1
|
Vatsa N, Brynildsen JK, Goralski TM, Kurgat K, Meyerdirk L, Breton L, DeWeerd D, Brasseur L, Turner L, Becker K, Gallik KL, Bassett DS, Henderson MX. Network analysis of α-synuclein pathology progression reveals p21-activated kinases as regulators of vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619411. [PMID: 39484617 PMCID: PMC11526907 DOI: 10.1101/2024.10.22.619411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
α-Synuclein misfolding and progressive accumulation drives a pathogenic process in Parkinson's disease. To understand cellular and network vulnerability to α-synuclein pathology, we developed a framework to quantify network-level vulnerability and identify new therapeutic targets at the cellular level. Full brain α-synuclein pathology was mapped in mice over 9 months. Empirical pathology data was compared to theoretical pathology estimates from a diffusion model of pathology progression along anatomical connections. Unexplained variance in the model enabled us to derive regional vulnerability that we compared to regional gene expression. We identified gene expression patterns that relate to regional vulnerability, including 12 kinases that were enriched in vulnerable regions. Among these, an inhibitor of group II PAKs demonstrated protection from neuron death and α-synuclein pathology, even after delayed compound treatment. This study provides a framework for the derivation of cellular vulnerability from network-based studies and identifies a promising therapeutic pathway for Parkinson's disease.
Collapse
Affiliation(s)
- Naman Vatsa
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Julia K. Brynildsen
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas M. Goralski
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kevin Kurgat
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Libby Breton
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniella DeWeerd
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura Brasseur
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | | | | | | | - Dani S. Bassett
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Michael X. Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Lead Contact
| |
Collapse
|
2
|
Costa T, Premi E, Borroni B, Manuello J, Cauda F, Duca S, Liloia D. Local functional connectivity abnormalities in mild cognitive impairment and Alzheimer's disease: A meta-analytic investigation using minimum Bayes factor activation likelihood estimation. Neuroimage 2024; 298:120798. [PMID: 39153521 DOI: 10.1016/j.neuroimage.2024.120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024] Open
Abstract
Functional magnetic resonance imaging research employing regional homogeneity (ReHo) analysis has uncovered aberrant local brain connectivity in individuals with mild cognitive impairment (MCI) and Alzheimer's disease (AD) in comparison with healthy controls. However, the precise localization, extent, and possible overlap of these aberrations are still not fully understood. To bridge this gap, we applied a novel meta-analytic and Bayesian method (minimum Bayes Factor Activation Likelihood Estimation, mBF-ALE) for a systematic exploration of local functional connectivity alterations in MCI and AD brains. We extracted ReHo data via a standardized MEDLINE database search, which included 35 peer-reviewed experiments, 1,256 individuals with AD or MCI, 1,118 healthy controls, and 205 x-y-z coordinates of ReHo variation. We then separated the data into two distinct datasets: one for MCI and the other for AD. Two mBF-ALE analyses were conducted, thresholded at "very strong evidence" (mBF ≥ 150), with a minimum cluster size of 200 mm³. We also assessed the spatial consistency and sensitivity of our Bayesian results using the canonical version of the ALE algorithm. For MCI, we observed two clusters of ReHo decrease and one of ReHo increase. Decreased local connectivity was notable in the left precuneus (Brodmann area - BA 7) and left inferior temporal gyrus (BA 20), while increased connectivity was evident in the right parahippocampal gyrus (BA 36). The canonical ALE confirmed these locations, except for the inferior temporal gyrus. In AD, one cluster each of ReHo decrease and increase were found, with decreased connectivity in the right posterior cingulate cortex (BA 30 extending to BA 23) and increased connectivity in the left posterior cingulate cortex (BA 31). These locations were confirmed by the canonical ALE. The identification of these distinct functional connectivity patterns sheds new light on the complex pathophysiology of MCI and AD, offering promising directions for future neuroimaging-based interventions. Additionally, the use of a Bayesian framework for statistical thresholding enhances the robustness of neuroimaging meta-analyses, broadening its applicability to small datasets.
Collapse
Affiliation(s)
- Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy.
| | - Enrico Premi
- Stroke Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Barbara Borroni
- Cognitive and Behavioural Neurology, Department of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Dan T, Dere M, Kim WH, Kim M, Wu G. TauFlowNet: Revealing latent propagation mechanism of tau aggregates using deep neural transport equations. Med Image Anal 2024; 95:103210. [PMID: 38776842 DOI: 10.1016/j.media.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Mounting evidence shows that Alzheimer's disease (AD) is characterized by the propagation of tau aggregates throughout the brain in a prion-like manner. Since current pathology imaging technologies only provide a spatial mapping of tau accumulation, computational modeling becomes indispensable in analyzing the spatiotemporal propagation patterns of widespread tau aggregates from the longitudinal data. However, current state-of-the-art works focus on the longitudinal change of focal patterns, lacking a system-level understanding of the tau propagation mechanism that can explain and forecast the cascade of tau accumulation. To address this limitation, we conceptualize that the intercellular spreading of tau pathology forms a dynamic system where each node (brain region) is ubiquitously wired with other nodes while interacting with the build-up of pathological burdens. In this context, we formulate the biological process of tau spreading in a principled potential energy transport model (constrained by brain network topology), which allows us to develop an explainable neural network for uncovering the spatiotemporal dynamics of tau propagation from the longitudinal tau-PET scans. Specifically, we first translate the transport equation into a GNN (graph neural network) backbone, where the spreading flows are essentially driven by the potential energy of tau accumulation at each node. Conventional GNNs employ a l2-norm graph smoothness prior, resulting in nearly equal potential energies across nodes, leading to vanishing flows. Following this clue, we introduce the total variation (TV) into the graph transport model, where the nature of system's Euler-Lagrange equations is to maximize the spreading flow while minimizing the overall potential energy. On top of this min-max optimization scenario, we design a generative adversarial network (GAN-like) to characterize the TV-based spreading flow of tau aggregates, coined TauFlowNet. We evaluate our TauFlowNet on ADNI and OASIS datasets in terms of the prediction accuracy of future tau accumulation and explore the propagation mechanism of tau aggregates as the disease progresses. Compared to the current counterpart methods, our physics-informed deep model yields more accurate and interpretable results, demonstrating great potential in discovering novel neurobiological mechanisms through the lens of machine learning.
Collapse
Affiliation(s)
- Tingting Dan
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mustafa Dere
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Won Hwa Kim
- Computer Science and Engineering / Graduate School of AI, POSTECH, Pohang, Korea 37673, South Korea
| | - Minjeong Kim
- Department of Computer Science, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Guorong Wu
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Statistics and Operation Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Ottoy J, Kang MS, Tan JXM, Boone L, Vos de Wael R, Park BY, Bezgin G, Lussier FZ, Pascoal TA, Rahmouni N, Stevenson J, Fernandez Arias J, Therriault J, Hong SJ, Stefanovic B, McLaurin J, Soucy JP, Gauthier S, Bernhardt BC, Black SE, Rosa-Neto P, Goubran M. Tau follows principal axes of functional and structural brain organization in Alzheimer's disease. Nat Commun 2024; 15:5031. [PMID: 38866759 PMCID: PMC11169286 DOI: 10.1038/s41467-024-49300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Alzheimer's disease (AD) is a brain network disorder where pathological proteins accumulate through networks and drive cognitive decline. Yet, the role of network connectivity in facilitating this accumulation remains unclear. Using in-vivo multimodal imaging, we show that the distribution of tau and reactive microglia in humans follows spatial patterns of connectivity variation, the so-called gradients of brain organization. Notably, less distinct connectivity patterns ("gradient contraction") are associated with cognitive decline in regions with greater tau, suggesting an interaction between reduced network differentiation and tau on cognition. Furthermore, by modeling tau in subject-specific gradient space, we demonstrate that tau accumulation in the frontoparietal and temporo-occipital cortices is associated with greater baseline tau within their functionally and structurally connected hubs, respectively. Our work unveils a role for both functional and structural brain organization in pathology accumulation in AD, and supports subject-specific gradient space as a promising tool to map disease progression.
Collapse
Affiliation(s)
- Julie Ottoy
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Min Su Kang
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | | | - Lyndon Boone
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Gleb Bezgin
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Neuroinformatics for Personalized Medicine lab, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nesrine Rahmouni
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Jenna Stevenson
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Jaime Fernandez Arias
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Joseph Therriault
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Seok-Jun Hong
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bojana Stefanovic
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - JoAnne McLaurin
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Serge Gauthier
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sandra E Black
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Medicine (Division of Neurology), University of Toronto, Toronto, ON, Canada
| | - Pedro Rosa-Neto
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Maged Goubran
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Physical Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Alexandersen CG, Goriely A, Bick C. Neuronal activity induces symmetry breaking in neurodegenerative disease spreading. J Math Biol 2024; 89:3. [PMID: 38740613 DOI: 10.1007/s00285-024-02103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Dynamical systems on networks typically involve several dynamical processes evolving at different timescales. For instance, in Alzheimer's disease, the spread of toxic protein throughout the brain not only disrupts neuronal activity but is also influenced by neuronal activity itself, establishing a feedback loop between the fast neuronal activity and the slow protein spreading. Motivated by the case of Alzheimer's disease, we study the multiple-timescale dynamics of a heterodimer spreading process on an adaptive network of Kuramoto oscillators. Using a minimal two-node model, we establish that heterogeneous oscillatory activity facilitates toxic outbreaks and induces symmetry breaking in the spreading patterns. We then extend the model formulation to larger networks and perform numerical simulations of the slow-fast dynamics on common network motifs and on the brain connectome. The simulations corroborate the findings from the minimal model, underscoring the significance of multiple-timescale dynamics in the modeling of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, UK.
| | - Christian Bick
- Mathematical Institute, University of Oxford, Oxford, UK
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience - Systems and Network Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Shaheen H, Melnik R, Singh S. Data-driven Stochastic Model for Quantifying the Interplay Between Amyloid-beta and Calcium Levels in Alzheimer's Disease. Stat Anal Data Min 2024; 17:e11679. [PMID: 38646460 PMCID: PMC11031189 DOI: 10.1002/sam.11679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/23/2024] [Indexed: 04/23/2024]
Abstract
The abnormal aggregation of extracellular amyloid-β ( A β ) in senile plaques resulting in calcium C a + 2 dyshomeostasis is one of the primary symptoms of Alzheimer's disease (AD). Significant research efforts have been devoted in the past to better understand the underlying molecular mechanisms driving A β deposition and C a + 2 dysregulation. Importantly, synaptic impairments, neuronal loss, and cognitive failure in AD patients are all related to the buildup of intraneuronal A β accumulation. Moreover, increasing evidence show a feed-forward loop between A β and C a + 2 levels, i.e. A β disrupts neuronal C a + 2 levels, which in turn affects the formation of A β . To better understand this interaction, we report a novel stochastic model where we analyze the positive feedback loop between A β and C a + 2 using ADNI data. A good therapeutic treatment plan for AD requires precise predictions. Stochastic models offer an appropriate framework for modelling AD since AD studies are observational in nature and involve regular patient visits. The etiology of AD may be described as a multi-state disease process using the approximate Bayesian computation method. So, utilizing ADNI data from 2-year visits for AD patients, we employ this method to investigate the interplay between A β and C a + 2 levels at various disease development phases. Incorporating the ADNI data in our physics-based Bayesian model, we discovered that a sufficiently large disruption in either A β metabolism or intracellular C a + 2 homeostasis causes the relative growth rate in both C a + 2 and A β , which corresponds to the development of AD. The imbalance of C a + 2 ions causes A β disorders by directly or indirectly affecting a variety of cellular and subcellular processes, and the altered homeostasis may worsen the abnormalities of C a + 2 ion transportation and deposition. This suggests that altering the C a + 2 balance or the balance between A β and C a + 2 by chelating them may be able to reduce disorders associated with AD and open up new research possibilities for AD therapy.
Collapse
Affiliation(s)
- Hina Shaheen
- Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Sundeep Singh
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - The Alzheimer’s Disease Neuroimaging Initiative
- Data used in preparation of this article were generated by the Alzheimer’s Disease Metabolomics Consortium (ADMC). As such, the investigators within the ADMC provided data, but did not participate in the analysis or writing of this report. A complete listing of ADMC investigators can be found at: https://sites.duke.edu/adnimetab/team/
| |
Collapse
|
8
|
Biesbroek JM, Coenen M, DeCarli C, Fletcher EM, Maillard PM, Barkhof F, Barnes J, Benke T, Chen CPLH, Dal‐Bianco P, Dewenter A, Duering M, Enzinger C, Ewers M, Exalto LG, Franzmeier N, Hilal S, Hofer E, Koek HL, Maier AB, McCreary CR, Papma JM, Paterson RW, Pijnenburg YAL, Rubinski A, Schmidt R, Schott JM, Slattery CF, Smith EE, Sudre CH, Steketee RME, Teunissen CE, van den Berg E, van der Flier WM, Venketasubramanian N, Venkatraghavan V, Vernooij MW, Wolters FJ, Xin X, Kuijf HJ, Biessels GJ. Amyloid pathology and vascular risk are associated with distinct patterns of cerebral white matter hyperintensities: A multicenter study in 3132 memory clinic patients. Alzheimers Dement 2024; 20:2980-2989. [PMID: 38477469 PMCID: PMC11032573 DOI: 10.1002/alz.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION White matter hyperintensities (WMH) are associated with key dementia etiologies, in particular arteriolosclerosis and amyloid pathology. We aimed to identify WMH locations associated with vascular risk or cerebral amyloid-β1-42 (Aβ42)-positive status. METHODS Individual patient data (n = 3,132; mean age 71.5 ± 9 years; 49.3% female) from 11 memory clinic cohorts were harmonized. WMH volumes in 28 regions were related to a vascular risk compound score (VRCS) and Aß42 status (based on cerebrospinal fluid or amyloid positron emission tomography), correcting for age, sex, study site, and total WMH volume. RESULTS VRCS was associated with WMH in anterior/superior corona radiata (B = 0.034/0.038, p < 0.001), external capsule (B = 0.052, p < 0.001), and middle cerebellar peduncle (B = 0.067, p < 0.001), and Aß42-positive status with WMH in posterior thalamic radiation (B = 0.097, p < 0.001) and splenium (B = 0.103, p < 0.001). DISCUSSION Vascular risk factors and Aß42 pathology have distinct signature WMH patterns. This regional vulnerability may incite future studies into how arteriolosclerosis and Aß42 pathology affect the brain's white matter. HIGHLIGHTS Key dementia etiologies may be associated with specific patterns of white matter hyperintensities (WMH). We related WMH locations to vascular risk and cerebral Aβ42 status in 11 memory clinic cohorts. Aβ42 positive status was associated with posterior WMH in splenium and posterior thalamic radiation. Vascular risk was associated with anterior and infratentorial WMH. Amyloid pathology and vascular risk have distinct signature WMH patterns.
Collapse
|
9
|
Biesbroek JM, Verhagen MG, van der Stigchel S, Biessels GJ. When the central integrator disintegrates: A review of the role of the thalamus in cognition and dementia. Alzheimers Dement 2024; 20:2209-2222. [PMID: 38041861 PMCID: PMC10984498 DOI: 10.1002/alz.13563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 12/04/2023]
Abstract
The thalamus is a complex neural structure with numerous anatomical subdivisions and intricate connectivity patterns. In recent decades, the traditional view of the thalamus as a relay station and "gateway to the cortex" has expanded in recognition of its role as a central integrator of inputs from sensory systems, cortex, basal ganglia, limbic systems, brain stem nuclei, and cerebellum. As such, the thalamus is critical for numerous aspects of human cognition, mood, and behavior, as well as serving sensory processing and motor functions. Thalamus pathology is an important contributor to cognitive and functional decline, and it might be argued that the thalamus has been somewhat overlooked as an important player in dementia. In this review, we provide a comprehensive overview of thalamus anatomy and function, with an emphasis on human cognition and behavior, and discuss emerging insights on the role of thalamus pathology in dementia.
Collapse
Affiliation(s)
- J. Matthijs Biesbroek
- Department of NeurologyUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of NeurologyDiakonessenhuis HospitalUtrechtThe Netherlands
| | - Marieke G. Verhagen
- VIB Center for Brain and DiseaseLeuvenBelgium
- Department of NeurosciencesKatholieke Universiteit (KU) LeuvenLeuvenBelgium
| | - Stefan van der Stigchel
- Department of Experimental PsychologyHelmholtz InstituteUtrecht UniversityUtrechtThe Netherlands
| | - Geert Jan Biessels
- Department of NeurologyUMC Utrecht Brain CenterUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
10
|
Thompson E, Schroder A, He T, Shand C, Soskic S, Oxtoby NP, Barkhof F, Alexander DC. Combining multimodal connectivity information improves modelling of pathology spread in Alzheimer's disease. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-19. [PMID: 38947941 PMCID: PMC11211996 DOI: 10.1162/imag_a_00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 07/02/2024]
Abstract
Cortical atrophy and aggregates of misfolded tau proteins are key hallmarks of Alzheimer's disease. Computational models that simulate the propagation of pathogens between connected brain regions have been used to elucidate mechanistic information about the spread of these disease biomarkers, such as disease epicentres and spreading rates. However, the connectomes that are used as substrates for these models are known to contain modality-specific false positive and false negative connections, influenced by the biases inherent to the different methods for estimating connections in the brain. In this work, we compare five types of connectomes for modelling both tau and atrophy patterns with the network diffusion model, which are validated against tau PET and structural MRI data from individuals with either mild cognitive impairment or dementia. We then test the hypothesis that a joint connectome, with combined information from different modalities, provides an improved substrate for the model. We find that a combination of multimodal information helps the model to capture observed patterns of tau deposition and atrophy better than any single modality. This is validated with data from independent datasets. Overall, our findings suggest that combining connectivity measures into a single connectome can mitigate some of the biases inherent to each modality and facilitate more accurate models of pathology spread, thus aiding our ability to understand disease mechanisms, and providing insight into the complementary information contained in different measures of brain connectivity.
Collapse
Affiliation(s)
- Elinor Thompson
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Anna Schroder
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Tiantian He
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Cameron Shand
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Sonja Soskic
- UCL Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Neil P. Oxtoby
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Frederik Barkhof
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, the Netherlands
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Daniel C. Alexander
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | | |
Collapse
|
11
|
Hall D. MIL-CELL: a tool for multi-scale simulation of yeast replication and prion transmission. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:673-704. [PMID: 37670150 PMCID: PMC10682183 DOI: 10.1007/s00249-023-01679-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
The single-celled baker's yeast, Saccharomyces cerevisiae, can sustain a number of amyloid-based prions, the three most prominent examples being [URE3], [PSI+], and [PIN+]. In the laboratory, haploid S. cerevisiae cells of a single mating type can acquire an amyloid prion in one of two ways (i) spontaneous nucleation of the prion within the yeast cell, and (ii) receipt via mother-to-daughter transmission during the cell division cycle. Similarly, prions can be lost due to (i) dissolution of the prion amyloid by its breakage into non-amyloid monomeric units, or (ii) preferential donation/retention of prions between the mother and daughter during cell division. Here we present a computational tool (Monitoring Induction and Loss of prions in Cells; MIL-CELL) for modelling these four general processes using a multiscale approach describing both spatial and kinetic aspects of the yeast life cycle and the amyloid-prion behavior. We describe the workings of the model, assumptions upon which it is based and some interesting simulation results pertaining to the wave-like spread of the epigenetic prion elements through the yeast population. MIL-CELL is provided as a stand-alone GUI executable program for free download with the paper. MIL-CELL is equipped with a relational database allowing all simulated properties to be searched, collated and graphed. Its ability to incorporate variation in heritable properties means MIL-CELL is also capable of simulating loss of the isogenic nature of a cell population over time. The capability to monitor both chronological and reproductive age also makes MIL-CELL potentially useful in studies of cell aging.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1164, Japan.
| |
Collapse
|
12
|
Bitra VR, Challa SR, Adiukwu PC, Rapaka D. Tau trajectory in Alzheimer's disease: Evidence from the connectome-based computational models. Brain Res Bull 2023; 203:110777. [PMID: 37813312 DOI: 10.1016/j.brainresbull.2023.110777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/08/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with an impairment of cognition and memory. Current research on connectomics have now related changes in the network organization in AD to the patterns of accumulation and spread of amyloid and tau, providing insights into the neurobiological mechanisms of the disease. In addition, network analysis and modeling focus on particular use of graphs to provide intuition into key organizational principles of brain structure, that stipulate how neural activity propagates along structural connections. The utility of connectome-based computational models aids in early predicting, tracking the progression of biomarker-directed AD neuropathology. In this article, we present a short review of tau trajectory, the connectome changes in tau pathology, and the dependent recent connectome-based computational modelling approaches for tau spreading, reproducing pragmatic findings, and developing significant novel tau targeted therapies.
Collapse
Affiliation(s)
- Veera Raghavulu Bitra
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, P/Bag-0022, Gaborone, Botswana.
| | - Siva Reddy Challa
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61614, USA; KVSR Siddartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India
| | - Paul C Adiukwu
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, P/Bag-0022, Gaborone, Botswana
| | - Deepthi Rapaka
- Pharmacology Division, D.D.T. College of Medicine, Gaborone, Botswana.
| |
Collapse
|
13
|
Vo A, Tremblay C, Rahayel S, Shafiei G, Hansen JY, Yau Y, Misic B, Dagher A. Network connectivity and local transcriptomic vulnerability underpin cortical atrophy progression in Parkinson's disease. Neuroimage Clin 2023; 40:103523. [PMID: 38016407 PMCID: PMC10687705 DOI: 10.1016/j.nicl.2023.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023]
Abstract
Parkinson's disease pathology is hypothesized to spread through the brain via axonal connections between regions and is further modulated by local vulnerabilities within those regions. The resulting changes to brain morphology have previously been demonstrated in both prodromal and de novo Parkinson's disease patients. However, it remains unclear whether the pattern of atrophy progression in Parkinson's disease over time is similarly explained by network-based spreading and local vulnerability. We address this gap by mapping the trajectory of cortical atrophy rates in a large, multi-centre cohort of Parkinson's disease patients and relate this atrophy progression pattern to network architecture and gene expression profiles. Across 4-year follow-up visits, increased atrophy rates were observed in posterior, temporal, and superior frontal cortices. We demonstrated that this progression pattern was shaped by network connectivity. Regional atrophy rates were strongly related to atrophy rates across structurally and functionally connected regions. We also found that atrophy progression was associated with specific gene expression profiles. The genes whose spatial distribution in the brain was most related to atrophy rate were those enriched for mitochondrial and metabolic function. Taken together, our findings demonstrate that both global and local brain features influence vulnerability to neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Andrew Vo
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Christina Tremblay
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Shady Rahayel
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada; Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Yvonne Yau
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
14
|
Vogel JW, Corriveau-Lecavalier N, Franzmeier N, Pereira JB, Brown JA, Maass A, Botha H, Seeley WW, Bassett DS, Jones DT, Ewers M. Connectome-based modelling of neurodegenerative diseases: towards precision medicine and mechanistic insight. Nat Rev Neurosci 2023; 24:620-639. [PMID: 37620599 DOI: 10.1038/s41583-023-00731-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Neurodegenerative diseases are the most common cause of dementia. Although their underlying molecular pathologies have been identified, there is substantial heterogeneity in the patterns of progressive brain alterations across and within these diseases. Recent advances in neuroimaging methods have revealed that pathological proteins accumulate along specific macroscale brain networks, implicating the network architecture of the brain in the system-level pathophysiology of neurodegenerative diseases. However, the extent to which 'network-based neurodegeneration' applies across the wide range of neurodegenerative disorders remains unclear. Here, we discuss the state-of-the-art of neuroimaging-based connectomics for the mapping and prediction of neurodegenerative processes. We review findings supporting brain networks as passive conduits through which pathological proteins spread. As an alternative view, we also discuss complementary work suggesting that network alterations actively modulate the spreading of pathological proteins between connected brain regions. We conclude this Perspective by proposing an integrative framework in which connectome-based models can be advanced along three dimensions of innovation: incorporating parameters that modulate propagation behaviour on the basis of measurable biological features; building patient-tailored models that use individual-level information and allowing model parameters to interact dynamically over time. We discuss promises and pitfalls of these strategies for improving disease insights and moving towards precision medicine.
Collapse
Affiliation(s)
- Jacob W Vogel
- Department of Clinical Sciences, SciLifeLab, Lund University, Lund, Sweden.
| | - Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Acadamy, University of Gothenburg, Mölndal and Gothenburg, Sweden
| | - Joana B Pereira
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Neuro Division, Department of Clinical Neurosciences, Karolinska Institute, Stockholm, Sweden
| | - Jesse A Brown
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Dani S Bassett
- Departments of Bioengineering, Electrical and Systems Engineering, Physics and Astronomy, Neurology and Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
15
|
Liu X, Tyler LK, Cam-Can, Davis SW, Rowe JB, Tsvetanov KA. Cognition's dependence on functional network integrity with age is conditional on structural network integrity. Neurobiol Aging 2023; 129:195-208. [PMID: 37392579 DOI: 10.1016/j.neurobiolaging.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 07/03/2023]
Abstract
Maintaining good cognitive function is crucial for well-being across the lifespan. We proposed that the degree of cognitive maintenance is determined by the functional interactions within and between large-scale brain networks. Such connectivity can be represented by the white matter architecture of structural brain networks that shape intrinsic neuronal activity into integrated and distributed functional networks. We explored how the function-structure connectivity convergence, and the divergence of functional connectivity from structural connectivity, contribute to the maintenance of cognitive function across the adult lifespan. Multivariate analyses were used to investigate the relationship between function-structure connectivity convergence and divergence with multivariate cognitive profiles, respectively. Cognitive function was increasingly dependent on function-structure connectivity convergence as age increased. The dependency of cognitive function on connectivity was particularly strong for high-order cortical networks and subcortical networks. The results suggest that brain functional network integrity sustains cognitive functions in old age, as a function of the integrity of the brain's structural connectivity.
Collapse
Affiliation(s)
- Xulin Liu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Lorraine K Tyler
- The Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Cam-Can
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Simon W Davis
- Department of Neurology, Duke University, School of Medicine, Durham, NC, USA
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; The Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Bertsch M, Franchi B, Tesi MC, Tora V. The role of A[Formula: see text] and Tau proteins in Alzheimer's disease: a mathematical model on graphs. J Math Biol 2023; 87:49. [PMID: 37646953 PMCID: PMC10468937 DOI: 10.1007/s00285-023-01985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/25/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023]
Abstract
In this Note we study a mathematical model for the progression of Alzheimer's Disease in the human brain. The novelty of our approach consists in the representation of the brain as two superposed graphs where toxic proteins diffuse, the connectivity graph which represents the neural network, and the proximity graph which takes into account the extracellular space. Toxic proteins such as [Formula: see text] amyloid and Tau play in fact a crucial role in the development of Alzheimer's disease and, separately, have been targets of medical treatments. Recent biomedical literature stresses the potential impact of the synergetic action of these proteins. We numerically test various modelling hypotheses which confirm the relevance of this synergy.
Collapse
Affiliation(s)
- Michiel Bertsch
- Department of Mathematics, University of Roma “Tor Vergata”, Rome, Italy
- Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Bruno Franchi
- Department of Mathematics, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Maria Carla Tesi
- Department of Mathematics, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Veronica Tora
- Department of Mathematics, University of Roma “Tor Vergata”, Rome, Italy
| |
Collapse
|
17
|
Ji P, Wang Y, Peron T, Li C, Nagler J, Du J. Structure and function in artificial, zebrafish and human neural networks. Phys Life Rev 2023; 45:74-111. [PMID: 37182376 DOI: 10.1016/j.plrev.2023.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Network science provides a set of tools for the characterization of the structure and functional behavior of complex systems. Yet a major problem is to quantify how the structural domain is related to the dynamical one. In other words, how the diversity of dynamical states of a system can be predicted from the static network structure? Or the reverse problem: starting from a set of signals derived from experimental recordings, how can one discover the network connections or the causal relations behind the observed dynamics? Despite the advances achieved over the last two decades, many challenges remain concerning the study of the structure-dynamics interplay of complex systems. In neuroscience, progress is typically constrained by the low spatio-temporal resolution of experiments and by the lack of a universal inferring framework for empirical systems. To address these issues, applications of network science and artificial intelligence to neural data have been rapidly growing. In this article, we review important recent applications of methods from those fields to the study of the interplay between structure and functional dynamics of human and zebrafish brain. We cover the selection of topological features for the characterization of brain networks, inference of functional connections, dynamical modeling, and close with applications to both the human and zebrafish brain. This review is intended to neuroscientists who want to become acquainted with techniques from network science, as well as to researchers from the latter field who are interested in exploring novel application scenarios in neuroscience.
Collapse
Affiliation(s)
- Peng Ji
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Shanghai 200433, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Yufan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Thomas Peron
- Institute of Mathematics and Computer Science, University of São Paulo, São Carlos 13566-590, São Paulo, Brazil.
| | - Chunhe Li
- Shanghai Center for Mathematical Sciences and School of Mathematical Sciences, Fudan University, Shanghai 200433, China; Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.
| | - Jan Nagler
- Deep Dynamics, Frankfurt School of Finance & Management, Frankfurt, Germany; Centre for Human and Machine Intelligence, Frankfurt School of Finance & Management, Frankfurt, Germany
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| |
Collapse
|
18
|
Torok J, Anand C, Verma P, Raj A. Connectome-based biophysics models of Alzheimer's disease diagnosis and prognosis. Transl Res 2023; 254:13-23. [PMID: 36031051 PMCID: PMC11019890 DOI: 10.1016/j.trsl.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
With the increasing prevalence of Alzheimer's disease (AD) among aging populations and the limited therapeutic options available to slow or reverse its progression, the need has never been greater for improved diagnostic tools for identifying patients in the preclinical and prodomal phases of AD. Biophysics models of the connectome-based spread of amyloid-beta (Aβ) and microtubule-associated protein tau (τ) have enjoyed recent success as tools for predicting the time course of AD-related pathological changes. However, given the complex etiology of AD, which involves not only connectome-based spread of protein pathology but also the interactions of many molecular and cellular players over multiple spatiotemporal scales, more robust, complete biophysics models are needed to better understand AD pathophysiology and ultimately provide accurate patient-specific diagnoses and prognoses. Here we discuss several areas of active research in AD whose insights can be used to enhance the mathematical modeling of AD pathology as well as recent attempts at developing improved connectome-based biophysics models. These efforts toward a comprehensive yet parsimonious mathematical description of AD hold great promise for improving both the diagnosis of patients at risk for AD and our mechanistic understanding of how AD progresses.
Collapse
Affiliation(s)
- Justin Torok
- Department of Radiology, University of California, San Francisco, San Francisco, California.
| | - Chaitali Anand
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Parul Verma
- Department of Radiology, University of California, San Francisco, San Francisco, California
| | - Ashish Raj
- Department of Radiology, University of California, San Francisco, San Francisco, California; Department of Bioengineering, University of California, Berkeley and University of California, San Francisco, Berkeley, California; Department of Radiology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
19
|
Alexandersen CG, de Haan W, Bick C, Goriely A. A multi-scale model explains oscillatory slowing and neuronal hyperactivity in Alzheimer's disease. J R Soc Interface 2023; 20:20220607. [PMID: 36596460 PMCID: PMC9810432 DOI: 10.1098/rsif.2022.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease is the most common cause of dementia and is linked to the spreading of pathological amyloid-β and tau proteins throughout the brain. Recent studies have highlighted stark differences in how amyloid-β and tau affect neurons at the cellular scale. On a larger scale, Alzheimer's patients are observed to undergo a period of early-stage neuronal hyperactivation followed by neurodegeneration and frequency slowing of neuronal oscillations. Herein, we model the spreading of both amyloid-β and tau across a human connectome and investigate how the neuronal dynamics are affected by disease progression. By including the effects of both amyloid-β and tau pathology, we find that our model explains AD-related frequency slowing, early-stage hyperactivation and late-stage hypoactivation. By testing different hypotheses, we show that hyperactivation and frequency slowing are not due to the topological interactions between different regions but are mostly the result of local neurotoxicity induced by amyloid-β and tau protein.
Collapse
Affiliation(s)
| | - Willem de Haan
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Christian Bick
- Mathematical Institute, University of Oxford, Oxford, UK,Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,Amsterdam Neuroscience—Systems and Network Neuroscience, Amsterdam, The Netherlands
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Davenport F, Gallacher J, Kourtzi Z, Koychev I, Matthews PM, Oxtoby NP, Parkes LM, Priesemann V, Rowe JB, Smye SW, Zetterberg H. Neurodegenerative disease of the brain: a survey of interdisciplinary approaches. J R Soc Interface 2023; 20:20220406. [PMID: 36651180 PMCID: PMC9846433 DOI: 10.1098/rsif.2022.0406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases of the brain pose a major and increasing global health challenge, with only limited progress made in developing effective therapies over the last decade. Interdisciplinary research is improving understanding of these diseases and this article reviews such approaches, with particular emphasis on tools and techniques drawn from physics, chemistry, artificial intelligence and psychology.
Collapse
Affiliation(s)
| | - John Gallacher
- Director of Dementias Platform, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Zoe Kourtzi
- Professor of Cognitive Computational Neuroscience, Department of Psychology, University of Cambridge, UK
| | - Ivan Koychev
- Senior Clinical Researcher, Department of Psychiatry, University of Oxford, Oxford, UK
- Consultant Neuropsychiatrist, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Paul M. Matthews
- Department of Brain Sciences and UK Dementia Research Institute Centre, Imperial College London, Oxford, UK
| | - Neil P. Oxtoby
- UCL Centre for Medical Image Computing and Department of Computer Science, University College London, Gower Street, London, UK
| | - Laura M. Parkes
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, UK
| | - Viola Priesemann
- Max Planck Group Leader and Fellow of the Schiemann Kolleg, Max Planck Institute for Dynamics and Self-Organization and Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - James B. Rowe
- Department of Clinical Neurosciences, MRC Cognition and Brain Sciences Unit and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | | | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, People's Republic of China
| |
Collapse
|
21
|
Zhang J, Liu Q, Zhang H, Dai M, Song Q, Yang D, Wu G, Chen M. Uncovering the System Vulnerability and Criticality of Human Brain Under Dynamical Neuropathological Events in Alzheimer's Disease. J Alzheimers Dis 2023; 95:1201-1219. [PMID: 37661878 PMCID: PMC11177206 DOI: 10.3233/jad-230027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Despite the striking efforts in investigating neurobiological factors behind the acquisition of amyloid-β (A), protein tau (T), and neurodegeneration ([N]) biomarkers, the mechanistic pathways of how AT[N] biomarkers spreading throughout the brain remain elusive. OBJECTIVE To disentangle the massive heterogeneities in Alzheimer's disease (AD) progressions and identify vulnerable/critical brain regions to AD pathology. METHODS In this work, we characterized the interaction of AT[N] biomarkers and their propagation across brain networks using a novel bistable reaction-diffusion model, which allows us to establish a new systems biology underpinning of AD progression. We applied our model to large-scale longitudinal neuroimages from the ADNI database and studied the systematic vulnerability and criticality of brains. RESULTS Our model yields long term prediction that is statistically significant linear correlated with temporal imaging data, produces clinically consistent risk prediction, and captures the Braak-like spreading pattern of AT[N] biomarkers in AD development. CONCLUSIONS Our major findings include (i) tau is a stronger indicator of regional risk compared to amyloid, (ii) temporal lobe exhibits higher vulnerability to AD-related pathologies, (iii) proposed critical brain regions outperform hub nodes in transmitting disease factors across the brain, and (iv) comparing the spread of neuropathological burdens caused by amyloid-β and tau diffusions, disruption of metabolic balance is the most determinant factor contributing to the initiation and progression of AD.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Computer Science, Wake Forest University, Winston-Salem, NC, USA
| | - Qing Liu
- Department of Mathematics, University of North Georgia, Oakwood, GA, USA
| | - Haorui Zhang
- Department of Mathematics, University of North Georgia, Oakwood, GA, USA
| | - Michelle Dai
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Defu Yang
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guorong Wu
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Minghan Chen
- Department of Computer Science, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
22
|
Hier DB, Azizi S, Thimgan MS, Wunsch DC. Tau kinetics in Alzheimer's disease. Front Aging Neurosci 2022; 14:1055170. [PMID: 36437992 PMCID: PMC9682289 DOI: 10.3389/fnagi.2022.1055170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 07/20/2023] Open
Abstract
The cytoskeletal protein tau is implicated in the pathogenesis of Alzheimer's disease which is characterized by intra-neuronal neurofibrillary tangles containing abnormally phosphorylated insoluble tau. Levels of soluble tau are elevated in the brain, the CSF, and the plasma of patients with Alzheimer's disease. To better understand the causes of these elevated levels of tau, we propose a three-compartment kinetic model (brain, CSF, and plasma). The model assumes that the synthesis of tau follows zero-order kinetics (uncorrelated with compartmental tau levels) and that the release, absorption, and clearance of tau is governed by first-order kinetics (linearly related to compartmental tau levels). Tau that is synthesized in the brain compartment can be released into the interstitial fluid, catabolized, or retained in neurofibrillary tangles. Tau released into the interstitial fluid can mix with the CSF and eventually drain to the plasma compartment. However, losses of tau in the drainage pathways may be significant. The kinetic model estimates half-life of tau in each compartment (552 h in the brain, 9.9 h in the CSF, and 10 h in the plasma). The kinetic model predicts that an increase in the neuronal tau synthesis rate or a decrease in tau catabolism rate best accounts for observed increases in tau levels in the brain, CSF, and plasma found in Alzheimer's disease. Furthermore, the model predicts that increases in brain half-life of tau in Alzheimer's disease should be attributed to decreased tau catabolism and not to increased tau synthesis. Most clearance of tau in the neuron occurs through catabolism rather than release to the CSF compartment. Additional experimental data would make ascertainment of the model parameters more precise.
Collapse
Affiliation(s)
- Daniel B. Hier
- Applied Computational Intelligence Laboratory, Department of Electrical & Computer Engineering, Missouri University of Science & Technology, Rolla, MO, United States
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, United States
| | - Sima Azizi
- Applied Computational Intelligence Laboratory, Department of Electrical & Computer Engineering, Missouri University of Science & Technology, Rolla, MO, United States
| | - Matthew S. Thimgan
- Department of Biological Sciences, Missouri University of Science & Technology, Rolla, MO, United States
| | - Donald C. Wunsch
- Applied Computational Intelligence Laboratory, Department of Electrical & Computer Engineering, Missouri University of Science & Technology, Rolla, MO, United States
- ECCS Division, National Science Foundation, Alexandria, VA, United States
| |
Collapse
|
23
|
Bloomingdale P, Karelina T, Ramakrishnan V, Bakshi S, Véronneau‐Veilleux F, Moye M, Sekiguchi K, Meno‐Tetang G, Mohan A, Maithreye R, Thomas VA, Gibbons F, Cabal A, Bouteiller J, Geerts H. Hallmarks of neurodegenerative disease: A systems pharmacology perspective. CPT Pharmacometrics Syst Pharmacol 2022; 11:1399-1429. [PMID: 35894182 PMCID: PMC9662204 DOI: 10.1002/psp4.12852] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Age-related central neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, are a rising public health concern and have been plagued by repeated drug development failures. The complex nature and poor mechanistic understanding of the etiology of neurodegenerative diseases has hindered the discovery and development of effective disease-modifying therapeutics. Quantitative systems pharmacology models of neurodegeneration diseases may be useful tools to enhance the understanding of pharmacological intervention strategies and to reduce drug attrition rates. Due to the similarities in pathophysiological mechanisms across neurodegenerative diseases, especially at the cellular and molecular levels, we envision the possibility of structural components that are conserved across models of neurodegenerative diseases. Conserved structural submodels can be viewed as building blocks that are pieced together alongside unique disease components to construct quantitative systems pharmacology (QSP) models of neurodegenerative diseases. Model parameterization would likely be different between the different types of neurodegenerative diseases as well as individual patients. Formulating our mechanistic understanding of neurodegenerative pathophysiology as a mathematical model could aid in the identification and prioritization of drug targets and combinatorial treatment strategies, evaluate the role of patient characteristics on disease progression and therapeutic response, and serve as a central repository of knowledge. Here, we provide a background on neurodegenerative diseases, highlight hallmarks of neurodegeneration, and summarize previous QSP models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Bloomingdale
- Quantitative Pharmacology and PharmacometricsMerck & Co., Inc.BostonMassachusettsUSA
| | | | | | - Suruchi Bakshi
- Certara QSPOssThe Netherlands,Certara QSPPrincetonNew JerseyUSA
| | | | - Matthew Moye
- Quantitative Pharmacology and PharmacometricsMerck & Co., Inc.BostonMassachusettsUSA
| | - Kazutaka Sekiguchi
- Shionogi & Co., Ltd.OsakaJapan,SUNY Downstate Medical CenterNew YorkNew YorkUSA
| | | | | | | | | | - Frank Gibbons
- Clinical Pharmacology and PharmacometricsBiogenCambridgeMassachusettsUSA
| | | | - Jean‐Marie Bouteiller
- Center for Neural EngineeringDepartment of Biomedical Engineering at the Viterbi School of EngineeringLos AngelesCaliforniaUSA,Institute for Technology and Medical Systems Innovation, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | |
Collapse
|
24
|
Schnellbächer GJ, Rajkumar R, Veselinović T, Ramkiran S, Hagen J, Shah NJ, Neuner I. Structural alterations of the insula in depression patients - A 7-Tesla-MRI study. Neuroimage Clin 2022; 36:103249. [PMID: 36451355 PMCID: PMC9668670 DOI: 10.1016/j.nicl.2022.103249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The insular cortex is part of a network of highly connected cerebral "rich club" - regions and has been implicated in the pathophysiology of various psychiatric and neurological disorders, of which major depressive disease is one of the most prevalent. "Rich club" vulnerability can be a contributing factor in disease development. High-resolution structural subfield analysis of insular volume in combination with cortical thickness measurements and psychological testing might elucidate the way in which the insula is changed in depression. MATERIAL AND METHODS High-resolution structural images of the brain were acquired using a 7T-MRI scanner. The mean grey matter volume and cortical thickness within the insular subfields were analysed using voxel-based morphometry (VBM) and surface analysis techniques respectively. Insular subfields were defined according to the Brainnetome Atlas for VBM - and the Destrieux-Atlas for cortical thickness - analysis. Thirty-three patients with confirmed major depressive disease, as well as thirty-one healthy controls matched for age and gender, were measured. The severity of depression in MDD patients was measured via a BDI-II score and objective clinical assessment (AMDP). Intergroup statistical analysis was performed using ANCOVA. An intragroup multivariate regression analysis of patient psychological test results was calculated. Corrections for multiple comparisons was performed using FDR. RESULTS Significant differences between groups were observed in the left granular dorsal insula according to VBM-analysis. AMDP-scores positively correlated with cortical thickness in the right superior segment of the circular insular sulcus. CONCLUSIONS The combination of differences in grey matter volume between healthy controls and patients with a positive correlation of cortical thickness with disease severity underscores the insula's role in the pathogeneses of MDD. The connectivity hub insular cortex seems vulnerable to disruption in context of affective disease.
Collapse
Affiliation(s)
- Gereon J. Schnellbächer
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Ravichandran Rajkumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany,Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany,JARA-BRAIN, 52074 Aachen, Germany
| | - Tanja Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany,Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany
| | - Shukti Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany,Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany
| | - Jana Hagen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany,JARA-BRAIN, 52074 Aachen, Germany,Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany,Institute of Neuroscience and Medicine 11, INM-11, Forschungszentrum Jülich, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany,Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany,JARA-BRAIN, 52074 Aachen, Germany,Corresponding author.
| |
Collapse
|
25
|
Meisl G, Knowles TPJ, Klenerman D. Mechanistic Models of Protein Aggregation Across Length-Scales and Time-Scales: From the Test Tube to Neurodegenerative Disease. Front Neurosci 2022; 16:909861. [PMID: 35844223 PMCID: PMC9281552 DOI: 10.3389/fnins.2022.909861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Through advances in the past decades, the central role of aberrant protein aggregation has been established in many neurodegenerative diseases. Crucially, however, the molecular mechanisms that underlie aggregate proliferation in the brains of affected individuals are still only poorly understood. Under controlled in vitro conditions, significant progress has been made in elucidating the molecular mechanisms that take place during the assembly of purified protein molecules, through advances in both experimental methods and the theories used to analyse the resulting data. The determination of the aggregation mechanism for a variety of proteins revealed the importance of intermediate oligomeric species and of the interactions with promotors and inhibitors. Such mechanistic insights, if they can be achieved in a disease-relevant system, provide invaluable information to guide the design of potential cures to these devastating disorders. However, as experimental systems approach the situation present in real disease, their complexity increases substantially. Timescales increase from hours an aggregation reaction takes in vitro, to decades over which the process takes place in disease, and length-scales increase to the dimension of a human brain. Thus, molecular level mechanistic studies, like those that successfully determined mechanisms in vitro, have only been applied in a handful of living systems to date. If their application can be extended to further systems, including patient data, they promise powerful new insights. Here we present a review of the existing strategies to gain mechanistic insights into the molecular steps driving protein aggregation and discuss the obstacles and potential paths to achieving their application in disease. First, we review the experimental approaches and analysis techniques that are used to establish the aggregation mechanisms in vitro and the insights that have been gained from them. We then discuss how these approaches must be modified and adapted to be applicable in vivo and review the existing works that have successfully applied mechanistic analysis of protein aggregation in living systems. Finally, we present a broad mechanistic classification of in vivo systems and discuss what will be required to further our understanding of aggregate formation in living systems.
Collapse
Affiliation(s)
- Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Nonlocal models in the analysis of brain neurodegenerative protein dynamics with application to Alzheimer's disease. Sci Rep 2022; 12:7328. [PMID: 35513401 PMCID: PMC9072437 DOI: 10.1038/s41598-022-11242-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
It is well known that today nearly one in six of the world’s population has to deal with neurodegenerative disorders. While a number of medical devices have been developed for the detection, prevention, and treatments of such disorders, some fundamentals of the progression of associated diseases are in urgent need of further clarification. In this paper, we focus on Alzheimer’s disease, where it is believed that the concentration changes in amyloid-beta and tau proteins play a central role in its onset and development. A multiscale model is proposed to analyze the propagation of these concentrations in the brain connectome. In particular, we consider a modified heterodimer model for the protein–protein interactions. Higher toxic concentrations of amyloid-beta and tau proteins destroy the brain cell. We have studied these propagations for the primary and secondary and their mixed tauopathies. We model the damage of a brain cell by the nonlocal contributions of these toxic loads present in the brain cells. With the help of rigorous analysis, we check the stability behaviour of the stationary points corresponding to the homogeneous system. After integrating the brain connectome data into the developed model, we see that the spreading patterns of the toxic concentrations for the whole brain are the same, but their concentrations are different in different regions. Also, the time to propagate the damage in each region of the brain connectome is different.
Collapse
|
27
|
Faber J, Hinrichsen J, Greiner A, Reiter N, Budday S. Tissue-Scale Biomechanical Testing of Brain Tissue for the Calibration of Nonlinear Material Models. Curr Protoc 2022; 2:e381. [PMID: 35384412 DOI: 10.1002/cpz1.381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Brain tissue is one of the most complex and softest tissues in the human body. Due to its ultrasoft and biphasic nature, it is difficult to control the deformation state during biomechanical testing and to quantify the highly nonlinear, time-dependent tissue response. In numerous experimental studies that have investigated the mechanical properties of brain tissue over the last decades, stiffness values have varied significantly. One reason for the observed discrepancies is the lack of standardized testing protocols and corresponding data analyses. The tissue properties have been tested on different length and time scales depending on the testing technique, and the corresponding data have been analyzed based on simplifying assumptions. In this review, we highlight the advantage of using nonlinear continuum mechanics based modeling and finite element simulations to carefully design experimental setups and protocols as well as to comprehensively analyze the corresponding experimental data. We review testing techniques and protocols that have been used to calibrate material model parameters and discuss artifacts that might falsify the measured properties. The aim of this work is to provide standardized procedures to reliably quantify the mechanical properties of brain tissue and to more accurately calibrate appropriate constitutive models for computational simulations of brain development, injury and disease. Computational models can not only be used to predictively understand brain tissue behavior, but can also serve as valuable tools to assist diagnosis and treatment of diseases or to plan neurosurgical procedures. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jessica Faber
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Applied Mechanics, Egerlandstraße 5, 91058 Erlangen, Germany
| | - Jan Hinrichsen
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Applied Mechanics, Egerlandstraße 5, 91058 Erlangen, Germany
| | - Alexander Greiner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Applied Mechanics, Egerlandstraße 5, 91058 Erlangen, Germany
| | - Nina Reiter
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Applied Mechanics, Egerlandstraße 5, 91058 Erlangen, Germany
| | - Silvia Budday
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Applied Mechanics, Egerlandstraße 5, 91058 Erlangen, Germany
| |
Collapse
|
28
|
Lopes DM, Llewellyn SK, Harrison IF. Propagation of tau and α-synuclein in the brain: therapeutic potential of the glymphatic system. Transl Neurodegener 2022; 11:19. [PMID: 35314000 PMCID: PMC8935752 DOI: 10.1186/s40035-022-00293-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Many neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease, are characterised by the accumulation of misfolded protein deposits in the brain, leading to a progressive destabilisation of the neuronal network and neuronal death. Among the proteins that can abnormally accumulate are tau and α-synuclein, which can propagate in a prion-like manner and which upon aggregation, represent the most common intracellular proteinaceous lesions associated with neurodegeneration. For years it was thought that these intracellular proteins and their accumulation had no immediate relationship with extracellular homeostasis pathways such as the glymphatic clearance system; however, mounting evidence has now suggested that this is not the case. The involvement of the glymphatic system in neurodegenerative disease is yet to be fully defined; however, it is becoming increasingly clear that this pathway contributes to parenchymal solute clearance. Importantly, recent data show that proteins prone to intracellular accumulation are subject to glymphatic clearance, suggesting that this system plays a key role in many neurological disorders. In this review, we provide a background on the biology of tau and α-synuclein and discuss the latest findings on the cell-to-cell propagation mechanisms of these proteins. Importantly, we discuss recent data demonstrating that manipulation of the glymphatic system may have the potential to alleviate and reduce pathogenic accumulation of propagation-prone intracellular cytotoxic proteins. Furthermore, we will allude to the latest potential therapeutic opportunities targeting the glymphatic system that might have an impact as disease modifiers in neurodegenerative diseases.
Collapse
|
29
|
Brown SS, Mak E, Clare I, Grigorova M, Beresford-Webb J, Walpert M, Jones E, Hong YT, Fryer TD, Coles JP, Aigbirhio FI, Tudorascu D, Cohen A, Christian BT, Handen BL, Klunk WE, Menon DK, Nestor PJ, Holland AJ, Zaman SH. Support vector machine learning and diffusion-derived structural networks predict amyloid quantity and cognition in adults with Down's syndrome. Neurobiol Aging 2022; 115:112-121. [PMID: 35418341 DOI: 10.1016/j.neurobiolaging.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
Down's syndrome results from trisomy of chromosome 21, a genetic change which also confers a probable 100% risk for the development of Alzheimer's disease neuropathology (amyloid plaque and neurofibrillary tangle formation) in later life. We aimed to assess the effectiveness of diffusion-weighted imaging and connectomic modelling for predicting brain amyloid plaque burden, baseline cognition and longitudinal cognitive change using support vector regression. Ninety-five participants with Down's syndrome successfully completed a full Pittsburgh Compound B (PiB) PET-MR protocol and memory assessment at two timepoints. Our findings indicate that graph theory metrics of node degree and strength based on the structural connectome are effective predictors of global amyloid deposition. We also show that connection density of the structural network at baseline is a promising predictor of current cognitive performance. Directionality of effects were mainly significant reductions in the white matter connectivity in relation to both PiB+ status and greater rate of cognitive decline. Taken together, these results demonstrate the integral role of the white matter during neuropathological progression and the utility of machine learning methodology for non-invasively evaluating Alzheimer's disease prognosis.
Collapse
|
30
|
Shafiei G, Bazinet V, Dadar M, Manera AL, Collins DL, Dagher A, Borroni B, Sanchez-Valle R, Moreno F, Laforce R, Graff C, Synofzik M, Galimberti D, Rowe JB, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, de Mendonça A, Tagliavini F, Santana I, Butler C, Gerhard A, Danek A, Levin J, Otto M, Sorbi S, Jiskoot LC, Seelaar H, van Swieten JC, Rohrer JD, Misic B, Ducharme S. Network structure and transcriptomic vulnerability shape atrophy in frontotemporal dementia. Brain 2022; 146:321-336. [PMID: 35188955 PMCID: PMC9825569 DOI: 10.1093/brain/awac069] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/14/2021] [Accepted: 01/30/2022] [Indexed: 01/13/2023] Open
Abstract
Connections among brain regions allow pathological perturbations to spread from a single source region to multiple regions. Patterns of neurodegeneration in multiple diseases, including behavioural variant of frontotemporal dementia (bvFTD), resemble the large-scale functional systems, but how bvFTD-related atrophy patterns relate to structural network organization remains unknown. Here we investigate whether neurodegeneration patterns in sporadic and genetic bvFTD are conditioned by connectome architecture. Regional atrophy patterns were estimated in both genetic bvFTD (75 patients, 247 controls) and sporadic bvFTD (70 patients, 123 controls). First, we identified distributed atrophy patterns in bvFTD, mainly targeting areas associated with the limbic intrinsic network and insular cytoarchitectonic class. Regional atrophy was significantly correlated with atrophy of structurally- and functionally-connected neighbours, demonstrating that network structure shapes atrophy patterns. The anterior insula was identified as the predominant group epicentre of brain atrophy using data-driven and simulation-based methods, with some secondary regions in frontal ventromedial and antero-medial temporal areas. We found that FTD-related genes, namely C9orf72 and TARDBP, confer local transcriptomic vulnerability to the disease, modulating the propagation of pathology through the connectome. Collectively, our results demonstrate that atrophy patterns in sporadic and genetic bvFTD are jointly shaped by global connectome architecture and local transcriptomic vulnerability, providing an explanation as to how heterogenous pathological entities can lead to the same clinical syndrome.
Collapse
Affiliation(s)
| | | | - Mahsa Dadar
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada,Radiology and Nuclear Medicine, Laval University, Quebec City, QC, Canada
| | - Ana L Manera
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Raquel Sanchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d’Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain,Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Caroline Graff
- Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden,Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany,Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Daniela Galimberti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Dino Ferrari Center, Milan, Italy
| | - James B Rowe
- University of Cambridge, Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, and MRC Cognition and Brain Sciences Unit, Cambridge, UK
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium,Neurology Service, University Hospitals Leuven, Leuven, Belgium,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal,Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Chris Butler
- Department of Clinical Neurology, University of Oxford, Oxford, UK,Department of Brain Sciences, Imperial College London, London, UK
| | - Alex Gerhard
- Division of Neuroscience and Experimental Psychology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK,Department of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Duisburg and Essen, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany,Clinical Research Unit, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Lize C Jiskoot
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Bratislav Misic
- Correspondence to: Bratislav Misic 3801 Rue University Webster 211, Montreal QC H3A 2B4, Canada E-mail:
| | | | | | | |
Collapse
|
31
|
Putra P, Thompson TB, Chaggar P, Goriely A. Braiding Braak and Braak: Staging patterns and model selection in network neurodegeneration. Netw Neurosci 2022; 5:929-956. [PMID: 35024537 PMCID: PMC8746141 DOI: 10.1162/netn_a_00208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/25/2021] [Indexed: 01/12/2023] Open
Abstract
A hallmark of Alzheimer’s disease is the aggregation of insoluble amyloid-beta plaques and tau protein neurofibrillary tangles. A key histopathological observation is that tau protein aggregates follow a structured progression pattern through the brain. Mathematical network models of prion-like propagation have the ability to capture such patterns, but a number of factors impact the observed staging result, thus introducing questions regarding model selection. Here, we introduce a novel approach, based on braid diagrams, for studying the structured progression of a marker evolving on a network. We apply this approach to a six-stage ‘Braak pattern’ of tau proteins, in Alzheimer’s disease, motivated by a recent observation that seed-competent tau precedes tau aggregation. We show that the different modeling choices, from the model parameters to the connectome resolution, play a significant role in the landscape of observable staging patterns. Our approach provides a systematic way to approach model selection for network propagation of neurodegenerative diseases that ensures both reproducibility and optimal parameter fitting. Network diffusion models of neurodegenerative diseases are a class of dynamical systems that simulate the evolution of toxic proteins on the connectome. These models predict, from an initial seed, a pattern of invasion called staging. The generalized staging problem seeks to systematically study the effect of various model choices on staging. We introduce methods based on braid diagrams to test the possible staging landscape of a model and how it depends on the choice of connectome, as well as the model parameters. Our primary finding is that connectome construction, the choice of the graph Laplacian, and transport models all have an impact on staging that should be taken into account in any study.
Collapse
Affiliation(s)
- Prama Putra
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Travis B Thompson
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Pavanjit Chaggar
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Li X. Subject-Specific Head Model Generation by Mesh Morphing: A Personalization Framework and Its Applications. Front Bioeng Biotechnol 2021; 9:706566. [PMID: 34733827 PMCID: PMC8558307 DOI: 10.3389/fbioe.2021.706566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
Finite element (FE) head models have become powerful tools in many fields within neuroscience, especially for studying the biomechanics of traumatic brain injury (TBI). Subject-specific head models accounting for geometric variations among subjects are needed for more reliable predictions. However, the generation of such models suitable for studying TBIs remains a significant challenge and has been a bottleneck hindering personalized simulations. This study presents a personalization framework for generating subject-specific models across the lifespan and for pathological brains with significant anatomical changes by morphing a baseline model. The framework consists of hierarchical multiple feature and multimodality imaging registrations, mesh morphing, and mesh grouping, which is shown to be efficient with a heterogeneous dataset including a newborn, 1-year-old (1Y), 2Y, adult, 92Y, and a hydrocephalus brain. The generated models of the six subjects show competitive personalization accuracy, demonstrating the capacity of the framework for generating subject-specific models with significant anatomical differences. The family of the generated head models allows studying age-dependent and groupwise brain injury mechanisms. The framework for efficient generation of subject-specific FE head models helps to facilitate personalized simulations in many fields of neuroscience.
Collapse
Affiliation(s)
- Xiaogai Li
- Division of Neuronic Engineering, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
33
|
Powell F, Tosun D, Raj A. Network-constrained technique to characterize pathology progression rate in Alzheimer's disease. Brain Commun 2021; 3:fcab144. [PMID: 34704025 PMCID: PMC8376686 DOI: 10.1093/braincomms/fcab144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 11/30/2022] Open
Abstract
Current methods for measuring the chronic rates of cognitive decline and degeneration in Alzheimer’s disease rely on the sensitivity of longitudinal neuropsychological batteries and clinical neuroimaging, particularly structural magnetic resonance imaging of brain atrophy, either at a global or regional scale. There is particular interest in approaches predictive of future disease progression and clinical outcomes using a single time point. If successful, such approaches could have great impact on differential diagnosis, therapeutic treatment and clinical trial inclusion. Unfortunately, it has proven quite challenging to accurately predict clinical and degeneration progression rates from baseline data. Specifically, a key limitation of the previously proposed approaches for disease progression based on the brain atrophy measures has been the limited incorporation of the knowledge from disease pathology progression models, which suggest a prion-like spread of disease pathology and hence the neurodegeneration. Here, we present a new metric for disease progression rate in Alzheimer that uses only MRI-derived atrophy data yet is able to infer the underlying rate of pathology transmission. This is enabled by imposing a spread process driven by the brain networks using a Network Diffusion Model. We first fit this model to each patient’s longitudinal brain atrophy data defined on a brain network structure to estimate a patient-specific rate of pathology diffusion, called the pathology progression rate. Using machine learning algorithms, we then build a baseline data model and tested this rate metric on data from longitudinal Alzheimer’s Disease Neuroimaging Initiative study including 810 subjects. Our measure of disease progression differed significantly across diagnostic groups as well as between groups with different genetic risk factors. Remarkably, hierarchical clustering revealed 3 distinct clusters based on CSF profiles with >90% accuracy. These pathological clusters exhibit progressive atrophy and clinical impairments that correspond to the proposed rate measure. We demonstrate that a subject’s degeneration speed can be best predicted from baseline neuroimaging volumetrics and fluid biomarkers for subjects in the middle of their degenerative course, which may be a practical, inexpensive screening tool for future prognostic applications.
Collapse
Affiliation(s)
- Fon Powell
- Department of Radiology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, AC-116, Parnassus, Box 0628, San Francisco, CA 94122, USA.,San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Ashish Raj
- Department of Radiology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.,Department of Radiology and Biomedical Imaging, University of California San Francisco, AC-116, Parnassus, Box 0628, San Francisco, CA 94122, USA
| | | |
Collapse
|
34
|
Benn JA, Mukadam AS, McEwan WA. Targeted protein degradation using intracellular antibodies and its application to neurodegenerative disease. Semin Cell Dev Biol 2021; 126:138-149. [PMID: 34654628 DOI: 10.1016/j.semcdb.2021.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023]
Abstract
Antibodies mediate the majority of their effects in the extracellular domain, or in intracellular compartments isolated from the cytosol. Under a growing list of circumstances, however, antibodies are found to gain access to the cytoplasm. Cytosolic immune complexes are bound by the atypical antibody receptor TRIM21, which mediates the rapid degradation of the immune complexes at the proteasome. These discoveries have informed the development of TRIM-Away, a technique to selectively deplete proteins using delivery of antibodies into cells. A range of related approaches that elicit selective protein degradation using intracellular constructs linking antibody fragments to degradative effector functions have also been developed. These methods hold promise for inducing the degradation of proteins as both research tools and as a novel therapeutic approach. Protein aggregates are a pathophysiological feature of neurodegenerative diseases and are considered to have a causal role in pathology. Immunotherapy is emerging as a promising route towards their selective targeting, and a role of antibodies in the cytosol has been demonstrated in cell-based assays. This review will explore the mechanisms by which therapeutic antibodies engage and eliminate intracellularly aggregated proteins. We will discuss how future developments in intracellular antibody technology may enhance the therapeutic potential of such antibody-derived therapies.
Collapse
Affiliation(s)
- Jonathan A Benn
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK
| | - Aamir S Mukadam
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK.
| |
Collapse
|
35
|
Yu M, Sporns O, Saykin AJ. The human connectome in Alzheimer disease - relationship to biomarkers and genetics. Nat Rev Neurol 2021; 17:545-563. [PMID: 34285392 PMCID: PMC8403643 DOI: 10.1038/s41582-021-00529-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The pathology of Alzheimer disease (AD) damages structural and functional brain networks, resulting in cognitive impairment. The results of recent connectomics studies have now linked changes in structural and functional network organization in AD to the patterns of amyloid-β and tau accumulation and spread, providing insights into the neurobiological mechanisms of the disease. In addition, the detection of gene-related connectome changes might aid in the early diagnosis of AD and facilitate the development of personalized therapeutic strategies that are effective at earlier stages of the disease spectrum. In this article, we review studies of the associations between connectome changes and amyloid-β and tau pathologies as well as molecular genetics in different subtypes and stages of AD. We also highlight the utility of connectome-derived computational models for replicating empirical findings and for tracking and predicting the progression of biomarker-indicated AD pathophysiology.
Collapse
Affiliation(s)
- Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
| | - Olaf Sporns
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
36
|
Raj A, Tora V, Gao X, Cho H, Choi JY, Ryu YH, Lyoo CH, Franchi B. Combined Model of Aggregation and Network Diffusion Recapitulates Alzheimer's Regional Tau-Positron Emission Tomography. Brain Connect 2021; 11:624-638. [PMID: 33947253 DOI: 10.1089/brain.2020.0841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: Alzheimer's disease involves widespread and progressive deposition of misfolded protein tau (τ), first appearing in the entorhinal cortex, coagulating in longer polymers and insoluble fibrils. There is mounting evidence for "prion-like" trans-neuronal transmission, whereby misfolded proteins cascade along neuronal pathways, giving rise to networked spread. However, the cause-effect mechanisms by which various oligomeric τ species are produced, aggregate, and disseminate are unknown. The question of how protein aggregation and subsequent spread lead to stereotyped progression in the Alzheimer brain remains unresolved. Materials and Methods: We address these questions by using mathematically precise parsimonious modeling of these pathophysiological processes, extrapolated to the whole brain. We model three key processes: τ monomer production; aggregation into oligomers and then into tangles; and the spatiotemporal progression of misfolded τ as it ramifies into neural circuits via the brain connectome. We model monomer seeding and production at the entorhinal cortex, aggregation using Smoluchowski equations; and networked spread using our prior Network-Diffusion model. Results: This combined aggregation-network-diffusion model exhibits all hallmarks of τ progression seen in human patients. Unlike previous theoretical studies of protein aggregation, we present here an empirical validation on in vivo imaging and fluid τ measurements from large datasets. The model accurately captures not just the spatial distribution of empirical regional τ and atrophy but also patients' cerebrospinal fluid phosphorylated τ profiles as a function of disease progression. Conclusion: This unified quantitative and testable model has the potential to explain observed phenomena and serve as a test-bed for future hypothesis generation and testing in silico.
Collapse
Affiliation(s)
- Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, USA
| | - Veronica Tora
- Dipartimento di Matematica, Universita' di Bologna, Bologna, Italy
| | - Xiao Gao
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, USA
| | - Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seodaemun-gu, Republic of Korea
| | - Jae Yong Choi
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seodaemun-gu, Republic of Korea
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seodaemun-gu, Republic of Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seodaemun-gu, Republic of Korea
| | - Bruno Franchi
- Dipartimento di Matematica, Universita' di Bologna, Bologna, Italy
| |
Collapse
|
37
|
Schäfer A, Peirlinck M, Linka K, Kuhl E. Bayesian Physics-Based Modeling of Tau Propagation in Alzheimer's Disease. Front Physiol 2021; 12:702975. [PMID: 34335308 PMCID: PMC8322942 DOI: 10.3389/fphys.2021.702975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
Amyloid-β and hyperphosphorylated tau protein are known drivers of neuropathology in Alzheimer's disease. Tau in particular spreads in the brains of patients following a spatiotemporal pattern that is highly sterotypical and correlated with subsequent neurodegeneration. Novel medical imaging techniques can now visualize the distribution of tau in the brain in vivo, allowing for new insights to the dynamics of this biomarker. Here we personalize a network diffusion model with global spreading and local production terms to longitudinal tau positron emission tomography data of 76 subjects from the Alzheimer's Disease Neuroimaging Initiative. We use Bayesian inference with a hierarchical prior structure to infer means and credible intervals for our model parameters on group and subject levels. Our results show that the group average protein production rate for amyloid positive subjects is significantly higher with 0.019±0.27/yr, than that for amyloid negative subjects with -0.143±0.21/yr (p = 0.0075). These results support the hypothesis that amyloid pathology drives tau pathology. The calibrated model could serve as a valuable clinical tool to identify optimal time points for follow-up scans and predict the timeline of disease progression.
Collapse
Affiliation(s)
- Amelie Schäfer
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Mathias Peirlinck
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Kevin Linka
- Institute of Continuum and Materials Mechanics, Hamburg University of Technology, Hamburg, Germany
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | | |
Collapse
|
38
|
Cornblath EJ, Li HL, Changolkar L, Zhang B, Brown HJ, Gathagan RJ, Olufemi MF, Trojanowski JQ, Bassett DS, Lee VMY, Henderson MX. Computational modeling of tau pathology spread reveals patterns of regional vulnerability and the impact of a genetic risk factor. SCIENCE ADVANCES 2021; 7:eabg6677. [PMID: 34108219 PMCID: PMC8189700 DOI: 10.1126/sciadv.abg6677] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/21/2021] [Indexed: 05/09/2023]
Abstract
Neuropathological staging studies have suggested that tau pathology spreads through the brain in Alzheimer's disease (AD) and other tauopathies, but it is unclear how neuroanatomical connections, spatial proximity, and regional vulnerability contribute. In this study, we seed tau pathology in the brains of nontransgenic mice with AD tau and quantify pathology development over 9 months in 134 brain regions. Network modeling of pathology progression shows that diffusion through the connectome is the best predictor of tau pathology patterns. Further, deviations from pure neuroanatomical spread are used to estimate regional vulnerability to tau pathology and identify related gene expression patterns. Last, we show that pathology spread is altered in mice harboring a mutation in leucine-rich repeat kinase 2. While tau pathology spread is still constrained by anatomical connectivity in these mice, it spreads preferentially in a retrograde direction. This study provides a framework for understanding neuropathological progression in tauopathies.
Collapse
Affiliation(s)
- Eli J Cornblath
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Howard L Li
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lakshmi Changolkar
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bin Zhang
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah J Brown
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronald J Gathagan
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Modupe F Olufemi
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q Trojanowski
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Virginia M Y Lee
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
39
|
Raj A. Graph Models of Pathology Spread in Alzheimer's Disease: An Alternative to Conventional Graph Theoretic Analysis. Brain Connect 2021; 11:799-814. [PMID: 33858198 DOI: 10.1089/brain.2020.0905] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background: Graph theory and connectomics are new techniques for uncovering disease-induced changes in the brain's structural network. Most prior studied have focused on network statistics as biomarkers of disease. However, an emerging body of work involves exploring how the network serves as a conduit for the propagation of disease factors in the brain and has successfully mapped the functional and pathological consequences of disease propagation. In Alzheimer's disease (AD), progressive deposition of misfolded proteins amyloid and tau is well-known to follow fiber projections, under a "prion-like" trans-neuronal transmission mechanism, through which misfolded proteins cascade along neuronal pathways, giving rise to network spread. Methods: In this review, we survey the state of the art in mathematical modeling of connectome-mediated pathology spread in AD. Then we address several open questions that are amenable to mathematically precise parsimonious modeling of pathophysiological processes, extrapolated to the whole brain. We specifically identify current formal models of how misfolded proteins are produced, aggregate, and disseminate in brain circuits, and attempt to understand how this process leads to stereotyped progression in Alzheimer's and other related diseases. Conclusion: This review serves to unify current efforts in modeling of AD progression that together have the potential to explain observed phenomena and serve as a test-bed for future hypothesis generation and testing in silico. Impact statement Graph theory is a powerful new approach that is transforming the study of brain processes. There do not exist many focused reviews of the subfield of graph modeling of how Alzheimer's and other dementias propagate within the brain network, and how these processes can be mapped mathematically. By providing timely and topical review of this subfield, we fill a critical gap in the community and present a unified view that can serve as an in silico test-bed for future hypothesis generation and testing. We also point to several open and unaddressed questions and controversies that future practitioners can tackle.
Collapse
Affiliation(s)
- Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
40
|
Raj A, Powell F. Network model of pathology spread recapitulates neurodegeneration and selective vulnerability in Huntington's Disease. Neuroimage 2021; 235:118008. [PMID: 33789134 DOI: 10.1016/j.neuroimage.2021.118008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Huntington's Disease (HD), an autosomal dominant genetic disorder caused by a mutation in the Huntingtin gene (HTT), displays a stereotyped topography in the human brain and a stereotyped progression, initially appearing in the striatum. Like other degenerative diseases, spatial topography of HD is divorced from where implicated genes are expressed, a dissociation whose mechanistic underpinning is not currently understood. Cell autonomous molecular factors characterized by gene expression signatures, including proteolytic and post translational modifications, play a role in vulnerability to disease. Non-autonomous mechanisms, likely involving the brain's anatomic or functional connectivity patterns, might also be responsible for selective vulnerability in HD. Leveraging a large dataset of 635 subjects from a multinational study, this paper tests various cell-autonomous and non-autonomous models that can explain HD topography. We test whether the expression patterns of implicated genes is sufficient to explain regional HD atrophy, or whether the network transmission of protein products is required to explain them. We find that network models are capable of predicting, to a high degree, observed atrophy in human subjects. Lastly, we propose a model of anterograde network transmission, and show that it is the most parsimonious yet most likely to explain observed atrophy patterns in HD. Collectively, these data indicate that pathology spread in HD may be mediated by the brain's intrinsic structural network organization. This is the first study to systematically and quantitatively test multiple hypotheses of pathology spread in living human subjects with HD.
Collapse
Affiliation(s)
- Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, USA; UCSF-UC Berkeley Graduate Program in BioEngineering, University of California at San Francisco, USA; Department of Radiology, Weill Cornell Medical College of Cornell University, 407 E. 61 Street, RR106, New York, NY 10065, USA.
| | - Fon Powell
- Department of Radiology, Weill Cornell Medical College of Cornell University, 407 E. 61 Street, RR106, New York, NY 10065, USA
| |
Collapse
|
41
|
Bertsch M, Franchi B, Raj A, Tesi MC. Macroscopic modelling of Alzheimer’s disease: difficulties and challenges. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
42
|
Schäfer A, Mormino EC, Kuhl E. Network Diffusion Modeling Explains Longitudinal Tau PET Data. Front Neurosci 2020; 14:566876. [PMID: 33424532 PMCID: PMC7785976 DOI: 10.3389/fnins.2020.566876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease is associated with the cerebral accumulation of neurofibrillary tangles of hyperphosphorylated tau protein. The progressive occurrence of tau aggregates in different brain regions is closely related to neurodegeneration and cognitive impairment. However, our current understanding of tau propagation relies almost exclusively on postmortem histopathology, and the precise propagation dynamics of misfolded tau in the living brain remain poorly understood. Here we combine longitudinal positron emission tomography and dynamic network modeling to test the hypothesis that misfolded tau propagates preferably along neuronal connections. We follow 46 subjects for three or four annual positron emission tomography scans and compare their pathological tau profiles against brain network models of intracellular and extracellular spreading. For each subject, we identify a personalized set of model parameters that characterizes the individual progression of pathological tau. Across all subjects, the mean protein production rate was 0.21 ± 0.15 and the intracellular diffusion coefficient was 0.34 ± 0.43. Our network diffusion model can serve as a tool to detect non-clinical symptoms at an earlier stage and make informed predictions about the timeline of neurodegeneration on an individual personalized basis.
Collapse
Affiliation(s)
- Amelie Schäfer
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, United States
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
43
|
Wang Y, Liu C, Liu P, Eisenberg B. Field theory of reaction-diffusion: Law of mass action with an energetic variational approach. Phys Rev E 2020; 102:062147. [PMID: 33465972 DOI: 10.1103/physreve.102.062147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
We extend the energetic variational approach so it can be applied to a chemical reaction system with general mass action kinetics. Our approach starts with an energy-dissipation law. We show that the chemical equilibrium is determined by the choice of the free energy and the dynamics of the chemical reaction is determined by the choice of the dissipation. This approach enables us to couple chemical reactions with other effects, such as diffusion and drift in an electric field. As an illustration, we apply our approach to a nonequilibrium reaction-diffusion system in a specific but canonical setup. We show by numerical simulations that the input-output relation of such a system depends on the choice of the dissipation.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - Chun Liu
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - Pei Liu
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Bob Eisenberg
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, USA and Department of Physiology and Biophysics, Rush University, 1750 W. Harrison, Chicago, Illinois 60612, USA
| |
Collapse
|
44
|
Peirlinck M, Linka K, Sahli Costabal F, Kuhl E. Outbreak dynamics of COVID-19 in China and the United States. Biomech Model Mechanobiol 2020; 19:2179-2193. [PMID: 32342242 PMCID: PMC7185268 DOI: 10.1007/s10237-020-01332-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 01/24/2023]
Abstract
On March 11, 2020, the World Health Organization declared the coronavirus disease 2019, COVID-19, a global pandemic. In an unprecedented collective effort, massive amounts of data are now being collected worldwide to estimate the immediate and long-term impact of this pandemic on the health system and the global economy. However, the precise timeline of the disease, its transmissibility, and the effect of mitigation strategies remain incompletely understood. Here we integrate a global network model with a local epidemic SEIR model to quantify the outbreak dynamics of COVID-19 in China and the United States. For the outbreak in China, in [Formula: see text] provinces, we found a latent period of 2.56 ± 0.72 days, a contact period of 1.47 ± 0.32 days, and an infectious period of 17.82 ± 2.95 days. We postulate that the latent and infectious periods are disease-specific, whereas the contact period is behavior-specific and can vary between different provinces, states, or countries. For the early stages of the outbreak in the United States, in [Formula: see text] states, we adopted the disease-specific values from China and found a contact period of 3.38 ± 0.69 days. Our network model predicts that-without the massive political mitigation strategies that are in place today-the United States would have faced a basic reproduction number of 5.30 ± 0.95 and a nationwide peak of the outbreak on May 10, 2020 with 3 million infections. Our results demonstrate how mathematical modeling can help estimate outbreak dynamics and provide decision guidelines for successful outbreak control. We anticipate that our model will become a valuable tool to estimate the potential of vaccination and quantify the effect of relaxing political measures including total lockdown, shelter in place, and travel restrictions for low-risk subgroups of the population or for the population as a whole.
Collapse
Affiliation(s)
- Mathias Peirlinck
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA
| | - Kevin Linka
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA
| | - Francisco Sahli Costabal
- Department of Mechanical and Metallurgical Engineering, School of Engineering and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ellen Kuhl
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
45
|
Peirlinck M, Linka K, Sahli Costabal F, Kuhl E. Outbreak dynamics of COVID-19 in China and the United States. Biomech Model Mechanobiol 2020; 19:2179-2193. [PMID: 32342242 DOI: 10.1101/2020.04.06.20055863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 05/20/2023]
Abstract
On March 11, 2020, the World Health Organization declared the coronavirus disease 2019, COVID-19, a global pandemic. In an unprecedented collective effort, massive amounts of data are now being collected worldwide to estimate the immediate and long-term impact of this pandemic on the health system and the global economy. However, the precise timeline of the disease, its transmissibility, and the effect of mitigation strategies remain incompletely understood. Here we integrate a global network model with a local epidemic SEIR model to quantify the outbreak dynamics of COVID-19 in China and the United States. For the outbreak in China, in [Formula: see text] provinces, we found a latent period of 2.56 ± 0.72 days, a contact period of 1.47 ± 0.32 days, and an infectious period of 17.82 ± 2.95 days. We postulate that the latent and infectious periods are disease-specific, whereas the contact period is behavior-specific and can vary between different provinces, states, or countries. For the early stages of the outbreak in the United States, in [Formula: see text] states, we adopted the disease-specific values from China and found a contact period of 3.38 ± 0.69 days. Our network model predicts that-without the massive political mitigation strategies that are in place today-the United States would have faced a basic reproduction number of 5.30 ± 0.95 and a nationwide peak of the outbreak on May 10, 2020 with 3 million infections. Our results demonstrate how mathematical modeling can help estimate outbreak dynamics and provide decision guidelines for successful outbreak control. We anticipate that our model will become a valuable tool to estimate the potential of vaccination and quantify the effect of relaxing political measures including total lockdown, shelter in place, and travel restrictions for low-risk subgroups of the population or for the population as a whole.
Collapse
Affiliation(s)
- Mathias Peirlinck
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA
| | - Kevin Linka
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA
| | - Francisco Sahli Costabal
- Department of Mechanical and Metallurgical Engineering, School of Engineering and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ellen Kuhl
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
46
|
Goriely A, Kuhl E, Bick C. Neuronal Oscillations on Evolving Networks: Dynamics, Damage, Degradation, Decline, Dementia, and Death. PHYSICAL REVIEW LETTERS 2020; 125:128102. [PMID: 33016724 DOI: 10.1103/physrevlett.125.128102] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/07/2020] [Indexed: 05/27/2023]
Abstract
Neurodegenerative diseases, such as Alzheimer's or Parkinson's disease, show characteristic degradation of structural brain networks. This degradation eventually leads to changes in the network dynamics and degradation of cognitive functions. Here, we model the progression in terms of coupled physical processes: The accumulation of toxic proteins, given by a nonlinear reaction-diffusion transport process, yields an evolving brain connectome characterized by weighted edges on which a neuronal-mass model evolves. The progression of the brain functions can be tested by simulating the resting-state activity on the evolving brain network. We show that while the evolution of edge weights plays a minor role in the overall progression of the disease, dynamic biomarkers predict a transition over a period of 10 years associated with strong cognitive decline.
Collapse
Affiliation(s)
- Alain Goriely
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Ellen Kuhl
- Living Matter Laboratory, Stanford University, Stanford, California 94305, USA
| | - Christian Bick
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
- Department of Mathematics, University of Exeter, Exeter EX4 4QF, United Kingdom
- Institute for Advanced Study, Technische Universität München, Garching 85748, Germany
| |
Collapse
|
47
|
Linka K, Rahman P, Goriely A, Kuhl E. Is it safe to lift COVID-19 travel bans? The Newfoundland story. COMPUTATIONAL MECHANICS 2020; 66:1081-1092. [PMID: 32904431 PMCID: PMC7456209 DOI: 10.1007/s00466-020-01899-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 05/20/2023]
Abstract
A key strategy to prevent a local outbreak during the COVID-19 pandemic is to restrict incoming travel. Once a region has successfully contained the disease, it becomes critical to decide when and how to reopen the borders. Here we explore the impact of border reopening for the example of Newfoundland and Labrador, a Canadian province that has enjoyed no new cases since late April, 2020. We combine a network epidemiology model with machine learning to infer parameters and predict the COVID-19 dynamics upon partial and total airport reopening, with perfect and imperfect quarantine conditions. Our study suggests that upon full reopening, every other day, a new COVID-19 case would enter the province. Under the current conditions, banning air travel from outside Canada is more efficient in managing the pandemic than fully reopening and quarantining 95% of the incoming population. Our study provides quantitative insights of the efficacy of travel restrictions and can inform political decision making in the controversy of reopening.
Collapse
Affiliation(s)
- Kevin Linka
- Department of Mechanical Engineering, Stanford University, Stanford, CA USA
| | - Proton Rahman
- Department of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, CA USA
| |
Collapse
|
48
|
d'Errico P, Meyer-Luehmann M. Mechanisms of Pathogenic Tau and Aβ Protein Spreading in Alzheimer's Disease. Front Aging Neurosci 2020; 12:265. [PMID: 33061903 PMCID: PMC7481386 DOI: 10.3389/fnagi.2020.00265] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is pathologically defined by extracellular accumulation of amyloid-β (Aβ) peptides generated by the cleavage of amyloid precursor protein (APP), strings of hyperphosphorylated Tau proteins accumulating inside neurons known as neurofibrillary tangles (NFTs) and neuronal loss. The association between the two hallmarks and cognitive decline has been known since the beginning of the 20th century when the first description of the disease was carried out by Alois Alzheimer. Today, more than 40 million people worldwide are affected by AD that represents the most common cause of dementia and there is still no effective treatment available to cure the disease. In general, the aggregation of Aβ is considered an essential trigger in AD pathogenesis that gives rise to NFTs, neuronal dysfunction and dementia. During the process leading to AD, tau and Aβ first misfold and form aggregates in one brain region, from where they spread to interconnected areas of the brain thereby inducing its gradual morphological and functional deterioration. In this mini-review article, we present an overview of the current literature on the spreading mechanisms of Aβ and tau pathology in AD since a more profound understanding is necessary to design therapeutic approaches aimed at preventing or halting disease progression.
Collapse
Affiliation(s)
- Paolo d'Errico
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Linka K, Rahman P, Goriely A, Kuhl E. Is it safe to lift COVID-19 travel bans? The Newfoundland story. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.07.16.20155614. [PMID: 32766595 PMCID: PMC7402047 DOI: 10.1101/2020.07.16.20155614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A key strategy to prevent a local outbreak during the COVID-19 pandemic is to restrict incoming travel. Once a region has successfully contained the disease, it becomes critical to decide when and how to reopen the borders. Here we explore the impact of border reopening for the example of Newfoundland and Labrador, a Canadian province that has enjoyed no new cases since late April, 2020. We combine a network epidemiology model with machine learning to infer parameters and predict the COVID-19 dynamics upon partial and total airport reopening, with perfect and imperfect quarantine conditions. Our study suggests that upon full reopening, every other day, a new COVID-19 case would enter the province. Under the current conditions, banning air travel from outside Canada is more efficient in managing the pandemic than fully reopening and quarantining 95% of the incoming population. Our study provides quantitative insights of the efficacy of travel restrictions and can inform political decision making in the controversy of reopening.
Collapse
Affiliation(s)
- Kevin Linka
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States
| | - Proton Rahman
- Department of Medicine Memorial University of Newfoundland, Cananda
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States
| |
Collapse
|
50
|
Linka K, Peirlinck M, Sahli Costabal F, Kuhl E. Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions. Comput Methods Biomech Biomed Engin 2020; 23:710-717. [PMID: 32367739 DOI: 10.1101/2020.04.18.20071035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
For the first time in history, on March 17, 2020, the European Union closed all its external borders in an attempt to contain the spreading of the coronavirus 2019, COVID-19. Throughout two past months, governments around the world have implemented massive travel restrictions and border control to mitigate the outbreak of this global pandemic. However, the precise effects of travel restrictions on the outbreak dynamics of COVID-19 remain unknown. Here we combine a global network mobility model with a local epidemiology model to simulate and predict the outbreak dynamics and outbreak control of COVID-19 across Europe. We correlate our mobility model to passenger air travel statistics and calibrate our epidemiology model using the number of reported COVID-19 cases for each country. Our simulations show that mobility networks of air travel can predict the emerging global diffusion pattern of a pandemic at the early stages of the outbreak. Our results suggest that an unconstrained mobility would have significantly accelerated the spreading of COVID-19, especially in Central Europe, Spain, and France. Ultimately, our network epidemiology model can inform political decision making and help identify exit strategies from current travel restrictions and total lockdown.
Collapse
Affiliation(s)
- Kevin Linka
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA
| | - Mathias Peirlinck
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA
| | - Francisco Sahli Costabal
- Department of Mechanical and Metallurgical Engineering, School of Engineering, Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ellen Kuhl
- Departments of Mechanical Engineering and Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|