1
|
Rio P, Gasbarrini A, Gambassi G, Cianci R. Pollutants, microbiota and immune system: frenemies within the gut. Front Public Health 2024; 12:1285186. [PMID: 38799688 PMCID: PMC11116734 DOI: 10.3389/fpubh.2024.1285186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Pollution is a critical concern of modern society for its heterogeneous effects on human health, despite a widespread lack of awareness. Environmental pollutants promote several pathologies through different molecular mechanisms. Pollutants can affect the immune system and related pathways, perturbing its regulation and triggering pro-inflammatory responses. The exposure to several pollutants also leads to alterations in gut microbiota with a decreasing abundance of beneficial microbes, such as short-chain fatty acid-producing bacteria, and an overgrowth of pro-inflammatory species. The subsequent intestinal barrier dysfunction, together with oxidative stress and increased inflammatory responses, plays a role in the pathogenesis of gastrointestinal inflammatory diseases. Moreover, pollutants encourage the inflammation-dysplasia-carcinoma sequence through various mechanisms, such as oxidative stress, dysregulation of cellular signalling pathways, cell cycle impairment and genomic instability. In this narrative review, we will describe the interplay between pollutants, gut microbiota, and the immune system, focusing on their relationship with inflammatory bowel diseases and colorectal cancer. Understanding the biological mechanisms underlying the health-to-disease transition may allow the design of public health policies aimed at reducing the burden of disease related to pollutants.
Collapse
Affiliation(s)
| | | | | | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
2
|
Chew NSL, Ooi CW, Yeo LY, Tan MK. Influence of MHz-order acoustic waves on bacterial suspensions. ULTRASONICS 2024; 138:107234. [PMID: 38171227 DOI: 10.1016/j.ultras.2023.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
The development of alternative techniques to efficiently inactivate bacterial suspensions is crucial to prevent transmission of waterborne illness, particularly when commonly used techniques such as heating, filtration, chlorination, or ultraviolet treatment are not practical or feasible. We examine the effect of MHz-order acoustic wave irradiation in the form of surface acoustic waves (SAWs) on Gram-positive (Escherichia coli) and Gram-negative (Brevibacillus borstelensis and Staphylococcus aureus) bacteria suspended in water droplets. A significant increase in the relative bacterial load reduction of colony-forming units (up to 74%) can be achieved by either increasing (1) the excitation power, or, (2) the acoustic treatment duration, which we attributed to the effect of the acoustic radiation force exerted on the bacteria. Consequently, by increasing the maximum pressure amplitude via a hybrid modulation scheme involving a combination of amplitude and pulse-width modulation, we observe that the bacterial inactivation efficiency can be further increased by approximately 14%. By combining this scalable acoustic-based bacterial inactivation platform with plasma-activated water, a 100% reduction in E. coli is observed in less than 10 mins, therefore demonstrating the potential of the synergistic effects of MHz-order acoustic irradiation and plasma-activated water as an efficient strategy for water decontamination.
Collapse
Affiliation(s)
- Nicholas S L Chew
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chien W Ooi
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Ming K Tan
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
3
|
Donat-Vargas C, Kogevinas M, Castaño-Vinyals G, Pérez-Gómez B, Llorca J, Vanaclocha-Espí M, Fernandez-Tardon G, Costas L, Aragonés N, Gómez-Acebo I, Moreno V, Pollan M, Villanueva CM. Long-Term Exposure to Nitrate and Trihalomethanes in Drinking Water and Prostate Cancer: A Multicase-Control Study in Spain (MCC-Spain). ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:37004. [PMID: 36883836 PMCID: PMC9994181 DOI: 10.1289/ehp11391] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Nitrate and trihalomethanes (THMs) in drinking water are widespread and are potential human carcinogens. OBJECTIVE We evaluated the association between drinking-water exposure to nitrate and THMs and prostate cancer. METHODS During the period 2008-2013, 697 hospital-based incident prostate cancer cases (97 aggressive tumors) and 927 population-based controls were recruited in Spain, providing information on residential histories and type of water consumed. Average nitrate and THMs levels in drinking water were linked with lifetime water consumption to calculate waterborne ingestion. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using mixed models with recruitment area as random effect. Effect modification by tumor grade (Gleason score), age, education, lifestyle, and dietary factors was explored. RESULTS Mean (±standard deviation) adult lifetime waterborne ingested nitrate (milligrams per day), brominated (Br)-THMs (micrograms per day), and chloroform (micrograms per day) were 11.5 (±9.0), 20.7 (±32.4), and 15.1 (±14.7) in controls. Waterborne ingested nitrate >13.8 vs. <5.5mg/d was associated with an OR of 1.74 (95% CI: 1.19, 2.54) overall, and 2.78 (95% CI: 1.23, 6.27) for tumors with Gleason scores ≥8. Associations were higher in the youngest and those with lower intakes of fiber, fruit/vegetables, and vitamin C. Waterborne ingested THMs were not associated with prostate cancer. Residential tap water levels of Br-THMs and chloroform showed, respectively, inverse and positive associations with prostate cancer. CONCLUSIONS Findings suggest long-term waterborne ingested nitrate could be a risk factor of prostate cancer, particularly for aggressive tumors. High intakes of fiber, fruit/vegetables and vitamin C may lower this risk. Association with residential levels but not ingested chloroform/Br-THM may suggest inhalation and dermal routes could be relevant for prostate cancer. https://doi.org/10.1289/EHP11391.
Collapse
Affiliation(s)
- Carolina Donat-Vargas
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manolis Kogevinas
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Gemma Castaño-Vinyals
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Beatriz Pérez-Gómez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Cancer and Environmental Epidemiology Unit, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Javier Llorca
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Faculty of Medicine, University of Cantabria, Spain
| | - Mercedes Vanaclocha-Espí
- Cancer and Public Health Area, Foundation for the Promotion of Health and Biomedical Research-Public Health Research (FISABIO), Valencia, Spain
| | - Guillermo Fernandez-Tardon
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Health Research Institute of Asturias (ISPA), Oviedo, Spain
| | - Laura Costas
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Nuria Aragonés
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Epidemiology Section, Public Health Division, Department of Health of Madrid, Madrid, Spain
| | - Inés Gómez-Acebo
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Faculty of Medicine, University of Cantabria, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Victor Moreno
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Spain
- Colorectal Cancer Group, IDIBELL, Hospitalet de Llobregat, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Marina Pollan
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Cancer and Environmental Epidemiology Unit, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Cristina M. Villanueva
- Instituto de Salud Global de Barcelona (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
4
|
Yusof NAM, Razali SA, Mohd Padzil A, Lau BYC, Baharum SN, Nor Muhammad NA, Raston NHA, Chong CM, Ikhsan NFM, Situmorang ML, Fei LC. Computationally Designed Anti-LuxP DNA Aptamer Suppressed Flagellar Assembly- and Quorum Sensing-Related Gene Expression in Vibrio parahaemolyticus. BIOLOGY 2022; 11:1600. [PMID: 36358301 PMCID: PMC9687752 DOI: 10.3390/biology11111600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2023]
Abstract
(1) Background: Quorum sensing (QS) is the chemical communication between bacteria that sense chemical signals in the bacterial population to control phenotypic changes through the regulation of gene expression. The inhibition of QS has various potential applications, particularly in the prevention of bacterial infection. QS can be inhibited by targeting the LuxP, a periplasmic receptor protein that is involved in the sensing of the QS signaling molecule known as the autoinducer 2 (AI-2). The sensing of AI-2 by LuxP transduces the chemical information through the inner membrane sensor kinase LuxQ protein and activates the QS cascade. (2) Methods: An in silico approach was applied to design DNA aptamers against LuxP in this study. A method combining molecular docking and molecular dynamics simulations was used to select the oligonucleotides that bind to LuxP, which were then further characterized using isothermal titration calorimetry. Subsequently, the bioactivity of the selected aptamer was examined through comparative transcriptome analysis. (3) Results: Two aptamer candidates were identified from the ITC, which have the lowest dissociation constants (Kd) of 0.2 and 0.5 micromolar. The aptamer with the lowest Kd demonstrated QS suppression and down-regulated the flagellar-assembly-related gene expression. (4) Conclusions: This study developed an in silico approach to design an aptamer that possesses anti-QS properties.
Collapse
Affiliation(s)
- Nur Afiqah Md Yusof
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Azyyati Mohd Padzil
- Malaysia Genome and Vaccine Institute (MGVI), National Institute of Biotechnology Malaysia (NIBM), Jalan Bangi, Kajang 43000, Selangor, Malaysia
| | - Benjamin Yii Chung Lau
- Malaysian Palm Oil Board, Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nurul Hanun Ahmad Raston
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Chou Min Chong
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Natrah Fatin Mohd Ikhsan
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | | | - Low Chen Fei
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
5
|
Sun Y, Xia PF, Korevaar TIM, Mustieles V, Zhang Y, Pan XF, Wang YX, Messerlian C. Relationship between Blood Trihalomethane Concentrations and Serum Thyroid Function Measures in U.S. Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14087-14094. [PMID: 34617747 DOI: 10.1021/acs.est.1c04008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Toxicological studies show that exposure to disinfection byproducts, including trihalomethanes (THMs), negatively affects thyroid function; however, few epidemiological studies have explored this link. This study included 2233 adults (ages ≥20 years) from the 2007-2008 National Health and Nutrition Examination Survey (NHANES) who were measured for blood THM concentrations [chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), or bromoform (TBM)] and serum thyroid function biomarkers [thyroid-stimulating hormone, free thyroxine (FT4), total thyroxine (TT4), free triiodothyronine (FT3), total triiodothyronine (TT3), thyroid peroxidase antibody (TPOAb), and thyroglobulin antibody (TgAb)]. Multivariable linear regression models showed positive associations between blood TCM, BDCM, and total THMs (the sum of all four THMs) concentrations and serum FT4, whereas inverse associations were found between blood DBCM and total brominated THM (Br-THM; the sum of BDCM, DBCM, and TBM) concentrations and serum TT3 (all p < 0.05). Besides, positive associations were observed between blood TCM concentrations and FT4/FT3 ratio, between BDCM, DBCM, and Br-THM concentrations and TT4/TT3 ratio, and between DBCM and Br-THM concentrations and FT3/TT3 ratio (all p < 0.05). Blood THM concentrations were unrelated to the serum levels of thyroid autoantibodies TgAb or TPOAb. In summary, exposure to THMs was associated with altered serum biomarkers of thyroid function but not with thyroid autoimmunity among U.S. adults.
Collapse
Affiliation(s)
- Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Peng-Fei Xia
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - T I M Korevaar
- Department of Internal Medicine and Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs GRANADA, 18012 Granada, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Xiong-Fei Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37203, United States
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Buller ID, Patel DM, Weyer PJ, Prizment A, Jones RR, Ward MH. Ingestion of Nitrate and Nitrite and Risk of Stomach and Other Digestive System Cancers in the Iowa Women's Health Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6822. [PMID: 34202037 PMCID: PMC8297261 DOI: 10.3390/ijerph18136822] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Nitrate and nitrite are precursors in the endogenous formation of N-nitroso compounds (NOC) which are potent animal carcinogens for the organs of the digestive system. We evaluated dietary intakes of nitrate and nitrite, as well as nitrate ingestion from drinking water (public drinking water supplies (PWS)), in relation to the incidence (1986-2014) of cancers of the esophagus (n = 36), stomach (n = 84), small intestine (n = 32), liver (n = 31), gallbladder (n = 66), and bile duct (n = 58) in the Iowa Women's Health Study (42,000 women aged from 50 to 75 in 1986). Dietary nitrate and nitrite were estimated using a food frequency questionnaire and a database of nitrate and nitrite levels in foods. Historical nitrate measurements from PWS were linked to the enrollment address by duration. We used Cox regression to compute hazard ratios (HR) and 95% confidence intervals (CI) for exposure quartiles (Q), tertiles (T), or medians, depending on the number of cancer cases. In adjusted models, nitrite intake from processed meats was associated with an increased risk of stomach cancer (HRQ4vsQ1 = 2.2, CI: 1.2-4.3). A high intake of total dietary nitrite was inversely associated with gallbladder cancer (HRQ4vsQ1 = 0.3, CI: 0.1-0.96), driven by an inverse association with plant sources of nitrite (HRQ4vsQ1 = 0.3, CI: 0.1-0.9). Additionally, small intestine cancer was inversely associated with a high intake of animal nitrite (HRT3vsT1 = 0.2, CI: 0.1-0.7). There were no other dietary associations. Nitrate concentrations in PWS (average, years ≥ 1/2 the maximum contaminant level) were not associated with cancer incidence. Our findings for stomach cancer are consistent with prior dietary studies, and we are the first to evaluate nitrate and nitrite ingestion for certain gastrointestinal cancers.
Collapse
Affiliation(s)
- Ian D. Buller
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA; (I.D.B.); (D.M.P.); (R.R.J.)
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Deven M. Patel
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA; (I.D.B.); (D.M.P.); (R.R.J.)
| | - Peter J. Weyer
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, IA 52242, USA;
| | - Anna Prizment
- Masonic Cancer Center, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Rena R. Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA; (I.D.B.); (D.M.P.); (R.R.J.)
| | - Mary H. Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA; (I.D.B.); (D.M.P.); (R.R.J.)
| |
Collapse
|
7
|
Font-Ribera L, Gràcia-Lavedan E, Aragonés N, Pérez-Gómez B, Pollán M, Amiano P, Jiménez-Zabala A, Castaño-Vinyals G, Roca-Barceló A, Ardanaz E, Burgui R, Molina AJ, Fernández-Villa T, Gómez-Acebo I, Dierssen-Sotos T, Moreno V, Fernandez-Tardon G, Peiró R, Kogevinas M, Villanueva CM. Long-term exposure to trihalomethanes in drinking water and breast cancer in the Spanish multicase-control study on cancer (MCC-SPAIN). ENVIRONMENT INTERNATIONAL 2018; 112:227-234. [PMID: 29289867 DOI: 10.1016/j.envint.2017.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Exposure to trihalomethanes (THMs) in drinking water has consistently been associated with an increased risk of bladder cancer, but evidence on other cancers including the breast is very limited. OBJECTIVES We assessed long-term exposure to THMs to evaluate the association with female breast cancer (BC) risk. METHODS A multi case-control study was conducted in Spain from 2008 to 2013. We included 1003 incident BC cases (women 20-85years old) recruited from 14 hospitals and 1458 population controls. Subjects were interviewed to ascertain residential histories and major recognized risk factors for BC. Mean residential levels of chloroform, brominated THMs (Br-THMs) and the sum of both as total THM (TTHMs) during the adult-lifetime were calculated. RESULTS Mean adult-lifetime residential levels ranged from 0.8 to 145.7μg/L for TTHM (median=30.8), from 0.2 to 62.4μg/L for chloroform (median=19.7) and from 0.3 to 126.0μg/L for Br-THMs (median=9.7). Adult-lifetime residential chloroform was associated with BC (adjusted OR=1.47; 95%CI=1.05, 2.06 for the highest (>24μg/L) vs. lowest (<8μg/L) quartile; p-trend=0.024). No association was detected for residential Br-THMs (OR=0.91; 95%CI=0.68, 1.23 for >31μg/L vs. <6μg/L) or TTHMs (OR=1.14; 95%CI=0.83, 1.57 for >48μg/L vs. <22μg/L). CONCLUSIONS At common levels in Europe, long-term residential total THMs were not related to female breast cancer. A moderate association with chloroform was suggested at the highest exposure category. This large epidemiological study with extensive exposure assessment overcomes several limitations of previous studies but further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Laia Font-Ribera
- ISGlobal, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Esther Gràcia-Lavedan
- ISGlobal, Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Nuria Aragonés
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Cancer and Environmental Epidemiology Unit, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Beatriz Pérez-Gómez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Cancer and Environmental Epidemiology Unit, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Marina Pollán
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Cancer and Environmental Epidemiology Unit, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain; Cancer Epidemiology Research Group, Oncology and Hematology Area, IIS Puerta De Hierro, Madrid, Spain
| | - Pilar Amiano
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Public Health Division of Gipuzkoa, Biodonostia Research Institute, San Sebastian, Spain
| | - Ana Jiménez-Zabala
- Public Health Division of Gipuzkoa, Biodonostia Research Institute, San Sebastian, Spain
| | - Gemma Castaño-Vinyals
- ISGlobal, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Aina Roca-Barceló
- Epidemiology Unit and Girona Cancer Registry, Oncology Coordination Plan, Department of Health, Autonomous Government of Catalonia, Catalan Institute of Oncology, Girona, Spain
| | - Eva Ardanaz
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Instituto de Salud Pública y Laboral de Navarra, Pamplona, Spain
| | - Rosana Burgui
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Instituto de Salud Pública y Laboral de Navarra, Pamplona, Spain
| | - Antonio José Molina
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud, Universidad de León, Spain
| | - Tania Fernández-Villa
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud, Universidad de León, Spain
| | - Inés Gómez-Acebo
- Department of Preventive Medicine and Public Health, University of Cantabria, Santander, Spain
| | - Trinidad Dierssen-Sotos
- Department of Preventive Medicine and Public Health, University of Cantabria, Santander, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), Hospitalet de Llobregat, Spain; Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Rosana Peiró
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Centre for Research in Public Health, Valencia, Spain
| | - Manolis Kogevinas
- ISGlobal, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Cristina M Villanueva
- ISGlobal, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
8
|
Sundararaghavan VL, Sindhwani P, Hinds TD. Glucuronidation and UGT isozymes in bladder: new targets for the treatment of uroepithelial carcinomas? Oncotarget 2017; 8:3640-3648. [PMID: 27690298 PMCID: PMC5356909 DOI: 10.18632/oncotarget.12277] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022] Open
Abstract
Bladder cancer has been linked to numerous toxins which can be concentrated in the bladder after being absorbed into the blood and filtered by the kidneys. Excessive carcinogenic load to the bladder urothelium may result in the development of cancer. However, enzymes within the bladder can metabolize carcinogens into substrates that are safer. Importantly, these proteins, namely the UGT's (uridine 5'-diphospho-glucuronosyltransferases), have been shown to possibly prevent bladder cancer. Also, studies have shown that the UGT1 expression is decreased in uroepithelial carcinomas, which may allow for the accumulation of carcinogens in the bladder. In this review, we discuss the UGT system and its' protective role against bladder cancer, UGT genetic mutations that modulate risk from chemicals and environmental toxins, as well as targeting of the UGT enzymes by nuclear receptors.
Collapse
Affiliation(s)
- Vikram L. Sundararaghavan
- Department of Physiology & Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Puneet Sindhwani
- Department of Urology, University of Toledo College of Medicine, Toledo, OH, USA
| | - Terry D. Hinds
- Department of Physiology & Pharmacology, Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine, Toledo, OH, USA
- Department of Urology, University of Toledo College of Medicine, Toledo, OH, USA
| |
Collapse
|
9
|
Lv L, Yu X, Xu Q, Ye C. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 205:291-298. [PMID: 26114900 DOI: 10.1016/j.envpol.2015.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/17/2015] [Accepted: 06/21/2015] [Indexed: 05/28/2023]
Abstract
Halogenated nitrogenous disinfection byproducts (N-DBPs) raise concerns regarding their mutagenicity and carcinogenicity threatening public health. However, environmental consequence of their mutagenicity has received less attention. In this study, the effect of halogenated N-DBPs on bacterial antibiotic resistance (BAR) was investigated. After exposure to bromoacetamide (BAcAm), trichloroacetonitrile (TCAN) or tribromonitromethane (TBNM), the resistance of Pseudomonas aeruginosa PAO1 to both individual and multiple antibiotics (ciprofloxacin, gentamicin, polymyxin B, rifampin, tetracycline, ciprofloxacin + gentamicin and ciprofloxacin + tetracycline) was increased, which was predominantly ascribed to the overexpression of efflux pumps. The mechanism of this effect was demonstrated to be mutagenesis through sequencing and analyzing antibiotic resistance genes. The same induction phenomena also appeared in Escherichia coli, suggesting this effect may be universal to waterborne pathogens. Therefore, more attention should be given to halogenated N-DBPs, as they could increase not only genotoxicological risks but also epidemiological risks of drinking water.
Collapse
Affiliation(s)
- Lu Lv
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Qian Xu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Chengsong Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
10
|
Laast VA, Larsen T, Allison N, Hoenerhoff MJ, Boorman GA. Distinguishing cystic degeneration from other aging lesions in the adrenal cortex of Sprague-Dawley rats. Toxicol Pathol 2014; 42:823-9. [PMID: 24970856 PMCID: PMC11042781 DOI: 10.1177/0192623313502258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cystic degeneration of the adrenal cortex is a common age-related finding in the Sprague-Dawley (SD) rat strain occurring more frequently in females. Compression of the adjacent cortex, a common hallmark of benign adrenal cortical tumors, often accompanies foci of cystic degeneration, creating a diagnostic challenge. Accurately differentiating these relatively common degenerative changes from proliferative lesions is critical in safety assessment studies. Cystic degeneration typically arises in the zona fasciculata of the adrenal cortex and often causes compression along the margin of the lesion. The degenerating cells are large, with abundant eosinophilic cytoplasm, or contain clear cytoplasmic vacuoles. Mitotic figures are generally uncommon. In many cases, cystic degeneration appears to arise in areas of hypertrophy in the zona fasciculata. In contrast, adrenal cortical hyperplasia and adrenal cortical adenoma are frequently comprised of smaller cells that cause compression of adjacent cortex, and in some cases mitotic figures are observed. Cytological detail and growth patterns should be considered more useful criteria than compression alone for separating degenerative cystic lesions from proliferative lesions in the adrenal cortex of SD rats.
Collapse
Affiliation(s)
- Victoria A Laast
- Nonclinical Safety Assessment, Covance Pharmaceutical R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Thomas Larsen
- Nonclinical Safety Assessment, Covance Laboratories, Inc., Chantilly, Virginia, USA
| | - Neil Allison
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Mark J Hoenerhoff
- National Institute of Environmental Health Sciences, National Toxicology Program, Research Triangle Park, North Carolina, USA
| | - Gary A Boorman
- Nonclinical Safety Assessment, Covance Laboratories, Inc., Chantilly, Virginia, USA
| |
Collapse
|
11
|
Narotsky MG, Klinefelter GR, Goldman JM, Best DS, McDonald A, Strader LF, Suarez JD, Murr AS, Thillainadarajah I, Hunter ES, Richardson SD, Speth TF, Miltner RJ, Pressman JG, Teuschler LK, Rice GE, Moser VC, Luebke RW, Simmons JE. Comprehensive assessment of a chlorinated drinking water concentrate in a rat multigenerational reproductive toxicity study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10653-10659. [PMID: 23909560 DOI: 10.1021/es402646c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Some epidemiological studies report associations between drinking water disinfection byproducts (DBPs) and adverse reproductive/developmental effects, e.g., low birth weight, spontaneous abortion, stillbirth, and birth defects. Using a multigenerational rat bioassay, we evaluated an environmentally relevant "whole" mixture of DBPs representative of chlorinated drinking water, including unidentified DBPs as well as realistic proportions of known DBPs at low-toxicity concentrations. Source water from a water utility was concentrated 136-fold, chlorinated, and provided as drinking water to Sprague-Dawley rats. Timed-pregnant females (P0 generation) were exposed during gestation and lactation. Weanlings (F1 generation) continued exposures and were bred to produce an F2 generation. Large sample sizes enhanced statistical power, particularly for pup weight and prenatal loss. No adverse effects were observed for pup weight, prenatal loss, pregnancy rate, gestation length, puberty onset in males, growth, estrous cycles, hormone levels, immunological end points, and most neurobehavioral end points. Significant, albeit slight, effects included delayed puberty for F1 females, reduced caput epidydimal sperm counts in F1 adult males, and increased incidences of thyroid follicular cell hypertrophy in adult females. These results highlight areas for future research, while the largely negative findings, particularly for pup weight and prenatal loss, are notable.
Collapse
Affiliation(s)
- Michael G Narotsky
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The effect of different boiling and filtering devices on the concentration of disinfection by-products in tap water. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2013; 2013:959480. [PMID: 23476675 PMCID: PMC3588186 DOI: 10.1155/2013/959480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/01/2013] [Indexed: 11/28/2022]
Abstract
Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies.
Collapse
|
13
|
Wang S, Tian D, Zheng W, Jiang S, Wang X, Andersen ME, Zheng Y, He G, Qu W. Combined exposure to 3-chloro-4-dichloromethyl-5-hydroxy-2(5H)-furanone and microsytin-LR increases genotoxicity in Chinese hamster ovary cells through oxidative stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:1678-1687. [PMID: 23286199 DOI: 10.1021/es304541a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The disinfection byproducts 3-chloro-4-dichloromethyl-5-hydroxy-2(5H)-furanone (MX) and microcystins-LR (MC-LR), which are common contaminants in drinking water, often occur together in water sources in areas with high gastrointestinal tract cancer risks. While often studied alone, combination effects of these compounds are unknown. Here, we examine combined genotoxic responses to mixtures of MX and MC-LR using the Ames test, a cytokinesis-block micronuclei assay, and the comet assay with analysis for interactions by fractional analysis. We also evaluated a possible mechanism of genotoxicity by examining effects of the compounds on markers of oxidative stress. MX and MC-LR administrated jointly at noncytotoxic concentrations demonstrated significant interactions in the Ames test, the micronuclei assay, and the comet assay showing responses greater than those expected for additivity. Moreover, coexposure to MX and MC-LR significantly increased luciferase antioxidant response element activity, intracellular superoxide dismutase, catalase, glutathione, and reactive oxygen species production. In comparison with exposure to either compound alone, the mixtures of MX and MC-LR caused a less than additive effect on oxidative stress. Taken together, these results indicate that MC-LR exacerbates MX genotoxicity in low-dose combined exposure. This interaction may be enhanced by oxidative stress in the combined exposures.
Collapse
Affiliation(s)
- Shu Wang
- Department of Environmental Health, Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fu HZ, Wang MH, Ho YS. Mapping of drinking water research: a bibliometric analysis of research output during 1992-2011. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 443:757-65. [PMID: 23228721 DOI: 10.1016/j.scitotenv.2012.11.061] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 05/14/2023]
Abstract
A bibliometric analysis based on the Science Citation Index Expanded from the Web of Science was carried out to provide insights into research activities and tendencies of the global drinking water from 1992 to 2011. Study emphases included performance of publication covering annual outputs, mainstream journals, Web of Science categories, leading countries, institutions, research tendencies and hotspots. The results indicated that annual output of the related scientific articles increased steadily. Water Research, Environmental Science & Technology, and Journal American Water Works Association were the three most common journals in drinking water research. The USA took a leading position out of 168 countries/territories, followed by Japan and Germany. A summary of the most frequently used keywords obtained from words in paper title analysis, author keyword analysis and KeyWords Plus analysis provided the clues to discover the current research emphases. The mainstream research related to drinking water was water treatment methods and the related contaminants. Disinfection process and consequent disinfection by-products attracted much attention. Ozonation and chlorination in disinfection, and adsorption were common techniques and are getting popular. Commonly researched drinking water contaminants concerned arsenic, nitrate, fluoride, lead, and cadmium, and pharmaceuticals emerged as the frequently studied contaminants in recent years. Disease caused by contaminants strongly promoted the development of related research.
Collapse
Affiliation(s)
- Hui-Zhen Fu
- Department of Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | | | | |
Collapse
|
15
|
Velvadapu V, McDonnell ME, Jaffe EK, Reitz AB. Facile Synthesis of Mutagen X (MX): 3-Chloro-4-(dichloromethyl)-5-hydroxy-5H-furan-2-one. Tetrahedron Lett 2012; 53:3144-3146. [PMID: 22822274 DOI: 10.1016/j.tetlet.2012.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
3-Chloro-4-(dichloromethyl)-5-hydroxy-5H-furan-2-one (Mutagen X, MX) was synthesized in six steps from commercially-available and inexpensive starting materials (27% overall yield). This synthesis enables the preparation of MX analogs and does not require the use of chlorine gas, as do previously reported methods.
Collapse
Affiliation(s)
- Venkata Velvadapu
- Fox Chase Chemical Diversity Center, Inc., 3805 Old Easton Road, Doylestown, PA 18902, USA
| | | | | | | |
Collapse
|
16
|
Villanueva CM, Castaño-Vinyals G, Moreno V, Carrasco-Turigas G, Aragonés N, Boldo E, Ardanaz E, Toledo E, Altzibar JM, Zaldua I, Azpiroz L, Goñi F, Tardón A, Molina AJ, Martín V, López-Rojo C, Jiménez-Moleón JJ, Capelo R, Gómez-Acebo I, Peiró R, Ripoll M, Gracia-Lavedan E, Nieuwenhujsen MJ, Rantakokko P, Goslan EH, Pollán M, Kogevinas M. Concentrations and correlations of disinfection by-products in municipal drinking water from an exposure assessment perspective. ENVIRONMENTAL RESEARCH 2012; 114:1-11. [PMID: 22436294 DOI: 10.1016/j.envres.2012.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/31/2012] [Accepted: 02/07/2012] [Indexed: 05/31/2023]
Abstract
Although disinfection by-products (DBPs) occur in complex mixtures, studies evaluating health risks have been focused in few chemicals. In the framework of an epidemiological study on cancer in 11 Spanish provinces, we describe the concentration of four trihalomethanes (THMs), nine haloacetic acids (HAA), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), four haloacetonitries, two haloketones, chloropicrin and chloral hydrate and estimate correlations. A total of 233 tap water samples were collected in 2010. Principal component analyses were conducted to reduce dimensionality of DBPs. Overall median (range) level of THMs and HAAs was 26.4 (0.8-98.1) and 26.4 (0.9-86.9) μg/l, respectively (N=217). MX analysed in a subset (N=36) showed a median (range) concentration of 16.7 (0.8-54.1)ng/l. Haloacetonitries, haloketones, chloropicrin and chloral hydrate were analysed in a subset (N=16), showing levels from unquantifiable (<1 μg/l) to 5.5 μg/l (dibromoacetonitrile). Spearman rank correlation coefficients between DBPs varied between species and across areas, being highest between dibromochloromethane and dibromochloroacetic acid (r(s)=0.87). Principal component analyses of 13 DBPs (4 THMs, 9 HAAs) led 3 components explaining more than 80% of variance. In conclusion, THMs and HAAs have limited value as predictors of other DBPs on a generalised basis. Principal component analysis provides a complementary tool to address the complex nature of the mixture.
Collapse
Affiliation(s)
- Cristina M Villanueva
- Centre for Research in Environmental Epidemiology (CREAL), Doctor Aiguader 88, 08003-Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Preparation of amino functionalized silica micro beads by dry method for supporting silver nanoparticles with antibacterial properties. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2011.08.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Bull RJ, Reckhow DA, Li X, Humpage AR, Joll C, Hrudey SE. Potential carcinogenic hazards of non-regulated disinfection by-products: haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines. Toxicology 2011; 286:1-19. [PMID: 21605618 DOI: 10.1016/j.tox.2011.05.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/03/2011] [Accepted: 05/09/2011] [Indexed: 11/25/2022]
Abstract
Drinking water disinfectants react with natural organic material (NOM) present in source waters used for drinking water to produce a wide variety of by-products. Several hundred disinfections by-products (DBPs) have been identified, but none have been identified with sufficient carcinogenic potency to account for the cancer risks projected from epidemiological studies. In a search for DBPs that might fill this risk gap, the present study projected reactions of chlorine and chloramine that could occur with substructures present in NOM to produce novel by-products. A review of toxicological data on related compounds, supplemented by use of a quantitative structure toxicity relationship (QSTR) program TOPKAT®) identified chemicals with a high probability of being chronically toxic and/or carcinogenic among 489 established and novel DBPs. Classes of DBPs that were specifically examined were haloquinones (HQs), related halo-cyclopentene and cyclohexene (HCP&H) derivatives, halonitriles (HNs), organic N-chloramines (NCls), haloacetamides (HAMs), and nitrosamines (NAs). A review of toxicological data available for quinones suggested that HQs and HCP&H derivatives appeared likely to be of health concern and were predicted to have chronic lowest observed adverse effect levels (LOAELs) in the low μg/kg day range. Several HQs were predicted to be carcinogenic. Some have now been identified in drinking water. The broader class of HNs was explored by considering current toxicological data on haloacetonitriles and extending this to halopropionitriles. 2,2-dichloropropionitrile has been identified in drinking water at low concentrations, as well as the more widely recognized haloacetonitriles. The occurrence of HAMs has been previously documented. The very limited toxicological data on HAMs suggests that this class would have toxicological potencies similar to the dihaloacetic acids. Organic N-halamines are also known to be produced in drinking water treatment and have biological properties of concern, but no member has ever been characterized toxicologically beyond bacterial or in vitro studies of genotoxicity. The documented formation of several nitrosamines from secondary amines from both natural and industrial sources prompted exploration of the formation of additional nitrosamines. N-diphenylnitrosamine was identified in drinking waters. Of more interest, however, was the formation of phenazine (and subsequently N-chorophenazine) in a competing reaction. These are the first heterocyclic amines that have been identified as chlorination by-products. Consideration of the amounts detected of members of these by-product classes and their probable toxicological potency suggest a prioritization for obtaining more detailed toxicological data of HQs>HCP&H derivatives>NCls>HNs. Based upon a ubiquitous occurrence and virtual lack of in vivo toxicological data, NCls are the most difficult group to assign a priority as potential carcinogenic risks. This analysis indicates that research on the general problem of DBPs requires a more systematic approach than has been pursued in the past. Utilization of predictive chemical tools to guide further research can help bring resolution to the DBP issue by identifying likely DBPs with high toxicological potency.
Collapse
Affiliation(s)
- Richard J Bull
- MoBull Consulting, 1928 Meadows Drive North, Richland, WA 99352, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Richardson SD, Postigo C. Drinking Water Disinfection By-products. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2011. [DOI: 10.1007/698_2011_125] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Abstract
The incidence of colorectal carcinoma is increasing in young patients, in contrast to the well established wisdom that it is exclusively diagnosed in patients older than 40 years. In this survey, we examined all possible risk factors, and we recommend a number of measures for early detection in young patients who are at risk of developing this malignant tumor.
Collapse
|
21
|
Improved derivatization technique for gas chromatography–mass spectrometry determination of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone in drinking water. Anal Chim Acta 2009; 649:222-9. [DOI: 10.1016/j.aca.2009.07.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 11/23/2022]
|
22
|
Sannino A, Di Costanzo G, Brescia F, Sarti M, Zeni O, Juutilainen J, Scarfì MR. Human Fibroblasts and 900 MHz Radiofrequency Radiation: Evaluation of DNA Damage after Exposure and Co-exposure to 3-Chloro-4-(dichloromethyl)-5-Hydroxy-2(5h)-furanone (MX). Radiat Res 2009; 171:743-51. [DOI: 10.1667/rr1642.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Hrudey SE. Chlorination disinfection by-products, public health risk tradeoffs and me. WATER RESEARCH 2009; 43:2057-92. [PMID: 19304309 DOI: 10.1016/j.watres.2009.02.011] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 05/19/2023]
Abstract
Since 1974 when trihalomethanes (THMs) were first reported as disinfection by-products (DBPs) in drinking water, there has been an enormous research effort directed at understanding how DBPs are formed in the chlorination or chloramination of drinking water, how these chlorination DBPs can be minimized and whether they pose a public health risk, mainly in the form of cancer or adverse reproductive outcomes. Driven by continuing analytical advances, the original DBPs, the THMs, have been expanded to include over 600 DBPs that have now been reported in drinking water. The historical risk assessment context which presumed cancer could be mainly attributed to exposure to environmental carcinogens played a major role in defining regulatory responses to chlorination DBPs which, in turn, strongly influenced the DBP research agenda. There are now more than 30 years of drinking water quality, treatment and health effects research, including more than 60 epidemiology studies on human populations, directed at the chlorination DBP issue. These provide considerable scope to reflect on what we know now, how our understanding has changed, what those changes mean for public health risk management overall and where we should look to better understand and manage this issue in the future.
Collapse
|
24
|
Puranen L, Toivo T, Toivonen T, Pitkäaho R, Turunen A, Sihvonen AP, Jokela K, Heikkinen P, Kumlin T, Juutilainen J. Space efficient system for whole-body exposure of unrestrained rats to 900 MHz electromagnetic fields. Bioelectromagnetics 2009; 30:120-8. [DOI: 10.1002/bem.20449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Masumura K. Spontaneous and Induced gpt and Spi− Mutant Frequencies in gpt delta Transgenic Rodents. Genes Environ 2009. [DOI: 10.3123/jemsge.31.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Bull RJ, Rice G, Teuschler LK. Determinants of whether or not mixtures of disinfection by-products are similar. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:437-460. [PMID: 19267306 DOI: 10.1080/15287390802608916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reactive chemicals have been used to disinfect drinking waters for over a century. In the 1970s, it was first observed that the reaction of these chemicals with the natural organic matter (NOM) in source waters results in the production of variable, complex mixtures of disinfection by-products (DBP). Because limited toxicological and epidemiological data are available to assess potential human health risks from complex DBP mixture exposures, methods are needed to determine when health effects data on a specific DBP mixture may be used as a surrogate for evaluating another environmental DBP mixture of interest. Before risk assessors attempt such efforts, a set of criteria needs to be in place to determine whether two or more DBP mixtures are similar in composition and toxicological potential. This study broadly characterizes the chemical and toxicological measures that may be used to evaluate similarities among DBP mixtures. Variables are discussed that affect qualitative and quantitative shifts in the types of DBP that are formed, including disinfectants used, their reactions with NOM and with bromide/iodide, pH, temperature, time, and changes in the water distribution system. The known toxicological activities of DBP mixtures and important single DBPs are also presented in light of their potential for producing similar toxicity. While DBP exposures are associated with a number of health effects, this study focuses on (1) mutagenic activity of DBP mixtures, (2) DBP cancer epidemiology, and (3) toxicology studies to evaluate similarity among DBP mixtures. Data suggest that further chemical characterization of DBP mixtures and more systematic study of DBP toxicology will improve the quality and usefulness of similarity criteria.
Collapse
|
27
|
Mäki-Paakkanen J, Hakulinen P. Assessment of the genotoxicity of the rat carcinogen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) in rat liver epithelial cells in vitro. Toxicol In Vitro 2008; 22:535-40. [DOI: 10.1016/j.tiv.2007.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 08/21/2007] [Accepted: 10/02/2007] [Indexed: 10/22/2022]
|
28
|
Martínez-Huitle C, Brillas E. Electrochemical Alternatives for Drinking Water Disinfection. Angew Chem Int Ed Engl 2008; 47:1998-2005. [DOI: 10.1002/anie.200703621] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Martínez-Huitle C, Brillas E. Elektrochemische Alternativen für die Trinkwasserdesinfektion. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200703621] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Tinh NTN, Linh ND, Wood TK, Dierckens K, Sorgeloos P, Bossier P. Interference with the quorum sensing systems in a Vibrio harveyi strain alters the growth rate of gnotobiotically cultured rotifer Brachionus plicatilis. J Appl Microbiol 2008; 103:194-203. [PMID: 17584465 DOI: 10.1111/j.1365-2672.2006.03217.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To evaluate the effect of Vibrio harveyi strains on the growth rate of the gnotobiotically cultured rotifer Brachionus plicatilis, and to establish whether quorum sensing is involved in the observed phenomena. METHODS AND RESULTS Gnotobiotic B. plicatilis sensu strictu, obtained by hatching glutaraldehyde-treated amictic eggs, were used as test organisms. Challenge tests were performed with 11 V. harveyi strains and different quorum sensing mutants derived from the V. harveyi BB120 strain. Brominated furanone [(5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone] as a quorum sensing inhibitor was tested in Brachionus challenge tests. Some V. harveyi strains, such as strain BB120, had a significantly negative effect on the Brachionus growth rate. In the challenge test with MM77, an isogenic strain of BB120 in which the two autoinducers (HAI-1 and AI-2) are both inactivated, no negative effect was observed. The effect of single mutants was the same as that observed in the BB120 strain. This indicates that both systems are responsible for the growth-retarding (GR) effect of the BB120 strain towards Brachionus. Moreover, the addition of an exogenous source of HAI-1 or AI-2 could restore the GR effect in the HAI-1 and AI-2 nonproducing mutant MM77. The addition of brominated furanone at a concentration of 2.5 mg l(-1) could neutralize the GR effect of some strains such as BB120 and VH-014. CONCLUSIONS Two quorum sensing systems in V. harveyi strain BB120 (namely HAI-1 and AI-2-mediated) are necessary for its GR effect on B. plicatilis. With some other V. harveyi strains, however, growth inhibition towards Brachionus does not seem to be related to quorum sensing. SIGNIFICANCE AND IMPACT OF THE STUDY Interference with the quorum sensing system might help to counteract the GR effect of some V. harveyi strains on Brachionus. However, further studies are needed to demonstrate the positive effect of halogenated furanone in nongnotobiotic Brachionus cultures and eventually, in other segments of the aquaculture industry.
Collapse
Affiliation(s)
- N T N Tinh
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
31
|
Nishikawa A, Umemura T, Ishii Y, Tasaki M, Okamura T, Inoue T, Masumura K, Nohmi T. In vivo Approaches to Study Mechanism of Action of Genotoxic Carcinogens. Genes Environ 2008. [DOI: 10.3123/jemsge.30.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Richardson SD, Thruston AD, Krasner SW, Weinberg HS, Miltner RJ, Schenck KM, Narotsky MG, McKague AB, Simmons JE. Integrated disinfection by-products mixtures research: comprehensive characterization of water concentrates prepared from chlorinated and ozonated/postchlorinated drinking water. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:1165-1186. [PMID: 18636390 DOI: 10.1080/15287390802182417] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This article describes the disinfection by-product (DBP) characterization portion of a series of experiments designed for comprehensive chemical and toxicological evaluation of two drinking-water concentrates containing highly complex mixtures of DBPs. This project, called the Four Lab Study, involved the participation of scientists from four laboratories and centers of the U.S. Environmental Protection Agency (EPA) Office of Research and Development, along with collaborators from the water industry and academia, and addressed toxicologic effects of complex DBP mixtures, with an emphasis on reproductive and developmental effects that are associated with DBP exposures in epidemiologic studies. Complex mixtures of DBPs from two different disinfection schemes (chlorination and ozonation/postchlorination) were concentrated successfully, while maintaining a water matrix suitable for animal studies. An array of chlorinated/brominated/iodinated DBPs was created. The DBPs were relatively stable over the course of the animal experiments, and a significant portion of the halogenated DBPs formed in the drinking water was accounted for through a comprehensive qualitative and quantitative identification approach. DBPs quantified included priority DBPs that are not regulated but have been predicted to produce adverse health effects, as well as those currently regulated in the United States and those targeted during implementation of the Information Collection Rule. New by-products were also reported for the first time. These included previously undetected and unreported bromo- and chloroacids, iodinated compounds, bromo- and iodophenols, and bromoalkyltins.
Collapse
Affiliation(s)
- Susan D Richardson
- Office of Research and Development, U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, Georgia 30605, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rudel RA, Attfield KR, Schifano JN, Brody JG. Chemicals causing mammary gland tumors in animals signal new directions for epidemiology, chemicals testing, and risk assessment for breast cancer prevention. Cancer 2007; 109:2635-66. [PMID: 17503434 DOI: 10.1002/cncr.22653] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Identifying chemical carcinogens in animal studies is currently the primary means of anticipating cancer effects in humans. Animal studies to evaluate potential chemical carcinogenicity are particularly important for breast cancer because environmental and occupational epidemiologic research is sparse. Chemicals that increased mammary gland tumors in animal studies were compiled from the International Agency for Research on Cancer (IARC), the U.S. National Toxicology Program (NTP), and other sources. Summary assessments of the carcinogenic potential for each chemical and potentially exposed populations were also compiled. In all, 216 chemicals were identified that have been associated with increases in mammary gland tumors in at least 1 study. These include industrial chemicals, chlorinated solvents, products of combustion, pesticides, dyes, radiation, drinking water disinfection byproducts, pharmaceuticals and hormones, natural products, and research chemicals. Twenty-nine are produced in the U.S. at >1 million pounds/year; 35 are air pollutants, 25 have involved occupational exposures to >5000 women, and 73 have been present in consumer products or as contaminants of food. Thus, exposure is widespread. Nearly all of the chemicals were mutagenic and most caused tumors in multiple organs and species; these characteristics are generally believed to indicate likely carcinogenicity in humans. To our knowledge, this is the most comprehensive list developed of animal mammary gland carcinogens and, along with associated data, is publicly available at URL: www.silentspring.org/sciencereview and at URL: www.komen.org/environment. Valuable information from cancer bioassays is not well utilized in risk assessment and regulatory processes, suggesting a need to strengthen chemicals testing and risk assessment as tools for breast cancer prevention.
Collapse
|
34
|
Zeni O, Di Pietro R, d'Ambrosio G, Massa R, Capri M, Naarala J, Juutilainen J, Scarfì MR. Formation of Reactive Oxygen Species in L929 Cells after Exposure to 900 MHz RF Radiation with and without Co-exposure to 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone. Radiat Res 2007; 167:306-11. [PMID: 17316071 DOI: 10.1667/rr0595.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 11/13/2006] [Indexed: 11/03/2022]
Abstract
The aim of this study was to investigate the induction of reactive oxygen species in murine L929 fibrosarcoma cells exposed to radiofrequency (RF) radiation at 900 MHz, with or without co-exposure to 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), a potent environmental carcinogen produced during chlorination of drinking water. Both continuous-wave and GSM mobile phone signals were applied for 10 or 30 min at specific absorption rates of 0.3 and 1 W/kg. Simultaneous sham exposures were performed for each exposure condition. MX treatment was performed at a subtoxic level of 500 microM, and the RF-field exposure was carried out during the first 10 or 30 min of the chemical treatment. The formation of reactive oxygen species was followed soon after the exposure and at different harvesting times until 1 h after RF-field treatment. The studied provided no indication that 900 MHz RF-field exposure, either alone or in combination with MX, induced formation of reactive oxygen species under any of the experimental conditions investigated. In contrast, exposure to MX resulted in a statistically significant increase in the formation of reactive oxygen species for all the treatment durations investigated, confirming that MX is an inductor of oxidative stress in L929 cells.
Collapse
Affiliation(s)
- Olga Zeni
- Interuniversity Center on Interaction Between Electromagnetic Fields and Biosystems (ICEmB), Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
SLAUGHTER JCOLIN. The naturally occurring furanones: formation and function from pheromone to food. Biol Rev Camb Philos Soc 2007. [DOI: 10.1111/j.1469-185x.1999.tb00187.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Brody JG, Aschengrau A, McKelvey W, Swartz CH, Kennedy T, Rudel RA. Breast cancer risk and drinking water contaminated by wastewater: a case control study. Environ Health 2006; 5:28. [PMID: 17026759 PMCID: PMC1622744 DOI: 10.1186/1476-069x-5-28] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 10/06/2006] [Indexed: 05/12/2023]
Abstract
BACKGROUND Drinking water contaminated by wastewater is a potential source of exposure to mammary carcinogens and endocrine disrupting compounds from commercial products and excreted natural and pharmaceutical hormones. These contaminants are hypothesized to increase breast cancer risk. Cape Cod, Massachusetts, has a history of wastewater contamination in many, but not all, of its public water supplies; and the region has a history of higher breast cancer incidence that is unexplained by the population's age, in-migration, mammography use, or established breast cancer risk factors. We conducted a case-control study to investigate whether exposure to drinking water contaminated by wastewater increases the risk of breast cancer. METHODS Participants were 824 Cape Cod women diagnosed with breast cancer in 1988-1995 and 745 controls who lived in homes served by public drinking water supplies and never lived in a home served by a Cape Cod private well. We assessed each woman's exposure yearly since 1972 at each of her Cape Cod addresses, using nitrate nitrogen (nitrate-N) levels measured in public wells and pumping volumes for the wells. Nitrate-N is an established wastewater indicator in the region. As an alternative drinking water quality indicator, we calculated the fraction of recharge zones in residential, commercial, and pesticide land use areas. RESULTS After controlling for established breast cancer risk factors, mammography, and length of residence on Cape Cod, results showed no consistent association between breast cancer and average annual nitrate-N (OR = 1.8; 95% CI 0.6-5.0 for > or = 1.2 vs. < .3 mg/L), the sum of annual nitrate-N concentrations (OR = 0.9; 95% CI 0.6-1.5 for > or = 10 vs. 1 to < 10 mg/L), or the number of years exposed to nitrate-N over 1 mg/L (OR = 0.9; 95% CI 0.5-1.5 for > or = 8 vs. 0 years). Variation in exposure levels was limited, with 99% of women receiving some of their water from supplies with nitrate-N levels in excess of background. The total fraction of residential, commercial, and pesticide use land in recharge zones of public supply wells was associated with a small statistically unstable higher breast cancer incidence (OR = 1.4; 95% CI 0.8-2.4 for highest compared with lowest land use), but risk did not increase for increasing land use fractions. CONCLUSION Results did not provide evidence of an association between breast cancer and drinking water contaminated by wastewater. The computer mapping methods used in this study to link routine measurements required by the Safe Drinking Water Act with interview data can enhance individual-level epidemiologic studies of multiple health outcomes, including diseases with substantial latency.
Collapse
Affiliation(s)
| | - Ann Aschengrau
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Talbot Building, Boston, MA 02118, USA
| | - Wendy McKelvey
- Silent Spring Institute, 29 Crafts Street, Newton, MA 02458, USA
| | | | - Theresa Kennedy
- Silent Spring Institute, 29 Crafts Street, Newton, MA 02458, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 29 Crafts Street, Newton, MA 02458, USA
| |
Collapse
|
37
|
Yuan J, Liu H, Zhou LH, Zou YL, Lu WQ. Oxidative stress and DNA damage induced by a drinking-water chlorination disinfection byproduct 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) in mice. Mutat Res 2006; 609:129-36. [PMID: 16952480 DOI: 10.1016/j.mrgentox.2006.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/17/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), a water chlorine disinfection byproduct, can induce DNA damage (e.g., modification of nucleotides and DNA strand breaks) and subsequent DNA repair in vitro. However, the underlying mechanism(s) how DNA damage is induced by MX is unknown. We hypothesized that MX may cause oxidative stress that leads to DNA damage in vivo. In the present study, we exposed groups of mice to MX at concentrations of 0 (solvent control), 11 (low), 33 (medium) and 99 (high) mg/kg b.w. by single intraperitoneal injection. After treating the mice for 3h, we detected cellular levels of malondialdehyde (MDA) and glutathione (GSH) to assess oxidative stress in the target cells. In addition, we also evaluated DNA damage using single cell gel electrophoresis (SCGE or Comet assay). We found that the levels of DNA damage in all cell types were correlated positively with levels of MDA but negatively with levels of GSH (P<0.05 for all). Also, there were negative correlations between levels of MDA and GSH (r=-0.995 for liver cells, -0.916 for kidney cells, -0.975 for intestine cells, respectively; P<0.05 for all but kidney cells). Our findings suggest that MX may induce DNA damage by the mechanism of causing cellular oxidative stress as measured by increased MDA and decreased GSH, at least in mice.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | | | | | | | | |
Collapse
|
38
|
Heikkinen P, Ernst H, Huuskonen H, Komulainen H, Kumlin T, Mäki-Paakkanen J, Puranen L, Juutilainen J. No Effects of Radiofrequency Radiation on 3-Chloro-4-(dichloromethyl)-5-hydroxy-2( 5H)-furanone-Induced Tumorigenesis in Female Wistar Rats. Radiat Res 2006; 166:397-408. [PMID: 16881741 DOI: 10.1667/rr3588.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study evaluated possible effects of radiofrequency (RF) radiation on tumorigenesis induced by the mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) given in drinking water. Female Wistar rats aged 7 weeks at the beginning of the experiments were randomly divided into four groups of 72 animals: a cage-control group and three MX-exposed groups (a daily average dose of 1.7 mg MX/kg body weight for 104 weeks), of which two were exposed to 900 MHz pulsed RF radiation and the third served as a sham-RF-radiation group. The RF-radiation groups were exposed 2 h per day, 5 days per week for 104 weeks at nominal whole-body average SARs of 0.3 W/kg and 0.9 W/kg. Complete histopathology was performed on the rats of the three MX-exposed groups. The tumor types and incidences observed in the MX-exposed animals were similar to those reported earlier in MX-exposed female Wistar rats. RF radiation did not statistically significantly affect mortality or organ-specific incidence of any tumor type. The only statistically significant difference was an increase in the combined frequency of vascular tumors of the mesenteric lymph nodes in the high-RF-radiation group compared to the sham-RF-radiation group. However, additional histopathological analysis of the cage-control animals suggested that this difference was due to unusually low frequency of this type of tumor in the sham-RF-radiation group rather than a high frequency in the high-RF-radiation group. With respect to non-neoplastic findings, statistically significant differences between the RF-radiation groups and the sham-RF-radiation group were observed only for single findings in the lacrimal glands, lungs, liver and skin. Such changes are commonly seen in aged rats and were considered to be unrelated to RF radiation. The results of the present study do not support co-carcinogenic effects of low-level long-term RF-radiation exposure in rats.
Collapse
Affiliation(s)
- Päivi Heikkinen
- University of Kuopio, Department of Environmental Sciences, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Verschaeve L, Heikkinen P, Verheyen G, Van Gorp U, Boonen F, Vander Plaetse F, Maes A, Kumlin T, Mäki-Paakkanen J, Puranen L, Juutilainen J. Investigation of co-genotoxic effects of radiofrequency electromagnetic fields in vivo. Radiat Res 2006; 165:598-607. [PMID: 16669742 DOI: 10.1667/rr3559.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We investigated the possible combined genotoxic effects of radiofrequency (RF) electromagnetic fields (900 MHz, amplitude modulated at 217 Hz, mobile phone signal) with the drinking water mutagen and carcinogen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). Female rats were exposed to RF fields for a period of 2 years for 2 h per day, 5 days per week at average whole-body specific absorption rates of 0.3 or 0.9 W/kg. MX was given in the drinking water at a concentration of 19 microg/ml. Blood samples were taken at 3, 6 and 24 months of exposure and brain and liver samples were taken at the end of the study (24 months). DNA damage was assessed in all samples using the alkaline comet assay, and micronuclei were determined in erythrocytes. We did not find significant genotoxic activity of MX in blood and liver cells. However, MX induced DNA damage in rat brain. Co-exposures to MX and RF radiation did not significantly increase the response of blood, liver and brain cells compared to MX exposure only. In conclusion, this 2-year animal study involving long-term exposures to RF radiation and MX did not provide any evidence for enhanced genotoxicity in rats exposed to RF radiation.
Collapse
Affiliation(s)
- L Verschaeve
- Flemish Institute of Technological Research (VITO), Expertise Center of Environmental Toxicology, Mol, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hakulinen P, Rintala E, Mäki-Paakkanen J, Komulainen H. Altered expression of connexin43 in the inhibition of gap junctional intercellular communication by chlorohydroxyfuranones in WB-F344 rat liver epithelial cells. Toxicol Appl Pharmacol 2006; 212:146-55. [PMID: 16122772 DOI: 10.1016/j.taap.2005.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 07/04/2005] [Accepted: 07/19/2005] [Indexed: 11/17/2022]
Abstract
3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), 3,4-dichloro-5-hydroxy-2(5H)-furanone (MCA), and 3-chloro-4-methyl-5-hydroxy-2(5H)-furanone (MCF) promote foci formation in the two-stage cell transformation assay in vitro. These chlorohydroxyfuranones (CHFs) and their structural congener 3-chloro-4-(chloromethyl)-5-hydroxy-2(5H)-furanone (CMCF) inhibit gap junctional intercellular communication (GJIC) in Balb/c 3T3 mouse fibroblast cells. In the present study, the effects of MX, MCA, CMCF, and MCF on GJIC were evaluated in liver cells (WB-F344 rat liver epithelial cells), the target cells of MX-induced carcinogenicity, using the scrape-loading dye transfer technique. The CHFs inhibited GJIC after 1 h exposure in a concentration-dependent fashion. The order of potency was MX>CMCF approximately MCA>MCF. In terms of the lowest observed effective concentrations, the difference in the potency was about 27-fold (MX 1.875 microM, MCF 50 microM). After a prolonged exposure period (12 h), the inhibition of GJIC by MX and CMCF remained stable, but MCA and MCF exhibited increasing inhibitory effects. After removal of the CHFs, the GJIC slowly recovered. At the transcriptional level, CHFs caused essentially no change in the level of connexin43 (Cx43) mRNA. Preincubation of cells with the protein kinase C (PKC) inhibitor did not modify the response, but the specific MEK 1 inhibitor PD98059 decreased substantially the inhibition of GJIC by all four CHFs. Activation of the mitogen-activated protein kinases (MAPKs) signaling pathway was necessary for inhibition of GJIC. CHFs did not increase the basal phosphorylation state of the Cx43 protein, but all CHFs caused a concentration-dependent degradation of the Cx43 protein. The results indicate that all the studied CHFs inhibit GJIC in WB-F344 cells by altering Cx43 expression.
Collapse
Affiliation(s)
- Pasi Hakulinen
- National Public Health Institute, Laboratory of Toxicology, P.O.B. 95, FI-70701 Kuopio, Finland.
| | | | | | | |
Collapse
|
41
|
Kissling GE, Bernheim NJ, Hawkins WE, Wolfe MJ, Jokinen MP, Smith CS, Herbert RA, Boorman GA. The Utility of the Guppy (Poecilia reticulata) and Medaka (Oryzias latipes) in Evaluation of Chemicals for Carcinogenicity. Toxicol Sci 2006; 92:143-56. [PMID: 16581948 DOI: 10.1093/toxsci/kfj181] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There has been considerable interest in the use of small fish models for detecting potential environmental carcinogens. In this study, both guppies (Poecilia reticulata) and medaka (Oryzias latipes) were exposed in the aquaria water to three known rodent carcinogens for up to 16 months. Nitromethane, which caused mammary gland tumors by inhalation exposure in female rats, harderian gland and lung tumors in male and female mice, and liver tumors in female mice by inhalation, failed to increase tumors in either guppies or medaka. Propanediol, which when given in the feed was a multisite carcinogen in both sexes of rats and mice, caused increased liver tumors in male guppies and male medaka. There was reduced survival in female guppies and no increased tumors in female medaka. 1,2,3-Trichloropropane, which when administered by oral gavage was a multisite carcinogen in both sexes of rats and mice, caused an increased incidence of tumors in the liver of both male and female guppies and medaka and in the gallbladder of male and female medaka. The results of this study demonstrate that for these three chemicals, under these specific exposure conditions, the fish appear less sensitive and have a narrower spectrum of tissues affected than rodents. These results suggest that fish models are of limited utility in screening unknown chemicals for potential carcinogenicity.
Collapse
Affiliation(s)
- Grace E Kissling
- Environmental Medicine and Diseases Program and Environmental Toxicology Program, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Bladder cancer is a malignant disease with exogenous and thus avoidable causative factors. Cigarette smoking is by far the most relevant risk factor and a clear dose-response relationship has been documented. That the bladder cancer risk decreases only a few years after the cessation of smoking is noteworthy. Occupational exposure, particularly to aromatic amines such as benzidine and beta-naphthylamine and to certain azo dyes, represents another important risk factor. At high risk are workers involved in the production of these chemicals and, to a lesser extent, those processing them. The currently known environmental factors seem to play a minor role. Treatment-induced risks causing secondary bladder cancer also have to be considered. Currently, the prevention of bladder cancer mainly involves avoiding exposure to known causative factors and early detection of the disease in high risk populations.
Collapse
Affiliation(s)
- K Golka
- Institut für Arbeitsphysiologie an der Universität Dortmund, Ardeystrasse 67, 44139 Dortmund.
| | | | | |
Collapse
|
43
|
Kasim K, Levallois P, Johnson KC, Abdous B, Auger P. Chlorination disinfection by-products in drinking water and the risk of adult leukemia in Canada. Am J Epidemiol 2006; 163:116-26. [PMID: 16319293 DOI: 10.1093/aje/kwj020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The authors conducted a population-based case-control study of 1,068 incident leukemia cases and 5,039 controls aged 20-74 years during 1994-1997 to examine the association between exposure to drinking water chlorination disinfection by-products and adult leukemia risk in Canada. Residence and drinking water source histories and data from municipal water supplies were used to estimate individual chlorination disinfection by-product exposure according to water source, chlorination status, and chlorination disinfection by-product levels during the 40-year period before the interview. The analysis included 686 cases and 3,420 controls for whom water quality information was available for at least 30 of these years. Increased risk of chronic myeloid leukemia was associated with increasing years of exposure to different chlorination disinfection by-product indexes, with an adjusted odds ratio of 1.72 (95% confidence interval: 1.01, 3.08) for the highest exposure duration to total trihalomethanes of more than 40 microg/liter. In contrast, the risk of the other studied leukemia subtypes was found to decrease with increasing years of exposure to chlorination disinfection by-products. A protective effect was noted for chronic lymphoid leukemia (odds ratio = 0.60, 95 percent confidence interval: 0.41, 0.87) associated with the highest exposure duration to total trihalomethanes of more than 40 microg/liter. More studies with long-term exposure measures and large enough to evaluate leukemia subtypes are needed to further understanding of the issue.
Collapse
Affiliation(s)
- Khaled Kasim
- Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
44
|
Nishikawa A, Sai K, Okazaki K, Son HY, Kanki K, Nakajima M, Kinae N, Nohmi T, Trosko JE, Inoue T, Hirose M. MX, a by-product of water chlorination, lacks in vivo genotoxicity in gpt delta mice but inhibits gap junctional intercellular communication in rat WB cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:48-55. [PMID: 16106442 DOI: 10.1002/em.20167] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), a by-product of water chlorination, is a potent bacterial mutagen and rat carcinogen. In the present study, the in vivo mutagenicity, cell proliferative activity, and carcinogenicity of MX were investigated in gpt delta mice. Groups of 5 male and female 7-week-old gpt delta C57BL/6J transgenic mice were given MX at doses of 0, 10, 30, or 100 ppm in their drinking water for 12 weeks, and then killed to assess in vivo mutagenicity using 6-thioguanine and Spi- selection, and cell proliferative activity using immunohistochemistry for proliferating cell nuclear antigen (PCNA). Further groups of 10 male and female gpt delta mice were given 0 or 100 ppm MX for 78 weeks, and a full necropsy with histopathological examination of all organs was conducted to detect neoplastic lesions. The 12-week MX treatment did not result in mutagenicity in the livers or lungs or cell proliferative activity in several organs of the mice, and the 78-week treatment did not cause carcinogenicity. Additional investigations were conducted to evaluate the potential of MX to inhibit gap junctional intercellular communication (GJIC) in rat liver epithelial cells (WB cells) by the scrape loading/dye transfer method. Inhibition of GJIC was detected within 2 hr with a noncytotoxic dose of MX (4 microg/ml), followed by partial restoration after 5 hr. A second phase of inhibition occurred after 10 hr and then the lowered level persisted for the 24 hr-incubation period. Dose-dependent inhibition was evident at both 2 hr and 24 hr, with much stronger effects at the former time. These findings indicate that MX is not mutagenic, mitogenic or carcinogenic in mice, and suggest that the compound exerts epigenetic actions leading to GJIC inhibition.
Collapse
Affiliation(s)
- Akiyoshi Nishikawa
- Division of Pathology, National Institute of Health Sciences, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nakajima M, Shimada S, Nagai M, Mizuhashi F, Sugiyama C, Masuda S, Hayashi M, Kinae N. 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone [MX] shows initiating and promoting activities in a two-stage BALB/c 3T3 cell transformation assay. Mutagenesis 2005; 20:375-9. [PMID: 16081471 DOI: 10.1093/mutage/gei050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A transformation assay using BALB/c 3T3 cells was conducted on 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) to assess initiation and promotion activities of MX carcinogenesis. Statistically significant positive responses were obtained compared with the corresponding solvent controls in both the initiation assay post-treated with 12-O-tetradecanoylphorbol 13-acetate (TPA) and the promotion assay pretreated with 3-methylcholanthrene (MCA). Both TPA and MX inhibited metabolic cooperation in an assay using co-culture of V79 6-thioguanine (6-TG) sensitive and insensitive cells. However, cells isolated from transformed foci in the initiation assay did not induce any nodules after inoculation to BALB/c mice, the strain of mouse from which the transformation assay cells were derived. Although the study was carried out for 2-3 weeks, this might have been too short to develop nodules under the conditions of this experiment. This in vitro cell transformation study with MX adds supportive information to studies showing MX carcinogenicity and tumour promoter activity, and adds mechanistic understanding of the action of MX.
Collapse
Affiliation(s)
- Madoka Nakajima
- Genetic Toxicology Group, Biosafety Research Center, Foods, Drugs and Pesticides, 582-2, Shioshinden, Iwata-gun Shizuoka 437-1213, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
McDorman KS, Pachkowski BF, Nakamura J, Wolf DC, Swenberg JA. Oxidative DNA damage from potassium bromate exposure in Long-Evans rats is not enhanced by a mixture of drinking water disinfection by-products. Chem Biol Interact 2005; 152:107-17. [PMID: 15840384 DOI: 10.1016/j.cbi.2005.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 02/01/2005] [Accepted: 02/02/2005] [Indexed: 11/23/2022]
Abstract
Public drinking water treated with chemical disinfectants contains a complex mixture of disinfection by-products (DBPs) for which the relative toxicity of the mixtures needs to be characterized to accurately assess risk. Potassium bromate (KBrO(3)) is a by-product from ozonation of high-bromide surface water for production of drinking water and is a rodent carcinogen that produces thyroid, mesothelial, and renal tumors. The proposed mechanism of KBrO(3) renal carcinogenesis involves the formation of 8-oxoguanine (8-oxoG), a promutagenic base lesion in DNA typically removed through base excision repair (BER). In this study, male Long-Evans rats were exposed via drinking water to carcinogenic concentrations of KBrO(3) (0.4 g/L), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (0.07 g/L), chloroform (1.8 g/L), bromodichloromethane (0.7 g/L), or a mixture of all these chemicals at the same concentrations for 3 weeks. Half of one kidney was processed for microscopic examination, and the remaining kidney was frozen for isolation of genomic DNA. Levels of 8-oxoG were measured using HPLC with electrochemical detection in DNA samples incubated with formamidopyrimidine-DNA glycosylase. Aldehydic lesions (e.g. abasic sites) in DNA samples were quantitated using an aldehyde-reactive probe slot-blot assay. Treatment with KBrO(3) produced a measurable increase of 8-oxoG in the kidney, and this effect was greater than that produced by treatment with the DBP mixture. No other single chemical treatment caused measurable increases of 8-oxoG. The mixture effect on the amount of 8-oxoG observed in this study suggests an interaction between chemicals that reduced the generation of oxidative DNA damage. No increases in abasic sites were observed with treatment, but a decrease was apparent in the rats treated with the DBP mixture. These data are consistent with previous studies where chronic exposure to this chemical mixture in drinking water resulted in a less than additive carcinogenic response in Tsc2 mutant Long-Evans rats.
Collapse
Affiliation(s)
- Kevin S McDorman
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
47
|
McDonald TA, Komulainen H. Carcinogenicity of the chlorination disinfection by-product MX. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2005; 23:163-214. [PMID: 16291527 DOI: 10.1080/10590500500234988] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone, better known by its historical name 'mutagen X' or MX, is a chlorination disinfection byproduct that forms from the reaction of chlorine and humic acids in raw water. MX has been measured in drinking water samples in several countries at levels that ranged from non-detectable to 310 ng/L. Although the concentration of MX in drinking water is typically 100- to 1000-fold lower than other common chlorinated by-products of concern (e.g., trihalomethanes), some have hypothesized that MX might play a role in the increased cancer risks that have been associated with the consumption of chlorinated water. This hypothesis is based on observations that MX, in some test systems, is extremely potent relative to trihalomethanes in inducing DNA damage and altering pathways involved in cell growth, and that in some epidemiological studies increased cancer rates are associated with the bacterial mutagenicity of disinfected water of which MX contributes a significant portion. MX also appears to be more potent than other chlorination by-products in causing cancer in animals. This article reviews the available evidence on the carcinogenicity of MX. MX induced cancer at multiple sites in male and female rats, acted as a tumor initiator and promoter, enhanced tumor yields in genetically modified rodents, induced a myriad of genotoxic effects in numerous in vitro and in vivo test systems, and was a potent inhibitor of gap junction intercellular communication. Although the precise mechanism of MX-induced DNA damage is not known, MX is able to cause DNA damage through an unusual mechanism of ionizing DNA bases due to its extremely high reductive potential. MX may also cause mutations through DNA adduction. This article develops a mean cancer potency estimate for MX of 2.3 (mg/kg-d)(-1) and an upper 95% percentile estimate of 4.5 (mg/kg-d)(-1), and examines the potential health risks posed by this chlorination contaminant in drinking water. A discussion of additional data that would be desirable to better characterize the risks posed by MX and other halogenated hydroxyfuranones follows.
Collapse
Affiliation(s)
- Thomas A McDonald
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, USA.
| | | |
Collapse
|
48
|
Egorov AI, Howlett NG, Schiestl RH. Mutagen X and chlorinated tap water are recombinagenic in yeast. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2004; 563:159-69. [PMID: 15364282 DOI: 10.1016/j.mrgentox.2004.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 07/16/2004] [Accepted: 07/23/2004] [Indexed: 11/18/2022]
Abstract
This study determines the effects of a water disinfection by-product, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (also known as mutagen X or MX) and chlorinated tap water on genomic instability in the yeast Saccharomyces cerevisiae. Tap water samples collected from Cherepovets (Russia) and Boston (MA, USA), were extracted using XAD absorption and ethyl acetate elution. MX and these water extracts were then tested for their ability to induce intrachromosomal recombination (deletions or DEL events), interchromosomal recombination (ICR) and aneuploidy (ANEU) using the yeast DEL assay. MX strongly induced DEL, ICR and ANEU events with a positive dose response and no threshold. Cherepovets tap water induced DEL and ICR events while evidence of ANEU induction was weak. The DEL induction potencies were stronger at higher concentrations. The estimated contribution of MX to DEL induction varied from over 50% at low concentrations (which is comparable to a typical contribution of MX to Ames mutagenicity of tap water) to between 2 and 10% at highest concentrations. For Boston tap water, there was only weak evidence of DEL induction and no evidence of ICR and ANEU induction. This is consistent with the results of other studies, which reported much higher concentrations of MX and stronger Ames mutagenicity in Cherepovets tap water than in Boston tap water.
Collapse
Affiliation(s)
- Andrey I Egorov
- Departments of Cancer Cell Biology and Environmental Health, Harvard School of Public Health, Boston, MA 02111, USA.
| | | | | |
Collapse
|
49
|
Hakulinen P, Mäki-Paakkanen J, Naarala J, Kronberg L, Komulainen H. Potent inhibition of gap junctional intercellular communication by 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) in BALB/c 3T3 cells. Toxicol Lett 2004; 151:439-49. [PMID: 15261988 DOI: 10.1016/j.toxlet.2004.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 02/26/2004] [Accepted: 03/04/2004] [Indexed: 11/18/2022]
Abstract
The chlorohydroxyfuranones (CHFs) MX [3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone], MCA [3,4-dichloro-5-hydroxy-2(5H)-furanone], CMCF [3-chloro-4-(chloromethyl)-5-hydroxy-2(5H)-furanone], and MCF [3-chloro-4-methyl-5-hydroxy-2(5H)-furanone] are genotoxic disinfection by-products of drinking water chlorination. MX, MCA, and MCF also promote foci formation in the two-stage cell transformation assay. The cellular mechanisms underlying this apparent promotional effect are not known. In the present study, the effects of MX, MCA, CMCF, and MCF on gap junctional intercellular communication (GJIC) were measured in BALB/c 3T3 cells using the scrape loading dye technique. The effect of MX on apoptosis in the same cell line was explored by assaying caspase-3-like protease activity. All the four CHFs inhibited GJIC after 30 min exposure in a dose-dependent fashion but there was a marked difference in the ranges of their active concentrations. MX was almost as potent an inhibitor of GJIC (inhibition at nanomolar concentrations) as 12-O-tetradecanoylphorbol-13-acetate (TPA) (positive control), while MCA was 10 times weaker, CMCF 10,000 times weaker, and MCF 20,000 times weaker than MX. After prolonged exposure periods (up to 6 h), GJIC recovered somewhat upon MX and MCA exposures, the inhibition of GJIC by MCF remained constant but CMCF showed an irreversible increasing inhibitory effect. MX caused apoptosis as a "window" effect at concentrations 2000-4000-fold higher than those needed to inhibit GJIC. The results indicate that MX is a potent inhibitor of GJIC in BALB/c 3T3 cells and this inhibition might be one mechanism by which MX can promote malignant foci formation. MCA also has a specific potential to inhibit GJIC whereas MCF and CMCF affected GJIC at concentrations, similar to those evoking genotoxicity in vitro.
Collapse
Affiliation(s)
- Pasi Hakulinen
- National Public Health Institute, Laboratory of Toxicology, P.O. Box 95, Kuopio FIN-70701, Finland.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Chlorinated drinking water contains a number of different by-products formed during the chlorination process from organic matter. The carcinogenicity of only a fraction of them have been evaluated in experimental animals. The focus has been on compounds and groups of compounds that are most abundant in chlorinated drinking water or the in vitro toxicity data have suggested genotoxic potential. From trihalomethanes, chloroform causes liver tumors in mice and female rats and renal tumors in male mice and rats. Tumor formation by chloroform is strongly associated with cytotoxicity and regenerative cell proliferation in tissues and that has been considered to be one determinant of its carcinogenicity. From halogenic acetic acids, dichloroacetic acid (DCA) and trichlotoacetic acid (TCA) are hepatocarcinogenic in mice and DCA in male rats. Their genotoxicity is equivocal and nongenotoxic mechanisms, such as peroxisome proliferation and hypomethylation of DNA in the liver, likely contribute to tumor development. From chlorinated furanones (CHFs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) is a multisite carcinogen in rats (e.g. in thyroid glands and liver) and it has caused DNA damage in vivo. MX may be a complete carcinogen because it also has promoter properties in vitro. Chlorinated drinking water may also contain brominated by-products providing the raw water contains bromide. At least some of them (bromodichloromethane, bromoform) have been shown to be carcinogenic in laboratory animals. Altogether, although several by-products have been shown to have carcinogenic potential in laboratory animals, it not yet possible to state which compounds or groups of by-products cause the cancer risk in chlorinated drinking water. The cellular mechanisms of their effects and these effects at low concentrations are still poorly understood. The few studies with mixtures of these by-products suggest that the mixture effects may be complex and unpredictable (inhibitory, additive, synergistic).
Collapse
Affiliation(s)
- Hannu Komulainen
- National Public Health Institute, Division of Environmental Health, Laboratory of Toxicology, P.O. Box 95, FIN-70701 Kuopio, Finland.
| |
Collapse
|