1
|
Lin WY, Wen HP, Li JY, Wang JM, Feng HJ, Huang Z, Li R, Zeng L, Huang L. Compact Molecular Conformation of Prodrugs Enhances Photocleaving Performance for Tumor Vascular Growth Inhibition. Adv Healthc Mater 2024:e2402690. [PMID: 39460488 DOI: 10.1002/adhm.202402690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Indexed: 10/28/2024]
Abstract
Highly spatiotemporal-resolved photomodulation demonstrates promise for investigating key biological events in vivo and in vitro, such as cell signaling pathways, neuromodulation, and tumor treatment without side effects. However, enhancing the performance of photomodulation tools remains challenging due to the limitations of the physicochemical properties of the photoactive molecules. Here, a compact, stable intramolecular π-π stacking conformation forming between the target molecule (naproxen) and the perylene-based photoremovable protecting group is discovered to confine the motion of the photolabile bond and then enhance the photocleavage quantum yield. In conjunction with a red-absorbing photosensitizer, the photocleavage wavelength is extended to the red region via triplet-triplet annihilation. In particular, the triplet lifetime of the prodrug can be extended via the linked steric hindrance to improve the conversion yield via TTA. Using the new photomodulation tool, it is precisely photoreleased cyclooxygenase-2 inhibitors for tumor vascular growth suppression in vivo. In combination with cisplatin, over 90% efficient inhibition of malignant breast tumors is observed via the synergistic tumor treatment strategy. These findings provide a new concept for the rational design of efficient photocleavage and have implications for photomodulating cell signaling pathways in tumor therapy, as well as laying a solid foundation for the development of phototherapeutic approaches.
Collapse
Affiliation(s)
- Wen-Yue Lin
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hui-Ping Wen
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jia-Yao Li
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Juan-Mei Wang
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hong-Juan Feng
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi Huang
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ran Li
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Le Zeng
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Ling Huang
- Department Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
2
|
Oliveira Santos MDJ, Teles-Souza J, de Araújo-Calumby RF, Copeland RL, Marcelino HR, Vilas-Bôas DS. Advances, limitations and perspectives in the use of celecoxib-loaded nanocarriers in therapeutics of cancer. DISCOVER NANO 2024; 19:142. [PMID: 39240502 PMCID: PMC11379842 DOI: 10.1186/s11671-024-04070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024]
Abstract
Cancer is highlighted as a major global health challenge in the XXI century. The cyclooxygenase-2 (COX-2) enzyme rises as a widespread tumor progression marker. Celecoxib (CXB) is a selective COX-2 inhibitor used in adjuvant cancer therapy, but high concentrations are required in humans. In this sense, the development of nanocarriers has been proposed once they can improve the biopharmaceutical, pharmacokinetic and pharmacological properties of drugs. In this context, this article reviews the progress in the development of CXB-loaded nanocarriers over the past decade and their prospects. Recent advances in the field of CXB-loaded nanocarriers demonstrate the use of complex formulations and the increasing importance of in vivo studies. The types of CXB-loaded nanocarriers that have been developed are heterogeneous and based on polymers and lipids together or separately. It was found that the work on CXB-loaded nanocarriers is carried out using established techniques and raw materials, such as poly (lactic-co-glicolic acid), cholesterol, phospholipids and poly(ethyleneglycol). The main improvements that have been achieved are the use of cell surface ligands, the simultaneous delivery of different synergistic agents, and the presence of materials that can provide imaging properties and other advanced features. The combination of CXB with other anti-inflammatory drugs and/or apoptosis inducers appears to hold effective pharmacological promise. The greatest advance to date from a clinical perspective is the ability of CXB to enhance the cytotoxic effects of established chemotherapeutic agents.
Collapse
Affiliation(s)
- Miguel de Jesus Oliveira Santos
- Laboratory of Immunopathology and Molecular Biology, Department of Biomorfology, Health Sciences Institute, Federal University of Bahia, Salvador Av. Reitor Miguel Calmon, S/N, Salvador, Bahia, CEP 40110-100, Brazil
- Post-Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, BA, 40170-115, Brazil
| | - Jéssica Teles-Souza
- Laboratory of Immunopathology and Molecular Biology, Department of Biomorfology, Health Sciences Institute, Federal University of Bahia, Salvador Av. Reitor Miguel Calmon, S/N, Salvador, Bahia, CEP 40110-100, Brazil
| | - Renata Freitas de Araújo-Calumby
- Laboratory of Immunopathology and Molecular Biology, Department of Biomorfology, Health Sciences Institute, Federal University of Bahia, Salvador Av. Reitor Miguel Calmon, S/N, Salvador, Bahia, CEP 40110-100, Brazil
- Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, 40110-100, Brazil
| | - Robert L Copeland
- Department of Pharmacology, College of Medicine and Howard University Cancer Center, Howard University, Washington, D.C., 20059, USA
| | - Henrique Rodrigues Marcelino
- Post-Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, BA, 40170-115, Brazil
- Department of Medicines, College of Pharmacy, Federal University of Bahia, Salvador, BA, 40170-115, Brazil
| | - Deise Souza Vilas-Bôas
- Laboratory of Immunopathology and Molecular Biology, Department of Biomorfology, Health Sciences Institute, Federal University of Bahia, Salvador Av. Reitor Miguel Calmon, S/N, Salvador, Bahia, CEP 40110-100, Brazil.
- Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, 40110-100, Brazil.
| |
Collapse
|
3
|
Paoletti N, Supuran CT. Benzothiazole derivatives in the design of antitumor agents. Arch Pharm (Weinheim) 2024; 357:e2400259. [PMID: 38873921 DOI: 10.1002/ardp.202400259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Benzothiazoles are a class of heterocycles with multiple applications as anticancer, antibiotic, antiviral, and anti-inflammatory agents. Benzothiazole is a privileged scaffold in drug discovery programs for modulating a variety of biological functions. This review focuses on the design and synthesis of new benzothiazole derivatives targeting hypoxic tumors. Cancer is a major health problem, being among the leading causes of death. Tumor-hypoxic areas promote proliferation, malignancy, and resistance to drug treatment, leading to the dysregulation of key signaling pathways that involve drug targets such as vascular endothelial growth factor, epidermal growth factor receptor, hepatocyte growth factor receptor, dual-specificity protein kinase, cyclin-dependent protein kinases, casein kinase 2, Rho-related coil formation protein kinase, tunica interna endothelial cell kinase, cyclooxygenase-2, adenosine kinase, lysophosphatidic acid acyltransferases, stearoyl-CoA desaturase, peroxisome proliferator-activated receptors, thioredoxin, heat shock proteins, and carbonic anhydrase IX/XII. In turn, they regulate angiogenesis, proliferation, differentiation, and cell survival, controlling the cell cycle, inflammation, the immune system, and metabolic alterations. A wide diversity of benzothiazoles were reported over the last years to interfere with various proteins involved in tumorigenesis and, more specifically, in hypoxic tumors. Many hypoxic targets are overexpressed as a result of the hypoxia-inducible factor activation cascade and may not be present in normal tissues, providing a potential strategy for selectively targeting hypoxic cancers.
Collapse
Affiliation(s)
- Niccolò Paoletti
- Department of Neurofarba, Section of Pharmaceutical & Nutraceutical Sciences, Polo Scientifico, University of Florence, Sesto Fiorentino (Firenze), Italy
| | - Claudiu T Supuran
- Department of Neurofarba, Section of Pharmaceutical & Nutraceutical Sciences, Polo Scientifico, University of Florence, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
4
|
Li J, Shi X, Tang T, Zhou M, Ye F. Research progress on nonsteroidal anti-inflammatory drugs in the treatment of pituitary neuroendocrine tumors. Front Pharmacol 2024; 15:1407387. [PMID: 39135798 PMCID: PMC11317762 DOI: 10.3389/fphar.2024.1407387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Pituitary neuroendocrine tumor is the third most common primary intracranial tumor. Its main clinical manifestations include abnormal hormone secretion symptoms, symptoms caused by tumor compression of the surrounding pituitary tissue, pituitary stroke, and other anterior pituitary dysfunction. Its pathogenesis is yet to be fully understood. Surgical treatment is still the main treatment. Despite complete resection, 10%-20% of tumors may recur. While dopamine agonists are effective in over 90% of prolactinomas, prolonged use and individual variations can lead to increased drug resistance and a gradual decline in efficacy, which ultimately requires surgical intervention. Nonsteroidal anti-inflammatory drugs reduce the production of inflammatory mediator prostaglandins by inhibiting the activity of cyclooxygenase and exert antipyretic, analgesic, antiplatelet, and anti-inflammatory effects. In recent years, many in-depth studies have confirmed the potential of nonsteroidal anti-inflammatory drugs as a preventive and antitumor agent. It has been extensively utilized in the prevention and treatment of various types of cancer. However, their specific mechanisms of action still need to be fully elucidated. This article summarizes recent research progress on the expression of cyclooxygenase in pituitary neuroendocrine tumors and the treatment of nonsteroidal anti-inflammatory drugs. It provides a feasible theoretical basis for further research on pituitary neuroendocrine tumors and explores potential therapeutic targets.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Neurosurgery and Neurocritical Care Medicine, Deyang People’s Hospital, Deyang, China
| | - Xinkang Shi
- Department of Neurosurgery, YiDu Central Hospital of Weifang, Weifang, China
| | - Tao Tang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Manxin Zhou
- Clinical Medicine School of Chengdu Medical College, Chengdu, China
| | - Feng Ye
- Department of Neurosurgery and Neurocritical Care Medicine, Deyang People’s Hospital, Deyang, China
- Sichuan Clinical Research Center for Neurological Diseases, Deyang, China
| |
Collapse
|
5
|
Fernandes Q, Inchakalody VP, Bedhiafi T, Mestiri S, Taib N, Uddin S, Merhi M, Dermime S. Chronic inflammation and cancer; the two sides of a coin. Life Sci 2024; 338:122390. [PMID: 38160787 DOI: 10.1016/j.lfs.2023.122390] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The correlation between chronic inflammation and cancer was initially identified in the 19th century. Biomolecules like interleukins, chemokines, tumor necrosis factors, growth factors, and adhesion molecules, which regulate inflammation, are recognized contributors to neoplastic transformation through various mechanisms, including oncogenic mutations, resistance to apoptosis, and adaptive responses like angiogenesis. This review aims to establish connections between the intricate and complex mechanisms of chronic inflammation and cancer. We illuminate implicit signaling mechanisms that drive the association between chronic inflammation and the initiation/progression of cancer, exploring potential impacts on other diseases. Additionally, we discuss the modalities of currently available therapeutic options for chronic inflammation and cancer, emphasizing the dual nature of such therapies. A thorough understanding of the molecular basis of chronic inflammation is crucial for developing novel approaches in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
6
|
Lyu L, Wen H, Li Y, Wang X, Li J, Zuo C, Yan S, Qi X. PGE2 functions in ovoviviparous teleost black rockfish (Sebastes schlegelii): evolutionary status between parturition and ovulation†. Biol Reprod 2024; 110:140-153. [PMID: 37812450 DOI: 10.1093/biolre/ioad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Fish have evolved various reproductive strategies including oviparity, viviparity, and ovoviviparity, which undoubtedly affect the survival of the whole species continuity. As the final step in reproduction, parturition in viviparous vertebrate and ovulation in oviparous teleost seem to share a similar mechanism, when prostaglandins (PGs) act as the trigger to launch the whole process. In the present study, ovoviviparous teleost black rockfish (Sebastes schlegelii) is employed as the research object. Intraperitoneal injection showed that PGE2 (500 μg/kg) could activate the delivery reactions in perinatal black rockfish. RNA-seq data of ovary in perinatal period revealed transcriptional change in cell junction, inflammation, and apoptosis, which is related to mammal parturition and teleost ovulation. Further results proved the positive correlation between ptger EP2 and previous mentioned pathways. Subsequent experiment proved that PGE2 was able to induce the ovulation and spawning in unfertilized individuals, which had a bilayer follicular structure compared to monolayer follicular in perinatal period black rockfish. Both unfertilized and perinatal ovary matrix could response to PGE2 stimulation. In conclusion, the function of PGE2 in activating both parturition and ovulation in a relatively different pathways conserved with viviparity or oviparity provided novel evidence of the evolutionary status of ovoviviparous vertebrates.
Collapse
Affiliation(s)
- Likang Lyu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Xiaojie Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Jianshuang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Chenpeng Zuo
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Shaojing Yan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao, P. R. China
| |
Collapse
|
7
|
Fatemi N, Karimpour M, Bahrami H, Zali MR, Chaleshi V, Riccio A, Nazemalhosseini-Mojarad E, Totonchi M. Current trends and future prospects of drug repositioning in gastrointestinal oncology. Front Pharmacol 2024; 14:1329244. [PMID: 38239190 PMCID: PMC10794567 DOI: 10.3389/fphar.2023.1329244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Gastrointestinal (GI) cancers comprise a significant number of cancer cases worldwide and contribute to a high percentage of cancer-related deaths. To improve survival rates of GI cancer patients, it is important to find and implement more effective therapeutic strategies with better prognoses and fewer side effects. The development of new drugs can be a lengthy and expensive process, often involving clinical trials that may fail in the early stages. One strategy to address these challenges is drug repurposing (DR). Drug repurposing is a developmental strategy that involves using existing drugs approved for other diseases and leveraging their safety and pharmacological data to explore their potential use in treating different diseases. In this paper, we outline the existing therapeutic strategies and challenges associated with GI cancers and explore DR as a promising alternative approach. We have presented an extensive review of different DR methodologies, research efforts and examples of repurposed drugs within various GI cancer types, such as colorectal, pancreatic and liver cancers. Our aim is to provide a comprehensive overview of employing the DR approach in GI cancers to inform future research endeavors and clinical trials in this field.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Karimpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoda Bahrami
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Kong RJ, Li YM, Huang JQ, Yan N, Wu YY, Cheng H. Self-Delivery Photodynamic Re-educator Enhanced Tumor Treatment by Inducing Immunogenic Cell Death and Improving Immunosuppressive Microenvironments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59165-59174. [PMID: 38100370 DOI: 10.1021/acsami.3c13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Immunotherapy is known to be a promising strategy in the clinical treatment of malignant tumors, but it has received generally low response rates in various tumors because of the poor immunogenicity and multiple immunosuppressive microenvironments. A self-delivery photodynamic re-educator, denoted as CCXB, is synthesized through the self-assembly of chlorine e6 (Ce6) and celecoxib (CXB). As a carrier-free nanomedicine, CCXB shows a high drug loading rate, improved water stability, superior cellular uptake, and tumor accumulation capability. In comparison with free Ce6, CCXB triggers much stronger photodynamic therapy (PDT) to reduce the proliferation of breast cancer cells and activates robust immune responses via the induction of immunogenic cell death (ICD). Better yet, CXB-mediated cyclooxygenase 2 (COX-2) inhibition can decrease the level of synthesis of prostaglandin E2 (PGE2) to further improve immunosuppressive microenvironments. With the increase of cytotoxic T lymphocytes (CTLs) and decrease of regulatory T cells (Tregs) in tumor, in vivo antitumor immunity is significantly amplified to inhibit the metastasis of breast cancer. This study sheds light on developing drug codelivery systems with collaborative mechanisms for immunotherapy of metastatic tumors.
Collapse
Affiliation(s)
- Ren-Jiang Kong
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yan-Mei Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jia-Qi Huang
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ni Yan
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ye-Yang Wu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
9
|
Lu CH, Yu SH, Wu CH, Yeh JLS, Chang HW, Jeng CR, Chang YC. Effects of selective cyclooxygenase-2 inhibitor robenacoxib on primary cells derived from feline injection-site sarcoma. J Cell Mol Med 2023. [PMID: 37334757 PMCID: PMC10399534 DOI: 10.1111/jcmm.17717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 06/20/2023] Open
Abstract
Feline injection-site sarcomas (FISSs) are highly invasive malignant mesenchymal neoplasms that arise from injection sites in cats. Although the tumorigenesis of FISSs is still uncertain, there is a consensus that FISS is associated with chronic inflammation caused by irritation of injection-related trauma and foreign chemical substances. Chronic inflammation can provide a proper microenvironment for tumour development, which has been known as one of the risk factors of tumorigenesis in many tumours. To investigate the tumorigenesis of FISS and screen for its potential therapeutic targets, cyclooxygenase-2 (COX-2), an inflammation-enhancing enzyme, was selected as a target for this study. In vitro experiments using FISS- and normal tissue-derived primary cells and robenacoxib, a highly selective COX-2 inhibitor, were performed. The results demonstrated that expression of COX-2 could be detected in formalin-fixed and paraffin-embedded FISS tissues and FISS-derived primary cells. Cell viability, migration and colony formation of FISS-derived primary cells were inhibited, and cell apoptosis was enhanced by robenacoxib in a dose-dependent manner. However, susceptibility to robenacoxib varied in different lines of FISS primary cells and was not completely correlated with COX-2 expression. Our results suggest that COX-2 inhibitors could be potential adjuvant therapeutics against FISSs.
Collapse
Affiliation(s)
- Chen-Hui Lu
- School of Veterinary Medicine, Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ching-Ho Wu
- School of Veterinary Medicine, Institute of Veterinary Clinical Science, National Taiwan University, Taipei, Taiwan
| | - Jason Lih-Seng Yeh
- School of Veterinary Medicine, Institute of Veterinary Clinical Science, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
| | - Chian-Ren Jeng
- School of Veterinary Medicine, Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
| | - Yen-Chen Chang
- School of Veterinary Medicine, Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Manfreda L, Rampazzo E, Persano L. Wnt Signaling in Brain Tumors: A Challenging Therapeutic Target. BIOLOGY 2023; 12:biology12050729. [PMID: 37237541 DOI: 10.3390/biology12050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The involvement of Wnt signaling in normal tissue homeostasis and disease has been widely demonstrated over the last 20 years. In particular, dysregulation of Wnt pathway components has been suggested as a relevant hallmark of several neoplastic malignancies, playing a role in cancer onset, progression, and response to treatments. In this review, we summarize the current knowledge on the instructions provided by Wnt signaling during organogenesis and, particularly, brain development. Moreover, we recapitulate the most relevant mechanisms through which aberrant Wnt pathway activation may impact on brain tumorigenesis and brain tumor aggressiveness, with a particular focus on the mutual interdependency existing between Wnt signaling components and the brain tumor microenvironment. Finally, the latest anti-cancer therapeutic approaches employing the specific targeting of Wnt signaling are extensively reviewed and discussed. In conclusion, here we provide evidence that Wnt signaling, due to its pleiotropic involvement in several brain tumor features, may represent a relevant target in this context, although additional efforts will be needed to: (i) demonstrate the real clinical impact of Wnt inhibition in these tumors; (ii) overcome some still unsolved concerns about the potential systemic effects of such approaches; (iii) achieve efficient brain penetration.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Elena Rampazzo
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| |
Collapse
|
11
|
Haroun M, Fesatidou M, Petrou A, Tratrat C, Zagaliotis P, Gavalas A, Venugopala KN, Kochkar H, Emeka PM, Younis NS, Elmaghraby DA, Almostafa MM, Chohan MS, Vizirianakis IS, Papadimitriou-Tsantarliotou A, Geronikaki A. Identification of Novel Cyclooxygenase-1 Selective Inhibitors of Thiadiazole-Based Scaffold as Potent Anti-Inflammatory Agents with Safety Gastric and Cytotoxic Profile. Molecules 2023; 28:molecules28083416. [PMID: 37110650 PMCID: PMC10142904 DOI: 10.3390/molecules28083416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Major obstacles faced by the use of nonsteroidal anti-inflammatory drugs (NSAID) are their gastrointestinal toxicity induced by non-selective inhibition of both cyclooxygenases (COX) 1 and 2 and their cardiotoxicity associated with a certain class of COX-2 selective inhibitors. Recent studies have demonstrated that selective COX-1 and COX-2 inhibition generates compounds with no gastric damage. The aim of the current study is to develop novel anti-inflammatory agents with a better gastric profile. In our previous paper, we investigated the anti-inflammatory activity of 4-methylthiazole-based thiazolidinones. Thus, based on these observations, herein we report the evaluation of anti-inflammatory activity, drug action, ulcerogenicity and cytotoxicity of a series of 5-adamantylthiadiazole-based thiazolidinone derivatives. The in vivo anti-inflammatory activity revealed that the compounds possessed moderate to excellent anti-inflammatory activity. Four compounds 3, 4, 10 and 11 showed highest potency (62.0, 66.7, 55.8 and 60.0%, respectively), which was higher than the control drug indomethacin (47.0%). To determine their possible mode of action, the enzymatic assay was conducted against COX-1, COX-2 and LOX. The biological results demonstrated that these compounds are effective COX-1 inhibitors. Thus, the IC50 values of the three most active compounds 3, 4 and 14 as COX-1 inhibitors were 1.08, 1.12 and 9.62 μΜ, respectively, compared to ibuprofen (12.7 μΜ) and naproxen (40.10 μΜ) used as control drugs. Moreover, the ulcerogenic effect of the best compounds 3, 4 and 14 were evaluated and revealed that no gastric damage was observed. Furthermore, compounds were found to be nontoxic. A molecular modeling study provided molecular insight to rationalize the COX selectivity. In summary, we discovered a novel class of selective COX-1 inhibitors that could be effectively used as potential anti-inflammatory agents.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Maria Fesatidou
- School of Pharmacy, Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anthi Petrou
- School of Pharmacy, Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Panagiotis Zagaliotis
- School of Pharmacy, Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA
| | - Antonis Gavalas
- School of Pharmacy, Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Hafedh Kochkar
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Promise M Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Dalia Ahmed Elmaghraby
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mervt M Almostafa
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muhammad Shahzad Chohan
- Biomedical Sciences Department, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
12
|
Jahani V, Yazdani M, Badiee A, Jaafari MR, Arabi L. Liposomal celecoxib combined with dendritic cell therapy enhances antitumor efficacy in melanoma. J Control Release 2023; 354:453-464. [PMID: 36649743 DOI: 10.1016/j.jconrel.2023.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Cancer vaccine efficacy is limited by the immunosuppressive nature of the tumor microenvironment created by inflammation, immune inhibitory factors, and regulatory T cells (Tregs). Inspired by the role of cyclooxygenase-2 (COX-2) in inflammation in the tumor site, we proposed that normalization of the tumor microenvironment by celecoxib as a COX-2 inhibitor might improve the efficacy of Dendritic Cell (DC) therapy in a melanoma model. In the present study, liposomal celecoxib (Lip-CLX) was combined with ex vivo generated DC vaccines pulsed with gp100 peptide (in liposomal and non-liposomal forms) for prophylactic and therapeutic evaluation in the B16F10 melanoma model. Tumor site analysis by flow cytometry demonstrated that intravenous administration of Lip-CLX at a dose of 1 mg/kg in four doses effectively normalized the tumor microenvironment by reducing Tregs and IL-10 production. Furthermore, in combination with DC vaccination (DC + Lip-peptide+Lip-CLX), it significantly increased tumor-infiltrating CD4+ and CD8+ T cells and secretion of IFN-γ. This combinatorial strategy produced an effective prophylactic and therapeutic antitumor response, which reduced tumor growth and prolonged the overall survival. In conclusion, our findings suggest that the liposomal celecoxib targets the inhibitory mechanisms of the tumor microenvironment and broadens the impact of DC therapy to improve the outcome of immunotherapy in solid tumors.
Collapse
Affiliation(s)
- Vajiheh Jahani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Aru B, Gümüşgöz Çelik G, Harmandar K, Şahin B, Gürek AG, Atilla D, Yanıkkaya Demirel G. Chemo-photodynamic Activity of Silicon Phthalocyanines Bearing Cyclooxygenase Inhibitors on Colorectal Cancer Cell Lines. ACS APPLIED BIO MATERIALS 2022; 5:3936-3950. [PMID: 35802827 DOI: 10.1021/acsabm.2c00461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Colorectal cancer ranks as the third most lethal cancer worldwide, resulting in over 1 million cases and 900 000 deaths per year. According to population-based studies, administration of long-term non-steroidal anti-inflammatory drugs (NSAIDs) was proven to reduce the risk of a subject developing colorectal cancer. In the present study, the anti-cancer activity of two different NSAIDs, sulindac- (Pc-1) or diclofenac-substituted (Pc-2) asymmetric silicon phthalocyanine derivatives, was evaluated in four different colorectal cancer cell lines bearing various carcinogenic mutations. In this context, the IC50 values of each compound after 24 and 48 h were determined on HCT116, SW480, LoVo, and HT29 cell lines, and the effects of the compounds on programmed cell death pathways apoptosis and autophagy, their impact on cell cycle progression, and the effect of NSAID moieties they bear on COX-1 and COX-2 proteins were analyzed. In addition, the photophysical and photochemical properties of a synthesized Pc derivative bearing axial diclofenac and triethylene glycol groups (Pc-2) have been investigated, and the compound has been characterized by using different analytical techniques. Our results indicated that both compounds inhibit COX protein expression levels, activate apoptosis in all cell lines, and lead to cell cycle arrest in the G2/M phase, depending on the COX expression profiles of the cell lines, indicating that NSAIDs can be coupled with Pc's to achieve increased anti-cancer activity, especially on cancer cells known to have high COX activity.
Collapse
Affiliation(s)
- Başak Aru
- Faculty of Medicine, Immunology Department, Yeditepe University, 34755 Ataşehir, Istanbul, Turkey
| | - Gizem Gümüşgöz Çelik
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Kevser Harmandar
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Belgin Şahin
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Ayşe Gül Gürek
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Devrim Atilla
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | | |
Collapse
|
14
|
Hall DCN, Benndorf RA. Aspirin sensitivity of PIK3CA-mutated Colorectal Cancer: potential mechanisms revisited. Cell Mol Life Sci 2022; 79:393. [PMID: 35780223 PMCID: PMC9250486 DOI: 10.1007/s00018-022-04430-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
PIK3CA mutations are amongst the most prevalent somatic mutations in cancer and are associated with resistance to first-line treatment along with low survival rates in a variety of malignancies. There is evidence that patients carrying PIK3CA mutations may benefit from treatment with acetylsalicylic acid, commonly known as aspirin, particularly in the setting of colorectal cancer. In this regard, it has been clarified that Class IA Phosphatidylinositol 3-kinases (PI3K), whose catalytic subunit p110α is encoded by the PIK3CA gene, are involved in signal transduction that regulates cell cycle, cell growth, and metabolism and, if disturbed, induces carcinogenic effects. Although PI3K is associated with pro-inflammatory cyclooxygenase-2 (COX-2) expression and signaling, and COX-2 is among the best-studied targets of aspirin, the mechanisms behind this clinically relevant phenomenon are still unclear. Indeed, there is further evidence that the protective, anti-carcinogenic effect of aspirin in this setting may be mediated in a COX-independent manner. However, until now the understanding of aspirin's prostaglandin-independent mode of action is poor. This review will provide an overview of the current literature on this topic and aims to analyze possible mechanisms and targets behind the aspirin sensitivity of PIK3CA-mutated cancers.
Collapse
Affiliation(s)
- Daniella C N Hall
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
15
|
NSAIDs Induce Proline Dehydrogenase/Proline Oxidase-Dependent and Independent Apoptosis in MCF7 Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23073813. [PMID: 35409177 PMCID: PMC8998922 DOI: 10.3390/ijms23073813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are considered in cancer therapy for their inhibitory effect on cyclooxygenase-2 (COX-2), which is overexpressed in most cancers. However, we found that NSAIDs as ligands of peroxisome proliferator-activated receptor-γ (PPARγ)-induced apoptosis independent of the COX-2 inhibition, and the process was mediated through activation of proline dehydrogenase/proline oxidase (PRODH/POX)-dependent generation of reactive oxygen species (ROS). This mitochondrial enzyme converts proline to ∆1-pyrroline-5-carboxylate (P5C) during which ATP or ROS is generated. To confirm the role of PRODH/POX in the mechanism of NSAID-induced apoptosis we obtained an MCF7 CRISPR/Cas9 PRODH/POX knockout breast cancer cell model (MCF7POK-KO). Interestingly, the studied NSAIDs (indomethacin and diclofenac) in MCF7POK-KO cells contributed to a more pronounced pro-apoptotic phenotype of the cells than in PRODH/POX-expressing MCF7 cells. The observed effect was independent of ROS generation, but it was related to the energetic disturbances in the cells as shown by an increase in the expression of AMPKα (sensor of cell energy status), GLUD1/2 (proline producing enzyme from glutamate), prolidase (proline releasing enzyme), PPARδ (growth supporting transcription factor) and a decrease in the expression of proline cycle enzymes (PYCR1, PYCRL), mammalian target of rapamycin (mTOR), and collagen biosynthesis (the main proline utilizing process). The data provide evidence that the studied NSAIDs induce PRODH/POX-dependent and independent apoptosis in MCF7 breast cancer cells.
Collapse
|
16
|
Kazberuk A, Chalecka M, Palka J, Surazynski A. Nonsteroidal Anti-Inflammatory Drugs as PPARγ Agonists Can Induce PRODH/POX-Dependent Apoptosis in Breast Cancer Cells: New Alternative Pathway in NSAID-Induced Apoptosis. Int J Mol Sci 2022; 23:ijms23031510. [PMID: 35163433 PMCID: PMC8835909 DOI: 10.3390/ijms23031510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are considered to be therapeutics in cancer prevention because of their inhibitory effect on cyclooxygenases (COX), which are frequently overexpressed in many types of cancer. However, it was also demonstrated that NSAIDs provoked a proapoptotic effect in COX knocked-out cancer cells. Here, we suggest that this group of drugs may provoke antineoplastic activity through the activation of PPARγ, which induces proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis. PRODH/POX is a mitochondrial enzyme that catalyzes proline degradation, during which ATP or reactive oxygen species (ROS) are generated. We have found that NSAIDs induced PRODH/POX and PPARγ expressions (as demonstrated by Western Blot or immunofluorescence analysis) and cytotoxicity (as demonstrated by MTT, cytometric assay, and DNA biosynthesis assay) in breast cancer MCF7 cells. Simultaneously, the NSAIDs inhibited collagen biosynthesis, supporting proline for PRODH/POX-induced ROS-dependent apoptosis (as demonstrated by an increase in the expression of apoptosis markers). The data suggest that targeting proline metabolism and the PRODH/POX–PPARγ axis can be considered a novel approach for breast cancer treatment.
Collapse
|
17
|
Kolawole OR, Kashfi K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. Int J Mol Sci 2022; 23:1432. [PMID: 35163356 PMCID: PMC8836048 DOI: 10.3390/ijms23031432] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation or resolved inflammation is an adaptive host defense mechanism and is self-limiting, which returns the body to a state of homeostasis. However, unresolved, uncontrolled, or chronic inflammation may lead to various maladies, including cancer. Important evidence that links inflammation and cancer is that nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, reduce the risk and mortality from many cancers. The fact that NSAIDs inhibit the eicosanoid pathway prompted mechanistic drug developmental work focusing on cyclooxygenase (COX) and its products. The increased prostaglandin E2 levels and the overexpression of COX-2 in the colon and many other cancers provided the rationale for clinical trials with COX-2 inhibitors for cancer prevention or treatment. However, NSAIDs do not require the presence of COX-2 to prevent cancer. In this review, we highlight the effects of NSAIDs and selective COX-2 inhibitors (COXIBs) on targets beyond COX-2 that have shown to be important against many cancers. Finally, we hone in on specialized pro-resolving mediators (SPMs) that are biosynthesized locally and, in a time, -dependent manner to promote the resolution of inflammation and subsequent tissue healing. Different classes of SPMs are reviewed, highlighting aspirin's potential in triggering the production of these resolution-promoting mediators (resolvins, lipoxins, protectins, and maresins), which show promise in inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Oluwafunke R. Kolawole
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|
18
|
Guerra Faura G, Wu B, Oyelere AK, France S. Synthetic Methodology-Enabled Discovery of a Tunable Indole Template for COX-1 Inhibition and Anti-cancer activity. Bioorg Med Chem 2022; 57:116633. [DOI: 10.1016/j.bmc.2022.116633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
|
19
|
Ngo QA, Thi THN, Pham MQ, Delfino D, Do TT. Antiproliferative and antiinflammatory coxib-combretastatin hybrids suppress cell cycle progression and induce apoptosis of MCF7 breast cancer cells. Mol Divers 2021; 25:2307-2319. [PMID: 32602075 DOI: 10.1007/s11030-020-10121-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
In our study, some newly synthesized aryl-substituted pyrazole derivatives mimicking cis-diphenylethylene scaffold of two apoptotic inducing agents celecoxib and combretastatin A-4 were found to have strong antiproliferative as well as antiinflammatory activities. Among these coxib-combretastatin hybrids, two lead compounds 8 and 6c simultaneously inhibited prostaglandin E2 (PGE2) production in LPS-activated murine macrophage RAW 264.7 cells and suppressed cell cycle progression of MCF7 cells at G2/M or G0/G1 phases, but only compound 8 induced apoptosis via caspase-3 activation. Both the lead compounds showed good docking energies with both protein targets COX-2 and tubulin in the molecule interaction modeling. The cis-diphenylethylene scaffold of celecoxib or combretastatin A-4 as well as functional groups such as the ethyl ester group and the sulfonamide could be considered as potential key features for the dual activity of studied compounds meanwhile the trimethoxybenzene remained the crucial characterization of the newly derived compounds of combretastatins.
Collapse
Affiliation(s)
- Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Thuy Hang Nguyen Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Domenico Delfino
- Department of Internal Medicine, Università degli Studi di Perugia, Perugia, Italy.
| | - Thi Thao Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
20
|
Yang K, Li Z, Sheng Y, Deng J, Song Y, Liu Z, Jia A. Construction of CF
3
‐containing Oxepino[2,3‐
c
]pyrazole Motif via Sulfur Ylide‐mediated Annulation or Me
2
S involved One‐pot Reaction. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kaichuan Yang
- Jinhua Branch Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610106 P. R. China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 P. R.China
| | - Zhi Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 P. R.China
| | - Yiqun Sheng
- Jinhua Branch Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610106 P. R. China
| | - Junfeng Deng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 P. R.China
| | - Yanxia Song
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 P. R.China
| | - Zhenxiang Liu
- College of Pharmacy Jinhua Polytechnic Jinhua 321007 P. R. China
| | - Aiqiong Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 P. R.China
| |
Collapse
|
21
|
Berbecka M, Forma A, Baj J, Furtak-Niczyporuk M, Maciejewski R, Sitarz R. A Systematic Review of the Cyclooxygenase-2 (COX-2) Expression in Rectal Cancer Patients Treated with Preoperative Radiotherapy or Radiochemotherapy. J Clin Med 2021; 10:4443. [PMID: 34640461 PMCID: PMC8509380 DOI: 10.3390/jcm10194443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 02/05/2023] Open
Abstract
The main objective of this systematic review is to investigate the expression level of the cyclooxygenase-2 (COX-2) in rectal cancer treated with either preoperative radiotherapy or radiochemotherapy. In addition, we have summarized the effects of preoperative treatment of rectal cancer with regards to the expression levels of COX-2. A systematic literature review was performed in The Cochrane Library, PubMed, Web of Science, and Scopus databases on 1 January 2021 with the usage of the following search string-(cyclooxygenase-2) OR (COX-2) AND (rectal cancer) AND (preoperative radiochemotherapy) OR (preoperative radiotherapy). Among the 176 included in the analysis, only 13 studies were included for data extraction with a total number of 2095 patients. The results of the analysis are based on the articles concerning the expression of COX-2 in rectal cancer among patients treated with preoperative radiotherapy or radiochemotherapy. A COX-2 expression is an early event involved in rectal cancer development. In cases of negative COX-2 expression, radiotherapy and radiochemotherapy might contribute to the reduction of a local recurrence. Therefore, COX-2 may be considered as a biologic factor while selecting patients for more effective, less time-consuming and less expensive preoperative treatment. However, the utility of the administration of COX-2 inhibitors to patients with COX-2 overexpression, in an attempt to improve the patients' response rate to the neoadjuvant treatment, needs an assessment in further clinical trials.
Collapse
Affiliation(s)
- Monika Berbecka
- Department of Normal Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.B.); (J.B.); (R.M.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Normal Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.B.); (J.B.); (R.M.)
| | | | - Ryszard Maciejewski
- Department of Normal Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.B.); (J.B.); (R.M.)
| | - Robert Sitarz
- Department of Normal Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (M.B.); (J.B.); (R.M.)
- Department of Surgical Oncology, St. John’s Cancer Center, 20-090 Lublin, Poland
| |
Collapse
|
22
|
Preliminary evaluation of anticancer efficacy of pioglitazone combined with celecoxib for the treatment of non-small cell lung cancer. Invest New Drugs 2021; 40:1-9. [PMID: 34341904 DOI: 10.1007/s10637-021-01158-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Among the lung cancer types, non-small cell lung cancer (NSCLC) is prominent and less responsive to chemotherapy. The current chemotherapeutics for NSCLC are associated with several dose-limiting side effects like bone-marrow suppression, neurotoxicity, nephrotoxicity, and ototoxicity, etc. which are causing non-compliance in patients. Many tumors, including breasts, lung, ovarian, etc. overexpress PPAR-γ receptors and COX-2 enzymes, which play a crucial role in tumor progression, angiogenesis, and metastasis. Lack of PPAR-γ activation and overproduction of prostaglandins, result in uncontrolled activation of Ras/Raf/Mek ultimately, NF-κB mediated tumor proliferation. This study aimed to investigate the anti-cancer potential of PPAR-γ agonist Pioglitazone combined with COX-2 inhibitor Celelcoxib in NSCLC. METHODS Sixty adult Balb/C male mice were classified into sham control, disease control, and treatment groups. Mice were treated with Nicotine-derived nitrosamine ketone (NNK) (10 mg/kg), pioglitazone (10 & 20 mg/kg) and celecoxib (25 & 50 mg/kg). Weekly body weight, food intake, mean survival time & % increased life span were determined. Tumor weight and histopathological analysis were performed at the end of the study. RESULTS The significant tumor reducing potential of pioglitazone combined with celecoxib was observed (p < 0.05). The treatment groups (treated with pioglitazone and celecoxib) showed a remarkable decrease in lung tumor weight, improved life span and mean survival time (p < 0.05). Histopathological studies confirm that treatment groups (treated with pioglitazone and celecoxib) reframed the lung architecture compared to disease control. CONCLUSION Preliminary results revealed that pioglitazone adjunacy with celecoxib may be an effective chemo-preventive agent against NNK induce NSCLC.
Collapse
|
23
|
Sobolewski C, Legrand N. Celecoxib Analogues for Cancer Treatment: An Update on OSU-03012 and 2,5-Dimethyl-Celecoxib. Biomolecules 2021; 11:biom11071049. [PMID: 34356673 PMCID: PMC8302000 DOI: 10.3390/biom11071049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is an important enzyme involved in prostaglandins biosynthesis from arachidonic acid. COX-2 is frequently overexpressed in human cancers and plays a major tumor promoting function. Accordingly, many efforts have been devoted to efficiently target the catalytic site of this enzyme in cancer cells, by using COX-2 specific inhibitors such as celecoxib. However, despite their potent anti-tumor properties, the myriad of detrimental effects associated to the chronic inhibition of COX-2 in healthy tissues, has considerably limited their use in clinic. In addition, increasing evidence indicate that these anti-cancerous properties are not strictly dependent on the inhibition of the catalytic site. These findings have led to the development of non-active COX-2 inhibitors analogues aiming at preserving the antitumor effects of COX-2 inhibitors without their side effects. Among them, two celecoxib derivatives, 2,5-Dimethyl-Celecoxib and OSU-03012, have been developed and suggested for the treatment of viral (e.g., recently SARS-CoV-2), inflammatory, metabolic diseases and cancers. These molecules display stronger anti-tumor properties than celecoxib and thus may represent promising anti-cancer molecules. In this review, we discuss the impact of these two analogues on cancerous processes but also their potential for cancer treatment alone or in combination with existing approaches.
Collapse
Affiliation(s)
- Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-379-5421
| | - Noémie Legrand
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland;
| |
Collapse
|
24
|
Anticancer effects of non-steroidal anti-inflammatory drugs against cancer cells and cancer stem cells. Toxicol In Vitro 2021; 74:105155. [PMID: 33785417 DOI: 10.1016/j.tiv.2021.105155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/04/2021] [Accepted: 03/25/2021] [Indexed: 01/06/2023]
Abstract
Certain non-steroidal anti-inflammatory drugs (NSAIDs) are known to have anticancer effects. However, it is unclear whether all NSAIDs have anticancer effects, and thus far, very few studies have compared the antitumor effects among multiple NSAIDs. Therefore, we aimed to identify NSAIDs that enhance the anticancer effect of cisplatin (CDDP); the effects of 17 NSAIDs in lung cancer cells and their spheroids as cancer stem cells (CSCs) were evaluated. Some of the NSAIDs showed cytotoxic effects against A549 and SBC-3 cells and their CDDP-resistant cell lines (A549/DDP and SBC-3/DDP cells, respectively). In addition, co-addition of CDDP and celecoxib, which showed cytotoxic effects, increased the resistance to CDDP by increasing SLC7A11, which is one of the CDDP resistance mechanisms, in A549/DDP and SBC-3/DDP cells. On the other hand, celecoxib also showed antitumor effects on the spheroids of A549/DDP and SBC-3/DDP cells, and enhanced the antitumor effect of CDDP while increasing the mRNA levels of SLC7A11. Moreover, diclofenac was also cytotoxic and enhanced the cytotoxic effect of CDDP in cancer cells and CSCs. In conclusion, some NSAIDs including celecoxib and diclofenac may enhance the therapeutic efficacy of CDDP.
Collapse
|
25
|
High ROS Production by Celecoxib and Enhanced Sensitivity for Death Ligand-Induced Apoptosis in Cutaneous SCC Cell Lines. Int J Mol Sci 2021; 22:ijms22073622. [PMID: 33807213 PMCID: PMC8036359 DOI: 10.3390/ijms22073622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Incidence of cutaneous squamous cell carcinoma (cSCC) and actinic keratosis has increased worldwide, and non-steroidal anti-inflammatory drugs as celecoxib are considered for treatment. We show here strong anti-proliferative effects of celecoxib in four cSCC cell lines, while apoptosis and cell viability largely remained unaffected. Impeded apoptosis was overcome in combinations with agonistic CD95 antibody or TNF-related apoptosis-inducing ligand (TRAIL), resulting in up to 60% apoptosis and almost complete loss of cell viability. Proapoptotic caspase cascades were activated, and apoptosis was suppressed by caspase inhibition. TRAIL receptor (DR5) and proapoptotic Bcl-2 proteins (Puma and Bad) were upregulated, while anti-apoptotic factors (survivin, XIAP, cFLIP, Mcl-1, and Bcl-w) were downregulated. Strongly elevated levels of reactive oxygen species (ROS) turned out as particularly characteristic for celecoxib, appearing already after 2 h. ROS production alone was not sufficient for apoptosis induction but may play a critical role in sensitizing cancer cells for apoptosis and therapy. Thus, the full therapeutic potential of celecoxib may be better used in combinations with death ligands. Furthermore, the immune response against cSCC/AK may be improved by celecoxib, and combinations with checkpoint inhibitors, recently approved for the treatment of cSCC, may be considered.
Collapse
|
26
|
Lai KKY, Kahn M. Pharmacologically Targeting the WNT/β-Catenin Signaling Cascade: Avoiding the Sword of Damocles. Handb Exp Pharmacol 2021; 269:383-422. [PMID: 34463849 DOI: 10.1007/164_2021_523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
WNT/β-catenin signaling plays fundamental roles in numerous developmental processes and in adult tissue homeostasis and repair after injury, by controlling cellular self-renewal, activation, division, differentiation, movement, genetic stability, and apoptosis. As such, it comes as no surprise that dysregulation of WNT/β-catenin signaling is associated with various diseases, including cancer, fibrosis, neurodegeneration, etc. Although multiple agents that specifically target the WNT/β-catenin signaling pathway have been studied preclinically and a number have entered clinical trials, none has been approved by the FDA to date. In this chapter, we provide our insights as to the reason(s) it has been so difficult to safely pharmacologically target the WNT/β-catenin signaling pathway and discuss the significant efforts undertaken towards this goal.
Collapse
Affiliation(s)
- Keane K Y Lai
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Michael Kahn
- Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
27
|
Discovery of novel sulfonamide-containing aminophosphonate derivatives as selective COX-2 inhibitors and anti-tumor candidates. Bioorg Chem 2020; 105:104390. [DOI: 10.1016/j.bioorg.2020.104390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
|
28
|
Jindal S, Pennock ND, Klug A, Narasimhan J, Calhoun A, Roberts MR, Tamimi RM, Eliassen AH, Weinmann S, Borges VF, Schedin P. S-nitrosylated and non-nitrosylated COX2 have differential expression and distinct subcellular localization in normal and breast cancer tissue. NPJ Breast Cancer 2020; 6:62. [PMID: 33298921 PMCID: PMC7686348 DOI: 10.1038/s41523-020-00204-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Immunohistochemical (IHC) staining in breast cancer shows both gain and loss of COX2 expression with disease risk and progression. We investigated four common COX2 antibody clones and found high specificity for purified human COX2 for three clones; however, recognition of COX2 in cell lysates was clone dependent. Biochemical characterization revealed two distinct forms of COX2, with SP21 recognizing an S-nitrosylated form, and CX229 and CX294 recognizing non-nitrosylated COX2 antigen. We found S-nitrosylated and non-nitrosylated COX2 occupy different subcellular locations in normal and breast cancer tissue, implicating distinct synthetic/trafficking pathways and function. Dual stains of ~2000 breast cancer cases show early-onset breast cancer had increased expression of both forms of COX2 compared to postmenopausal cases. Our results highlight the strengths of using multiple, highly characterized antibody clones for COX2 IHC studies and raise the prospect that S-nitrosylation of COX2 may play a role in breast cancer biology.
Collapse
Affiliation(s)
- Sonali Jindal
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 2720 SW Moody Ave., Mailing Code: KR-CDCB, Portland, OR, 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 SW Moody Ave., Mailing Code: KR-ADM, Portland, OR, 97201, USA
| | - Nathan D Pennock
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 2720 SW Moody Ave., Mailing Code: KR-CDCB, Portland, OR, 97201, USA
| | - Alex Klug
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 2720 SW Moody Ave., Mailing Code: KR-CDCB, Portland, OR, 97201, USA
| | - Jayasri Narasimhan
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 2720 SW Moody Ave., Mailing Code: KR-CDCB, Portland, OR, 97201, USA
| | - Andrea Calhoun
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 2720 SW Moody Ave., Mailing Code: KR-CDCB, Portland, OR, 97201, USA
| | - Michelle R Roberts
- Department of Dermatology, Massachusetts General Hospital, 50 Staniford Street, Suite 200, Boston, MA, 02114, USA
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02114, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02114, USA
| | - Sheila Weinmann
- Center for Health Research, Kaiser Permanente Northwest, 3800 N. Interstate Ave., Portland, OR, 97227, USA
| | - Virginia F Borges
- School of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC-1S, 8401K, 12801 E 17th Ave., Aurora, CO, 80045, USA
- Young Women's Breast Cancer Translational Program, School of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC-1S, 8401K, 12801 E 17th Ave., Aurora, CO, 80045, USA
| | - Pepper Schedin
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 2720 SW Moody Ave., Mailing Code: KR-CDCB, Portland, OR, 97201, USA.
- Knight Cancer Institute, Oregon Health & Science University, 2720 SW Moody Ave., Mailing Code: KR-ADM, Portland, OR, 97201, USA.
- School of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC-1S, 8401K, 12801 E 17th Ave., Aurora, CO, 80045, USA.
- Young Women's Breast Cancer Translational Program, School of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, MS8117, RC-1S, 8401K, 12801 E 17th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
29
|
Zhong Q, Wang Z, Liao X, Wu R, Guo X. LncRNA GAS5/miR‑4465 axis regulates the malignant potential of nasopharyngeal carcinoma by targeting COX2. Cell Cycle 2020; 19:3004-3017. [PMID: 33092435 DOI: 10.1080/15384101.2020.1816280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma is a malignant tumor that not only negatively affects the physical and mental health but also the quality of life of the patients. Growth arrest-specific transcript 5 (GAS5) is a common long-chain non-coding RNA (lncRNA) that has been reported to participate in the development of various cancers. However, the biological functions of lncRNA GAS5 in the occurrence and development of nasopharyngeal carcinoma are elusive. The expression of lncRNA GAS5 in nasopharyngeal carcinoma and normal samples were analyzed. Bioinformatic tool was utilized to predict the potential function of lncRNA in nasopharyngeal carcinoma. Transplanted mice were used for in vivo experiments. We observed that the expression of lncRNA GAS5 was upregulated in nasopharyngeal carcinoma tissues and cells. Down-regulation of lncRNA GAS5 inhibited the proliferation and promoted apoptosis of nasopharyngeal carcinoma cells. The expression of miR-4465 was down regulated in nasopharyngeal carcinoma tissues and cells. LncRNA GAS5 could directly bind to miR-4465 and regulated the expression of miR-4465. It was further confirmed that miR-4465 could directly bind with COX2 and inhibit the expression of COX2. Down-regulation of lncRNA GAS5 suppressed tumor growth, promoted the expression levels of miR-18a-5p and suppressed the expression of COX2 in vivo. LncRNA GAS5 regulated nasopharyngeal carcinoma malignancy through targeting miR-4465 and modulating COX2. The GAS5/miR-4465/COX2 axis in nasopharyngeal carcinoma pathogenesis was confirmed, which would provide a new therapeutic target for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Qiong Zhong
- Department of Oncology, People's Hospital of Ganzhou , Ganzhou City, Jiangxi Province, PR. China
| | - Zongqi Wang
- Department of Oncology, People's Hospital of Ganzhou , Ganzhou City, Jiangxi Province, PR. China
| | - Xiaohong Liao
- Department of Oncology, People's Hospital of Ganzhou , Ganzhou City, Jiangxi Province, PR. China
| | - Renrui Wu
- Department of Oncology, People's Hospital of Ganzhou , Ganzhou City, Jiangxi Province, PR. China
| | - Xiaoqing Guo
- Department of Oncology, People's Hospital of Ganzhou , Ganzhou City, Jiangxi Province, PR. China
| |
Collapse
|
30
|
Salimi A, Aghvami M, Azami Movahed M, Zarei MH, Eshghi P, Zarghi A, Pourahmad J. Evaluation of Cytotoxic Potentials of Novel Cyclooxygenase-2 Inhibitor against ALL Lymphocytes and Normal Lymphocytes and Its Anticancer Effect through Mitochondrial Pathway. Cancer Invest 2020; 38:463-475. [PMID: 32772580 DOI: 10.1080/07357907.2020.1808898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the present study, we searched selective cytotoxicity and mitochondria mediated apoptosis of novel COX-2 inhibitor 2-(4-(Methylsulfonyl)phenyl)imidazo[1,2-a] pyridine-8-carboxylic acid on B-lymphocytes and their mitochondria isolated from normal subjects and acute lymphoblastic leukemia (ALL) patients' blood. Our results showed this compound can selectively induce cellular and mitochondrial toxicity on ALL B-lymphocytes and mitochondria without any toxic effects on normal B-lymphocytes and their mitochondria. Taken together, the results of this study suggest that cancerous mitochondria are a potential target for the ALL B-lymphocytes. Selective toxicity of COX-2 inhibitor in cancerous mitochondria could be an attractive therapeutic option for the effective clinical management of therapy-resistant ALL.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Marjan Aghvami
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Food and Drug Control Laboratories, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mahsa Azami Movahed
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Zarei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Eshghi
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Cui D, Bi J, Zhang ZN, Li MY, Qin YS, Xiang P, Ma LQ. Organophosphorus flame retardant TDCPP-induced cytotoxicity and associated mechanisms in normal human skin keratinocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138526. [PMID: 32304943 DOI: 10.1016/j.scitotenv.2020.138526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP), a widely used organophosphorus flame retardant, has been frequently detected in the environment including indoor dust. Long-term exposure to TDCPP-containing dust may adversely affect human skin, however, little is known about its potential cytotoxicity. In this study, human skin keratinocytes (HaCaT) were employed to study TDCPP-induced cytotoxicity and associated mechanisms. The effects of TDCPP on cell morphology, viability, apoptosis, and cycle, and the mRNA levels of apoptosis (Bcl-2, Bax and Caspase-3) and cell cycle (cyclin D1, CDK2, CDK4 and CDK6) regulatory genes were investigated. The results showed that TDCPP caused a concentration-dependent decrease in cell viability after exposing to TDCPP ≥100 μg/mL for 48 h, with a median lethal concentration of 163 μg/mL (LC50). In addition, TDCPP induced cell apoptosis and arrested cell cycle in the G0/G1 phase at 16 and 160 μg/mL by enhancing Bax and Caspase-3 expression besides inhibiting cyclin D1, CDK2, CDK6 and Bcl-2 expression. Our results showed that TDCPP-induced toxicity in HaCaT cells was probably through cell apoptosis and cell cycle arrest. This study provides information on the toxicity of TDCPP to human skin cells, which may help to reduce its toxicity to human skin.
Collapse
Affiliation(s)
- Daolei Cui
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China
| | - Jue Bi
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China
| | - Zhen-Ning Zhang
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China
| | - Meng-Ying Li
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China
| | - Yi-Shu Qin
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China
| | - Ping Xiang
- Yunnan Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous Rural Areas, Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
32
|
Association between plasma prostaglandin E2 level and colorectal cancer. Eur J Cancer Prev 2020; 30:59-68. [PMID: 33275396 DOI: 10.1097/cej.0000000000000583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Evidences for the personalized use of nonsteroidal anti-inflammatory drugs (NSAIDs) in colorectal cancer (CRC) prevention and treatment that include consideration of prostaglandin E2 levels are necessary. This study was designed as a case-control study including 60 CRC patients and 120 cancer-free controls. A sensitive empirical method, precolumn derivatization HPLC, was used to determine plasma PGE2 levels. The TaqMan SNP Genotyping Assay was used for the genotyping of prostaglandin-endoperoxide synthase 2 (PTGS2) polymorphisms. Multivariate logistic regression analysis suggested that 1 log10(PGE2) increase would result in a 3.64-fold increase in the risk of CRC. Moreover, subjects with log10(PGE2) level in the 75th percentile had a significantly higher risk of CRC than those with log10(PGE2) levels in the 25th percentile [odds ratio (OR), 3.50; 95% confidence interval (CI), 1.35-9.05]. This association was more evident after adjustment for history of NSAIDs use (OR, 3.85; 95% CI, 1.46-10.16). Preliminarily, 260.02 and 414.95 pg/ml might be proposed as the preventive and warning cutoff values of plasma PGE2 for CRC. The preferred NSAIDs dose for patients with the AG+GG (rs689466) and CC+CT (rs5275) genotypes should be higher than that of patients carrying AA or TT genotypes, despite the presence of equal plasma PGE2 levels. We show for the first time that the plasma PGE2 level is associated with the risk of CRC. We provide a preliminary suggestion for NSAIDs doses adjustment according to PTGS2 genotypes after consideration of plasma PGE2 levels.
Collapse
|
33
|
Buzharevski A, Paskaš S, Sárosi MB, Laube M, Lönnecke P, Neumann W, Murganić B, Mijatović S, Maksimović-Ivanić D, Pietzsch J, Hey-Hawkins E. Carboranyl Derivatives of Rofecoxib with Cytostatic Activity against Human Melanoma and Colon Cancer Cells. Sci Rep 2020; 10:4827. [PMID: 32179835 PMCID: PMC7076013 DOI: 10.1038/s41598-020-59059-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Owing to the involvement of cyclooxygenase-2 (COX-2) in carcinogenesis, COX-2-selective inhibitors are increasingly studied for their potential cytotoxic properties. Moreover, the incorporation of carboranes in structures of established anti-inflammatory drugs can improve the potency and metabolic stability of the inhibitors. Herein, we report the synthesis of carborane-containing derivatives of rofecoxib that display remarkable cytotoxic or cytostatic activity in the micromolar range with excellent selectivity for melanoma and colon cancer cell lines over normal cells. Furthermore, it was shown that the carborane-modified derivatives of rofecoxib showed different modes of action that were dependent on the cell type.
Collapse
Affiliation(s)
- Antonio Buzharevski
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103, Leipzig, Germany
| | - Svetlana Paskaš
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia", Belgrade University, Belgrade, Serbia
| | - Menyhárt-Botond Sárosi
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103, Leipzig, Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, D-01328, Dresden, Germany
| | - Peter Lönnecke
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103, Leipzig, Germany
| | - Wilma Neumann
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103, Leipzig, Germany
| | - Blagoje Murganić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia", Belgrade University, Belgrade, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia", Belgrade University, Belgrade, Serbia
| | - Danijelа Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković"- National Institute of the Republic of Serbia", Belgrade University, Belgrade, Serbia
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Bautzner Landstrasse 400, D-01328, Dresden, Germany
- Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Mommsenstrasse 4, D-01062, Dresden, Germany
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103, Leipzig, Germany.
| |
Collapse
|
34
|
Woolbright BL, Pilbeam CC, Taylor JA. Prostaglandin E2 as a therapeutic target in bladder cancer: From basic science to clinical trials. Prostaglandins Other Lipid Mediat 2020; 148:106409. [PMID: 31931078 DOI: 10.1016/j.prostaglandins.2020.106409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/02/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
Bladder cancer (BCa) is a common solid tumor marked by high rates of recurrence, especially in non-muscle invasive disease. Prostaglandin E2 (PGE2) is a ubiquitously present lipid mediator responsible for numerous physiological actions. Inhibition of cyclooxygenase (COX) enzymes by the non-steroidal anti-inflammatory (NSAID) class of drugs results in reduced PGE2 levels. NSAID usage has been associated with reductions in cancers such as BCa. Clinical trials using NSAIDs to prevent recurrence have had mixed results, but largely converge on issues with cardiotoxicity. The purpose of this review is to understand the basic science behind how and why inhibitors of PGE2 may be effective against BCa, and to explore alternate therapeutic modalities for addressing the role of PGE2 without the associated cardiotoxicity. We will address the role of PGE2 in a diverse array of cancer-related functions including stemness, immunosuppression, proliferation, cellular signaling and more.
Collapse
Affiliation(s)
| | - Carol C Pilbeam
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
35
|
Yoshida H, Yoshimura H, Matsuda S, Yamamoto S, Ohmori M, Ohta K, Ryoke T, Itoi H, Kiyoshima T, Kobayashi M, Sano K. Celecoxib suppresses lipopolysaccharide-stimulated oral squamous cell carcinoma proliferation in vitro and in vivo. Oncol Lett 2019; 18:5793-5800. [PMID: 31788052 PMCID: PMC6865759 DOI: 10.3892/ol.2019.10975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is one of the most common chronic oral inflammatory conditions worldwide and is associated with a risk of developing oral squamous cell carcinoma (OSCC). Porphyromonas gingivalis is a major pathogen in periodontitis, and its lipopolysaccharide (LPS) promotes the expression of cyclooxygenase-2 (COX-2) in OSCC both in vivo and in vitro. Celecoxib is a selective COX-2 inhibitor; however, its antitumor effects on P. gingivalis LPS-stimulated OSCC and the underlying molecular mechanism remain unclear. To elucidate the association between periodontitis and OSCC, the effect of P. gingivalis-derived LPS on OSCC cell proliferation was examined both in vitro and in vivo in the present study. The expression levels of COX-2 and p53 in OSCC cells with/without celecoxib treatment were determined via western blotting. The therapeutic potential of celecoxib in LPS-stimulated OSCC was evaluated by staining for Ki-67 and p21, as well as with terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling staining. LPS treatment significantly increased OSCC cell proliferation in vitro, and celecoxib significantly inhibited cell proliferation with/without LPS treatment. Celecoxib treatment of OSCC cells downregulated the protein expression levels of COX-2 compared with untreated cells, but there was little change in p53 expression. In the mouse xenograft model, oral administration of celecoxib significantly suppressed tumor growth, reduced the expression of Ki-67, increased the apoptosis index and induced p21 expression with/without LPS treatment. The results from the present study demonstrate that P. gingivalis' LPS can stimulate tumor growth by interacting with OSCC cells. In conclusion, these results suggest that celecoxib could be used for the effective prevention and treatment of LPS-stimulated OSCC.
Collapse
Affiliation(s)
- Hisato Yoshida
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hitoshi Yoshimura
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shinpei Matsuda
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Satoshi Yamamoto
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Masahiro Ohmori
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Keiichi Ohta
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Takashi Ryoke
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hayato Itoi
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Unit of Pathological Sciences, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kazuo Sano
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
36
|
Cyclooxygenase-2 inhibitors delay relapse and reduce Prostate Specific Antigen (PSA) velocity in patients treated with radiotherapy for nonmetastatic prostate cancer: a pilot study. Prostate Int 2019; 8:34-40. [PMID: 32257976 PMCID: PMC7125379 DOI: 10.1016/j.prnil.2019.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/11/2019] [Accepted: 10/02/2019] [Indexed: 12/02/2022] Open
Abstract
Introduction A common treatment for localized prostate cancer (PCa) is radiotherapy; however, effectiveness is hampered because of toxicities and tumor resistance. Cyclooxygenase-2 (COX-2) inhibitors have been identified as potential agents that could improve treatment outcomes and have demonstrated ability to increase the radiosensitivity of many human carcinomas. This retrospective human study aims to investigate the ability of COX-2 inhibitors, celecoxib, and meloxicam, to improve treatment outcomes after radiotherapy. Methods Prostate Specific Antigen (PSA) data of eligible patients were obtained from Genesis Cancer Care, Southport, Australia. The primary outcome was the percentage of patients in each group that had reached biochemical relapse at two and five years after treatment. Secondary outcomes included time to biochemical relapse and PSA velocity. Results At two and five years after treatment, both the celecoxib (6.7%, 18.3%) and meloxicam (0.0%, 18.9%) showed lower relapse rates than the control (8.6%, 31.0%). Although not statistically significant, these results are clinically significant. In addition, the two treatment groups were found to increase the time to relapse, 46.20 months for celecoxib and 54.15 months for meloxicam, compared with the control group, 35.53 months. A similar trend was shown for PSA velocity with both treatment groups demonstrating lower PSA velocities compared with control. Conclusions This study provides further evidence to the potential for COX-2 inhibitors to address gaps in localizedz PCa treatment by demonstrating high clinical significance for the use of celecoxib and meloxicam. Further research should be conducted including larger retrospective studies and prospective studies to fully evaluate the benefits of COX-2 inhibitors in combination with radiotherapy for PCa.
Collapse
|
37
|
Saxena P, Sharma PK, Purohit P. A journey of celecoxib from pain to cancer. Prostaglandins Other Lipid Mediat 2019; 147:106379. [PMID: 31726219 DOI: 10.1016/j.prostaglandins.2019.106379] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 06/30/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
Abstract
The most enthralling and versatile class of drugs called the Non-steroidal anti-inflammatory (NSAIDs) showed its therapeutic utility in inflammation, beginning from the era of classic drug 'Aspirin'. NSAIDs and their well-established action based on inhibiting the COX-1 and COX-2 enzyme leads to blockage of prostaglandin pathway. They further categorized into first generation (non-selective inhibitor) and second generation (selective COX-2 inhibitors). Selective COX-2 inhibitors has advantage over non-selective in terms of their improved safety profile of gastro-intestinal tract. Rejuvenating and recent avenues for COXIBS (selective COX-2 inhibitors) explains its integrated role in identification of biochemical pain signaling as well as its pivotal key role in cancer chemotherapy. A key role player in this class is the Celecoxib (only FDA approved COXIB) a member of Biopharmaceutical classification system (BCS) II. Low solubility and bioavailability issues related with celecoxib lead to the development and advancement in the discovery and research of some possible formulation administered either orally, topically or via transdermal route. This review article intent to draw the bead on Celecoxib and it clearly explain extensive knowledge of its disposition profile, its dynamic role in cancer at cellular level and cardiovascular risk assessment. Some of the possible formulations approaches with celecoxib and its improvement aspects are also briefly discussed.
Collapse
Affiliation(s)
- Pratiksha Saxena
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh 201310, India.
| | - Pramod K Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh 201310, India
| | - Priyank Purohit
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh 201310, India
| |
Collapse
|
38
|
Şenkardeş S, Han Mİ, Kulabaş N, Abbak M, Çevik Ö, Küçükgüzel İ, Küçükgüzel ŞG. Synthesis, molecular docking and evaluation of novel sulfonyl hydrazones as anticancer agents and COX-2 inhibitors. Mol Divers 2019; 24:673-689. [PMID: 31302853 DOI: 10.1007/s11030-019-09974-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
Abstract
In trying to develop new anticancer agents, a series of sulfonylhydrazones were synthesized. All synthesized compounds were checked for identity and purity using elemental analysis, TLC and HPLC and were characterized by their melting points, FT-IR and NMR spectral data. All synthesized compounds were evaluated for their cytotoxic activity against prostate cancer (PC3), breast cancer (MCF-7) and L929 mouse fibroblast cell lines. Among them, N'-[(2-chloro-3-methoxyphenyl)methylidene]-4-methylbenzenesulfonohydrazide (3k) showed the most potent anticancer activity against both cancer cells with good selectivity (IC50 = 1.38 μM on PC3 with SI = 432.30 and IC50 = 46.09 μM on MCF-7 with SI = 12.94). Further investigation confirmed that 3k displayed morphological alterations in PC3 and MCF-7 cells and promoted apoptosis through down-regulation of the Bcl-2 and upregulation of Bax expression. Additionally, compound 3k was identified as the most potent COX-2 inhibitor (91% inhibition) beside lower COX-1 inhibition. Molecular docking of the tested compounds represented important binding modes which may be responsible for their anticancer activity via inhibition of the COX-2 enzyme. Overall, the lead compound 3k deserves further development as a potential anticancer agent. Sulfonylhydrazones was synthesized and N'-[(2-chloro-3-methoxyphenyl)methylidene]-4- methylbenzenesulfonohydrazide (3k) was identified as the most potent anticancer agent and COX-2 inhibitor. In addition, this compound docked inside the active site of COX-2 succesfully.
Collapse
Affiliation(s)
- Sevil Şenkardeş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668, İstanbul, Turkey.
| | - M İhsan Han
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Necla Kulabaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668, İstanbul, Turkey
| | - Mürüvvet Abbak
- Scientific Technology Research and Application Centre, Adnan Menderes University, Aydın, Turkey
| | - Özge Çevik
- Department of Biochemistry, School of Medicine, Adnan Menderes University, Aydın, Turkey
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668, İstanbul, Turkey
| | - Ş Güniz Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668, İstanbul, Turkey
| |
Collapse
|
39
|
Thi THN, Thi YT, Nguyen LA, Vo NB, Ngo QA. Design, Synthesis and Biological Activities of New Pyrazole Derivatives Possessing Both Coxib and Combretastatins Pharmacophores. Chem Biodivers 2019; 16:e1900108. [PMID: 30977306 DOI: 10.1002/cbdv.201900108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022]
Abstract
In our efforts to discover novel multi-target agents having better antitumor activities than celecoxib, 21 new aryl-substituted pyrazole derivatives possessing cis-diphenylethylene scaffold were mostly synthesized by a one-pot approach to ethyl 1,4,5-triaryl-1H-pyrazole-3-carboxylates via an improved Claisen condensation - Knorr reaction sequence. The cytotoxic effects of these compounds against three human cancer cell lines HT-29, Hep-G2, MCF-7 as well as their inhibition of NO production were studied. Results showed that incorporation of the important pharmacophoric groups of two original molecules celecoxib and combretastatin A-4 in a single molecule plays an important role in determining a better biological activities of the new coxib-hybrided compounds.
Collapse
Affiliation(s)
- Thuy Hang Nguyen Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam.,Graduate University of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Yen Tran Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Le Anh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Ngoc Binh Vo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam.,Graduate University of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| |
Collapse
|
40
|
Huang Y, Li Q, Zhang K, Hu M, Wang Y, Du L, Lin L, Li S, Sorokin L, Melino G, Shi Y, Wang Y. Single cell transcriptomic analysis of human mesenchymal stem cells reveals limited heterogeneity. Cell Death Dis 2019; 10:368. [PMID: 31068579 PMCID: PMC6506509 DOI: 10.1038/s41419-019-1583-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/23/2019] [Accepted: 04/09/2019] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cells (MSCs) are a population of multipotent cells with a superior ability to promote tissue repair by regulating regeneration and inflammation. Effective application of MSCs in disease treatment relies on the production of relatively homogeneous cell population. However, the cellular heterogeneity and the differentiation trajectories of in vitro expanded MSCs remain largely unclear. We profiled the transcriptomes of 361 single MSCs derived from two umbilical cords (UC-MSCs). These UC-MSCs were harvested at different passages and stimulated with or without inflammatory cytokines. Weighted gene correlation network analysis revealed that UC-MSCs surprisingly possess only limited heterogeneity, regardless of donors, and passages. We also found that upon pretreatment with inflammatory cytokines (IFNγ and TNFα), a classical strategy that can improve the efficiency of MSC-based therapy, MSCs exhibited uniformed changes in gene expression. Cell cycle-based principal component analysis showed that the limited heterogeneity identified in these UC-MSCs was strongly associated with their entrance into the G2/M phase. This was further proven by the observation that one featured gene, CD168, was expressed in a cell cycle-dependent manner. When CD168high UC-MSCs were sorted and cultured in vitro, they again showed similar CD168 expression patterns. Our results demonstrated that in vitro expanded UC-MSCs are a well-organized population with limited heterogeneity dominated by cell cycle status. Thus, our studies provided information for standardization of MSCs for disease treatment.
Collapse
Affiliation(s)
- Yin Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Kunshan Zhang
- Translational Stem Cell Research Center, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
| | - Mingyuan Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yu Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Liming Du
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Liangyu Lin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Siguang Li
- Translational Stem Cell Research Center, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Gerry Melino
- Biochemistry Laboratory IDI-IRCC, Department of Experimental Medicine and Surgery, University of Rome Torvergata, 00133, Rome, Italy
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China. .,Soochow University Institutes for Translational Medicine, Soochow University, Suzhou, China.
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
41
|
Li Z, Wang ZC, Li X, Abbas M, Wu SY, Ren SZ, Liu QX, Liu Y, Chen PW, Duan YT, Lv PC, Zhu HL. Design, synthesis and evaluation of novel diaryl-1,5-diazoles derivatives bearing morpholine as potent dual COX-2/5-LOX inhibitors and antitumor agents. Eur J Med Chem 2019; 169:168-184. [DOI: 10.1016/j.ejmech.2019.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022]
|
42
|
Yan XQ, Wang ZC, Zhang B, Qi PF, Li GG, Zhu HL. Dihydropyrazole Derivatives Containing Benzo Oxygen Heterocycle and Sulfonamide Moieties Selectively and Potently Inhibit COX-2: Design, Synthesis, and Anti-Colon Cancer Activity Evaluation. Molecules 2019; 24:molecules24091685. [PMID: 31052167 PMCID: PMC6539903 DOI: 10.3390/molecules24091685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/19/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) as a rate-limiting metabolism enzyme of arachidonic acid has been found to be implicated in tumor occurrence, angiogenesis, metastasis as well as apoptosis inhibition, regarded as an attractive therapeutic target for cancer therapy. In our research, a series of dihydropyrazole derivatives containing benzo oxygen heterocycle and sulfonamide moieties were designed as highly potent and selective COX-2 inhibitors by computer-aided drug analysis of known COX-2 inhibitors. A total of 26 compounds were synthesized and evaluated COX-2 inhibition and pharmacological efficiency both in vitro and in vivo with multi-angle of view. Among them, compound 4b exhibited most excellent anti-proliferation activities against SW620 cells with IC50 of 0.86 ± 0.02 µM than Celecoxib (IC50 = 1.29 ± 0.04 µM). The results favored our rational design intention and provides compound 4b as an effective COX-2 inhibitor available for the development of colon tumor therapeutics.
Collapse
Affiliation(s)
- Xiao-Qiang Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Peng-Fei Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Gui-Gen Li
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
43
|
Kelly JD, Tan WS, Porta N, Mostafid H, Huddart R, Protheroe A, Bogle R, Blazeby J, Palmer A, Cresswell J, Johnson M, Brough R, Madaan S, Andrews S, Cruickshank C, Burnett S, Maynard L, Hall E. BOXIT-A Randomised Phase III Placebo-controlled Trial Evaluating the Addition of Celecoxib to Standard Treatment of Transitional Cell Carcinoma of the Bladder (CRUK/07/004). Eur Urol 2019; 75:593-601. [PMID: 30279015 DOI: 10.1016/j.eururo.2018.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Non-muscle-invasive bladder cancer (NMIBC) has a significant risk of recurrence despite adjuvant intravesical therapy. OBJECTIVE To determine whether celecoxib, a cyclo-oxygenase 2 inhibitor, reduces the risk of recurrence in NMIBC patients receiving standard treatment. DESIGN, SETTING, AND PARTICIPANTS BOXIT (CRUK/07/004, ISRCTN84681538) is a double-blinded, phase III, randomised controlled trial. Patients aged ≥18 yr with intermediate- or high-risk NMIBC were accrued across 51 UK centres between 1 November 2007 and 23 July 2012. INTERVENTION Patients were randomised (1:1) to celecoxib 200mg twice daily or placebo for 2 yr. Patients with intermediate-risk NMIBC were recommended to receive six weekly mitomycin C instillations; high-risk NMIBC cases received six weekly bacillus Calmette-Guérin and maintenance therapy. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoint was time to disease recurrence. Analysis was by intention to treat. RESULTS AND LIMITATIONS A total of 472 patients were randomised (236:236). With median follow-up of 44 mo (interquartile range: 36-57), 3-yr recurrence-free rate (95% confidence interval) was as follows: celecoxib 68% (61-74%) versus placebo 64% (57-70%; hazard ratio [HR] 0.82 [0.60-1.12], p=0.2). There was no difference in high-risk (HR 0.77 [0.52-1.15], p=0.2) or intermediate-risk (HR 0.90 [0.55-1.48], p=0.7) NMIBC. Subgroup analysis suggested that time to recurrence was longer in pT1 NMIBC patients treated with celecoxib compared with those receiving placebo (HR 0.53 [0.30-0.94], interaction test p=0.04). The 3-yr progression rates in high-risk patients were low: 10% (6.5-17%) and 9.7% (6.0-15%) in celecoxib and placebo arms, respectively. Incidence of serious cardiovascular events was higher in celecoxib (5.2%) than in placebo (1.7%) group (difference +3.4% [-0.3% to 7.2%], p=0.07). CONCLUSIONS BOXIT did not show that celecoxib reduces the risk of recurrence in intermediate- or high-risk NMIBC, although celecoxib was associated with delayed time to recurrence in pT1 NMIBC patients. The increased risk of cardiovascular events does not support the use of celecoxib. PATIENT SUMMARY Celecoxib was not shown to reduce the risk of recurrence in intermediate- or high-risk non-muscle-invasive bladder cancer (NMIBC), although celecoxib was associated with delayed time to recurrence in pT1 NMIBC patients. The increased risk of cardiovascular events does not support the use of celecoxib.
Collapse
Affiliation(s)
| | | | - Nuria Porta
- The Institute of Cancer Research, London, UK
| | - Hugh Mostafid
- Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK
| | - Robert Huddart
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Richard Bogle
- Epsom and St Helier University Hospitals NHS Trust, Carshalton, UK
| | | | | | - Jo Cresswell
- South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Mark Johnson
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | - Emma Hall
- The Institute of Cancer Research, London, UK
| |
Collapse
|
44
|
Qi S, Guo L, Yan S, Lee RJ, Yu S, Chen S. Hypocrellin A-based photodynamic action induces apoptosis in A549 cells through ROS-mediated mitochondrial signaling pathway. Acta Pharm Sin B 2019; 9:279-293. [PMID: 30972277 PMCID: PMC6437636 DOI: 10.1016/j.apsb.2018.12.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 11/28/2018] [Indexed: 12/31/2022] Open
Abstract
Over recent decades, many studies have reported that hypocrellin A (HA) can eliminate cancer cells with proper irradiation in several cancer cell lines. However, the precise molecular mechanism underlying its anticancer effect has not been fully defined. HA-mediated cytotoxicity and apoptosis in human lung adenocarcinoma A549 cells were evaluated after photodynamic therapy (PDT). A temporal quantitative proteomics approach by isobaric tag for relative and absolute quantitation (iTRAQ) 2D liquid chromatography with tandem mass spectrometric (LC–MS/MS) was introduced to help clarify molecular cytotoxic mechanisms and identify candidate targets of HA-induced apoptotic cell death. Specific caspase inhibitors were used to further elucidate the molecular pathway underlying apoptosis in PDT-treated A549 cells. Finally, down-stream apoptosis-related protein was evaluated. Apoptosis induced by HA was associated with cell shrinkage, externalization of cell membrane phosphatidylserine, DNA fragmentation, and mitochondrial disruption, which were preceded by increased intracellular reactive oxygen species (ROS) generations. Further studies showed that PDT treatment with 0.08 µmol/L HA resulted in mitochondrial disruption, pronounced release of cytochrome c, and activation of caspase-3, -9, and -7. Together, HA may be a possible therapeutic agent directed toward mitochondria and a promising photodynamic anticancer candidate for further evaluation.
Collapse
Key Words
- ACN, acetonitrile
- CLSM, confocal laser scanning confocal microscopy
- DCFH-DA, 2′,7′-dichlorofuorescin diacetate
- DMEM, Dulbecco׳s modified Eagle׳s medium
- Dox, doxorubicin
- ECL, enhanced chemiluminescence
- FCCP, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone
- FDR, false discovery rate
- GO, gene ontology
- HA, hypocrellin A
- HRP, horseradish peroxidase
- Hypocrellin A
- IAA, iodoacetamide
- IKK, IκB kinase complex
- JC-1, 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-benzimidazolcarbocyanine iodide
- LC–MS/MS
- MMP, mitochondrial membrane potential
- MPT, mitochondrial permeability transition
- NAC, N-acetyl-l-cysteine
- OCR, oxygen consumption rate
- PDT, photodynamic therapy
- PI, propidium iodide
- PS, photosensitizer
- Photodynamic therapy
- Proteomic
- ROS, reactive oxygen species
- Reactive oxygen species
- SCX, strong cation exchange
- TCM, traditional Chinese medicinal
- TEM, transmission electron microscope
- TFA, trifluoroacetic acid
- UA, urea
- iTRAQ
- iTRAQ, isobaric tag for relative and absolute quantitation
- z-IETD-fmk, z-Ile-Glu-Asp-fluoromethylketone
- z-LEHD-fmk, z-Leu-Glu(OMe)-His-Asp(OMe)-fluoromethylketone
- z-VAD-fmk, z-Val-Ala-Asp-fluoromethylketone
Collapse
Affiliation(s)
- Shanshan Qi
- Jiangsu Province Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
| | - Lingyuan Guo
- Jiangsu Province Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shuzhen Yan
- Jiangsu Province Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Robert J. Lee
- College of Pharmacy, the Ohio State University, Columbus, OH 43210, USA
| | - Shuqin Yu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Corresponding author. Tel./fax: +86 25 8559 1050.
| | - Shuanglin Chen
- Jiangsu Province Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Corresponding author. Tel.: +86 25 8589 1265.
| |
Collapse
|
45
|
Buzharevski A, Paskas S, Sárosi MB, Laube M, Lönnecke P, Neumann W, Mijatovic S, Maksimovic-Ivanic D, Pietzsch J, Hey-Hawkins E. Carboranyl Analogues of Celecoxib with Potent Cytostatic Activity against Human Melanoma and Colon Cancer Cell Lines. ChemMedChem 2019; 14:315-321. [PMID: 30602073 DOI: 10.1002/cmdc.201800685] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/14/2018] [Indexed: 12/13/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most common way of treating inflammatory disorders. Their widespread use helped reveal their other modes of action as pharmaceuticals, such as a profound effect on various cancers. Celecoxib has proven to be a very prominent member of this group with cytostatic activities. On the other hand, the highly dynamic field of drug design is constantly searching for new ways of modifying known structures to obtain more powerful and less harmful drugs. A very interesting development is the implementation of carboranes in pharmacologically active structures, mostly as phenyl mimetics. Herein we report the synthesis of three carborane-containing derivatives of the COX-2-selective NSAID celecoxib. The new compounds proved to have promising cytostatic potential against various melanoma and colorectal adenocarcinoma cell lines. Inhibited proliferation accompanied by caspase-independent apoptotic cell death was found to be the main cause of decreased cell viability upon treatment with the most efficient celecoxib analogue, 3 b (4-[5-(1,7-dicarba-closo-dodecaboranyl)-3-trifluoromethyl-1H-pyrazol-1-yl]-1-methylsulfonylbenzene).
Collapse
Affiliation(s)
- Antonio Buzharevski
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Svetlana Paskas
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", Belgrade University, Belgrade, Serbia
| | - Menyhárt-Botond Sárosi
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Markus Laube
- Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Peter Lönnecke
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Wilma Neumann
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Sanja Mijatovic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", Belgrade University, Belgrade, Serbia
| | - Danijela Maksimovic-Ivanic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", Belgrade University, Belgrade, Serbia
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
46
|
Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A Review of Oncology and Medicinal Chemistry Literature. Pharmaceuticals (Basel) 2018; 11:ph11040101. [PMID: 30314310 PMCID: PMC6316056 DOI: 10.3390/ph11040101] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Prostaglandins and thromboxane are lipid signaling molecules deriving from arachidonic acid by the action of the cyclooxygenase isoenzymes COX-1 and COX-2. The role of cyclooxygenases (particularly COX-2) and prostaglandins (particularly PGE₂) in cancer-related inflammation has been extensively investigated. In contrast, COX-1 has received less attention, although its expression increases in several human cancers and a pathogenetic role emerges from experimental models. COX-1 and COX-2 isoforms seem to operate in a coordinate manner in cancer pathophysiology, especially in the tumorigenesis process. However, in some cases, exemplified by the serous ovarian carcinoma, COX-1 plays a pivotal role, suggesting that other histopathological and molecular subtypes of cancer disease could share this feature. Importantly, the analysis of functional implications of COX-1-signaling, as well as of pharmacological action of COX-1-selective inhibitors, should not be restricted to the COX pathway and to the effects of prostaglandins already known for their ability of affecting the tumor phenotype. A knowledge-based choice of the most appropriate tumor cell models, and a major effort in investigating the COX-1 issue in the more general context of arachidonic acid metabolic network by using the systems biology approaches, should be strongly encouraged.
Collapse
|
47
|
Abdelmoneem MA, Mahmoud M, Zaky A, Helmy MW, Sallam M, Fang JY, Elkhodairy KA, Elzoghby AO. Decorating protein nanospheres with lactoferrin enhances oral COX-2 inhibitor/herbal therapy of hepatocellular carcinoma. Nanomedicine (Lond) 2018; 13:2377-2395. [DOI: 10.2217/nnm-2018-0134] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Lactoferrin (LF)-targeted gliadin nanoparticles (GL-NPs) were developed for targeted oral therapy of hepatocellular carcinoma. Materials & methods: Celecoxib and diosmin were incorporated in the hydrophobic matrix of GL-NPs whose surface was decorated with LF by electrostatic interaction for binding to asialoglycoprotein receptors overexpressed by liver cancer cells. Results: Targeted GL-NPs showed enhanced cytotoxic activity and increased cellular uptake in liver tumor cells compared with nontargeted NPs. Moreover, they demonstrated superior in vivo antitumor effects including reduction in the expression levels of tumor biomarkers and induction of caspase-mediated apoptosis. Ex vivo imaging of isolated organs exhibited extensive accumulation of NPs in livers more than other organs. Conclusion: LF-targeted GL-NPs could be considered as an efficient nanoplatform for targeted oral drug delivery for liver cancer therapy.
Collapse
Affiliation(s)
- Mona A Abdelmoneem
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mazen Mahmoud
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Amira Zaky
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Maged W Helmy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhur University, Damanhur 22511, Egypt
| | - Marwa Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan 333, Taiwan
- Research Center for Industry of Human Ecology & Research Center for Chinese Herbal Medicine, Chang Gung University of Science & Technology, Kweishan, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan
| | - Kadria A Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Division of Engineering in Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technologies, Cambridge, MA 02139, USA
| |
Collapse
|
48
|
Zhou P, Li Y, Li B, Zhang M, Xu C, Liu F, Bian L, Liu Y, Yao Y, Li D. Autophagy inhibition enhances celecoxib-induced apoptosis in osteosarcoma. Cell Cycle 2018; 17:997-1006. [PMID: 29884091 PMCID: PMC6103699 DOI: 10.1080/15384101.2018.1467677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/01/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most prevalent bone malignancy in childhood and adolescence, with highly aggressive and early systemic metastases. Here, we reported that celecoxib, a selective COX-2 inhibitor in the NSAID class, exhibits strong antitumor activity in dose dependent manner in two OS cell lines-143B and U2OS. We showed that celecoxib inhibits OS cell growth, causes G0/G1-phase arrest, modulates apoptosis and autophagy and reduces migration in OS cells. In addition, the results of fluorescent mitochondrial probe JC-1 test indicated that the mitochondrial pathway mediates celecoxib-induced apoptosis. Significantly, the autophagy inhibitor CQ combined with celecoxib causes greater cell proliferation inhibition and apoptosis. Pharmacologic inhibition of autophagy with another potent autophagy inhibitor SAR405 also enhances celecoxib-mediated suppression of cell viability. These results were confirmed with shRNAs targeting the autophagy-related gene Atg5. In OS tumor xenografts in vivo, celecoxib also presents antitumor activity. Taken together, our results shed light on the function and mechanism of antitumor action of celecoxib for treatment of OS patients.
Collapse
Affiliation(s)
- Pingting Zhou
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyan Li
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ci Xu
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Furao Liu
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Bian
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanhua Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Yuan Yao
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Ma Q, Gao Y, Wei DF, Jiang NH, Ding L, He X, Wei L, Zhang JW. The effects of celecoxib on the proliferation and ultrastructural changes of MDA-MB-231 breast cancer cells. Ultrastruct Pathol 2018; 42:289-294. [PMID: 29668331 DOI: 10.1080/01913123.2018.1459996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study sought to investigate the effects of celecoxib on the proliferation and morphological changes of triple-negative breast cancer (TNBC) MDA-MB-231 cells. In this study, after MDA-MB-231 cells were treated with a certain concentration of celecoxib, a cell counting kit-8 (CCK-8) proliferation assay was used to detect cell viability. Western blotting was utilized to analyze the expression level of caspase-3, which is an apoptosis-related protein. In addition, the morphological changes in the cells and nuclei were determined with fluorescence and electron microscope. Apoptotic nuclei and obvious cytoplasmic vacuolization were observed with a microscope. Collectively, celecoxib can inhibit the proliferation of MDA-MB-231 cells by increasing caspase-3 expression and causing ultrastructural changes.
Collapse
Affiliation(s)
- Qing Ma
- a Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center , Wuhan University , Wuhan , China
| | - Yang Gao
- a Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center , Wuhan University , Wuhan , China
| | - De-Fei Wei
- a Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center , Wuhan University , Wuhan , China
| | - Nan-Hui Jiang
- a Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center , Wuhan University , Wuhan , China
| | - Liang Ding
- a Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center , Wuhan University , Wuhan , China
| | - Xin He
- a Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center , Wuhan University , Wuhan , China
| | - Lei Wei
- b Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences , Wuhan University , Wuhan , China
| | - Jing-Wei Zhang
- a Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center , Wuhan University , Wuhan , China
| |
Collapse
|
50
|
Stable and sustained release liposomal formulations of celecoxib: In vitro and in vivo anti-tumor evaluation. Int J Pharm 2018; 540:89-97. [DOI: 10.1016/j.ijpharm.2018.01.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 01/14/2023]
|