1
|
Hartl B, Risi S, Levin M. Evolutionary Implications of Self-Assembling Cybernetic Materials with Collective Problem-Solving Intelligence at Multiple Scales. ENTROPY (BASEL, SWITZERLAND) 2024; 26:532. [PMID: 39056895 PMCID: PMC11275831 DOI: 10.3390/e26070532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
In recent years, the scientific community has increasingly recognized the complex multi-scale competency architecture (MCA) of biology, comprising nested layers of active homeostatic agents, each forming the self-orchestrated substrate for the layer above, and, in turn, relying on the structural and functional plasticity of the layer(s) below. The question of how natural selection could give rise to this MCA has been the focus of intense research. Here, we instead investigate the effects of such decision-making competencies of MCA agential components on the process of evolution itself, using in silico neuroevolution experiments of simulated, minimal developmental biology. We specifically model the process of morphogenesis with neural cellular automata (NCAs) and utilize an evolutionary algorithm to optimize the corresponding model parameters with the objective of collectively self-assembling a two-dimensional spatial target pattern (reliable morphogenesis). Furthermore, we systematically vary the accuracy with which the uni-cellular agents of an NCA can regulate their cell states (simulating stochastic processes and noise during development). This allows us to continuously scale the agents' competency levels from a direct encoding scheme (no competency) to an MCA (with perfect reliability in cell decision executions). We demonstrate that an evolutionary process proceeds much more rapidly when evolving the functional parameters of an MCA compared to evolving the target pattern directly. Moreover, the evolved MCAs generalize well toward system parameter changes and even modified objective functions of the evolutionary process. Thus, the adaptive problem-solving competencies of the agential parts in our NCA-based in silico morphogenesis model strongly affect the evolutionary process, suggesting significant functional implications of the near-ubiquitous competency seen in living matter.
Collapse
Affiliation(s)
- Benedikt Hartl
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA;
- Institute for Theoretical Physics, Center for Computational Materials Science (CMS), TU Wien, 1040 Wien, Austria
| | - Sebastian Risi
- Digital Design, IT University of Copenhagen, 2300 Copenhagen, Denmark;
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA;
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
2
|
Wang X, Zhai Y, Zheng H. Deciphering the cellular heterogeneity of the insect brain with single-cell RNA sequencing. INSECT SCIENCE 2024; 31:314-327. [PMID: 37702319 DOI: 10.1111/1744-7917.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
Insects show highly complicated adaptive and sophisticated behaviors, including spatial orientation skills, learning ability, and social interaction. These behaviors are controlled by the insect brain, the central part of the nervous system. The tiny insect brain consists of millions of highly differentiated and interconnected cells forming a complex network. Decades of research has gone into an understanding of which parts of the insect brain possess particular behaviors, but exactly how they modulate these functional consequences needs to be clarified. Detailed description of the brain and behavior is required to decipher the complexity of cell types, as well as their connectivity and function. Single-cell RNA-sequencing (scRNA-seq) has emerged recently as a breakthrough technology to understand the transcriptome at cellular resolution. With scRNA-seq, it is possible to uncover the cellular heterogeneity of brain cells and elucidate their specific functions and state. In this review, we first review the basic structure of insect brains and the links to insect behaviors mainly focusing on learning and memory. Then the scRNA applications on insect brains are introduced by representative studies. Single-cell RNA-seq has allowed researchers to classify cell subpopulations within different insect brain regions, pinpoint single-cell developmental trajectories, and identify gene regulatory networks. These developments empower the advances in neuroscience and shed light on the intricate problems in understanding insect brain functions and behaviors.
Collapse
Affiliation(s)
- Xiaofei Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and In-sect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Chen W, Liu H, Chen B, Chen J, Wang M, Shen Z, Li Y, Mao J, Zhang L. Quality assessment of Telenomus remus successively reared on Spodoptera litura eggs for 30 generations. PEST MANAGEMENT SCIENCE 2023. [PMID: 36947672 DOI: 10.1002/ps.7466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/14/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Telenomus remus (Nixon) is a dominant natural enemy controlling the invasive pest Spodoptera frugiperda (J. E. Smith). Continuous rearing of egg parasitoids on alternative hosts is crucial for mass production and cost reduction. However, to ensure the effectiveness of natural enemy products against target pests in the field, it is necessary to evaluate the parasitoid quality during the mass-rearing process. Despite the successful rearing of this parasitoid on the alternative host Spodoptera litura (Fabricius) eggs, less attention has been paid to the quality of parasitoids continuously reared for multiple generations. Therefore, we evaluated the performance of T. remus reared on S. litura eggs for 30 generations via morphological characteristics, flight ability, and life table analysis. RESULTS Wing length, wing width, body length, and right hind tibia length of T. remus did not differ among the different generations. However, the body length of female parasitoids was significantly longer than that of males for any generation. Although the proportion of 'flyers' and 'deformed' T. remus varied among generations, the flight ability did not decline significantly after rearing on S. litura eggs. Moreover, T. remus continuously reared on S. litura eggs maintained stable parasitism performance and life table parameters on the target host S. frugiperda eggs. CONCLUSION S. litura eggs are suitable hosts for the mass-rearing of T. remus. This study can be subsequently used to guide the production and facilitate the application of T. remus in the control of S. frugiperda. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wanbin Chen
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Liu
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Chen
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Chen
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengqing Wang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongjian Shen
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuyan Li
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianjun Mao
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lisheng Zhang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Charng YY, Mitra S, Yu SJ. Maintenance of abiotic stress memory in plants: Lessons learned from heat acclimation. THE PLANT CELL 2023; 35:187-200. [PMID: 36271858 PMCID: PMC9806581 DOI: 10.1093/plcell/koac313] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/17/2022] [Indexed: 05/23/2023]
Abstract
Plants acquire enhanced tolerance to intermittent abiotic stress by employing information obtained during prior exposure to an environmental disturbance, a process known as acclimation or defense priming. The capacity for stress memory is a critical feature in this process. The number of reports related to plant stress memory (PSM) has recently increased, but few studies have focused on the mechanisms that maintain PSM. Identifying the components involved in maintaining PSM is difficult due in part to the lack of clear criteria to recognize these components. In this review, based on what has been learned from genetic studies on heat acclimation memory, we propose criteria for identifying components of the regulatory networks that maintain PSM. We provide examples of the regulatory circuits formed by effectors and regulators of PSM. We also highlight strategies for assessing PSMs, update the progress in understanding the mechanisms of PSM maintenance, and provide perspectives for the further development of this exciting research field.
Collapse
Affiliation(s)
| | - Suma Mitra
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan, ROC
- Molecular and Biological Agricultural Sciences Program, TIGP, Academia Sinica, Taiwan, ROC
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, ROC
| | - Shih-Jiun Yu
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan, ROC
- Department of Biochemical Sciences and Technology, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Nieberding CM, Marcantonio M, Voda R, Enriquez T, Visser B. The Evolutionary Relevance of Social Learning and Transmission in Non-Social Arthropods with a Focus on Oviposition-Related Behaviors. Genes (Basel) 2021; 12:genes12101466. [PMID: 34680861 PMCID: PMC8536077 DOI: 10.3390/genes12101466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Research on social learning has centered around vertebrates, but evidence is accumulating that small-brained, non-social arthropods also learn from others. Social learning can lead to social inheritance when socially acquired behaviors are transmitted to subsequent generations. Using oviposition site selection, a critical behavior for most arthropods, as an example, we first highlight the complementarities between social and classical genetic inheritance. We then discuss the relevance of studying social learning and transmission in non-social arthropods and document known cases in the literature, including examples of social learning from con- and hetero-specifics. We further highlight under which conditions social learning can be adaptive or not. We conclude that non-social arthropods and the study of oviposition behavior offer unparalleled opportunities to unravel the importance of social learning and inheritance for animal evolution.
Collapse
Affiliation(s)
- Caroline M. Nieberding
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (M.M.); (R.V.)
- Correspondence:
| | - Matteo Marcantonio
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (M.M.); (R.V.)
| | - Raluca Voda
- Evolutionary Ecology and Genetics Group, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (M.M.); (R.V.)
| | - Thomas Enriquez
- Evolution and Ecophysiology Group, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (T.E.); (B.V.)
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium; (T.E.); (B.V.)
| |
Collapse
|
6
|
de Bruijn JAC, Vet LEM, Smid HM, de Boer JG. Memory extinction and spontaneous recovery shaping parasitoid foraging behavior. Behav Ecol 2021; 32:952-960. [PMID: 34690548 PMCID: PMC8528537 DOI: 10.1093/beheco/arab066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/19/2021] [Accepted: 05/22/2021] [Indexed: 11/12/2022] Open
Abstract
Animals can alter their foraging behavior through associative learning, where an encounter with an essential resource (e.g., food or a reproductive opportunity) is associated with nearby environmental cues (e.g., volatiles). This can subsequently improve the animal's foraging efficiency. However, when these associated cues are encountered again, the anticipated resource is not always present. Such an unrewarding experience, also called a memory-extinction experience, can change an animal's response to the associated cues. Although some studies are available on the mechanisms of this process, they rarely focus on cues and rewards that are relevant in an animal's natural habitat. In this study, we tested the effect of different types of ecologically relevant memory-extinction experiences on the conditioned plant volatile preferences of the parasitic wasp Cotesia glomerata that uses these cues to locate its caterpillar hosts. These extinction experiences consisted of contact with only host traces (frass and silk), contact with nonhost traces, or oviposition in a nonhost near host traces, on the conditioned plant species. Our results show that the lack of oviposition, after contacting host traces, led to the temporary alteration of the conditioned plant volatile preference in C. glomerata, but this effect was plant species-specific. These results provide novel insights into how ecologically relevant memory-extinction experiences can fine-tune an animal's foraging behavior. This fine-tuning of learned behavior can be beneficial when the lack of finding a resource accurately predicts current, but not future foraging opportunities. Such continuous reevaluation of obtained information helps animals to prevent maladaptive foraging behavior.
Collapse
Affiliation(s)
- Jessica A C de Bruijn
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Louise E M Vet
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jetske G de Boer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
7
|
Farahani HK, Ashouri A, Abroon P, Pierre JS, van Baaren J. Wolbachia manipulate fitness benefits of olfactory associative learning in a parasitoid wasp. J Exp Biol 2021; 224:269008. [PMID: 34086908 DOI: 10.1242/jeb.240549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/20/2021] [Indexed: 11/20/2022]
Abstract
Upon encountering a host, a female parasitoid wasp has to decide whether to learn positive or negative cues related to the host. The optimal female decision will depend on the fitness costs and benefits of learned stimuli. Reward quality is positively related to the rate of behavioral acquisition in processes such as associative learning. Wolbachia, an endosymbiotic bacterium, often plays an impressive role in the manipulation of its arthropod host's biology. Here, we studied the responses of two natural Wolbachia infected/uninfected Trichogramma brassicae wasp populations to theoretically high- and low-reward values during a conditioning process and the consequences of their responses in terms of memory duration. According to our results, uninfected wasps showed an attraction response to high-value rewards, but showed aversive learning in response to low-value rewards. The memory span of uninfected wasps after conditioning by low-value rewards was significantly shorter than that for high-value rewards. As our results revealed, responses to high-quality hosts will bring more benefits (bigger size, increased fecundity and enhanced survival) than those to low-quality hosts for uninfected wasps. Infected wasps were attracted to conditioned stimuli with the same memory duration after conditioning by both types of hosts. This was linked to the fact that parasitoids emerging from both types of hosts present the same life-history traits. Therefore, these hosts represent the same quality reward for infected wasps. According to the obtained results, it can be concluded that Wolbachia manipulates the learning ability of its host, resulting in the wasp responding to all reward values similarly.
Collapse
Affiliation(s)
- Hossein Kishani Farahani
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad Ashouri
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Pouria Abroon
- Department of Plant Protection, College of Agriculture, University of Bu Ali, Hamadan, Iran
| | - Jean-Sebastien Pierre
- University of Rennes 1, UMR-CNRS 6553 EcoBio, Avenue du Général Leclerc, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Joan van Baaren
- University of Rennes 1, UMR-CNRS 6553 EcoBio, Avenue du Général Leclerc, Campus de Beaulieu, 35042 Rennes Cedex, France
| |
Collapse
|
8
|
de Bruijn JAC, Vosteen I, Vet LEM, Smid HM, de Boer JG. Multi-camera field monitoring reveals costs of learning for parasitoid foraging behaviour. J Anim Ecol 2021; 90:1635-1646. [PMID: 33724445 PMCID: PMC8361673 DOI: 10.1111/1365-2656.13479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/17/2021] [Indexed: 01/04/2023]
Abstract
Dynamic conditions in nature have led to the evolution of behavioural traits that allow animals to use information on local circumstances and adjust their behaviour accordingly, for example through learning. Although learning can improve foraging efficiency, the learned information can become unreliable as the environment continues to change. This could lead to potential fitness costs when memories holding such unreliable information persist. Indeed, persistent unreliable memory was found to reduce the foraging efficiency of the parasitoid Cotesia glomerata under laboratory conditions. Here, we evaluated the effect of such persistent unreliable memory on the foraging behaviour of C. glomerata in the field. This is a critical step in studies of foraging theory, since animal behaviour evolved under the complex conditions present in nature. Existing methods provide little detail on how parasitoids interact with their environment in the field, therefore we developed a novel multi‐camera system that allowed us to trace parasitoid foraging behaviour in detail. With this multi‐camera system, we studied how persistent unreliable memory affected the foraging behaviour of C. glomerata when these memories led parasitoids to plants infested with non‐host caterpillars in a semi‐field set‐up. Our results demonstrate that persistent unreliable memory can lead to maladaptive foraging behaviour in C. glomerata under field conditions and increased the likelihood of oviposition in the non‐host caterpillar Mamestra brassica. Furthermore, these time‐ and egg‐related costs can be context dependent, since they rely on the plant species used. These results provide us with new insight on how animals use previously obtained information in naturally complex and dynamic foraging situations and confirm that costs and benefits of learning depend on the environment animals forage in. Although behavioural studies of small animals in natural habitats remain challenging, novel methods such as our multi‐camera system contribute to understanding the nuances of animal foraging behaviour.
Collapse
Affiliation(s)
- Jessica A C de Bruijn
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Ilka Vosteen
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Louise E M Vet
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands.,Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Jetske G de Boer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
9
|
Ayelo PM, Pirk CWW, Yusuf AA, Chailleux A, Mohamed SA, Deletre E. Exploring the Kairomone-Based Foraging Behaviour of Natural Enemies to Enhance Biological Control: A Review. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kairomones are chemical signals that mediate interspecific interactions beneficial to organisms that detect the cues. These attractants can be individual compounds or mixtures of herbivore-induced plant volatiles (HIPVs) or herbivore chemicals such as pheromones, i.e., chemicals mediating intraspecific communication between herbivores. Natural enemies eavesdrop on kairomones during their foraging behaviour, i.e., location of oviposition sites and feeding resources in nature. Kairomone mixtures are likely to elicit stronger olfactory responses in natural enemies than single kairomones. Kairomone-based lures are used to enhance biological control strategies via the attraction and retention of natural enemies to reduce insect pest populations and crop damage in an environmentally friendly way. In this review, we focus on ways to improve the efficiency of kairomone use in crop fields. First, we highlight kairomone sources in tri-trophic systems and discuss how these attractants are used by natural enemies searching for hosts or prey. Then we summarise examples of field application of kairomones (pheromones vs. HIPVs) in recruiting natural enemies. We highlight the need for future field studies to focus on the application of kairomone blends rather than single kairomones which currently dominate the literature on field attractants for natural enemies. We further discuss ways for improving kairomone use through attract and reward technique, olfactory associative learning, and optimisation of kairomone lure formulations. Finally, we discuss why the effectiveness of kairomone use for enhancing biological control strategies should move from demonstration of increase in the number of attracted natural enemies, to reducing pest populations and crop damage below economic threshold levels and increasing crop yield.
Collapse
|
10
|
Romano D, Benelli G, Stefanini C. Opposite valence social information provided by bio-robotic demonstrators shapes selection processes in the green bottle fly. J R Soc Interface 2021; 18:20210056. [PMID: 33726543 PMCID: PMC8086872 DOI: 10.1098/rsif.2021.0056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/23/2021] [Indexed: 02/05/2023] Open
Abstract
Social learning represents a high-level complex process to acquire information about the environment, which is increasingly reported in invertebrates. The animal-robot interaction paradigm turned out to be an encouraging strategy to unveil social learning in vertebrates, but it has not been fully exploited in invertebrates. In this study, Lucilia sericata adults were induced to observe bio-robotic conspecific and predator demonstrators to reproduce different flower foraging choices. Can a fly manage two flows of social information with opposite valence? Herein, we attempt a reply. The selection process of L. sericata was affected by social information provided through different bio-robotic demonstrators, by avoiding coloured discs previously visited by a bio-robotic predator and preferring coloured discs previously visited by a bio-robotic conspecific. When both bio-robotic demonstrators visited the same disc, the latency duration increased and the flies significantly tended to avoid this disc. This indicates the complex risk-benefit evaluation process carried out by L. sericata during the acquisition of such social information. Overall, this article provides a unique perspective on the behavioural ecology of social learning in non-social insects; it also highlights the high potential of the animal-robot interaction approach for unveiling the full spectrum of invertebrates' abilities in using social information.
Collapse
Affiliation(s)
- Donato Romano
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, Pisa, Pontedera 56025, Italy
- Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, Pisa 56127, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, Pisa 56124, Italy
| | - Cesare Stefanini
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, Pisa, Pontedera 56025, Italy
- Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, Pisa 56127, Italy
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2020; 383:149-164. [PMID: 33275182 PMCID: PMC7873004 DOI: 10.1007/s00441-020-03329-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.
Collapse
Affiliation(s)
- Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, INRAE, 49045, Angers, France.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
12
|
Haverkamp A, Smid HM. A neuronal arms race: the role of learning in parasitoid-host interactions. CURRENT OPINION IN INSECT SCIENCE 2020; 42:47-54. [PMID: 32947014 DOI: 10.1016/j.cois.2020.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Parasitic wasps and their larval hosts are intimately connected by an array of behavioral adaptations and counter-adaptations. This co-evolution has led to highly specific, natural variation in learning rates and memory consolidation in parasitoid wasps. Similarly, the hosts of the parasitoids show specific sensory adaptations as well as non-associative learning strategies for parasitoid avoidance. However, these neuronal and behavioral adaptations of both hosts and wasps have so far been studied largely apart from each other. Here we argue that a parallel investigation of the nervous system in wasps and their hosts might lead to novel insights into the evolution of insect behavior and the neurobiology of learning and memory.
Collapse
Affiliation(s)
- Alexander Haverkamp
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
13
|
El Jundi B, Wystrach A. Editorial overview: Neuroecology of insects: when ultimate and proximate explanations unite. CURRENT OPINION IN INSECT SCIENCE 2020; 42:iii-v. [PMID: 33334502 DOI: 10.1016/j.cois.2020.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Basil El Jundi
- Zoology II, Biocenter, University of Würzburg, Würzburg, Germany
| | - Antoine Wystrach
- Research Centre on Animal Cognition, Centre for Integrative Biology, CRNS, University of Toulouse, Toulouse, France
| |
Collapse
|
14
|
Identification and Expression Profiling of Peripheral Olfactory Genes in the Parasitoid Wasp Aphidius ervi (Hymenoptera: Braconidae) Reared on Different Aphid Hosts. INSECTS 2019; 10:insects10110397. [PMID: 31717299 PMCID: PMC6920860 DOI: 10.3390/insects10110397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 11/17/2022]
Abstract
Generalist parasitoids of aphids, such as the wasp Aphidius ervi, display significant differences in terms of host preference and host acceptance, depending on the host on which they developed (natal host), which is preferred over a non-natal host, a trait known as host fidelity. This trait allows females to quickly find hosts in heterogeneous environments, a process mediated by chemosensory/olfactory mechanisms, as parasitoids rely on olfaction and chemical cues during host selection. Thus, it is expected that proteins participating in chemosensory recognition, such as odorant-binding proteins (OBPs) and odorant receptors (ORs) would play a key role in host preference. In this study, we addressed the effect of parasitoid reciprocal host switching between two aphid hosts (Sitobion avenae and Acyrthosiphon pisum) on the expression patterns of chemosensory genes in the wasp A. ervi. First, by using a transcriptomic approach based on RNAseq of A. ervi females reared on S. avenae and A. pisum, we were able to annotate a total of 91 transcripts related to chemoperception. We also performed an in-silico expression analysis and found three OBPs and five ORs displaying different expression levels. Then, by using qRT-PCR amplification, we found significant differences in the expression levels of these eight genes when the parasitoids were reciprocally transplanted from S. avenae onto A. pisum and vice versa. This suggests that the expression levels of genes coding for odorant receptors and odorant-binding proteins would be regulated by the specific plant–aphid host complex where the parasitoids develop (maternal previous experience) and that chemosensory genes coding for olfactory mechanisms would play a crucial role on host preference and host acceptance, ultimately leading to the establishment of host fidelity in A. ervi parasitoids.
Collapse
|
15
|
|
16
|
Mair MM, Ruther J. Chemical Ecology of the Parasitoid Wasp Genus Nasonia (Hymenoptera, Pteromalidae). Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00184] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
17
|
Kamran M, Moore ME, Fisher AM, Moore PA. Examination of Homing Behaviors in Two Species of Crayfish Following Translational Displacements. Integr Org Biol 2019; 1:obz008. [PMID: 33791524 PMCID: PMC7671143 DOI: 10.1093/iob/obz008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Crayfish have been model systems for examining complex behaviors and the underlying neural mechanisms that guide these behaviors. While spatial learning has been examined in a subset of crayfish species, homing behaviors remained largely unexamined. Here we examined homing behavior following translational displacements in a primary burrowing (Creaserinus fodiens) and tertiary burrowing species (Faxonius rusticus). Individuals of both species were placed in an arena with artificial burrows embedded within the arena floor. The arena floor was fitted with a panel, which served as a treadmill belt to allow for translational displacement. Individuals were displaced after they had left the burrows. The movement pathways of displaced crayfish were compared with those in two control groups, one which underwent no displacement and the second in which the treadmill belt was displaced but returned to its original position almost immediately. Homing success for displaced individuals of both species was considerably reduced in comparison to the control groups. Moreover, displaced primary burrowers had significantly lower homing success in comparison to displaced tertiary burrowers. Primary burrowers exhibited greater homing error and significantly impaired homing behaviors compared with tertiary burrowers. Furthermore, heading angles in displaced groups (of both species) were significantly higher than the control group of both species. Species-specific differences in homing success and homing error indicate that primary burrowers were more negatively impacted by translational displacements. These homing differences indicate that these two species of crayfish have differing homing strategies.
Collapse
Affiliation(s)
- Maryam Kamran
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97330, USA
| | - Meghan E Moore
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Andrea M Fisher
- Department of Biological Sciences, University of South Florida St. Petersburg, St. Petersburg, FL 33701, USA
| | - Paul A Moore
- J.P. Scott Center for Neuroscience, Mind & Behavior, Departments of Biological Sciences and Psychology, Bowling Green State University, Bowling Green, OH 43403, USA.,Laboratory for Sensory Ecology, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
18
|
Vosteen I, van den Meiracker N, Poelman EH. Getting confused: learning reduces parasitoid foraging efficiency in some environments with non-host-infested plants. Oecologia 2019; 189:919-930. [PMID: 30929072 PMCID: PMC6486909 DOI: 10.1007/s00442-019-04384-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
Foraging animals face the difficult task to find resources in complex environments that contain conflicting information. The presence of a non-suitable resource that provides attractive cues can be expected to confuse foraging animals and to reduce their foraging efficiency. We used the parasitoid Cotesia glomerata to study the effect of non-host-infested plants and associative learning on parasitoid foraging efficiency. Inexperienced C. glomerata did not prefer volatiles emitted from host (Pieris brassicae)-infested plants over volatiles from non-host (Mamestra brassicae)-infested plants and parasitoids that had to pass non-host-infested plants needed eight times longer to reach the host-infested plant compared to parasitoids that had to pass undamaged plants. Contrary to our expectations, oviposition experience on a host-infested leaf decreased foraging efficiency due to more frequent visits of non-host-infested plants. Oviposition experience did not only increase the responsiveness of C. glomerata to the host-infested plants, but also the attraction towards herbivore-induced plant volatiles in general. Experience with non-host-infested leaves on the contrary resulted in a reduced attraction towards non-host-infested plants, but did not increase foraging efficiency. Our study shows that HIPVs emitted by non-host-infested plants can confuse foraging parasitoids and reduce their foraging efficiency when non-host-infested plants are abundant. Our results further suggest that the effect of experience on foraging efficiency in the presence of non-host-infested plants depends on the similarity between the rewarding and the non-rewarding cue as well as on the completeness of information that parasitoids have acquired about the rewarding and non-rewarding cues.
Collapse
Affiliation(s)
- Ilka Vosteen
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
| | | | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
19
|
Morawo T, Fadamiro H. The role of herbivore- and plant-related experiences in intraspecific host preference of a relatively specialized parasitoid. INSECT SCIENCE 2019; 26:341-350. [PMID: 28880431 DOI: 10.1111/1744-7917.12537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/09/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
Parasitoids use odor cues from infested plants and herbivore hosts to locate their hosts. Specialist parasitoids of generalist herbivores are predicted to rely more on herbivore-derived cues than plant-derived cues. Microplitis croceipes (Cresson) (Hymenoptera: Braconidae) is a relatively specialized larval endoparasitoid of Heliothis virescens (F.) (Lepidoptera: Noctuidae), which is a generalist herbivore on several crops including cotton and soybean. Using M. croceipes/H. virescens as a model system, we tested the following predictions about specialist parasitoids of generalist herbivores: (i) naive parasitoids will show innate responses to herbivore-emitted kairomones, regardless of host plant identity and (ii) herbivore-related experience will have a greater influence on intraspecific oviposition preference than plant-related experience. Inexperienced (naive) female M. croceipes did not discriminate between cotton-fed and soybean-fed H. virescens in oviposition choice tests, supporting our first prediction. Oviposition experience alone with either host group influenced subsequent oviposition preference while experience with infested plants alone did not elicit preference in M. croceipes, supporting our second prediction. Furthermore, associative learning of oviposition with host-damaged plants facilitated host location. Interestingly, naive parasitoids attacked more soybean-fed than cotton-fed host larvae in two-choice tests when a background of host-infested cotton odor was supplied, and vice versa. This suggests that plant volatiles may have created an olfactory contrast effect. We discussed ecological significance of the results and concluded that both plant- and herbivore-related experiences play important role in parasitoid host foraging.
Collapse
Affiliation(s)
- Tolulope Morawo
- Department of Entomology & Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Henry Fadamiro
- Department of Entomology & Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
20
|
Kruidhof HM, Kostenko O, Smid HM, Vet LEM. Integrating Parasitoid Olfactory Conditioning in Augmentative Biological Control: Potential Impact, Possibilities, and Challenges. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
21
|
Snell-Rood EC, Steck MK. Behaviour shapes environmental variation and selection on learning and plasticity: review of mechanisms and implications. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2018.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Kraaijeveld K, Oostra V, Liefting M, Wertheim B, de Meijer E, Ellers J. Regulatory and sequence evolution in response to selection for improved associative learning ability in Nasonia vitripennis. BMC Genomics 2018; 19:892. [PMID: 30526508 PMCID: PMC6288879 DOI: 10.1186/s12864-018-5310-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Background Selection acts on the phenotype, yet only the genotype is inherited. While both the phenotypic and genotypic response to short-term selection can be measured, the link between these is a major unsolved problem in evolutionary biology, in particular for complex behavioural phenotypes. Results Here we characterize the genomic and the transcriptomic basis of associative learning ability in the parasitic wasp Nasonia vitripennis and use gene network analysis to link the two. We artificially selected for improved associative learning ability in four independent pairs of lines and identified signatures of selection across the genome. Allele frequency diverged consistently between the selected and control lines in 118 single nucleotide polymorphisms (SNPs), clustering in 51 distinct genomic regions containing 128 genes. The majority of SNPs were found in regulatory regions, suggesting a potential role for gene expression evolution. We therefore sequenced the transcriptomes of selected and control lines and identified 36 consistently differentially expressed transcripts with large changes in expression. None of the differentially expressed genes also showed sequence divergence as a result of selection. Instead, gene network analysis showed many of the genes with consistent allele frequency differences and all of the differentially expressed genes to cluster in a single co-expression network. At a functional level, both genomic and transcriptomic analyses implicated members of gene networks known to be involved in neural plasticity and cognitive processes. Conclusions Taken together, our results reveal how specific cognitive abilities can readily respond to selection via a complex interplay between regulatory and sequence evolution. Electronic supplementary material The online version of this article (10.1186/s12864-018-5310-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ken Kraaijeveld
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands.
| | - Vicencio Oostra
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK
| | - Maartje Liefting
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Emile de Meijer
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacintha Ellers
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Danner H, Desurmont GA, Cristescu SM, van Dam NM. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. THE NEW PHYTOLOGIST 2018; 220:726-738. [PMID: 28134434 DOI: 10.1111/nph.14428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/08/2016] [Indexed: 05/04/2023]
Abstract
Herbivore-induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering native foodwebs may disrupt the infochemical network as a result of changes in HIPV profiles. Here, we analysed HIPV blends of native Brassica rapa plants infested with one of 10 herbivore species with different coexistence histories, diet breadths and feeding modes. Partial least squares (PLS) models were fitted to assess whether HIPV blends emitted by Dutch B. rapa differ between native and exotic herbivores, between specialists and generalists, and between piercing-sucking and chewing herbivores. These models were used to predict the status of two additional herbivores. We found that HIPV blends predicted the evolutionary history, diet breadth and feeding mode of the herbivore with an accuracy of 80% or higher. Based on the HIPVs, the PLS models reliably predicted that Trichoplusia ni and Spodoptera exigua are perceived as exotic, leaf-chewing generalists by Dutch B. rapa plants. These results indicate that there are consistent and predictable differences in HIPV blends depending on global herbivore characteristics, including coexistence history. Consequently, native organisms may be able to rapidly adapt to potentially disruptive effects of exotic herbivores on the infochemical network.
Collapse
Affiliation(s)
- Holger Danner
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500, GL Nijmegen, the Netherlands
| | - Gaylord A Desurmont
- Institute of Biology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
- European Biological Control Laboratory, USDA-ARS, CS 90013, Montferrier-sur-Lez, France
| | - Simona M Cristescu
- Life Science Trace Gas Facility, Institute for Molecules and Materials, Radboud University, 6500, GL Nijmegen, the Netherlands
| | - Nicole M van Dam
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, PO Box 9010, 6500, GL Nijmegen, the Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
- Institute of Ecology, Friedrich Schiller University Jena, Dornburger-Str. 159, Jena, 07743, Germany
| |
Collapse
|
24
|
de Bruijn JAC, Vet LEM, Smid HM. Costs of Persisting Unreliable Memory: Reduced Foraging Efficiency for Free-Flying Parasitic Wasps in a Wind Tunnel. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
25
|
Sasakawa K, Kon Y. Learning-induced host preference in male parasitoid wasps as a potential driver of ecological speciation. J Evol Biol 2018; 31:1750-1755. [PMID: 30084139 DOI: 10.1111/jeb.13363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 07/15/2018] [Accepted: 07/28/2018] [Indexed: 11/27/2022]
Abstract
Ecological speciation via a host shift plays an important role in the diversification of phytophagous and parasitic insects. However, it is not clear how separation is maintained among initial populations in which genetic separation mechanisms are not fully established. Learning-induced host preference in females can contribute to host fidelity and result in a barrier to gene flow in the initial populations. However, the role of males, which also affects gene flow, has been largely unexplored. We examined host preference through induced learning in males, which can contribute to initial population divergence, in the parasitoid wasp, Anisopteromalus calandrae, and two host species, Callosobruchus chinensis and C. maculatus. Behavioural experiments were performed using a four-chamber olfactometer. When wasps were conditioned during the preimaginal and early adult stage without mating experience, no preference was induced regardless of the host species. However, when wasps were conditioned at the early adult stage using the odour of the rearing host and mate reward, preference was induced in both host species. These results demonstrate mate reward learning-induced host preference in males. Interestingly, when the rearing host species and the mating conditioning host species were interchanged, preference was induced only in males conditioned to C. maculatus at mating. Thus, depending on the host species, preimaginal and early adult learning is vital to preference induction. Our results suggest that behavioural change via learning in males plays a more important role in the ecological speciation of phytophagous and parasitic insects than previously recognized.
Collapse
Affiliation(s)
- Kôji Sasakawa
- Department of Science Education, Faculty of Education, Chiba University, Inage-ku, Chiba, Japan
| | - Yûsuke Kon
- Department of Science Education, Faculty of Education, Chiba University, Inage-ku, Chiba, Japan
| |
Collapse
|
26
|
|
27
|
Rice AM, McQuillan MA. Maladaptive learning and memory in hybrids as a reproductive isolating barrier. Proc Biol Sci 2018; 285:20180542. [PMID: 29848649 PMCID: PMC5998094 DOI: 10.1098/rspb.2018.0542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023] Open
Abstract
Selection against hybrid offspring, or postzygotic reproductive isolation, maintains species boundaries in the face of gene flow from hybridization. In this review, we propose that maladaptive learning and memory in hybrids is an important, but overlooked form of postzygotic reproductive isolation. Although a role for learning in premating isolation has been supported, whether learning deficiencies can contribute to postzygotic isolation has rarely been tested. We argue that the novel genetic combinations created by hybridization have the potential to impact learning and memory abilities through multiple possible mechanisms, and that any displacement from optima in these traits is likely to have fitness consequences. We review evidence supporting the potential for hybridization to affect learning and memory, and evidence of links between learning abilities and fitness. Finally, we suggest several avenues for future research. Given the importance of learning for fitness, especially in novel and unpredictable environments, maladaptive learning and memory in hybrids may be an increasingly important source of postzygotic reproductive isolation.
Collapse
Affiliation(s)
- Amber M Rice
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Michael A McQuillan
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
28
|
Giunti G, Benelli G, Palmeri V, Canale A. Bactrocera oleae-induced olive VOCs routing mate searching in Psyttalia concolor males: impact of associative learning. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:40-47. [PMID: 28464964 DOI: 10.1017/s0007485317000451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Olfaction is a key sense routing foraging behaviour in parasitoids. Preferences for food, mate and host stimuli can be innate in parasitic wasps. Alternatively, learning-mediated mechanisms play a crucial role. Females of the braconid parasitoid Psyttalia concolor exploit olfactory cues arising from tephritid hosts and related microhabitats. However, little is known on the olfactory stimuli routing males searching for mates. In this study, we focused on the attractiveness of Bactrocera oleae-induced olive volatiles towards P. concolor males. Furthermore, we evaluated learning occurrence in virgin males, when trained for selected unattractive volatile organic compounds (VOCs) associated with mate rewards. (E)-β-Ocimene, α-pinene and limonene attracted virgin males in Y-tube bioassays. Unattractive VOCs evoked positive chemotaxis after associative learning training. P. concolor males exposed to VOCs during a successful or unsuccessful mating, showed short-term preference for these VOCs (<1 h). However, memory consolidation was strictly dependent on reward value. Indeed, males experiencing a successful mating showed a fast consolidation into protein dependent long-term memory, appearing after 24 h. On the other hand, males experiencing a less valuable training experience (i.e. unsuccessful courtship), did not show consolidated memory after 24 h. Overall, our findings suggest that P. concolor virgin males may exploit VOCs from the host microhabitat to boost their mate searching activity, thus their reproductive success. However, since learning is a costly process, P. concolor males retained durable memories just in presence of a valuable reward, thus avoiding maladaptive behaviours.
Collapse
Affiliation(s)
- G Giunti
- Department of Agriculture,University "Mediterranea" of Reggio Calabria,Loc. Feo di Vito, 89122 Reggio Calabria,Italy
| | - G Benelli
- Department of Agriculture, Food and Environment,University of Pisa,via del Borghetto 80, 56124 Pisa,Italy
| | - V Palmeri
- Department of Agriculture,University "Mediterranea" of Reggio Calabria,Loc. Feo di Vito, 89122 Reggio Calabria,Italy
| | - A Canale
- Department of Agriculture, Food and Environment,University of Pisa,via del Borghetto 80, 56124 Pisa,Italy
| |
Collapse
|
29
|
Whitfield JB, Austin AD, Fernandez-Triana JL. Systematics, Biology, and Evolution of Microgastrine Parasitoid Wasps. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:389-406. [PMID: 29058979 DOI: 10.1146/annurev-ento-020117-043405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The braconid parasitoid wasp subfamily Microgastrinae is perhaps the most species-rich subfamily of animals on Earth. Despite their small size, they are familiar to agriculturalists and field ecologists alike as one of the principal groups of natural enemies of caterpillars feeding on plants. Their abundance and nearly ubiquitous terrestrial distribution, their intricate interactions with host insects, and their historical association with mutualistic polydnaviruses have all contributed to Microgastrinae becoming a key group of organisms for studying parasitism, parasitoid genomics, and mating biology. However, these rich sources of data have not yet led to a robust genus-level classification of the group, and some taxonomic confusion persists as a result. We present the current status of understanding of the general biology, taxonomic history, diversity, geographical patterns, host relationships, and phylogeny of Microgastrinae as a stimulus and foundation for further study. Current progress in elucidating the biology and taxonomy of this important group is rapid and promises a revolution in the classification of these wasps in the near future.
Collapse
Affiliation(s)
- James B Whitfield
- Department of Entomology, University of Illinois, Urbana, Illinois 61801, USA;
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia;
| | | |
Collapse
|
30
|
Kroes A, Weldegergis BT, Cappai F, Dicke M, van Loon JJA. Terpenoid biosynthesis in Arabidopsis attacked by caterpillars and aphids: effects of aphid density on the attraction of a caterpillar parasitoid. Oecologia 2017; 185:699-712. [PMID: 29052769 PMCID: PMC5681606 DOI: 10.1007/s00442-017-3985-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022]
Abstract
One of the responses of plants to insect attack is the production of volatile organic compounds that mediate indirect defence of plants by attracting natural enemies of the attacking herbivores. Herbivore-induced plant volatiles (HIPVs) include terpenoids that play key roles in the attraction of natural enemies. Crosstalk between phytohormonal signalling pathways is well known to affect the regulation of plant defences, including the emission of HIPVs. Thus, simultaneous feeding on the same plant by caterpillars and aphids, can affect the attraction of parasitoids by the plant compared to single insect attack. The role of aphid density in the regulation of HIPV emission by plants under dual attack has not been studied previously. Here, we investigated the attraction of Diadegma semiclausum, a parasitoid of the Diamondback moth Plutella xylostella, to volatiles emitted by Arabidopsis thaliana plants, simultaneously attacked by host caterpillars, and by the non-host aphid Brevicoryne brassicae. Our study shows that the effect of aphid infestation on parasitoid attraction is influenced by the density of the aphids. Biosynthesis and emission of (E,E)-α-farnesene could be linked to the observed preference of D. semiclausum parasitoids for the HIPV blend emitted by plants dually infested by caterpillars and aphids at a high density compared to dually infested plants with a low aphid density. Parasitoids such as D. semiclausum are important enemies of herbivorous insects and a better understanding of how plants express indirect defence mechanisms in response to multiple insect attack will provide important knowledge on plant-herbivore-parasitoid interactions under multiple stress conditions.
Collapse
Affiliation(s)
- Anneke Kroes
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Francesco Cappai
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
31
|
Sunada H, Totani Y, Nakamura R, Sakakibara M, Lukowiak K, Ito E. Two Strains of Lymnaea stagnalis and the Progeny from Their Mating Display Differential Memory-Forming Ability on Associative Learning Tasks. Front Behav Neurosci 2017; 11:161. [PMID: 28955210 PMCID: PMC5601001 DOI: 10.3389/fnbeh.2017.00161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/16/2017] [Indexed: 01/11/2023] Open
Abstract
The pond snail Lymnaea stagnalis learns and forms long-term memory (LTM) following both operant conditioning of aerial respiratory behavior and classical conditioning of taste aversive behavior. In the present study, we examined whether there are interstrain differences in the ability to form LTM following these two types of conditioning. A strain of Lymnaea (TC1) collected in Alberta, Canada exhibits superior memory-forming ability following aerial respiratory operant conditioning compared to a laboratory-reared strain of Lymnaea from Netherlands known as the Dutch strain. We asked whether the offspring of the Canadian TC1 and Dutch snails (i.e., filial 1 (F1) cross snails) would have the superior memory ability and found, rather, that their memory ability was average like the Dutch snails. That is, the Canadian TC1 snails have superior ability for LTM formation following aerial respiratory operant conditioning, but the Dutch and the generated F1 cross have average ability for memory forming. We next examined the Canadian TC1, Dutch and F1 cross snails for their ability to learn and form memory following conditioned taste aversion (CTA). All three populations showed similar associative CTA responses. However, both LTM formation and the ratio of good-to-poor performers in the memory retention test were much better in the Dutch snails than the Canadian TC1 and F1 cross snails. The memory abilities of the Canadian TC1 and F1 cross snails were average. Our present findings, therefore, suggest that snails of different strains have different memory abilities, and the F1 cross snails do not inherit the memory ability from the smart strain. To our knowledge, there have been a limited number of studies examining differences in memory ability among invertebrate strains, with the exception of studies using mutant flies.
Collapse
Affiliation(s)
- Hiroshi Sunada
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri UniversitySanuki, Japan
| | - Yuki Totani
- Department of Biology, Waseda UniversityTokyo, Japan
| | | | - Manabu Sakakibara
- Research Organization for Nano and Life Innovation, Waseda UniversityTokyo, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of CalgaryCalgary, AB, Canada
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri UniversitySanuki, Japan.,Department of Biology, Waseda UniversityTokyo, Japan.,Research Organization for Nano and Life Innovation, Waseda UniversityTokyo, Japan.,WASEDA Bioscience Research Institute in SingaporeSingapore, Singapore.,Lipid Science and Aging Research Center and Center for Stem Cell Research, Kaohsiung Medical UniversityKaohsiung, Taiwan
| |
Collapse
|
32
|
Kishani Farahani H, Ashouri A, Goldansaz SH, Shapiro MS, Pierre JS, van Baaren J. Decrease of memory retention in a parasitic wasp: an effect of host manipulation by Wolbachia? INSECT SCIENCE 2017; 24:569-583. [PMID: 27090067 DOI: 10.1111/1744-7917.12348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/24/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
Several factors, such as cold exposure, aging, the number of experiences and viral infection, have been shown to affect learning ability in different organisms. Wolbachia has been found worldwide as an arthropod parasite/mutualist symbiont in a wide range of species, including insects. Differing effects have been identified on physiology and behavior by Wolbachia. However, the effect of Wolbachia infection on the learning ability of their host had never previously been studied. The current study carried out to compare learning ability and memory duration in 2 strains of the parasitoid Trichogramma brassicae: 1 uninfected and 1 infected by Wolbachia. Both strains were able to associate the novel odors with the reward of an oviposition into a host egg. However, the percentage of females that responded to the experimental design and displayed an ability to learn in these conditions was higher in the uninfected strain. Memory duration was longer in uninfected wasps (23.8 and 21.4 h after conditioning with peppermint and lemon, respectively) than in infected wasps (18.9 and 16.2 h after conditioning with peppermint and lemon, respectively). Memory retention increased in response to the number of conditioning sessions in both strains, but memory retention was always shorter in the infected wasps than in the uninfected ones. Wolbachia infection may select for reduced memory retention because shorter memory induces infected wasps to disperse in new environments and avoid competition with uninfected wasps by forgetting cues related to previously visited environments, thus increasing transmission of Wolbachia in new environments.
Collapse
Affiliation(s)
- Hossein Kishani Farahani
- Faculty of Agriculture and Natural Resources, Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Ahmad Ashouri
- Faculty of Agriculture and Natural Resources, Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Seyed Hossein Goldansaz
- Faculty of Agriculture and Natural Resources, Department of Plant Protection, University of Tehran, Karaj, Iran
| | - Martin S Shapiro
- Department of Psychology, California State University, Fresno, USA
| | - Jean-Sebastien Pierre
- UMR-CNRS 6553 EcoBio, University of Rennes 1, Avenue du Général Leclerc, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Joan van Baaren
- UMR-CNRS 6553 EcoBio, University of Rennes 1, Avenue du Général Leclerc, Campus de Beaulieu, 35042, Rennes Cedex, France
| |
Collapse
|
33
|
van Oudenhove L, Mailleret L, Fauvergue X. Infochemical use and dietary specialization in parasitoids: a meta-analysis. Ecol Evol 2017; 7:4804-4811. [PMID: 28690809 PMCID: PMC5496531 DOI: 10.1002/ece3.2888] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 11/12/2022] Open
Abstract
Many parasitoid species use olfactory cues to locate their hosts. In tritrophic systems, parasitoids of herbivores can exploit the chemical blends emitted by plants in reaction to herbivore-induced damage, known as herbivore-induced plant volatiles (HIPVs). In this study, we explored the specificity and innateness of parasitoid responses to HIPVs using a meta-analysis of data from the literature. Based on the concept of dietary specialization and infochemical use, we hypothesized that (i) specialist parasitoids (i.e., with narrow host ranges) should be attracted to specific HIPV signals, whereas generalist parasitoids (i.e., with broad host ranges) should be attracted to more generic HIPV signals and (ii) specialist parasitoids should innately respond to HIPVs, whereas generalist parasitoids should have to learn to associate HIPVs with host presence. We characterized the responses of 66 parasitoid species based on published studies of parasitoid behavior. Our meta-analysis showed that (i) as predicted, specialist parasitoids were attracted to more specific signals than were generalist parasitoids but, (ii) contrary to expectations, response innateness depended on a parasitoid's target host life stage rather than on its degree of host specialization: parasitoids of larvae were more likely to show an innate response to HIPVs than were parasitoids of adults. This result changes our understanding of dietary specialization and highlights the need for further theoretical research that will help clarify infochemical use by parasitoids.
Collapse
Affiliation(s)
| | - Ludovic Mailleret
- Université Côte d'AzurINRACNRSISASophia AntipolisFrance
- Université Côte d'AzurINRIAINRACNRSUPMC Univ. Paris 06Sophia AntipolisFrance
| | | |
Collapse
|
34
|
Froissart L, Giurfa M, Sauzet S, Desouhant E. Cognitive adaptation in asexual and sexual wasps living in contrasted environments. PLoS One 2017; 12:e0177581. [PMID: 28498866 PMCID: PMC5428991 DOI: 10.1371/journal.pone.0177581] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/28/2017] [Indexed: 12/01/2022] Open
Abstract
Differences in learning and memory dynamics between populations are suspected to result from differences in ecological constraints such as resource distribution. The two reproductive modes (strains) of the parasitoid wasp Venturia canescens share the same geographical areas but live in contrasting habitats: arrhenotokous wasps live in the wild (generally orchards), whereas thelytokous ones live mostly in stored-products buildings (e.g. granaries). This species thus represents a relevant biological model for understanding the relationship between the ecological constraints faced by a species and its memory and learning ability. We showed that after having laid eggs in presence of both a synthetic odour and natural olfactory cues of their host, arrhenotokous wasps exhibited a change in their behavioural response towards the synthetic odour that was at least as pronounced as in thelytokous ones even though they were faster in their decision-making process. This is consistent with better learning skills in arrhenotokous wasps. The corresponding memory trace persisted in both strains for at least 51 h. We compare and discuss the learning and memory ablities of both strains as a function of their costs and benefits in their preferential habitats.
Collapse
Affiliation(s)
- Lucie Froissart
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Claude Bernard, Université de Lyon, CNRS, Villeurbanne, France
- Institut Universitaire de Technologie Lyon 2, Université Lumière Lyon 2, Université de Lyon, Bron, France
- * E-mail: (LF); (ED)
| | - Martin Giurfa
- Research Center on Animal Cognition, Université de Toulouse, CNRS, Toulouse, France
| | - Sandrine Sauzet
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Claude Bernard, Université de Lyon, CNRS, Villeurbanne, France
| | - Emmanuel Desouhant
- Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Université Claude Bernard, Université de Lyon, CNRS, Villeurbanne, France
- * E-mail: (LF); (ED)
| |
Collapse
|
35
|
Abram PK, Cusumano A, Abram K, Colazza S, Peri E. Testing the habituation assumption underlying models of parasitoid foraging behavior. PeerJ 2017; 5:e3097. [PMID: 28321365 PMCID: PMC5357337 DOI: 10.7717/peerj.3097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/15/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Habituation, a form of non-associative learning, has several well-defined characteristics that apply to a wide range of physiological and behavioral responses in many organisms. In classic patch time allocation models, habituation is considered to be a major mechanistic component of parasitoid behavioral strategies. However, parasitoid behavioral responses to host cues have not previously been tested for the known, specific characteristics of habituation. METHODS In the laboratory, we tested whether the foraging behavior of the egg parasitoid Trissolcus basalis shows specific characteristics of habituation in response to consecutive encounters with patches of host (Nezara viridula) chemical contact cues (footprints), in particular: (i) a training interval-dependent decline in response intensity, and (ii) a training interval-dependent recovery of the response. RESULTS As would be expected of a habituated response, wasps trained at higher frequencies decreased their behavioral response to host footprints more quickly and to a greater degree than those trained at low frequencies, and subsequently showed a more rapid, although partial, recovery of their behavioral response to host footprints. This putative habituation learning could not be blocked by cold anesthesia, ingestion of an ATPase inhibitor, or ingestion of a protein synthesis inhibitor. DISCUSSION Our study provides support for the assumption that diminishing responses of parasitoids to chemical indicators of host presence constitutes habituation as opposed to sensory fatigue, and provides a preliminary basis for exploring the underlying mechanisms.
Collapse
Affiliation(s)
- Paul K Abram
- Université de Montréal, Institut de Recherche en Biologie Végétale, Montréal, Canada
| | - Antonino Cusumano
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy.,Department of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Katrina Abram
- Université de Montréal, Institut de Recherche en Biologie Végétale, Montréal, Canada
| | - Stefano Colazza
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Ezio Peri
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
36
|
Schausberger P, Peneder S. Non-associative versus associative learning by foraging predatory mites. BMC Ecol 2017; 17:2. [PMID: 28088215 PMCID: PMC5237478 DOI: 10.1186/s12898-016-0112-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 12/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Learning processes can be broadly categorized into associative and non-associative. Associative learning occurs through the pairing of two previously unrelated stimuli, whereas non-associative learning occurs in response to a single stimulus. How these two principal processes compare in the same learning task and how they contribute to the overall behavioural changes brought about by experience is poorly understood. We tackled this issue by scrutinizing associative and non-associative learning of prey, Western flower thrips Frankliniella occidentalis, by the predatory mite, Neoseiulus californicus. We compared the behaviour of thrips-experienced and -naïve predators, which, early in life, were exposed to either thrips with feeding (associative learning), thrips without feeding (non-associative learning), thrips traces on the surface (non-associative learning), spider mites with feeding (thrips-naïve) or spider mite traces on the surface (thrips-naïve). RESULTS Thrips experience in early life, no matter whether associative or not, resulted in higher predation rates on thrips by adult females. In the no-choice experiment, associative thrips experience increased the predation rate on the first day, but shortened the longevity of food-stressed predators, a cost of learning. In the choice experiment, thrips experience, no matter whether associative or not, increased egg production, an adaptive benefit of learning. CONCLUSIONS Our study shows that both non-associative and associative learning forms operate in foraging predatory mites, N. californicus. The non-rewarded thrips prey experience produced a slightly weaker, but less costly, learning effect than the rewarded experience. We argue that in foraging predatory mites non-associative learning is an inevitable component of associative learning, rather than a separate process.
Collapse
Affiliation(s)
- Peter Schausberger
- Department of Behavioural Biology, University of Vienna, Vienna, Austria. .,Group of Arthropod Ecology and Behavior, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Stefan Peneder
- Group of Arthropod Ecology and Behavior, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
37
|
Clavijo McCormick A. Can plant-natural enemy communication withstand disruption by biotic and abiotic factors? Ecol Evol 2016; 6:8569-8582. [PMID: 28031808 PMCID: PMC5167045 DOI: 10.1002/ece3.2567] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/24/2022] Open
Abstract
The attraction of natural enemies towards herbivore-induced plant volatiles is a well-documented phenomenon. However, the majority of published studies are carried under optimal water and nutrient regimes and with just one herbivore. But what happens when additional levels of ecological complexity are added? Does the presence of a second herbivore, microorganisms, and abiotic stress interfere with plant-natural enemy communication? or is communication stable enough to withstand disruption by additional biotic and abiotic factors?Investigating the effects of these additional levels of ecological complexity is key to understanding the stability of tritrophic interactions in natural ecosystems and may aid to forecast the impact of environmental disturbances on these, especially in climate change scenarios, which are often associated with modifications in plant and arthropod species distribution and increased levels of abiotic stress.This review explores the literature on natural enemy attraction to herbivore-induced volatiles when, besides herbivory, plants are challenged by additional biotic and abiotic factors.The aim of this review was to establish the impact of different biotic and abiotic factors on plant-natural enemy communication and to highlight critical aspects to guide future research efforts.
Collapse
|
38
|
Giunti G, Benelli G, Flamini G, Michaud JP, Canale A. Innate and Learned Responses of the Tephritid Parasitoid Psyttalia concolor (Hymenoptera: Braconidae) to Olive Volatiles Induced by Bactrocera oleae (Diptera: Tephritidae) Infestation. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:2272-2280. [PMID: 27616766 DOI: 10.1093/jee/tow184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Parasitic wasps can learn cues that alter their behavioral responses and increase their fitness, such as those that improve host location efficiency. Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae) is a koinobiont endoparasitoid of 14 economically important tephritid species, including the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). In this research, we investigated the nature of olfactory cues mediating this tritrophic interaction. First, we identified the chemical stimuli emanating from uninfested and B. oleae-infested olive fruits via solid phase microextraction and gas chromatography-mass spectrometry analyses and identified >70 volatile organic compounds (VOCs). Two of these were increased by B. oleae infestation, (E)-β-ocimene and 2-methyl-6-methylene-1,7-octadien-3-one, and four were decreased, α-pinene, β-pine ne, limonene, and β-elemene. Innate positive chemotaxis of mated P. concolor females toward these VOCs was then tested in olfactometer assays. Females were attracted only by (E)-β-ocimene, at both tested dosages, indicating an intrinsic response to this compound as a short-range attractant. Next, we tested whether mated P. concolor females could learn to respond to innately unattractive VOCs if they were first presented with a food reward. Two nonassociative controls were conducted, i.e., "odor only" and "reward only." Following training, females showed positive chemotaxis toward these VOCs in all tested combinations, with the exception of limonene, a VOC commonly produced by flowers. Control females showed no significant preferences, indicating that positive associative learning had occurred. These results clarify how learned cues can fine-tune innate responses to B. oleae-induced VOCs in this generalist parasitoid of tephritid flies.
Collapse
Affiliation(s)
- Giulia Giunti
- Insect Behavior Group, Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy (; ; )
| | - Giovanni Benelli
- Insect Behavior Group, Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy (; ; )
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - J P Michaud
- Department of Entomology, Agricultural Research Center-Hays, Kansas State University, 1232 240th Ave., Hays, KS 67601
| | - Angelo Canale
- Insect Behavior Group, Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy (; ; )
| |
Collapse
|
39
|
Seiter M, Schausberger P. Constitutive and Operational Variation of Learning in Foraging Predatory Mites. PLoS One 2016; 11:e0166334. [PMID: 27814380 PMCID: PMC5096697 DOI: 10.1371/journal.pone.0166334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/26/2016] [Indexed: 01/13/2023] Open
Abstract
Learning is widely documented across animal taxa but studies stringently scrutinizing the causes of constitutive or operational variation of learning among populations and individuals are scarce. The ability to learn is genetically determined and subject to constitutive variation while the performance in learning depends on the immediate circumstances and is subject to operational variation. We assessed variation in learning ability and performance of plant-inhabiting predatory mites, Amblyseius swirskii, caused by population origin, rearing diet, and type of experience. Using an early learning foraging paradigm, we determined that homogeneous single prey environments did not select for reduced learning ability, as compared to natural prey-diverse environments, whereas a multi-generational pollen diet resulted in loss of learning, as compared to a diet of live prey. Associative learning produced stronger effects than non-associative learning but both types of experience produced persistent memory. Our study represents a key example of environmentally caused variation in learning ability and performance.
Collapse
Affiliation(s)
- Michael Seiter
- Group of Arthropod Ecology and Behavior, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Schausberger
- Group of Arthropod Ecology and Behavior, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Behavioural Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Simões PMV, Ott SR, Niven JE. Environmental Adaptation, Phenotypic Plasticity, and Associative Learning in Insects: The Desert Locust as a Case Study. Integr Comp Biol 2016; 56:914-924. [PMID: 27549202 DOI: 10.1093/icb/icw100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ability to learn and store information should be adapted to the environment in which animals operate to confer a selective advantage. Yet the relationship between learning, memory, and the environment is poorly understood, and further complicated by phenotypic plasticity caused by the very environment in which learning and memory need to operate. Many insect species show polyphenism, an extreme form of phenotypic plasticity, allowing them to occupy distinct environments by producing two or more alternative phenotypes. Yet how the learning and memories capabilities of these alternative phenotypes are adapted to their specific environments remains unknown for most polyphenic insect species. The desert locust can exist as one of two extreme phenotypes or phases, solitarious and gregarious. Recent studies of associative food-odor learning in this locust have shown that aversive but not appetitive learning differs between phases. Furthermore, switching from the solitarious to the gregarious phase (gregarization) prevents locusts acquiring new learned aversions, enabling them to convert an aversive memory formed in the solitarious phase to an appetitive one in the gregarious phase. This conversion provides a neuroecological mechanism that matches key changes in the behavioral environments of the two phases. These findings emphasize the importance of understanding the neural mechanisms that generate ecologically relevant behaviors and the interactions between different forms of behavioral plasticity.
Collapse
Affiliation(s)
- Patrício M V Simões
- *Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Swidbert R Ott
- †Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, LE1 7RH, UK
| | - Jeremy E Niven
- ‡School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| |
Collapse
|
41
|
Pasquier G, Grüter C. Individual learning performance and exploratory activity are linked to colony foraging success in a mass-recruiting ant. Behav Ecol 2016. [DOI: 10.1093/beheco/arw079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
42
|
The response of an egg parasitoid to substrate-borne semiochemicals is affected by previous experience. Sci Rep 2016; 6:27098. [PMID: 27250870 PMCID: PMC4890048 DOI: 10.1038/srep27098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/13/2016] [Indexed: 11/08/2022] Open
Abstract
Animals can adjust their behaviour according to previous experience gained during foraging. In parasitoids, experience plays a key role in host location, a hierarchical process in which air-borne and substrate-borne semiochemicals are used to find hosts. In nature, chemical traces deposited by herbivore hosts when walking on the plant are adsorbed by leaf surfaces and perceived as substrate-borne semiochemicals by parasitoids. Chemical traces left on cabbage leaves by adults of the harlequin bug (Murgantia histrionica) induce an innate arrestment response in the egg parasitoid Trissolcus brochymenae characterized by an intense searching behaviour on host-contaminated areas. Here we investigated whether the T. brochymenae response to host walking traces left on leaf surfaces is affected by previous experience in the context of parasitoid foraging behaviour. We found that: 1) an unrewarded experience (successive encounters with host-contaminated areas without successful oviposition) decreased the intensity of the parasitoid response; 2) a rewarded experience (successful oviposition) acted as a reinforcing stimulus; 3) the elapsed time between two consecutive unrewarded events affected the parasitoid response in a host-gender specific manner. The ecological role of these results to the host location process of egg parasitoids is discussed.
Collapse
|
43
|
Smid HM, Vet LE. The complexity of learning, memory and neural processes in an evolutionary ecological context. CURRENT OPINION IN INSECT SCIENCE 2016; 15:61-69. [PMID: 27436733 DOI: 10.1016/j.cois.2016.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 06/06/2023]
Abstract
The ability to learn and form memories is widespread among insects, but there exists considerable natural variation between species and populations in these traits. Variation manifests itself in the way information is stored in different memory forms. This review focuses on ecological factors such as environmental information, spatial aspects of foraging behavior and resource distribution that drive the evolution of this natural variation and discusses the role of different genes and neural networks. We conclude that at the level of individual, population or species, insect learning and memory cannot be described as good or bad. Rather, we argue that insects evolve tailor-made learning and memory types; they gate learned information into memories with high or low persistence. This way, they are prepared to learn and form memory to optimally deal with the specific ecologies of their foraging environments.
Collapse
Affiliation(s)
- Hans M Smid
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Louise Em Vet
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| |
Collapse
|
44
|
de Rijk M, Krijn M, Jenniskens W, Engel B, Dicke M, Poelman EH. Flexible parasitoid behaviour overcomes constraint resulting from position of host and nonhost herbivores. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
van Vugt JJFA, Hoedjes KM, van de Geest HC, Schijlen EWGM, Vet LEM, Smid HM. Differentially expressed genes linked to natural variation in long-term memory formation in Cotesia parasitic wasps. Front Behav Neurosci 2015; 9:255. [PMID: 26557061 PMCID: PMC4617343 DOI: 10.3389/fnbeh.2015.00255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022] Open
Abstract
Even though learning and memory are universal traits in the Animal Kingdom, closely related species reveal substantial variation in learning rate and memory dynamics. To determine the genetic background of this natural variation, we studied two congeneric parasitic wasp species, Cotesia glomerata and C. rubecula, which lay their eggs in caterpillars of the large and small cabbage white butterfly. A successful egg laying event serves as an unconditioned stimulus (US) in a classical conditioning paradigm, where plant odors become associated with the encounter of a suitable host caterpillar. Depending on the host species, the number of conditioning trials and the parasitic wasp species, three different types of transcription-dependent long-term memory (LTM) and one type of transcription-independent, anesthesia-resistant memory (ARM) can be distinguished. To identify transcripts underlying these differences in memory formation, we isolated mRNA from parasitic wasp heads at three different time points between induction and consolidation of each of the four memory types, and for each sample three biological replicates, where after strand-specific paired-end 100 bp deep sequencing. Transcriptomes were assembled de novo and differential expression was determined for each memory type and time point after conditioning, compared to unconditioned wasps. Most differentially expressed (DE) genes and antisense transcripts were only DE in one of the LTM types. Among the DE genes that were DE in two or more LTM types, were many protein kinases and phosphatases, small GTPases, receptors and ion channels. Some genes were DE in opposing directions between any of the LTM memory types and ARM, suggesting that ARM in Cotesia requires the transcription of genes inhibiting LTM or vice versa. We discuss our findings in the context of neuronal functioning, including RNA splicing and transport, epigenetic regulation, neurotransmitter/peptide synthesis and antisense transcription. In conclusion, these brain transcriptomes provide candidate genes that may be involved in the observed natural variation in LTM in closely related Cotesia parasitic wasp species.
Collapse
Affiliation(s)
- Joke J F A van Vugt
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | - Katja M Hoedjes
- Laboratory of Entomology, Wageningen University Wageningen, Netherlands
| | | | - Elio W G M Schijlen
- Applied Bioinformatics, Plant Research International Wageningen, Netherlands
| | - Louise E M Vet
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands ; Laboratory of Entomology, Wageningen University Wageningen, Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University Wageningen, Netherlands
| |
Collapse
|
46
|
Abram PK, Cusumano A, Peri E, Brodeur J, Boivin G, Colazza S. Thermal stress affects patch time allocation by preventing forgetting in a parasitoid wasp. Behav Ecol 2015. [DOI: 10.1093/beheco/arv084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
47
|
Kruidhof HM, Roberts AL, Magdaraog P, Muñoz D, Gols R, Vet LEM, Hoffmeister TS, Harvey JA. Habitat complexity reduces parasitoid foraging efficiency, but does not prevent orientation towards learned host plant odours. Oecologia 2015; 179:353-61. [PMID: 26001606 PMCID: PMC4568006 DOI: 10.1007/s00442-015-3346-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/05/2015] [Indexed: 11/04/2022]
Abstract
It is well known that many parasitic wasps use herbivore-induced plant odours (HIPVs) to locate their inconspicuous host insects, and are often able to distinguish between slight differences in plant odour composition. However, few studies have examined parasitoid foraging behaviour under (semi-)field conditions. In nature, food plants of parasitoid hosts are often embedded in non-host-plant assemblages that confer both structural and chemical complexity. By releasing both naïve and experienced Cotesia glomerata females in outdoor tents, we studied how natural vegetation surrounding Pieris brassicae-infested Sinapis arvensis and Barbarea vulgaris plants influences their foraging efficiency as well as their ability to specifically orient towards the HIPVs of the host plant species on which they previously had a positive oviposition experience. Natural background vegetation reduced the host-encounter rate of naïve C. glomerata females by 47 %. While associative learning of host plant HIPVs 1 day prior to foraging caused a 28 % increase in the overall foraging efficiency of C. glomerata, it did not reduce the negative influence of natural background vegetation. At the same time, however, females foraging in natural vegetation attacked more host patches on host-plant species on which they previously had a positive oviposition experience. We conclude that, even though the presence of natural vegetation reduces the foraging efficiency of C. glomerata, it does not prevent experienced female wasps from specifically orienting towards the host-plant species from which they had learned the HIPVs.
Collapse
Affiliation(s)
- H M Kruidhof
- Population and Evolutionary Ecology Group, University of Bremen, Bremen, Germany. .,Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands. .,Wageningen UR Greenhouse Horticulture, Bleiswijk, The Netherlands.
| | - A L Roberts
- Population and Evolutionary Ecology Group, University of Bremen, Bremen, Germany.,Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - P Magdaraog
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Laboratory of Applied Entomology, Nagoya University, Nagoya, Japan
| | - D Muñoz
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - R Gols
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - L E M Vet
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - T S Hoffmeister
- Population and Evolutionary Ecology Group, University of Bremen, Bremen, Germany
| | - J A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
48
|
Attraction of egg-killing parasitoids toward induced plant volatiles in a multi-herbivore context. Oecologia 2015; 179:163-74. [PMID: 25953114 DOI: 10.1007/s00442-015-3325-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
Abstract
In response to insect herbivory, plants emit volatile organic compounds which may act as indirect plant defenses by attracting natural enemies of the attacking herbivore. In nature, plants are often attacked by multiple herbivores, but the majority of studies which have investigated indirect plant defenses to date have focused on the recruitment of different parasitoid species in a single-herbivore context. Here, we report our investigation on the attraction of egg parasitoids of lepidopteran hosts (Trichogramma brassicae and T. evanescens) toward plant volatiles induced by different insect herbivores in olfactometer bioassays. We used a system consisting of a native crucifer, Brassica nigra, two naturally associated herbivores [the butterfly Pieris brassicae (eggs and caterpillars) and the aphid Brevicoryne brassicae] and an alien invasive herbivore (eggs and caterpillars of the moth Spodoptera exigua). We found that Trichogramma wasps were attracted by volatiles induced in the plants by P. brassicae eggs, but not by those induced in the plants by S. exigua eggs, indicating the specificity of the plant responses toward lepidopteran herbivores. The results of the chemical analysis revealed significant differences between the volatile blends emitted by plants in response to attack by P. brassicae and S. exigua eggs which were in agreement with the behavioural observations. We investigated the attraction of Trichogramma wasps toward P. brassicae egg-induced volatiles in plants simultaneously attacked by larvae and nymphs of different non-hosts. The two chewing caterpillars P. brassicae and S. exigua, but not the phloem-feeding aphid B. brassicae, can disrupt the attraction of Trichogramma species toward P. brassicae egg-induced volatiles. Indirect plant defenses are discussed in the context of multiple herbivory by evaluating the importance of origin, dietary specialization and feeding guild of different attackers on the recruitment of egg-killing parasitoids.
Collapse
|
49
|
Kamran M, Moore PA. Comparative Homing Behaviors in Two Species of Crayfish,Fallicambarus FodiensandOrconectes Rusticus. Ethology 2015. [DOI: 10.1111/eth.12392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maryam Kamran
- Laboratory for Sensory Ecology; Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind and Behavior; Bowling Green State University; Bowling Green OH USA
| | - Paul A. Moore
- Laboratory for Sensory Ecology; Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind and Behavior; Bowling Green State University; Bowling Green OH USA
| |
Collapse
|
50
|
Meiners T. Chemical ecology and evolution of plant-insect interactions: a multitrophic perspective. CURRENT OPINION IN INSECT SCIENCE 2015; 8:22-28. [PMID: 32846665 DOI: 10.1016/j.cois.2015.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 06/11/2023]
Abstract
Gaining a better understanding of infochemical-mediated host plant/host location behaviour of herbivores and their natural enemies in complex and heterogeneous chemical environments provides a multitrophic perspective on the chemical ecology and evolution of plant-insect interactions. Here I focus on the sources of chemical complexity formed primarily by both host and non-host plants in their interaction with higher trophic levels and on the effect of this complexity on herbivores and their natural enemies. Future research should define the patterns and processes involved in these interactions, which are often complex, dynamic and intricately unique. Studying multitrophic interactions under more realistic conditions will help to identify mechanisms with evolutionary potential and patterns that can be used in biological control practice.
Collapse
Affiliation(s)
- Torsten Meiners
- Freie Universitaet Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Haderslebener Straße 9, 12163 Berlin, Germany.
| |
Collapse
|