1
|
Du LD, Fang C, Wang YQ, Feng ZY, Abiola OF, Gao ZL, Huang JY, Ma YZ. MMP-9 inhibitor SB-3CT improves neurological outcomes in ischemic stroke mice by modulation of astrocytic lipid metabolism. Acta Pharmacol Sin 2025:10.1038/s41401-025-01505-x. [PMID: 40069489 DOI: 10.1038/s41401-025-01505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/04/2025] [Indexed: 03/17/2025]
Abstract
The acute phase of ischemic stroke is marked by a surge in matrix metalloproteinase-9 (MMP-9) activity. While integral to natural repair processes, MMP-9 exacerbates injury by breaking down the blood-brain barrier (BBB) and promoting edema and inflammation. MMP-9 is predominantly secreted by inflammatory cells such as neutrophils, macrophages and microglia soon after stroke onset. In this study we investigated the effects of MMP-9 inhibition via SB-3CT on astrocytic lipid metabolism, and its potential to enhance neuronal survival and recovery following ischemic stroke. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min, mice then were injected with SB-3CT (25 mg/kg, i.v.). On D3 post tMCAO, neurological outcomes were assessed, and whole brains were collected for analysis. Lipidomic analysis of brain tissue showed that SB-3CT treatment significantly restrained astrocytic cholesterol metabolism by modulating the sphingolipid and glycerophospholipid pathways. Specifically, SB-3CT reduced ceramide accumulation and promoted an increase in neuroprotective hexosylceramides, leading to enhanced neuronal survival and synaptic integrity. In addition, SB-3CT treatment reduced astrocytic and microglial reactivity, thereby mitigating neuroinflammation. In order to optimize the timing and dosage of MMP-9 inhibition to maximize the therapeutic efficacy, tMCAO mice were given three injections of SB-3CT on D0, D2 and D4 within 7 days after modeling. We found that prolonged MMP-9 inhibition alleviated astrogliosis, concurrently impaired neurological recovery and inhibited angiogenesis. These results demonstrate the critical role of lipid metabolism in MMP-9-mediated brain injury and the potential of SB-3CT as a therapeutic strategy for ischemic stroke by targeting astrocytic lipid metabolism.
Collapse
Affiliation(s)
- Li-da Du
- Institute of Molecular Medicine & Innovative Pharmaceutics, Qingdao University, Qingdao, 266071, China
- Provincial Laboratory of Polymorphic Medicine, Tengzhou, 277599, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yue-Qing Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zi-Ying Feng
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ogunleye Femi Abiola
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhao-Lin Gao
- Provincial Laboratory of Polymorphic Medicine, Tengzhou, 277599, China
| | - Ju-Yang Huang
- School of Pharmaceutical Sciences (Shenzhen). Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yin-Zhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Alfattah MA, Correia CN, Browne JA, McGettigan PA, Pluta K, Carrington SD, MacHugh DE, Irwin JA. Transcriptomics analysis of the bovine endometrium during the perioestrus period. PLoS One 2024; 19:e0301005. [PMID: 38547106 PMCID: PMC10977793 DOI: 10.1371/journal.pone.0301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/10/2024] [Indexed: 04/02/2024] Open
Abstract
During the oestrous cycle, the bovine endometrium undergoes morphological and functional changes, which are regulated by alterations in the levels of oestrogen and progesterone and consequent changes in gene expression. To clarify these changes before and after oestrus, RNA-seq was used to profile the transcriptome of oestrus-synchronized beef heifers. Endometrial samples were collected from 29 animals, which were slaughtered in six groups beginning 12 h after the withdrawal of intravaginal progesterone releasing devices until seven days post-oestrus onset (luteal phase). The groups represented proestrus, early oestrus, metoestrus and early dioestrus (luteal phase). Changes in gene expression were estimated relative to gene expression at oestrus. Ingenuity Pathway Analysis (IPA) was used to identify canonical pathways and functional processes of biological importance. A total of 5,845 differentially expressed genes (DEGs) were identified. The lowest number of DEGs was observed at the 12 h post-oestrus time point, whereas the greatest number was observed at Day 7 post-oestrus onset (luteal phase). A total of 2,748 DEGs at this time point did not overlap with any other time points. Prior to oestrus, Neurological disease and Organismal injury and abnormalities appeared among the top IPA diseases and functions categories, with upregulation of genes involved in neurogenesis. Lipid metabolism was upregulated before oestrus and downregulated at 48h post-oestrus, at which point an upregulation of immune-related pathways was observed. In contrast, in the luteal phase the Lipid metabolism and Small molecule biochemistry pathways were upregulated.
Collapse
Affiliation(s)
- Mohammed A. Alfattah
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
- King Faisal University, Al-Ahsa, Saudi Arabia
| | - Carolina N. Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - John A. Browne
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Paul A. McGettigan
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Katarzyna Pluta
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Stephen D. Carrington
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - David E. MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Jane A. Irwin
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
3
|
Yang S, Xu D, Zhang D, Huang X, Li S, Wang Y, Lu J, Wang D, Guo ZN, Yang Y, Ye D, Wang Y, Xu A, Hoo RLC, Chang J. Levofloxacin alleviates blood-brain barrier disruption following cerebral ischemia and reperfusion via directly inhibiting A-FABP. Eur J Pharmacol 2024; 963:176275. [PMID: 38113968 DOI: 10.1016/j.ejphar.2023.176275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Reperfusion therapy is currently the most effective treatment for acute ischemic stroke, but often results in secondary brain injury. Adipocyte fatty acid-binding protein (A-FABP, FABP4, or aP2) was shown to critically mediate cerebral ischemia/reperfusion (I/R) injury by exacerbating blood-brain barrier (BBB) disruption. However, no A-FABP inhibitors have been approved for clinical use due to safety issues. Here, we identified the therapeutic effect of levofloxacin, a widely used antibiotic displaying A-FABP inhibitory activity in vitro, on cerebral I/R injury and determined its target specificity and action mechanism in vivo. Using molecular docking and site-directed mutagenesis, we showed that levofloxacin inhibited A-FABP activity through interacting with the amino acid residue Asp76, Gln95, Arg126 of A-FABP. Accordingly, levofloxacin significantly inhibited A-FABP-induced JNK phosphorylation and expressions of proinflammatory factors and matrix metalloproteinase 9 (MMP-9) in mouse primary macrophages. In wild-type mice with transient middle cerebral artery occlusion, levofloxacin substantially mitigated BBB disruption and neuroinflammation, leading to reduced cerebral infarction, alleviated neurological outcomes, and improved survival. Mechanistically, levofloxacin decreased MMP-9 expression and activity, and thus reduced degradation of extracellular matrix and endothelial tight junction proteins. Importantly, the BBB- and neuro-protective effects of levofloxacin were abolished in A-FABP or MMP-9 knockout mice, suggesting that the therapeutic effects of levofloxacin highly depended on specific targeting of the A-FABP-MMP-9 axis. Overall, our study demonstrates that levofloxacin alleviates A-FABP-induced BBB disruption and neural tissue injury following cerebral I/R, and unveils its therapeutic potential for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dingkang Xu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Dianhui Zhang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaowen Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Simeng Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning, China
| | - Jing Lu
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Daming Wang
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dewei Ye
- Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Aimin Xu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Ruby Lai Chong Hoo
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Pharmacological Biotechnology, Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
4
|
Branyan TE, Aleksa J, Lepe E, Kosel K, Sohrabji F. The aging ovary impairs acute stroke outcomes. J Neuroinflammation 2023; 20:159. [PMID: 37408003 DOI: 10.1186/s12974-023-02839-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
In experimental stroke, ovariectomized (OVX) adult rats have larger infarct volumes and greater sensory-motor impairment as compared to ovary-intact females and is usually interpreted to indicate that ovarian hormones are neuroprotective for stroke. Previous work from our lab shows that middle-aged, acyclic reproductively senescent (RS) females have worse stroke outcomes as compared to adult (normally cycling) females. We hypothesized that if loss of ovarian estrogen is the critical determinant of stroke outcomes, then ovary-intact middle-aged acyclic females, who have reduced levels of estradiol, should have similar stroke outcomes as age-matched OVX. Instead, the data demonstrated that OVX RS animals showed better sensory-motor function after stroke and reduced infarct volume as compared to ovary-intact females. Inflammatory cytokines were decreased in the aging ovary after stroke as compared to non-stroke shams, which led to the hypothesis that immune cells may be extravasated from the ovaries post-stroke. Flow cytometry indicated reduced overall T cell populations in the aging ovary after middle cerebral artery occlusion (MCAo), with a paradoxical increase in regulatory T cells (Tregs) and M2-like macrophages. Moreover, in the brain, OVX RS animals showed increased Tregs, increased M2-like macrophages, and increased MHC II + cells as compared to intact RS animals, which have all been shown to be correlated with better prognosis after stroke. Depletion of ovary-resident immune cells after stroke suggests that there may be an exaggerated response to ischemia and possible increased burden of the inflammatory response via extravasation of these cells into circulation. Increased anti-inflammatory cells in the brain of OVX RS animals further supports this hypothesis. These data suggest that stroke severity in aging females may be exacerbated by the aging ovary and underscore the need to assess immunological changes in this organ after stroke.
Collapse
Affiliation(s)
- Taylor E Branyan
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Jocelyn Aleksa
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Esteban Lepe
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Kelby Kosel
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA.
| |
Collapse
|
5
|
He Q, Ma Y, Fang C, Deng Z, Wang F, Qu Y, Yin M, Zhao R, Zhang D, Guo F, Yang Y, Chang J, Guo ZN. Remote ischemic conditioning attenuates blood-brain barrier disruption after recombinant tissue plasminogen activator treatment via reducing PDGF-CC. Pharmacol Res 2023; 187:106641. [PMID: 36587812 DOI: 10.1016/j.phrs.2022.106641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Treatment of acute ischemic stroke with the recombinant tissue plasminogen activator (rtPA) is associated with increased blood-brain barrier (BBB) disruption and hemorrhagic transformation. Remote ischemic conditioning (RIC) has demonstrated neuroprotective effects against acute ischemic stroke. However, whether and how RIC regulates rtPA-associated BBB disruption remains unclear. Here, a rodent model of thromboembolic stroke followed by rtPA thrombolysis at different time points was performed with or without RIC. Brain infarction, neurological outcomes, BBB permeability, and intracerebral hemorrhage were assessed. The platelet-derived growth factor CC (PDGF-CC)/PDGFRα pathway in the brain tissue, PDGF-CC levels in the skeletal muscle and peripheral blood were also measured. Furthermore, impact of RIC on serum PDGF-CC levels were measured in healthy subjects and AIS patients. Our results showed that RIC substantially reduced BBB injury, intracerebral hemorrhage, cerebral infarction, and neurological deficits after stroke, even when rtPA was administrated in a delayed therapeutic time window. Mechanistically, RIC significantly decreased PDGFRα activation in ischemic brain tissue and reduced blood PDGF-CC levels, which partially resulted from PDGF-CC reduction in the skeletal muscle of RIC-applied hindlimbs and platelets. Intravenous or intraventricular recombinant PDGF-CC supplementation abolished RIC protective effects on BBB integrity. Moreover, similar changes of PDGF-CC in serum by RIC were also observed in healthy humans and acute ischemic stroke patients. Together, our study demonstrates that RIC can attenuate rtPA-aggravated BBB disruption after ischemic stroke via reducing the PDGF-CC/PDGFRα pathway and thus supports RIC as a potential approach for BBB disruption prevention or treatment following thrombolysis.
Collapse
Affiliation(s)
- Qianyan He
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yinzhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Zijun Deng
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Fang Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China; Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Meifang Yin
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Ruoyu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Dianhui Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Fuyou Guo
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
6
|
Bake S, Hurst DA, Miranda RC, Sohrabji F. Prenatal alcohol exposure exacerbates acute sensorimotor deficits and impedes long-term behavioral recovery from the effects of an adult-onset cerebrovascular ischemic stroke. Alcohol Clin Exp Res 2022; 46:2267-2279. [PMID: 36203340 PMCID: PMC10100487 DOI: 10.1111/acer.14952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/18/2022] [Accepted: 09/24/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is a significant risk factor for developmental disability, although its health consequences across the lifespan are poorly understood. Here, we hypothesized that latent brain and systemic consequences of PAE influence resiliency to adult-onset neurological disease, specifically, cerebrovascular ischemic stroke. METHODS Pregnant Sprague-Dawley rats were exposed episodically to ethanol during the fetal neurogenic period. Adult (5 months) male and female PAE and control offspring were subjected to endothelin-1-induced unilateral middle cerebral artery occlusion. In the acute injury phase outcomes including stroke volume and neurological, endocrine, and gut permeability markers were assessed. Because the effects of stroke in human populations evolve over months to years, we also assessed hippocampal- and amygdala-dependent memory function and social interaction preference up to 6 months following a stroke, in middle-aged offspring. RESULTS Prenatal alcohol exposure did not alter infarct volume, but significantly increased neurological deficits in both sexes, and impaired interhemispheric sensorimotor integration in PAE females. The IGF-1/IGFBP3 ratio, a measure of bioavailable IGF-1, was significantly reduced, while circulating levels of bacterial lipopolysaccharide, an inflammagen, were significantly increased in PAE males. In PAE females, the circulating IGF-1/IGFBP3 ratio was significantly increased and estradiol-17b levels were significantly reduced. The intestinal fatty acid binding protein, a surrogate marker of gut permeability was also significantly increased in PAE females. Longer-term deficits in hippocampal-associated memory and social interactions were observed in PAE males, while deficits in amygdala-dependent memory were observed in PAE females. CONCLUSIONS PAE contributes to adverse effects on brain health and decreased resiliency in response to a common adult-onset neurovascular disease, cerebrovascular ischemic stroke.
Collapse
Affiliation(s)
- Shameena Bake
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - David A Hurst
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Rajesh C Miranda
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, and Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, Texas, USA
| |
Collapse
|
7
|
Ma Y, Chen Z, He Q, Guo ZN, Yang Y, Liu F, Li F, Luo Q, Chang J. Spatiotemporal lipidomics reveals key features of brain lipid dynamic changes after cerebral ischemia and reperfusion therapy. Pharmacol Res 2022; 185:106482. [DOI: 10.1016/j.phrs.2022.106482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
8
|
Rehnström M, Ahnstedt H, Krause DN, Edvinsson ML, Haanes KA, Edvinsson L. Ovariectomy Reduces Vasocontractile Responses of Rat Middle Cerebral Arteries After Focal Cerebral Ischemia. J Cardiovasc Pharmacol 2022; 79:e122-e128. [PMID: 34654785 DOI: 10.1097/fjc.0000000000001158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Effects of sex hormones on stroke outcome are not fully understood. A deleterious consequence of cerebral ischemia is upregulation of vasoconstrictor receptors in cerebral arteries that exacerbate stroke injury. Here, we tested the hypothesis that female sex hormones alter vasocontractile responses after experimental stroke in vivo or after organ culture in vitro, a model of vasocontractile receptor upregulation. Female rats with intact ovaries and ovariectomized (OVX) females treated with 17β-estradiol, progesterone, or placebo were subjected to transient, unilateral middle cerebral artery occlusion followed by reperfusion (I/R). The maximum contractile response, measured my wire myography, in response to the endothelin B receptor agonist sarafotoxin 6c was increased in female arteries after I/R, but the maximum response was significantly lower in arteries from OVX females. Maximum contraction mediated by the serotonin agonist 5-carboxamidotryptamine was diminished after I/R, with arteries from OVX females showing a greater decrease in maximum contractile response. Contraction elicited by angiotensin II was similar in all arteries. Neither estrogen nor progesterone treatment of OVX females affected I/R-induced changes in endothelin B- and 5-carboxamidotryptamine-induced vasocontraction. These findings suggest that sex hormones do not directly influence vasocontractile alterations that occur after ischemic stroke; however, loss of ovarian function does impact this process.
Collapse
Affiliation(s)
- Mimmi Rehnström
- Department of Experimental Vasc Res, Clinical Sciences, Lund University, Sweden
| | - Hilda Ahnstedt
- Department of Experimental Vasc Res, Clinical Sciences, Lund University, Sweden
| | - Diana N Krause
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA
| | | | | | - Lars Edvinsson
- Department of Experimental Vasc Res, Clinical Sciences, Lund University, Sweden
- Department of Clinical and Experimental Research, Rigshospitalet Glostrup, Denmark
| |
Collapse
|
9
|
Neuroprotective Effects of Estradiol plus Lithium Chloride via Anti-Apoptosis and Neurogenesis Pathway in In Vitro and In Vivo Parkinson's Disease Models. PARKINSONS DISEASE 2021; 2021:3064892. [PMID: 34721835 PMCID: PMC8556090 DOI: 10.1155/2021/3064892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
Few pharmaceutical agents for slowing Parkinson's disease (PD) progression existed, especially for perimenopause females. The current general medications are mostly hormone replacement therapy and may have some side effects. Therefore, there is an urgent need for a novel treatment for PD. This study examined the possibility of estradiol plus lithium chloride (LiCl), one of the metal halides used as an alternative to salt. We showed that the combination of LiCl and estradiol could enhance neurogenesis proteins GAP-43 and N-myc in the human neuronal-like cells. We also further confirmed the neurogenesis activity in zebrafish. LiCl and LiCl plus estradiol could enhance 6-OHDA-induced upregulation of TGase-2b and Rho A mRNA expression. Besides, LiCl plus estradiol showed a synergic effect in anti-apoptotic activity. LiCl plus estradiol protected SH-SY5Y cells and zebrafish against 6-OHDA-induced damage on neurons than LiCl or estradiol alone groups via p-P38, p-Akt, Bcl-2, and caspase-3 cascade. The potential for developing this combination as a candidate treatment for PD is discussed.
Collapse
|
10
|
Bottenfield KR, Bowley BGE, Pessina MA, Medalla M, Rosene DL, Moore TL. Sex differences in recovery of motor function in a rhesus monkey model of cortical injury. Biol Sex Differ 2021; 12:54. [PMID: 34627376 PMCID: PMC8502310 DOI: 10.1186/s13293-021-00398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stroke disproportionately affects men and women, with women over 65 years experiencing increased severity of impairment and higher mortality rates than men. Human studies have explored risk factors that contribute to these differences, but additional research is needed to investigate how sex differences affect functional recovery and hence the severity of impairment. In the present study, we used our rhesus monkey model of cortical injury and fine motor impairment to compare sex differences in the rate and degree of motor recovery following this injury. METHODS Aged male and female rhesus monkeys were trained on a task of fine motor function of the hand before undergoing surgery to produce a cortical lesion limited to the hand area representation of the primary motor cortex. Post-operative testing began two weeks after the surgery and continued for 12 weeks. All trials were video recorded and latency to retrieve a reward was quantitatively measured to assess the trajectory of post-operative response latency and grasp pattern compared to pre-operative levels. RESULTS Postmortem analysis showed no differences in lesion volume between male and female monkeys. However, female monkeys returned to their pre-operative latency and grasp patterns significantly faster than males. CONCLUSIONS These findings demonstrate the need for additional studies to further investigate the role of estrogens and other sex hormones that may differentially affect recovery outcomes in the primate brain.
Collapse
Affiliation(s)
- Karen R Bottenfield
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.
| | - Bethany G E Bowley
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA
| | - Monica A Pessina
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA
| | - Maria Medalla
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Douglas L Rosene
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Tara L Moore
- Dept. of Anatomy & Neurobiology, Boston University School of Medicine, 700 Albany Street, W701, Boston, MA, 02118, USA.,Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
11
|
Gu Y, Chen X, Fu S, Liu W, Wang Q, Liu KJ, Shen J. Astragali Radix Isoflavones Synergistically Alleviate Cerebral Ischemia and Reperfusion Injury Via Activating Estrogen Receptor-PI3K-Akt Signaling Pathway. Front Pharmacol 2021; 12:533028. [PMID: 33692686 PMCID: PMC7937971 DOI: 10.3389/fphar.2021.533028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Isoflavones are major neuroprotective components of a medicinal herb Astragali Radix, against cerebral ischemia-reperfusion injury but the mechanisms of neuroprotection remain unclear. Calycosin and formononetin are two major AR isoflavones while daidzein is the metabolite of formononetin after absorption. Herein, we aim to investigate the synergistic neuroprotective effects of those isoflavones of Astragali Radix against cerebral ischemia-reperfusion injury. Calycosin, formononetin and daidzein were organized with different combinations whose effects observed in both in vitro and in vivo experimental models. In the in vitro study, primary cultured neurons were subjected to oxygen-glucose deprivation plus reoxygenation (OGD/RO) or l-glutamate treatment. In the in vivo study, rats were subjected to middle cerebral artery occlusion to induce cerebral ischemia and reperfusion. All three isoflavones pre-treatment alone decreased brain infarct volume and improved neurological deficits in rats, and dose-dependently attenuated neural death induced by l-glutamate treatment and OGD/RO in cultured neurons. Interestingly, the combined formulas of those isoflavones revealed synergistically activated estrogen receptor (estrogen receptors)-PI3K-Akt signaling pathway. Using ER antagonist and phosphatidylinositol 3-kinase (PI3K) inhibitor blocked the neuroprotective effects of those isoflavones. In conclusion, isoflavones could synergistically alleviate cerebral ischemia-reperfusion injury via activating ER-PI3K-Akt pathway.
Collapse
Affiliation(s)
- Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Chinese Medicine, Haikou, China.,School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Xi Chen
- Department of Core Facility, The People's Hospital of Bao-an Shenzhen, Shenzhen, China.,School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Shuping Fu
- School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Wenlan Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ke-Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Jiangang Shen
- School of Chinese Medicine, University of Hong Kong, Hong Kong, China.,The University of Hong Kong-Shenzhen, Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
12
|
McCarthy M, Raval AP. The peri-menopause in a woman's life: a systemic inflammatory phase that enables later neurodegenerative disease. J Neuroinflammation 2020; 17:317. [PMID: 33097048 PMCID: PMC7585188 DOI: 10.1186/s12974-020-01998-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023] Open
Abstract
The peri-menopause or menopausal transition—the time period that surrounds the final years of a woman’s reproductive life—is associated with profound reproductive and hormonal changes in a woman’s body and exponentially increases a woman’s risk of cerebral ischemia and Alzheimer’s disease. Although our understanding of the exact timeline or definition of peri-menopause is limited, it is clear that there are two stages to the peri-menopause. These are the early menopausal transition, where menstrual cycles are mostly regular, with relatively few interruptions, and the late transition, where amenorrhea becomes more prolonged and lasts for at least 60 days, up to the final menstrual period. Emerging evidence is showing that peri-menopause is pro-inflammatory and disrupts estrogen-regulated neurological systems. Estrogen is a master regulator that functions through a network of estrogen receptors subtypes alpha (ER-α) and beta (ER-β). Estrogen receptor-beta has been shown to regulate a key component of the innate immune response known as the inflammasome, and it also is involved in regulation of neuronal mitochondrial function. This review will present an overview of the menopausal transition as an inflammatory event, with associated systemic and central nervous system inflammation, plus regulation of the innate immune response by ER-β-mediated mechanisms.
Collapse
Affiliation(s)
- Micheline McCarthy
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Leonard M. Miller School of Medicine, University of Miami, 1420 NW 9th Avenue, Neurology Research Building, Room # 203H, Miami, FL, 33136, USA. .,Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
13
|
Ahnstedt H, Patrizz A, Chauhan A, Roy-O’Reilly M, Furr JW, Spychala MS, D’Aigle J, Blixt FW, Zhu L, Alegria JB, McCullough LD. Sex differences in T cell immune responses, gut permeability and outcome after ischemic stroke in aged mice. Brain Behav Immun 2020; 87:556-567. [PMID: 32058038 PMCID: PMC7590503 DOI: 10.1016/j.bbi.2020.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/15/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Stroke is a disease that presents with well-known sex differences. While women account for more stroke deaths, recent data show that after adjusting for age and pre-stroke functional status, mortality is higher in men. Immune responses are key determinants of stroke outcome and may differ by sex. This study examined sex differences in central and peripheral T cell immune responses, systemic effects on gut permeability and microbiota diversity and behavioral outcomes after stroke in aged mice. We hypothesized that there are sex differences in the immune response to stroke in aged animals. METHODS C57BL/6CR mice (20-22 months) were subjected to 60 min middle cerebral artery occlusion, or sham surgery. T cells were quantified in brain and blood at 3, 7 and 15 days (d) post-stroke by flow cytometry. Peripheral effects on gut permeability and microbiota diversity, as well as neurological function were assessed up to 14 d, and at 21 d (cognitive function) post-stroke. Brain glial fibrillary acidic protein (GFAP) expression was evaluated at 42 d post-stroke. RESULTS AND DISCUSSION Mortality (50% vs 14%, p < 0.05) and hemorrhagic transformation (44% vs 0%) were significantly higher in males than in females. No difference in infarct size at 3d were observed. Peripherally, stroke induced greater gut permeability of FITC-dextran in males at d3 (p < 0.05), and non-reversible alterations in microbiota diversity in males. Following the sub-acute phase, both sexes demonstrated a time-dependent increase of CD4+ and CD8+ T cells in the brain, with significantly higher levels of CD8+ T cells and Regulatory T cells in males at d15 (p < 0.01). Aged males demonstrated greater neurological deficits up to d5 and impaired sensorimotor function up to d15 when assessed by the corner asymmetry test (p < 0.001 and p < 0.01, respectively). A trend in greater cognitive decline was observed at d21 in males. Increased GFAP expression in the ischemic hemisphere, indicating astroglial activation and gliosis, was demonstrated in both males and females 42d post-stroke. Our findings indicate that despite a similar initial ischemic brain injury, aged male mice experience greater peripheral effects on the gut and ongoing central neuroinflammation past the sub-acute phase after stroke.
Collapse
Affiliation(s)
- Hilda Ahnstedt
- BRAINS Research Laboratory, Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Joachim E, Barakat R, Lew B, Kim KK, Ko C, Choi H. Single intranasal administration of 17β-estradiol loaded gelatin nanoparticles confers neuroprotection in the post-ischemic brain. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102246. [PMID: 32590106 DOI: 10.1016/j.nano.2020.102246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/11/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
Globally, ischemic stroke is a leading cause of death and adult disability. Previous efforts to repair damaged brain tissue following ischemic events have been hindered by the relative isolation of the central nervous system. We have developed a gelatin nanoparticle-mediated intranasal drug delivery system as an efficient, non-invasive method for delivering 17β-estradiol (E2) specifically to the brain, enhancing neuroprotection, and limiting systemic side effects. Young adult male C57BL/6 J mice subjected to 30 min of middle cerebral artery occlusion (MCAO) were administered intranasal preparations of E2-GNPs, water soluble E2, or saline as control 1 h after reperfusion. Following intranasal administration of 500 ng E2-GNPs, brain E2 content rose by 5.24 fold (P<0.0001) after 30 min and remained elevated by 2.5 fold at 2 h (P<0.05). The 100 ng dose of E2-GNPs reduced mean infarct volume by 54.3% (P<0.05, n=4) in comparison to saline treated controls, demonstrating our intranasal delivery system's efficacy.
Collapse
Affiliation(s)
- Elizabeth Joachim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Benha University, Qalyubia, Egypt
| | - Benjamin Lew
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kyekyoon Kevin Kim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Hyungsoo Choi
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
15
|
Yare K, Woodward M. Hormone Therapy and Effects on Sporadic Alzheimer’s Disease in Postmenopausal Women: Importance of Nomenclature. J Alzheimers Dis 2020; 73:23-37. [DOI: 10.3233/jad-190896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Katrine Yare
- Austin Health, Heidelberg Repatriation Hospital, Victoria, Australia
| | - Michael Woodward
- Austin Health, Heidelberg Repatriation Hospital, Victoria, Australia
| |
Collapse
|
16
|
Guo H, Liu M, Zhang L, Wang L, Hou W, Ma Y, Ma Y. The Critical Period for Neuroprotection by Estrogen Replacement Therapy and the Potential Underlying Mechanisms. Curr Neuropharmacol 2020; 18:485-500. [PMID: 31976839 PMCID: PMC7457406 DOI: 10.2174/1570159x18666200123165652] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 01/13/2023] Open
Abstract
17β-Estradiol (estradiol or E2) is a steroid hormone that has been broadly applied as a neuroprotective therapy for a variety of neurodegenerative and cerebrovascular disorders such as ischemic stroke, Alzheimer's disease, and Parkinson's disease. Several laboratory and clinical studies have reported that Estrogen Replacement Therapy (ERT) had no effect against these diseases in elderly postmenopausal women, and at worst, increased their risk of onset and mortality. This review focuses on the growing body of data from in vitro and animal models characterizing the potential underlying mechanisms and signaling pathways that govern successful neuroprotection by ERT, including the roles of E2 receptors in mediating neuroprotection, E2 genomic regulation of apoptosis- related pathways, membrane-bound receptor-mediated non-genomic signaling pathways, and the antioxidant mechanisms of E2. Also discussed is the current evidence for a critical period of effective treatment with estrogen following natural or surgical menopause and the outcomes of E2 administration within an advantageous time period. The known mechanisms governing the duration of the critical period include depletion of E2 receptors, the switch to a ketogenic metabolic profile by neuronal mitochondria, and a decrease in acetylcholine that accompanies E2 deficiency. Also the major clinical trials and observational studies concerning postmenopausal Hormone Therapy (HT) are summarized to compare their outcomes with respect to neurological disease and discuss their relevance to the critical period hypothesis. Finally, potential controversies and future directions for this field are discussed throughout the review.
Collapse
Affiliation(s)
| | | | | | | | | | - Yaqun Ma
- Address correspondence to these authors at the Anesthesia and Operation Center, The First Medical Center to Chinese PLA General Hospital, Beijing 100853, China; Tel: +86 010 66938152; E-mail: and Department of Anesthesiology, The Seventh Medical Center to Chinese PLA General Hospital, Beijing 100700, China; E-mail:
| | - Yulong Ma
- Address correspondence to these authors at the Anesthesia and Operation Center, The First Medical Center to Chinese PLA General Hospital, Beijing 100853, China; Tel: +86 010 66938152; E-mail: and Department of Anesthesiology, The Seventh Medical Center to Chinese PLA General Hospital, Beijing 100700, China; E-mail:
| |
Collapse
|
17
|
Mohajeri M, Martín-Jiménez C, Barreto GE, Sahebkar A. Effects of estrogens and androgens on mitochondria under normal and pathological conditions. Prog Neurobiol 2019; 176:54-72. [DOI: 10.1016/j.pneurobio.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/23/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
|
18
|
Guennoun R, Zhu X, Fréchou M, Gaignard P, Slama A, Liere P, Schumacher M. Steroids in Stroke with Special Reference to Progesterone. Cell Mol Neurobiol 2019; 39:551-568. [PMID: 30302630 PMCID: PMC11469871 DOI: 10.1007/s10571-018-0627-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
Abstract
Both sex and steroid hormones are important to consider in human ischemic stroke and its experimental models. Stroke initiates a cascade of changes that lead to neural cell death, but also activates endogenous protective processes that counter the deleterious consequences of ischemia. Steroids may be part of these cerebroprotective processes. One option to provide cerebroprotection is to reinforce these intrinsic protective mechanisms. In the current review, we first summarize studies describing sex differences and the influence of steroid hormones in stroke. We then present and discuss our recent results concerning differential changes in endogenous steroid levels in the brains of male and female mice and the importance of progesterone receptors (PR) during the early phase after stroke. In the third part, we give an overview of experimental studies, including ours, that provide evidence for the pleiotropic beneficial effects of progesterone and its promising cerebroprotective potential in stroke. We also highlight the key role of PR signaling as well as potential additional mechanisms by which progesterone may provide cerebroprotection.
Collapse
Affiliation(s)
- Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France.
| | - Xiaoyan Zhu
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Magalie Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| | - Pauline Gaignard
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Abdelhamid Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| |
Collapse
|
19
|
Sohrabji F, Okoreeh A, Panta A. Sex hormones and stroke: Beyond estrogens. Horm Behav 2019; 111:87-95. [PMID: 30713101 PMCID: PMC6527470 DOI: 10.1016/j.yhbeh.2018.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Stroke risk and poor stroke outcomes in postmenopausal women have usually beeen attributed to decreased levels of estrogen. However, two lines of evidence suggest that this hormone may not be solely responsible for elevated stroke risk in this population. First, the increased risk for CVD and stroke occurs much earlier than menopause at a time when estrogen levels are not yet reduced. Second, estrogen therapy has not successfully reduced stroke risk in all studies. Other sex hormones may therefore also contribute to stroke risk. Prior to menopause, levels of the gonadotrophin Follicle Stimulating Hormone (FSH) are elevated while levels of the gonadal peptide inhibin are lowered, indicating an overall decrease in ovarian reserve. Similarly, reduced estrogen levels at menopause significantly increase the ratio of androgens to estrogens. In view of the evidence that androgens may be unfavorable for CVD and stroke, this elevated ratio of testosterone to estrogen may also contribute to the postmenopause-associated stroke risk. This review synthesizes evidence from different clinical populations including natural menopause, surgical menopause, women on chemotherapy, and preclinical stroke models to dissect the role of ovarian hormones and stroke risk and outcomes.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, United States of America.
| | - Andre Okoreeh
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, United States of America
| | - Aditya Panta
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, TX 77807, United States of America
| |
Collapse
|
20
|
Robison LS, Gannon OJ, Salinero AE, Zuloaga KL. Contributions of sex to cerebrovascular function and pathology. Brain Res 2018; 1710:43-60. [PMID: 30580011 DOI: 10.1016/j.brainres.2018.12.030] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
Sex differences exist in how cerebral blood vessels function under both physiological and pathological conditions, contributing to observed sex differences in risk and outcomes of cerebrovascular diseases (CBVDs), such as vascular contributions to cognitive impairment and dementia (VCID) and stroke. Throughout most of the lifespan, women are protected from CBVDs; however, risk increases following menopause, suggesting sex hormones may play a significant role in this protection. The cerebrovasculature is a target for sex hormones, including estrogens, progestins, and androgens, where they can influence numerous vascular functions and pathologies. While there is a plethora of information on estrogen, the effects of progestins and androgens on the cerebrovasculature are less well-defined. Estrogen decreases cerebral tone and increases cerebral blood flow, while androgens increase tone. Both estrogens and androgens enhance angiogenesis/cerebrovascular remodeling. While both estrogens and androgens attenuate cerebrovascular inflammation, pro-inflammatory effects of androgens under physiological conditions have also been demonstrated. Sex hormones exert additional neuroprotective effects by attenuating oxidative stress and maintaining integrity and function of the blood brain barrier. Most animal studies utilize young, healthy, gonadectomized animals, which do not mimic the clinical conditions of aging individuals likely to get CBVDs. This is also concerning, as sex hormones appear to mediate cerebrovascular function differently based on age and disease state (e.g. metabolic syndrome). Through this review, we hope to inspire others to consider sex as a key biological variable in cerebrovascular research, as greater understanding of sex differences in cerebrovascular function will assist in developing personalized approaches to prevent and treat CBVDs.
Collapse
Affiliation(s)
- Lisa S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| | - Olivia J Gannon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| | - Abigail E Salinero
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| |
Collapse
|
21
|
Nowak TS, Mulligan MK. Impact of C57BL/6 substrain on sex-dependent differences in mouse stroke models. Neurochem Int 2018; 127:12-21. [PMID: 30448566 DOI: 10.1016/j.neuint.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/18/2023]
Abstract
We have recently found significant variation in stroke vulnerability among substrains of C57BL/6 mice, observing that commonly used N-lineage substrains exhibit larger infarcts than C57BL/6J and related substrains. Parallel variation was also seen with respect to sex differences in stroke vulnerability, in that C57BL/6 mice of the N-lineage exhibited comparable infarct sizes in males and females, whereas infarcts tended to be smaller in females than in males of J-lineage substrains. This adds to the growing list of recognized phenotypic and genetic differences among C57BL/6 substrains. Although no previous studies have explicitly compared substrains with respect to sex differences in stroke vulnerability, unrecognized background mismatch has occurred in some studies involving control and genetically modified mice. The aims of this review are to: present the evidence for associated substrain- and sex-dependent differences in a mouse permanent occlusion stroke model; examine the extent to which the published literature in other models compares with these recent results; and consider the potential impact of unrecognized heterogeneity in substrain background on the interpretation of studies investigating the impact of genetic modifications on sex differences in stroke outcome. Substrain emerges as a critical variable to be documented in any experimental stroke study in mice.
Collapse
Affiliation(s)
- Thaddeus S Nowak
- Department of Neurology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
22
|
He J, Gao Y, Wu G, Lei X, Zhang Y, Pan W, Yu H. Molecular mechanism of estrogen-mediated neuroprotection in the relief of brain ischemic injury. BMC Genet 2018; 19:46. [PMID: 30029590 PMCID: PMC6053825 DOI: 10.1186/s12863-018-0630-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 06/20/2018] [Indexed: 12/23/2022] Open
Abstract
Background This study aimed to explore the molecular mechanism of estrogen-mediated neuroprotection in the relief of cerebral ischemic injury. The gene expression profiles were downloaded from Gene Expression Omnibus database, and differentially expressed genes (DEGs) were identified using limma package in R software. Further, DEGs were subjected to Gene Ontology (GO) cluster analysis using online Gene Ontology Enrichment Analysis Software Toolkit and to GO functional enrichment analysis using DAVID software. Using the Gene Set Analysis Toolkit V2, enrichment analysis of Kyoto Encyclopedia of Genes and Genomes pathways was performed. In addition, protein-protein interaction (PPI) network was constructed using STRING database, and submodule analysis of PPI network. Lastly, the significant potential target sites of microRNAs (miRNAs) were predicted using Molecular Signatures Database, and the function analysis of targets of predicted miRNA was also performed using DAVID software. Results In total, 321 DEGs were screened in the estrogen-treated sample. The DEGs were mainly associated with intracellular signaling and metabolic pathways, such as calcium channel, calcineurin complex, insulin secretion, low-density lipoprotein reconstruction, and starch or sugar metabolism. In addition, GO enrichment analysis indicated an altered expression of the genes related to starch and sucrose metabolism, retinol metabolism, anti-apoptosis (eg., BDNF and ADAM17) and response to endogenous stimulus. The constructed PPI network comprised of 243 nodes and 590 interaction pairs, and four submodules were obtained from PPI network. Among the module d, four glutamate receptors as Gria4, Gria3, Grin3a and Grik4 were highlighted. Further, 5 novel potential regulatory miRNAs were also predicted. MIR-338 and MIR520D were closely associated with cell cycle, while the targets of MIR-376A and MIR-376B were only involved in cell soma. Conclusions The DEGs in estrogen-treated samples are closely associated with calcium channel, glutamate induced excitotoxicity and anti-apoptotic activity. In addition, some functionally significant DEGs such as BDNF, ADAM17, Gria4, Gria3, Grin3a, Grik4, Gys2 and Ugtla2, and new miRNAs like MIR-338 and MIR-376A were identified, which may serve as potential therapeutic targets for the effective treatment of cerebral ischemic injury. Electronic supplementary material The online version of this article (10.1186/s12863-018-0630-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiaxuan He
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ya Gao
- Department of Pediatric surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No.157, XiWu Road, Xi'an, 710004, China.
| | - Gang Wu
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaoming Lei
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yong Zhang
- Department of Anesthesia, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Weikang Pan
- Department of Pediatric surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No.157, XiWu Road, Xi'an, 710004, China
| | - Hui Yu
- Department of Pediatric surgery, Second Affiliated Hospital of Xi'an Jiaotong University, No.157, XiWu Road, Xi'an, 710004, China
| |
Collapse
|
23
|
Teixeira LV, Almeida RF, Rohden F, Martins LAM, Spritzer PM, de Souza DOG. Neuroprotective Effects of Guanosine Administration on In Vivo Cortical Focal Ischemia in Female and Male Wistar Rats. Neurochem Res 2018; 43:1476-1489. [PMID: 29855847 DOI: 10.1007/s11064-018-2562-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 02/07/2023]
Abstract
Guanosine (GUO) has neuroprotective effects in experimental models of brain diseases involving glutamatergic excitotoxicity in male animals; however, its effects in female animals are poorly understood. Thus, we investigated the influence of gender and GUO treatment in adult male and female Wistar rats submitted to focal permanent cerebral ischemia in the motor cortex brain. Female rats were subdivided into non-estrogenic and estrogenic phase groups by estrous cycle verification. Immediately after surgeries, the ischemic animals were treated with GUO or a saline solution. Open field and elevated plus maze tasks were conducted with ischemic and naïve animals. Cylinder task, immunohistochemistry and infarct volume analyses were conducted only with ischemic animals. Female GUO groups achieved a full recovery of the forelimb symmetry at 28-35 days after the insult, while male GUO groups only partially recovered at 42 days, in the final evaluation. The ischemic insult affected long-term memory habituation to novelty only in female groups. Anxiety-like behavior, astrocyte morphology and infarct volume were not affected. Regardless the estrous cycle, the ischemic injury affected differently female and male animals. Thus, this study points that GUO is a potential neuroprotective compound in experimental stroke and that more studies, considering the estrous cycle, with both genders are recommended in future investigation concerning brain diseases.
Collapse
Affiliation(s)
- Luciele Varaschini Teixeira
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Roberto Farina Almeida
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Francieli Rohden
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leo Anderson Meira Martins
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Poli Mara Spritzer
- Department of Physiology, Laboratory of Molecular Endocrinology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo Onofre Gomes de Souza
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
24
|
Céspedes Rubio ÁE, Pérez-Alvarez MJ, Lapuente Chala C, Wandosell F. Sex steroid hormones as neuroprotective elements in ischemia models. J Endocrinol 2018; 237:R65-R81. [PMID: 29654072 DOI: 10.1530/joe-18-0129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
Among sex steroid hormones, progesterone and estradiol have a wide diversity of physiological activities that target the nervous system. Not only are they carried by the blood stream, but also they are locally synthesized in the brain and for this reason, estradiol and progesterone are considered 'neurosteroids'. The physiological actions of both hormones range from brain development and neurotransmission to aging, illustrating the importance of a deep understanding of their mechanisms of action. In this review, we summarize key roles that estradiol and progesterone play in the brain. As numerous reports have confirmed a substantial neuroprotective role for estradiol in models of neurodegenerative disease, we focus this review on traumatic brain injury and stroke models. We describe updated data from receptor and signaling events triggered by both hormones, with an emphasis on the mechanisms that have been reported as 'rapid' or 'cytoplasmic actions'. Data showing the therapeutic effects of the hormones, used alone or in combination, are also summarized, with a focus on rodent models of middle cerebral artery occlusion (MCAO). Finally, we draw attention to evidence that neuroprotection by both hormones might be due to a combination of 'cytoplasmic' and 'nuclear' signaling.
Collapse
Affiliation(s)
- Ángel Enrique Céspedes Rubio
- Departamento de Sanidad AnimalGrupo de Investigación en Enfermedades Neurodegenerativas, Universidad del Tolima, Ibagué, Colombia
| | - Maria José Pérez-Alvarez
- Departamento de Biología (Fisiología Animal)Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular 'Severo Ochoa'Departamento de Neuropatología Molecular CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | - Catalina Lapuente Chala
- Grupo de Investigación en Enfermedades NeurodegenerativasInvestigador Asociado Universidad del Tolima, Ibagué, Colombia
| | - Francisco Wandosell
- Centro de Biología Molecular 'Severo Ochoa'Departamento de Neuropatología Molecular CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| |
Collapse
|
25
|
Thakkar R, Wang R, Wang J, Vadlamudi RK, Brann DW. 17 β-Estradiol Regulates Microglia Activation and Polarization in the Hippocampus Following Global Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4248526. [PMID: 29849895 PMCID: PMC5932444 DOI: 10.1155/2018/4248526] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/16/2018] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
Abstract
17β-Estradiol (E2) is a well-known neuroprotective hormone, but its role in regulation of neuroinflammation is less understood. Recently, our lab demonstrated that E2 could regulate the NLRP3 (NOD-like receptor protein 3) inflammasome pathway in the hippocampus following global cerebral ischemia (GCI). Here, we examined the ability of E2 to regulate activation and polarization of microglia phenotype in the hippocampus after global cerebral ischemia (GCI). Our in vivo study in young adult ovariectomized rats showed that exogenous low-dose E2 profoundly suppressed microglia activation and quantitatively shifted microglia from their "activated," amoeboid morphology to a "resting," ramified morphology after GCI. Further studies using M1 "proinflammatory" and M2 "anti-inflammatory" phenotype markers showed that E2 robustly suppressed the "proinflammatory" M1 phenotype, while enhancing the "anti-inflammatory" M2 microglia phenotype in the hippocampus after GCI. These effects of E2 may be mediated directly upon microglia, as E2 suppressed the M1 while enhancing the M2 microglia phenotype in LPS- (lipopolysaccharide-) activated BV2 microglia cells in vitro. E2 also correspondingly suppressed proinflammatory while enhancing anti-inflammatory cytokine gene expression in the LPS-treated BV2 microglia cells. Finally, E2 treatment abolished the LPS-induced neurotoxic effects of BV2 microglia cells upon hippocampal HT-22 neurons. Collectively, our study findings suggest a novel E2-mediated neuroprotective effect via regulation of microglia activation and promotion of the M2 "anti-inflammatory" phenotype in the brain.
Collapse
Affiliation(s)
- Roshni Thakkar
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, USA
| | - Darrell W. Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
26
|
Thakkar R, Sareddy GR, Zhang Q, Wang R, Vadlamudi RK, Brann D. PELP1: a key mediator of oestrogen signalling and actions in the brain. J Neuroendocrinol 2018; 30:10.1111/jne.12484. [PMID: 28485080 PMCID: PMC5785553 DOI: 10.1111/jne.12484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023]
Abstract
Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) is an oestrogen receptor (ER) coregulator protein identified by our collaborative group. Work from our laboratory and others has shown that PELP1 is a scaffold protein that interacts with ERs and kinase signalling factors, as well as proteins involved in chromatin remodelling and DNA repair. Its role in mediating 17β-oestradiol (E2 ) signalling and actions has been studied in detail in cancer cells, although only recently has attention turned to its role in the brain. In this review, we discuss the tissue, cellular and subcellular localisation of PELP1 in the brain. We also discuss recent evidence from PELP1 forebrain-specific knockout mice demonstrating a critical role of PELP1 in mediating both extranuclear and nuclear ER signalling in the brain, as well as E2 -induced neuroprotection, anti-inflammatory effects and regulation of cognitive function. Finally, the PELP1 interactome and unique gene network regulated by PELP1 in the brain is discussed, especially because it provides new insights into PELP1 biology, protein interactions and mechanisms of action in the brain. As a whole, the findings discussed in the present review indicate that PELP1 functions as a critical ER coregulator in the brain to mediate E2 signalling and actions.
Collapse
Affiliation(s)
- Roshni Thakkar
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Gangadhara Reddy Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Darrell Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
- Corresponding Author: Dr. Darrell Brann, Regents’ Professor and Vice Chair, Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15 Street, CA-4004, Augusta, GA 30912, USA. Phone: 1-706-721-7779
| |
Collapse
|
27
|
Engler-Chiurazzi EB, Brown CM, Povroznik JM, Simpkins JW. Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol 2017; 157:188-211. [PMID: 26891883 PMCID: PMC4985492 DOI: 10.1016/j.pneurobio.2015.12.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/06/2015] [Accepted: 12/10/2015] [Indexed: 12/30/2022]
Abstract
There is ample empirical evidence to support the notion that the biological impacts of estrogen extend beyond the gonads to other bodily systems, including the brain and behavior. Converging preclinical findings have indicated a neuroprotective role for estrogen in a variety of experimental models of cognitive function and brain insult. However, the surprising null or even detrimental findings of several large clinical trials evaluating the ability of estrogen-containing hormone treatments to protect against age-related brain changes and insults, including cognitive aging and brain injury, led to hesitation by both clinicians and patients in the use of exogenous estrogenic treatments for nervous system outcomes. That estrogen-containing therapies are used by tens of millions of women for a variety of health-related applications across the lifespan has made identifying conditions under which benefits with estrogen treatment will be realized an important public health issue. Here we provide a summary of the biological actions of estrogen and estrogen-containing formulations in the context of aging, cognition, stroke, and traumatic brain injury. We have devoted special attention to highlighting the notion that estrogen appears to be a conditional neuroprotectant whose efficacy is modulated by several interacting factors. By developing criteria standards for desired beneficial peripheral and neuroprotective outcomes among unique patient populations, we can optimize estrogen treatments for attenuating the consequences of, and perhaps even preventing, cognitive aging and brain injury.
Collapse
Affiliation(s)
- E B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States.
| | - C M Brown
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Neurobiology and Anatomy, West Virginia University, Morgantown, WV 26506, United States.
| | - J M Povroznik
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Pediatrics, West Virginia University, Morgantown, WV 26506, United States.
| | - J W Simpkins
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
28
|
Kuruca SE, Karadenizli S, Akgun-Dar K, Kapucu A, Kaptan Z, Uzum G. The effects of 17β-estradiol on blood brain barrier integrity in the absence of the estrogen receptor alpha; an in-vitro model. Acta Histochem 2017; 119:638-647. [PMID: 28803749 DOI: 10.1016/j.acthis.2017.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB), which saves the brain from toxic substances, is formed by endothelial cells. It is mainly composed of tight junction (TJ) proteins existing between endothelial cells. Estrogen is an important regulatory hormone of BBB permeability. It protects the BBB before menopause, but may increase BBB permeability with aging. In addition, nitric oxide modulates BBB permeability. Alcohol impairs the integrity of the BBB with oxidants and inflammatory mediators such as iNOS. We investigated the effects of estrogen on BBB integrity in an in vitro BBB model created with ERα-free HUVEC (human umbilical vein endothelial-like cells) to mimics the menopausal period. In vitro BBB model is created with HUVEC/C6 (rat glioma cells) co-culture. The effect of 17β-estradiol on ethanol-induced BBB disruption and change/or increase of iNOS activity, which modulate BBB integrity, were evaluated. Inducibility and functionality of BBB were investigated using transendothelial electrical resistance (TEER) and the expression of proteins TJ proteins (occludin and claudin-1) and iNOS activity by immunostaining. Our results revealed that 17β-estradiol treatment before and after ethanol decrease expression of occludin and claudin-1 and value of TEER which are BBB disrupt indicators. In addition, ethanol and 17β-estradiol separately and pre- and post-ethanol 17β-estradiol treatment increased iNOS expression. Thus our study suggests caution in the use of 17β-estradiol after menopause because 17β-estradiol at this time may both increase the inflammatory process as well as damage the BBB. We think that beneficial effects of 17β-estradiol may be through ERα but it needs further studies.
Collapse
|
29
|
Selvamani A, Sohrabji F. Mir363-3p improves ischemic stroke outcomes in female but not male rats. Neurochem Int 2017; 107:168-181. [PMID: 27773791 PMCID: PMC5398946 DOI: 10.1016/j.neuint.2016.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 01/22/2023]
Abstract
With age, stroke prevalence is higher, and stroke outcome, worse, in women. Thus there is an urgent need to identify stroke neuroprotectants for this population. Using a preclinical stroke model, our studies focused on microRNAs (miRNAs), a class of translational repressors, as neuroprotectants. Analysis of circulating miRNA in the acute phase of stroke indicated potential neuroprotective capacity for miR363. Specifically, mir363 is elevated in serum of adult female rats that typically have small infarct volumes, but is deficient in age-matched males or middle-aged males and females, groups that have greater stroke-associated impairment. To directly test the effect of mir363 on stroke outcomes, first, adult females were treated with antagomirs to mir363 post stroke and next, middle-aged females were treated with mimic to mir363-3p post stroke. Antagomir treatment to adult females significantly increased infarct volume and impaired sensory motor performance. Reciprocally, mir363 mimic to middle-aged females reduced infarct volume, preserved forebrain microvessels and improved sensory motor performance. In the early acute stroke phase, mir363-3p mimic reduced the expression and functional activity of caspase-3, a critical component of the apoptotic cell cascade. In contrast, mir363-3p mimic treatment had no effect on stroke outcomes or caspase regulation in young males. Collectively, these studies show that mir363 is neuroprotective for stroke in females and implicates caspase-3 as a sex-specific miRNA-sensitive node for recovery from ischemic stroke.
Collapse
Affiliation(s)
- Amutha Selvamani
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan TX 77807, United States
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan TX 77807, United States.
| |
Collapse
|
30
|
Abstract
In the brain, the astrocentric view has increasingly changed in the past few years. The classical and old view of astrocytes as "just supporting cells" has assigned these cells some functions to help neurons maintain their homeostasis. This neuronal supportive function of astrocytes includes maintenance of ion and extracellular pH equilibrium, neuroendocrine signaling, metabolic support, clearance of glutamate and other neurotransmitters, and antioxidant protection. However, recent findings have shed some light on the new roles, some controversial though, performed by astrocytes that might change our view about the central nervous system functioning. Since astrocytes are important for neuronal survival, it is a potential approach to favor astrocytic functions in order to improve the outcome. Such translational strategies may include the use of genetically targeted proteins, and/or pharmacological therapies by administering androgens and estrogens, which have shown promising results in vitro and in vivo models. It is noteworthy that successful strategies reviewed in here shall be extrapolated to human subjects, and this is probably the next step we should move on.
Collapse
Affiliation(s)
- George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.
| |
Collapse
|
31
|
Inhibition of miR-181a protects female mice from transient focal cerebral ischemia by targeting astrocyte estrogen receptor-α. Mol Cell Neurosci 2017; 82:118-125. [PMID: 28522364 DOI: 10.1016/j.mcn.2017.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 02/03/2023] Open
Abstract
Whether the effect of miR-181a is sexually dimorphic in stroke is unknown. Prior work showed protection of male mice with miR-181a inhibition. Estrogen receptor-α (ERα) is an identified target of miR181 in endometrium. Therefore we investigated the separate and joint effects of miR-181a inhibition and 17β-estradiol (E2) replacement after ovariectomy. Adult female mice were ovariectomized and implanted with an E2- or vehicle-containing capsule for 14d prior to 1h middle cerebral artery occlusion (MCAO). Each group received either miR-181a antagomir or mismatch control by intracerebroventricular injection 24h before MCAO. After MCAO neurologic deficit and infarct volume were assessed. Primary male and female astrocyte cultures were subjected to glucose deprivation with miR-181a inhibitor or transfection control, and E2 or vehicle control, with/without ESRα knockdown with small interfering RNA. Cell death was assessed by propidium iodide staining, and lactate dehydrogenase assay. A miR-181a/ERα target site blocker (TSB), with/without miR-181a mimic, was used to confirm targeting of ERα by miR-181a in astrocytes. Individually, miR-181a inhibition or E2 decreased infarct volume and improved neurologic score in female mice, and protected male and female astrocyte cultures. Combined miR-181a inhibition plus E2 afforded greater protection of female mice and female astrocyte cultures, but not in male astrocyte cultures. MiR-181a inhibition only increased ERα levels in vivo and in female cultures, while ERα knockdown with siRNA increased cell death in both sexes. Treatment with ERα TSB was strongly protective in both sexes. In conclusion, the results of the present study suggest miR-181a inhibition enhances E2-mediated stroke protection in females in part by augmenting ERα production, a mechanism detected in female mice and female astrocytes. Sex differences were observed with combined miR-181a inhibition/E2 treatment, and miR-181a targeting of ERα.
Collapse
|
32
|
Propylparaben applied after pilocarpine-induced status epilepticus modifies hippocampal excitability and glutamate release in rats. Neurotoxicology 2017; 59:110-120. [DOI: 10.1016/j.neuro.2017.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 01/06/2017] [Accepted: 01/31/2017] [Indexed: 11/19/2022]
|
33
|
Tulsulkar J, Ward A, Shah ZA. HO1 and Wnt expression is independently regulated in female mice brains following permanent ischemic brain injury. Brain Res 2017; 1662:1-6. [PMID: 28219651 DOI: 10.1016/j.brainres.2017.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 12/11/2022]
Abstract
A gender difference in stroke is observed throughout epidemiologic studies, pathophysiology, treatment and outcomes. We investigated the neuroprotective role of hemeoxygenase (HO) enzyme, which catabolizes free heme to bilirubin, carbon monoxide and biliverdin in the female brain after permanent ischemia. We have previously reported in male mice that genetic deletion of HO1 exacerbates the brain damage after permanent ischemia, and the mechanism of neuroprotection is dependent on the HO1/Wnt pathway; however, the role of HO1/Wnt mediated neuroprotection in the female brain is yet to be investigated. We subjected ovary intact female mice, HO1-/- intact, HO1 inhibitor tin mesoporphyrin (SnMP) treated intact and/or ovariectomized female mice to permanent ischemia (pMCAO), and the animals were sacrificed after 7days. The SnMP treatment for 7days significantly reduced the HO1 enzyme activity as compared to that of vehicle treated group. Infarct volume analysis showed significantly lower infarct in intact, HO1-/- intact, and SnMP treated group as compared to the OVX group, suggesting the role of estrogen in neuroprotection. However, there were no differences in infarct volume observed between the intact, HO1-/- and SnMP treated group, suggesting a sexually dimorphic role of HO1 neuroprotection. Western blot analysis on intact and SnMP-treated groups subjected to pMCAO suggested no significant differences in Wnt expression. Together, these results suggest that HO1 neuroprotection is sexually dimorphic and Wnt expression is independently regulated in the female brain following permanent ischemia.
Collapse
Affiliation(s)
- Jatin Tulsulkar
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States
| | - Alicia Ward
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States; Department of Pharmacology and Experimental Therapeutics, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States.
| |
Collapse
|
34
|
Alexander A, Irving AJ, Harvey J. Emerging roles for the novel estrogen-sensing receptor GPER1 in the CNS. Neuropharmacology 2017; 113:652-660. [DOI: 10.1016/j.neuropharm.2016.07.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023]
|
35
|
Kwakowsky A, Milne MR, Waldvogel HJ, Faull RL. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer's Disease. Int J Mol Sci 2016; 17:E2122. [PMID: 27999310 PMCID: PMC5187922 DOI: 10.3390/ijms17122122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer's disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer's disease.
Collapse
Affiliation(s)
- Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Michael R Milne
- School of Biomedical Sciences, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane 4072, QLD, Australia.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | - Richard L Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
36
|
Engler-Chiurazzi EB, Covey DF, Simpkins JW. A novel mechanism of non-feminizing estrogens in neuroprotection. Exp Gerontol 2016; 94:99-102. [PMID: 27818250 DOI: 10.1016/j.exger.2016.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/01/2023]
Abstract
Estrogens are potent and efficacious neuroprotectants both in vitro and in vivo in a variety of models of neurotoxicity. We determined the structural requirements for neuroprotection in an in vitro assay using a panel of >70 novel estratrienes, synthesized to reduce or eliminate estrogen receptor (ER) binding. We observed that neuroprotection could be enhanced by as much as 200-fold through modifications that positioned a large bulky group at the C2 or C4 position of the phenolic A ring of the estratriene. Further, substitutions on the B, C or D rings either reduced or did not markedly change neuroprotection. Collectively, there was a negative correlation between binding to ERs and neuroprotection with the more potent compounds showing no ER binding. In an in vivo model for neuroprotection, transient cerebral ischemia, efficacious compounds were active in protection of brain tissue from this pro-oxidant insult. We demonstrated that these non-feminizing estrogens engage in a redox cycle with glutathione, using the hexose monophosphate shunt to apply cytosolic reducing potential to cellular membranes. Together, these results demonstrate that non-feminizing estrogens are neuroprotective and protect brain from the induction of ischemic- and Alzheimer's disease (AD)-like neuropathology in an animal model. These features of non-feminizing estrogens make them attractive compounds for assessment of efficacy in AD and stroke, as they are not expected to show the side effects of chronic estrogen therapy that are mediated by ER actions in the liver, uterus and breast.
Collapse
Affiliation(s)
- Elizabeth B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26505, United States.
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63130, United States
| | - James W Simpkins
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26505, United States
| |
Collapse
|
37
|
NLRP3 Inflammasome Activation in the Brain after Global Cerebral Ischemia and Regulation by 17 β-Estradiol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8309031. [PMID: 27843532 PMCID: PMC5097821 DOI: 10.1155/2016/8309031] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 01/23/2023]
Abstract
17β-Estradiol (E2) is a well-known neuroprotective factor in the brain. Recently, our lab demonstrated that the neuroprotective and cognitive effects of E2 require mediation by the estrogen receptor (ER) coregulator protein and proline-, glutamic acid-, and leucine-rich protein 1 (PELP1). In the current study, we examined whether E2, acting via PELP1, can exert anti-inflammatory effects in the ovariectomized rat and mouse hippocampus to regulate NLRP3 inflammasome activation after global cerebral ischemia (GCI). Activation of the NLRP3 inflammasome pathway and expression of its downstream products, cleaved caspase-1 and IL-1β, were robustly increased in the hippocampus after GCI, with peak levels observed at 6-7 days. Expression of P2X7 receptor, an upstream regulator of NLRP3, was also increased after GCI. E2 markedly inhibited NLRP3 inflammasome pathway activation, caspase-1, and proinflammatory cytokine production, as well as P2X7 receptor expression after GCI (at both the mRNA and protein level). Intriguingly, the ability of E2 to exert these anti-inflammatory effects was lost in PELP1 forebrain-specific knockout mice, indicating a key role for PELP1 in E2 anti-inflammatory signaling. Collectively, our study demonstrates that NLRP3 inflammasome activation and proinflammatory cytokine production are markedly increased in the hippocampus after GCI, and that E2 signaling via PELP1 can profoundly inhibit these proinflammatory effects.
Collapse
|
38
|
Abstract
Historically, the brain has been considered an immune-privileged organ separated from the peripheral immune system by the blood-brain barrier. However, immune responses do occur in the brain in neurological conditions in which the integrity of the blood-brain barrier is compromised, exposing the brain to peripheral antigens and endogenous danger signals. While most of the associated pathological processes occur in the central nervous system, it is now clear that peripheral immune cells, especially mononuclear phagocytes, that infiltrate into the injury site play a key role in modulating the progression of primary brain injury development. As inflammation is a necessary and critical component for the subsequent injury resolution process, understanding the contribution of mononuclear phagocytes on the regulation of inflammatory responses may provide novel approaches for potential therapies. Furthermore, predisposed comorbid conditions at the time of stroke cause the alteration of stroke-induced immune and inflammatory responses and subsequently influence stroke outcome. In this review, we summarize a role for microglia and monocytes/macrophages in acute ischemic stroke in the context of normal and metabolically compromised conditions.
Collapse
Affiliation(s)
- Eunhee Kim
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, White Plains, NY, 10605, USA
| | - Sunghee Cho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine at Burke Medical Research Institute, White Plains, NY, 10605, USA.
| |
Collapse
|
39
|
Marshall RS, Mohapatra B. Integrative intervention: a new perspective and brief review in aphasia. Disabil Rehabil 2016; 39:1999-2009. [DOI: 10.1080/09638288.2016.1212283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Rebecca Shisler Marshall
- Communication Sciences and Disorders, University of Georgia, Athens, GA, USA
- Biomedical Health Sciences Institute, University of Georgia, Athens, GA, USA
| | - Bijoyaa Mohapatra
- Communication Disorders, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
40
|
Pugach EK, Blenck CL, Dragavon JM, Langer SJ, Leinwand LA. Estrogen receptor profiling and activity in cardiac myocytes. Mol Cell Endocrinol 2016; 431:62-70. [PMID: 27164442 PMCID: PMC4899180 DOI: 10.1016/j.mce.2016.05.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/14/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023]
Abstract
Estrogen signaling appears critical in the heart. However a mechanistic understanding of the role of estrogen in the cardiac myocyte is lacking. Moreover, there are multiple cell types in the heart and multiple estrogen receptor (ER) isoforms. Therefore, we studied expression, localization, transcriptional and signaling activity of ERs in isolated cardiac myocytes. We found only ERα RNA (but no ERβ RNA) in cardiac myocytes using two independent methods. The vast majority of full-length ERα protein (ERα66) localizes to cardiac myocyte nuclei where it is competent to activate transcription. Alternate isoforms of ERα encoded by the same genomic locus (ERα46 and ERα36) have differential transcriptional activity in cardiac myocytes but also primarily localize to nuclei. In contrast to other reports, no ERα isoform is competent to activate MAPK or PI3K signaling in cardiac myocytes. Together these data support a role for ERα at the level of transcription in cardiac myocytes.
Collapse
Affiliation(s)
- Emily K Pugach
- University of Colorado at Boulder, Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, Boulder, CO 80303 USA
| | - Christa L Blenck
- University of Colorado at Boulder, Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, Boulder, CO 80303 USA
| | - Joseph M Dragavon
- University of Colorado, BioFrontiers Advanced Light Microscopy Core, BioFrontiers Institute, Boulder, CO 80309 USA
| | - Stephen J Langer
- University of Colorado at Boulder, Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, Boulder, CO 80303 USA
| | - Leslie A Leinwand
- University of Colorado at Boulder, Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, Boulder, CO 80303 USA
| |
Collapse
|
41
|
Stanojlović M, Guševac I, Grković I, Mitrović N, Zlatković J, Horvat A, Drakulić D. Repeated Estradiol Treatment Attenuates Chronic Cerebral Hypoperfusion-Induced Neurodegeneration in Rat Hippocampus. Cell Mol Neurobiol 2016; 36:989-999. [PMID: 26689702 PMCID: PMC11482356 DOI: 10.1007/s10571-015-0289-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/14/2015] [Indexed: 11/28/2022]
Abstract
Although a substantial number of pre-clinical and experimental studies have investigated effects of 17β-estradiol, its precise molecular mechanism of action in the early state of chronic cerebral hypoperfusion remains controversial. The present study attempted to verify whether post-ischemic estradiol treatment (33.3 μg/kg for seven consecutive days) affects previously reported number of hippocampal apoptotic cells and amount of DNA fragmentation characteristic for apoptosis as well as the expression of key elements within synaptosomal Akt and Erk signal transduction pathways (NF-κB, Bax, Bcl-2, cytochrome C, caspase 3, and PARP). Additionally, alterations of aforementioned molecules linked to protection in various neurodegenerative disorders were monitored in the cytosolic, mitochondrial, and nuclear fractions associating investigated kinases and NF-κB with gene expression of their downstream effectors-Bcl-2, Bax, and caspase 3. The results revealed that an initial increase in the number of apoptotic cells and amount of DNA fragmentation induced by chronic cerebral hypoperfusion was significantly reduced by 17β-estradiol. In synaptic regions, an altered profile with respect to the protein expression of Bcl-2 and phosphorylated Akt was detected, although the level of other examined proteins was not modified. In other investigated sub-cellular fractions, 17β-estradiol elicited phosphorylation and translocation of Akt and Erk along with modulation of the expression of their subsequent effectors. Our findings support the concept that repeated post-ischemic 17β-estradiol treatment attenuates neurodegeneration induced by chronic cerebral hypoperfusion in hippocampus through the activation of investigated kinases and regulation of their downstream molecules in sub-cellular manner indicating a time window and regime of its administration as a valid therapeutic intervention.
Collapse
Affiliation(s)
- Miloš Stanojlović
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Ivana Guševac
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Jelena Zlatković
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Anica Horvat
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O.Box 522, Belgrade, 11001, Republic of Serbia.
| |
Collapse
|
42
|
|
43
|
Barra de la Tremblaye P, Plamondon H. Alterations in the corticotropin-releasing hormone (CRH) neurocircuitry: Insights into post stroke functional impairments. Front Neuroendocrinol 2016; 42:53-75. [PMID: 27455847 DOI: 10.1016/j.yfrne.2016.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
Although it is well accepted that changes in the regulation of the hypothalamic-pituitary adrenal (HPA) axis may increase susceptibility to affective disorders in the general population, this link has been less examined in stroke patients. Yet, the bidirectional association between depression and cardiovascular disease is strong, and stress increases vulnerability to stroke. Corticotropin-releasing hormone (CRH) is the central stress hormone of the HPA axis pathway and acts by binding to CRH receptors (CRHR) 1 and 2, which are located in several stress-related brain regions. Evidence from clinical and animal studies suggests a role for CRH in the neurobiological basis of depression and ischemic brain injury. Given its importance in the regulation of the neuroendocrine, autonomic, and behavioral correlates of adaptation and maladaptation to stress, CRH is likely associated in the pathophysiology of post stroke emotional impairments. The goals of this review article are to examine the clinical and experimental data describing (1) that CRH regulates the molecular signaling brain circuit underlying anxiety- and depression-like behaviors, (2) the influence of CRH and other stress markers in the pathophysiology of post stroke emotional and cognitive impairments, and (3) context and site specific interactions of CRH and BDNF as a basis for the development of novel therapeutic targets. This review addresses how the production and release of the neuropeptide CRH within the various regions of the mesocorticolimbic system influences emotional and cognitive behaviors with a look into its role in psychiatric disorders post stroke.
Collapse
Affiliation(s)
- P Barra de la Tremblaye
- School of Psychology, Behavioral Neuroscience Program, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - H Plamondon
- School of Psychology, Behavioral Neuroscience Program, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
44
|
Earnest DJ, Neuendorff N, Coffman J, Selvamani A, Sohrabji F. Sex Differences in the Impact of Shift Work Schedules on Pathological Outcomes in an Animal Model of Ischemic Stroke. Endocrinology 2016; 157:2836-43. [PMID: 27254002 PMCID: PMC4929545 DOI: 10.1210/en.2016-1130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Circadian clock desynchronization has been implicated in the pathophysiology of cardiovascular disease and related risk factors (eg, obesity, diabetes). Thus, we examined the extent to which circadian desynchronization exacerbates ischemic stroke outcomes and whether its detrimental effects on stroke severity and functional impairments are further modified by biological sex. Circadian entrainment of activity rhythms in all male and female rats was observed during exposure to a fixed light-dark (LD) 12:12 cycle but was severely disrupted when this LD cycle was routinely shifted (12 h advance/5 d) for approximately 7 weeks. In contrast to the regular estrous cycles in fixed LD animals, cyclicity was abolished and persistent estrus was evident in all shifted LD females. The disruption of estrous cyclicity in shifted LD females was associated with a significant increase in serum estradiol levels relative to that observed in fixed LD controls. Circadian rhythm disruption exacerbated stroke outcomes in both shifted LD male and female rats and further amplified sex differences in stroke impairments. In males, but not females, circadian disruption after exposure to the shifted LD cycle was marked by high rates of mortality. In surviving females, circadian desynchronization after exposure to shifted LD cycles produced significant increases in stroke-induced infarct volume and sensorimotor deficits with corresponding decreases in serum IGF-1 levels. These results suggest that circadian rhythm disruption associated with shift work schedules or the irregular nature of our everyday work and/or social environments may interact with other nonmodifiable risk factors such as biological sex to modulate the pathological effects of stroke.
Collapse
Affiliation(s)
- David J Earnest
- Department of Neuroscience and Experimental Therapeutics (D.J.E., N.N., J.C., A.S., F.S.) and Women's Health in Neuroscience Program (A.S., F.S.), Texas A&M Health Science Center, College of Medicine, Bryan, Texas 77807-3260; and Department of Biology (D.J.E.) and Center for Biological Clocks Research (D.J.E.), Texas A&M University, College Station, Texas 77843-3258
| | - Nichole Neuendorff
- Department of Neuroscience and Experimental Therapeutics (D.J.E., N.N., J.C., A.S., F.S.) and Women's Health in Neuroscience Program (A.S., F.S.), Texas A&M Health Science Center, College of Medicine, Bryan, Texas 77807-3260; and Department of Biology (D.J.E.) and Center for Biological Clocks Research (D.J.E.), Texas A&M University, College Station, Texas 77843-3258
| | - Jason Coffman
- Department of Neuroscience and Experimental Therapeutics (D.J.E., N.N., J.C., A.S., F.S.) and Women's Health in Neuroscience Program (A.S., F.S.), Texas A&M Health Science Center, College of Medicine, Bryan, Texas 77807-3260; and Department of Biology (D.J.E.) and Center for Biological Clocks Research (D.J.E.), Texas A&M University, College Station, Texas 77843-3258
| | - Amutha Selvamani
- Department of Neuroscience and Experimental Therapeutics (D.J.E., N.N., J.C., A.S., F.S.) and Women's Health in Neuroscience Program (A.S., F.S.), Texas A&M Health Science Center, College of Medicine, Bryan, Texas 77807-3260; and Department of Biology (D.J.E.) and Center for Biological Clocks Research (D.J.E.), Texas A&M University, College Station, Texas 77843-3258
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics (D.J.E., N.N., J.C., A.S., F.S.) and Women's Health in Neuroscience Program (A.S., F.S.), Texas A&M Health Science Center, College of Medicine, Bryan, Texas 77807-3260; and Department of Biology (D.J.E.) and Center for Biological Clocks Research (D.J.E.), Texas A&M University, College Station, Texas 77843-3258
| |
Collapse
|
45
|
Pettigrew LC, Kryscio RJ, Norris CM. The TNFα-Transgenic Rat: Hippocampal Synaptic Integrity, Cognition, Function, and Post-Ischemic Cell Loss. PLoS One 2016; 11:e0154721. [PMID: 27144978 PMCID: PMC4856338 DOI: 10.1371/journal.pone.0154721] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/18/2016] [Indexed: 11/18/2022] Open
Abstract
The cytokine, tumor necrosis factor α (TNFα), is a key regulator of neuroinflammation linked to numerous neurodegenerative conditions and diseases. The present study used transgenic rats that overexpress a murine TNFα gene, under the control of its own promoter, to investigate the impact of chronically elevated TNFα on hippocampal synaptic function. Neuronal viability and cognitive recovery in TNFα Tg rats were also determined following an ischemic insult arising from reversible middle cerebral artery occlusion (MCAO). Basal CA3-CA1 synaptic strength, recorded in acute brain slices, was not significantly different between eight-week-old TNFα Tg rats and non-Tg rats. In contrast, slices from TNFα Tg rats showed significantly greater levels of long-term potentiation (LTP) in response to 100 Hz stimulation, suggesting that synaptic networks may be hyperexcitable in the context of elevated TNFα. Cognitive and motor deficits (assessed on the Morris Water Maze and Rotarod task, respectively) were present in TNFα Tg rats in the absence of significant differences in the loss of cortical and hippocampal neurons. TNF overexpression exacerbated MCAO-dependent deficits on the rotarod, but ameliorated cortical neuron loss in response to MCAO.
Collapse
Affiliation(s)
- L. Creed Pettigrew
- Paul G. Blazer, Jr. Stroke Research Laboratory, University of Kentucky, Lexington, Kentucky, United States of America
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neurology, University of Kentucky, Lexington, Kentucky, United States of America
- Veterans Administration (VA) Medical Center, Lexington, Kentucky, United States of America
- * E-mail:
| | - Richard J. Kryscio
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Statistics and School of Public Health, University of Kentucky, Lexington, Kentucky, United States of America
| | - Christopher M. Norris
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
46
|
Chakrabarti M, Das A, Samantaray S, Smith JA, Banik NL, Haque A, Ray SK. Molecular mechanisms of estrogen for neuroprotection in spinal cord injury and traumatic brain injury. Rev Neurosci 2016; 27:271-81. [PMID: 26461840 DOI: 10.1515/revneuro-2015-0032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/27/2015] [Indexed: 03/14/2025]
Abstract
Estrogen (EST) is a steroid hormone that exhibits several important physiological roles in the human body. During the last few decades, EST has been well recognized as an important neuroprotective agent in a variety of neurological disorders in the central nervous system (CNS), such as spinal cord injury (SCI), traumatic brain injury (TBI), Alzheimer's disease, and multiple sclerosis. The exact molecular mechanisms of EST-mediated neuroprotection in the CNS remain unclear due to heterogeneity of cell populations that express EST receptors (ERs) in the CNS as well as in the innate and adaptive immune system. Recent investigations suggest that EST protects the CNS from injury by suppressing pro-inflammatory pathways, oxidative stress, and cell death, while promoting neurogenesis, angiogenesis, and neurotrophic support. In this review, we have described the currently known molecular mechanisms of EST-mediated neuroprotection and neuroregeneration in SCI and TBI. At the same time, we have emphasized on the recent in vitro and in vivo findings from our and other laboratories, implying potential clinical benefits of EST in the treatment of SCI and TBI.
Collapse
|
47
|
Zhao T, Ding Q, Hu J, He S, Shi F, Ma L. GPER expressed on microglia mediates the anti-inflammatory effect of estradiol in ischemic stroke. Brain Behav 2016; 6:e00449. [PMID: 27127723 PMCID: PMC4840664 DOI: 10.1002/brb3.449] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Stroke could lead to serious morbidity, of which ischemic stroke counts for majority of the cases. Inflammation plays an important role in the pathogenesis of ischemic stroke, thus drugs targeting inflammation could be potentially neuroprotective. Estradiol was shown to be neuroprotective as well as anti-inflammatory in animal models of ischemic stroke with unclear mechanism. We hypothesize that the anti-inflammatory and neuroprotective effect of estradiol is mediated by the estradiol receptor G protein-coupled estrogen receptor 1 (GPER) expressed on microglia. METHODS We have generated the rat global cerebral ischemic model and the primary microglia culture to study the neuroprotective and anti-inflammatory effect of estradiol. We have further used pharmacological methods and siRNA knockdown approach to study the underlying mechanism. RESULTS We found that estradiol reduced the level of proinflammatory cytokines including IL-1β and TNF-α, both in vivo and in vitro. We also found that the specific GPER agonist G1 could reduce the level of IL-1β (P = 0 P = 0.0017, one-way ANOVA and post hoc test) and TNF-α (P < 0.0001) in the primary microglia culture. Moreover, the specific GPER antagonist G15 was able to abolish the anti-inflammatory effect of estradiol. Estradiol failed to reduce the level of IL-1β (P = 0.4973, unpaired Student's t-test) and TNF-α (P = 0.1627) when GPER was knocked down. CONCLUSIONS Our studies have suggested that GPER expressed on microglia mediated the anti-inflammatory effect of estradiol after ischemic stroke. Our studies could potentially help to develop more specific drugs to manage inflammation postischemic stroke.
Collapse
Affiliation(s)
- Tian‐Zhi Zhao
- Department of NeurosurgeryWuhan General Hospital of Guangzhou Military Command of Chinese PLAWuhan430070Hubei ProvinceChina
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityNo. 569 Xinsi RoadBaqiao DistrictXi'an710038Shanxi ProvinceChina
| | - Qian Ding
- Department of AnesthesiologyTangdu HospitalFourth Military Medical UniversityNo. 569 Xinsi RoadBaqiao DistrictXi'an710038Shanxi ProvinceChina
| | - Jun Hu
- Department of NeurologyChinese PLA No. 451 HospitalXi'an710054Shanxi ProvinceChina
| | - Shi‐Ming He
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityNo. 569 Xinsi RoadBaqiao DistrictXi'an710038Shanxi ProvinceChina
| | - Fei Shi
- Department of Aerospace BiodynamicsFourth Military Medical UniversityXi'an710032Shanxi ProvinceChina
| | - Lian‐Ting Ma
- Department of NeurosurgeryWuhan General Hospital of Guangzhou Military Command of Chinese PLAWuhan430070Hubei ProvinceChina
| |
Collapse
|
48
|
Galea LAM, Frick KM, Hampson E, Sohrabji F, Choleris E. Why estrogens matter for behavior and brain health. Neurosci Biobehav Rev 2016; 76:363-379. [PMID: 27039345 PMCID: PMC5045786 DOI: 10.1016/j.neubiorev.2016.03.024] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 12/22/2022]
Abstract
The National Institutes of Health (NIH) has required the inclusion of women in clinical studies since 1993, which has enhanced our understanding of how biological sex affects certain medical conditions and allowed the development of sex-specific treatment protocols. However, NIH's policy did not previously apply to basic research, and the NIH recently introduced a new policy requiring all new grant applications to explicitly address sex as a biological variable. The policy itself is grounded in the results of numerous investigations in animals and humans illustrating the existence of sex differences in the brain and behavior, and the importance of sex hormones, particularly estrogens, in regulating physiology and behavior. Here, we review findings from our laboratories, and others, demonstrating how estrogens influence brain and behavior in adult females. Research from subjects throughout the adult lifespan on topics ranging from social behavior, learning and memory, to disease risk will be discussed to frame an understanding of why estrogens matter to behavioral neuroscience.
Collapse
Affiliation(s)
- Liisa A M Galea
- Department of Psychology, Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z4, Canada.
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Elizabeth Hampson
- Department of Psychology, University of Western Ontario, London, ON N6A 5C2, Canada
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
49
|
Deer RR, Stallone JN. Effects of estrogen on cerebrovascular function: age-dependent shifts from beneficial to detrimental in small cerebral arteries of the rat. Am J Physiol Heart Circ Physiol 2016; 310:H1285-94. [PMID: 26993224 DOI: 10.1152/ajpheart.00645.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023]
Abstract
In the present study, interactions of age and estrogen in the modulation of cerebrovascular function were examined in small arteries <150 μM. The hypothesis tested was that age enhances deleterious effects of exogenous estrogen by augmenting constrictor prostanoid (CP)-potentiated reactivity of the female (F) cerebrovasculature. F Sprague-Dawley rats approximating key stages of "hormonal aging" in humans were studied: perimenopausal (mature multi-gravid, MA, cyclic, 5-6 mo of age) and postmenopausal (reproductively senescent, RS, acyclic 10-12 mo of age). Rats underwent bilateral ovariectomy and were given estrogen replacement therapy (E) or placebo (O) for 14-21 days. Vasopressin reactivity (VP, 10(-12)-10(-7) M) was measured in pressurized middle cerebral artery segments, alone or in the presence of COX-1- (SC560, 1 μM) or COX-2- (NS398, 10 μM) selective inhibitors. VP-stimulated release of prostacyclin (PGI2) and thromboxane (TXA2) were assessed by radioimmunoassay of 6-keto-PGF1α and TXB2 (stable metabolites). VP-induced vasoconstriction was attenuated in ovariectomized + estrogen-replaced, multigravid adult rats (5-6 mo; MAE) but potentiated in older ovariectomized + estrogen-replaced, reproductively senescent rats (12-14 mo; RSE). SC560 and NS398 reduced reactivity similarly in ovariectomized multigravid adult rats (5-6 mo; MAO) and ovariectomized reproductively senescent rat (12-14 mo; RSO). In MAE, reactivity to VP was reduced to a greater extent by SC560 than by NS398; however, in RSE, this effect was reversed. VP-stimulated PGI2 was increased by estrogen, yet reduced by age. VP-stimulated TXA2 was increased by estrogen and age in RSE but did not differ in MAO and RSO. Taken together, these data reveal that the vascular effects of estrogen are distinctly age-dependent in F rats. In younger MA, beneficial and protective effects of estrogen are evident (decreased vasoconstriction, increased dilator prostanoid function). Conversely, in older RS, detrimental effects of estrogen begin to be manifested (enhanced vasoconstriction and CP function). These findings may lead to age-specific estrogen replacement therapies that maximize beneficial and minimize detrimental effects of this hormone on small cerebral arteries that regulate blood flow.
Collapse
Affiliation(s)
- Rachel R Deer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; and
| | - John N Stallone
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; and Women's Health Division, Michael E. DeBakey Institute, Texas A&M University, College Station, Texas
| |
Collapse
|
50
|
Carpenter RS, Iwuchukwu I, Hinkson CL, Reitz S, Lee W, Kukino A, Zhang A, Pike MM, Ardelt AA. High-dose estrogen treatment at reperfusion reduces lesion volume and accelerates recovery of sensorimotor function after experimental ischemic stroke. Brain Res 2016; 1639:200-13. [PMID: 26995494 DOI: 10.1016/j.brainres.2016.01.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/03/2015] [Accepted: 01/17/2016] [Indexed: 01/15/2023]
Abstract
Estrogens have previously been shown to protect the brain against acute ischemic insults, by potentially augmenting cerebrovascular function after ischemic stroke. The current study hypothesized that treatment with sustained release of high-dose 17β-estradiol (E2) at the time of reperfusion from middle cerebral artery occlusion (MCAO) in rats would attenuate reperfusion injury, augment post-stroke angiogenesis and cerebral blood flow, and attenuate lesion volume. Female Wistar rats underwent ovariectomy, followed two weeks later by transient, two-hour right MCAO (tMCAO) and treatment with E2 (n=13) or placebo (P; n=12) pellets starting at reperfusion. E2 treatment resulted in significantly smaller total lesion volume, smaller lesions within striatal and cortical brain regions, and less atrophy of the ipsilateral hemisphere after six weeks of recovery. E2-treated animals exhibited accelerated recovery of contralateral forelimb sensorimotor function in the cylinder test. Magnetic resonance imaging (MRI) showed that E2 treatment reduced the formation of lesion cysts, decreased lesion volume, and increased lesional cerebral blood flow (CBF). K(trans), a measure of vascular permeability, was increased in the lesions. This finding, which represents lesion neovascularization, was not altered by E2 treatment. Ischemic stroke-related angiogenesis and vessel formation was confirmed with immunolabeling of brain tissue and was not altered with E2 treatment. In summary, E2 treatment administered immediately following reperfusion significantly reduced lesion size, cyst formation, and brain atrophy while improving lesional CBF and accelerating recovery of functional deficits in a rat model of ischemic stroke.
Collapse
Affiliation(s)
| | | | | | - Sydney Reitz
- The College, University of Chicago, Chicago, IL, USA
| | - Wonhee Lee
- The College, University of Chicago, Chicago, IL, USA
| | - Ayaka Kukino
- Advanced Imaging Research Center, Oregon Health Sciences University, Portland, OR, USA
| | - An Zhang
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health Sciences University, Portland, OR, USA
| | | |
Collapse
|