1
|
Yamauchi T, Okano Y, Terada D, Yasukochi S, Tsuruta A, Tsurudome Y, Ushijima K, Matsunaga N, Koyanagi S, Ohdo S. Epigenetic repression of de novo cysteine synthetases induces intra-cellular accumulation of cysteine in hepatocarcinoma by up-regulating the cystine uptake transporter xCT. Cancer Metab 2024; 12:23. [PMID: 39113116 PMCID: PMC11304919 DOI: 10.1186/s40170-024-00352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The metabolic reprogramming of amino acids is critical for cancer cell growth and survival. Notably, intracellular accumulation of cysteine is often observed in various cancers, suggesting its potential role in alleviating the oxidative stress associated with rapid proliferation. The liver is the primary organ for cysteine biosynthesis, but much remains unknown about the metabolic alterations of cysteine and their mechanisms in hepatocellular carcinoma cells. METHODS RNA-seq data from patients with hepatocarcinoma were analyzed using the TNMplot database. The underlying mechanism of the oncogenic alteration of cysteine metabolism was studied in mice implanted with BNL 1ME A.7 R.1 hepatocarcinoma. RESULTS Database analysis of patients with hepatocellular carcinoma revealed that the expression of enzymes involved in de novo cysteine synthesis was down-regulated accompanying with increased expression of the cystine uptake transporter xCT. Similar alterations in gene expression have also been observed in a syngeneic mouse model of hepatocarcinoma. The enhanced expression of DNA methyltransferase in murine hepatocarcinoma cells caused methylation of the upstream regions of cysteine synthesis genes, thereby repressing their expression. Conversely, suppression of de novo cysteine synthesis in healthy liver cells induced xCT expression by up-regulating the oxidative-stress response factor NRF2, indicating that reduced de novo cysteine synthesis repulsively increases cystine uptake via enhanced xCT expression, leading to intracellular cysteine accumulation. Furthermore, the pharmacological inhibition of xCT activity decreased intracellular cysteine levels and suppressed hepatocarcinoma tumor growth in mice. CONCLUSIONS Our findings indicate an underlying mechanism of the oncogenic alteration of cysteine metabolism in hepatocarcinoma and highlight the efficacy of alteration of cysteine metabolism as a viable therapeutic target in cancer.
Collapse
Affiliation(s)
- Tomoaki Yamauchi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yumi Okano
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Daishu Terada
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Sai Yasukochi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akito Tsuruta
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Tsurudome
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Kentaro Ushijima
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
2
|
Pedre B. A guide to genetically-encoded redox biosensors: State of the art and opportunities. Arch Biochem Biophys 2024; 758:110067. [PMID: 38908743 DOI: 10.1016/j.abb.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Genetically-encoded redox biosensors have become invaluable tools for monitoring cellular redox processes with high spatiotemporal resolution, coupling the presence of the redox-active analyte with a change in fluorescence signal that can be easily recorded. This review summarizes the available fluorescence recording methods and presents an in-depth classification of the redox biosensors, organized by the analytes they respond to. In addition to the fluorescent protein-based architectures, this review also describes the recent advances on fluorescent, chemigenetic-based redox biosensors and other emerging chemigenetic strategies. This review examines how these biosensors are designed, the biosensors sensing mechanism, and their practical advantages and disadvantages.
Collapse
Affiliation(s)
- Brandán Pedre
- Biochemistry, Molecular and Structural Biology Unit, Department of Chemistry, KU Leuven, Belgium.
| |
Collapse
|
3
|
Wang L, Xie Z, Wu M, Chen Y, Wang X, Li X, Liu F. The role of taurine through endoplasmic reticulum in physiology and pathology. Biochem Pharmacol 2024; 226:116386. [PMID: 38909788 DOI: 10.1016/j.bcp.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Taurine is a sulfur-containing amino acid found in many cell organelles that plays a wide range of biological roles, including bile salt production, osmoregulation, oxidative stress reduction, and neuromodulation. Taurine treatments have also been shown to ameliorate the onset and development of many diseases, including hypertension, fatty liver, neurodegenerative diseases and ischemia-reperfusion injury, by exerting antioxidant, anti-inflammatory, and antiapoptotic effects. The endoplasmic reticulum (ER) is a dynamic organelle involved in a wide range of cellular functions, including lipid metabolism, calcium storage and protein stabilization. Under stress, the disruption of the ER environment leads to the accumulation of misfolded proteins and a characteristic stress response called the unfolded protein response (UPR). The UPR protects cells from stress and helps to restore cellular homeostasis, but its activation promotes cell death under prolonged ER stress. Recent studies have shown that ER stress is closely related to the onset and development of many diseases. This article reviews the beneficial effects and related mechanisms of taurine by regulating the ER in different physiological and pathological states, with the aim of providing a reference for further research and clinical applications.
Collapse
Affiliation(s)
- Linfeng Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Zhenxing Xie
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mengxian Wu
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Yunayuan Chen
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xin Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xingke Li
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China.
| | - Fangli Liu
- College of Nursing and Health, Henan University, Kaifeng 475004, China.
| |
Collapse
|
4
|
Chen J, Matye D, Dai Clayton Y, Du Y, Nazmul Hasan M, Gu L, Li T. Deletion of hepatocyte cysteine dioxygenase type 1, a bile acid repressed gene, enhances glutathione synthesis and ameliorates acetaminophen hepatotoxicity. Biochem Pharmacol 2024; 222:116103. [PMID: 38428825 PMCID: PMC10976970 DOI: 10.1016/j.bcp.2024.116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Liver is a major organ that metabolizes sulfur amino acids cysteine, which is the substrate for the synthesis of many essential cellular molecules including GSH, taurine, and coenzyme A. Bile acid-activated farnesoid x receptor (FXR) inhibits cysteine dioxygenase type 1 (CDO1), which mediates hepatic cysteine catabolism and taurine synthesis. To define the impact of bile acid inhibition of CDO1 on hepatic sulfur amino acid metabolism and antioxidant capacity, we developed hepatocyte-specific CDO1 knockout mice (Hep-CDO1 KO) and hepatocyte specific CDO1 transgenic mice (Hep-CDO1 Tg). Liver metabolomics revealed that genetic deletion of hepatic CDO1 reduced de novo taurine synthesis but had no impact on hepatic taurine abundance or bile acid conjugation. Consistent with reduced cysteine catabolism, Hep-CDO1 KO mice showed increased hepatic cysteine abundance but unaltered methionine cycle intermediates and coenzyme A synthesis. Upon acetaminophen overdose, Hep-CDO1 KO mice showed increased GSH synthesis capacity and alleviated liver injury. In contrast, hepatic CDO1 overexpression in Hep-CDO1 Tg mice stimulated hepatic cysteine to taurine conversion, resulting in reduced hepatic cysteine abundance. However, Hep-CDO1 Tg mice and WT showed similar susceptibility to acetaminophen-induced liver injury. Hep-CDO1 Tg mice showed similar hepatic taurine and coenzyme A compared to WT mice. In summary, these findings suggest that bile acid and FXR signaling inhibition of CDO1-mediated hepatic cysteine catabolism preferentially modulates hepatic GSH synthesis capacity and antioxidant defense, but has minimal effect on hepatic taurine and coenzyme A abundance. Repression of hepatic CDO1 may contribute to the hepatoprotective effects of FXR activation under certain pathologic conditions.
Collapse
Affiliation(s)
- Jianglei Chen
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - David Matye
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Yung Dai Clayton
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Yanhong Du
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Mohammad Nazmul Hasan
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Lijie Gu
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| |
Collapse
|
5
|
Miyazaki T. Identification of a novel enzyme and the regulation of key enzymes in mammalian taurine synthesis. J Pharmacol Sci 2024; 154:9-17. [PMID: 38081683 DOI: 10.1016/j.jphs.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Taurine has many pharmacological roles on various tissues. The maintenance of abundant taurine content in the mammalian body through endogenous synthesis, in addition to exogenous intake, is the essential factor for morphological and functional maintenances in most tissues. The synthesis of taurine from sulfur-containing amino acids is influenced by various factors. Previous literature findings indicate the influence of the intake of proteins and sulfur-containing amino acids on the activity of the rate-limiting enzymes cysteine dioxygenase and cysteine sulfinate decarboxylase. In addition, the regulation of the activity and expression of taurine-synthesis enzymes by hormones, bile acids, and inflammatory cytokines through nuclear receptors have been reported in liver and reproductive tissues. Furthermore, flavin-containing monooxygenase subtype 1 was recently identified as the taurine-synthesis enzyme that converts hypotaurine to taurine. This review introduces the novel taurine synthesis enzyme and the nuclear receptor-associated regulation of key enzymes in taurine synthesis.
Collapse
Affiliation(s)
- Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami, Ibaraki, 300-0395, Japan.
| |
Collapse
|
6
|
Metabolic Hepatic Disorders Caused by Ciguatoxins in Goldfish ( Carassius auratus). Animals (Basel) 2022; 12:ani12243500. [PMID: 36552420 PMCID: PMC9774503 DOI: 10.3390/ani12243500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Ciguatera poisoning (CP) is a foodborne disease known for centuries; however, little research has been conducted on the effects of ciguatoxins (CTXs) on fish metabolism. The main objective of this study was to assess different hepatic compounds observed in goldfish (Carassius auratus) fed C-CTX1 using nuclear magnetic resonance (NMR)-based metabolomics. Thirteen goldfish were treated with C-CTX1-enriched flesh and sampled on days 1, 8, 15, 29, 36, and 43. On day 43, two individuals, referred to as 'Detox', were isolated until days 102 and 121 to evaluate the possible recovery after returning to a commercial feed. At each sampling, hepatic tissue was weighed to calculate the hepatosomatic index (HSI) and analyzed for the metabolomics study; animals fed toxic flesh showed a higher HSI, even greater in the 'Detox' individuals. Furthermore, altered concentrations of alanine, lactate, taurine, glucose, and glycogen were observed in animals with the toxic diet. These disturbances could be related to an increase in ammonium ion (NH4+) production. An increase in ammonia (NH3) concentration in water was observed in the aquarium where the fish ingested toxic meat compared to the non-toxic aquarium. All these changes may be rationalized by the relationship between CTXs and the glucose-alanine cycle.
Collapse
|
7
|
Lidonnici J, Santoro MM, Oberkersch RE. Cancer-Induced Metabolic Rewiring of Tumor Endothelial Cells. Cancers (Basel) 2022; 14:cancers14112735. [PMID: 35681715 PMCID: PMC9179421 DOI: 10.3390/cancers14112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Angiogenesis, the formation of new blood vessels from preexisting ones, is a complex and demanding biological process that plays an important role in physiological, as well as pathological conditions, including cancer. During tumor growth, the induction of angiogenesis allows tumor cells to grow, invade, and metastasize. Recent evidence supports endothelial cell metabolism as a critical regulator of angiogenesis. However, whether and how tumor endothelial cells rewire their metabolism in cancer remains elusive. In this review, we discussed the metabolic signatures of tumor endothelial cells and their symbiotic, competitive, and mechanical metabolic interactions with tumor cells. We also discussed the recent works that may provide a rationale for attractive metabolic targets and strategies for developing specific therapies against tumor angiogenesis. Abstract Cancer is a leading cause of death worldwide. If left untreated, tumors tend to grow and spread uncontrolled until the patient dies. To support this growth, cancer cells need large amounts of nutrients and growth factors that are supplied and distributed to the tumor tissue by the vascular system. The aberrant tumor vasculature shows deep morphological, molecular, and metabolic differences compared to the blood vessels belonging to the non-malignant tissues (also referred as normal). A better understanding of the metabolic mechanisms driving the differences between normal and tumor vasculature will allow the designing of new drugs with a higher specificity of action and fewer side effects to target tumors and improve a patient’s life expectancy. In this review, we aim to summarize the main features of tumor endothelial cells (TECs) and shed light on the critical metabolic pathways that characterize these cells. A better understanding of such mechanisms will help to design innovative therapeutic strategies in healthy and diseased angiogenesis.
Collapse
|
8
|
Correia MJ, Pimpão AB, Fernandes DGF, Morello J, Sequeira CO, Calado J, Antunes AMM, Almeida MS, Branco P, Monteiro EC, Vicente JB, Serpa J, Pereira SA. Cysteine as a Multifaceted Player in Kidney, the Cysteine-Related Thiolome and Its Implications for Precision Medicine. Molecules 2022; 27:1416. [PMID: 35209204 PMCID: PMC8874463 DOI: 10.3390/molecules27041416] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this review encouraged by original data, we first provided in vivo evidence that the kidney, comparative to the liver or brain, is an organ particularly rich in cysteine. In the kidney, the total availability of cysteine was higher in cortex tissue than in the medulla and distributed in free reduced, free oxidized and protein-bound fractions (in descending order). Next, we provided a comprehensive integrated review on the evidence that supports the reliance on cysteine of the kidney beyond cysteine antioxidant properties, highlighting the relevance of cysteine and its renal metabolism in the control of cysteine excess in the body as a pivotal source of metabolites to kidney biomass and bioenergetics and a promoter of adaptive responses to stressors. This view might translate into novel perspectives on the mechanisms of kidney function and blood pressure regulation and on clinical implications of the cysteine-related thiolome as a tool in precision medicine.
Collapse
Affiliation(s)
- Maria João Correia
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - António B. Pimpão
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Dalila G. F. Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (D.G.F.F.); (J.B.V.)
| | - Judit Morello
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Catarina O. Sequeira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Joaquim Calado
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal;
- Nephrology Department, Centro Hospitalar Universitário de Lisboa Central, 1069-166 Lisboa, Portugal
| | - Alexandra M. M. Antunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, 1049-001 Lisboa, Portugal;
| | - Manuel S. Almeida
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Patrícia Branco
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Emília C. Monteiro
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - João B. Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (D.G.F.F.); (J.B.V.)
| | - Jacinta Serpa
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal
| | - Sofia A. Pereira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| |
Collapse
|
9
|
Tariq M, Ozbek P, Moin ST. Hydration modulates oxygen channel residues for oxygenation of cysteine dioxygenase: Perspectives from molecular dynamics simulations. J Mol Graph Model 2021; 110:108060. [PMID: 34768230 DOI: 10.1016/j.jmgm.2021.108060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Cysteine dioxygenase (CDO) regulates the concentration of l-cysteine substrate by its oxidation in the body to prevent different diseases, including neurodegenerative and autoimmune diseases. CDO catalyzes the oxidation of thiol group of l-cysteine to l-cysteine sulfinic acid using molecular oxygen. In this study, molecular dynamics simulations were applied to ligand-free CDO, cysteine-bound CDO, and oxygen-bound CDO-cysteine complex which were primarily subjected to the evaluation of their structural and dynamical properties. The simulation data provided significant information not only on the conformational changes of the enzyme after its ligation but also on the co-ligation by sequential binding of l-cysteine and molecular oxygen. It was found that the ligation and co-ligation perturbed the active site region as well as the overall protein dynamics which were analyzed in terms of root mean square deviation, root mean square fluctuation and dynamic cross correlation matrices as well as principal component analysis. Furthermore, oxygen transport pathways were successfully explored by taking various tunnel clusters into account and one of those clusters was given preference based on the throughput value. The bottleneck formed by different amino acid residues was examined to figure out their role in the oxygenation process of the enzyme. The residues forming the tunnel's bottleneck and their dynamics mediated by water molecules were further investigated using radial distribution functions which gave insights into the hydration behavior of these residues. The findings based on the hydration behavior in turn served to explore the water-mediated dynamics of these residues in the modulation of the pathway, including tunnel gating for the oxygen entry and diffusion to the active site, which is essential for the CDO's catalytic function.
Collapse
Affiliation(s)
- Muhammad Tariq
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, 34722, Turkey.
| | - Syed Tarique Moin
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
10
|
Gregor A, Pignitter M, Fahrngruber C, Bayer S, Somoza V, König J, Duszka K. Caloric restriction increases levels of taurine in the intestine and stimulates taurine uptake by conjugation to glutathione. J Nutr Biochem 2021; 96:108781. [PMID: 34022385 DOI: 10.1016/j.jnutbio.2021.108781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Our previous study indicated increased levels of taurine-conjugated bile acids (BA) in the intestine content of mice submitted to caloric restriction (CR). In the current project, we found increased levels of free taurine and taurine conjugates, including glutathione (GSH)-taurine, in CR compared to ad libitum fed animals in the mucosa along the intestine but not in the liver. The levels of free GSH were decreased in the intestine of CR compared to ad libitum fed mice. However, the levels of oxidized GSH were not affected and were complemented by the lack of changes in the antioxidative parameters. Glutathione-S transferases (GST) enzymatic activity was increased as was the expression of GST genes along the gastrointestinal tract of CR mice. In the CR intestine, addition of GSH to taurine solution enhanced taurine uptake. Accordingly, the expression of taurine transporter (TauT) was increased in the ileum of CR animals and the levels of free and BA-conjugated taurine were lower in the feces of CR compared to ad libitum fed mice. Fittingly, BA- and GSH-conjugated taurine levels were increased in the plasma of CR mice, however, free taurine remained unaffected. We conclude that CR-triggered production and release of taurine-conjugated BA in the intestine results in increased levels of free taurine what stimulates GST to conjugate and enhance uptake of taurine from the intestine.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria
| | | | - Sebastian Bayer
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria
| | - Veronika Somoza
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria; Leibniz-Institut for Food Systems Biology, Technical University of Munich, Freising, Germany
| | - Jürgen König
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Pedre B, Barayeu U, Ezeriņa D, Dick TP. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H 2S and sulfane sulfur species. Pharmacol Ther 2021; 228:107916. [PMID: 34171332 DOI: 10.1016/j.pharmthera.2021.107916] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
Initially adopted as a mucolytic about 60 years ago, the cysteine prodrug N-acetylcysteine (NAC) is the standard of care to treat paracetamol intoxication, and is included on the World Health Organization's list of essential medicines. Additionally, NAC increasingly became the epitome of an "antioxidant". Arguably, it is the most widely used "antioxidant" in experimental cell and animal biology, as well as clinical studies. Most investigators use and test NAC with the idea that it prevents or attenuates oxidative stress. Conventionally, it is assumed that NAC acts as (i) a reductant of disulfide bonds, (ii) a scavenger of reactive oxygen species and/or (iii) a precursor for glutathione biosynthesis. While these mechanisms may apply under specific circumstances, they cannot be generalized to explain the effects of NAC in a majority of settings and situations. In most cases the mechanism of action has remained unclear and untested. In this review, we discuss the validity of conventional assumptions and the scope of a newly discovered mechanism of action, namely the conversion of NAC into hydrogen sulfide and sulfane sulfur species. The antioxidative and cytoprotective activities of per- and polysulfides may explain many of the effects that have previously been ascribed to NAC or NAC-derived glutathione.
Collapse
Affiliation(s)
- Brandán Pedre
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Daria Ezeriņa
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Walker A, Schmitt-Kopplin P. The role of fecal sulfur metabolome in inflammatory bowel diseases. Int J Med Microbiol 2021; 311:151513. [PMID: 34147944 DOI: 10.1016/j.ijmm.2021.151513] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Sulfur metabolism and sulfur-containing metabolites play an important role in the human digestive system, and sulfur compounds and pathways are associated with inflammatory bowel diseases (IBD). In fact, cysteine metabolism results in the production of taurine and sulfate, and gut microbes catabolize them into hydrogen sulfide, a signaling molecule with various biological functions. Besides metabolites originating from sulfur metabolism, several other sulfur-containing metabolites of different classes were detected in human feces, consisting of non-volatile and volatile compounds. Sulfated steroids and bile acids such as taurine-conjugated bile acids are the major classes along with sulfur amino acids and sulfur-containing peptides. Indeed, sulfur-containing metabolites were described in stool samples from healthy subjects, patients suffering from colorectal cancer or IBD. In metabolomics-driven studies, around 50 known sulfur-containing metabolites were linked to IBD. Taurine, taurocholic acid, taurochenodeoxycholic acid, methionine, methanethiol and hydrogen sulfide were regularly reported in IBD studies, and most of them were elevated in stool samples from IBD patients. We summarized from this review that there is strong interplay between perturbed gut microbiota in IBD, and the consistently higher abundance of sulfur-containing metabolites, which potentially represent substrates for sulfidogenic bacteria such as Bilophila or Escherichia and promote their growth. These bacteria might shift their metabolism towards the degradation of taurine and cysteine and therefore to a higher hydrogen sulfide production.
Collapse
Affiliation(s)
- Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany; ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany; Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| |
Collapse
|
13
|
Southam HM, Williamson MP, Chapman JA, Lyon RL, Trevitt CR, Henderson PJF, Poole RK. 'Carbon-Monoxide-Releasing Molecule-2 (CORM-2)' Is a Misnomer: Ruthenium Toxicity, Not CO Release, Accounts for Its Antimicrobial Effects. Antioxidants (Basel) 2021; 10:antiox10060915. [PMID: 34198746 PMCID: PMC8227206 DOI: 10.3390/antiox10060915] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Carbon monoxide (CO)-releasing molecules (CORMs) are used to deliver CO, a biological ‘gasotransmitter’, in biological chemistry and biomedicine. CORMs kill bacteria in culture and in animal models, but are reportedly benign towards mammalian cells. CORM-2 (tricarbonyldichlororuthenium(II) dimer, Ru2Cl4(CO)6), the first widely used and commercially available CORM, displays numerous pharmacological, biochemical and microbiological activities, generally attributed to CO release. Here, we investigate the basis of its potent antibacterial activity against Escherichia coli and demonstrate, using three globin CO sensors, that CORM-2 releases negligible CO (<0.1 mol CO per mol CORM-2). A strong negative correlation between viability and cellular ruthenium accumulation implies that ruthenium toxicity underlies biocidal activity. Exogenous amino acids and thiols (especially cysteine, glutathione and N-acetyl cysteine) protected bacteria against inhibition of growth by CORM-2. Bacteria treated with 30 μM CORM-2, with added cysteine and histidine, exhibited no significant loss of viability, but were killed in the absence of these amino acids. Their prevention of toxicity correlates with their CORM-2-binding affinities (Cys, Kd 3 μM; His, Kd 130 μM) as determined by 1H-NMR. Glutathione is proposed to be an important intracellular target of CORM-2, with CORM-2 having a much higher affinity for reduced glutathione (GSH) than oxidised glutathione (GSSG) (GSH, Kd 2 μM; GSSG, Kd 25,000 μM). The toxicity of low, but potent, levels (15 μM) of CORM-2 was accompanied by cell lysis, as judged by the release of cytoplasmic ATP pools. The biological effects of CORM-2 and related CORMs, and the design of biological experiments, must be re-examined in the light of these data.
Collapse
Affiliation(s)
- Hannah M. Southam
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Michael P. Williamson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Jonathan A. Chapman
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Rhiannon L. Lyon
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Clare R. Trevitt
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
| | - Peter J. F. Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK;
| | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (H.M.S.); (M.P.W.); (J.A.C.); (R.L.L.); (C.R.T.)
- Correspondence:
| |
Collapse
|
14
|
De la Fuente IM, Martínez L, Carrasco-Pujante J, Fedetz M, López JI, Malaina I. Self-Organization and Information Processing: From Basic Enzymatic Activities to Complex Adaptive Cellular Behavior. Front Genet 2021; 12:644615. [PMID: 34093645 PMCID: PMC8176287 DOI: 10.3389/fgene.2021.644615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
One of the main aims of current biology is to understand the origin of the molecular organization that underlies the complex dynamic architecture of cellular life. Here, we present an overview of the main sources of biomolecular order and complexity spanning from the most elementary levels of molecular activity to the emergence of cellular systemic behaviors. First, we have addressed the dissipative self-organization, the principal source of molecular order in the cell. Intensive studies over the last four decades have demonstrated that self-organization is central to understand enzyme activity under cellular conditions, functional coordination between enzymatic reactions, the emergence of dissipative metabolic networks (DMN), and molecular rhythms. The second fundamental source of order is molecular information processing. Studies on effective connectivity based on transfer entropy (TE) have made possible the quantification in bits of biomolecular information flows in DMN. This information processing enables efficient self-regulatory control of metabolism. As a consequence of both main sources of order, systemic functional structures emerge in the cell; in fact, quantitative analyses with DMN have revealed that the basic units of life display a global enzymatic structure that seems to be an essential characteristic of the systemic functional metabolism. This global metabolic structure has been verified experimentally in both prokaryotic and eukaryotic cells. Here, we also discuss how the study of systemic DMN, using Artificial Intelligence and advanced tools of Statistic Mechanics, has shown the emergence of Hopfield-like dynamics characterized by exhibiting associative memory. We have recently confirmed this thesis by testing associative conditioning behavior in individual amoeba cells. In these Pavlovian-like experiments, several hundreds of cells could learn new systemic migratory behaviors and remember them over long periods relative to their cell cycle, forgetting them later. Such associative process seems to correspond to an epigenetic memory. The cellular capacity of learning new adaptive systemic behaviors represents a fundamental evolutionary mechanism for cell adaptation.
Collapse
Affiliation(s)
- Ildefonso M. De la Fuente
- Department of Nutrition, CEBAS-CSIC Institute, Murcia, Spain
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Basque Center of Applied Mathematics (BCAM), Bilbao, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra”, CSIC, Granada, Spain
| | - José I. López
- Department of Pathology, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
15
|
Rodrigues LA, Wellington MO, González-Vega JC, Htoo JK, Van Kessel AG, Columbus DA. Functional amino acid supplementation, regardless of dietary protein content, improves growth performance and immune status of weaned pigs challenged with Salmonella Typhimurium. J Anim Sci 2021; 99:6126666. [PMID: 33529342 DOI: 10.1093/jas/skaa365] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
High dietary protein may increase susceptibility of weaned pigs to enteric pathogens. Dietary supplementation with functional amino acids (FAA) may improve growth performance of pigs during disease challenge. The objective of this study was to evaluate the interactive effects of dietary protein content and FAA supplementation above requirements for growth on performance and immune response of weaned pigs challenged with Salmonella. Sixty-four mixed-sex weanling pigs (13.9 ± 0.82 kg) were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement with low (LP) or high protein (HP) content and basal (AA-) or FAA profile (AA+; Thr, Met, and Trp at 120% of requirements) as factors. After a 7-d adaptation period, pigs were inoculated with either a sterile saline solution (CT) or saline solution containing Salmonella Typhimurium (ST; 3.3 × 109 CFU/mL). Growth performance, body temperature, fecal score, acute-phase proteins, oxidant/antioxidant balance, ST shedding score in feces and intestinal colonization, fecal and digesta myeloperoxidase (MPO), and plasma urea nitrogen (PUN) were measured pre- and postinoculation. There were no dietary effects on any measures pre-inoculation or post-CT inoculation (P > 0.05). Inoculation with ST increased body temperature and fecal score (P < 0.05), serum haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), PUN, and fecal MPO, and decreased serum albumin and plasma reduced glutathione (GSH):oxidized glutathione (GSSG) compared with CT pigs (P < 0.05). ST-inoculation reduced average daily gain (ADG) and feed intake (ADFI) vs. CT pigs (P < 0.05) but was increased by AA+ vs. AA- in ST pigs (P < 0.05). Serum albumin and GSH:GSSG were increased while haptoglobin and SOD were decreased in ST-inoculated pigs fed AA+ vs. AA- (P < 0.05). PUN was higher in HP vs. LP-fed pigs postinoculation (P < 0.05). Fecal ST score was increased in ST-inoculated pigs on days 1 and 2 postinoculation and declined by day 6 (P < 0.05) in all pigs while the overall score was reduced in AA+ vs. AA- pigs (P < 0.05). Cecal digesta ST score was higher in HP vs. LP-fed pigs and were lower in AA+ compared with AA- fed pigs in the colon (P < 0.05). Fecal and digesta MPO were reduced in ST pigs fed AA+ vs. AA- (P < 0.05). These results demonstrate a positive effect of FAA supplementation, with minimal effects of dietary protein, on performance and immune status in weaned pigs challenged with Salmonella.
Collapse
Affiliation(s)
- Lucas A Rodrigues
- Prairie Swine Centre, Inc., Saskatoon, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - Michael O Wellington
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | | | - John K Htoo
- Evonik Operations GmbH, Rodenbacher Chaussee, Hanau-Wolfgang, Germany
| | - Andrew G Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - Daniel A Columbus
- Prairie Swine Centre, Inc., Saskatoon, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
16
|
Ji Y, Li Y, Zhao Z, Li P, Xie Y. Hydrogen Sulfide Overproduction Is Involved in Acute Ischemic Cerebral Injury Under Hyperhomocysteinemia. Front Neurosci 2020; 14:582851. [PMID: 33424533 PMCID: PMC7793897 DOI: 10.3389/fnins.2020.582851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives This study aimed to identify the involvement of hydrogen sulfide overproduction in acute brain injury under ischemia/reperfusion and hyperhomocysteinemia. Methods In vitro and in vivo experiments were conducted to determine: the effect of sodium hydrosulfide treatment on the human neuroblastoma cell line (SH-SY5Y) under conditions of oxygen and glucose deprivation; the changes of hydrogen sulfide levels, inflammatory factors, energetic metabolism, and mitochondrial function in the brain tissue of rats under either ischemia/reperfusion alone or a combination of ischemia/reperfusion and hyperhomocysteinemia; and the potential mechanism underlying the relationship between homocysteine and these changes through the addition of the related inhibitors. Furthermore, experimental technologies, including western blot, enzyme-linked immunosorbent assay, immunofluorescence, reverse transcription polymerase chain reaction, and flow cytometry, were used. Results Our study found that high concentration of sodium hydrosulfide treatment aggravated the decrease in mitochondrial membrane potential, the increase in both mitochondrial permeability transition pore and translocation of cytochrome C, as well as the accumulation of reactive oxygen species in oxygen and glucose deprived SH-SY5Y cells. As a result, neurological deficit appeared in rats with ischemia/reperfusion or ischemia/reperfusion and hyperhomocysteinemia, and a higher water content and larger infarction size of cerebral tissue appeared in rats combined ischemia/reperfusion and hyperhomocysteinemia. Furthermore, alterations in hydrogen sulfide production, inflammatory factors, and mitochondria morphology and function were more evident under the combined ischemia/reperfusion and hyperhomocysteinemia. These changes were, however, alleviated by the addition of inhibitors for CBS, CSE, Hcy, H2S, and NF-κB, although at different levels. Finally, we observed a negative relationship between the blockage of: (a) the nuclear factor kappa-B pathway and the levels of cystathionine β-synthase and hydrogen sulfide; and (b) the hydrogen sulfide pathway and the levels of inflammatory factors. Conclusion Hydrogen sulfide overproduction and reactive inflammatory response are involved in ischemic cerebral injury under hyperhomocysteinemia. Future studies in this direction are warranted to provide a scientific base for targeted medicine development.
Collapse
Affiliation(s)
- Yan Ji
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yusheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zichen Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panxing Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Supplementation of AQUAGEST® as a Source of Medium-Chain Fatty Acids and Taurine Improved the Growth Performance, Intestinal Histomorphology, and Immune Response of Common Carp (Cyprinus carpio) Fed Low Fish Meal Diets. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Four diets were prepared to include a mixture of medium-chain fatty acids and taurine as a digestive/ metabolic enhancer (DME, AQUAGEST®) at 0, 1, 2, and 3 g DME/kg diet and fed to common carp (initial weight, 4.55±0.03 g) for 70 days. Dietary DME significantly increased the final weight, weight gain, specific growth rate, feed intake, and protein efficiency and decreased feed conversion ratio in a dose-dependent manner (P<0.05). The body lipid composition was significantly improved by feeding DME at 2 g/kg diet (P=0.0141). The intestine villus length and the number of goblet cells were significantly increased in fish fed 2 g DME/kg diet (P<0.05). The intestinal villi displayed increased length, branching, and density by supplementing DME to common carp diets. Fish fed DME at 2 g/kg diet displayed markedly decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT ) (P=0.025 and P=0.043) and increased total protein and globulin (P =0.002 and P=0.003). Additionally, fish fed 2 and 3 g DME/kg levels displayed significantly increased albumin levels (P=0.006). Lysozyme and phagocytic activities were increased by feeding DME at 2 g/kg diet, while the phagocytic index increased by 2 and 3 g/kg diet (P<0.05). The optimal supplementation level of DME is 1.63 to 2.05 g/kg for common carp based on the polynomial regression analysis. In conclusion, common carp fed diets with a mixture of medium-chain fatty acids and taurine displayed improved growth, digestion activity, and immune response.
Collapse
|
18
|
El-Maraghi EF, Abdel-Fattah KI, Soliman SM, El-Sayed WM. Taurine abates the liver damage induced by γ-irradiation in rats through anti-inflammatory and anti-apoptotic pathways. Int J Radiat Biol 2020; 96:1550-1559. [PMID: 32991236 DOI: 10.1080/09553002.2020.1828656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Radiotherapy is the most common regimen for treating human cancers; however, ionizing radiation (IR) has hazardous effects on metabolically active organs such as the liver. AIM This study aimed to investigate the possible protective (prophylactic and therapeutic) action of taurine against liver damage induced by gamma irradiation at different time intervals as well as the mechanisms by which taurine could provide its potential amelioration actions. METHODS In this study, 90 adult male rats (∼150 g) were randomly divided into five groups. Group 1 is the control group, group 2 received an oral daily dose (500 mg/kg) of taurine for two weeks, group 3 was exposed to a whole-body single dose of γ-irradiation (6 Gy), and groups 4 and 5 received taurine before or after γ-irradiation, respectively. Six rats from each group were sacrificed after 1, 2, and 3 weeks. RESULTS Over the period of the 3 weeks studied, there were significant increases in MDA, NO, TNF-α, and cytochrome-c levels and ALT, caspases-9 and -3 activities and significant decreases in GSH, SOD, CAT, and GPx in the irradiated group when compared with the relevant control. The liver of irradiated rats showed dilatation in the central and portal veins, edema, and degenerated hepatocytes. CONCLUSIONS Taken together, IR caused maximum devastation in the liver 2 weeks after exposure as shown by elevation of the inflammatory and apoptotic markers and reducing the antioxidants. Taurine was able to alleviate the deleterious biochemical and histological effects whether given before or after IR. The magnitude of the observed protective effects was in both cases very similar.
Collapse
Affiliation(s)
- Engy F El-Maraghi
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Kamal I Abdel-Fattah
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Saeed M Soliman
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, University of Ain Shams, Cairo, Egypt
| |
Collapse
|
19
|
Baliou S, Kyriakopoulos AM, Goulielmaki M, Panayiotidis MI, Spandidos DA, Zoumpourlis V. Significance of taurine transporter (TauT) in homeostasis and its layers of regulation (Review). Mol Med Rep 2020; 22:2163-2173. [PMID: 32705197 PMCID: PMC7411481 DOI: 10.3892/mmr.2020.11321] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/09/2020] [Indexed: 11/05/2022] Open
Abstract
Taurine (2‑aminoethanesulfonic acid) contributes to homeostasis, mainly through its antioxidant and osmoregulatory properties. Taurine's influx and efflux are mainly mediated through the ubiquitous expression of the sodium/chloride‑dependent taurine transporter, located on the plasma membrane. The significance of the taurine transporter has been shown in various organ malfunctions in taurine‑transporter‑null mice. The taurine transporter differentially responds to various cellular stimuli including ionic environment, electrochemical charge, and pH changes. The renal system has been used as a model to evaluate the factors that significantly determine the regulation of taurine transporter regulation.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | | | | | - Michalis I Panayiotidis
- Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
20
|
Gomes A, Godinho-Pereira J, Oudot C, Sequeira CO, Macià A, Carvalho F, Motilva MJ, Pereira SA, Matzapetakis M, Brenner C, Santos CN. Berry fruits modulate kidney dysfunction and urine metabolome in Dahl salt-sensitive rats. Free Radic Biol Med 2020; 154:119-131. [PMID: 32437928 DOI: 10.1016/j.freeradbiomed.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/21/2020] [Accepted: 05/02/2020] [Indexed: 01/12/2023]
Abstract
Berries are rich sources of (poly)phenols which have been associated with the prevention of cardiovascular diseases in animal models and in human clinical trials. Recently, a berry enriched diet was reported to decrease blood pressure and attenuate kidney disease progression on Dahl salt-sensitive rats. However, the relationship between kidney function, metabolism and (poly)phenols was not evaluated. We hypothesize that berries promote metabolic alterations concomitantly with an attenuation of the progression of renal disease. For that, kidney and urinary metabolomic changes induced by the berry enriched diet in hypertensive rats (Dahl salt-sensitive) were analyzed using liquid chromatography (UPLC-MS/MS) and 1H NMR techniques. Moreover, physiological and metabolic parameters, and kidney histopathological data were also collected. The severity of the kidney lesions promoted in Dahl rats by a high salt diet was significantly reduced by berries, namely a decrease in sclerotic glomeruli. In addition, was observed a high urinary excretion of metabolites that are indicators of alterations in glycolysis/gluconeogenesis, citrate cycle, and pyruvate metabolism in the salt induced-hypertensive rats, a metabolic profile counteracted by berries consumption. We also provide novel insights that relates (poly)phenols consumption with alterations in cysteine redox pools. Cysteine contribute to the redox signaling that is normally disrupted during kidney disease onset and progression. Our findings provide a vision about the metabolic responses of hypertensive rats to a (poly)phenol enriched diet, which may contribute to the understanding of the beneficial effects of (poly)phenols in salt-induced hypertension.
Collapse
Affiliation(s)
- A Gomes
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - J Godinho-Pereira
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - C Oudot
- INSERM UMR-S 1180, University of Paris-Sud, University of Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay Malabry, France
| | - C O Sequeira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - A Macià
- Food Technology Department, Agrotecnio Center, Escuela Técnica Superior de Ingeniería Agraria, University of Lleida, Lleida, Spain
| | - F Carvalho
- Laboratório de Morfologia Renal, Hospital Curry Cabral, EPE, Rua da Beneficência n. 8, 1069-166, Lisboa, Portugal
| | - M J Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV, CSIC-Universidad de La Rioja-Gobierno de La Rioja, Finca "La Grajera", Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain
| | - S A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - M Matzapetakis
- Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - C Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, 94805, Villejuif, France
| | - C N Santos
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal; CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| |
Collapse
|
21
|
Chaoyue W, Fengna L, Yehui D, Qiuping G, Wenlong W, Lingyu Z, Jianzhong L, Shanping H, Wen C, Yulong Y. Dietary taurine regulates free amino acid profiles and taurine metabolism in piglets with diquat-induced oxidative stress. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103569] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
22
|
Thalacker-Mercer A, Riddle E, Barre L. Protein and amino acids for skeletal muscle health in aging. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:29-64. [PMID: 32035599 DOI: 10.1016/bs.afnr.2019.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins and its building blocks, amino acids, have many physiological roles in the body. While some amino acids can be synthesized endogenously, exogenous protein and amino acids are necessary to maintain homeostasis. Because skeletal muscle contains a large portion of endogenous protein and plays important roles in movement, regulation, and metabolism, imbalanced protein and amino acid availability may result in clinical conditions including skeletal muscle atrophy, impaired muscle growth or regrowth, and functional decline. Aging is associated with changes in protein metabolism and multiple physiological and functional alterations in the skeletal muscle that are accentuated by decreased dietary protein intake and impaired anabolic responses to stimuli. Inactivity and chronically elevated inflammation of the skeletal muscle can initiate and/or augment pathological remodeling of the tissue (i.e., increase of fat and fibrotic tissues and atrophy of the muscle). Defining an adequate amount of dietary protein that is appropriate to maintain the availability of amino acids for biological needs is necessary but is still widely debated for older adults. This chapter will provide (i) an overview of dietary protein and amino acids and their role in skeletal muscle health; (ii) an overview of skeletal muscle structure and function and the deterioration of muscle that occurs with advancing age; (iii) a discussion of the relationship between protein/amino acid metabolism and skeletal muscle decline with aging; and (iv) a brief discussion of optimal protein intakes for older adults to maintain skeletal muscle health in aging.
Collapse
Affiliation(s)
| | | | - Laura Barre
- Cornell University, Ithaca, NY, United States
| |
Collapse
|
23
|
Alharthi AS, Coleman DN, Liang Y, Batistel F, Elolimy AA, Yambao RC, Abdel-Hamied E, Pan YX, Parys C, Alhidary IA, Abdelrahman MM, Loor JJ. Hepatic 1-carbon metabolism enzyme activity, intermediate metabolites, and growth in neonatal Holstein dairy calves are altered by maternal supply of methionine during late pregnancy. J Dairy Sci 2019; 102:10291-10303. [PMID: 31477291 DOI: 10.3168/jds.2019-16562] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/10/2019] [Indexed: 01/24/2023]
Abstract
Maternal supply of methyl donors such as methionine (Met) during late pregnancy can affect offspring growth and development. The objective was to investigate the effect of postruminal Met supply during late pregnancy on 1-carbon, Met cycle, and transsulfuration pathways in the calf liver. During the last 28 d of pregnancy, cows were individually fed a control diet or the control diet plus rumen-protected dl-Met (MET; 0.09% dry matter intake). Liver samples obtained from calves (n = 14/group) at 4, 14, 28, and 50 d of age were used for metabolomics, real-time PCR, and enzyme activity analyses. Genes associated with 1-carbon metabolism, DNA methylation, and the cytidine 5'-diphosphocholine-choline pathway were analyzed via real-time PCR. Activity of betaine homocysteine methyltransferase, cystathionine β-synthase, and 5-methyltetrahydrofolate homocysteine methyltransferase (MTR) was analyzed using 14C isotopes. Data were analyzed using a mixed model that included the fixed effects of maternal treatment, day, and their interaction, and the random effect was calf within maternal diet. Calves born to dams offered MET tended to have greater birth body weight and had overall greater body weight during the first 9 wk of life. However, no differences were detected for daily feed intake and average daily gain between groups. Concentrations of betaine and choline, reflecting Met cycle activity, at d 14 through 28 were greater in MET calves. Transsulfuration pathway intermediates also were altered in MET calves, with concentrations of cysteine sulfinic acid and hypotaurine (d 4 and 14) and taurine being greater (d 4, 14, 28, and 50). Despite the lack of differences in daily feed intake, the greater concentrations of the tricarboxylic acid cycle intermediates fumarate and glutamate along with NAD/NADH in MET calves indicated enhanced rates of energy metabolism. Although activity of betaine homocysteine methyltransferase was greater in MET calves at d 14, cystathionine β-synthase was lower and increased at d 14 and 28, where it was greater compared with the control diet. Activity of MTR was lower at d 4 and 50 in MET calves. Among gene targets measured, MET calves had greater overall expression of MTR, phosphatidylethanolamine N-methyltransferase, and choline kinase α and β. An interaction of maternal diet by time was detected for mRNA abundance of DNA methyltransferase 3α (involved in de novo methylation) due to greater values at d 4 and 14 in MET calves. Overall, the data indicate that enhanced postruminal supply of Met to cows during late pregnancy may program hepatic metabolism of the calf in the context of maintaining Met homeostasis, phosphatidylcholine and taurine synthesis, DNA methylation, and energy metabolism. These alterations potentially result in better efficiency of nutrient use, hence conferring the calf a physiologic advantage during a period of rapid growth and development. The precise biologic mechanisms remain to be established.
Collapse
Affiliation(s)
- A S Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - D N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - F Batistel
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan 84322-4815
| | - A A Elolimy
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - R C Yambao
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - E Abdel-Hamied
- Animal Medicine Department, Beni-Suef University, Beni-Suef, Egypt 62511
| | - Y-X Pan
- Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C Parys
- Evonik Nutrition and Care GmbH, Hanau-Wolfgang, Germany 63457
| | - I A Alhidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - M M Abdelrahman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
24
|
Brown-Borg HM, Rakoczy S, Wonderlich JA, Borg KE, Rojanathammanee L. Metabolic adaptation of short-living growth hormone transgenic mice to methionine restriction and supplementation. Ann N Y Acad Sci 2019; 1418:118-136. [PMID: 29722030 DOI: 10.1111/nyas.13687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/17/2018] [Accepted: 02/26/2018] [Indexed: 01/07/2023]
Abstract
Extension of mammalian health and life span has been achieved using various dietary interventions. We previously reported that restricting dietary methionine (MET) content extends life span only when growth hormone signaling is intact (no life span increase in GH deficiency or GH resistance). To understand the metabolic responses of altered dietary MET in the context of accelerated aging (high GH), the current study evaluated MET and related pathways in short-living GH transgenic (GH Tg) and wild-type mice following 8 weeks of restricted (0.16%), low (0.43%), or enriched (1.3%) MET consumption. Liver MET metabolic enzymes were suppressed in GH Tg compared to diet-matched wild-type mice. MET metabolite levels were differentially affected by GH status and diet. SAM:SAH ratios were markedly higher in GH Tg mice. Glutathione levels were lower in both genotypes consuming 0.16% MET but reduced in GH Tg mice when compared to wild type. Tissue thioredoxin and glutaredoxin were impacted by diet and GH status. The responsiveness to the different MET diets is reflected across many metabolic pathways indicating the importance of GH signaling in the ability to discriminate dietary amino acid levels and alter metabolism and life span.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota
| | - Sharlene Rakoczy
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota
| | - Joseph A Wonderlich
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota.,Department of Psychology, George Mason University, Fairfax, Virginia
| | - Kurt E Borg
- Education Resources, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota
| | - Lalida Rojanathammanee
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota.,School of Sports Science, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
25
|
Rodríguez‐Martínez S, Márquez R, Inácio Â, Galván I. Changes in melanocyte RNA and DNA methylation favour pheomelanin synthesis and may avoid systemic oxidative stress after dietary cysteine supplementation in birds. Mol Ecol 2019; 28:1030-1042. [DOI: 10.1111/mec.15024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/27/2022]
Affiliation(s)
| | - Rafael Márquez
- Departamento de Ecología Evolutiva Estación Biológica de Doñana, CSIC Sevilla Spain
| | - Ângela Inácio
- Laboratório de GenéticaInstituto de Saúde AmbientalFaculdade de MedicinaUniversidade de Lisboa Lisboa Portugal
| | - Ismael Galván
- Departamento de Ecología Evolutiva Estación Biológica de Doñana, CSIC Sevilla Spain
| |
Collapse
|
26
|
Wen C, Li F, Zhang L, Duan Y, Guo Q, Wang W, He S, Li J, Yin Y. Taurine is Involved in Energy Metabolism in Muscles, Adipose Tissue, and the Liver. Mol Nutr Food Res 2018; 63:e1800536. [DOI: 10.1002/mnfr.201800536] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/13/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Chaoyue Wen
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Fengna Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- Hunan Co‐Innovation Center of Animal Production SafetyCICAPSHunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients Changsha 410128 China
| | - Lingyu Zhang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Yehui Duan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
| | - Qiuping Guo
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- University of Chinese Academy of Sciences Beijing 100039 China
| | - Wenlong Wang
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Shanping He
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Jianzhong Li
- Laboratory of Animal Nutrition and Human HealthHunan international joint laboratory of Animal Intestinal Ecology and HealthCollege of Life ScienceHunan Normal University Changsha Hunan 410081 China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessKey Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of SciencesHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionScientific Observing and Experimental Station of Animal Nutrition and Feed Science in South‐CentralMinistry of Agriculture Changsha 410125 China
- Hunan Co‐Innovation Center of Animal Production SafetyCICAPSHunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients Changsha 410128 China
| |
Collapse
|
27
|
Stipanuk MH, Jurkowska H, Niewiadomski J, Mazor KM, Roman HB, Hirschberger LL. Identification of Taurine-Responsive Genes in Murine Liver Using the Cdo1-Null Mouse Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:475-495. [PMID: 28849476 DOI: 10.1007/978-94-024-1079-2_38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cysteine dioxygenase (Cdo1)-null mouse is unable to synthesize hypotaurine and taurine by the cysteine/cysteine sulfinate pathway and has very low taurine levels in all tissues. The lack of taurine is associated with a lack of taurine conjugation of bile acids, a dramatic increase in the total and unconjugated hepatic bile acid pools, and an increase in betaine and other molecules that serve as organic osmolytes. We used the Cdo1-mouse model to determine the effects of taurine deficiency on expression of proteins involved in sulfur amino acid and bile acid metabolism. We identified cysteine sulfinic acid decarboxylase (Csad), betaine:homocysteine methytransferase (Bhmt), cholesterol 7α-hydroxylase (Cyp7a1), and cytochrome P450 3A11 (Cyp3a11) as genes whose hepatic expression is strongly regulated in response to taurine depletion in the Cdo1-null mouse. Dietary taurine supplementation of Cdo1-null mice restored hepatic levels of these four proteins and their respective mRNAs to wild-type levels, whereas dietary taurine supplementation had no effect on abundance of these proteins or mRNAs in wild-type mice.
Collapse
Affiliation(s)
- Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| | - Halina Jurkowska
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Kevin M Mazor
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Heather B Roman
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
28
|
Wang Y, Matye D, Nguyen N, Zhang Y, Li T. HNF4α Regulates CSAD to Couple Hepatic Taurine Production to Bile Acid Synthesis in Mice. Gene Expr 2018; 18:187-196. [PMID: 29871716 PMCID: PMC6190117 DOI: 10.3727/105221618x15277685544442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cysteine dioxygenase 1 (CDO1) converts cysteine to cysteine sulfinic acid, which can be further converted by cysteine sulfinic acid decarboxylase (CSAD) to hypotaurine for taurine production. This cysteine catabolic pathway plays a major role in regulating hepatic cysteine homeostasis. Furthermore, taurine is used for bile acid conjugation, which enhances bile acid solubility and physiological function in the gut. Recent studies show that this cysteine catabolic pathway is repressed by bile acid signaling, but the molecular mechanisms have not been fully elucidated. The mechanisms of bile acid and farnesoid X receptor (FXR) regulation of hepatic CSAD expression were studied in mice and hepatocytes. We showed that hepatocyte nuclear factor 4α (HNF4α) bound the mouse CSAD proximal promoter and induced CSAD transcription. FXR-induced small heterodimer partner (SHP) repressed mouse CSAD gene transcription via interacting with HNF4α as a repressor. Consistent with this model, cholic acid feeding, obeticholic acid administration, and liver HNF4α knockdown reduced hepatic CSAD expression, while liver SHP knockout and apical sodium-dependent bile acid transporter (ASBT) inhibitor treatment induced hepatic CSAD expression in mice. Furthermore, TNF-α also inhibited CSAD expression, which may be partially mediated by reduced HNF4α in mouse hepatocytes. In contrast, bile acids and GW4064 did not inhibit CSAD expression in human hepatocytes. This study identified mouse CSAD as a novel transcriptional target of HNF4α. Bile acids and cytokines repress hepatic CSAD, which closely couples taurine production to bile acid synthesis in mice. The species-specific regulation of CSAD reflects the differential preference of bile acid conjugation to glycine and taurine in humans and mice, respectively.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, KS, USA
| | - David Matye
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, KS, USA
| | - Nga Nguyen
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, KS, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, KS, USA
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, KS, USA
| |
Collapse
|
29
|
Li YC, Li YZ, Li R, Lan L, Li CL, Huang M, Shi D, Feng RN, Sun CH. Dietary Sulfur-Containing Amino Acids Are Associated with Higher Prevalence of Overweight/Obesity in Northern Chinese Adults, an Internet-Based Cross-Sectional Study. ANNALS OF NUTRITION AND METABOLISM 2018; 73:44-53. [PMID: 29879713 DOI: 10.1159/000490194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/14/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND/AIMS Elevation of plasma sulfur-containing amino acids (SAAs) is generally associated with higher body mass index (BMI) and unfavorable lipid profiles. It is not known how dietary SAAs relate to these associations in humans. METHODS A convenient tool named internet-based dietary questionnaire for Chinese (IDQC) was used to estimate dietary SAAs intake. A total of 936 participants were randomly recruited and asked to complete the IDQC. Furthermore, 90 subjects were randomly selected to perform a subgroup study. The associations between dietary SAAs and prevalence of obesity, lipid profiles, and status of insulin resistance (IR), inflammation and oxidative stress were assessed. RESULTS Dietary total SAAs and cysteine of overweight/obese participants were significantly higher. Dietary total SAAs and cysteine were positively associated with BMI and waist circumference. Higher dietary total SAAs were associated with higher prevalence of overweight/obesity. Higher dietary total SAAs and cysteine also associated with higher serum triglyceride (total cholesterol), low density lipoprotein, fasting blood glucose, 2 h-postprandial glucose, and homeostasis model assessment of IR. In the subgroup study, positive associations between dietary SAAs and inflammation biomarkers were also observed. CONCLUSIONS Dietary SAAs are associated with higher prevalence of overweight/obesity, unfavorable lipid profiles and status of IR, and inflammation.
Collapse
Affiliation(s)
- Yan-Chuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China.,Department of Nutrition and Food Hygiene, School of Public Health, Hainan Medical University, Haikou, China
| | - Yu-Zheng Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Rui Li
- Department of Food and School Hygiene, Dalian Center for Disease Control and Prevention, Dalian, China
| | - Li Lan
- Department of Chronic Disease Prevention and Control, Harbin Center for Disease Control and Prevention, Harbin, China
| | - Chun-Long Li
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Min Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Dan Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Ren-Nan Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Chang-Hao Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Wang Y, Li J, Matye D, Zhang Y, Dennis K, Ding WX, Li T. Bile acids regulate cysteine catabolism and glutathione regeneration to modulate hepatic sensitivity to oxidative injury. JCI Insight 2018; 3:99676. [PMID: 29669937 DOI: 10.1172/jci.insight.99676] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/20/2018] [Indexed: 12/23/2022] Open
Abstract
Bile acids are signaling molecules that critically control hepatocellular function. Disrupted bile acid homeostasis may be implicated in the pathogenesis of chronic liver diseases. Glutathione is an important antioxidant that protects the liver against oxidative injury. Various forms of liver disease share the common characteristics of reduced cellular glutathione and elevated oxidative stress. This study reports a potentially novel physiological function of bile acids in regulating hepatic sulfur amino acid and glutathione metabolism. We found that bile acids strongly inhibited the cysteine dioxygenase type-1-mediated (CDO1-mediated) cysteine catabolic pathway via a farnesoid X receptor-dependent mechanism. Attenuating this bile acid repressive effect depleted the free cysteine pool and reduced the glutathione concentration in mouse liver. Upon acetaminophen challenge, cholestyramine-fed mice showed impaired hepatic glutathione regeneration capacity and markedly worsened liver injury, which was fully prevented by N-acetylcysteine administration. These effects were recapitulated in CDO1-overexpressing hepatocytes. Findings from this study support the importance of maintaining bile acid homeostasis under physiological and pathophysiological conditions, as altered hepatic bile acid signaling may negatively impact the antioxidant defense mechanism and sensitivity to oxidative injury. Furthermore, this finding provides a possible explanation for the reported mild hepatotoxicity associated with the clinical use of bile acid sequestrants in human patients.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, and
| | - Jibiao Li
- Department of Pharmacology, Toxicology and Therapeutics, and
| | - David Matye
- Department of Pharmacology, Toxicology and Therapeutics, and
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, and
| | - Katie Dennis
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, and
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, and
| |
Collapse
|
31
|
Xu B, Zhou H, Mei Q, Tang W, Sun Y, Gao M, Zhang C, Deng S, Zhang Y. Real-Time Visualization of Cysteine Metabolism in Living Cells with Ratiometric Fluorescence Probes. Anal Chem 2018; 90:2686-2691. [DOI: 10.1021/acs.analchem.7b04493] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bingying Xu
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Haibo Zhou
- Institute
of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qingsong Mei
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Wei Tang
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yilun Sun
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Mengping Gao
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Cuilan Zhang
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shengsong Deng
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yong Zhang
- School
of Biological and Medical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
32
|
Coelho NR, Dias CG, João Correia M, Grácio P, Serpa J, Monteiro EC, Diogo LN, Pereira SA. Cysteine Oxidative Dynamics Underlies Hypertension and Kidney Dysfunction Induced by Chronic Intermittent Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1071:83-88. [DOI: 10.1007/978-3-319-91137-3_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Iciek M, Bilska-Wilkosz A, Górny M, Sokołowska-Jeżewicz M, Kowalczyk-Pachel D. The Effects of Different Garlic-Derived Allyl Sulfides on Anaerobic Sulfur Metabolism in the Mouse Kidney. Antioxidants (Basel) 2016; 5:antiox5040046. [PMID: 27929399 PMCID: PMC5187544 DOI: 10.3390/antiox5040046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/03/2016] [Accepted: 11/22/2016] [Indexed: 12/03/2022] Open
Abstract
Diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl trisulfide (DATS) are major oil-soluble organosulfur compounds of garlic responsible for most of its pharmacological effects. The present study investigated the influence of repeated intraperitoneally (ip) administration of DAS, DADS and DATS on the total level of sulfane sulfur, bound sulfur (S-sulfhydration) and hydrogen sulfide (H2S) and on the activity of enzymes, which catalyze sulfane sulfur formation and transfer from a donor to an acceptor in the normal mouse kidney, i.e., γ-cystathionase (CSE) and rhodanese (TST). The activity of aldehyde dehydrogenase (ALDH), which is a redox-sensitive protein, containing an –SH group in its catalytic center, was also determined. The obtained results indicated that all tested compounds significantly increased the activity of TST. Moreover, DADS and DATS increased the total sulfane sulfur level and CSE activity in the normal mouse kidney. ALDH activity was inhibited in the kidney after DATS administration. The results indicated also that none of the studied allyl sulfides affected the level of bound sulfur or H2S. Thus, it can be concluded that garlic-derived DADS and DATS can be a source of sulfane sulfur for renal cells but they are not connected with persulfide formation.
Collapse
Affiliation(s)
- Małgorzata Iciek
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kopernika 7, Kraków 31-034, Poland.
| | - Anna Bilska-Wilkosz
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kopernika 7, Kraków 31-034, Poland.
| | - Magdalena Górny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kopernika 7, Kraków 31-034, Poland.
| | - Maria Sokołowska-Jeżewicz
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kopernika 7, Kraków 31-034, Poland.
| | - Danuta Kowalczyk-Pachel
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kopernika 7, Kraków 31-034, Poland.
| |
Collapse
|
34
|
Cysteic Acid in Dietary Keratin is Metabolized to Glutathione and Liver Taurine in a Rat Model of Human Digestion. Nutrients 2016; 8:104. [PMID: 26907334 PMCID: PMC4772066 DOI: 10.3390/nu8020104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 01/10/2023] Open
Abstract
Poultry feathers, consisting largely of keratin, are a low-value product of the poultry industry. The safety and digestibility of a dietary protein produced from keratin (KER) was compared to a cysteine-supplemented casein-based diet in a growing rat model for four weeks. KER proved to be an effective substitute for casein at 50% of the total dietary protein, with no changes in the rats' food intake, weight gain, organ weight, bone mineral density, white blood cell counts, liver glutathione, or blood glutathione. Inclusion of KER in the diet reduced total protein digestibility from 94% to 86% but significantly increased total dietary cysteine uptake and subsequent liver taurine levels. The KER diet also significantly increased caecum weight and significantly decreased fat digestibility, resulting in a lower proportion of body fat, and induced a significant increase in blood haemoglobin. KER is therefore a safe and suitable protein substitute for casein, and the cysteic acid in keratin is metabolised to maintain normal liver and blood glutathione levels.
Collapse
|
35
|
Reyes RC, Cittolin-Santos GF, Kim JE, Won SJ, Brennan-Minnella AM, Katz M, Glass GA, Swanson RA. Neuronal Glutathione Content and Antioxidant Capacity can be Normalized In Situ by N-acetyl Cysteine Concentrations Attained in Human Cerebrospinal Fluid. Neurotherapeutics 2016; 13:217-25. [PMID: 26572666 PMCID: PMC4720670 DOI: 10.1007/s13311-015-0404-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
N-acetyl cysteine (NAC) supports the synthesis of glutathione (GSH), an essential substrate for fast, enzymatically catalyzed oxidant scavenging and protein repair processes. NAC is entering clinical trials for adrenoleukodystrophy, Parkinson's disease, schizophrenia, and other disorders in which oxidative stress may contribute to disease progression. However, these trials are hampered by uncertainty about the dose of NAC required to achieve biological effects in human brain. Here we describe an approach to this issue in which mice are used to establish the levels of NAC in cerebrospinal fluid (CSF) required to affect brain neurons. NAC dosing in humans can then be calibrated to achieve these NAC levels in human CSF. The mice were treated with NAC over a range of doses, followed by assessments of neuronal GSH levels and neuronal antioxidant capacity in ex vivo brain slices. Neuronal GSH levels and antioxidant capacity were augmented at NAC doses that produced peak CSF NAC concentrations of ≥50 nM. Oral NAC administration to humans produced CSF concentrations of up to 10 μM, thus demonstrating that oral NAC administration can surpass the levels required for biological activity in brain. Variations of this approach may similarly facilitate and rationalize drug dosing for other agents targeting central nervous system disorders.
Collapse
Affiliation(s)
- Reno C Reyes
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA
| | - Giordano Fabricio Cittolin-Santos
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica, UFRGS, Porto Alegre, Brazil
- Science Without Borders, CNPq, Brasilia, Brazil
| | - Ji-Eun Kim
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA
| | - Seok Joon Won
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA
| | - Angela M Brennan-Minnella
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA
| | - Maya Katz
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA
| | - Graham A Glass
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA
| | - Raymond A Swanson
- Neurology Service, San Francisco Veterans Affairs Medical Center, 4150 Clement St., San Francisco, CA, 94121, USA.
- The Department of Neurology, University of California, San Francisco Medical Center, San Francisco, CA, USA.
| |
Collapse
|
36
|
Shen YB, Weaver AC, Kim SW. Effect of feed grade L-methionine on growth performance and gut health in nursery pigs compared with conventional DL-methionine. J Anim Sci 2015; 92:5530-9. [PMID: 25414105 DOI: 10.2527/jas.2014-7830] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Two experiments were conducted to test if supplementation of LMET has beneficial effects on growth performance and gut health in nursery pigs compared with DL-Met. In Exp. 1, 168 pigs in 56 pens were randomly allotted to 7 dietary treatments for 20 d, including a basal diet (BD; 55% of the NRC requirement for Met), the BD+0.048% L-Met or DL-Met (70% of the NRC requirement), the BD+0.096% L-Met or DL-Met (85% of the NRC requirement), and the BD+0.144% L-Met or DL-Met (100% of the NRC requirement). Body weight and feed disappearance were recorded every 5 d for computation of growth performance. In Exp. 2, 20 individually housed nursery pigs were randomly allotted to 2 dietary treatments for 20 d: DML (0.16% Met from the BD+0.145% supplemental DL-Met) or LMET (0.16% Met from the BD+0.145% supplemental L-Met). Both diets had Met meeting 95% of the NRC requirement. Duodenum samples from all pigs were collected at the end of the trial to evaluate morphology and redox status. In Exp. 1, during the entire 20 d, pigs fed diets supplemented with L-Met tended to have greater (P=0.087) ADG and reduced (P<0.01) plasma urea nitrogen (PUN) than pigs fed diets supplemented with DL-Met. The relative bioavailability (RBA) of L-Met to DL-Met for ADG and G:F was 143.8 and 122.7%, respectively. In Exp. 2, pigs fed a diet supplemented with L-Met had duodenum tissue with greater (P<0.05) concentrations of glutathione (GSH) and greater villus height and width as well as lower (P<0.05) concentrations of protein carbonyl compared with pigs fed DL-Met. Overall, compared with DL-Met, the use of L-Met as a source of supplemental Met in nursery pig diets enhanced duodenum villus development in association with reduced oxidative stress and improved GSH. The beneficial effects of supplementing L-Met compared to DL-Met in gut of nursery pigs resulted in a potential enhancement of ADG and reduction of PUN.
Collapse
Affiliation(s)
- Y B Shen
- Department of Animal Science, North Carolina State University, Raleigh 27695
| | - A C Weaver
- Department of Animal Science, North Carolina State University, Raleigh 27695
| | - S W Kim
- Department of Animal Science, North Carolina State University, Raleigh 27695
| |
Collapse
|
37
|
Jurkowska H, Niewiadomski J, Hirschberger LL, Roman HB, Mazor KM, Liu X, Locasale JW, Park E, Stipanuk MH. Downregulation of hepatic betaine:homocysteine methyltransferase (BHMT) expression in taurine-deficient mice is reversed by taurine supplementation in vivo. Amino Acids 2015; 48:665-676. [PMID: 26481005 DOI: 10.1007/s00726-015-2108-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/26/2015] [Indexed: 01/25/2023]
Abstract
The cysteine dioxygenase (Cdo1)-null and the cysteine sulfinic acid decarboxylase (Csad)-null mouse are not able to synthesize hypotaurine/taurine by the cysteine/cysteine sulfinate pathway and have very low tissue taurine levels. These mice provide excellent models for studying the effects of taurine on biological processes. Using these mouse models, we identified betaine:homocysteine methyltransferase (BHMT) as a protein whose in vivo expression is robustly regulated by taurine. BHMT levels are low in liver of both Cdo1-null and Csad-null mice, but are restored to wild-type levels by dietary taurine supplementation. A lack of BHMT activity was indicated by an increase in the hepatic betaine level. In contrast to observations in liver of Cdo1-null and Csad-null mice, BHMT was not affected by taurine supplementation of primary hepatocytes from these mice. Likewise, CSAD abundance was not affected by taurine supplementation of primary hepatocytes, although it was robustly upregulated in liver of Cdo1-null and Csad-null mice and lowered to wild-type levels by dietary taurine supplementation. The mechanism by which taurine status affects hepatic CSAD and BHMT expression appears to be complex and to require factors outside of hepatocytes. Within the liver, mRNA abundance for both CSAD and BHMT was upregulated in parallel with protein levels, indicating regulation of BHMT and CSAD mRNA synthesis or degradation.
Collapse
Affiliation(s)
- Halina Jurkowska
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.,Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Julie Niewiadomski
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Heather B Roman
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Kevin M Mazor
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Xiaojing Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Jason W Locasale
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Eunkyue Park
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
38
|
Terrill JR, Grounds MD, Arthur PG. Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy. Int J Biochem Cell Biol 2015; 66:141-8. [PMID: 26239309 DOI: 10.1016/j.biocel.2015.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/02/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023]
Abstract
The amino acid taurine is essential for the function of skeletal muscle and administration is proposed as a treatment for Duchenne Muscular Dystrophy (DMD). Taurine homeostasis is dependent on multiple processes including absorption of taurine from food, endogenous synthesis from cysteine and reabsorption in the kidney. This study investigates the cause of reported taurine deficiency in the dystrophic mdx mouse model of DMD. Levels of metabolites (taurine, cysteine, cysteine sulfinate and hypotaurine) and proteins (taurine transporter [TauT], cysteine deoxygenase and cysteine sulfinate dehydrogenase) were quantified in juvenile control C57 and dystrophic mdx mice aged 18 days, 4 and 6 weeks. In C57 mice, taurine content was much higher in both liver and plasma at 18 days, and both cysteine and cysteine deoxygenase were increased. As taurine levels decreased in maturing C57 mice, there was increased transport (reabsorption) of taurine in the kidney and muscle. In mdx mice, taurine and cysteine levels were much lower in liver and plasma at 18 days, and in muscle cysteine was low at 18 days, whereas taurine was lower at 4: these changes were associated with perturbations in taurine transport in liver, kidney and muscle and altered metabolism in liver and kidney. These data suggest that the maintenance of adequate body taurine relies on sufficient dietary intake of taurine and cysteine availability and metabolism, as well as retention of taurine by the kidney. This research indicates dystrophin deficiency not only perturbs taurine metabolism in the muscle but also affects taurine metabolism in the liver and kidney, and supports targeting cysteine and taurine deficiency as a potential therapy for DMD.
Collapse
Affiliation(s)
- Jessica R Terrill
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA, Australia; School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, WA, Australia.
| | - Miranda D Grounds
- School of Anatomy, Physiology and Human Biology, the University of Western Australia, Perth, WA, Australia
| | - Peter G Arthur
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
39
|
Mori K, Kumano A, Kodama T, Takiguchi S, Takano N, Kumada K, Hatao K, Kimura T. Evaluation of hepatic damage by reactive metabolites--with consideration of circadian variation of murine hepatic glutathione levels. J Toxicol Sci 2015; 39:537-44. [PMID: 25056778 DOI: 10.2131/jts.39.537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Generally, reactive metabolites are detoxified by conjugation with glutathione (GSH). A GSH-depleted model was prepared by administering L-buthionine-(S,R)-sulfoximine (BSO), which can be used to detect hepatic damage by reactive metabolites. However, BSO may cause adverse effects on other organs, such as renal damage by reactive metabolites because it depletes GSH in the whole body. The present study was designed to examine whether it was possible to specifically detect hepatic damage by reactive metabolites without reducing renal GSH levels by administering BSO in a time course when hepatic GSH levels are naturally reduced. Male BALB/c mice were administered reverse osmosis (RO) water or 20 mmol/l BSO in drinking water for 4 days. Subsequently, animals in the RO water group were orally administered 500 mg/kg acetaminophen (APAP) at 9:00 or 15:00 and in the BSO group at 9:00 for 4 days. As a result, severe hepatic damage and necrosis of the renal proximal tubules were observed in the BSO/APAP administration at 9:00 group, and all animals died on 1 or 2 days after APAP administration. Hepatic damage was clearly increased in the RO water/APAP administration at 15:00 group compared with the RO water/APAP administration at 9:00 group. However, renal damage and deaths were not observed. This BSO administration model may detect renal damage induced by reactive metabolites. Using an administration time course, whereby hepatic GSH levels were naturally reduced, hepatic damage by reactive metabolites can be detected without secondary renal effects.
Collapse
Affiliation(s)
- Koji Mori
- Fukushima Research Laboratories, R&D Department, TOA EIYO LTD
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Hydrogen sulfide (H₂S) has emerged as an important signaling molecule with beneficial effects on various cellular processes affecting, for example, cardiovascular and neurological functions. The physiological importance of H₂S is motivating efforts to develop strategies for modulating its levels. However, advancement in the field of H₂S-based therapeutics is hampered by fundamental gaps in our knowledge of how H₂S is regulated, its mechanism of action, and its molecular targets. This review provides an overview of sulfur metabolism; describes recent progress that has shed light on the mechanism of H₂S as a signaling molecule; and examines nutritional regulation of sulfur metabolism, which pertains to health and disease.
Collapse
Affiliation(s)
- Omer Kabil
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600;
| | | | | |
Collapse
|
41
|
Jurkowska H, Stipanuk MH, Hirschberger LL, Roman HB. Propargylglycine inhibits hypotaurine/taurine synthesis and elevates cystathionine and homocysteine concentrations in primary mouse hepatocytes. Amino Acids 2015; 47:1215-23. [PMID: 25772816 PMCID: PMC4429143 DOI: 10.1007/s00726-015-1948-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/18/2015] [Indexed: 11/28/2022]
Abstract
Our investigation showed that hepatocytes isolated from cysteine dioxygenase knockout mice (Cdo1−/−) had lower levels of hypotaurine and taurine than Cdo1+/+ hepatocytes. Interestingly, hypotaurine accumulates in cultured wild-type hepatocytes. dl-propargylglycine (PPG, inhibitor of cystathionine γ-lyase and H2S production) dramatically decreased both taurine and hypotaurine levels in wild-type hepatocytes compared to untreated cells. Addition of 2 mM PPG resulted in the decrease of the intracellular taurine levels: from 10.25 ± 5.00 observed in control, to 2.53 ± 0.68 nmol/mg protein (24 h of culture) and from 17.06 ± 9.40 to 2.43 ± 0.26 nmol/mg protein (control vs. PPG; 48 h). Addition of PPG reduced also intracellular hypotaurine levels: from 7.46 ± 3.55 to 0.31 ± 0.12 nmol/mg protein (control vs. PPG; 24 h) and from 4.54 ± 3.20 to 0.42 ± 0.11 nmol/mg protein (control vs. PPG; 48 h). The similar effects of PPG on hypotaurine and taurine levels were observed in culture medium. PPG blocked hypotaurine/taurine synthesis in wild-type hepatocytes, suggesting that it strongly inhibits cysteinesulfinate decarboxylase (pyridoxal 5′-phosphate-dependent enzyme) as well as cystathionine γ-lyase. In the presence of PPG, intracellular and medium cystathionine levels for both wild-type and Cdo1−/− cells were increased. Addition of homocysteine or methionine resulted in higher intracellular concentrations of homocysteine, which is a cosubstrate for cystathionine β-synthase (CBS). It seems that PPG increases CBS-mediated desulfhydration by enhancing homocysteine levels in hepatocytes. There were no overall effects of PPG or genotype on intracellular or medium glutathione levels.
Collapse
Affiliation(s)
- Halina Jurkowska
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA,
| | | | | | | |
Collapse
|
42
|
Ma Q, Zhao J, Cao W, Liu J, Cui S. Estradiol decreases taurine level by reducing cysteine sulfinic acid decarboxylase via the estrogen receptor-α in female mice liver. Am J Physiol Gastrointest Liver Physiol 2015; 308:G277-86. [PMID: 25394658 DOI: 10.1152/ajpgi.00107.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cysteine sulfinic acid decarboxylase (CSAD) and cysteine dioxygenase (CDO) are two rate-limiting enzymes in taurine de novo synthesis, and their expressions are associated with estrogen concentration. The present study was designed to determine the relationship between 17β-estradiol (E₂) and taurine in female mice liver. We initially observed the mice had lower levels of CSAD, CDO, and taurine during estrus than diestrus. We then, respectively, treated the ovariectomized mice, the cultured hepatocytes, and Hep G2 cells with different doses of E₂, and the CSAD and CDO expressions and taurine levels were analyzed. The results showed that E₂ decreased taurine level in the serum and the cultured cells by inhibiting CSAD and CDO expressions. Furthermore, we identified the molecular receptor types through which E₂ plays its role in regulating taurine synthesis, and our results showed that estrogen receptor-α (ERα) expression was much higher than estrogen receptor-β (ERβ) in the liver and hepatocytes, and the inhibiting effects of E₂ on CSAD, CDO, and taurine level were partially abrogated in the ICI-182,780-pretreated liver and hepatocytes, and in ERα knockout mice. These results indicate that estradiol decreases taurine content by reducing taurine biosynthetic enzyme expression in mice liver.
Collapse
Affiliation(s)
- Qiwang Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jianjun Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Wei Cao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jiali Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
43
|
Deng P, Chen Y, Ji N, Lin Y, Yuan Q, Ye L, Chen Q. Cysteine dioxygenase type 1 promotes adipogenesis via interaction with peroxisome proliferator-activated receptor gamma. Biochem Biophys Res Commun 2015; 458:123-7. [PMID: 25637537 DOI: 10.1016/j.bbrc.2015.01.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/18/2015] [Indexed: 02/05/2023]
Abstract
Mammalian cysteine dioxygenase type 1 (CDO1) is an essential enzyme for taurine biosynthesis and the biodegradation of toxic cysteine. As previously suggested, Cdo1 may be a marker of liposarcoma progression and adipogenic differentiation, but the role of Cdo1 in adipogenesis has yet been reported. In this study, we found that the expression of Cdo1 is dramatically elevated during adipogenic differentiation of 3T3-L1 pre-adipocytes and mouse bone marrow-derived mesenchymal stem cells (mBMSCs). Conversely, knockdown of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation in 3T3-L1 cells and mBMSCs. Mechanistically, we found Cdo1 interacted with Pparγ in response to adipogenic stimulus. Further, depletion of Cdo1 reduced the recruitment of Pparγ to the promoters of C/EBPα and Fabp4. Collectively, our finding indicates that Cdo1 may be a co-activator of Pparγ in adipogenesis, and may contribute to the development of disease associated with excessive adipose tissue.
Collapse
Affiliation(s)
- Peng Deng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, SiChuan University, Chengdu, Sichuan Province, China
| | - Yi Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, SiChuan University, Chengdu, Sichuan Province, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, SiChuan University, Chengdu, Sichuan Province, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, SiChuan University, Chengdu, Sichuan Province, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, SiChuan University, Chengdu, Sichuan Province, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, SiChuan University, Chengdu, Sichuan Province, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, SiChuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
44
|
Abstract
Hydrogen sulfide (H2S) has been recognized as a signaling molecule as well as a cytoprotective molecule. H2S modulates neurotransmission, regulates vascular tone, protects various tissues and organs, regulates inflammation, induces angiogenesis, and detects cellular oxygen levels. H2S is produced from L-cysteine by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) together with cysteine aminotransferase (CAT). Recently, a novel pathway for the production of H2S from D-cysteine was identified, involving D-amino acid oxidase (DAO) together with 3MST. Sulfuration (also called sulfhydration), which adds sulfur atoms to the cysteine residues of target proteins to modify protein activity, has been extensively studied as a mode of H2S action. Recently, hydrogen polysulfides (H2Sn, where n=3-7; n=2 is termed as persulfide) have been found to sulfurate target proteins in the brain, including transient receptor potential ankyrin 1 (TRPA1) channels, Kelch-like ECH-associating protein 1 (Keap1), and phosphatase and tensin homolog (PTEN), much more potently than H2S. The physiological stimuli that trigger the production of H2S and polysulfides, and the mechanisms maintaining their local levels, remain unknown. Understanding the regulation of H2Sn (including H2S) production, and the specific stimuli that induce their release, will provide new insight into the biology of H2S and will provide novel avenues for therapeutic development in diseases involving H2S-related substances.
Collapse
Affiliation(s)
- Hideo Kimura
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan,
| |
Collapse
|
45
|
Stipanuk MH, Jurkowska H, Roman HB, Niewiadomski J, Hirschberger LL. Insights into Taurine Synthesis and Function Based on Studies with Cysteine Dioxygenase (CDO1) Knockout Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:29-39. [PMID: 25833485 DOI: 10.1007/978-3-319-15126-7_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA,
| | | | | | | | | |
Collapse
|
46
|
Lambert IH, Kristensen DM, Holm JB, Mortensen OH. Physiological role of taurine--from organism to organelle. Acta Physiol (Oxf) 2015; 213:191-212. [PMID: 25142161 DOI: 10.1111/apha.12365] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/01/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022]
Abstract
Taurine is often referred to as a semi-essential amino acid as newborn mammals have a limited ability to synthesize taurine and have to rely on dietary supply. Taurine is not thought to be incorporated into proteins as no aminoacyl tRNA synthetase has yet been identified and is not oxidized in mammalian cells. However, taurine contributes significantly to the cellular pool of organic osmolytes and has accordingly been acknowledged for its role in cell volume restoration following osmotic perturbation. This review describes taurine homeostasis in cells and organelles with emphasis on taurine biophysics/membrane dynamics, regulation of transport proteins involved in active taurine uptake and passive taurine release as well as physiological processes, for example, development, lung function, mitochondrial function, antioxidative defence and apoptosis which seem to be affected by a shift in the expression of the taurine transporters and/or the cellular taurine content.
Collapse
Affiliation(s)
- I. H. Lambert
- Section of Cellular and Developmental Biology; Department of Biology; University of Copenhagen; Copenhagen Ø Denmark
| | - D. M. Kristensen
- Section of Genomics and Molecular Biomedicine; Department of Biology; University of Copenhagen; Copenhagen Denmark
- Cellular and Metabolic Research Section; Department of Biomedical Sciences; Panum Institute; University of Copenhagen; Copenhagen N Denmark
| | - J. B. Holm
- Section of Genomics and Molecular Biomedicine; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - O. H. Mortensen
- Cellular and Metabolic Research Section; Department of Biomedical Sciences; Panum Institute; University of Copenhagen; Copenhagen N Denmark
| |
Collapse
|
47
|
Brown-Borg HM, Rakoczy S, Wonderlich JA, Armstrong V, Rojanathammanee L. Altered dietary methionine differentially impacts glutathione and methionine metabolism in long-living growth hormone-deficient Ames dwarf and wild-type mice. LONGEVITY & HEALTHSPAN 2014; 3:10. [PMID: 25584190 PMCID: PMC4290132 DOI: 10.1186/2046-2395-3-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023]
Abstract
Background Extending mammalian health span and life span has been achieved under a variety of dietary restriction protocols. Reducing the intake of a specific amino acid has also been shown to extend health and longevity. We recently reported that methionine (MET) restriction is not effective in life span extension in growth hormone (GH) signaling mutants. To better understand the apparent necessity of GH in the ‘sensing’ of altered dietary MET, the current study was designed to evaluate MET and glutathione (GSH) metabolism (as well as other pathways) in long-living GH-deficient Ames dwarf and wild-type mice following 8 weeks of restricted (0.16%), low (0.43%), or enriched (1.3%) dietary MET consumption. Metabolite expression was examined in liver tissue, while gene and protein expression were evaluated in liver, kidney, and muscle tissues. Results Body weight was maintained in dwarf mice on the MET diets, while wild-type mice on higher levels of MET gained weight. Liver MET levels were similar in Ames mice, while several MET pathway enzymes were elevated regardless of dietary MET intake. Transsulfuration enzymes were also elevated in Ames mice but differences in cysteine levels were not different between genotypes. Dwarf mice maintained higher levels of GSH on MET restriction compared to wild-type mice, while genotype and diet effects were also detected in thioredoxin and glutaredoxin. MET restriction increased transmethylation in both genotypes as indicated by increased S-adenosylmethionine (SAM), betaine, and dimethylglycine. Diet did not impact levels of glycolytic components, but dwarf mice exhibited higher levels of key members of this pathway. Coenzyme A and measures of fatty acid oxidation were elevated in dwarf mice and unaffected by diet. Conclusions This component analysis between Ames and wild-type mice suggests that the life span differences observed may result from the atypical MET metabolism and downstream effects on multiple systems. The overall lack of responsiveness to the different diets is well reflected across many metabolic pathways in dwarf mice indicating the importance of GH signaling in the ability to discriminate dietary amino acid levels. Electronic supplementary material The online version of this article (doi:10.1186/2046-2395-3-10) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Sharlene Rakoczy
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Joseph A Wonderlich
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Vanessa Armstrong
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Lalida Rojanathammanee
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA ; School of Sports Science, Institute of Science, Suranaree University of Technology, Muang District, Nakhon Ratchasima, 30000 Thailand
| |
Collapse
|
48
|
Kerr TA, Matsumoto Y, Matsumoto H, Xie Y, Hirschberger LL, Stipanuk MH, Anakk S, Moore DD, Watanabe M, Kennedy S, Davidson NO. Cysteine sulfinic acid decarboxylase regulation: A role for farnesoid X receptor and small heterodimer partner in murine hepatic taurine metabolism. Hepatol Res 2014; 44:E218-28. [PMID: 24033844 PMCID: PMC3995905 DOI: 10.1111/hepr.12230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/29/2013] [Accepted: 08/19/2013] [Indexed: 01/12/2023]
Abstract
AIM Bile acid synthesis is regulated by nuclear receptors including farnesoid X receptor (FXR) and small heterodimer partner (SHP), and by fibroblast growth factor 15/19 (FGF15/19). We hypothesized that hepatic cysteine sulfinic acid decarboxylase (CSAD) (a key enzyme in taurine synthesis) is regulated by bile acids (BA). The aim of this study was to investigate CSAD regulation by BA dependent regulatory mechanisms. METHODS Mice were fed a control diet or a diet supplemented with either 0.5% cholate or 2% cholestyramine. To study BA dependent pathways, we utilized GW4064 (FXR agonist), FGF19 or T-0901317 (liver X receptor [LXR] agonist) and Shp-/- mice. Tissue mRNA was determined by quantitative reverse transcription polymerase chain reaction. Amino acids were measured by high-performance liquid chromatography. RESULTS Mice supplemented with dietary cholate exhibited reduced hepatic CSAD mRNA while those receiving cholestyramine exhibited increased mRNA. Activation of FXR suppressed CSAD mRNA expression whereas CSAD expression was increased in Shp-/- mice. Hepatic hypotaurine concentration (the product of CSAD) was higher in Shp-/- mice with a corresponding increase in serum taurine conjugated BA. FGF19 administration suppressed hepatic cholesterol 7-α-hydroxylase (CYP7A1) mRNA but did not change CSAD mRNA expression. LXR activation induced CYP7A1 mRNA yet failed to induce CSAD mRNA expression. CONCLUSION BA regulate CSAD mRNA expression in a feedback fashion via mechanisms involving SHP and FXR but not FGF15/19 or LXR. These findings implicate BA as regulators of CSAD mRNA via mechanisms shared with CYP7A1.
Collapse
Affiliation(s)
- Thomas A. Kerr
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, (phone) 314-362-2027, (fax) 314-362-2033
| | - Yuri Matsumoto
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, (phone) 314-362-2027, (fax) 314-362-2033
| | - Hitoshi Matsumoto
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, (phone) 314-362-2027, (fax) 314-362-2033
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, (phone) 314-362-2027, (fax) 314-362-2033
| | | | | | | | - David D. Moore
- Department of Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Mitsuhiro Watanabe
- Graduate School of Media and Governance, Keio University, Kanagawa, Japan
| | - Susan Kennedy
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, (phone) 314-362-2027, (fax) 314-362-2033
| | - Nicholas O. Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, (phone) 314-362-2027, (fax) 314-362-2033
| |
Collapse
|
49
|
Involvement of the Cys-Tyr cofactor on iron binding in the active site of human cysteine dioxygenase. Amino Acids 2014; 47:55-63. [DOI: 10.1007/s00726-014-1843-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
|
50
|
Kasperova A, Cahlikova R, Kunert J, Sebela M, Novak Z, Raska M. Exposition of dermatophyteTrichophyton mentagrophytesto L-cystine induces expression and activation of cysteine dioxygenase. Mycoses 2014; 57:672-8. [DOI: 10.1111/myc.12220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 05/06/2014] [Accepted: 06/22/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Alena Kasperova
- Department of Immunology; Faculty of Medicine and Dentistry; Palacky University in Olomouc; Olomouc Czech Republic
| | - Romana Cahlikova
- Department of Immunology; Faculty of Medicine and Dentistry; Palacky University in Olomouc; Olomouc Czech Republic
| | - Jiri Kunert
- Department of Biology; Faculty of Medicine and Dentistry; Palacky University in Olomouc; Olomouc Czech Republic
| | - Marek Sebela
- Department of Protein Biochemistry and Proteomics; Centre of the Region Hana for Biotechnological and Agricultural Research; Faculty of Science; Palacky University in Olomouc; Olomouc Czech Republic
| | - Zdenek Novak
- Department of Surgery; University of Alabama at Birmingham; Birmingham AL USA
| | - Milan Raska
- Department of Immunology; Faculty of Medicine and Dentistry; Palacky University in Olomouc; Olomouc Czech Republic
| |
Collapse
|