adults, such respiration artifact can be effectively removed by applying a notch filter to the motion trace, resulting in higher amounts of data retained after frame censoring (e.g., "scrubbing") and more reliable correlation values. Due to the unique physiological and behavioral characteristics of infants and toddlers, rs-fMRI processing pipelines, including methods to identify and remove colored noise due to subject motion, must be appropriately modified to accurately reflect true neuronal signal. These younger cohorts are characterized by higher respiration rates and lower-amplitude head movements than adults; thus, the presence and significance of comparable respiratory artifact and the subsequent necessity of applying similar techniques remain unknown. Herein, we identify and characterize the consistent presence of respiratory artifact in rs-fMRI data collected during natural sleep in infants and toddlers across two independent cohorts (aged 8-24 months) analyzed using different pipelines. We further demonstrate how removing this artifact using an age-specific notch filter allows for both improved data quality and data retention in measured results. Importantly, this work reveals the critical need to identify and address respiratory-driven head motion in fMRI data acquired in young populations through the use of age-specific motion filters as a mechanism to optimize the accuracy of measured results in this population.
Collapse
Affiliation(s)
- Sydney Kaplan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Dominique Meyer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Oscar Miranda-Dominguez
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Anders Perrone
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA,Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Eric Earl
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA,Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deanna M. Barch
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA,Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Trevor K.M. Day
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Dust
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam T. Eggebrecht
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Omid Kardan
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Jeanette K. Kenley
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia E. Rogers
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Muriah D. Wheelock
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Monica Rosenberg
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Jed T. Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Damien A. Fair
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA,Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA,Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christopher D. Smyser
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA,Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
34
|
Xu L, Feng J, Yu L. Avalanche criticality in individuals, fluid intelligence, and working memory. Hum Brain Mapp 2022; 43:2534-2553. [PMID: 35146831 PMCID: PMC9057106 DOI: 10.1002/hbm.25802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale‐free brain dynamics remains unclear. In this study, we investigated the whole‐brain avalanche activity and its individual variability in the human resting‐state functional magnetic resonance imaging (fMRI) data. We showed that though the group‐level analysis was inaccurate because of individual variability, the subject wise scale‐free avalanche activity was significantly associated with maximal synchronization entropy of their brain activity. Meanwhile, the complexity of functional connectivity, as well as structure–function coupling, is maximized in subjects with maximal synchronization entropy. We also observed order–disorder phase transitions in resting‐state brain dynamics and found that there were longer times spent in the subcritical regime. These results imply that large‐scale brain dynamics favor the slightly subcritical regime of phase transition. Finally, we showed evidence that the neural dynamics of human participants with higher fluid intelligence and working memory scores are closer to criticality. We identified brain regions whose critical dynamics showed significant positive correlations with fluid intelligence performance and found that these regions were located in the prefrontal cortex and inferior parietal cortex, which were believed to be important nodes of brain networks underlying human intelligence. Our results reveal the possible role that avalanche criticality plays in cognitive performance and provide a simple method to identify the critical point and map cortical states on a spectrum of neural dynamics, ranging from subcriticality to supercriticality.
Collapse
Affiliation(s)
- Longzhou Xu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.,Department of Computer Science, University of Warwick, Coventry, UK.,School of Mathematical Sciences, School of Life Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lianchun Yu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, China.,Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, China.,The School of Nationalities' Educators, Qinghai Normal University, Xining, China
| |
Collapse
|
35
|
Hu H, Cusack R, Naci L. OUP accepted manuscript. Brain Commun 2022; 4:fcac071. [PMID: 35425900 PMCID: PMC9006044 DOI: 10.1093/braincomms/fcac071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 11/12/2022] Open
Abstract
One of the great frontiers of consciousness science is understanding how early consciousness arises in the development of the human infant. The reciprocal relationship between the default mode network and fronto-parietal networks—the dorsal attention and executive control network—is thought to facilitate integration of information across the brain and its availability for a wide set of conscious mental operations. It remains unknown whether the brain mechanism of conscious awareness is instantiated in infants from birth. To address this gap, we investigated the development of the default mode and fronto-parietal networks and of their reciprocal relationship in neonates. To understand the effect of early neonate age on these networks, we also assessed neonates born prematurely or before term-equivalent age. We used the Developing Human Connectome Project, a unique Open Science dataset which provides a large sample of neonatal functional MRI data with high temporal and spatial resolution. Resting state functional MRI data for full-term neonates (n = 282, age 41.2 weeks ± 12 days) and preterm neonates scanned at term-equivalent age (n = 73, 40.9 weeks ± 14.5 days), or before term-equivalent age (n = 73, 34.6 weeks ± 13.4 days), were obtained from the Developing Human Connectome Project, and for a reference adult group (n = 176, 22–36 years), from the Human Connectome Project. For the first time, we show that the reciprocal relationship between the default mode and dorsal attention network was present at full-term birth or term-equivalent age. Although different from the adult networks, the default mode, dorsal attention and executive control networks were present as distinct networks at full-term birth or term-equivalent age, but premature birth was associated with network disruption. By contrast, neonates before term-equivalent age showed dramatic underdevelopment of high-order networks. Only the dorsal attention network was present as a distinct network and the reciprocal network relationship was not yet formed. Our results suggest that, at full-term birth or by term-equivalent age, infants possess key features of the neural circuitry that enables integration of information across diverse sensory and high-order functional modules, giving rise to conscious awareness. Conversely, they suggest that this brain infrastructure is not present before infants reach term-equivalent age. These findings improve understanding of the ontogeny of high-order network dynamics that support conscious awareness and of their disruption by premature birth.
Collapse
Affiliation(s)
- Huiqing Hu
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Correspondence to: Lorina Naci School of Psychology Trinity College Institute of Neuroscience Global Brain Health Institute Trinity College Dublin Dublin, Ireland E-mail:
| |
Collapse
|
36
|
Kanel D, Vanes LD, Ball G, Hadaya L, Falconer S, Counsell SJ, Edwards AD, Nosarti C. OUP accepted manuscript. Brain Commun 2022; 4:fcac009. [PMID: 35178519 PMCID: PMC8846580 DOI: 10.1093/braincomms/fcac009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Very preterm children are more likely to exhibit difficulties in socio-emotional processing than their term-born peers. Emerging socio-emotional problems may be partly due to alterations in limbic system development associated with infants’ early transition to extrauterine life. The amygdala is a key structure in this system and plays a critical role in various aspects of socio-emotional development, including emotion regulation. The current study tested the hypothesis that amygdala resting-state functional connectivity at term-equivalent age would be associated with socio-emotional outcomes in childhood. Participants were 129 very preterm infants (<33 weeks' gestation) who underwent resting-state functional MRI at term and received a neurodevelopmental assessment at 4–7 years (median = 4.64). Using the left and right amygdalae as seed regions, we investigated associations between whole-brain seed-based functional connectivity and three socio-emotional outcome factors which were derived using exploratory factor analysis (Emotion Moderation, Social Function and Empathy), controlling for sex, neonatal sickness, post-menstrual age at scan and social risk. Childhood Emotion Moderation scores were significantly associated with neonatal resting-state functional connectivity of the right amygdala with right parahippocampal gyrus and right middle occipital gyrus, as well as with functional connectivity of the left amygdala with the right thalamus. No significant associations were found between amygdalar resting-state functional connectivity and either Social Function or Empathy scores. The current findings show that amygdalar functional connectivity assessed at term is associated with later socio-emotional outcomes in very preterm children.
Collapse
Affiliation(s)
- Dana Kanel
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Lucy D. Vanes
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Gareth Ball
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Laila Hadaya
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Shona Falconer
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | | | - Chiara Nosarti
- Correspondence to: Chiara Nosarti Centre for the Developing Brain School of Bioengineering and Imaging Sciences King’s College London and Evelina Children’s Hospital London SE1 7EH, UK E-mail:
| |
Collapse
|
37
|
Metabolic-endocrine disruption due to preterm birth impacts growth, body composition, and neonatal outcome. Pediatr Res 2022; 91:1350-1360. [PMID: 34040160 PMCID: PMC9197767 DOI: 10.1038/s41390-021-01566-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Despite optimized nutrition, preterm-born infants grow slowly and tend to over-accrete body fat. We hypothesize that the premature dissociation of the maternal-placental-fetal unit disrupts the maintenance of physiological endocrine function in the fetus, which has severe consequences for postnatal development. This review highlights the endocrine interactions of the maternal-placental-fetal unit and the early perinatal period in both preterm and term infants. We report on hormonal levels (including tissue, thyroid, adrenal, pancreatic, pituitary, and placental hormones) and nutritional supply and their impact on infant body composition. The data suggest that the premature dissociation of the maternal-placental-fetal unit leads to a clinical picture similar to panhypopituitarism. Further, we describe how the premature withdrawal of the maternal-placental unit, neonatal morbidities, and perinatal stress can cause differences in the levels of growth-promoting hormones, particularly insulin-like growth factors (IGF). In combination with the endocrine disruption that occurs following dissociation of the maternal-placental-fetal unit, the premature adaptation to the extrauterine environment leads to early and fast accretion of fat mass in an immature body. In addition, we report on interventional studies that have aimed to compensate for hormonal deficiencies in infants born preterm through IGF therapy, resulting in improved neonatal morbidity and growth. IMPACT: Preterm birth prematurely dissociates the maternal-placental-fetal unit and disrupts the metabolic-endocrine maintenance of the immature fetus with serious consequences for growth, body composition, and neonatal outcomes. The preterm metabolic-endocrine disruption induces symptoms resembling anterior pituitary failure (panhypopituitarism) with low levels of IGF-1, excessive postnatal fat mass accretion, poor longitudinal growth, and failure to thrive. Appropriate gestational age-adapted nutrition alone seems insufficient for the achievement of optimal growth of preterm infants. Preliminary results from interventional studies show promising effects of early IGF-1 supplementation on postnatal development and neonatal outcomes.
Collapse
|
38
|
Dufford AJ, Spann M, Scheinost D. How prenatal exposures shape the infant brain: Insights from infant neuroimaging studies. Neurosci Biobehav Rev 2021; 131:47-58. [PMID: 34536461 DOI: 10.1016/j.neubiorev.2021.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Brain development during the prenatal period is rapid and unparalleled by any other time during development. Biological systems undergoing rapid development are at higher risk for disorganizing influences. Therefore, certain prenatal exposures impact brain development, increasing risk for negative neurodevelopmental outcome. While prenatal exposures have been associated with cognitive and behavioral outcomes later in life, the underlying macroscopic brain pathways remain unclear. Here, we review magnetic resonance imaging (MRI) studies investigating the association between prenatal exposures and infant brain development focusing on prenatal exposures via maternal physical health factors, maternal mental health factors, and maternal drug and medication use. Further, we discuss the need for studies to consider multiple prenatal exposures in parallel and suggest future directions for this body of research.
Collapse
Affiliation(s)
| | - Marisa Spann
- Columbia University Irving Medical Center, 622 West 168th Street, New York, NY, 10032, USA
| | - Dustin Scheinost
- Child Study Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, USA; Department of Statistics and Data Science, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
39
|
Abstract
Advances in neuroimaging have increasingly enabled researchers to investigate whether alterations in brain development commonly identified in preterm infants underlie their high risk of long-term neurodevelopmental impairment, including sensory, motor, cognitive, and psychiatric deficits. This review begins by examining the growing body of literature utilizing advanced magnetic resonance imaging (MRI) techniques to probe structural (via diffusion MRI) and functional (via resting state-functional MRI) connectivity development in the preterm brain during the neonatal period, both in the presence and absence of brain injury. It then details the recent work linking neonatal brain connectivity measures to neurodevelopmental and psychiatric outcomes in prematurely-born cohorts. Finally, building upon the recent substantive growth in the utilization of these neuroimaging modalities, it concludes by highlighting areas in which continued optimization of age-specific acquisition and analysis techniques for these data remains necessary, efforts fundamental to advancing the field toward establishing individual-level predictive capabilities in this high-risk population.
Collapse
Affiliation(s)
- Rebecca G Brenner
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue Campus Box 8111, St. Louis, MO 63110, United States
| | - Muriah D Wheelock
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeffrey J Neil
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue Campus Box 8111, St. Louis, MO 63110, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher D Smyser
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue Campus Box 8111, St. Louis, MO 63110, United States; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
40
|
Padilla N, Saenger VM, van Hartevelt TJ, Fernandes HM, Lennartsson F, Andersson JLR, Kringelbach M, Deco G, Åden U. Breakdown of Whole-brain Dynamics in Preterm-born Children. Cereb Cortex 2021; 30:1159-1170. [PMID: 31504269 PMCID: PMC7132942 DOI: 10.1093/cercor/bhz156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/10/2023] Open
Abstract
The brain operates at a critical point that is balanced between order and disorder. Even during rest, unstable periods of random behavior are interspersed with stable periods of balanced activity patterns that support optimal information processing. Being born preterm may cause deviations from this normal pattern of development. We compared 33 extremely preterm (EPT) children born at < 27 weeks of gestation and 28 full-term controls. Two approaches were adopted in both groups, when they were 10 years of age, using structural and functional brain magnetic resonance imaging data. The first was using a novel intrinsic ignition analysis to study the ability of the areas of the brain to propagate neural activity. The second was a whole-brain Hopf model, to define the level of stability, desynchronization, or criticality of the brain. EPT-born children exhibited fewer intrinsic ignition events than controls; nodes were related to less sophisticated aspects of cognitive control, and there was a different hierarchy pattern in the propagation of information and suboptimal synchronicity and criticality. The largest differences were found in brain nodes belonging to the rich-club architecture. These results provide important insights into the neural substrates underlying brain reorganization and neurodevelopmental impairments related to prematurity.
Collapse
Affiliation(s)
- Nelly Padilla
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Victor M Saenger
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain
| | - Tim J van Hartevelt
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Ln, Oxford OX3 7JX, Storbritannien, United Kingdom.,Center for Music in the Brain, Aarhus University Hospital Nørrebrogade 44, Building 10G, 4th and 5th floor, Aarhus C, Denmark
| | - Henrique M Fernandes
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Ln, Oxford OX3 7JX, Storbritannien, United Kingdom.,Center for Music in the Brain, Aarhus University Hospital Nørrebrogade 44, Building 10G, 4th and 5th floor, Aarhus C, Denmark
| | - Finn Lennartsson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Sciences Lund, Lund University, Skånes universitetssjukhus Lund, Barngatan, Sweden
| | - Jesper L R Andersson
- FMRIB-Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, West Wing, John Radcliffe Hospital, Oxford, United Kingdom
| | - Morten Kringelbach
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Ln, Oxford OX3 7JX, Storbritannien, United Kingdom.,Center for Music in the Brain, Aarhus University Hospital Nørrebrogade 44, Building 10G, 4th and 5th floor, Aarhus C, Denmark
| | - Gustavo Deco
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,School of Psychological Sciences, Monash University, Melbourne, Clayton VIC, Australia
| | - Ulrika Åden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Neonatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
41
|
Fouladivanda M, Kazemi K, Makki M, Khalilian M, Danyali H, Gervain J, Aarabi A. Multi-scale structural rich-club organization of the brain in full-term newborns: a combined DWI and fMRI study. J Neural Eng 2021; 18. [PMID: 33930878 DOI: 10.1088/1741-2552/abfd46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022]
Abstract
Objective.Our understanding of early brain development is limited due to rapid changes in white matter pathways after birth. In this study, we introduced a multi-scale cross-modal approach to investigate the rich club (RC) organization and topology of the structural brain networks in 40 healthy neonates using diffusion-weighted imaging and resting-state fMRI data.Approach.A group independent component analysis was first performed to identify eight resting state networks (RSNs) used as functional modules. A groupwise whole-brain functional parcellation was also performed at five scales comprising 100-900 parcels. The distribution of RC nodes was then investigated within and between the RSNs. We further assessed the distribution of short and long-range RC, feeder and local connections across different parcellation scales.Main results.Sharing the scale-free characteristic of small-worldness, the neonatal structural brain networks exhibited an RC organization at different nodal scales (NSs). The subcortical, sensory-motor and default mode networks were found to be strongly involved in the RC organization of the structural brain networks, especially in the zones where the RSNs overlapped, with an average cross-scale proportion of 45.9%, 28.5% and 10.5%, respectively. A large proportion of the connector hubs were found to be RC members for the coarsest (73%) to finest (92%) NSs. Our results revealed a prominent involvement of cortico-subcortical and cortico-cerebellar white matter pathways in the RC organization of the neonatal brain. Regardless of the NS, the majority (more than 65.2%) of the inter-RSN connections were long distance RC or feeder with an average physical connection of 105.5 and 97.4 mm, respectively. Several key RC regions were identified, including the insula and cingulate gyri, middle and superior temporal gyri, hippocampus and parahippocampus, fusiform gyrus, precuneus, superior frontal and precentral gyri, calcarine fissure and lingual gyrus.Significance.Our results emphasize the importance of the multi-scale connectivity analysis in assessing the cross-scale reproducibility of the connectivity results concerning the global and local topological properties of the brain networks. Our findings may improve our understanding of the early brain development.
Collapse
Affiliation(s)
- Mahshid Fouladivanda
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Kamran Kazemi
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Malek Makki
- Laboratory of Functional Neuroscience and Pathologies (LNFP), University Research Center (CURS), University Hospital, Amiens, France
| | - Maedeh Khalilian
- Laboratory of Functional Neuroscience and Pathologies (LNFP), University Research Center (CURS), University Hospital, Amiens, France
| | - Habibollah Danyali
- Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Judit Gervain
- Integrative Neuroscience and Cognition Center, CNRS & Université de Paris, Paris, France.,Department of Developmental Psychology and Socialization, University of Padua, Padua, Italy
| | - Ardalan Aarabi
- Laboratory of Functional Neuroscience and Pathologies (LNFP), University Research Center (CURS), University Hospital, Amiens, France.,Faculty of Medicine, University of Picardy Jules Verne, Amiens, France
| |
Collapse
|
42
|
Chiarelli AM, Sestieri C, Navarra R, Wise RG, Caulo M. Distinct effects of prematurity on MRI metrics of brain functional connectivity, activity, and structure: Univariate and multivariate analyses. Hum Brain Mapp 2021; 42:3593-3607. [PMID: 33955622 PMCID: PMC8249887 DOI: 10.1002/hbm.25456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/27/2022] Open
Abstract
Premature birth affects the developmental trajectory of the brain during a period of intense maturation with possible lifelong consequences. To better understand the effect of prematurity on brain structure and function, we performed blood‐oxygen‐level dependent (BOLD) and anatomical magnetic resonance imaging (MRI) at 40 weeks of postmenstrual age on 88 newborns with variable gestational age (GA) at birth and no evident radiological alterations. We extracted measures of resting‐state functional connectivity and activity in a set of 90 cortical and subcortical brain regions through the evaluation of BOLD correlations between regions and of fractional amplitude of low‐frequency fluctuation (fALFF) within regions, respectively. Anatomical information was acquired through the assessment of regional volumes. We performed univariate analyses on each metric to examine the association with GA at birth, the spatial distribution of the effects, and the consistency across metrics. Moreover, a data‐driven multivariate analysis (i.e., Machine Learning) framework exploited the high dimensionality of the data to assess the sensitivity of each metric to the effect of premature birth. Prematurity was associated with bidirectional alterations of functional connectivity and regional volume and, to a lesser extent, of fALFF. Notably, the effects of prematurity on functional connectivity were spatially diffuse, mainly within cortical regions, whereas effects on regional volume and fALFF were more focal, involving subcortical structures. While the two analytical approaches delivered consistent results, the multivariate analysis was more sensitive in capturing the complex pattern of prematurity effects. Future studies might apply multivariate frameworks to identify premature infants at risk of a negative neurodevelopmental outcome.
Collapse
Affiliation(s)
- Antonio M Chiarelli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara; Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara; Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Riccardo Navarra
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara; Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Richard G Wise
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara; Institute for Advanced Biomedical Technologies, Chieti, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara; Institute for Advanced Biomedical Technologies, Chieti, Italy
| |
Collapse
|
43
|
Dubois J, Alison M, Counsell SJ, Hertz‐Pannier L, Hüppi PS, Benders MJ. MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances. J Magn Reson Imaging 2021; 53:1318-1343. [PMID: 32420684 PMCID: PMC8247362 DOI: 10.1002/jmri.27192] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft-tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age-specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large-scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long-term disabilities in children. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jessica Dubois
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Marianne Alison
- University of ParisNeuroDiderot, INSERM,ParisFrance
- Department of Pediatric RadiologyAPHP, Robert‐Debré HospitalParisFrance
| | - Serena J. Counsell
- Centre for the Developing BrainSchool of Biomedical Engineering & Imaging Sciences, King's College LondonLondonUK
| | - Lucie Hertz‐Pannier
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Petra S. Hüppi
- Division of Development and Growth, Department of Woman, Child and AdolescentUniversity Hospitals of GenevaGenevaSwitzerland
| | - Manon J.N.L. Benders
- Department of NeonatologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
44
|
Adle-Biassette H. Neurodevelopmental Sequelae of Preterm Infants: Scientific Challenges. J Neuropathol Exp Neurol 2021; 80:390-392. [PMID: 33842955 DOI: 10.1093/jnen/nlab035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Homa Adle-Biassette
- AP-HP, Hôpital Lariboisière, Service Anatomie Pathologique and Université de Paris, NeuroDiderot, Inserm, Paris, France
| |
Collapse
|
45
|
Eyre M, Fitzgibbon SP, Ciarrusta J, Cordero-Grande L, Price AN, Poppe T, Schuh A, Hughes E, O'Keeffe C, Brandon J, Cromb D, Vecchiato K, Andersson J, Duff EP, Counsell SJ, Smith SM, Rueckert D, Hajnal JV, Arichi T, O'Muircheartaigh J, Batalle D, Edwards AD. The Developing Human Connectome Project: typical and disrupted perinatal functional connectivity. Brain 2021; 144:2199-2213. [PMID: 33734321 PMCID: PMC8370420 DOI: 10.1093/brain/awab118] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
The Developing Human Connectome Project is an Open Science project that provides the
first large sample of neonatal functional MRI data with high temporal and spatial
resolution. These data enable mapping of intrinsic functional connectivity between
spatially distributed brain regions under normal and adverse perinatal circumstances,
offering a framework to study the ontogeny of large-scale brain organization in humans.
Here, we characterize in unprecedented detail the maturation and integrity of resting
state networks (RSNs) at term-equivalent age in 337 infants (including 65 born preterm).
First, we applied group independent component analysis to define 11 RSNs in term-born
infants scanned at 43.5–44.5 weeks postmenstrual age (PMA). Adult-like topography was
observed in RSNs encompassing primary sensorimotor, visual and auditory cortices. Among
six higher-order, association RSNs, analogues of the adult networks for language and
ocular control were identified, but a complete default mode network precursor was not.
Next, we regressed the subject-level datasets from an independent cohort of infants
scanned at 37–43.5 weeks PMA against the group-level RSNs to test for the effects of age,
sex and preterm birth. Brain mapping in term-born infants revealed areas of positive
association with age across four of six association RSNs, indicating active maturation in
functional connectivity from 37 to 43.5 weeks PMA. Female infants showed increased
connectivity in inferotemporal regions of the visual association network. Preterm birth
was associated with striking impairments of functional connectivity across all RSNs in a
dose-dependent manner; conversely, connectivity of the superior parietal lobules within
the lateral motor network was abnormally increased in preterm infants, suggesting a
possible mechanism for specific difficulties such as developmental coordination disorder,
which occur frequently in preterm children. Overall, we found a robust, modular,
symmetrical functional brain organization at normal term age. A complete set of
adult-equivalent primary RSNs is already instated, alongside emerging connectivity in
immature association RSNs, consistent with a primary-to-higher order ontogenetic sequence
of brain development. The early developmental disruption imposed by preterm birth is
associated with extensive alterations in functional connectivity.
Collapse
Affiliation(s)
- Michael Eyre
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Sean P Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Judit Ciarrusta
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Tanya Poppe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Andreas Schuh
- Biomedical Image Analysis Group, Imperial College London, London SW7 2AZ, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Camilla O'Keeffe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Jakki Brandon
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Jesper Andersson
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Eugene P Duff
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK.,Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Imperial College London, London SW7 2AZ, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| |
Collapse
|
46
|
Radhakrishnan R, Grecco G, Stolze K, Atwood B, Jennings SG, Lien IZ, Saykin AJ, Sadhasivam S. Neuroimaging in infants with prenatal opioid exposure: Current evidence, recent developments and targets for future research. J Neuroradiol 2021; 48:112-120. [PMID: 33065196 PMCID: PMC7979441 DOI: 10.1016/j.neurad.2020.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
Prenatal opioid exposure (POE) has shown to be a risk factor for adverse long-term cognitive and behavioral outcomes in offspring. However, the neural mechanisms of these outcomes remain poorly understood. While preclinical and human studies suggest that these outcomes may be due to opioid-mediated changes in the fetal and early postnatal brain, other maternal, social, and environmental factors are also shown to play a role. Recent neuroimaging studies reveal brain alterations in children with POE. Early neuroimaging and novel methodology could provide an in vivo mechanistic understanding of opioid mediated alterations in developing brain. However, this is an area of ongoing research. In this review we explore recent imaging developments in POE, with emphasis on the neonatal and infant brain, and highlight some of the challenges of imaging the developing brain in this population. We also highlight evidence from animal models and imaging in older children and youth to understand areas where future research may be targeted in infants with POE.
Collapse
Affiliation(s)
- Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Gregory Grecco
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Brady Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Samuel G Jennings
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Izlin Z Lien
- Department of Pediatrics, Division of Neonatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
47
|
Baranger J, Demene C, Frerot A, Faure F, Delanoë C, Serroune H, Houdouin A, Mairesse J, Biran V, Baud O, Tanter M. Bedside functional monitoring of the dynamic brain connectivity in human neonates. Nat Commun 2021; 12:1080. [PMID: 33597538 PMCID: PMC7889933 DOI: 10.1038/s41467-021-21387-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
Clinicians have long been interested in functional brain monitoring, as reversible functional losses often precedes observable irreversible structural insults. By characterizing neonatal functional cerebral networks, resting-state functional connectivity is envisioned to provide early markers of cognitive impairments. Here we present a pioneering bedside deep brain resting-state functional connectivity imaging at 250-μm resolution on human neonates using functional ultrasound. Signal correlations between cerebral regions unveil interhemispheric connectivity in very preterm newborns. Furthermore, fine-grain correlations between homologous pixels are consistent with white/grey matter organization. Finally, dynamic resting-state connectivity reveals a significant occurrence decrease of thalamo-cortical networks for very preterm neonates as compared to control term newborns. The same method also shows abnormal patterns in a congenital seizure disorder case compared with the control group. These results pave the way to infants' brain continuous monitoring and may enable the identification of abnormal brain development at the bedside.
Collapse
Affiliation(s)
- Jerome Baranger
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France.
| | - Charlie Demene
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Alice Frerot
- Assistance Publique-Hôpitaux de Paris, Neonatal intensive care unit, Robert Debré children's hospital, Paris, France.,Delegation Paris 7, Inserm U1141, University of Paris, Paris, France
| | - Flora Faure
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Catherine Delanoë
- Assistance Publique Hôpitaux de Paris, Neurophysiology Unit, Robert Debré Children's hospital, Paris, France
| | - Hicham Serroune
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Alexandre Houdouin
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Jerome Mairesse
- Delegation Paris 7, Inserm U1141, University of Paris, Paris, France
| | - Valerie Biran
- Assistance Publique-Hôpitaux de Paris, Neonatal intensive care unit, Robert Debré children's hospital, Paris, France.,Delegation Paris 7, Inserm U1141, University of Paris, Paris, France
| | - Olivier Baud
- Assistance Publique-Hôpitaux de Paris, Neonatal intensive care unit, Robert Debré children's hospital, Paris, France. .,Delegation Paris 7, Inserm U1141, University of Paris, Paris, France. .,Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva and University of Geneva, Geneva, Switzerland.
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France.
| |
Collapse
|
48
|
Morales DM, Smyser CD, Han RH, Kenley JK, Shimony JS, Smyser TA, Strahle JM, Inder TE, Limbrick DD. Tract-Specific Relationships Between Cerebrospinal Fluid Biomarkers and Periventricular White Matter in Posthemorrhagic Hydrocephalus of Prematurity. Neurosurgery 2021; 88:698-706. [PMID: 33313901 PMCID: PMC7884147 DOI: 10.1093/neuros/nyaa466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/12/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Posthemorrhagic hydrocephalus (PHH) is associated with neurological morbidity and complex neurosurgical care. Improved tools are needed to optimize treatments and to investigate the developmental sequelae of PHH. OBJECTIVE To examine the relationship between diffusion magnetic resonance imaging (dMRI) and cerebrospinal fluid (CSF) biomarkers of PHH. METHODS A total of 14 preterm (PT) infants with PHH and 46 controls were included. PT CSF was collected at temporizing surgery in PHH infants (PHH PT CSF) or lumbar puncture in controls. Term-equivalent age (TEA) CSF was acquired via implanted device or at permanent CSF diversion surgery in PHH (PHH-TEA-CSF) or lumbar puncture in controls. TEA dMRI scans were used to measure fractional anisotropy (FA) and mean diffusivity (MD) in the genu of corpus callosum (gCC), posterior limb of internal capsule (PLIC), and optic radiations (OPRA). Associations between dMRI measures and CSF amyloid precursor protein (APP), neural cell adhesion-1 (NCAM-1), and L1 cell adhesion molecule (L1CAM) were assessed using Pearson correlations. RESULTS APP, NCAM-1, and L1CAM were elevated over controls in PHH-PT-CSF and PHH-TEA-CSF. dMRI FA and MD differed between control and PHH infants across all tracts. PHH-PT-CSF APP levels correlated with gCC and OPRA FA and PLIC MD, while L1CAM correlated with gCC and OPRA FA. In PHH-TEA-CSF, only L1CAM correlated with OPRA MD. CONCLUSION Tract-specific associations were observed between dMRI and CSF biomarkers at the initiation of PHH treatment. dMRI and CSF biomarker analyses provide innovative complementary methods for examining PHH-related white matter injury and associated developmental sequelae.
Collapse
Affiliation(s)
- Diego M Morales
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Christopher D Smyser
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Rowland H Han
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Jeanette K Kenley
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer M Strahle
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts
| | - David D Limbrick
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
49
|
Boggini T, Pozzoli S, Schiavolin P, Erario R, Mosca F, Brambilla P, Fumagalli M. Cumulative procedural pain and brain development in very preterm infants: A systematic review of clinical and preclinical studies. Neurosci Biobehav Rev 2020; 123:320-336. [PMID: 33359095 DOI: 10.1016/j.neubiorev.2020.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 01/16/2023]
Abstract
Very preterm infants may manifest neurodevelopmental impairments, even in the absence of brain lesions. Pathogenesis is complex and multifactorial. Evidence suggests a role of early adversities on neurodevelopmental outcomes, via epigenetic regulation and changes in brain architecture. In this context, we focused on cumulative pain exposure which preterm neonates experience in neonatal intensive care unit (NICU). We systematically searched for: i) evidence linking pain with brain development and exploring the potential pathogenetic role of epigenetics; ii) preclinical research supporting clinical observational studies. Nine clinical neuroimaging studies, during neonatal or school age, mostly from the same research group, revealed volume reduction of white and gray matter structures in association with postnatal pain exposure. Three controlled animal studies mimicking NICU settings found increased cell death or apoptosis; nevertheless, eligible groups were limited in size. Epigenetic modulation (SLC6A4 promoter methylation) was identified in only two clinical trials. We call for additional research and, although knowledge gaps, we also point out the urgent need of minimizing painful procedures in NICUs.
Collapse
Affiliation(s)
- Tiziana Boggini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy.
| | - Sara Pozzoli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, Milan, Italy
| | - Paola Schiavolin
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Raffaele Erario
- University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Fabio Mosca
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy; University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Paolo Brambilla
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Neurosciences and Mental Health, Milan, Italy; University of Milan, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Monica Fumagalli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy; University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| |
Collapse
|
50
|
Huang Z, Wang Q, Zhou S, Tang C, Yi F, Nie J. Exploring functional brain activity in neonates: A resting-state fMRI study. Dev Cogn Neurosci 2020; 45:100850. [PMID: 32882651 PMCID: PMC7474406 DOI: 10.1016/j.dcn.2020.100850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/23/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
The human brain is born with a certain maturity, but quantitatively measuring the maturation and development of functional brain activity in neonates remains a topic of vigorous scientific research, especially the dynamic characteristics. To address this, T1w, T2w, and resting-state functional magnetic resonance imaging (rs-fMRI) data from 40 full-term healthy neonates and 38 adults were adopted in this study. Group differences of local brain activity and functional connectivity between neonates and adults from both static and dynamic perspectives were explored. We found that the neonatal brain is largely immature in general. Sensorimotor areas were the most active, well-connected, and temporally dynamic. Compared with adults, visual and primary auditory areas in neonates showed higher or similar local activity but lower static and dynamic connections with other brain regions. Our findings provide new references and valuable insights for time-varying and local brain functional activity in neonates.
Collapse
Affiliation(s)
- Ziyi Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Qi Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Senyu Zhou
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Chao Tang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Fa Yi
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China
| | - Jingxin Nie
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, China.
| |
Collapse
|