1
|
Zhao Y, Lu J, Hu B, Jiao P, Gao B, Jiang Z, Liu S, Guan S, Ma Y. Cloning and functional analysis of ZmMADS42 gene in maize. GM CROPS & FOOD 2024; 15:105-117. [PMID: 38466176 PMCID: PMC10936638 DOI: 10.1080/21645698.2024.2328384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Maize (Zea mays L.) is the most important cereal crop in the world. Flowering period and photoperiod play important roles in the reproductive development of maize. This study, investigated ZmMADS42, a gene that is highly expressed in the shoot apical meristem. Agrobacterium infection was used to successfully obtain overexpressed ZmMADS42 plants. Fluorescence quantitative PCR revealed that the expression of the ZmMADS42 gene in the shoot apical meristem of transgenic plants was 2.8 times higher than that of the wild-type(WT). In addition, the expression of the ZmMADS42 gene in the endosperm was 2.4 times higher than that in the wild-type. The seed width of the T2 generation increased by 5.35%, whereas the seed length decreased by 7.78% compared with that of the wild-type. Dissection of the shoot tips of transgenic and wild-type plants from the 7-leaf stage to the 9-leaf stage revealed that the transgenic plants entered the differentiation stage earlier and exhibited more tassel meristems during their vegetative growth period. The mature transgenic plants were approximately 20 cm shorter in height and had a lower panicle position than the wild-type plants. Comparing the flowering period, the tasseling, powdering, and silking stages of the transgenic plants occurred 10 days earlier than those of the wild-type plants. The results showed that the ZmMADS42 gene played a significant role in regulating the flowering period and plant height of maize.
Collapse
Affiliation(s)
- Yang Zhao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jianyu Lu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Bo Hu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Bai Gao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhenzhong Jiang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Akagi T, Sugano SS. Random epigenetic inactivation of the X-chromosomal HaMSter gene causes sex ratio distortion in persimmon. NATURE PLANTS 2024:10.1038/s41477-024-01805-w. [PMID: 39333352 DOI: 10.1038/s41477-024-01805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024]
Abstract
In contrast to the recent progress in the genome sequencing of plant sex chromosomes, the functional contribution of the genes in sex chromosomes remains little known1. They were classically thought to be related to sexual dimorphism, which is beneficial to male or female functions, including segregation ratios. Here we focused on the functional evolution of the sex ratio distortion-related locus Half Male Sterile/Inviable (HaMSter), which is located in the short sex-linked region in diploid persimmon (Diospyros lotus). The expression of HaMSter, encoding a plant1589-like undefined protein, is necessary for production of viable seeds. Notably, only X-allelic HaMSter is substantially expressed and half of the maternal X alleles of HaMSter is randomly inactivated, which results in sex ratio distortion in seeds. Genome-wide DNA methylome analyses revealed endosperm-specific DNA hypermethylation, especially in the X-linked region. The maintenance/release of this hypermethylation is linked to inactivation/activation of HaMSter expression, respectively, which determines the sex ratio distortion pattern.
Collapse
Affiliation(s)
- Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi-shi, Saitama, Japan.
| | - Shigeo S Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
3
|
Sharma I, Malathi P, Srinivasan R, Bhat SR, Sreenivasulu Y. Embryo sac cellularization defects lead to supernumerary egg cells and twin embryos in Arabidopsis thaliana. iScience 2024; 27:109890. [PMID: 38827396 PMCID: PMC11141147 DOI: 10.1016/j.isci.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/26/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Arabidopsis lines with loss-of-function mutation in Embryo sac-specific Pectin MethylEsterase Inhibitor (Atepmei) gene showed seed sterility with embryo sac cellularization defects. Examination of tissue-cleared mature ovules revealed irregularly positioned nuclei/embryos within the embryo sacs. Egg cell-specific marker (DD45) expression analysis confirmed the presence of multiple egg cells in the mutant embryo sacs. These supernumerary egg cells were functional as evident from the production of twin embryos when supernumerary sperm cells were provided. The results of ruthenium red and tannic acid-ferric chloride staining of developing Atepmei mutant ovules showed that cell wall formation and maintenance were altered around embryo sac nuclei, which also coincided with change in the gamete specification. This report implicates the role of cell walls in gamete cell fate determination by altering cell-cell communication. Our analysis of the twin-embryo phenotype of epmei mutants also sheds light on the boundary conditions for double fertilization in plant reproduction.
Collapse
Affiliation(s)
- Isha Sharma
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Pinninti Malathi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | | | | | - Yelam Sreenivasulu
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| |
Collapse
|
4
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Mirzaghaderi G. Genome-wide analysis of MADS-box transcription factor gene family in wild emmer wheat (Triticum turgidum subsp. dicoccoides). PLoS One 2024; 19:e0300159. [PMID: 38451993 PMCID: PMC10919676 DOI: 10.1371/journal.pone.0300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
The members of MADS-box gene family have important roles in regulating the growth and development of plants. MADS-box genes are highly regarded for their potential to enhance grain yield and quality under shifting global conditions. Wild emmer wheat (Triticum turgidum subsp. dicoccoides) is a progenitor of common wheat and harbors valuable traits for wheat improvement. Here, a total of 117 MADS-box genes were identified in the wild emmer wheat genome and classified to 90 MIKCC, 3 MIKC*, and 24 M-type. Furthermore, a phylogenetic analysis and expression profiling of the emmer wheat MADS-box gene family was presented. Although some MADS-box genes belonging to SOC1, SEP1, AGL17, and FLC groups have been expanded in wild emmer wheat, the number of MIKC-type MADS-box genes per subgenome is similar to that of rice and Arabidopsis. On the other hand, M-type genes of wild emmer wheat is less frequent than that of Arabidopsis. Gene expression patterns over different tissues and developmental stages agreed with the subfamily classification of MADS-box genes and was similar to common wheat and rice, indicating their conserved functionality. Some TdMADS-box genes are also differentially expressed under drought stress. The promoter region of each of the TdMADS-box genes harbored 6 to 48 responsive elements, mainly related to light, however hormone, drought, and low-temperature related cis-acting elements were also present. In conclusion, the results provide detailed information about the MADS-box genes of wild emmer wheat. The present work could be useful in the functional genomics efforts toward breeding for agronomically important traits in T. dicoccoides.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
6
|
Bennici S, Poles L, Di Guardo M, Percival-Alwyn L, Caccamo M, Licciardello C, Gentile A, Distefano G, La Malfa S. The origin and the genetic regulation of the self-compatibility mechanism in clementine ( Citrus clementina Hort. ex Tan.). FRONTIERS IN PLANT SCIENCE 2024; 15:1360087. [PMID: 38501136 PMCID: PMC10944956 DOI: 10.3389/fpls.2024.1360087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
Self-incompatibility (SI) is a genetic mechanism common in flowering plants to prevent self-fertilization. Among citrus species, several pummelo, mandarin, and mandarin-like accessions show SI behavior. In these species, SI is coupled with a variable degree of parthenocarpy ensuring the production of seedless fruits, a trait that is highly appreciated by consumers. In Citrus, recent evidences have shown the presence of a gametophytic SI system based on S-ribonucleases (S-RNases) ability to impair self-pollen tube growth in the upper/middle part of the style. In the present study, we combined PCR analysis and next-generation sequencing technologies, to define the presence of S7- and S11-Rnases in the S-genotype of the Citrus clementina (Hort. ex Tan.), the self-incompatible 'Comune' clementine and its self-compatible natural mutant 'Monreal'. The reference genome of 'Monreal' clementine is presented for the first time, providing more robust results on the genetic sequence of the newly discovered S7-RNase. SNP discovery analysis coupled with the annotation of the variants detected enabled the identification of 7,781 SNPs effecting 5,661 genes in 'Monreal' compared to the reference genome of C. clementina. Transcriptome analysis of unpollinated pistils at the mature stage from both clementine genotypes revealed the lack of expression of S7-RNase in 'Monreal' suggesting its involvement in the loss of the SI response. RNA-seq analysis followed by gene ontology studies enabled the identification of 2,680 differentially expressed genes (DEGs), a significant number of those is involved in oxidoreductase and transmembrane transport activity. Merging of DNA sequencing and RNA data led to the identification of 164 DEGs characterized by the presence of at least one SNP predicted to induce mutations with a high effect on their amino acid sequence. Among them, four candidate genes referring to two Agamous-like MADS-box proteins, to MYB111 and to MLO-like protein 12 were validated. Moreover, the transcription factor MYB111 appeared to contain a binding site for the 2.0-kb upstream sequences of the S7- and S11-RNase genes. These results provide useful information about the genetic bases of SI indicating that SNPs present in their sequence could be responsible for the differential expression and the regulation of S7-RNase and consequently of the SI mechanism.
Collapse
Affiliation(s)
- Stefania Bennici
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Lara Poles
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Mario Di Guardo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | | | - Mario Caccamo
- National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| | - Concetta Licciardello
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Acireale, Italy
| | - Alessandra Gentile
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Gaetano Distefano
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Stefano La Malfa
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| |
Collapse
|
7
|
Yang J, Chen R, Liu W, Xiang X, Fan C. Genome-Wide Characterization and Phylogenetic and Stress Response Expression Analysis of the MADS-Box Gene Family in Litchi ( Litchi chinensis Sonn.). Int J Mol Sci 2024; 25:1754. [PMID: 38339030 PMCID: PMC10855657 DOI: 10.3390/ijms25031754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The MADS-box protein is an important transcription factor in plants and plays an important role in regulating the plant abiotic stress response. In this study, a total of 94 MADS-box genes were predicted in the litchi genome, and these genes were widely distributed on all the chromosomes. The LcMADS-box gene family was divided into six subgroups (Mα, Mβ, Mγ, Mδ, MIKC, and UN) based on their phylogenetical relationships with Arabidopsis, and the closely linked subgroups exhibited more similarity in terms of motif distribution and intron/exon numbers. Transcriptome analysis indicated that LcMADS-box gene expression varied in different tissues, which can be divided into universal expression and specific expression. Furthermore, we further validated that LcMADS-box genes can exhibit different responses to various stresses using quantitative real-time PCR (qRT-PCR). Moreover, physicochemical properties, subcellular localization, collinearity, and cis-acting elements were also analyzed. The findings of this study provide valuable insights into the MADS-box gene family in litchi, specifically in relation to stress response. The identification of hormone-related and stress-responsive cis-acting elements in the MADS-box gene promoters suggests their involvement in stress signaling pathways. This study contributes to the understanding of stress tolerance mechanisms in litchi and highlights potential regulatory mechanisms underlying stress responses.
Collapse
Affiliation(s)
| | | | | | | | - Chao Fan
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.Y.)
| |
Collapse
|
8
|
Liang M, Du Z, Yang Z, Luo T, Ji C, Cui H, Li R. Genome-wide characterization and expression analysis of MADS-box transcription factor gene family in Perilla frutescens. FRONTIERS IN PLANT SCIENCE 2024; 14:1299902. [PMID: 38259943 PMCID: PMC10801092 DOI: 10.3389/fpls.2023.1299902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024]
Abstract
MADS-box transcription factors are widely involved in the regulation of plant growth, developmental processes, and response to abiotic stresses. Perilla frutescens, a versatile plant, is not only used for food and medicine but also serves as an economical oil crop. However, the MADS-box transcription factor family in P. frutescens is still largely unexplored. In this study, a total of 93 PfMADS genes were identified in P. frutescens genome. These genes, including 37 Type I and 56 Type II members, were randomly distributed across 20 chromosomes and 2 scaffold regions. Type II PfMADS proteins were found to contain a greater number of motifs, indicating more complex structures and diverse functions. Expression analysis revealed that most PfMADS genes (more than 76 members) exhibited widely expression model in almost all tissues. The further analysis indicated that there was strong correlation between some MIKCC-type PfMADS genes and key genes involved in lipid synthesis and flavonoid metabolism, which implied that these PfMADS genes might play important regulatory role in the above two pathways. It was further verified that PfMADS47 can effectively mediate the regulation of lipid synthesis in Chlamydomonas reinhardtii transformants. Using cis-acting element analysis and qRT-PCR technology, the potential functions of six MIKCC-type PfMADS genes in response to abiotic stresses, especially cold and drought, were studied. Altogether, this study is the first genome-wide analysis of PfMADS. This result further supports functional and evolutionary studies of PfMADS gene family and serves as a benchmark for related P. frutescens breeding studies.
Collapse
Affiliation(s)
- Mengjing Liang
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Zhongyang Du
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Ze Yang
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Tao Luo
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chunli Ji
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
9
|
Zhang J, Zhang Z, Zhang R, Yang C, Zhang X, Chang S, Chen Q, Rossi V, Zhao L, Xiao J, Xin M, Du J, Guo W, Hu Z, Liu J, Peng H, Ni Z, Sun Q, Yao Y. Type I MADS-box transcription factor TaMADS-GS regulates grain size by stabilizing cytokinin signalling during endosperm cellularization in wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:200-215. [PMID: 37752705 PMCID: PMC10754016 DOI: 10.1111/pbi.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Grain size is one of the important traits in wheat breeding programs aimed at improving yield, and cytokinins, mainly involved in cell division, have a positive impact on grain size. Here, we identified a novel wheat gene TaMADS-GS encoding type I MADS-box transcription factor, which regulates the cytokinins signalling pathway during early stages of grain development to modulate grain size and weight in wheat. TaMADS-GS is exclusively expressed in grains at early stage of seed development and its knockout leads to delayed endosperm cellularization, smaller grain size and lower grain weight. TaMADS-GS protein interacts with the Polycomb Repressive Complex 2 (PRC2) and leads to repression of genes encoding cytokinin oxidase/dehydrogenases (CKXs) stimulating cytokinins inactivation by mediating accumulation of the histone H3 trimethylation at lysine 27 (H3K27me3). Through the screening of a large wheat germplasm collection, an elite allele of the TaMADS-GS exhibits higher ability to repress expression of genes inactivating cytokinins and a positive correlation with grain size and weight, thus representing a novel marker for breeding programs in wheat. Overall, these findings support the relevance of TaMADS-GS as a key regulator of wheat grain size and weight.
Collapse
Affiliation(s)
- Jianing Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Ruijie Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Changfeng Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xiaobang Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Siyuan Chang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qian Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Vincenzo Rossi
- Council for Agricultural Research and EconomicsResearch Centre for Cereal and Industrial CropsBergamoItaly
| | - Long Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| |
Collapse
|
10
|
Cao J, Wang W, Xu X, Li SY, Zheng Y, Li DD. Identification and Analysis of MADS-Box Genes Expressed in the Mesocarp of Oil Palm Fruit (Elaeis guineensis Jacq.). Biochem Genet 2023; 61:2382-2400. [PMID: 37060482 DOI: 10.1007/s10528-023-10376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Oil palm (Elaeis guineensis) is the most important tropical oil-bearing crop species worldwide. MADS-box proteins, which play crucial roles in plant growth and development and are involved in various physiological and biochemical processes, compose one of the largest families of plant transcription factors. In this study, 42 MADS-box genes were screened from the mesocarp transcriptome database of oil palm fruit, and their phylogenetic relationships with Arabidopsis thaliana MADS-box genes were analyzed. Based on the results, MADS-box genes from oil palm mesocarp were classified into four groups: MIKCc-type, MIKC*-type, Mα-type, and Mγ-type MADS-box genes. Members of the subfamilies were classified according to the presence of three specific protein motifs. To explore the differential expression of the MADS-box genes, the dynamic expression of all selected MADS-box genes in oil palm was measured by RNA-seq. The high expression of specific MADS-box genes in the mesocarp of oil palm during different developmental stages indicates that those genes may play important roles in the cell division of and metabolite accumulation in the fruit and could become important targets for fruit development and oil accumulation research in oil palm.
Collapse
Affiliation(s)
- Jiaqi Cao
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Wei Wang
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Xin Xu
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Si-Yu Li
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Yusheng Zheng
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Dong-Dong Li
- Sanya Nanfan Research Institute, College of Tropical Crops, Hainan University, Hainan, 570228, China.
| |
Collapse
|
11
|
Bramsiepe J, Krabberød AK, Bjerkan KN, Alling RM, Johannessen IM, Hornslien KS, Miller JR, Brysting AK, Grini PE. Structural evidence for MADS-box type I family expansion seen in new assemblies of Arabidopsis arenosa and A. lyrata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:942-961. [PMID: 37517071 DOI: 10.1111/tpj.16401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Arabidopsis thaliana diverged from A. arenosa and A. lyrata at least 6 million years ago. The three species differ by genome-wide polymorphisms and morphological traits. The species are to a high degree reproductively isolated, but hybridization barriers are incomplete. A special type of hybridization barrier is based on the triploid endosperm of the seed, where embryo lethality is caused by endosperm failure to support the developing embryo. The MADS-box type I family of transcription factors is specifically expressed in the endosperm and has been proposed to play a role in endosperm-based hybridization barriers. The gene family is well known for its high evolutionary duplication rate, as well as being regulated by genomic imprinting. Here we address MADS-box type I gene family evolution and the role of type I genes in the context of hybridization. Using two de-novo assembled and annotated chromosome-level genomes of A. arenosa and A. lyrata ssp. petraea we analyzed the MADS-box type I gene family in Arabidopsis to predict orthologs, copy number, and structural genomic variation related to the type I loci. Our findings were compared to gene expression profiles sampled before and after the transition to endosperm cellularization in order to investigate the involvement of MADS-box type I loci in endosperm-based hybridization barriers. We observed substantial differences in type-I expression in the endosperm of A. arenosa and A. lyrata ssp. petraea, suggesting a genetic cause for the endosperm-based hybridization barrier between A. arenosa and A. lyrata ssp. petraea.
Collapse
Affiliation(s)
- Jonathan Bramsiepe
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Anders K Krabberød
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Katrine N Bjerkan
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Renate M Alling
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Ida M Johannessen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Karina S Hornslien
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Jason R Miller
- College of STEM, Shepherd University, Shepherdstown, West Virginia, 25443-5000, USA
| | - Anne K Brysting
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Paul E Grini
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
12
|
Liu L, Trendel J, Jiang G, Liu Y, Bruckmann A, Küster B, Sprunck S, Dresselhaus T, Bleckmann A. RBPome identification in egg-cell like callus of Arabidopsis. Biol Chem 2023; 404:1137-1149. [PMID: 37768858 DOI: 10.1515/hsz-2023-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
RNA binding proteins (RBPs) have multiple and essential roles in transcriptional and posttranscriptional regulation of gene expression in all living organisms. Their biochemical identification in the proteome of a given cell or tissue requires significant protein amounts, which limits studies in rare and highly specialized cells. As a consequence, we know almost nothing about the role(s) of RBPs in reproductive processes such as egg cell development, fertilization and early embryogenesis in flowering plants. To systematically identify the RBPome of egg cells in the model plant Arabidopsis, we performed RNA interactome capture (RIC) experiments using the egg cell-like RKD2-callus and were able to identify 728 proteins associated with poly(A+)-RNA. Transcripts for 97 % of identified proteins could be verified in the egg cell transcriptome. 46 % of identified proteins can be associated with the RNA life cycle. Proteins involved in mRNA binding, RNA processing and metabolism are highly enriched. Compared with the few available RBPome datasets of vegetative plant tissues, we identified 475 egg cell-enriched RBPs, which will now serve as a resource to study RBP function(s) during egg cell development, fertilization and early embryogenesis. First candidates were already identified showing an egg cell-specific expression pattern in ovules.
Collapse
Affiliation(s)
- Liping Liu
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Jakob Trendel
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), D-85354 Freising, Germany
| | - Guojing Jiang
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Yanhui Liu
- College of Life Science, Longyan University, Longyan 364012, China
| | - Astrid Bruckmann
- Biochemistry I, University of Regensburg, D-93053 Regensburg, Germany
| | - Bernhard Küster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), D-85354 Freising, Germany
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Andrea Bleckmann
- Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
13
|
Kobayashi N, Nishikawa SI. Nuclear Fusion in Yeast and Plant Reproduction. PLANTS (BASEL, SWITZERLAND) 2023; 12:3608. [PMID: 37896071 PMCID: PMC10609895 DOI: 10.3390/plants12203608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Nuclear fusion is essential for the sexual reproduction of various organisms, including plants, animals, and fungi. During the life cycle of flowering plants, nuclear fusion occurs three times: once during female gametogenesis and twice during double fertilization, when two sperm cells fertilize the egg and the central cell. Haploid nuclei migrate in an actin filament-dependent manner to become in close contact and, then, two nuclei fuse. The nuclear fusion process in plant reproduction is achieved through sequential nuclear membrane fusion events. Recent molecular genetic analyses using Arabidopsis thaliana showed the conservation of nuclear membrane fusion machinery between plants and the budding yeast Saccharomyces cerevisiae. These include the heat-shock protein 70 in the endoplasmic reticulum and the conserved nuclear membrane proteins. Analyses of the A. thaliana mutants of these components show that the completion of the sperm nuclear fusion at fertilization is essential for proper embryo and endosperm development.
Collapse
Affiliation(s)
- Nanami Kobayashi
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | | |
Collapse
|
14
|
Chettoor AM, Yang B, Evans MMS. Control of cellularization, nuclear localization, and antipodal cell cluster development in maize embryo sacs. Genetics 2023; 225:iyad101. [PMID: 37232380 DOI: 10.1093/genetics/iyad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
The maize female gametophyte contains four cell types: two synergids, an egg cell, a central cell, and a variable number of antipodal cells. In maize, these cells are produced after three rounds of free-nuclear divisions followed by cellularization, differentiation, and proliferation of the antipodal cells. Cellularization of the eight-nucleate syncytium produces seven cells with two polar nuclei in the central cell. Nuclear localization is tightly controlled in the embryo sac. This leads to precise allocation of the nuclei into the cells upon cellularization. Nuclear positioning within the syncytium is highly correlated with their identity after cellularization. Two mutants are described with extra polar nuclei, abnormal antipodal cell morphology, and reduced antipodal cell number, as well as frequent loss of antipodal cell marker expression. Mutations in one of these genes, indeterminate gametophyte2 encoding a MICROTUBULE ASSOCIATED PROTEIN65-3 homolog, shows a requirement for MAP65-3 in cellularization of the syncytial embryo sac as well as for normal seed development. The timing of the effects of ig2 suggests that the identity of the nuclei in the syncytial female gametophyte can be changed very late before cellularization.
Collapse
Affiliation(s)
- Antony M Chettoor
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Bing Yang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Matthew M S Evans
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Li W, Wang D, Hong X, Shi J, Hong J, Su S, Loaiciga CR, Li J, Liang W, Shi J, Zhang D. Identification and validation of new MADS-box homologous genes in 3010 rice pan-genome. PLANT CELL REPORTS 2023; 42:975-988. [PMID: 37016094 DOI: 10.1007/s00299-023-03006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/17/2023] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE Identification and validation of ten new MADS-box homologous genes in 3010 rice pan-genome for rice breeding. The functional genome is significant for rice breeding. MADS-box genes encode transcription factors that are indispensable for rice growth and development. The reported 15,362 novel genes in the rice pan-genome (RPAN) of Asian cultivated rice accessions provided a useful gene reservoir for the identification of more MADS-box candidates to overcome the limitation for the usage of only 75 MADS-box genes identified in Nipponbare for rice breeding. Here, we report the identification and validation of ten MADS-box homologous genes in RPAN. Origin and identity analysis indicated that they are originated from different wild rice accessions and structure of motif analysis revealed high variations in their amino acid sequences. Phylogenetic results with 277 MADS-box genes in 41 species showed that all these ten MADS-box homologous genes belong to type I (SRF-like, M-type). Gene expression analysis confirmed the existence of these ten MADS-box genes in IRIS_313-10,394, all of them were expressed in flower tissues, and six of them were highly expressed during seed development. Altogether, we identified and validated experimentally, for the first time, ten novel MADS-box genes in RPAN, which provides new genetic sources for rice improvement.
Collapse
Affiliation(s)
- Weihua Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Duoxiang Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaokun Hong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Su Su
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| | - Cristopher Reyes Loaiciga
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, Adelaide, 5064, Australia
| |
Collapse
|
16
|
Mahmood K, Torres-Jerez I, Krom N, Liu W, Udvardi MK. Transcriptional Programs and Regulators Underlying Age-Dependent and Dark-Induced Senescence in Medicago truncatula. Cells 2022; 11:cells11091570. [PMID: 35563875 PMCID: PMC9103780 DOI: 10.3390/cells11091570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
In forage crops, age-dependent and stress-induced senescence reduces forage yield and quality. Therefore, delaying leaf senescence may be a way to improve forage yield and quality as well as plant resilience to stresses. Here, we used RNA-sequencing to determine the molecular bases of age-dependent and dark-induced leaf senescence in Medicago truncatula. We identified 6845 differentially expressed genes (DEGs) in M3 leaves associated with age-dependent leaf senescence. An even larger number (14219) of DEGs were associated with dark-induced senescence. Upregulated genes identified during age-dependent and dark-induced senescence were over-represented in oxidation–reduction processes and amino acid, carboxylic acid and chlorophyll catabolic processes. Dark-specific upregulated genes also over-represented autophagy, senescence and cell death. Mitochondrial functions were strongly inhibited by dark-treatment while these remained active during age-dependent senescence. Additionally, 391 DE transcription factors (TFs) belonging to various TF families were identified, including a core set of 74 TFs during age-dependent senescence while 759 DE TFs including a core set of 338 TFs were identified during dark-induced senescence. The heterologous expression of several senescence-induced TFs belonging to NAC, WKRY, bZIP, MYB and HD-zip TF families promoted senescence in tobacco leaves. This study revealed the dynamics of transcriptomic responses to age- and dark-induced senescence in M. truncatula and identified senescence-associated TFs that are attractive targets for future work to control senescence in forage legumes.
Collapse
Affiliation(s)
- Kashif Mahmood
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
| | - Ivone Torres-Jerez
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
| | - Nick Krom
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
| | - Wei Liu
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA; (K.M.); (I.T.-J.); (N.K.); (W.L.)
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX 76201, USA
| | - Michael K. Udvardi
- Noble Research Institute, L.L.C., Ardmore, OK 73401, USA
- Centre for Crop Science, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
17
|
Williams BP, Bechen LL, Pohlmann DA, Gehring M. Somatic DNA demethylation generates tissue-specific methylation states and impacts flowering time. THE PLANT CELL 2022; 34:1189-1206. [PMID: 34954804 PMCID: PMC8972289 DOI: 10.1093/plcell/koab319] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/21/2021] [Indexed: 05/29/2023]
Abstract
Cytosine methylation is a reversible epigenetic modification of DNA. In plants, removal of cytosine methylation is accomplished by the four members of the DEMETER (DME) family of 5-methylcytosine DNA glycosylases, named DME, DEMETER-LIKE2 (DML2), DML3, and REPRESSOR OF SILENCING1 (ROS1) in Arabidopsis thaliana. Demethylation by DME is critical for seed development, preventing experiments to determine the function of the entire gene family in somatic tissues by mutant analysis. Here, we bypassed the reproductive defects of dme mutants to create somatic quadruple homozygous mutants of the entire DME family. dme; ros1; dml2; and dml3 (drdd) leaves exhibit hypermethylated regions compared with wild-type leaves and rdd triple mutants, indicating functional redundancy among all four demethylases. Targets of demethylation include regions co-targeted by RNA-directed DNA methylation and, surprisingly, CG gene body methylation, indicating dynamic methylation at these less-understood sites. Additionally, many tissue-specific methylation differences are absent in drdd, suggesting a role for active demethylation in generating divergent epigenetic states across wild-type tissues. Furthermore, drdd plants display an early flowering phenotype, which involves 5'-hypermethylation and transcriptional down-regulation of FLOWERING LOCUS C. Active DNA demethylation is therefore required for proper methylation across somatic tissues and defines the epigenetic landscape of intergenic and coding regions.
Collapse
Affiliation(s)
- Ben P Williams
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Lindsey L Bechen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Deborah A Pohlmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
18
|
Genome-wide identification, phylogenetic and expression pattern analysis of MADS-box family genes in foxtail millet (Setaria italica). Sci Rep 2022; 12:4979. [PMID: 35322041 PMCID: PMC8943164 DOI: 10.1038/s41598-022-07103-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/10/2022] [Indexed: 11/28/2022] Open
Abstract
Foxtail millet (Setaria italica) is rich in nutrients and extremely beneficial to human health. We identified and comprehensively analyzed 89 MADS-box genes in the foxtail millet genome. According to the classification of MADS-box genes in Arabidopsis thaliana and rice, the SiMADS-box genes were divided into M-type (37) and MIKC-type (52). During evolution, the differentiation of MIKC-type MADS-box genes occurred before that of monocotyledons and dicotyledons. The SiMADS-box gene structure has undergone much differentiation, and the number of introns in the MIKC-type subfamily is much greater than that in the M-type subfamily. Analysis of gene duplication events revealed that MIKC-type MADS-box gene segmental duplication accounted for the vast majority of gene duplication events, and MIKC-type MADS-box genes played a major role in the amplification of SiMADS-box genes. Collinearity analysis showed highest collinearity between foxtail millet and maize MADS-box genes. Analysis of tissue-specific expression showed that SiMADS-box genes are highly expressed throughout the grain-filling process. Expression analysis of SiMADS-box genes under eight different abiotic stresses revealed many stress-tolerant genes, with induced expression of SiMADS33 and SiMADS78 under various stresses warranting further attention. Further, some SiMADS-box proteins may interact under external stress. This study provides insights for MADS-box gene mining and molecular breeding of foxtail millet in the future.
Collapse
|
19
|
Su Z, Xuan X, Sheng Z, Wang F, Zhang X, Ye D, Wang X, Dong T, Pei D, Zhang P, Fang J, Wang C. Characterization and regulatory mechanism analysis of VvmiR156a-VvAGL80 pair during grapevine flowering and parthenocarpy process induced by gibberellin. THE PLANT GENOME 2022; 15:e20181. [PMID: 34882981 DOI: 10.1002/tpg2.20181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
MicroRNA156 (miR156) is an important conserved miRNA family in plants. Recently, we revealed VvmiR156a could involve in the modulation of gibberellin (GA)-mediated flower and berry development process of grapevine (Vitis vinifera L.). However, how to manipulate this process is unclear. For this, we used the GA-induced grapevine parthenocarpy system to investigate the regulatory roles of VvmiR156a during this process. Here, we cloned the mature and precursor sequences of VvmiR156a in Wink grape and identified its potential target gene VvAGL80, which belongs to the MADS-box gene family. Moreover, using RNA ligase-mediated 5' rapid amplification of cDNA ends (RLM-RACE) and poly(A)polymerase-mediated 3' rapid amplification of cDNA (PPM-RACE) technologies, it confirmed that VvAGL80 was the true target gene of VvmiR159a. Analysis of promoter cis-elements and β-glucuronidase (GUS) staining showed that both VvmiR156a and VvAGL80 contained GA-responsive elements and could respond to GA treatments. Quantitative real-time-polymerase chain reaction (qRT-PCR) analysis exhibited the VvmiR156a and VvAGL80 showed opposite expression trends during grapevine flower and berry development, indicating that VvmiR156a negatively regulated the expression of VvAGL80 during this process. After GA treatment, the expression of miR156 in flowers was downregulated significantly, while that of VvAGL80 was upregulated, thereby accelerating grapevine flowering. Furthermore, GA treatment enhanced the negative regulation of VvmiR156a on VvAGL80 in seed, especially at the seed-coat hardening stage, which was the key period of seed growth and development. Our findings enriched the knowledge of the regulatory mechanism of the miRNA-mediated grapevine parthenocarpy process.
Collapse
Affiliation(s)
- Ziwen Su
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xuxian Xuan
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Zilu Sheng
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Fei Wang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Xiaowen Zhang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Dongdong Ye
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Xicheng Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Tianyu Dong
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Dan Pei
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Peian Zhang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| |
Collapse
|
20
|
Han B, Wu D, Zhang Y, Li DZ, Xu W, Liu A. Epigenetic regulation of seed-specific gene expression by DNA methylation valleys in castor bean. BMC Biol 2022; 20:57. [PMID: 35227267 PMCID: PMC8886767 DOI: 10.1186/s12915-022-01259-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Understanding the processes governing angiosperm seed growth and development is essential both for fundamental plant biology and for agronomic purposes. Master regulators of angiosperm seed development are expressed in a seed-specific manner. However, it is unclear how this seed specificity of transcription is established. In some vertebrates, DNA methylation valleys (DMVs) are highly conserved and strongly associated with key developmental genes, but comparable studies in plants are limited to Arabidopsis and soybean. Castor bean (Ricinus communis) is a valuable model system for the study of seed biology in dicots and source of economically important castor oil. Unlike other dicots such as Arabidopsis and soybean, castor bean seeds have a relatively large and persistent endosperm throughout seed development, representing substantial structural differences in mature seeds. Here, we performed an integrated analysis of RNA-seq, whole-genome bisulfite sequencing, and ChIP-seq for various histone marks in the castor bean. RESULTS We present a gene expression atlas covering 16 representative tissues and identified 1162 seed-specific genes in castor bean (Ricinus communis), a valuable model for the study of seed biology in dicots. Upon whole-genome DNA methylation analyses, we detected 32,567 DMVs across five tissues, covering ~33% of the castor bean genome. These DMVs are highly hypomethylated during development and conserved across plant species. We found that DMVs have the potential to activate transcription, especially that of tissue-specific genes. Focusing on seed development, we found that many key developmental regulators of seed/endosperm development, including AGL61, AGL62, LEC1, LEC2, ABI3, and WRI1, were located within DMVs. ChIP-seq for five histone modifications in leaves and seeds clearly showed that the vast majority of histone modification peaks were enriched within DMVs, and their remodeling within DMVs has a critical role in the regulation of seed-specific gene expression. Importantly, further experiment analysis revealed that distal DMVs may act as cis-regulatory elements, like enhancers, to activate downstream gene expression. CONCLUSIONS Our results point to the importance of DMVs and special distal DMVs behaving like enhancers, in the regulation of seed-specific genes, via the reprogramming of histone modifications within DMVs. Furthermore, these results provide a comprehensive understanding of the epigenetic regulator roles in seed development in castor bean and other important crops.
Collapse
Affiliation(s)
- Bing Han
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Di Wu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyu Zhang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Wei Xu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
21
|
Qiu Y, Köhler C. Endosperm Evolution by Duplicated and Neofunctionalized Type I MADS-Box Transcription Factors. Mol Biol Evol 2022; 39:msab355. [PMID: 34897514 PMCID: PMC8788222 DOI: 10.1093/molbev/msab355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MADS-box transcription factors (TFs) are present in nearly all major eukaryotic groups. They are divided into Type I and Type II that differ in domain structure, functional roles, and rates of evolution. In flowering plants, major evolutionary innovations like flowers, ovules, and fruits have been closely connected to Type II MADS-box TFs. The role of Type I MADS-box TFs in angiosperm evolution remains to be identified. Here, we show that the formation of angiosperm-specific Type I MADS-box clades of Mγ and Mγ-interacting Mα genes (Mα*) can be tracked back to the ancestor of all angiosperms. Angiosperm-specific Mγ and Mα* genes were preferentially expressed in the endosperm, consistent with their proposed function as heterodimers in the angiosperm-specific embryo nourishing endosperm tissue. We propose that duplication and diversification of Type I MADS genes underpin the evolution of the endosperm, a developmental innovation closely connected to the origin and success of angiosperms.
Collapse
Affiliation(s)
- Yichun Qiu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, Sweden
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
22
|
Wu M, Liu H, Li B, Zhu T. Integrated analysis of mRNA-seq and miRNA-seq reveals the advantage of polyploid Solidago canadensis in sexual reproduction. BMC PLANT BIOLOGY 2021; 21:462. [PMID: 34635057 PMCID: PMC8504063 DOI: 10.1186/s12870-021-03240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The invasion of Solidago canadensis probably related to polyploidy, which may promotes its potential of sexual reproductive. S. canadensis as an invasive species which rapidly widespread through yield huge numbers of seed, but the mechanism remains unknown. To better understand the advantages of sexual reproduction in hexaploid S. canadensis, transcriptome and small RNA sequencing of diploid and hexaploid cytotypes in flower bud and fruit development stages were performed in this study. RESULTS The transcriptome analysis showed that in the flower bud stage, 29 DEGs were MADS-box related genes with 14 up-regulated and 15 down-regulated in hexaploid S. canadensis; 12 SPL genes were detected differentially expressed with 5 up-regulated and 7 down-regulated. In the fruit development stage, 26 MADS-box related genes with 20 up-regulated and 6 down-regulated in hexaploid S. canadensis; 5 SPL genes were all up-regulated; 28 seed storage protein related genes with 18 were up-regulated and 10 down-regulated. The weighted gene co-expression network analysis (WGCNA) identified 19 modules which consisted of co-expressed DEGs with functions such as sexual reproduction, secondary metabolism and transcription factors. Furthermore, we discovered 326 miRNAs with 67 known miRNAs and 259 novel miRNAs. Some of miRNAs, such as miR156, miR156a and miR156f, which target the sexual reproduction related genes. CONCLUSION Our study provides a global view of the advantages of sexual reproduction in hexaploid S. canadensis based on the molecular mechanisms, which may promote hexaploid S. canadensis owing higher yield and fruit quality in the process of sexual reproduction and higher germination rate of seeds, and finally conductive to diffusion, faster propagation process and enhanced invasiveness.
Collapse
Affiliation(s)
- Miao Wu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467041, Henan, China.
| | - Huiyuan Liu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467041, Henan, China
| | - Bingbing Li
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467041, Henan, China
| | - Tao Zhu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, 467041, Henan, China
| |
Collapse
|
23
|
The intervening domain is required for DNA-binding and functional identity of plant MADS transcription factors. Nat Commun 2021; 12:4760. [PMID: 34362909 PMCID: PMC8346517 DOI: 10.1038/s41467-021-24978-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
The MADS transcription factors (TF) are an ancient eukaryotic protein family. In plants, the family is divided into two main lineages. Here, we demonstrate that DNA binding in both lineages absolutely requires a short amino acid sequence C-terminal to the MADS domain (M domain) called the Intervening domain (I domain) that was previously defined only in type II lineage MADS. Structural elucidation of the MI domains from the floral regulator, SEPALLATA3 (SEP3), shows a conserved fold with the I domain acting to stabilise the M domain. Using the floral organ identity MADS TFs, SEP3, APETALA1 (AP1) and AGAMOUS (AG), domain swapping demonstrate that the I domain alters genome-wide DNA-binding specificity and dimerisation specificity. Introducing AG carrying the I domain of AP1 in the Arabidopsis ap1 mutant resulted in strong complementation and restoration of first and second whorl organs. Taken together, these data demonstrate that the I domain acts as an integral part of the DNA-binding domain and significantly contributes to the functional identity of the MADS TF. MADS transcription factors regulate multiple aspects of plant development. Here the authors show that the intervening I domain is conserved in both type I and type II plant MADS lineages and contributes to the functional identity of the protein by influencing both DNA binding activity and dimerisation specificity.
Collapse
|
24
|
Cabral LM, Masuda HP, Ballesteros HF, de Almeida-Engler J, Alves-Ferreira M, De Toni KLG, Bizotto FM, Ferreira PCG, Hemerly AS. ABAP1 Plays a Role in the Differentiation of Male and Female Gametes in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:642758. [PMID: 33643370 PMCID: PMC7903899 DOI: 10.3389/fpls.2021.642758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/22/2021] [Indexed: 05/07/2023]
Abstract
The correct development of a diploid sporophyte body and a haploid gametophyte relies on a strict coordination between cell divisions in space and time. During plant reproduction, these divisions have to be temporally and spatially coordinated with cell differentiation processes, to ensure a successful fertilization. Armadillo BTB Arabidopsis protein 1 (ABAP1) is a plant exclusive protein that has been previously reported to control proliferative cell divisions during leaf growth in Arabidopsis. Here, we show that ABAP1 binds to different transcription factors that regulate male and female gametophyte differentiation, repressing their target genes expression. During male gametogenesis, the ABAP1-TCP16 complex represses CDT1b transcription, and consequently regulates microspore first asymmetric mitosis. In the female gametogenesis, the ABAP1-ADAP complex represses EDA24-like transcription, regulating polar nuclei fusion to form the central cell. Therefore, besides its function during vegetative development, this work shows that ABAP1 is also involved in differentiation processes during plant reproduction, by having a dual role in regulating both the first asymmetric cell division of male gametophyte and the cell differentiation (or cell fusion) of female gametophyte.
Collapse
Affiliation(s)
- Luiz M. Cabral
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Hana P. Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Helkin F. Ballesteros
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Janice de Almeida-Engler
- Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut Sophia Agrobiotech, Université Côte d’Azur, Sophia Antipolis, France
| | - Márcio Alves-Ferreira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karen L. G. De Toni
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda M. Bizotto
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Paulo C. G. Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana S. Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Adriana S. Hemerly, ;
| |
Collapse
|
25
|
Li HJ, Yang WC. Central Cell in Flowering Plants: Specification, Signaling, and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:590307. [PMID: 33193544 PMCID: PMC7609669 DOI: 10.3389/fpls.2020.590307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/28/2020] [Indexed: 05/05/2023]
Abstract
During the reproduction of animals and lower plants, one sperm cell usually outcompetes the rivals to fertilize a single egg cell. But in flowering plants, two sperm cells fertilize the two adjacent dimorphic female gametes, the egg and central cell, respectively, to initiate the embryo and endosperm within a seed. The endosperm nourishes the embryo development and is also the major source of nutrition in cereals for humankind. Central cell as one of the key innovations of flowering plants is the biggest cell in the multicellular haploid female gametophyte (embryo sac). The embryo sac differentiates from the meiotic products through successive events of nuclear divisions, cellularization, and cell specification. Nowadays, accumulating lines of evidence are raveling multiple roles of the central cell rather than only the endosperm precursor. In this review, we summarize the current understanding on its cell fate specification, intercellular communication, and evolution. We also highlight some key unsolved questions for the further studies in this field.
Collapse
Affiliation(s)
- Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Hater F, Nakel T, Groß-Hardt R. Reproductive Multitasking: The Female Gametophyte. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:517-546. [PMID: 32442389 DOI: 10.1146/annurev-arplant-081519-035943] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fertilization of flowering plants requires the organization of complex tasks, many of which become integrated by the female gametophyte (FG). The FG is a few-celled haploid structure that orchestrates division of labor to coordinate successful interaction with the sperm cells and their transport vehicle, the pollen tube. As reproductive outcome is directly coupled to evolutionary success, the underlying mechanisms are under robust molecular control, including integrity check and repair mechanisms. Here, we review progress on understanding the development and function of the FG, starting with the functional megaspore, which represents the haploid founder cell of the FG. We highlight recent achievements that have greatly advanced our understanding of pollen tube attraction strategies and the mechanisms that regulate plant hybridization and gamete fusion. In addition, we discuss novel insights into plant polyploidization strategies that expand current concepts on the evolution of flowering plants.
Collapse
Affiliation(s)
- Friederike Hater
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Thomas Nakel
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Rita Groß-Hardt
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| |
Collapse
|
27
|
Transcriptional repression specifies the central cell for double fertilization. Proc Natl Acad Sci U S A 2020; 117:6231-6236. [PMID: 32132210 DOI: 10.1073/pnas.1909465117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Double fertilization is a key innovation for the evolutionary success of angiosperms by which the two fertilized female gametes, the egg cell and central cell, generate the embryo and endosperm, respectively. The female gametophyte (embryo sac) enclosed in the sporophyte is derived from a one-celled haploid cell lineage. It undergoes successive events of mitotic divisions, cellularization, and cell specification to give rise to the mature embryo sac, which contains the two female gametes accompanied by two types of accessory cells, namely synergids and antipodals. How the cell fate of the central cell is specified has long been equivocal and is further complicated by the structural diversity of female gametophyte across plant taxa. Here, MADS-box protein AGL80 was verified as a transcriptional repressor that directly suppresses the expression of accessory cell-specific genes to specify the central cell. Further genetic rescue and phylogenetic assay of the AGL80 orthologs revealed a possible conserved mechanism in the Brassicaceae family. Results from this study provide insight into the molecular determination of the second female gamete cell in Brassicaceae.
Collapse
|
28
|
Zhang X, Fatima M, Zhou P, Ma Q, Ming R. Analysis of MADS-box genes revealed modified flowering gene network and diurnal expression in pineapple. BMC Genomics 2020; 21:8. [PMID: 31896347 PMCID: PMC6941321 DOI: 10.1186/s12864-019-6421-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/22/2019] [Indexed: 01/13/2023] Open
Abstract
Background Pineapple is the most important crop with CAM photosynthesis, but its molecular biology is underexplored. MADS-box genes are crucial transcription factors involving in plant development and several biological processes. However, there is no systematic analysis of MADS-box family genes in pineapple (Ananas comosus). Results Forty-eight MADS-box genes were identified in the pineapple genome. Based on the phylogenetic studies, pineapple MADS-box genes can be divided into type I and type II MADS-box genes. Thirty-four pineapple genes were classified as type II MADS-box genes including 32 MIKC-type and 2 Mδ-type, while 14 type I MADS-box genes were further divided into Mα, Mβ and Mγ subgroups. A majority of pineapple MADS-box genes were randomly distributed across 19 chromosomes. RNA-seq expression patterns of MADS-box genes in four different tissues revealed that more genes were highly expressed in flowers, which was confirmed by our quantitative RT-PCR results. There is no FLC and CO orthologs in pineapple. The loss of FLC and CO orthologs in pineapple indicated that modified flowering genes network in this tropical plant compared with Arabidopsis. The expression patterns of MADS-box genes in photosynthetic and non-photosynthetic leaf tissues indicated the potential roles of some MADS-box genes in pineapple CAM photosynthesis. The 23% of pineapple MADS-box genes showed diurnal rhythm, indicating that these MADS-box genes are regulated by circadian clock. Conclusions MADS-box genes identified in pineapple are closely related to flowering development. Some MADS-box genes are involved in CAM photosynthesis and regulated by the circadian clock. These findings will facilitate research on the development of unusual spiral inflorescences on pineapple fruit and CAM photosynthesis.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mahpara Fatima
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ping Zhou
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Fujian Academy of Agricultural Sciences, Fruit Research Institute, Fuzhou, 350013, Fujian, China
| | - Qing Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
29
|
Bjerkan KN, Hornslien KS, Johannessen IM, Krabberød AK, van Ekelenburg YS, Kalantarian M, Shirzadi R, Comai L, Brysting AK, Bramsiepe J, Grini PE. Genetic variation and temperature affects hybrid barriers during interspecific hybridization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:122-140. [PMID: 31487093 DOI: 10.1111/tpj.14523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Genomic imprinting regulates parent-specific transcript dosage during seed development and is mainly confined to the endosperm. Elucidation of the function of many imprinted genes has been hampered by the lack of corresponding mutant phenotypes, and the role of imprinting is mainly associated with genome dosage regulation or allocation of resources. Disruption of imprinted genes has also been suggested to mediate endosperm-based post-zygotic hybrid barriers depending on genetic variation and gene dosage. Here, we have analyzed the conservation of a clade from the MADS-box type I class transcription factors in the closely related species Arabidopsis arenosa, A. lyrata, and A. thaliana, and show that AGL36-like genes are imprinted and maternally expressed in seeds of Arabidopsis species and in hybrid seeds between outbreeding species. In hybridizations between outbreeding and inbreeding species the paternally silenced allele of the AGL36-like gene is reactivated in the hybrid, demonstrating that also maternally expressed imprinted genes are perturbed during hybridization and that such effects on imprinted genes are specific to the species combination. Furthermore, we also demonstrate a quantitative effect of genetic diversity and temperature on the strength of the post-zygotic hybridization barrier. Markedly, a small decrease in temperature during seed development increases the survival of hybrid F1 seeds, suggesting that abiotic and genetic parameters play important roles in post-zygotic species barriers, pointing at evolutionary scenarios favoring such effects. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA562212. All sequences generated in this study have been deposited in the National Center for Biotechnology Information Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra/) with project number PRJNA562212.
Collapse
Affiliation(s)
- Katrine N Bjerkan
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Karina S Hornslien
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Ida M Johannessen
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Anders K Krabberød
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | | | - Maryam Kalantarian
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Reza Shirzadi
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Luca Comai
- Plant Biology and Genome Center, University of California, Davis, Davis, CA, 95616, USA
| | - Anne K Brysting
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Jonathan Bramsiepe
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
- CEES, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Paul E Grini
- EVOGENE, Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| |
Collapse
|
30
|
Himani, Ramkumar TR, Tyagi S, Sharma H, Upadhyay SK, Sembi JK. Tracing the footprints of the ABCDE model of flowering in Phalaenopsis equestris(Schauer) Rchb.f. (Orchidaceae). JOURNAL OF PLANT BIOTECHNOLOGY 2019; 46:255-273. [DOI: 10.5010/jpb.2019.46.4.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 10/09/2024]
Affiliation(s)
- Himani
- Department of Botany, Panjab University, Chandigarh, India
| | - Thakku R. Ramkumar
- Department of Botany, Panjab University, Chandigarh, India
- Agronomy department, IFAS, University of Florida, Gainesville, FL, 32611, USA
| | - Shivi Tyagi
- Department of Botany, Panjab University, Chandigarh, India
| | - Himanshu Sharma
- Department of Botany, Panjab University, Chandigarh, India
- IKG Punjab Technical University, Jalandhar
| | | | | |
Collapse
|
31
|
Teo ZWN, Zhou W, Shen L. Dissecting the Function of MADS-Box Transcription Factors in Orchid Reproductive Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1474. [PMID: 31803211 PMCID: PMC6872546 DOI: 10.3389/fpls.2019.01474] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/23/2019] [Indexed: 05/20/2023]
Abstract
The orchid family (Orchidaceae) represents the second largest angiosperm family, having over 900 genera and 27,000 species in almost all over the world. Orchids have evolved a myriad of intriguing ways in order to survive extreme weather conditions, acquire nutrients, and attract pollinators for reproduction. The family of MADS-box transcriptional factors have been shown to be involved in the control of many developmental processes and responses to environmental stresses in eukaryotes. Several findings in different orchid species have elucidated that MADS-box genes play critical roles in the orchid growth and development. An in-depth understanding of their ecological adaptation will help to generate more interest among breeders and produce novel varieties for the floriculture industry. In this review, we summarize recent findings of MADS-box transcription factors in regulating various growth and developmental processes in orchids, in particular, the floral transition and floral patterning. We further discuss the prospects for the future directions in light of new genome resources and gene editing technologies that could be applied in orchid research and breeding.
Collapse
Affiliation(s)
- Zhi Wei Norman Teo
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Wei Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
32
|
Developmental and Molecular Changes Underlying the Vernalization-Induced Transition to Flowering in Aquilegia coerulea (James). Genes (Basel) 2019; 10:genes10100734. [PMID: 31546687 PMCID: PMC6826667 DOI: 10.3390/genes10100734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 01/20/2023] Open
Abstract
Reproductive success in plants is dependent on many factors but the precise timing of flowering is certainly among the most crucial. Perennial plants often have a vernalization or over-wintering requirement in order to successfully flower in the spring. The shoot apical meristem undergoes drastic developmental and molecular changes as it transitions into inflorescence meristem (IM) identity, which then gives rise to floral meristems (FMs). In this study, we have examined the developmental and gene expression changes underlying the transition from the vegetative to reproductive phases in the basal eudicot Aquilegia coerulea, which has evolved a vernalization response independently relative to other established model systems. Results from both our histology and scanning electron studies demonstrate that developmental changes in the meristem occur gradually during the third and fourth weeks of vernalization. Based on RNAseq data and cluster analysis, several known flowering time loci, including AqFT and AqFL1, exhibit dramatic changes in expression during the fourth week. Further consideration of candidate gene homologs as well as unexpected loci of interest creates a framework in which we can begin to explore the genetic basis of the flowering time transition in Aquilegia.
Collapse
|
33
|
Identification and characterization of the MADS-box genes highly expressed in the laticifer cells of Hevea brasiliensis. Sci Rep 2019; 9:12673. [PMID: 31481699 PMCID: PMC6722073 DOI: 10.1038/s41598-019-48958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/16/2019] [Indexed: 11/08/2022] Open
Abstract
MADS-box transcription factors possess many functions in plant reproduction and development. However, few MADS-box genes related to secondary metabolites regulation have been identified. In Hevea brasiliensis, natural rubber is a representative cis-polyisoprenoids in secondary metabolism which occurs in the rubber laticifer cells, the molecular regulation basis of natural rubber biosynthesis is not clear. Here, a total of 24 MADS-box genes including 4 type I MADS-box genes and 20 type II MADS-box genes were identified in the transcriptome of rubber tree latex. The phylogenetic analysis was performed to clarify the evolutionary relationships of all the 24 rubber tree MADS-box proteins with MADS-box transcription factors from Arabidopsis thaliana and Oryza sativa. Four type I MADS-box genes were subdivided into Mα (3 genes) and Mβ (1 gene). Twenty type II MADS-box genes were subclassified into MIKC* (8 genes) and MIKCc (12 genes). Eight MADS-box genes (HblMADS3, 5, 6, 7, 9, 13, 23, 24) were predominant expression in laticifers. ABA up-regulated the expression of HblMADS9, and the expression of HblMADS3, HblMADS5, HblMADS24 were up-regulated by MeJA. The function of HblMADS24 was elucidated. HblMADS24 bound HbFPS1 promoter in yeast and HblMADS24 activated HbFPS1 promoter in tobacco plants. Moreover, we proposed that HblMADS24 is a transcription activator of HbFPS1 which taking part in natural rubber biosynthesis.
Collapse
|
34
|
Sheng XG, Zhao ZQ, Wang JS, Yu HF, Shen YS, Zeng XY, Gu HH. Genome wide analysis of MADS-box gene family in Brassica oleracea reveals conservation and variation in flower development. BMC PLANT BIOLOGY 2019; 19:106. [PMID: 30890145 PMCID: PMC6425688 DOI: 10.1186/s12870-019-1717-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/12/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND MADS-box genes play important roles in vegetative growth and reproductive development and are essential for the correct development of plants (particularly inflorescences, flowers, and fruits). However, this gene family has not been identified nor their functions analyzed in Brassica oleracea. RESULTS In this study, we performed a whole-genome survey of the complete set of MADS-box genes in B. oleracea. In total, 91 MADS-box transcription factors (TFs) were identified and categorized as type I (Mα, Mβ, Mγ) and type II (MIKCC, MIKC*) groups according to the phylogeny and gene structure analysis. Among these genes, 59 were randomly distributed on 9 chromosomes, while the other 23 were assigned to 19 scaffolds and 9 genes from NCBI had no location information. Both RNA-sequencing and quantitative real-time-PCR analysis suggested that MIKC genes had more active and complex expression patterns than M type genes and most type II genes showed high flowering-related expression profiles. Additional quantitative real-time-PCR analysis of pedicel and four flower whorls revealed that the structure of the B.oleracea MIKC genes was conserved, but their homologues showed variable expression patterns compared to those in Arabidopsis thaliana. CONCLUSION This paper gives a detailed overview of the BolMADS genes and their expression patterns. The results obtained in this study provide useful information for understanding the molecular regulation of flower development and further functional characterization of MADS-box genes in B. oleracea.
Collapse
Affiliation(s)
- Xiao-Guang Sheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Zhen-Qing Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Jian-Sheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Hui-Fang Yu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Yu-Sen Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Xiao-Yuan Zeng
- Agricultural Technology Promotion Station of Taizhou, Taizhou, 318000 China
| | - Hong-Hui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| |
Collapse
|
35
|
Dong Q, Wang F, Kong J, Xu Q, Li T, Chen L, Chen H, Jiang H, Li C, Cheng B. Functional analysis of ZmMADS1a reveals its role in regulating starch biosynthesis in maize endosperm. Sci Rep 2019; 9:3253. [PMID: 30824731 PMCID: PMC6397188 DOI: 10.1038/s41598-019-39612-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/22/2019] [Indexed: 11/30/2022] Open
Abstract
MADS-box family proteins play an important role in grain formation and flower development; however, the molecular mechanisms by which transcription factors regulate the starch metabolism pathway are unclear in maize. Here, we report a transcription factor, ZmMADS1a, that controls starch biosynthesis in maize (Zea mays L.). We demonstrate the expression of ZmMADS1a in tassel, silk, and endosperm, and show that the protein is localized to the cell nucleus. Compared with the control, seeds of overexpressing ZmMADS1a increased starch content (especially amylose content), had smaller starch granules and altered chemical structure. Meanwhile, overexpression of ZmMADS1a resulted in increases in the contents of soluble sugars and reducing sugars in maize. ZmMADS1a plays a positive regulatory role in the starch biosynthesis pathway by up-regulating several starch biosynthesis related genes. We also show that ZmMADS1a has a similar adjustment mechanism of starch biosynthesis in rice. Collectively, our study suggests that ZmMADS1a functions as a positive regulator of starch biosynthesis by regulating the expression of key starch metabolism genes during seed development.
Collapse
Affiliation(s)
- Qing Dong
- Maize Research Center, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.,National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Fang Wang
- Maize Research Center, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jingjing Kong
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Qianqian Xu
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Tingchun Li
- Maize Research Center, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Long Chen
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Hongjian Chen
- Maize Research Center, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Cheng Li
- Maize Research Center, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
36
|
Meng D, Cao Y, Chen T, Abdullah M, Jin Q, Fan H, Lin Y, Cai Y. Evolution and functional divergence of MADS-box genes in Pyrus. Sci Rep 2019; 9:1266. [PMID: 30718750 PMCID: PMC6362034 DOI: 10.1038/s41598-018-37897-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 12/12/2018] [Indexed: 02/02/2023] Open
Abstract
MADS-box transcription factors widely regulate all aspects of plant growth including development and reproduction. Although the MADS-box gene family genes have been extensively characterized in many plants, they have not been studied in closely related species. In this study, 73 and 74 MADS-box genes were identified in European pear (Pyrus communis) and Chinese pear (Pyrus bretschneideri), respectively. Based on the phylogenetic relationship, these genes could be clustered into five groups (Mα, Mβ, Mr, MIKCC, MIKC*) and the MIKCC group was further categorized into 10 subfamilies. The distribution of MADS-box genes on each chromosome was significantly nonrandom. Thirty-seven orthologs, twenty-five PcpMADS (P. communis MADS-box) paralogs and nineteen PbrMADS (P. bretschneideri MADS-box) paralogs were predicted. Among these paralogous genes, two pairs arose from tandem duplications (TD), nineteen from segmental duplication (SD) events and twenty-three from whole genome duplication (WGD) events, indicating SD/WGD events led to the expansion of MADS-box gene family. The MADS-box genes expression profiles in pear fruits indicated functional divergence and neo-functionalization or sub-functionalization of some orthologous genes originated from a common ancestor. This study provided a useful reference for further analysis the mechanisms of species differentiation and biodiversity formation among closely related species.
Collapse
Affiliation(s)
- Dandan Meng
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yunpeng Cao
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Tianzhe Chen
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Abdullah
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Jin
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Honghong Fan
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yi Lin
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
37
|
Wang H, Zaman QU, Huang W, Mei D, Liu J, Wang W, Ding B, Hao M, Fu L, Cheng H, Hu Q. QTL and Candidate Gene Identification for Silique Length Based on High-Dense Genetic Map in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2019; 10:1579. [PMID: 31850044 PMCID: PMC6895753 DOI: 10.3389/fpls.2019.01579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/12/2019] [Indexed: 05/13/2023]
Abstract
Silique length (SL) is an important yield trait and positively correlates with seeds per silique and seed weight. In the present study, two double haploid (DH) populations, established from crosses Zhongshuang11 × R11 (ZR) and R1 × R2 (RR), containing 280 and 95 DH lines, respectively, were used to map quantitative trait loci (QTL) for SL. A high-dense genetic map from ZR population was constructed comprising 14,658 bins on 19 linkage groups, with map length of 2,198.85 cM and an average marker distance of 0.15 cM. Genetic linkage map from RR population was constructed by using 2,046 mapped markers anchored to 19 chromosomes with 2,217-cM map length and an average marker distance of 1.08 cM. Major QTL qSL_ZR_A09 and qSL_RR_A09b on A09 were identified from ZR and RR populations, respectively. Both QTL could be stably detected in four environments. QTL qSL_RR_A09b and qSL_ZR_A09 were located on 68.5-70.8 cM and 91.33-91.94 cM interval with R2 values of 14.99-39.07% and 15.00-20.36% in RR and ZR populations, respectively. Based on the physical positions of single nucleotide polymorphism (SNP) markers flanking qSL_ZR_A09 and gene annotation in Arabidopsis, 26 genes were identified with SNP/Indel variation between parents and two genes (BnaA09g41180D and BnaA09g41380D) were selected as the candidate genes. Expression analysis further revealed BnaA09g41180D, encoding homologs of Arabidopsis fasciclin-like arabinogalactan proteins (FLA3), as the most promising candidate gene for qSL_ZR_A09. The QTL identification and candidate gene analysis will provide new insight into the genomic regions controlling SL in Brassica napus as well as candidate genes underlying the QTL.
Collapse
Affiliation(s)
- Hui Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Qamar U. Zaman
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Graduate School of the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenhui Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Desheng Mei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jia Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wenxiang Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Bingli Ding
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Mengyu Hao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Li Fu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hongtao Cheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- *Correspondence: Hongtao Cheng ; Qiong Hu
| | - Qiong Hu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- *Correspondence: Hongtao Cheng ; Qiong Hu
| |
Collapse
|
38
|
Erbasol Serbes I, Palovaara J, Groß-Hardt R. Development and function of the flowering plant female gametophyte. Curr Top Dev Biol 2019; 131:401-434. [DOI: 10.1016/bs.ctdb.2018.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Shin HY, Nam KH. RAV1 Negatively Regulates Seed Development by Directly Repressing MINI3 and IKU2 in Arabidopsis. Mol Cells 2018; 41:1072-1080. [PMID: 30518173 PMCID: PMC6315318 DOI: 10.14348/molcells.2018.0259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/16/2018] [Accepted: 10/01/2018] [Indexed: 11/27/2022] Open
Abstract
A plant-specific B3 domain and AP2 domain-containing transcription factor, RAV1 acts as a negative regulator of growth in many plant species and its transcription was downregulated by BR and ABA. In this study, we found that RAV1-overexpressing transgenic plants showed abnormally developed ovules, resulting in reduced seed size, weight, and number in a silique. Interestingly, the endogenous expression of RAV1 fluctuated during seed development; it remained low during the early stage of seed development and sharply increased in the seed maturation stage. In plants, seed development is a complex process that requires coordinated growth of the embryo, endosperm, and maternal integuments. Among many genes that are associated with endosperm proliferation and embryo development, three genes consisting of SHB1, MINI3, and IKU2 form a small unit positively regulating this process, and their expression was regulated by BR and ABA. Using the floral stage-specific RNAs, we found that the expression of MINI3 and IKU2, the two downstream genes of the SHB1-MINI3-IKU2 cascade in the seed development pathway, were particularly reduced in the RAV1-overexpressing transgenic plants. We further determined that RAV1 directly binds to the promoter of MINI3 and IKU2, resulting in their repression. Direct treatment with brassinolide (BL) improved seed development of RAV1-overexpressing plants, but treatment with ABA severely worsened it. Overall, these results suggest that RAV1 is an additional negative player in the early stages of seed development, during which ABA and BR signaling are coordinated.
Collapse
Affiliation(s)
- Hyun-young Shin
- Department of Biological Sciences, Sookmyung Women’s University, Seoul,
Korea
| | - Kyoung Hee Nam
- Department of Biological Sciences, Sookmyung Women’s University, Seoul,
Korea
| |
Collapse
|
40
|
Bräuning S, Catanach A, Lord JM, Bicknell R, Macknight RC. Comparative transcriptome analysis of the wild-type model apomict Hieracium praealtum and its loss of parthenogenesis (lop) mutant. BMC PLANT BIOLOGY 2018; 18:206. [PMID: 30249189 PMCID: PMC6154955 DOI: 10.1186/s12870-018-1423-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/10/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Asexual seed formation (apomixis) has been observed in diverse plant families but is rare in crop plants. The generation of apomictic crops would revolutionize agriculture, as clonal seed production provides a low cost and efficient way to produce hybrid seed. Hieracium (Asteraceae) is a model system for studying the molecular components of gametophytic apomixis (asexual seed reproduction). RESULTS In this study, a reference transcriptome was produced from apomictic Hieracium undergoing the key apomictic events of apomeiosis, parthenogenesis and autonomous endosperm development. In addition, transcriptome sequences from pre-pollination and post-pollination stages were generated from a loss of parthenogenesis (lop) mutant accession that exhibits loss of parthenogenesis and autonomous endosperm development. The transcriptome is composed of 147,632 contigs, 50% of which were annotated with orthologous genes and their probable function. The transcriptome was used to identify transcripts differentially expressed during apomictic and pollination dependent (lop) seed development. Gene Ontology enrichment analysis of differentially expressed transcripts showed that an important difference between apomictic and pollination dependent seed development was the expression of genes relating to epigenetic gene regulation. Genes that mark key developmental stages, i.e. aposporous embryo sac development and seed development, were also identified through their enhanced expression at those stages. CONCLUSION The production of a comprehensive floral reference transcriptome for Hieracium provides a valuable resource for research into the molecular basis of apomixis and the identification of the genes underlying the LOP locus.
Collapse
Affiliation(s)
- Sophia Bräuning
- Department of Biochemistry, University of Otago, 710 Cumberland St, Dunedin, 9016 New Zealand
- Department of Botany, University of Otago, 464 Great King St, Dunedin, 9016 New Zealand
| | - Andrew Catanach
- New Zealand Institute for Plant and Food Research, Gerald St, Lincoln, 7608 New Zealand
| | - Janice M. Lord
- Department of Botany, University of Otago, 464 Great King St, Dunedin, 9016 New Zealand
| | - Ross Bicknell
- New Zealand Institute for Plant and Food Research, Gerald St, Lincoln, 7608 New Zealand
| | - Richard C. Macknight
- Department of Biochemistry, University of Otago, 710 Cumberland St, Dunedin, 9016 New Zealand
| |
Collapse
|
41
|
Abstract
The haploid female gametophyte (embryo sac) is an essential reproductive unit of flowering plants, usually comprising four specialized cell types, including the female gametes (egg cell and central cell). The differentiation of these cells relies on spatial signals which pattern the gametophyte along a proximal-distal axis, but the molecular and genetic mechanisms by which cell identities are determined in the embryo sac have long been a mystery. Recent identification of key genes for cell fate specification and their relationship to hormonal signaling pathways that act on positional cues has provided new insights into these processes. A model for differentiation can be devised with egg cell fate as a default state of the female gametophyte and with other cell types specified by the action of spatially regulated factors. Cell-to-cell communication within the gametophyte is also important for maintaining cell identity as well as facilitating fertilization of the female gametes by the male gametes (sperm cells).
Collapse
Affiliation(s)
- Debra J Skinner
- Department of Plant Biology, University of California-Davis, Davis, USA
| | - Venkatesan Sundaresan
- Department of Plant Biology, University of California-Davis, Davis, USA.,Department of Plant Sciences, University of California-Davis, Davis, USA
| |
Collapse
|
42
|
Lu Z, Huang Q, Zhang T, Hu B, Chang Y. Global transcriptome analysis and characterization of Dryopteris fragrans (L.) Schott sporangium in different developmental stages. BMC Genomics 2018; 19:471. [PMID: 29914367 PMCID: PMC6006573 DOI: 10.1186/s12864-018-4843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dryopteris fragrans (D. fragrans) is a potential medicinal fern distributed in volcanic magmatic rock areas under tough environmental condition. Sporangia are important organs for fern reproduction. This study was designed to characterize the transcriptome characteristics of the wild D. fragrans sporangia in three stages (stage A, B, and C) with the aim of uncovering its molecular mechanism of growth and development. RESULTS Using a HiSeq 4000, 79.81 Gb clean data (each sample is at least 7.95 GB) were obtained from nine samples, with three being supplied from each period, and assembled into 94,705 Unigenes, among which 44,006 Unigenes were annotated against public protein databases (NR, Swiss-Prot, KEGG, COG, KOG, GO, eggNOG and Pfam). Furthermore, we observed 7126 differentially expressed genes (DEG) (Fold Change > 4, FDR < 0.001), 349,885 SNP loci, and 10,584 SSRs. DEGs involved in DNA replication and homologous recombination were strongly expressed in stage A, and several DEGs involved in cutin, suberin and wax biosynthesis had undergone dramatic changes during development, which was consistent with morphological observations. DEGs responsible for secondary metabolism and plant hormone signal transduction changed clearly in the last two stages. DEGs homologous to those known genes associated with the development of reproductive organs of flowering plants have also been validated and discussed, such as AGL61, AGL62, ONAC010. In particular, a Unigene encoding TFL1, an important flower-development regulator in flowering plants, was identified and exhibited the highest expression level in stage B in D. fragrans sporangia. CONCLUSIONS This study is the first report on global transcriptome analysis in the development of sporangia of wild D. fragrans. DEGs related to development and homologous to flower-seed development in flowering plants were discussed. All DEGs involved in DNA replication and homologous recombination were consistent with morphological observations of paraffin slices. The results of this study provide rare resources for further investigation of the D. fragrans sporangium development, stress resistance and secondary metabolism.
Collapse
Affiliation(s)
- Zhen Lu
- Laboratory of Plant Research, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Qingyang Huang
- Laboratory of Plant Research, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Tong Zhang
- Laboratory of Plant Research, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | | | - Ying Chang
- Laboratory of Plant Research, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
43
|
Zhang S, Wang D, Zhang H, Skaggs MI, Lloyd A, Ran D, An L, Schumaker KS, Drews GN, Yadegari R. FERTILIZATION-INDEPENDENT SEED-Polycomb Repressive Complex 2 Plays a Dual Role in Regulating Type I MADS-Box Genes in Early Endosperm Development. PLANT PHYSIOLOGY 2018; 177. [PMID: 29523711 PMCID: PMC5933120 DOI: 10.1104/pp.17.00534] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Early endosperm development presents a unique system in which to uncover epigenetic regulatory mechanisms because the contributing maternal and paternal genomes possess differential epigenetic modifications. In Arabidopsis (Arabidopsis thaliana), the initiation of endosperm coenocytic growth upon fertilization and the transition to endosperm cellularization are regulated by the FERTILIZATION-INDEPENDENT SEED (FIS)-Polycomb Repressive Complex 2 (PRC2), a putative H3K27 methyltransferase. Here, we address the possible role of the FIS-PRC2 complex in regulating the type I MADS-box gene family, which has been shown previously to regulate early endosperm development. We show that a subclass of type I MADS-box genes (C2 genes) was expressed in distinct domains of the coenocytic endosperm in wild-type seeds. Furthermore, the C2 genes were mostly up-regulated biallelically during the extended coenocytic phase of endosperm development in the FIS-PRC2 mutant background. Using allele-specific expression analysis, we also identified a small subset of C2 genes subjected to FIS-PRC2-dependent maternal or FIS-PRC2-independent paternal imprinting. Our data support a dual role for the FIS-PRC2 complex in the regulation of C2 type I MADS-box genes, as evidenced by a generalized role in the repression of gene expression at both alleles associated with endosperm cellularization and a specialized role in silencing the maternal allele of imprinted genes.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Dongfang Wang
- Biology Department, Spelman College, Atlanta, Georgia 30314
| | - Huajian Zhang
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Megan I Skaggs
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Alan Lloyd
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Di Ran
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
- Division of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85724
| | - Lingling An
- Division of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona 85724
- Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, Arizona 85721
| | - Karen S Schumaker
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Gary N Drews
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
44
|
Mohanty JN, Joshi RK. Molecular cloning, characterization and expression analysis of MADS-box genes associated with reproductive development in Momordica dioica Roxb. 3 Biotech 2018; 8:150. [PMID: 29616182 DOI: 10.1007/s13205-018-1176-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/19/2018] [Indexed: 02/03/2023] Open
Abstract
The repertoire and functions of MADS-box family transcription factors (TFs) largely remains unexplored with respect to floral organogenesis of Momordica dioica Roxb. Degenerative PCR followed by rapid amplification of cDNA ends was employed in the present study to clone and characterize 17 MADS-box genes (designated as MdMADS01 to MdMADS17) from the floral buds of M. dioica. The cloned genes were clustered into three subgroups (11 MIKCC, 4 MIKC* and 2 Mα) based on phylogenetic relationships with the MADS-box genes from Cucumis sativus, Cucumis melo and Arabidopsis thaliana. Southern hybridization showed that all the isolated genes were represented by single copy locus in the M. dioica genome. Gene structure analysis revealed 1-8 exons in MdMADS-box genes with the number of exons in MIKC greatly exceeding from that in M-type genes. Motif elicitation of the MdMADS-box genes indicated the presence of additional domains with MIKC type, suggesting that they had more complex structures. Expression analysis of MdMADS genes in six M. dioica transcriptome suggested that, 11 MIKCC-type genes are associated with floral homeotic functions, 4 MIKC*-type genes (MdMADS12 to MdMADS15) controlled the growth of male gametophyte, while the two M-type genes (MdMADS16 and MdMADS17) played significant role in female gametogenesis and seed development. Overall, these are the first set of MADS-box genes from M. dioica exhibiting a differential expression pattern during floral development. The results from this study will provide valuable information for further functional studies of candidate MADS-box genes in the sexual dimorphism of this economically important dioecious cucurbit.
Collapse
|
45
|
Ezura K, Ji-Seong K, Mori K, Suzuki Y, Kuhara S, Ariizumi T, Ezura H. Genome-wide identification of pistil-specific genes expressed during fruit set initiation in tomato (Solanum lycopersicum). PLoS One 2017; 12:e0180003. [PMID: 28683065 PMCID: PMC5500324 DOI: 10.1371/journal.pone.0180003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022] Open
Abstract
Fruit set involves the developmental transition of an unfertilized quiescent ovary in the pistil into a fruit. While fruit set is known to involve the activation of signals (including various plant hormones) in the ovary, many biological aspects of this process remain elusive. To further expand our understanding of this process, we identified genes that are specifically expressed in tomato (Solanum lycopersicum L.) pistils during fruit set through comprehensive RNA-seq-based transcriptome analysis using 17 different tissues including pistils at six different developmental stages. First, we identified 532 candidate genes that are preferentially expressed in the pistil based on their tissue-specific expression profiles. Next, we compared our RNA-seq data with publically available transcriptome data, further refining the candidate genes that are specifically expressed within the pistil. As a result, 108 pistil-specific genes were identified, including several transcription factor genes that function in reproductive development. We also identified genes encoding hormone-like peptides with a secretion signal and cysteine-rich residues that are conserved among some Solanaceae species, suggesting that peptide hormones may function as signaling molecules during fruit set initiation. This study provides important information about pistil-specific genes, which may play specific roles in regulating pistil development in relation to fruit set.
Collapse
Affiliation(s)
- Kentaro Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kim Ji-Seong
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuki Mori
- Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Satoru Kuhara
- Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
46
|
Pratibha P, Singh SK, Srinivasan R, Bhat SR, Sreenivasulu Y. Gametophyte Development Needs Mitochondrial Coproporphyrinogen III Oxidase Function. PLANT PHYSIOLOGY 2017; 174:258-275. [PMID: 28270625 PMCID: PMC5411134 DOI: 10.1104/pp.16.01482] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/28/2017] [Indexed: 05/03/2023]
Abstract
Tetrapyrrole biosynthesis is one of the most essential metabolic pathways in almost all organisms. Coproporphyrinogen III oxidase (CPO) catalyzes the conversion of coproporphyrinogen III into protoporphyrinogen IX in this pathway. Here, we report that mutation in the Arabidopsis (Arabidopsis thaliana) CPO-coding gene At5g63290 (AtHEMN1) adversely affects silique length, ovule number, and seed set. Athemn1 mutant alleles were transmitted via both male and female gametes, but homozygous mutants were never recovered. Plants carrying Athemn1 mutant alleles showed defects in gametophyte development, including nonviable pollen and embryo sacs with unfused polar nuclei. Improper differentiation of the central cell led to defects in endosperm development. Consequently, embryo development was arrested at the globular stage. The mutant phenotype was completely rescued by transgenic expression of AtHEMN1 Promoter and transcript analyses indicated that AtHEMN1 is expressed mainly in floral tissues and developing seeds. AtHEMN1-green fluorescent protein fusion protein was found targeted to mitochondria. Loss of AtHEMN1 function increased coproporphyrinogen III level and reduced protoporphyrinogen IX level, suggesting the impairment of tetrapyrrole biosynthesis. Blockage of tetrapyrrole biosynthesis in the AtHEMN1 mutant led to increased reactive oxygen species (ROS) accumulation in anthers and embryo sacs, as evidenced by nitroblue tetrazolium staining. Our results suggest that the accumulated ROS disrupts mitochondrial function by altering their membrane polarity in floral tissues. This study highlights the role of mitochondrial ROS homeostasis in gametophyte and seed development and sheds new light on tetrapyrrole/heme biosynthesis in plant mitochondria.
Collapse
Affiliation(s)
- Pritu Pratibha
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., S.K.S., Y.S.)
- Academy of Scientific and Innovative Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., Y.S.); and
- Indian Council of Agricultural Research-National Research Centre on Plant Biotechnology, New Delhi 110012, India (R.S., S.R.B.)
| | - Sunil Kumar Singh
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., S.K.S., Y.S.)
- Academy of Scientific and Innovative Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., Y.S.); and
- Indian Council of Agricultural Research-National Research Centre on Plant Biotechnology, New Delhi 110012, India (R.S., S.R.B.)
| | - Ramamurthy Srinivasan
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., S.K.S., Y.S.)
- Academy of Scientific and Innovative Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., Y.S.); and
- Indian Council of Agricultural Research-National Research Centre on Plant Biotechnology, New Delhi 110012, India (R.S., S.R.B.)
| | - Shripad Ramachandra Bhat
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., S.K.S., Y.S.);
- Academy of Scientific and Innovative Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., Y.S.); and
- Indian Council of Agricultural Research-National Research Centre on Plant Biotechnology, New Delhi 110012, India (R.S., S.R.B.)
| | - Yelam Sreenivasulu
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., S.K.S., Y.S.);
- Academy of Scientific and Innovative Research-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India (P.P., Y.S.); and
- Indian Council of Agricultural Research-National Research Centre on Plant Biotechnology, New Delhi 110012, India (R.S., S.R.B.)
| |
Collapse
|
47
|
Zhang L, Zhao J, Feng C, Liu M, Wang J, Hu Y. Genome-wide identification, characterization of the MADS-box gene family in Chinese jujube and their involvement in flower development. Sci Rep 2017; 7:1025. [PMID: 28432294 PMCID: PMC5430891 DOI: 10.1038/s41598-017-01159-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/15/2017] [Indexed: 01/08/2023] Open
Abstract
MADS-box genes encode transcription factors that are involved in plant development control (particularly in floral organogenesis) and signal transduction pathways, though a comprehensive analysis of MADS-box family proteins in Chinese jujube (Ziziphus jujuba Mill.) is still missing. Here, we report a genome-wide analysis of the MADS-box gene family in Chinese jujube. Based on phylogenetic analyses, 52 jujube MADS-box genes were classified into 25 MIKCC-type, 3 MIKC*-type, 16 Mα, 5 Mβ and 3 Mγ genes. 37 genes were randomly distributed across all 12 putative chromosomes. We found that the type II genes are more complex than the type I genes and that tandem duplications have occurred in three groups of MADS-box genes. Meanwhile, some gene pairs in the same clade displayed similar or distinct expression profiles, suggesting possible functional redundancy or divergence. MIKCC-type genes exhibited typical temporal and spatial expression patterns in the four whorls of floral tissues. The expressions of B, C/D and E-type genes were significantly suppressed in phyllody as compared to flower, providing valuable evidence for their involvement in flower development. This study is the first comprehensive analysis of the MADS-box family in jujube, and provides valuable information for elucidating molecular regulation mechanism of jujube flower development.
Collapse
Affiliation(s)
- Liman Zhang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China.
| | - Chunfang Feng
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000, China.
| | - Jiurui Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Yafei Hu
- BGI-Shenzhen, Shenzhen, 518083, China
| |
Collapse
|
48
|
Tedeschi F, Rizzo P, Rutten T, Altschmied L, Bäumlein H. RWP-RK domain-containing transcription factors control cell differentiation during female gametophyte development in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:1909-1924. [PMID: 27870062 DOI: 10.1111/nph.14293] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/17/2016] [Indexed: 05/02/2023]
Abstract
The formation of gametes is a prerequisite for any sexually reproducing organism in order to complete its life cycle. In plants, female gametes are formed in a multicellular tissue, the female gametophyte or embryo sac. Although the events leading to the formation of the female gametophyte have been morphologically characterized, the molecular control of embryo sac development remains elusive. We used single and double mutants as well as cell-specific marker lines to characterize a novel class of gene regulators in Arabidopsis thaliana, the RWP-RK domain-containing (RKD) transcription factors. Morphological and histological analyses were conducted using confocal laser scanning and differential interference contrast microscopy. Gene expression and transcriptome analyses were performed using quantitative reverse transcription-PCR and RNA sequencing, respectively. Our results showed that RKD genes are expressed during distinct stages of embryo sac development. Morphological analysis of the mutants revealed severe distortions in gametophyte polarity and cell differentiation. Transcriptome analysis revealed changes in the expression of several gametophyte-specific gene families (RKD2 and RKD3) and ovule development-specific genes (RKD3), and identified pleiotropic effects on phytohormone pathways (RKD5). Our data provide novel insight into the regulatory control of female gametophyte development. RKDs are involved in the control of cell differentiation and are required for normal gametophytic development.
Collapse
Affiliation(s)
- Francesca Tedeschi
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Paride Rizzo
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Twan Rutten
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Lothar Altschmied
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| | - Helmut Bäumlein
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Seeland, OT Gatersleben, Germany
| |
Collapse
|
49
|
Huang S, Liu Z, Li C, Yao R, Li D, Hou L, Li X, Liu W, Feng H. Transcriptome Analysis of a Female-sterile Mutant ( fsm) in Chinese Cabbage ( Brassica campestris ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2017; 8:546. [PMID: 28443127 PMCID: PMC5385380 DOI: 10.3389/fpls.2017.00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/27/2017] [Indexed: 05/03/2023]
Abstract
Female-sterile mutants are ideal materials for studying pistil development in plants. Here, we identified a female-sterile mutant fsm in Chinese cabbage. This mutant, which exhibited stable inheritance, was derived from Chinese cabbage DH line 'FT' using a combination of isolated microspore culture and ethyl methanesulfonate mutagenesis. Compared with the wild-type line 'FT,' the fsm plants exhibited pistil abortion, and floral organs were also relatively smaller. Genetic analysis indicated that the phenotype of fsm is controlled by a single recessive nuclear gene. Morphological observations revealed that the presence of abnormal ovules in fsm likely influenced normal fertilization process, ultimately leading to female sterility. Comparative transcriptome analysis on the flower buds of 'FT' and fsm using RNA-Seq revealed a total of 1,872 differentially expressed genes (DEGs). Of these, a number of genes involved in pistil development were identified, such as PRETTY FEW SEEDS 2 (PFS2), temperature-induced lipocalin (TIL), AGAMOUS-LIKE (AGL), and HECATE (HEC). Furthermore, GO and KEGG pathway enrichment analyses of the DEGs suggested that a variety of biological processes and metabolic pathways are significantly enriched during pistil development. In addition, the expression patterns of 16 DEGs, including four pistil development-related genes and 12 floral organ development-related genes, were analyzed using qRT-PCR. A total of 31,272 single nucleotide polymorphisms were specifically detected in fsm. These results contribute to shed light on the regulatory mechanisms underlying pistil development in Chinese cabbage.
Collapse
|
50
|
Lu C, Yu F, Tian L, Huang X, Tan H, Xie Z, Hao X, Li D, Luan S, Chen L. RPS9M, a Mitochondrial Ribosomal Protein, Is Essential for Central Cell Maturation and Endosperm Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2171. [PMID: 29312411 PMCID: PMC5744018 DOI: 10.3389/fpls.2017.02171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/11/2017] [Indexed: 05/15/2023]
Abstract
During double fertilization of angiosperms, the central cell of the female gametophyte fuses with a sperm cell to produce the endosperm, a storage tissue that nourishes the developing embryo within the seed. Although many genetic mutants defective in female gametophytic functions have been characterized, the molecular mechanisms controlling the specification and differentiation of the central cell are still not fully understood. Here, we report a mitochondrial ribosomal protein, RPS9M, is required for central cell maturation. RPS9M was highly expressed in the male and female gametophytes before and after double fertilization. The female gametophytes were defective in the rps9m mutant specifically concerning maturation of central cells. The morphological defects include unfused polar nuclei and smaller central vacuole in central cells. In addition, embryo initiation and early endosperm development were also severely affected in rps9m female gametophytes even after fertilized with wild type pollens. The RPS9M can interact with ANK6, an ankyrin-repeat protein in mitochondria previously reported to be required for fertilization. The expression pattern and mutant phenotype of RPS9M are similar to those of ANK6 as well, suggesting that RPS9M may work together with ANK6 in controlling female gametophyte development, possibly by regulating the expression of some mitochondrial proteins.
Collapse
Affiliation(s)
- Changqing Lu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Feng Yu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Lianfu Tian
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Xiaoying Huang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Hong Tan
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Zijing Xie
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Xiaohua Hao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Dongping Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
- *Correspondence: Dongping Li, Sheng Luan, Liangbi Chen,
| | - Sheng Luan
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Dongping Li, Sheng Luan, Liangbi Chen,
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
- *Correspondence: Dongping Li, Sheng Luan, Liangbi Chen,
| |
Collapse
|