1
|
Paulson AL, Zhang L, Prichard AM, Singer AC. 40 Hz sensory stimulation enhances CA3-CA1 coordination and prospective coding during navigation in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619408. [PMID: 39484571 PMCID: PMC11526945 DOI: 10.1101/2024.10.23.619408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
40 Hz sensory stimulation ("flicker") has emerged as a new technique to potentially mitigate pathology and improve cognition in mouse models of Alzheimer's disease (AD) pathology. However, it remains unknown how 40 Hz flicker affects neural codes essential for memory. Accordingly, we investigate the effects of 40 Hz flicker on neural representations of experience in the hippocampus of the 5XFAD mouse model of AD by recording 1000s of neurons during a goal-directed spatial navigation task. We find that an hour of daily exposure to 40 Hz audio-visual stimulation over 8 days leads to higher coordination between hippocampal subregions CA3 and CA1 during navigation. Consistent with CA3's role in generating sequential activity that represents future positions, 40 Hz flicker exposure increased prospective coding of future positions. In turn, prospective coding was more prominent during efficient navigation behavior. Our findings show how 40 Hz flicker enhances key hippocampal activity during behavior that is important for memory.
Collapse
Affiliation(s)
- Abigail L Paulson
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Lu Zhang
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, USA
- National Institute of Mental Health, NIH, Bethesda, 20892, MD
| | - Ashley M Prichard
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Annabelle C Singer
- Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
2
|
Tang Y, Xing Y, Sun L, Wang Z, Wang C, Yang K, Zhu W, Shi X, Xie B, Yin Y, Mi Y, Wei T, Tong R, Qiao Y, Yan S, Wei P, Yang Y, Shan Y, Zhang X, Jia J, Teipel SJ, Howard R, Lu J, Li C, Zhao G. TRanscranial AlterNating current stimulation FOR patients with mild Alzheimer's Disease (TRANSFORM-AD): a randomized controlled clinical trial. Alzheimers Res Ther 2024; 16:203. [PMID: 39267112 PMCID: PMC11395938 DOI: 10.1186/s13195-024-01570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The mechanistic effects of gamma transcranial alternating current stimulation (tACS) on hippocampal gamma oscillation activity in Alzheimer's Disease (AD) remains unclear. This study aimed to clarify beneficial effects of gamma tACS on cognitive functioning in AD and to elucidate effects on hippocampal gamma oscillation activity. METHODS This is a double-blind, randomized controlled single-center trial. Participants with mild AD were randomized to tACS group or sham group, and underwent 30 one-hour sessions of either 40 Hz tACS or sham stimulation over consecutive 15 days. Cognitive functioning, structural magnetic resonance imaging (MRI), and simultaneous electroencephalography-functional MRI (EEG-fMRI) were evaluated at baseline, the end of the intervention and at 3-month follow-up from the randomization. RESULTS A total of 46 patients were enrolled (23 in the tACS group, 23 in the sham group). There were no group differences in the change of the primary outcome, 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog) score after intervention (group*time, p = 0.449). For secondary outcomes, compared to the control group, the intervention group showed significant improvement in MMSE (group*time, p = 0.041) and MoCA scores (non-parametric test, p = 0.025), which were not sustained at 3-month follow-up. We found an enhancement of theta-gamma coupling in the hippocampus, which was positively correlated with improvements of MMSE score and delayed recall. Additionally, fMRI revealed increase of the local neural activity in the hippocampus. CONCLUSION Effects on the enhancement of theta-gamma coupling and neural activity within the hippocampus suggest mechanistic models for potential therapeutic mechanisms of tACS. TRIAL REGISTRATION ClinicalTrials.gov, NCT03920826; Registration Date: 2019-04-19.
Collapse
Affiliation(s)
- Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China.
| | - Yi Xing
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Liwei Sun
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Zhibin Wang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Changming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kun Yang
- The National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Zhu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Xinrui Shi
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Beijia Xie
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Yunsi Yin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Yingxin Mi
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Tao Wei
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Renjie Tong
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yuchen Qiao
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Shaozhen Yan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xu Zhang
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Jianping Jia
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Stefan J Teipel
- Department of Psychosomatic Medicine, University Medicine Rostock & Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock, Germany
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Chunlin Li
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Wei X, Campagna JJ, Jagodzinska B, Wi D, Cohn W, Lee JT, Zhu C, Huang CS, Molnár L, Houser CR, John V, Mody I. A therapeutic small molecule enhances γ-oscillations and improves cognition/memory in Alzheimer's disease model mice. Proc Natl Acad Sci U S A 2024; 121:e2400420121. [PMID: 39106304 PMCID: PMC11331084 DOI: 10.1073/pnas.2400420121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
Brain rhythms provide the timing for recruitment of brain activity required for linking together neuronal ensembles engaged in specific tasks. The γ-oscillations (30 to 120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here, we report on a potent brain-permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a class of therapeutics for AD. We employed anatomical, in vitro and in vivo electrophysiological, and behavioral methods to examine the effects of our lead therapeutic candidate small molecule. As a novel in central nervous system pharmacotherapy, our lead molecule acts as a potent, efficacious, and selective negative allosteric modulator of the γ-aminobutyric acid type A receptors most likely assembled from α1β2δ subunits. These receptors, identified through anatomical and pharmacological means, underlie the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. When orally administered twice daily for 2 wk, DDL-920 restored the cognitive/memory impairments of 3- to 4-mo-old AD model mice as measured by their performance in the Barnes maze. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.
Collapse
Affiliation(s)
- Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Neurosurgery, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jesus J. Campagna
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Barbara Jagodzinska
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Dongwook Wi
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Whitaker Cohn
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Jessica T. Lee
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Chunni Zhu
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Christine S. Huang
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - László Molnár
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania, Târgu Mureş540485, Romania
| | - Carolyn R. Houser
- Department of Neurobiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Varghese John
- Department of Neurology, Drug Development Laboratory, Mary S. Easton Center for Alzheimer’s Disease Research and Care, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
- Department of Physiology, The David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA90095
| |
Collapse
|
4
|
Li KY, Chien CF, Huang LC, Lim K, Yang YH. Exploring the impact of 40 Hz multi-luminaire light exposure in Alzheimer's dementia: insights from a convenient sampling, non-randomized case-control study. J Neurol 2024; 271:5425-5432. [PMID: 38884789 DOI: 10.1007/s00415-024-12486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Recent studies propose 40 Hz neural activity induction as a promising approach for managing Alzheimer's dementia (AD). However, traditional flickering light is suboptimal in addressing cognitive and neuropsychiatric symptoms (NPS) of AD. This study aims to investigate the clinical efficacy of a novel multi-luminaire lighting technology, with reduced perceptible flickering, for treating AD NPS. METHODS This study is a prospective, convenient sampling, non-randomized case-control investigation involving seventy-eight clinically diagnosed AD patients from 7 daycare centers. Thirty-five were exposed to 40 Hz light through Delta M + BrainCare Light (M +), 4 h daily, 5 days/week, for 12 weeks. The other 43 patients served as controls. Sum of boxes of the Clinical Dementia Rating (CDR-SB) scale, Neuropsychiatric Inventory (NPI), and Zarit Burden Interview (ZBI) were assessed at baseline and the 13th week. RESULTS At baseline, the cases had worse cognitive function, lower cognitive score (Mini-Mental State Examination, p = 0.04; Cognitive Abilities Screening Instrument, p = 0.04), and advanced caregiver burden with higher ZBI scores (p < 0.01) than the controls. After the intervention, the cases had significant improvements in NPS as assessed using the NPI (p = 0.02), especially depression and euphoria symptoms (p = 0.04 and < 0.01, respectively) and less caregiver burden (ZBI score, p < 0.01). In global function, the control group showed a significant decline in CDR-SB score (p < 0.01), while the cases did not. CONCLUSIONS Results suggest M + may slow global function decline, preserve cognitive function, improve NPS, and reduce caregiver burden in AD patients. Larger studies with biomarkers are needed to explore underlying mechanisms.
Collapse
Affiliation(s)
- Kuan-Ying Li
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Fang Chien
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ling-Chun Huang
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kelly Lim
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Petro NM, Webert LK, Springer SD, Okelberry HJ, John JA, Horne LK, Glesinger R, Rempe MP, Wilson TW. Optimal gamma-band entrainment of visual cortex. Hum Brain Mapp 2024; 45:e26775. [PMID: 38970249 PMCID: PMC11226544 DOI: 10.1002/hbm.26775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024] Open
Abstract
Visual entrainment is a powerful and widely used research tool to study visual information processing in the brain. While many entrainment studies have focused on frequencies around 14-16 Hz, there is renewed interest in understanding visual entrainment at higher frequencies (e.g., gamma-band entrainment). Notably, recent groundbreaking studies have demonstrated that gamma-band visual entrainment at 40 Hz may have therapeutic effects in the context of Alzheimer's disease (AD) by stimulating specific neural ensembles, which utilize GABAergic signaling. Despite such promising findings, few studies have investigated the optimal parameters for gamma-band visual entrainment. Herein, we examined whether visual stimulation at 32, 40, or 48 Hz produces optimal visual entrainment responses using high-density magnetoencephalography (MEG). Our results indicated strong entrainment responses localizing to the primary visual cortex in each condition. Entrainment responses were stronger for 32 and 40 Hz relative to 48 Hz, indicating more robust synchronization of neural ensembles at these lower gamma-band frequencies. In addition, 32 and 40 Hz entrainment responses showed typical patterns of habituation across trials, but this effect was absent for 48 Hz. Finally, connectivity between visual cortex and parietal and prefrontal cortices tended to be strongest for 40 relative to 32 and 48 Hz entrainment. These results suggest that neural ensembles in the visual cortex may resonate at around 32 and 40 Hz and thus entrain more readily to photic stimulation at these frequencies. Emerging AD therapies, which have focused on 40 Hz entrainment to date, may be more effective at lower relative to higher gamma frequencies, although additional work in clinical populations is needed to confirm these findings. PRACTITIONER POINTS: Gamma-band visual entrainment has emerged as a therapeutic approach for eliminating amyloid in Alzheimer's disease, but its optimal parameters are unknown. We found stronger entrainment at 32 and 40 Hz compared to 48 Hz, suggesting neural ensembles prefer to resonate around these relatively lower gamma-band frequencies. These findings may inform the development and refinement of innovative AD therapies and the study of GABAergic visual cortical functions.
Collapse
Affiliation(s)
- Nathan M. Petro
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Lauren K. Webert
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Seth D. Springer
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Jason A. John
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Lucy K. Horne
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Ryan Glesinger
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Maggie P. Rempe
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
- Department of Pharmacology and NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
6
|
De Paolis ML, Paoletti I, Zaccone C, Capone F, D'Amelio M, Krashia P. Transcranial alternating current stimulation (tACS) at gamma frequency: an up-and-coming tool to modify the progression of Alzheimer's Disease. Transl Neurodegener 2024; 13:33. [PMID: 38926897 PMCID: PMC11210106 DOI: 10.1186/s40035-024-00423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Ilaria Paoletti
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Claudio Zaccone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy.
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| |
Collapse
|
7
|
Barbour AJ, Gourmaud S, Lancaster E, Li X, Stewart DA, Hoag KF, Irwin DJ, Talos DM, Jensen FE. Seizures exacerbate excitatory: inhibitory imbalance in Alzheimer's disease and 5XFAD mice. Brain 2024; 147:2169-2184. [PMID: 38662500 PMCID: PMC11146435 DOI: 10.1093/brain/awae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 05/14/2024] Open
Abstract
Approximately 22% of Alzheimer's disease (AD) patients suffer from seizures, and the co-occurrence of seizures and epileptiform activity exacerbates AD pathology and related cognitive deficits, suggesting that seizures may be a targetable component of AD progression. Given that alterations in neuronal excitatory:inhibitory (E:I) balance occur in epilepsy, we hypothesized that decreased markers of inhibition relative to those of excitation would be present in AD patients. We similarly hypothesized that in 5XFAD mice, the E:I imbalance would progress from an early stage (prodromal) to later symptomatic stages and be further exacerbated by pentylenetetrazol (PTZ) kindling. Post-mortem AD temporal cortical tissues from patients with or without seizure history were examined for changes in several markers of E:I balance, including levels of the inhibitory GABAA receptor, the sodium potassium chloride cotransporter 1 (NKCC1) and potassium chloride cotransporter 2 (KCC2) and the excitatory NMDA and AMPA type glutamate receptors. We performed patch-clamp electrophysiological recordings from CA1 neurons in hippocampal slices and examined the same markers of E:I balance in prodromal 5XFAD mice. We next examined 5XFAD mice at chronic stages, after PTZ or control protocols, and in response to chronic mTORC1 inhibitor rapamycin, administered following kindled seizures, for markers of E:I balance. We found that AD patients with comorbid seizures had worsened cognitive and functional scores and decreased GABAA receptor subunit expression, as well as increased NKCC1/KCC2 ratios, indicative of depolarizing GABA responses. Patch clamp recordings of prodromal 5XFAD CA1 neurons showed increased intrinsic excitability, along with decreased GABAergic inhibitory transmission and altered glutamatergic neurotransmission, indicating that E:I imbalance may occur in early disease stages. Furthermore, seizure induction in prodromal 5XFAD mice led to later dysregulation of NKCC1/KCC2 and a reduction in GluA2 AMPA glutamate receptor subunit expression, indicative of depolarizing GABA receptors and calcium permeable AMPA receptors. Finally, we found that chronic treatment with the mTORC1 inhibitor, rapamycin, at doses we have previously shown to attenuate seizure-induced amyloid-β pathology and cognitive deficits, could also reverse elevations of the NKCC1/KCC2 ratio in these mice. Our data demonstrate novel mechanisms of interaction between AD and epilepsy and indicate that targeting E:I balance, potentially with US Food and Drug Administration-approved mTOR inhibitors, hold therapeutic promise for AD patients with a seizure history.
Collapse
Affiliation(s)
- Aaron J Barbour
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Gourmaud
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eunjoo Lancaster
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaofan Li
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Stewart
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Duke University School of Medicine, Durham, NC 27708, USA
| | - Keegan F Hoag
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delia M Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Li H, Lai L, Li X, Wang R, Fang X, Xu N, Zhao J. Electroacupuncture Ameliorates Cognitive Impairment by Regulating γ-Amino Butyric Acidergic Interneurons in the Hippocampus of 5 Familial Alzheimer's Disease Mice. Neuromodulation 2024; 27:730-741. [PMID: 36604241 DOI: 10.1016/j.neurom.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVES γ-amino butyric acid (GABA)-ergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease (AD). Inhibitory interneurons play an important role in the regulation of E/I balance, synaptic transmission, and network oscillation through manipulation of GABAergic functions, showing positive outcomes in AD animal models. Mice expressing 5 familial AD mutation (5xFAD) exhibited a series of AD-like pathology and learning and memory deficits with age. Because electroacupuncture (EA) treatment has been used for a complementary alternative medicine therapy in patients with AD, we aimed to examine any usefulness of EA therapy in GABA interneuron function and its associated synaptic proteins, to determine whether EA could effectively improve inhibitory transmission and network oscillation and eventually alleviate cognitive impairments in 5xFAD mice, and to further elucidate the GABAergic system function underlying the antidementia response of EA. MATERIALS AND METHODS 5xFAD mice were used to evaluate the potential neuroprotective effect of electroacupuncture at Baihui (DU 20) and Dazhui (DU 14) through behavioral testing, immunofluorescence staining, electrophysiology recording, and molecular biology analysis. RESULTS First, we observed that EA improved memory deficits and inhibitory synaptic protein expression. Second, EA treatment alleviated the decrease of somatostatin-positive interneurons in the dorsal hippocampus. Third, EA attenuated E/I imbalance in 5xFAD mice. Last, EA treatment enhanced theta and gamma oscillation in the hippocampus of 5xFAD mice. CONCLUSIONS EA stimulation at DU20 and DU14 acupoints may be a potential alternative therapy to ameliorate cognitive deficits in AD through the regulation of the function of the GABAergic interneuron.
Collapse
Affiliation(s)
- Hongzhu Li
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rehabilitation, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanfeng Lai
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Li
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Runyi Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoling Fang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaying Zhao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Wildner F, Neuhäusel TS, Klemz A, Kovács R, Ulmann L, Geiger JRP, Gerevich Z. Extracellular ATP inhibits excitatory synaptic input on parvalbumin positive interneurons and attenuates gamma oscillations via P2X4 receptors. Br J Pharmacol 2024; 181:1635-1653. [PMID: 38073073 DOI: 10.1111/bph.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND AND PURPOSE P2X4 receptors (P2X4R) are ligand gated cation channels that are activated by extracellular ATP released by neurons and glia. The receptors are widely expressed in the brain and have fractional calcium currents comparable with NMDA receptors. Although P2X4Rs have been reported to modulate synaptic transmission and plasticity, their involvement in shaping neuronal network activity remains to be elucidated. EXPERIMENTAL APPROACH We investigated the effects of P2X receptors at network and synaptic level using local field potential electrophysiology, whole cell patch clamp recordings and calcium imaging in fast spiking parvalbumin positive interneurons (PVINs) in rat and mouse hippocampal slices. The stable ATP analogue ATPγS, selective antagonists and P2X4R knockout mice were used. KEY RESULTS The P2XR agonist ATPγS reversibly decreased the power of gamma oscillations. This inhibition could be antagonized by the selective P2X4R antagonist PSB-12062 and was not observed in P2X4-/- mice. The phasic excitatory inputs of CA3 PVINs were one of the main regulators of the gamma power. Associational fibre compound excitatory postsynaptic currents (cEPSCs) in CA3 PVINs were inhibited by P2X4R activation. This effect was reversible, dependent on intracellular calcium and dynamin-dependent internalization of AMPA receptors. CONCLUSIONS AND IMPLICATIONS The results indicate that P2X4Rs are an important source of dendritic calcium in CA3 PVINs, thereby regulating excitatory synaptic inputs onto the cells and presumably the state of gamma oscillations in the hippocampus. P2X4Rs represent an effective target to modulate hippocampal network activity in pathophysiological conditions such as Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- Florian Wildner
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Tim S Neuhäusel
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Alexander Klemz
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Richard Kovács
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Lauriane Ulmann
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Zoltan Gerevich
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Fu W, Yu X, Lai M, Li Y, Yang Y, Qin Y, Yu M, Wang F, Wang C. Gamma oscillations induced by 40-Hz visual-auditory stimulation for the treatment of acute-phase limb motor rehabilitation after stroke: study protocol for a prospective randomized controlled trial. Trials 2024; 25:284. [PMID: 38671516 PMCID: PMC11046895 DOI: 10.1186/s13063-024-08121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The incidence of hemiparetic limb dysfunction reaches 85% in stroke patients, emerging as a critical factor influencing their daily lives. However, the effectiveness of current rehabilitation treatments is considerably limited, particularly in patients with upper extremity impairment. This study aims to conduct a prospective clinical trial to validate the safety and effectiveness of gamma oscillations induced by 40-Hz visual-auditory stimulation in treating post-stroke upper limb dysfunction and to explore the relevant mechanisms. METHODS This trial is a prospective, randomized controlled, double-blind study. All enrolled patients were randomly assigned to two groups. The experimental group received intervention through 40-Hz visual-auditory stimulation, while the control group underwent intervention with randomly matched visual-auditory stimulation frequencies. The primary efficacy endpoint is the change in motor function. Secondary efficacy endpoints include motor-evoked potentials, cerebral hemodynamic changes, neural network connectivity, and alterations in synaptic-related genes. Safety evaluation included major adverse events, all-cause mortality, and photosensitive epilepsy. Assessments will be conducted at baseline, after a 14-day treatment period, and during subsequent follow-up visits (at 3 and 6 months) post-treatment. The differences between the two groups will be compared. DISCUSSION This study will evaluate the safety and efficacy of gamma oscillations induced by 40-Hz visual-auditory stimulation in treating patients with upper extremity dysfunction after an acute cerebral stroke. Concurrently, we will explore potential mechanisms, including changes in synaptic-related genes and neural network connectivity. This trial is expected to provide evidence for the effectiveness of this new technique in treating upper extremity dysfunction after a stroke and improving patients' quality of life. TRIAL REGISTRATION The study protocol has been registered with the Chinese Clinical Trial Registry (ChiCTR) under registration number ChiCTR2300076579 on October 12, 2023.
Collapse
Affiliation(s)
- Wang Fu
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Xiaoming Yu
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Minghui Lai
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Yuanli Li
- Department of Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingting Yang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Yong Qin
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Min Yu
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Feng Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China
| | - Cong Wang
- Department of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Datong Rd. 358, Shanghai, 200137, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China.
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Queensland Brain Institute, the University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
11
|
Prabhu P, Morise H, Kudo K, Beagle A, Mizuiri D, Syed F, Kotegar KA, Findlay A, Miller BL, Kramer JH, Rankin KP, Garcia PA, Kirsch HE, Vossel K, Nagarajan SS, Ranasinghe KG. Abnormal gamma phase-amplitude coupling in the parahippocampal cortex is associated with network hyperexcitability in Alzheimer's disease. Brain Commun 2024; 6:fcae121. [PMID: 38665964 PMCID: PMC11043655 DOI: 10.1093/braincomms/fcae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/08/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
While animal models of Alzheimer's disease (AD) have shown altered gamma oscillations (∼40 Hz) in local neural circuits, the low signal-to-noise ratio of gamma in the resting human brain precludes its quantification via conventional spectral estimates. Phase-amplitude coupling (PAC) indicating the dynamic integration between the gamma amplitude and the phase of low-frequency (4-12 Hz) oscillations is a useful alternative to capture local gamma activity. In addition, PAC is also an index of neuronal excitability as the phase of low-frequency oscillations that modulate gamma amplitude, effectively regulates the excitability of local neuronal firing. In this study, we sought to examine the local neuronal activity and excitability using gamma PAC, within brain regions vulnerable to early AD pathophysiology-entorhinal cortex and parahippocampus, in a clinical population of patients with AD and age-matched controls. Our clinical cohorts consisted of a well-characterized cohort of AD patients (n = 50; age, 60 ± 8 years) with positive AD biomarkers, and age-matched, cognitively unimpaired controls (n = 35; age, 63 ± 5.8 years). We identified the presence or the absence of epileptiform activity in AD patients (AD patients with epileptiform activity, AD-EPI+, n = 20; AD patients without epileptiform activity, AD-EPI-, n = 30) using long-term electroencephalography (LTM-EEG) and 1-hour long magnetoencephalography (MEG) with simultaneous EEG. Using the source reconstructed MEG data, we computed gamma PAC as the coupling between amplitude of the gamma frequency (30-40 Hz) with phase of the theta (4-8 Hz) and alpha (8-12 Hz) frequency oscillations, within entorhinal and parahippocampal cortices. We found that patients with AD have reduced gamma PAC in the left parahippocampal cortex, compared to age-matched controls. Furthermore, AD-EPI+ patients showed greater reductions in gamma PAC than AD-EPI- in bilateral parahippocampal cortices. In contrast, entorhinal cortices did not show gamma PAC abnormalities in patients with AD. Our findings demonstrate the spatial patterns of altered gamma oscillations indicating possible region-specific manifestations of network hyperexcitability within medial temporal lobe regions vulnerable to AD pathophysiology. Greater deficits in AD-EPI+ suggests that reduced gamma PAC is a sensitive index of network hyperexcitability in AD patients. Collectively, the current results emphasize the importance of investigating the role of neural circuit hyperexcitability in early AD pathophysiology and explore its potential as a modifiable contributor to AD pathobiology.
Collapse
Affiliation(s)
- Pooja Prabhu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Data science and Computer Applications, Manipal Institute of Technology, Manipal 576104, India
| | - Hirofumi Morise
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Medical Imaging Business Center, Ricoh Company Ltd., Kanazawa 920-0177, Japan
| | - Kiwamu Kudo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Medical Imaging Business Center, Ricoh Company Ltd., Kanazawa 920-0177, Japan
| | - Alexander Beagle
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Faatimah Syed
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Karunakar A Kotegar
- Department of Data science and Computer Applications, Manipal Institute of Technology, Manipal 576104, India
| | - Anne Findlay
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paul A Garcia
- Epilepsy Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Heidi E Kirsch
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Epilepsy Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Keith Vossel
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
- Mary S. Easton Center for Alzheimer’s Research and Care, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kamalini G Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
12
|
Hajós M, Boasso A, Hempel E, Shpokayte M, Konisky A, Seshagiri CV, Fomenko V, Kwan K, Nicodemus-Johnson J, Hendrix S, Vaughan B, Kern R, Megerian JT, Malchano Z. Safety, tolerability, and efficacy estimate of evoked gamma oscillation in mild to moderate Alzheimer's disease. Front Neurol 2024; 15:1343588. [PMID: 38515445 PMCID: PMC10957179 DOI: 10.3389/fneur.2024.1343588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Background Alzheimer's Disease (AD) is a multifactorial, progressive neurodegenerative disease that disrupts synaptic and neuronal activity and network oscillations. It is characterized by neuronal loss, brain atrophy and a decline in cognitive and functional abilities. Cognito's Evoked Gamma Therapy System provides an innovative approach for AD by inducing EEG-verified gamma oscillations through sensory stimulation. Prior research has shown promising disease-modifying effects in experimental AD models. The present study (NCT03556280: OVERTURE) evaluated the feasibly, safety and efficacy of evoked gamma oscillation treatment using Cognito's medical device (CogTx-001) in participants with mild to moderate AD. Methods The present study was a randomized, double blind, sham-controlled, 6-months clinical trial in participants with mild to moderate AD. The trial enrolled 76 participants, aged 50 or older, who met the clinical criteria for AD with baseline MMSE scores between 14 and 26. Participants were randomly assigned 2:1 to receive self-administered daily, one-hour, therapy, evoking EEG-verified gamma oscillations or sham treatment. The CogTx-001 device was use at home with the help of a care partner, over 6 months. The primary outcome measures were safety, evaluated by physical and neurological exams and monthly assessments of adverse events (AEs) and MRI, and tolerability, measured by device use. Although the trial was not statistically powered to evaluate potential efficacy outcomes, primary and secondary clinical outcome measures included several cognitive and functional endpoints. Results Total AEs were similar between groups, there were no unexpected serious treatment related AEs, and no serious treatment-emergent AEs that led to study discontinuation. MRI did not show Amyloid-Related Imaging Abnormalities (ARIA) in any study participant. High adherence rates (85-90%) were observed in sham and treatment participants. There was no statistical separation between active and sham arm participants in primary outcome measure of MADCOMS or secondary outcome measure of CDR-SB or ADAS-Cog14. However, some secondary outcome measures including ADCS-ADL, MMSE, and MRI whole brain volume demonstrated reduced progression in active compared to sham treated participants, that achieved nominal significance. Conclusion Our results demonstrate that 1-h daily treatment with Cognito's Evoked Gamma Therapy System (CogTx-001) was safe and well-tolerated and demonstrated potential clinical benefits in mild to moderate AD.Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03556280.
Collapse
Affiliation(s)
- Mihály Hajós
- Cognito Therapeutics, Inc., Cambridge, MA, United States
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Alyssa Boasso
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | - Evan Hempel
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | | | - Alex Konisky
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | | | | | - Kim Kwan
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | | | | | - Brent Vaughan
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | - Ralph Kern
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | | | - Zach Malchano
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| |
Collapse
|
13
|
Meneghetti N, Vannini E, Mazzoni A. Rodents' visual gamma as a biomarker of pathological neural conditions. J Physiol 2024; 602:1017-1048. [PMID: 38372352 DOI: 10.1113/jp283858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Neural gamma oscillations (indicatively 30-100 Hz) are ubiquitous: they are associated with a broad range of functions in multiple cortical areas and across many animal species. Experimental and computational works established gamma rhythms as a global emergent property of neuronal networks generated by the balanced and coordinated interaction of excitation and inhibition. Coherently, gamma activity is strongly influenced by the alterations of synaptic dynamics which are often associated with pathological neural dysfunctions. We argue therefore that these oscillations are an optimal biomarker for probing the mechanism of cortical dysfunctions. Gamma oscillations are also highly sensitive to external stimuli in sensory cortices, especially the primary visual cortex (V1), where the stimulus dependence of gamma oscillations has been thoroughly investigated. Gamma manipulation by visual stimuli tuning is particularly easy in rodents, which have become a standard animal model for investigating the effects of network alterations on gamma oscillations. Overall, gamma in the rodents' visual cortex offers an accessible probe on dysfunctional information processing in pathological conditions. Beyond vision-related dysfunctions, alterations of gamma oscillations in rodents were indeed also reported in neural deficits such as migraine, epilepsy and neurodegenerative or neuropsychiatric conditions such as Alzheimer's, schizophrenia and autism spectrum disorders. Altogether, the connections between visual cortical gamma activity and physio-pathological conditions in rodent models underscore the potential of gamma oscillations as markers of neuronal (dys)functioning.
Collapse
Affiliation(s)
- Nicolò Meneghetti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
14
|
Manippa V, Palmisano A, Nitsche MA, Filardi M, Vilella D, Logroscino G, Rivolta D. Cognitive and Neuropathophysiological Outcomes of Gamma-tACS in Dementia: A Systematic Review. Neuropsychol Rev 2024; 34:338-361. [PMID: 36877327 PMCID: PMC10920470 DOI: 10.1007/s11065-023-09589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/23/2023] [Indexed: 03/07/2023]
Abstract
Despite the numerous pharmacological interventions targeting dementia, no disease-modifying therapy is available, and the prognosis remains unfavorable. A promising perspective involves tackling high-frequency gamma-band (> 30 Hz) oscillations involved in hippocampal-mediated memory processes, which are impaired from the early stages of typical Alzheimer's Disease (AD). Particularly, the positive effects of gamma-band entrainment on mouse models of AD have prompted researchers to translate such findings into humans using transcranial alternating current stimulation (tACS), a methodology that allows the entrainment of endogenous cortical oscillations in a frequency-specific manner. This systematic review examines the state-of-the-art on the use of gamma-tACS in Mild Cognitive Impairment (MCI) and dementia patients to shed light on its feasibility, therapeutic impact, and clinical effectiveness. A systematic search from two databases yielded 499 records resulting in 10 included studies and a total of 273 patients. The results were arranged in single-session and multi-session protocols. Most of the studies demonstrated cognitive improvement following gamma-tACS, and some studies showed promising effects of gamma-tACS on neuropathological markers, suggesting the feasibility of gamma-tACS in these patients anyhow far from the strong evidence available for mouse models. Nonetheless, the small number of studies and their wide variability in terms of aims, parameters, and measures, make it difficult to draw firm conclusions. We discuss results and methodological limitations of the studies, proposing possible solutions and future avenues to improve research on the effects of gamma-tACS on dementia.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy.
| | - Annalisa Palmisano
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
15
|
Yokota Y, Tanaka K, Chang M, Naruse Y, Imamura Y, Fujii S. Gamma music: a new acoustic stimulus for gamma-frequency auditory steady-state response. Front Hum Neurosci 2024; 17:1287018. [PMID: 38273878 PMCID: PMC10808749 DOI: 10.3389/fnhum.2023.1287018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
A frequency range exceeding approximately 30 Hz, denoted as the gamma frequency range, is associated with various cognitive functions, consciousness, sensory integration, short-term memory, working memory, encoding and maintenance of episodic memory, and retrieval processes. In this study, we proposed a new form of gamma stimulation, called gamma music, combining 40 Hz auditory stimuli and music. This gamma music consists of drums, bass, and keyboard sounds, each containing a 40 Hz frequency oscillation. Since 40 Hz stimuli are known to induce an auditory steady-state response (ASSR), we used the 40 Hz power and phase locking index (PLI) as indices of neural activity during sound stimulation. We also recorded subjective ratings of each sound through a questionnaire using a visual analog scale. The gamma music, gamma drums, gamma bass, and gamma keyboard sounds showed significantly higher values in 40 Hz power and PLI compared to the control music without a 40 Hz oscillation. Particularly, the gamma keyboard sound showed a potential to induce strong ASSR, showing high values in these indices. In the subjective ratings, the gamma music, especially the gamma keyboard sound, received more relaxed, comfortable, preferred, pleasant, and natural impressions compared to the control music with conventional gamma stimulation. These results indicate that our proposed gamma music has potential as a new method for inducing ASSR. Particularly, the gamma keyboard sound proved to be an effective acoustic source for inducing a strong ASSR while preserving the comfortable and pleasant sensation of listening to music. Our developed gamma music, characterized by its pleasantness to the human ear, offers a significant advantage for the long-term use of gamma stimulation. The utilization of this music could potentially reduce the physical and psychological burden on participants compared to conventional 40 Hz stimuli. This music is not only expected to contribute to fundamental neuroscience research utilizing ASSR but also to facilitate the implementation of gamma music-based interventions aimed at enhancing human cognitive functions in everyday life.
Collapse
|
16
|
Wei X, Campagna JJ, Jagodzinska B, Wi D, Cohn W, Lee J, Zhu C, Huang CS, Molnár L, Houser CR, John V, Mody I. A therapeutic small molecule lead enhances γ-oscillations and improves cognition/memory in Alzheimer's disease model mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569994. [PMID: 38106006 PMCID: PMC10723366 DOI: 10.1101/2023.12.04.569994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Brain rhythms provide the timing and concurrence of brain activity required for linking together neuronal ensembles engaged in specific tasks. In particular, the γ-oscillations (30-120 Hz) orchestrate neuronal circuits underlying cognitive processes and working memory. These oscillations are reduced in numerous neurological and psychiatric disorders, including early cognitive decline in Alzheimer's disease (AD). Here we report on a potent brain permeable small molecule, DDL-920 that increases γ-oscillations and improves cognition/memory in a mouse model of AD, thus showing promise as a new class of therapeutics for AD. As a first in CNS pharmacotherapy, our lead candidate acts as a potent, efficacious, and selective negative allosteric modulator (NAM) of the γ-aminobutyric acid type A receptors (GABA A Rs) assembled from α1β2δ subunits. We identified these receptors through anatomical and pharmacological means to mediate the tonic inhibition of parvalbumin (PV) expressing interneurons (PV+INs) critically involved in the generation of γ-oscillations. Our approach is unique as it is meant to enhance cognitive performance and working memory in a state-dependent manner by engaging and amplifying the brain's endogenous γ-oscillations through enhancing the function of PV+INs.
Collapse
|
17
|
Hijazi S, Smit AB, van Kesteren RE. Fast-spiking parvalbumin-positive interneurons in brain physiology and Alzheimer's disease. Mol Psychiatry 2023; 28:4954-4967. [PMID: 37419975 PMCID: PMC11041664 DOI: 10.1038/s41380-023-02168-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
Fast-spiking parvalbumin (PV) interneurons are inhibitory interneurons with unique morphological and functional properties that allow them to precisely control local circuitry, brain networks and memory processing. Since the discovery in 1987 that PV is expressed in a subset of fast-spiking GABAergic inhibitory neurons, our knowledge of the complex molecular and physiological properties of these cells has been expanding. In this review, we highlight the specific properties of PV neurons that allow them to fire at high frequency and with high reliability, enabling them to control network oscillations and shape the encoding, consolidation and retrieval of memories. We next discuss multiple studies reporting PV neuron impairment as a critical step in neuronal network dysfunction and cognitive decline in mouse models of Alzheimer's disease (AD). Finally, we propose potential mechanisms underlying PV neuron dysfunction in AD and we argue that early changes in PV neuron activity could be a causal step in AD-associated network and memory impairment and a significant contributor to disease pathogenesis.
Collapse
Affiliation(s)
- Sara Hijazi
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Kraft JD, Hampstead BM. A Systematic Review of tACS Effects on Cognitive Functioning in Older Adults Across the Healthy to Dementia Spectrum. Neuropsychol Rev 2023:10.1007/s11065-023-09621-3. [PMID: 37882864 PMCID: PMC11045666 DOI: 10.1007/s11065-023-09621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a form of noninvasive brain stimulation that has experienced rapid growth within the aging population over the past decade due to its potential for modulating cognitive functioning across the "intact" to dementia spectrum. For this reason, we performed a systematic review of the literature to evaluate the efficacy of tACS on cognitive functioning in older adults, including those with cognitive impairment. Our review was completed in June 2023 using Psych INFO, Embase, PubMed, and Cochrane databases. Out of 479 screened articles, 21 met inclusion criteria and were organized according to clinical diagnoses. Seven out of nine studies targeted cognitively intact older adults and showed some type of cognitive improvement after stimulation, whereas nine out of twelve studies targeted clinical diagnoses and showed improved cognitive performance to varying degrees. Studies showed considerable heterogeneity in methodology, stimulation parameters, participant characteristics, choice of cognitive task, and analytic strategy, all of which reinforce the need for standardized reporting of tACS methods. Through this heterogeneity, multiple patterns are described, such as disease progression influencing tACS effects and the need for individualized tailoring. For clinical translation, it is imperative that the field (a) better understand the physiological effects of tACS in these populations, especially in respect to biomarkers, (b) document a causal relationship between tACS delivery and neurophysiological/cognitive effects, and (c) systematically establish dosing parameters (e.g., amplitude, stimulation frequency, number and duration of sessions, need for booster/maintenance sessions).
Collapse
Affiliation(s)
- Jacob D Kraft
- Research Program On Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48105, USA.
- Department of Psychiatry &, Behavioral Health, The Ohio State University, Columbus, OH, 43210, USA.
| | - Benjamin M Hampstead
- Research Program On Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48105, USA
- Mental Health Service, Neuropsychology Section, VA Ann Arbor Healthcare System, Ann Arbor, MI, 48105, USA
| |
Collapse
|
19
|
Meehan CE, Schantell M, Springer SD, Wiesman AI, Wolfson SL, O'Neill J, Murman DL, Bares SH, May PE, Johnson CM, Wilson TW. Movement-related beta and gamma oscillations indicate parallels and disparities between Alzheimer's disease and HIV-associated neurocognitive disorder. Neurobiol Dis 2023; 186:106283. [PMID: 37683957 PMCID: PMC10545947 DOI: 10.1016/j.nbd.2023.106283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
People with HIV (PWH) often develop HIV-related neurological impairments known as HIV-associated neurocognitive disorder (HAND), but cognitive dysfunction in older PWH may also be due to age-related disorders such as Alzheimer's disease (AD). Discerning these two conditions is challenging since the specific neural characteristics are not well understood and limited studies have probed HAND and AD spectrum (ADS) directly. We examined the neural dynamics underlying motor processing during cognitive interference using magnetoencephalography (MEG) in 22 biomarker-confirmed patients on the ADS, 22 older participants diagnosed with HAND, and 30 healthy aging controls. MEG data were transformed into the time-frequency domain to examine movement-related oscillatory activity and the impact of cognitive interference on distinct stages of motor programming. Both cognitively impaired groups (ADS/HAND) performed significantly worse on the task (e.g., less accurate and slower reaction time) and exhibited reductions in frontal and cerebellar beta and parietal gamma activity relative to controls. Disease-specific aberrations were also detected such that those with HAND exhibited weaker gamma interference effects than those on the ADS in frontoparietal and motor areas. Additionally, temporally distinct beta interference effects were identified, with ADS participants exhibiting stronger beta interference activity in the temporal cortex during motor planning, along with weaker beta interference oscillations dispersed across frontoparietal and cerebellar cortices during movement execution relative to those with HAND. These results indicate both overlapping and distinct neurophysiological aberrations in those with ADS disorders or HAND in key motor and top-down cognitive processing regions during cognitive interference and provide new evidence for distinct neuropathology.
Collapse
Affiliation(s)
- Chloe E Meehan
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Daniel L Murman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Memory Disorders & Behavioral Neurology Program, UNMC, Omaha, NE, USA
| | - Sara H Bares
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Pamela E May
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
20
|
Stier C, Braun C, Focke NK. Adult lifespan trajectories of neuromagnetic signals and interrelations with cortical thickness. Neuroimage 2023; 278:120275. [PMID: 37451375 PMCID: PMC10443236 DOI: 10.1016/j.neuroimage.2023.120275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Oscillatory power and phase synchronization map neuronal dynamics and are commonly studied to differentiate the healthy and diseased brain. Yet, little is known about the course and spatial variability of these features from early adulthood into old age. Leveraging magnetoencephalography (MEG) resting-state data in a cross-sectional adult sample (n = 350), we probed lifespan differences (18-88 years) in connectivity and power and interaction effects with sex. Building upon recent attempts to link brain structure and function, we tested the spatial correspondence between age effects on cortical thickness and those on functional networks. We further probed a direct structure-function relationship at the level of the study sample. We found MEG frequency-specific patterns with age and divergence between sexes in low frequencies. Connectivity and power exhibited distinct linear trajectories or turning points at midlife that might reflect different physiological processes. In the delta and beta bands, these age effects corresponded to those on cortical thickness, pointing to co-variation between the modalities across the lifespan. Structure-function coupling was frequency-dependent and observed in unimodal or multimodal regions. Altogether, we provide a comprehensive overview of the topographic functional profile of adulthood that can form a basis for neurocognitive and clinical investigations. This study further sheds new light on how the brain's structural architecture relates to fast oscillatory activity.
Collapse
Affiliation(s)
- Christina Stier
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany; Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.
| | - Christoph Braun
- MEG-Center, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Niels K Focke
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Güntekin B, Erdal F, Bölükbaş B, Hanoğlu L, Yener G, Duygun R. Alterations of resting-state Gamma frequency characteristics in aging and Alzheimer's disease. Cogn Neurodyn 2023; 17:829-844. [PMID: 37522051 PMCID: PMC10374515 DOI: 10.1007/s11571-022-09873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/26/2022] Open
Abstract
Alzheimer's disease (AD) is an important brain disease associated with aging. It involves various functional and structural changes which alter the EEG characteristics. Although numerous studies have found changes in delta, theta, alpha, and beta power, fewer studies have looked at the changes in the resting state EEG gamma activity characteristics in AD. This study aimed to investigate the alterations in the frequency and power values of AD patients' resting-state EEG gamma oscillations compared with healthy elderly and young subjects. We performed Fast Fourier Transform (FFT) on the resting state EEG data from 179 participants, including 59 early stage AD patients, 60 healthy elderly, and 60 healthy young subjects. We averaged FFT performed epochs to investigate the power values in the gamma frequency range (28-48 Hz). We then sorted the peaks of power values in the gamma frequency range, and the average of the identified highest three values was named as the gamma dominant peak frequency. The gamma dominant peak frequency of AD patients (Meyes-opened = 33.4 Hz, Meyes-closed = 32.7 Hz) was lower than healthy elderly (Meyes-opened = 35.5 Hz, Meyes-closed = 35.0 Hz) and healthy young subjects (Meyes-opened = 37.2 Hz, Meyes-closed = 37.0 Hz). These results could be related to AD progression and therefore critical for the recent findings regarding the 40 Hz gamma entrainment because it seems they entrain the gamma frequency of AD towards that of healthy young. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09873-4.
Collapse
Affiliation(s)
- Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Furkan Erdal
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Neuroscience, Graduate School of Health Science, Istanbul Medipol University, Istanbul, Turkey
- Department of Psychology, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Burcu Bölükbaş
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Neuroscience, Graduate School of Health Science, Istanbul Medipol University, Istanbul, Turkey
| | - Lütfü Hanoğlu
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Medical Faculty, Izmir University of Economics, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Dokuz Eylül University Brain Dynamics Multidisciplinary Research Center, Izmir, Turkey
| | - Rümeysa Duygun
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Neuroscience, Graduate School of Health Science, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
22
|
Casagrande CC, Rempe MP, Springer SD, Wilson TW. Comprehensive review of task-based neuroimaging studies of cognitive deficits in Alzheimer's disease using electrophysiological methods. Ageing Res Rev 2023; 88:101950. [PMID: 37156399 PMCID: PMC10261850 DOI: 10.1016/j.arr.2023.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
With an aging population, cognitive decline and neurodegenerative disorders are an emerging public health crises with enormous, yet still under-recognized burdens. Alzheimer's disease (AD) is the most common type of dementia, and the number of cases is expected to dramatically rise in the upcoming decades. Substantial efforts have been placed into understanding the disease. One of the primary avenues of research is neuroimaging, and while positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) are most common, crucial recent advancements in electrophysiological methods such as magnetoencephalography (MEG) and electroencephalography (EEG) have provided novel insight into the aberrant neural dynamics at play in AD pathology. In this review, we outline task-based M/EEG studies published since 2010 using paradigms probing the cognitive domains most affected by AD, including memory, attention, and executive functioning. Furthermore, we provide important recommendations for adapting cognitive tasks for optimal use in this population and adjusting recruitment efforts to improve and expand future neuroimaging work.
Collapse
Affiliation(s)
- Chloe C Casagrande
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Seth D Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
23
|
Nissim NR, Pham DVH, Poddar T, Blutt E, Hamilton RH. The impact of gamma transcranial alternating current stimulation (tACS) on cognitive and memory processes in patients with mild cognitive impairment or Alzheimer's disease: A literature review. Brain Stimul 2023; 16:748-755. [PMID: 37028756 PMCID: PMC10862495 DOI: 10.1016/j.brs.2023.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS)-a noninvasive brain stimulation technique that modulates cortical oscillations through entrainment-has been demonstrated to alter oscillatory activity and enhance cognition in healthy adults. TACS is being explored as a tool to improve cognition and memory in patient populations with mild cognitive impairment (MCI) and Alzheimer's disease (AD). OBJECTIVE To review the growing body of literature and current findings obtained from the application of tACS in patients with MCI or AD, highlighting the effects of gamma tACS on brain function, memory, and cognition. Evidence on the use of brain stimulation in animal models of AD is also discussed. Important parameters of stimulation are underscored for consideration in protocols that aim to apply tACS as a therapeutic tool in patients with MCI/AD. FINDINGS The application of gamma tACS has shown promising results in the improvement of cognitive and memory processes that are impacted in patients with MCI/AD. These data demonstrate the potential for tACS as an interventional stand-alone tool or alongside pharmacological and/or other behavioral interventions in MCI/AD. CONCLUSIONS While the use of tACS in MCI/AD has evidenced encouraging results, the effects of this stimulation technique on brain function and pathophysiology in MCI/AD remains to be fully determined. This review explores the literature and highlights the need for continued research on tACS as a tool to alter the course of the disease by reinstating oscillatory activity, improving cognitive and memory processing, delaying disease progression, and remediating cognitive abilities in patients with MCI/AD.
Collapse
Affiliation(s)
- N R Nissim
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA; Moss Rehabilitation Research Institute, Einstein Medical Center, Elkins Park, PA, USA.
| | - D V H Pham
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA
| | - T Poddar
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA
| | - E Blutt
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA
| | - R H Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA; Moss Rehabilitation Research Institute, Einstein Medical Center, Elkins Park, PA, USA.
| |
Collapse
|
24
|
Melgosa-Ecenarro L, Doostdar N, Radulescu CI, Jackson JS, Barnes SJ. Pinpointing the locus of GABAergic vulnerability in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:35-54. [PMID: 35963663 DOI: 10.1016/j.semcdb.2022.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/31/2022]
Abstract
The early stages of Alzheimer's disease (AD) have been linked to microcircuit dysfunction and pathophysiological neuronal firing in several brain regions. Inhibitory GABAergic microcircuitry is a critical feature of stable neural-circuit function in the healthy brain, and its dysregulation has therefore been proposed as contributing to AD-related pathophysiology. However, exactly how the critical balance between excitatory and inhibitory microcircuitry is modified by AD pathogenesis remains unclear. Here, we set the current evidence implicating dysfunctional GABAergic microcircuitry as a driver of early AD pathophysiology in a simple conceptual framework. Our framework is based on a generalised reductionist model of firing-rate control by local feedback inhibition. We use this framework to consider multiple loci that may be vulnerable to disruption by AD pathogenesis. We first start with evidence investigating how AD-related processes may impact the gross number of inhibitory neurons in the network. We then move to discuss how pathology may impact intrinsic cellular properties and firing thresholds of GABAergic neurons. Finally, we cover how AD-related pathogenesis may disrupt synaptic connectivity between excitatory and inhibitory neurons. We use the feedback inhibition framework to discuss and organise the available evidence from both preclinical rodent work and human studies in AD patients and conclude by identifying key questions and understudied areas for future investigation.
Collapse
Affiliation(s)
- Leire Melgosa-Ecenarro
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Nazanin Doostdar
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Carola I Radulescu
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Johanna S Jackson
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Samuel J Barnes
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
25
|
Arroyo-García LE, Bachiller S, Ruiz R, Boza-Serrano A, Rodríguez-Moreno A, Deierborg T, Andrade-Talavera Y, Fisahn A. Targeting galectin-3 to counteract spike-phase uncoupling of fast-spiking interneurons to gamma oscillations in Alzheimer's disease. Transl Neurodegener 2023; 12:6. [PMID: 36740709 PMCID: PMC9901156 DOI: 10.1186/s40035-023-00338-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disorder for which no disease-modifying treatment exists. Neuroinflammation is central to the pathology progression, with evidence suggesting that microglia-released galectin-3 (gal3) plays a pivotal role by amplifying neuroinflammation in AD. However, the possible involvement of gal3 in the disruption of neuronal network oscillations typical of AD remains unknown. METHODS Here, we investigated the functional implications of gal3 signaling on experimentally induced gamma oscillations ex vivo (20-80 Hz) by performing electrophysiological recordings in the hippocampal CA3 area of wild-type (WT) mice and of the 5×FAD mouse model of AD. In addition, the recorded slices from WT mice under acute gal3 application were analyzed with RT-qPCR to detect expression of some neuroinflammation-related genes, and amyloid-β (Aβ) plaque load was quantified by immunostaining in the CA3 area of 6-month-old 5×FAD mice with or without Gal3 knockout (KO). RESULTS Gal3 application decreased gamma oscillation power and rhythmicity in an activity-dependent manner, which was accompanied by impairment of cellular dynamics in fast-spiking interneurons (FSNs) and pyramidal cells. We found that the gal3-induced disruption was mediated by the gal3 carbohydrate-recognition domain and prevented by the gal3 inhibitor TD139, which also prevented Aβ42-induced degradation of gamma oscillations. Furthermore, the 5×FAD mice lacking gal3 (5×FAD-Gal3KO) exhibited WT-like gamma network dynamics and decreased Aβ plaque load. CONCLUSIONS We report for the first time that gal3 impairs neuronal network dynamics by spike-phase uncoupling of FSNs, inducing a network performance collapse. Moreover, our findings suggest gal3 inhibition as a potential therapeutic strategy to counteract the neuronal network instability typical of AD and other neurological disorders encompassing neuroinflammation and cognitive decline.
Collapse
Affiliation(s)
- Luis Enrique Arroyo-García
- grid.465198.7Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164 Solna, Sweden
| | - Sara Bachiller
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84 Lund, Sweden ,grid.9224.d0000 0001 2168 1229Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Rocío Ruiz
- grid.9224.d0000 0001 2168 1229Department of Biochemistry and Molecular Biology, University of Seville, Calle Profesor García González Nº2, 41012 Seville, Spain
| | - Antonio Boza-Serrano
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84 Lund, Sweden ,grid.9224.d0000 0001 2168 1229Department of Biochemistry and Molecular Biology, University of Seville, Calle Profesor García González Nº2, 41012 Seville, Spain
| | - Antonio Rodríguez-Moreno
- grid.15449.3d0000 0001 2200 2355Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cellular Biology, Universidad Pablo de Olavide, Carretera de Utrera Km-1, 41013 Seville, Spain
| | - Tomas Deierborg
- grid.4514.40000 0001 0930 2361Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, BMC B11, 221 84 Lund, Sweden
| | - Yuniesky Andrade-Talavera
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164, Solna, Sweden. .,Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cellular Biology, Universidad Pablo de Olavide, Carretera de Utrera Km-1, 41013, Seville, Spain.
| | - André Fisahn
- Neuronal Oscillations Laboratory, Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 17164, Solna, Sweden. .,Department of Biosciences and Nutrition, Neo, Karolinska Institutet, 141 83, Huddinge, Sweden.
| |
Collapse
|
26
|
Wang YL, Wang JG, Guo S, Guo FL, Liu EJ, Yang X, Feng B, Wang JZ, Vreugdenhil M, Lu CB. Oligomeric β-Amyloid Suppresses Hippocampal γ-Oscillations through Activation of the mTOR/S6K1 Pathway. Aging Dis 2023:AD.2023.0123. [PMID: 37163441 PMCID: PMC10389838 DOI: 10.14336/ad.2023.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/23/2023] [Indexed: 05/12/2023] Open
Abstract
Neuronal synchronization at gamma frequency (30-100 Hz: γ) is impaired in early-stage Alzheimer's disease (AD) patients and AD models. Oligomeric Aβ1-42 caused a concentration-dependent reduction of γ-oscillation strength and regularity while increasing its frequency. The mTOR1 inhibitor rapamycin prevented the Aβ1-42-induced suppression of γ-oscillations, whereas the mTOR activator leucine mimicked the Aβ1-42-induced suppression. Activation of the downstream kinase S6K1, but not inhibition of eIF4E, was required for the Aβ1-42-induced suppression. The involvement of the mTOR/S6K1 signaling in the Aβ1-42-induced suppression was confirmed in Aβ-overexpressing APP/PS1 mice, where inhibiting mTOR or S6K1 restored degraded γ-oscillations. To assess the network changes that may underlie the mTOR/S6K1 mediated γ-oscillation impairment in AD, we tested the effect of Aβ1-42 on IPSCs and EPSCs recorded in pyramidal neurons. Aβ1-42 reduced EPSC amplitude and frequency and IPSC frequency, which could be prevented by inhibiting mTOR or S6K1. These experiments indicate that in early AD, oligomer Aβ1-42 impairs γ-oscillations by reducing inhibitory interneuron activity by activating the mTOR/S6K1 signaling pathway, which may contribute to early cognitive decline and provides new therapeutic targets.
Collapse
Affiliation(s)
- Ya-Li Wang
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| | - Jian-Gang Wang
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| | - Shuling Guo
- Department of Cardiovascular Medicine, Luminghu District, Xuchang Central Hospital, Xuchang, China
| | - Fang-Li Guo
- Department of Neurology, Anyang District Hospital of Puyang City, Anyang, China
| | - En-Jie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Yang
- Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bingyan Feng
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Martin Vreugdenhil
- Department of Life Sciences, Birmingham City University, Birmingham, UK
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Cheng-Biao Lu
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
27
|
Giustiniani A, Danesin L, Bozzetto B, Macina A, Benavides-Varela S, Burgio F. Functional changes in brain oscillations in dementia: a review. Rev Neurosci 2023; 34:25-47. [PMID: 35724724 DOI: 10.1515/revneuro-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/16/2022] [Indexed: 01/11/2023]
Abstract
A growing body of evidence indicates that several characteristics of electroencephalography (EEG) and magnetoencephalography (MEG) play a functional role in cognition and could be linked to the progression of cognitive decline in some neurological diseases such as dementia. The present paper reviews previous studies investigating changes in brain oscillations associated to the most common types of dementia, namely Alzheimer's disease (AD), frontotemporal degeneration (FTD), and vascular dementia (VaD), with the aim of identifying pathology-specific patterns of alterations and supporting differential diagnosis in clinical practice. The included studies analysed changes in frequency power, functional connectivity, and event-related potentials, as well as the relationship between electrophysiological changes and cognitive deficits. Current evidence suggests that an increase in slow wave activity (i.e., theta and delta) as well as a general reduction in the power of faster frequency bands (i.e., alpha and beta) characterizes AD, VaD, and FTD. Additionally, compared to healthy controls, AD exhibits alteration in latencies and amplitudes of the most common event related potentials. In the reviewed studies, these changes generally correlate with performances in many cognitive tests. In conclusion, particularly in AD, neurophysiological changes can be reliable early markers of dementia.
Collapse
Affiliation(s)
| | - Laura Danesin
- IRCCS San Camillo Hospital, via Alberoni 70, 30126 Venice, Italy
| | | | - AnnaRita Macina
- Department of Developmental Psychology and Socialization, University of Padua, via Venezia 8, 35131 Padova, Italy
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padua, via Venezia 8, 35131 Padova, Italy.,Department of Neuroscience, University of Padova, 35128 Padova, Italy.,Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Francesca Burgio
- IRCCS San Camillo Hospital, via Alberoni 70, 30126 Venice, Italy
| |
Collapse
|
28
|
Sahu PP, Tseng P. Gamma sensory entrainment for cognitive improvement in neurodegenerative diseases: opportunities and challenges ahead. Front Integr Neurosci 2023; 17:1146687. [PMID: 37138796 PMCID: PMC10149720 DOI: 10.3389/fnint.2023.1146687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Neural oscillations have been categorized into various frequency bands that are mechanistically associated with different cognitive functions. Specifically, the gamma band frequency is widely implicated to be involved in a wide range of cognitive processes. As such, decreased gamma oscillation has been associated with cognitive declines in neurological diseases, such as memory dysfunction in Alzheimer's disease (AD). Recently, studies have attempted to artificially induce gamma oscillations by using 40 Hz sensory entrainment stimulation. These studies reported attenuation of amyloid load, hyper-phosphorylation of tau protein, and improvement in overall cognition in both AD patients and mouse models. In this review, we discuss the advancements in the use of sensory stimulation in animal models of AD and as a therapeutic strategy in AD patients. We also discuss future opportunities, as well as challenges, for using such strategies in other neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Prangya Parimita Sahu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Philip Tseng
- Cross College Elite Program, National Cheng Kung University, Tainan, Taiwan
- Research Center for Mind, Brain and Learning, National Chengchi University, Taipei, Taiwan
- *Correspondence: Philip Tseng,
| |
Collapse
|
29
|
Agger MP, Danielsen ER, Carstensen MS, Nguyen NM, Horning M, Henney MA, Jensen CBR, Baandrup AO, Kjær TW, Madsen KH, Miskowiak K, Petersen PM, Høgh P. Safety, Feasibility, and Potential Clinical Efficacy of 40 Hz Invisible Spectral Flicker versus Placebo in Patients with Mild-to-Moderate Alzheimer's Disease: A Randomized, Placebo-Controlled, Double-Blinded, Pilot Study. J Alzheimers Dis 2023; 92:653-665. [PMID: 36776073 DOI: 10.3233/jad-221238] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Recent studies suggested induction of 40 Hz neural activity as a potential treatment for Alzheimer's disease (AD). However, prolonged exposure to flickering light raises adherence and safety concerns, encouraging investigation of tolerable light stimulation protocols. OBJECTIVE To investigate the safety, feasibility, and exploratory measures of efficacy. METHODS This two-stage randomized placebo-controlled double-blinded clinical trial, recruited first cognitive healthy participants (n = 3/2 active/placebo), and subsequently patients with mild-to-moderate AD (n = 5/6, active/placebo). Participants were randomized 1:1 to receive either active intervention with 40 Hz Invisible Spectral Flicker (ISF) or placebo intervention with color and intensity matched non-flickering white light. RESULTS Few and mild adverse events were observed. Adherence was above 86.1% of intended treatment days, with participants remaining in front of the device for >51.3 min (60 max) and directed gaze >34.9 min. Secondary outcomes of cognition indicate a tendency towards improvement in the active group compared to placebo (mean: -2.6/1.5, SD: 6.58/6.53, active/placebo) at week 6. Changes in hippocampal and ventricular volume also showed no tendency of improvement in the active group at week 6 compared to placebo. At week 12, a potential delayed effect of the intervention was seen on the volume of the hippocampus in the active group compared to placebo (mean: 0.34/-2.03, SD: 3.26/1.18, active/placebo), and the ventricular volume active group (mean: -0.36/2.50, SD: 1.89/2.05, active/placebo), compared to placebo. CONCLUSION Treatment with 40 Hz ISF offers no significant safety or adherence concerns. Potential impact on secondary outcomes must be tested in larger scale clinical trials.
Collapse
Affiliation(s)
- Mikkel Pejstrup Agger
- Department of Neurology, Zealand University Hospital, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| | | | | | | | - Maibritt Horning
- Department of Neurology, Zealand University Hospital, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Mark Alexander Henney
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
| | | | | | - Troels Wesenberg Kjær
- Department of Neurology, Zealand University Hospital, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Kristoffer Hougaard Madsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Kamilla Miskowiak
- Neurocognition and Emotion in Affective Disorders (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | - Peter Høgh
- Department of Neurology, Zealand University Hospital, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
30
|
Chan D, Suk HJ, Jackson BL, Milman NP, Stark D, Klerman EB, Kitchener E, Fernandez Avalos VS, de Weck G, Banerjee A, Beach SD, Blanchard J, Stearns C, Boes AD, Uitermarkt B, Gander P, Howard M, Sternberg EJ, Nieto-Castanon A, Anteraper S, Whitfield-Gabrieli S, Brown EN, Boyden ES, Dickerson BC, Tsai LH. Gamma frequency sensory stimulation in mild probable Alzheimer's dementia patients: Results of feasibility and pilot studies. PLoS One 2022; 17:e0278412. [PMID: 36454969 PMCID: PMC9714926 DOI: 10.1371/journal.pone.0278412] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
Non-invasive Gamma ENtrainment Using Sensory stimulation (GENUS) at 40Hz reduces Alzheimer's disease (AD) pathology such as amyloid and tau levels, prevents cerebral atrophy, and improves behavioral testing performance in mouse models of AD. Here, we report data from (1) a Phase 1 feasibility study (NCT04042922, ClinicalTrials.gov) in cognitively normal volunteers (n = 25), patients with mild AD dementia (n = 16), and patients with epilepsy who underwent intracranial electrode monitoring (n = 2) to assess safety and feasibility of a single brief GENUS session to induce entrainment and (2) a single-blinded, randomized, placebo-controlled Phase 2A pilot study (NCT04055376) in patients with mild probable AD dementia (n = 15) to assess safety, compliance, entrainment, and exploratory clinical outcomes after chronic daily 40Hz sensory stimulation for 3 months. Our Phase 1 study showed that 40Hz GENUS was safe and effectively induced entrainment in both cortical regions and other cortical and subcortical structures such as the hippocampus, amygdala, insula, and gyrus rectus. Our Phase 2A study demonstrated that chronic daily 40Hz light and sound GENUS was well-tolerated and that compliance was equally high in both the control and active groups, with participants equally inaccurate in guessing their group assignments prior to unblinding. Electroencephalography recordings show that our 40Hz GENUS device safely and effectively induced 40Hz entrainment in participants with mild AD dementia. After 3 months of daily stimulation, the group receiving 40Hz stimulation showed (i) lesser ventricular dilation and hippocampal atrophy, (ii) increased functional connectivity in the default mode network as well as with the medial visual network, (iii) better performance on the face-name association delayed recall test, and (iv) improved measures of daily activity rhythmicity compared to the control group. These results support further evaluation of GENUS in a pivotal clinical trial to evaluate its potential as a novel disease-modifying therapeutic for patients with AD.
Collapse
Affiliation(s)
- Diane Chan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ho-Jun Suk
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Brennan L. Jackson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Noah P. Milman
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Behavioral Neuroscience, Northeastern University, Boston, Massachusetts, United States of America
| | - Danielle Stark
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Elizabeth B. Klerman
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erin Kitchener
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Vanesa S. Fernandez Avalos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Gabrielle de Weck
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Arit Banerjee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sara D. Beach
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Joel Blanchard
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Colton Stearns
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Aaron D. Boes
- Department of Pediatrics, Neurology, & Psychiatry, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Brandt Uitermarkt
- Department of Pediatrics, Neurology, & Psychiatry, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Phillip Gander
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Matthew Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
- Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - Eliezer J. Sternberg
- Department of Neurology, Milford Regional Neurology, Milford, Massachusetts, United States of America
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Alfonso Nieto-Castanon
- Department of Behavioral Neuroscience, Northeastern University, Boston, Massachusetts, United States of America
| | - Sheeba Anteraper
- Department of Behavioral Neuroscience, Northeastern University, Boston, Massachusetts, United States of America
| | - Susan Whitfield-Gabrieli
- Department of Behavioral Neuroscience, Northeastern University, Boston, Massachusetts, United States of America
| | - Emery N. Brown
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Institute for Data Systems and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Edward S. Boyden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
31
|
Clements-Cortes A, Bartel L. Long-Term Multi-Sensory Gamma Stimulation of Dementia Patients: A Case Series Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15553. [PMID: 36497624 PMCID: PMC9738557 DOI: 10.3390/ijerph192315553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Dementia prevalence is increasing globally, and symptom management and treatment strategies require further investigation. Music-based interventions have demonstrated some efficacy with respect to quality of life and symptom reduction, though limited with respect to cognition. This study reports on three case studies where the use of gamma stimulation over one year contributed to maintenance of cognition and increases in mood for participants with Alzheimer's disease or mild cognitive impairment. Auditory stimulation with isochronous sound at 40 Hz was delivered to participants via a commercially available vibroacoustic chair device five times per week for 30 min with assistance from caregivers. Further research is needed to assess the integration of this therapy in the overall care for persons with dementia.
Collapse
|
32
|
Ko H, Yoon SP. Optogenetic neuromodulation with gamma oscillation as a new strategy for Alzheimer disease: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2022; 39:269-277. [PMID: 35152662 PMCID: PMC9580057 DOI: 10.12701/jyms.2021.01683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/31/2022]
Abstract
The amyloid hypothesis has been considered a major explanation of the pathogenesis of Alzheimer disease. However, failure of phase III clinical trials with anti-amyloid-beta monoclonal antibodies reveals the need for other therapeutic approaches to treat Alzheimer disease. Compared to its relatively short history, optogenetics has developed considerably. The expression of microbial opsins in cells using genetic engineering allows specific control of cell signals or molecules. The application of optogenetics to Alzheimer disease research or clinical approaches is increasing. When applied with gamma entrainment, optogenetic neuromodulation can improve Alzheimer disease symptoms. Although safety problems exist with optogenetics such as the use of viral vectors, this technique has great potential for use in Alzheimer disease. In this paper, we review the historical applications of optogenetic neuromodulation with gamma entrainment to investigate the mechanisms involved in Alzheimer disease and potential therapeutic strategies.
Collapse
Affiliation(s)
- Haneol Ko
- Medical Course, Jeju National University School of Medicine, Jeju, Korea
| | - Sang-Pil Yoon
- Department of Anatomy, Jeju National University College of Medicine, Jeju, Korea
| |
Collapse
|
33
|
Fide E, Yerlikaya D, Öz D, Öztura İ, Yener G. Normalized Theta but Increased Gamma Activity after Acetylcholinesterase Inhibitor Treatment in Alzheimer's Disease: Preliminary qEEG Study. Clin EEG Neurosci 2022; 54:305-315. [PMID: 35957592 DOI: 10.1177/15500594221120723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acetylcholinesterase inhibitors (AChE-I) are the core treatment of mild to severe Alzheimer's disease (AD). However, the efficacy of AChE-I treatment on electroencephalography (EEG) and cognition remains unclear. We aimed to investigate the EEG power and coherence changes, in addition to neuropsychological performance, following a one-year treatment. Nine de-novo AD patients and demographically-matched healthy controls (HC) were included. After baseline assessments, all AD participants started cholinergic therapy. We found that baseline and follow-up gamma power analyzes were similar between groups. Yet, within the AD group after AChE-I intake, individuals with AD displayed higher gamma power compared to their baselines (P < .039). Also, baseline gamma coherence analysis showed lower values in the AD than in HC (P < .048), while these differences disappeared with increased gamma values of AD patients at the follow-up. Within the AD group after AChE-I intake, individuals with AD displayed higher theta and alpha coherence compared to their baselines (all, P < .039). These increased results within the AD group may result from a subclinical epileptiform activity. Even though AChE-I is associated with lower mortality, our results showed a significant effect on EEG power yet can increase the subclinical epileptiform activity. It is essential to be conscious of the seizure risk that treatment may cause.
Collapse
Affiliation(s)
- Ezgi Fide
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey
| | - Deniz Yerlikaya
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey
| | - Didem Öz
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey.,Department of Neurology, 37508Dokuz Eylül University Medical School, Izmir, Turkey.,Global Brain Health Institute, 8785University of California San Francisco, San Francisco, CA, USA.,Brain Dynamics Multidisciplinary Research Center, 37508Dokuz Eylül University, Izmir, Turkey
| | - İbrahim Öztura
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey.,Department of Neurology, 37508Dokuz Eylül University Medical School, Izmir, Turkey.,Brain Dynamics Multidisciplinary Research Center, 37508Dokuz Eylül University, Izmir, Turkey
| | - Görsev Yener
- Brain Dynamics Multidisciplinary Research Center, 37508Dokuz Eylül University, Izmir, Turkey.,Faculty of Medicine, 605730Izmir University of Economics, Izmir, Turkey.,Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
34
|
Casula EP, Pellicciari MC, Bonnì S, Borghi I, Maiella M, Assogna M, Minei M, Motta C, D'Acunto A, Porrazzini F, Pezzopane V, Mencarelli L, Roncaioli A, Rocchi L, Spampinato DA, Caltagirone C, Santarnecchi E, Martorana A, Koch G. Decreased frontal gamma activity in Alzheimer's disease patients. Ann Neurol 2022; 92:464-475. [PMID: 35713198 PMCID: PMC9543336 DOI: 10.1002/ana.26444] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/07/2022]
Abstract
Objective In Alzheimer disease (AD) animal models, synaptic dysfunction has recently been linked to a disorder of high‐frequency neuronal activity. In patients, a clear relation between AD and oscillatory activity remains elusive. Here, we attempt to shed light on this relation by using a novel approach combining transcranial magnetic stimulation and electroencephalography (TMS‐EEG) to probe oscillatory activity in specific hubs of the frontoparietal network in a sample of 60 mild‐to‐moderate AD patients. Methods Sixty mild‐to‐moderate AD patients and 21 age‐matched healthy volunteers (HVs) underwent 3 TMS‐EEG sessions to assess cortical oscillations over the left dorsolateral prefrontal cortex, the precuneus, and the left posterior parietal cortex. To investigate the relations between oscillatory activity, cortical plasticity, and cognitive decline, AD patients underwent a TMS‐based neurophysiological characterization and a cognitive evaluation at baseline. The latter was repeated after 24 weeks to monitor clinical evolution. Results AD patients showed a significant reduction of frontal gamma activity as compared to age‐matched HVs. In addition, AD patients with a more prominent decrease of frontal gamma activity showed a stronger impairment of long‐term potentiation–like plasticity and a more pronounced cognitive decline at subsequent follow‐up evaluation at 24 weeks. Interpretation Our data provide novel evidence that frontal lobe gamma activity is dampened in AD patients. The current results point to the TMS‐EEG approach as a promising technique to measure individual frontal gamma activity in patients with AD. This index could represent a useful biomarker to predict disease progression and to evaluate response to novel pharmacological therapies. ANN NEUROL 2022;92:464–475
Collapse
Affiliation(s)
- Elias P Casula
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy.,Department of Psychology, La Sapienza University, Via dei Marsi 78, 00185, Rome, Italy
| | - Maria C Pellicciari
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy
| | - Sonia Bonnì
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy
| | - Ilaria Borghi
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy.,Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Michele Maiella
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy
| | - Martina Assogna
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy.,Memory Clinic, Department of Systems Medicine, University of Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Marilena Minei
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy
| | - Caterina Motta
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy
| | - Alessia D'Acunto
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy
| | - Francesco Porrazzini
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy
| | - Valentina Pezzopane
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy.,Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Lucia Mencarelli
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy
| | - Andrea Roncaioli
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Via Università 40, 09042, Cagliari, Italy
| | - Danny A Spampinato
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy
| | - Carlo Caltagirone
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy
| | - Emiliano Santarnecchi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 02114, Boston, MA, USA
| | - Alessandro Martorana
- Memory Clinic, Department of Systems Medicine, University of Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Giacomo Koch
- Experimental Neuropsychophysiology Laboratory, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina 354, 00179, Rome, Italy.,Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| |
Collapse
|
35
|
Tichko P, Kim JC, Large E, Loui P. Integrating music-based interventions with Gamma-frequency stimulation: Implications for healthy ageing. Eur J Neurosci 2022; 55:3303-3323. [PMID: 33236353 PMCID: PMC9899516 DOI: 10.1111/ejn.15059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
In recent years, music-based interventions (MBIs) have risen in popularity as a non-invasive, sustainable form of care for treating dementia-related disorders, such as Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD). Despite their clinical potential, evidence regarding the efficacy of MBIs on patient outcomes is mixed. Recently, a line of related research has begun to investigate the clinical impact of non-invasive Gamma-frequency (e.g., 40 Hz) sensory stimulation on dementia. Current work, using non-human-animal models of AD, suggests that non-invasive Gamma-frequency stimulation can remediate multiple pathophysiologies of dementia at the molecular, cellular and neural-systems scales, and, importantly, improve cognitive functioning. These findings suggest that the efficacy of MBIs could, in theory, be enhanced by incorporating Gamma-frequency stimulation into current MBI protocols. In the current review, we propose a novel clinical framework for non-invasively treating dementia-related disorders that combines previous MBIs with current approaches employing Gamma-frequency sensory stimulation. We theorize that combining MBIs with Gamma-frequency stimulation could increase the therapeutic power of MBIs by simultaneously targeting multiple biomarkers of dementia, restoring neural activity that underlies learning and memory (e.g., Gamma-frequency neural activity, Theta-Gamma coupling), and actively engaging auditory and reward networks in the brain to promote behavioural change.
Collapse
Affiliation(s)
- Parker Tichko
- Department of Music, Northeastern University, Boston, MA, USA
| | - Ji Chul Kim
- Perception, Action, Cognition (PAC) Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Edward Large
- Perception, Action, Cognition (PAC) Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Center for the Ecological Study of Perception & Action (CESPA), Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Department of Physics, University of Connecticut, Storrs, CT, USA
| | - Psyche Loui
- Department of Music, Northeastern University, Boston, MA, USA
| |
Collapse
|
36
|
Hoyt KR, Obrietan K. Circadian clocks, cognition, and Alzheimer's disease: synaptic mechanisms, signaling effectors, and chronotherapeutics. Mol Neurodegener 2022; 17:35. [PMID: 35525980 PMCID: PMC9078023 DOI: 10.1186/s13024-022-00537-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/08/2022] [Indexed: 12/20/2022] Open
Abstract
Modulation of basic biochemical and physiological processes by the circadian timing system is now recognized as a fundamental feature of all mammalian organ systems. Within the central nervous system, these clock-modulating effects are reflected in some of the most complex behavioral states including learning, memory, and mood. How the clock shapes these behavioral processes is only now beginning to be realized. In this review we describe recent findings regarding the complex set of cellular signaling events, including kinase pathways, gene networks, and synaptic circuits that are under the influence of the clock timing system and how this, in turn, shapes cognitive capacity over the circadian cycle. Further, we discuss the functional roles of the master circadian clock located in the suprachiasmatic nucleus, and peripheral oscillator populations within cortical and limbic circuits, in the gating of synaptic plasticity and memory over the circadian cycle. These findings are then used as the basis to discuss the connection between clock dysregulation and cognitive impairments resulting from Alzheimer's disease (AD). In addition, we discuss the conceptually novel idea that in AD, there is a selective disruption of circadian timing within cortical and limbic circuits, and that it is the disruption/desynchronization of these regions from the phase-entraining effects of the SCN that underlies aspects of the early- and mid-stage cognitive deficits in AD. Further, we discuss the prospect that the disruption of circadian timing in AD could produce a self-reinforcing feedback loop, where disruption of timing accelerates AD pathogenesis (e.g., amyloid deposition, oxidative stress and cell death) that in turn leads to a further disruption of the circadian timing system. Lastly, we address potential therapeutic approaches that could be used to strengthen cellular timing networks and, in turn, how these approaches could be used to improve cognitive capacity in Alzheimer's patients.
Collapse
Affiliation(s)
- Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, Ohio State University, 412 Riffe Building, 12th Ave, Columbus, OH, 43210, USA.
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
37
|
Theta and gamma oscillatory dynamics in mouse models of Alzheimer's disease: A path to prospective therapeutic intervention. Neurosci Biobehav Rev 2022; 136:104628. [PMID: 35331816 DOI: 10.1016/j.neubiorev.2022.104628] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022]
Abstract
Understanding the neural basis of cognitive deficits, a key feature of Alzheimer's disease (AD), is imperative for achieving the therapy of the disease. Rhythmic oscillatory activities in neural systems are a fundamental mechanism for diverse brain functions, including cognition. In several neurological conditions like AD, aberrant neural oscillations have been shown to play a central role. Furthermore, manipulation of brain oscillations in animals has confirmed their impact on cognition and disease. In this article, we review the evidence from mouse models that shows how synchronized oscillatory activity is intricately linked to AD machinery. We primarily focus on recent reports showing abnormal oscillatory activities at theta and gamma frequencies in AD condition and their influence on cellular disturbances and cognitive impairments. A thorough comprehension of the role that neuronal oscillations play in AD pathology should pave the way to therapeutic interventions that can curb the disease.
Collapse
|
38
|
Prominent gamma band activity during visual motion perception in early-stage Alzheimer’s disease. PLoS One 2022; 17:e0266693. [PMID: 35436287 PMCID: PMC9015152 DOI: 10.1371/journal.pone.0266693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Alzheimer’s disease (AD) affects multiple neural pathways and regions, resulting in various visual impairments such as motion perception. Generally, gamma-band activities during visual motion perception have been thought to reflect ongoing cognitive processes. Nevertheless, few studies have specifically examined induced gamma band activity during visual motion perception in AD patients. Therefore, after performing magnetoencephalography (MEG) recording during apparent motion (AM) stimulation for the left hemi-visual field in patients diagnosed as having AD in the early stage, we compared the results with findings of cognitive performance. Methods Seventeen AD patients in the early stage and 17 controls matched for age, sex, and educational attainment participated in this study. For each participant, memory performance was assessed with the Mini-Mental State Examination (MMSE) and the Wechsler Memory Scale-Revised (WMS-R). For MEG analysis, we examined power changes induced in a higher frequency range (20–100 Hz) after AM stimuli. Results The power of induced gamma band activities was significantly higher in AD patients. The power of induced gamma band activities was associated with higher performance on both MMSE and WMS-R tests for attention and concentration in AD patients. Conclusions Given that neuronal dysfunction in AD is associated with excitotoxic neurodegeneration, and given that subsequent development of compensatory inhibitory mechanisms also contributes to pathology in AD patients, elevated gamma band oscillations might reflect an imbalance of inhibitory and excitatory activity in AD patients. Moreover, positive correlation between induced gamma activity and cognitive performance might signify a compensating mechanism of inhibitory neurons which preserve the pyramidal neuron from excitotoxicity in a posterior association area.
Collapse
|
39
|
Li KT, He X, Zhou G, Yang J, Li T, Hu H, Ji D, Zhou C, Ma H. Rational designing of oscillatory rhythmicity for memory rescue in plasticity-impaired learning networks. Cell Rep 2022; 39:110678. [PMID: 35417714 DOI: 10.1016/j.celrep.2022.110678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/19/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
In the brain, oscillatory strength embedded in network rhythmicity is important for processing experiences, and this process is disrupted in certain psychiatric disorders. The use of rhythmic network stimuli can change these oscillations and has shown promise in terms of improving cognitive function, although the underlying mechanisms are poorly understood. Here, we combine a two-layer learning model, with experiments involving genetically modified mice, that provides precise control of experience-driven oscillations by manipulating long-term potentiation of excitatory synapses onto inhibitory interneurons (LTPE→I). We find that, in the absence of LTPE→I, impaired network dynamics and memory are rescued by activating inhibitory neurons to augment the power in theta and gamma frequencies, which prevents network overexcitation with less inhibitory rebound. In contrast, increasing either theta or gamma power alone was less effective. Thus, inducing network changes at dual frequencies is involved in memory encoding, indicating a potentially feasible strategy for optimizing network-stimulating therapies.
Collapse
Affiliation(s)
- Kwan Tung Li
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China
| | - Xingzhi He
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Guangjun Zhou
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jing Yang
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hailan Hu
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Research Units for Emotion and Emotion disorders, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Daoyun Ji
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, China; Department of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Huan Ma
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Research Units for Emotion and Emotion disorders, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
40
|
Shen Q, Wu X, Zhang Z, Zhang D, Yang S, Xing D. Gamma frequency light flicker regulates amyloid precursor protein trafficking for reducing β-amyloid load in Alzheimer's disease model. Aging Cell 2022; 21:e13573. [PMID: 35199454 PMCID: PMC8920449 DOI: 10.1111/acel.13573] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 11/28/2022] Open
Abstract
Inducing gamma oscillations with non‐invasive light flicker has been reported to impact Alzheimer's disease‐related pathology. However, it is unclear which signaling pathways are involved in reducing amyloid load. Here, we found that gamma frequency light flicker increased anchoring of amyloid precursor protein (APP) to the plasma membrane for non‐amyloidogenic processing, and then physically interacted with KCC2, a neuron‐specific K+‐Cl− cotransporter, suggesting that it is essential to maintain surface GABAA receptor α1 levels and reduce β‐amyloid (Aβ) production. Stimulation with such light flicker limited KCC2 internalization and subsequent degradation via both tyrosine phosphorylation and ubiquitination, leading to an increase in surface‐KCC2 levels. Specifically, PKC‐dependent phosphorylation of APP on a serine residue was induced by gamma frequency light flicker, which was responsible for maintaining plasma membrane levels of full‐length APP, leading to its reduced trafficking to endosomes and inhibiting the β‐secretase cleavage pathway. The activated PKC from the gamma frequency light flicker subsequently phosphorylated serine of KCC2 and stabilized it onto the cell surface, which contributed to the upregulation of surface GABAA receptor α1 levels. Together, these data indicate that enhancement of APP trafficking to the plasma membrane via light flicker plays a critical modulatory role in reduction of Aβ load in Alzheimer's disease.
Collapse
Affiliation(s)
- Qi Shen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| | - Xiaolei Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| | - Zhan Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| | - Di Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science South China Normal University Guangzhou China
- College of Biophotonics South China Normal University Guangzhou China
| |
Collapse
|
41
|
Park SS, Park HS, Kim CJ, Baek SS, Park SY, Anderson CP, Kim MK, Park IR, Kim TW. Combined effects of Aerobic exercise and 40Hz light flicker exposure on early cognitive impairments in Alzheimer's disease of 3xTg mice. J Appl Physiol (1985) 2022; 132:1054-1068. [PMID: 35201933 DOI: 10.1152/japplphysiol.00751.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative brain disease and the primary cause of dementia. At an early stage, AD is generally characterized by short-term memory impairment, owing to dysfunctions of the cortex and hippocampus. We previously reported that a combination of exercise and 40 Hz light flickering can protect against AD-related neuroinflammation, gamma oscillations, reduction in Aβ, and cognitive decline. Therefore, we sought to extend our previous findings to the 5-month-old 3xTg-AD mouse model to examine whether the same favorable effects occur in earlier stages of cognitive dysfunction. We investigated the effects of 12 weeks of exercise combined with 40-Hz light flickering on cognitive function by analyzing neuroinflammation, mitochondrial function, and neuroplasticity in the hippocampus in a 3xTg-AD mouse model. 5-month-old 3xTg-AD mice performed 12 weeks of exercise with 40-Hz light flickering administered independently and in combination. Spatial learning and memory, long-term memory, hippocampal Aβ, tau, neuroinflammation, pro-inflammatory cytokine expression, mitochondrial function, and neuroplasticity, were analyzed. Aβ and tau proteins levels were significantly reduced in the early stage of AD, resulting in protection against cognitive decline by reducing neuroinflammation and pro-inflammatory cytokines. Furthermore, mitochondrial function improved, apoptosis was reduced, and synapse-related protein expression increased. Overall, exercise with 40-Hz light flickering was significantly more effective than exercise or 40-Hz light flickering alone, and the improvement was comparable to the levels in the non-transgenic aged-match control group. Our results indicate a synergistic effect of exercise and 40-Hz light flickering on pathological improvements in the hippocampus during early AD associated cognitive impairment.
Collapse
Affiliation(s)
- Sang-Seo Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Nebraska, United States
| | - Hye-Sang Park
- Department of Physiology, College of Medicine, KyungHee University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, KyungHee University, Seoul, Republic of Korea
| | - Seung-Soo Baek
- Department of Exercise and Health Science, Sangmyung University, Seoul, Republic of Korea
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Nebraska, United States
| | - Cody Philip Anderson
- School of Health and Kinesiology, University of Nebraska at Omaha, Nebraska, United States
| | - Myung-Ki Kim
- Division of Global Sport Studies, Korea University, Sejong, Republic of Korea
| | - Ik-Ryeul Park
- Department of Human Health care, Gyeongsang National University, Jinju, Republic of Korea
| | - Tae-Woon Kim
- Department of Human Health care, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
42
|
Naro A, Pignolo L, Calabrò RS. Brain Network Organization Following Post-Stroke Neurorehabilitation. Int J Neural Syst 2022; 32:2250009. [PMID: 35139774 DOI: 10.1142/s0129065722500095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brain network analysis can offer useful information to guide the rehabilitation of post-stroke patients. We applied functional network connection models based on multiplex-multilayer network analysis (MMN) to explore functional network connectivity changes induced by robot-aided gait training (RAGT) using the Ekso, a wearable exoskeleton, and compared it to conventional overground gait training (COGT) in chronic stroke patients. We extracted the coreness of individual nodes at multiple locations in the brain from EEG recordings obtained before and after gait training in a resting state. We found that patients provided with RAGT achieved a greater motor function recovery than those receiving COGT. This difference in clinical outcome was paralleled by greater changes in connectivity patterns among different brain areas central to motor programming and execution, as well as a recruitment of other areas beyond the sensorimotor cortices and at multiple frequency ranges, contemporarily. The magnitude of these changes correlated with motor function recovery chances. Our data suggest that the use of RAGT as an add-on treatment to COGT may provide post-stroke patients with a greater modification of the functional brain network impairment following a stroke. This might have potential clinical implications if confirmed in large clinical trials.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy. Via Palermo, SS 113, Ctr. Casazza, 98124, Messina, Italy
| | - Loris Pignolo
- Sant'Anna Institute, Via Siris, 11, 88900 Crotone, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy. Via Palermo, SS 113, Ctr. Casazza, 98124, Messina, Italy
| |
Collapse
|
43
|
Kumar WS, Manikandan K, Murty DVPS, Ramesh RG, Purokayastha S, Javali M, Rao NP, Ray S. Stimulus-induced narrowband gamma oscillations are test–retest reliable in human EEG. Cereb Cortex Commun 2022; 3:tgab066. [PMID: 35088052 PMCID: PMC8790174 DOI: 10.1093/texcom/tgab066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/14/2022] Open
Abstract
Visual stimulus-induced gamma oscillations in electroencephalogram (EEG) recordings have been recently shown to be compromised in subjects with preclinical Alzheimer’s Disease (AD), suggesting that gamma could be an inexpensive biomarker for AD diagnosis provided its characteristics remain consistent across multiple recordings. Previous magnetoencephalography studies in young subjects have reported consistent gamma power over recordings separated by a few weeks to months. Here, we assessed the consistency of stimulus-induced slow (20–35 Hz) and fast gamma (36–66 Hz) oscillations in subjects (n = 40) (age: 50–88 years) in EEG recordings separated by a year, and tested the consistency in the magnitude of gamma power, its temporal evolution and spectral profile. Gamma had distinct spectral/temporal characteristics across subjects, which remained consistent across recordings (average intraclass correlation of ~0.7). Alpha (8–12 Hz) and steady-state-visually evoked-potentials were also reliable. We further tested how EEG features can be used to identify 2 recordings as belonging to the same versus different subjects and found high classifier performance (AUC of ~0.89), with temporal evolution of slow gamma and spectral profile being most informative. These results suggest that EEG gamma oscillations are reliable across sessions separated over long durations and can also be a potential tool for subject identification.
Collapse
Affiliation(s)
| | | | | | | | - Simran Purokayastha
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India, 560012
| | - Mahendra Javali
- MS Ramaiah Medical College & Memorial Hospital, Bengaluru, India
| | | | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India, 560012
| |
Collapse
|
44
|
Griffa A, Legdeur N, Badissi M, van den Heuvel MP, Stam CJ, Visser PJ, Hillebrand A. Magnetoencephalography Brain Signatures Relate to Cognition and Cognitive Reserve in the Oldest-Old: The EMIF-AD 90 + Study. Front Aging Neurosci 2021; 13:746373. [PMID: 34899269 PMCID: PMC8656941 DOI: 10.3389/fnagi.2021.746373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
The oldest-old subjects represent the fastest growing segment of society and are at high risk for dementia with a prevalence of up to 40%. Lifestyle factors, such as lifelong participation in cognitive and leisure activities, may contribute to individual cognitive reserve and reduce the risk for cognitive impairments. However, the neural bases underlying cognitive functioning and cognitive reserve in this age range are still poorly understood. Here, we investigate spectral and functional connectivity features obtained from resting-state MEG recordings in a cohort of 35 cognitively normal (92.2 ± 1.8 years old, 19 women) and 11 cognitively impaired (90.9 ± 1.9 years old, 1 woman) oldest-old participants, in relation to cognitive traits and cognitive reserve. The latter was approximated with a self-reported scale on lifelong engagement in cognitively demanding activities. Cognitively impaired oldest-old participants had slower cortical rhythms in frontal, parietal and default mode network regions compared to the cognitively normal subjects. These alterations mainly concerned the theta and beta band and partially explained inter-subject variability of episodic memory scores. Moreover, a distinct spectral pattern characterized by higher relative power in the alpha band was specifically associated with higher cognitive reserve while taking into account the effect of age and education level. Finally, stronger functional connectivity in the alpha and beta band were weakly associated with better cognitive performances in the whole group of subjects, although functional connectivity effects were less prominent than the spectral ones. Our results shed new light on the neural underpinnings of cognitive functioning in the oldest-old population and indicate that cognitive performance and cognitive reserve may have distinct spectral electrophysiological substrates.
Collapse
Affiliation(s)
- Alessandra Griffa
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Center of Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland.,Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nienke Legdeur
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Maryam Badissi
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Martijn P van den Heuvel
- Dutch Connectome Lab, Department of Complex Trait Genetics, Center for Neuroscience and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pieter Jelle Visser
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
45
|
Traikapi A, Konstantinou N. Gamma Oscillations in Alzheimer’s Disease and Their Potential Therapeutic Role. Front Syst Neurosci 2021; 15:782399. [PMID: 34966263 PMCID: PMC8710538 DOI: 10.3389/fnsys.2021.782399] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022] Open
Abstract
Despite decades of research, Alzheimer’s Disease (AD) remains a lethal neurodegenerative disorder for which there are no effective treatments. This review examines the latest evidence of a novel and newly introduced perspective, which focuses on the restoration of gamma oscillations and investigates their potential role in the treatment of AD. Gamma brain activity (∼25–100 Hz) has been well-known for its role in cognitive function, including memory, and it is fundamental for healthy brain activity and intra-brain communication. Aberrant gamma oscillations have been observed in both mice AD models and human AD patients. A recent line of work demonstrated that gamma entrainment, through auditory and visual sensory stimulation, can effectively attenuate AD pathology and improve cognitive function in mice models of the disease. The first evidence from AD patients indicate that gamma entrainment therapy can reduce loss of functional connectivity and brain atrophy, improve cognitive function, and ameliorate several pathological markers of the disease. Even though research is still in its infancy, evidence suggests that gamma-based therapy may have a disease-modifying effect and has signified a new and promising era in AD research.
Collapse
|
46
|
Park M, Hoang GM, Nguyen T, Lee E, Jung HJ, Choe Y, Lee MH, Hwang JY, Kim JG, Kim T. Effects of transcranial ultrasound stimulation pulsed at 40 Hz on Aβ plaques and brain rhythms in 5×FAD mice. Transl Neurodegener 2021; 10:48. [PMID: 34872618 PMCID: PMC8650290 DOI: 10.1186/s40035-021-00274-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia, and is characterized by amyloid-β (Aβ) plaques and tauopathy. Reducing Aβ has been considered a major AD treatment strategy in pharmacological and non-pharmacological approaches. Impairment of gamma oscillations, which play an important role in perception and cognitive function, has been shown in mouse AD models and human patients. Recently, the therapeutic effect of gamma entrainment in AD mouse models has been reported. Given that ultrasound is an emerging neuromodulation modality, we investigated the effect of ultrasound stimulation pulsed at gamma frequency (40 Hz) in an AD mouse model. METHODS We implanted electroencephalogram (EEG) electrodes and a piezo-ceramic disc ultrasound transducer on the skull surface of 6-month-old 5×FAD and wild-type control mice (n = 12 and 6, respectively). Six 5×FAD mice were treated with two-hour ultrasound stimulation at 40 Hz daily for two weeks, and the other six mice received sham treatment. Soluble and insoluble Aβ levels in the brain were measured by enzyme-linked immunosorbent assay. Spontaneous EEG gamma power was computed by wavelet analysis, and the brain connectivity was examined with phase-locking value and cross-frequency phase-amplitude coupling. RESULTS We found that the total Aβ42 levels, especially insoluble Aβ42, in the treatment group decreased in pre- and infra-limbic cortex (PIL) compared to that of the sham treatment group. A reduction in the number of Aβ plaques was also observed in the hippocampus. There was no increase in microbleeding in the transcranial ultrasound stimulation (tUS) group. In addition, the length and number of microglial processes decreased in PIL and hippocampus. Encelphalographic spontaneous gamma power was increased, and cross-frequency coupling was normalized, implying functional improvement after tUS stimulation. CONCLUSION These results suggest that the transcranial ultrasound-based gamma-band entrainment technique can be an effective therapy for AD by reducing the Aβ load and improving brain connectivity.
Collapse
Affiliation(s)
- Mincheol Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gia Minh Hoang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Thien Nguyen
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Eunkyung Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyun Jin Jung
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Moon Hwan Lee
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
| | - Jae Youn Hwang
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
47
|
Chan D, Suk HJ, Jackson B, Milman NP, Stark D, Beach SD, Tsai LH. Induction of specific brain oscillations may restore neural circuits and be used for the treatment of Alzheimer's disease. J Intern Med 2021; 290:993-1009. [PMID: 34156133 DOI: 10.1111/joim.13329] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/24/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023]
Abstract
Brain oscillations underlie the function of our brains, dictating how we both think and react to the world around us. The synchronous activity of neurons generates these rhythms, which allow different parts of the brain to communicate and orchestrate responses to internal and external stimuli. Perturbations of cognitive rhythms and the underlying oscillator neurons that synchronize different parts of the brain contribute to the pathophysiology of diseases including Alzheimer's disease, (AD), Parkinson's disease (PD), epilepsy and other diseases of rhythm that have been studied extensively by Gyorgy Buzsaki. In this review, we discuss how neurologists manipulate brain oscillations with neuromodulation to treat diseases and how this can be leveraged to improve cognition and pathology underlying AD. While multiple modalities of neuromodulation are currently clinically indicated for some disorders, nothing is yet approved for improving memory in AD. Recent investigations into novel methods of neuromodulation show potential for improving cognition in memory disorders. Here, we demonstrate that neuronal stimulation using audiovisual sensory stimulation that generated 40-HZ gamma waves reduced AD-specific pathology and improved performance in behavioural tests in mouse models of AD, making this new mode of neuromodulation a promising new avenue for developing a new therapeutic intervention for the treatment of dementia.
Collapse
Affiliation(s)
- D Chan
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - H-J Suk
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - B Jackson
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - N P Milman
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Behavioral Neuroscience, Northeastern University, Boston, MA, USA
| | - D Stark
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - S D Beach
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - L-H Tsai
- From the, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
48
|
Arroyo-García LE, Isla AG, Andrade-Talavera Y, Balleza-Tapia H, Loera-Valencia R, Alvarez-Jimenez L, Pizzirusso G, Tambaro S, Nilsson P, Fisahn A. Impaired spike-gamma coupling of area CA3 fast-spiking interneurons as the earliest functional impairment in the App NL-G-F mouse model of Alzheimer's disease. Mol Psychiatry 2021; 26:5557-5567. [PMID: 34385602 PMCID: PMC8758494 DOI: 10.1038/s41380-021-01257-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
In Alzheimer's disease (AD) the accumulation of amyloid-β (Aβ) correlates with degradation of cognition-relevant gamma oscillations. The gamma rhythm relies on proper neuronal spike-gamma coupling, specifically of fast-spiking interneurons (FSN). Here we tested the hypothesis that decrease in gamma power and FSN synchrony precede amyloid plaque deposition and cognitive impairment in AppNL-G-F knock-in mice (AppNL-G-F). The aim of the study was to evaluate the amyloidogenic pathology progression in the novel AppNL-G-F mouse model using in vitro electrophysiological network analysis. Using patch clamp of FSNs and pyramidal cells (PCs) with simultaneous gamma oscillation recordings, we compared the activity of the hippocampal network of wild-type mice (WT) and the AppNL-G-F mice at four disease stages (1, 2, 4, and 6 months of age). We found a severe degradation of gamma oscillation power that is independent of, and precedes Aβ plaque formation, and the cognitive impairment reported previously in this animal model. The degradation correlates with increased Aβ1-42 concentration in the brain. Analysis on the cellular level showed an impaired spike-gamma coupling of FSN from 2 months of age that correlates with the degradation of gamma oscillations. From 6 months of age PC firing becomes desynchronized also, correlating with reports in the literature of robust Aβ plaque pathology and cognitive impairment in the AppNL-G-F mice. This study provides evidence that impaired FSN spike-gamma coupling is one of the earliest functional impairment caused by the amyloidogenic pathology progression likely is the main cause for the degradation of gamma oscillations and consequent cognitive impairment. Our data suggests that therapeutic approaches should be aimed at restoring normal FSN spike-gamma coupling and not just removal of Aβ.
Collapse
Affiliation(s)
- Luis Enrique Arroyo-García
- Neuronal Oscillations Laboratory; Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.
| | - Arturo G Isla
- Neuronal Oscillations Laboratory; Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Yuniesky Andrade-Talavera
- Neuronal Oscillations Laboratory; Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Hugo Balleza-Tapia
- Neuronal Oscillations Laboratory; Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Raúl Loera-Valencia
- Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Laura Alvarez-Jimenez
- Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Giusy Pizzirusso
- Neuronal Oscillations Laboratory; Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Simone Tambaro
- Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - André Fisahn
- Neuronal Oscillations Laboratory; Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
49
|
Tok S, Ahnaou A, Drinkenburg W. Functional Neurophysiological Biomarkers of Early-Stage Alzheimer's Disease: A Perspective of Network Hyperexcitability in Disease Progression. J Alzheimers Dis 2021; 88:809-836. [PMID: 34420957 PMCID: PMC9484128 DOI: 10.3233/jad-210397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Network hyperexcitability (NH) has recently been suggested as a potential neurophysiological indicator of Alzheimer’s disease (AD), as new, more accurate biomarkers of AD are sought. NH has generated interest as a potential indicator of certain stages in the disease trajectory and even as a disease mechanism by which network dysfunction could be modulated. NH has been demonstrated in several animal models of AD pathology and multiple lines of evidence point to the existence of NH in patients with AD, strongly supporting the physiological and clinical relevance of this readout. Several hypotheses have been put forward to explain the prevalence of NH in animal models through neurophysiological, biochemical, and imaging techniques. However, some of these hypotheses have been built on animal models with limitations and caveats that may have derived NH through other mechanisms or mechanisms without translational validity to sporadic AD patients, potentially leading to an erroneous conclusion of the underlying cause of NH occurring in patients with AD. In this review, we discuss the substantiation for NH in animal models of AD pathology and in human patients, as well as some of the hypotheses considering recently developed animal models that challenge existing hypotheses and mechanisms of NH. In addition, we provide a preclinical perspective on how the development of animal models incorporating AD-specific NH could provide physiologically relevant translational experimental data that may potentially aid the discovery and development of novel therapies for AD.
Collapse
Affiliation(s)
- Sean Tok
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| | - Abdallah Ahnaou
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wilhelmus Drinkenburg
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| |
Collapse
|
50
|
Optimal flickering light stimulation for entraining gamma waves in the human brain. Sci Rep 2021; 11:16206. [PMID: 34376723 PMCID: PMC8355349 DOI: 10.1038/s41598-021-95550-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/21/2021] [Indexed: 01/21/2023] Open
Abstract
Although light flickering at 40 Hz reduced Alzheimer’s disease (AD) pathologies in mice by entraining gamma waves, it failed to reduce cerebral amyloid burden in a study on six patients with AD or mild cognitive impairment. We investigated the optimal color, intensity, and frequency of the flickering light stimulus for entraining gamma waves in young adults. We compared the event-related synchronization (ERS) values of entrained gamma waves between four different light colors (white, red, green, and blue) in the first experiment and four different luminance intensities in the second experiment. In both experiments, we compared the ERS values of entrained gamma waves between 10 different flickering frequencies from 32 to 50 Hz. We also examined the severity of six adverse effects in both experiments. We compared the propagation of gamma waves in the visual cortex to other brain regions between different luminance intensities and flickering frequencies. We found that red light entrained gamma waves most effectively, followed by white light. Lights of higher luminance intensities (700 and 400 cd/m2) entrained stronger gamma waves than those of lower luminance intensities (100 and 10 cd/m2). Lights flickering at 34–38 Hz entrained stronger and more widely spread beyond the visual cortex than those flickering at 40–50 Hz. Light of 700 cd/m2 resulted in more moderate-to-severe adverse effects than those of other luminance intensities. In humans, 400 cd/m2 white light flickering at 34–38 Hz was most optimal for gamma entrainment.
Collapse
|