1
|
Mohammed AN, Kohram F, Lan YW, Li E, Kolesnichenko OA, Kalin TV, Kalinichenko VV. Transplantation of alveolar macrophages improves the efficacy of endothelial progenitor cell therapy in mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2024; 327:L114-L125. [PMID: 38772902 PMCID: PMC11380942 DOI: 10.1152/ajplung.00274.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe complication of preterm births, which develops due to exposure to supplemental oxygen and mechanical ventilation. Published studies demonstrated that the number of endothelial progenitor cells (EPC) is decreased in mouse and human BPD lungs and that adoptive transfer of EPC is an effective approach in reversing the hyperoxia-induced lung damage in mouse model of BPD. Recent advancements in macrophage biology identified the specific subtypes of circulating and resident macrophages mediating the developmental and regenerative functions in the lungs. Several studies reported the successful application of macrophage therapy in accelerating the regenerative capacity of damaged tissues and enhancing the therapeutic efficacy of other transplantable progenitor cells. In the present study, we explored the efficacy of combined cell therapy with EPC and resident alveolar macrophages (rAM) in hyperoxia-induced BPD mouse model. rAM and EPC were purified from neonatal mouse lungs and were used for adoptive transfer to the recipient neonatal mice exposed to hyperoxia. Adoptive transfer of rAM alone did not result in engraftment of donor rAM into the lung tissue but increased the mRNA level and protein concentration of proangiogenic CXCL12 chemokine in recipient mouse lungs. Depletion of rAM by chlodronate-liposomes decreased the retention of donor EPC after their transplantation into hyperoxia-injured lungs. Adoptive transfer of rAM in combination with EPC enhanced the therapeutic efficacy of EPC as evidenced by increased retention of EPC, increased capillary density, improved arterial oxygenation, and alveolarization in hyperoxia-injured lungs. Dual therapy with EPC and rAM has promise in human BPD.NEW & NOTEWORTHY Recent studies demonstrated that transplantation of lung-resident endothelial progenitor cells (EPC) is an effective therapy in mouse model of bronchopulmonary dysplasia (BPD). However, key factors regulating the efficacy of EPC are unknown. Herein, we demonstrate that transplantation of tissue-resident alveolar macrophages (rAM) increases CXCL12 expression in neonatal mouse lungs. rAM are required for retention of donor EPC in hyperoxia-injured lungs. Co-transplantation of rAM and EPC improves the efficacy of EPC therapy in mouse BPD model.
Collapse
Affiliation(s)
- Afzaal Nadeem Mohammed
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
| | - Fatemeh Kohram
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
| | - Ying-Wei Lan
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
| | - Enhong Li
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
| | - Olena A Kolesnichenko
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States
| | - Tanya V Kalin
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
| | - Vladimir V Kalinichenko
- Department of Child Health, Phoenix Children's Research Institute, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States
- Division of Neonatology, Phoenix Children's Hospital, Phoenix, Arizona, United States
| |
Collapse
|
2
|
Fransen LFH, Leonard MO. Mononuclear phagocyte sub-types in vitro display diverse transcriptional responses to dust mite exposure. Sci Rep 2024; 14:14187. [PMID: 38902328 PMCID: PMC11189906 DOI: 10.1038/s41598-024-64783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
Mononuclear phagocytes (MNP), including macrophages and dendritic cells form an essential component of primary responses to environmental hazards and toxic exposures. This is particularly important in disease conditions such as asthma and allergic airway disease, where many different cell types are present. In this study, we differentiated CD34+ haematopoietic stem cells towards different populations of MNP in an effort to understand how different cell subtypes present in inflammatory disease microenvironments respond to the common allergen house dust mite (HDM). Using single cell mRNA sequencing, we demonstrate that macrophage subtypes MCSPP1+ and MLCMARCO+ display different patterns of gene expression after HDM challenge, noted especially for the chemokines CXCL5, CXCL8, CCL5 and CCL15. MLCCD206Hi alternatively activated macrophages displayed the greatest changes in expression, while neutrophil and monocyte populations did not respond. Further work investigated how pollutant diesel exhaust particles could modify these transcriptional responses and revealed that CXC but not CC type chemokines were further upregulated. Through the use of diesel particles with adsorbed material removed, we suggest that soluble pollutants on these particles are the active constituents responsible for the modifying effects on HDM. This study highlights that environmental exposures may influence tissue responses dependent on which MNP cell type is present, and that these should be considerations when modelling such events in vitro. Understanding the nuanced responsiveness of different immune cell types to allergen and pollutant exposure also contributes to a better understanding of how these exposures influence the development and exacerbation of human disease.
Collapse
Affiliation(s)
- Leonie F H Fransen
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency, Harwell Science and Innovation Campus, Harwell, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Radiation, Chemical and Environmental Hazards Directorate, UK Health Security Agency, Harwell Science and Innovation Campus, Harwell, OX11 0RQ, UK.
| |
Collapse
|
3
|
Wu J, Wang P, Xie X, Yang X, Tang S, Zhao J, Liu T, Wang J, Zhang J, Xia T, Feng X. Gasdermin D silencing alleviates airway inflammation and remodeling in an ovalbumin-induced asthmatic mouse model. Cell Death Dis 2024; 15:400. [PMID: 38849380 PMCID: PMC11161474 DOI: 10.1038/s41419-024-06777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
Emerging evidence demonstrates that pyroptosis has been implicated in the pathogenesis of asthma. Gasdermin D (GSDMD) is the pyroptosis executioner. The mechanism of GSDMD in asthma remains unclear. The aim of this study was to elucidate the potential role of GSDMD in asthmatic airway inflammation and remodeling. Immunofluorescence staining was conducted on airway epithelial tissues obtained from both asthma patients and healthy controls (HCs) to evaluate the expression level of N-GSDMD. ELISA was used to measure concentrations of cytokines (IL-1β, IL-18, IL-17A, and IL-10) in serum samples collected from asthma patients and healthy individuals. We demonstrated that N-GSDMD, IL-18, and IL-1β were significantly increased in samples with mild asthma compared with those from the controls. Then, wild type and Gsdmd-knockout (Gsdmd-/-) mice were used to establish asthma model. We performed histopathological staining, ELISA, and flow cytometry to explore the function of GSDMD in allergic airway inflammation and tissue remodeling in vivo. We observed that the expression of N-GSDMD, IL-18, and IL-1β was enhanced in OVA-induced asthma mouse model. Gsdmd knockout resulted in attenuated IL-18, and IL-1β production in both bronchoalveolar lavage fluid (BALF) and lung tissue in asthmatic mice. In addition, Gsdmd-/- mice exhibit a significant reduction in airway inflammation and remodeling, which might be associated with reduced Th17 inflammatory response and M2 polarization of macrophages. Further, we found that GSDMD knockout may improve asthmatic airway inflammation and remodeling through regulating macrophage adhesion, migration, and macrophage M2 polarization by targeting Notch signaling pathway. These findings demonstrate that GSDMD deficiency profoundly alleviates allergic inflammation and tissue remodeling. Therefore, GSDMD may serve as a potential therapeutic target against asthma.
Collapse
Affiliation(s)
- Jinxiang Wu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Pin Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Xinyu Xie
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Xiaoqi Yang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Shuangmei Tang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Jiping Zhao
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Tian Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Junfei Wang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Jintao Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tongliang Xia
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Xin Feng
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China.
| |
Collapse
|
4
|
O'Donnell V, Lloyd C, Tyrrell V. Correction to "Alveolar macrophages are sentinels of murine pulmonary homeostasis following inhaled antigen challenge". Allergy 2024; 79:1639-1640. [PMID: 38197529 PMCID: PMC11261582 DOI: 10.1111/all.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/11/2024]
Affiliation(s)
- Valerie O'Donnell
- Systems Immunity Research Institute, School of MedicineCardiff UniversityCardiffUK
| | | | - Victoria Tyrrell
- Systems Immunity Research Institute, School of MedicineCardiff UniversityCardiffUK
| |
Collapse
|
5
|
Shi W, Xu Q, Liu Y, Hao Z, Liang Y, Vallée I, You X, Liu M, Liu X, Xu N. Immunosuppressive Ability of Trichinella spiralis Adults Can Ameliorate Type 2 Inflammation in a Murine Allergy Model. J Infect Dis 2024; 229:1215-1228. [PMID: 38016013 PMCID: PMC11011206 DOI: 10.1093/infdis/jiad518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND There is an increase in the global incidence of allergies. The hygiene hypothesis and the old friend hypothesis reveal that helminths are associated with the prevalence of allergic diseases. The therapeutic potential of Trichinella spiralis is recognized; however, the stage at which it exerts its immunomodulatory effect is unclear. METHODS We evaluated the differentiation of bone marrow-derived macrophages stimulated with T spiralis excretory-secretory products. Based on an ovalbumin-induced murine model, T spiralis was introduced during 3 allergy phases. Cytokine levels and immune cell subsets in the lung, spleen, and peritoneal cavity were assessed. RESULTS We found that T spiralis infection reduced lung inflammation, increased anti-inflammatory cytokines, and decreased Th2 cytokines and alarms. Recruitment of eosinophils, CD11b+ dendritic cells, and interstitial macrophages to the lung was significantly suppressed, whereas Treg cells and alternatively activated macrophages increased in T spiralis infection groups vs the ovalbumin group. Notably, when T spiralis was infected prior to ovalbumin challenge, intestinal adults promoted proportions of CD103+ dendritic cells and alveolar macrophages. CONCLUSIONS T spiralis strongly suppressed type 2 inflammation, and adults maintained lung immune homeostasis.
Collapse
Affiliation(s)
- Wenjie Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun
| | - Qinwei Xu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Qingdao
| | - Yan Liu
- College of Public Health, Jilin Medical University, China
| | - Zhili Hao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun
| | - Yue Liang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun
| | - Isabelle Vallée
- Unité Mixte de Recherche Biologie moléculaire et Immunologie Parasitaire, Anses, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Laboratoire de Santé Animale, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Xihuo You
- Beijing Agrichina Pharmaceutical Co, Ltd, Beijing, China
| | - Mingyuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun
| | - Xiaolei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun
| |
Collapse
|
6
|
Han S, Moon S, Chung YW, Ryu JH. NADPH Oxidase 4-mediated Alveolar Macrophage Recruitment to Lung Attenuates Neutrophilic Inflammation in Staphylococcus aureus Infection. Immune Netw 2023; 23:e42. [PMID: 37970233 PMCID: PMC10643333 DOI: 10.4110/in.2023.23.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/22/2023] [Indexed: 11/17/2023] Open
Abstract
When the lungs are infected with bacteria, alveolar macrophages (AMs) are recruited to the site and play a crucial role in protecting the host by reducing excessive lung inflammation. However, the regulatory mechanisms that trigger the recruitment of AMs to lung alveoli during an infection are still not fully understood. In this study, we identified a critical role for NADPH oxidase 4 (NOX4) in the recruitment of AMs during Staphylococcus aureus lung infection. We found that NOX4 knockout (KO) mice showed decreased recruitment of AMs and increased lung neutrophils and injury in response to S. aureus infection compared to wild-type (WT) mice. Interestingly, the burden of S. aureus in the lungs was not different between NOX4 KO and WT mice. Furthermore, we observed that depletion of AMs in WT mice during S. aureus infection increased the number of neutrophils and lung injury to a similar level as that observed in NOX4 KO mice. Additionally, we found that expression of intercellular adhesion molecule-1 (ICAM1) in NOX4 KO mice-derived lung endothelial cells was lower than that in WT mice-derived endothelial cells. Therefore, we conclude that NOX4 plays a crucial role in inducing the recruitment of AMs by controlling ICAM1 expression in lung endothelial cells, which is responsible for resolving lung inflammation during acute S. aureus infection.
Collapse
Affiliation(s)
- Seunghan Han
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sungmin Moon
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Youn Wook Chung
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
7
|
Britt RD, Ruwanpathirana A, Ford ML, Lewis BW. Macrophages Orchestrate Airway Inflammation, Remodeling, and Resolution in Asthma. Int J Mol Sci 2023; 24:10451. [PMID: 37445635 PMCID: PMC10341920 DOI: 10.3390/ijms241310451] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Asthma is a heterogenous chronic inflammatory lung disease with endotypes that manifest different immune system profiles, severity, and responses to current therapies. Regardless of endotype, asthma features increased immune cell infiltration, inflammatory cytokine release, and airway remodeling. Lung macrophages are also heterogenous in that there are separate subsets and, depending on the environment, different effector functions. Lung macrophages are important in recruitment of immune cells such as eosinophils, neutrophils, and monocytes that enhance allergic inflammation and initiate T helper cell responses. Persistent lung remodeling including mucus hypersecretion, increased airway smooth muscle mass, and airway fibrosis contributes to progressive lung function decline that is insensitive to current asthma treatments. Macrophages secrete inflammatory mediators that induce airway inflammation and remodeling. Additionally, lung macrophages are instrumental in protecting against pathogens and play a critical role in resolution of inflammation and return to homeostasis. This review summarizes current literature detailing the roles and existing knowledge gaps for macrophages as key inflammatory orchestrators in asthma pathogenesis. We also raise the idea that modulating inflammatory responses in lung macrophages is important for alleviating asthma.
Collapse
Affiliation(s)
- Rodney D Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Anushka Ruwanpathirana
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Maria L Ford
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Brandon W Lewis
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| |
Collapse
|
8
|
Waqar U, Ali IFM, Farooqui I, Ahmad S, Chaudhry AA, Angez M, Ziauddin A, Shamim MS. The effect of preoperative steroids for at least 10 days on complications following craniotomy for tumor resection: A database, retrospective cohort study. BRAIN & SPINE 2023; 3:101725. [PMID: 37383460 PMCID: PMC10293287 DOI: 10.1016/j.bas.2023.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/30/2023]
Abstract
Introduction The effect of chronic steroid therapy on postoperative outcomes after craniotomy for tumor resection remains understudied. Research question This study aimed to fill this gap and to identify risk factors of postoperative morbidity and mortality among patients on chronic steroid use undergoing craniotomy for tumor resection. Materials and methods Data from the American College of Surgeons National Surgical Quality Improvement Program were used. Patients who underwent craniotomy for tumor resection between 2011 and 2019 were included. Perioperative characteristics and complications were compared among patients with and without chronic steroid therapy, defined as steroid use for at least 10 days. Multivariable regression analyses were conducted to assess the impact of steroid therapy on postoperative outcomes. Subgroup analyses involving patients on steroid therapy were conducted to explore risk factors of postoperative morbidity and mortality. Results Of 27,037 patients, 16.2% were on steroid therapy. On regression analyses, steroid use was significantly associated with any postoperative complication, infectious complication, urinary tract infection, septic shock, wound dehiscence, pneumonia, non-infectious, pulmonary, and thromboembolic complications, cardiac arrest, blood transfusion, unplanned reoperation, readmission, and mortality. On subgroup analysis, risk factors for postoperative morbidity and mortality among patients on steroid therapy included older age, higher American Society of Anesthesiology physical status, functional dependence, pulmonary and cardiovascular comorbidities, anemia, dirty/infected wounds, prolonged operative time, disseminated cancer, and a diagnosis of meningioma. Discussion and conclusion Preoperative brain tumor patients on steroids for 10 or more days are at a relatively high risk of postoperative complications. We recommend a judicious use of steroids in brain tumor patients, both in terms of dosage and duration of treatment.
Collapse
Affiliation(s)
- Usama Waqar
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | - Iman Farooqui
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | | | - Meher Angez
- Medical College, Aga Khan University, Karachi, Pakistan
| | - Afsheen Ziauddin
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Muhammad Shahzad Shamim
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
9
|
Sabatel C, Bureau F. The innate immune brakes of the lung. Front Immunol 2023; 14:1111298. [PMID: 36776895 PMCID: PMC9915150 DOI: 10.3389/fimmu.2023.1111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/29/2023] Open
Abstract
Respiratory mucosal surfaces are continuously exposed to not only innocuous non-self antigens but also pathogen-associated molecular patterns (PAMPs) originating from environmental or symbiotic microbes. According to either "self/non-self" or "danger" models, this should systematically result in homeostasis breakdown and the development of immune responses directed to inhaled harmless antigens, such as T helper type (Th)2-mediated asthmatic reactions, which is fortunately not the case in most people. This discrepancy implies the existence, in the lung, of regulatory mechanisms that tightly control immune homeostasis. Although such mechanisms have been poorly investigated in comparison to the ones that trigger immune responses, a better understanding of them could be useful in the development of new therapeutic strategies against lung diseases (e.g., asthma). Here, we review current knowledge on innate immune cells that prevent the development of aberrant immune responses in the lung, thereby contributing to mucosal homeostasis.
Collapse
Affiliation(s)
- Catherine Sabatel
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium,*Correspondence: Catherine Sabatel,
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
10
|
Kulle A, Thanabalasuriar A, Cohen TS, Szydlowska M. Resident macrophages of the lung and liver: The guardians of our tissues. Front Immunol 2022; 13:1029085. [PMID: 36532044 PMCID: PMC9750759 DOI: 10.3389/fimmu.2022.1029085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
Resident macrophages play a unique role in the maintenance of tissue function. As phagocytes, they are an essential first line defenders against pathogens and much of the initial characterization of these cells was focused on their interaction with viral and bacterial pathogens. However, these cells are increasingly recognized as contributing to more than just host defense. Through cytokine production, receptor engagement and gap junction communication resident macrophages tune tissue inflammatory tone, influence adaptive immune cell phenotype and regulate tissue structure and function. This review highlights resident macrophages in the liver and lung as they hold unique roles in the maintenance of the interface between the circulatory system and the external environment. As such, we detail the developmental origin of these cells, their contribution to host defense and the array of tools these cells use to regulate tissue homeostasis.
Collapse
Affiliation(s)
- Amelia Kulle
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Taylor S. Cohen
- Late Stage Development, Vaccines and Immune Therapies (V&I), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Marta Szydlowska
- Bacteriology and Vaccine Discovery, Research and Early Development, Vaccines and Immune Therapies (V&I), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
11
|
Furlong-Silva J, Cook PC. Fungal-mediated lung allergic airway disease: The critical role of macrophages and dendritic cells. PLoS Pathog 2022; 18:e1010608. [PMID: 35834490 PMCID: PMC9282651 DOI: 10.1371/journal.ppat.1010608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Fungi are abundant in the environment, causing our lungs to be constantly exposed to a diverse range of species. While the majority of these are cleared effectively in healthy individuals, constant exposure to spores (especially Aspergillus spp.) can lead to the development of allergic inflammation that underpins and worsen diseases such as asthma. Despite this, the precise mechanisms that underpin the development of fungal allergic disease are poorly understood. Innate immune cells, such as macrophages (MΦs) and dendritic cells (DCs), have been shown to be critical for mediating allergic inflammation to a range of different allergens. This review will focus on the crucial role of MΦ and DCs in mediating antifungal immunity, evaluating how these immune cells mediate allergic inflammation within the context of the lung environment. Ultimately, we aim to highlight important future research questions that will lead to novel therapeutic strategies for fungal allergic diseases.
Collapse
Affiliation(s)
- Julio Furlong-Silva
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Peter Charles Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Weng D, Gao S, Shen H, Yao S, Huang Q, Zhang Y, Huang W, Wang Y, Zhang X, Yin Y, Xu W. CD5L attenuates allergic airway inflammation by expanding CD11c high alveolar macrophages and inhibiting NLRP3 inflammasome activation via HDAC2. Immunology 2022; 167:384-397. [PMID: 35794812 DOI: 10.1111/imm.13543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Allergic asthma is an airway inflammatory disease dominated by type 2 immune responses and there is currently no curative therapy for asthma. CD5-like antigen (CD5L) has been known to be involved in a variety of inflammatory diseases. However, the role of CD5L in allergic asthma remains unclear. In the present study, mice were treated with recombinant CD5L (rCD5L) during house dust mite (HDM) and ovalbumin (OVA) challenge to determine the role of CD5L in allergic asthma, and the underlying mechanism was further explored. Compared with PBS group, serum CD5L levels of asthmatic mice were significantly decreased, and the levels of CD5L in lung tissues and bronchoalveolar lavage fluid (BALF) were significantly increased. CD5L reduced airway inflammation and Th2 immune responses in asthmatic mice. CD5L exerted its anti-inflammatory function by increasing CD11chigh alveolar macrophages (CD11chigh AMs), and the anti-inflammatory role of CD11chigh AMs in allergic asthma was confirmed by CD11chigh AMs depletion and transfer assays. In addition, CD5L increased the CD5L+ macrophages and inhibited NLRP3 inflammasome activation by increasing HDAC2 expression in lung tissues of asthmatic mice. Hence, our study implicates that CD5L has potential usefulness for asthma treatment.
Collapse
Affiliation(s)
- Danlin Weng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Song Gao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, School of Laboratory Medicine, Zunyi Medical University, No. 149 Dalian Road, Zunyi, Guizhou, China
| | - Hailan Shen
- Department of laboratory medicine, the first affiliated hospital of Chongqing medical university
| | - Shifei Yao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qi Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yanyu Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenjie Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Huang C, Du W, Ni Y, Lan G, Shi G. The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo. Clin Exp Immunol 2022; 207:53-64. [PMID: 35020860 PMCID: PMC8802183 DOI: 10.1093/cei/uxab028] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022] Open
Abstract
Alternatively activated macrophages (M2 polarization) play an important role in asthma. Short-chain fatty acids (SCFAs) possessed immune-regulatory functions, but their effects on M2 polarization of alveolar macrophages and its underlying mechanisms are still unclear. In our study, murine alveolar macrophage MH-S cell line and human monocyte-derived macrophages were used to polarize to M2 subset with interleukin-4 (IL-4) treatment. The underlying mechanisms involved were investigated using molecule inhibitors/agonists. In vivo, female C57BL/6 mice were divided into five groups: CON group, ovalbumin (OVA) asthma group, OVA+Acetate group, OVA+Butyrate group, and OVA+Propionate group. Mice were fed with or without SCFAs (Acetate, Butyrate, Propionate) in drinking water for 20 days before developing OVA-induced asthma model. In MH-S, SCFAs inhibited IL-4-incuced protein or mRNA expressions of M2-associated genes in a dose-dependent manner. G-protein-coupled receptor 43 (GPR43) agonist 4-CMTB and histone deacetylase (HDAC) inhibitor (trichostatin A, TSA), but not GPR41 agonist AR420626 could inhibit the protein or mRNA expressions M2-associated genes. 4-CMTB, but not TSA, had no synergistic role in the inhibitory effect of SCFAs on M2 polarization. In vivo study indicated Butyrate and Propionate, but not Acetate, attenuated OVA-induced M2 polarization in the lung and airway inflammation. We also found the inhibitory effect of SCFAs on M2 polarization in human-derived macrophages. Therefore, SCFAs inhibited M2 polarization in MH-S likely through GPR43 activation and/or HDAC inhibition. Butyrate and Propionate but not Acetate could inhibit M2 polarization and airway inflammation in asthma model. SCFAs also abrogated M2 polarization in human-derived macrophages.
Collapse
Affiliation(s)
- Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Wei Du
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Gelei Lan
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Schetters STT, Schuijs MJ. Pulmonary Eosinophils at the Center of the Allergic Space-Time Continuum. Front Immunol 2021; 12:772004. [PMID: 34868033 PMCID: PMC8634472 DOI: 10.3389/fimmu.2021.772004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Eosinophils are typically a minority population of circulating granulocytes being released from the bone-marrow as terminally differentiated cells. Besides their function in the defense against parasites and in promoting allergic airway inflammation, regulatory functions have now been attributed to eosinophils in various organs. Although eosinophils are involved in the inflammatory response to allergens, it remains unclear whether they are drivers of the asthma pathology or merely recruited effector cells. Recent findings highlight the homeostatic and pro-resolving capacity of eosinophils and raise the question at what point in time their function is regulated. Similarly, eosinophils from different physical locations display phenotypic and functional diversity. However, it remains unclear whether eosinophil plasticity remains as they develop and travel from the bone marrow to the tissue, in homeostasis or during inflammation. In the tissue, eosinophils of different ages and origin along the inflammatory trajectory may exhibit functional diversity as circumstances change. Herein, we outline the inflammatory time line of allergic airway inflammation from acute, late, adaptive to chronic processes. We summarize the function of the eosinophils in regards to their resident localization and time of recruitment to the lung, in all stages of the inflammatory response. In all, we argue that immunological differences in eosinophils are a function of time and space as the allergic inflammatory response is initiated and resolved.
Collapse
Affiliation(s)
- Sjoerd T T Schetters
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
15
|
Kang H, Bang JY, Mo Y, Shin JW, Bae B, Cho SH, Kim HY, Kang HR. Effect of Acinetobacter lwoffii on the modulation of macrophage activation and asthmatic inflammation. Clin Exp Allergy 2021; 52:518-529. [PMID: 34874580 DOI: 10.1111/cea.14077] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although lung macrophages are directly exposed to external stimuli, their exact immunologic roles in asthma are still largely unknown. The aim of this study was to investigate the anti-asthmatic effect of Acinetobacter lwoffii in terms of lung macrophage modulation. METHODS Six-week-old female BALB/c mice were sensitized and challenged with ovalbumin (OVA) with or without intranasal administration of A. lwoffii during the sensitization period. Airway hyperresponsiveness and inflammation were evaluated. Using flow cytometry, macrophages were subclassified according to their activation status. In the in vitro study, a murine alveolar macrophage cell line (MH-S) treated with or without A. lwoffii before IL-13 stimulation were analysed by quantitative RT-PCR. RESULTS In a murine asthma model, the number of inflammatory cells, including macrophages and eosinophils, decreased in mice treated with A. lwoffii (A. lwoffii/OVA group) compared with untreated mice (OVA group). The enhanced expression of MHCII in macrophages in the OVA group was decreased by A. lwoffii treatment. M2 macrophage subtypes were significantly altered. A. lwoffii treatment decreased CD11b+ M2a and CD11b+ M2c macrophages, which showed strong positive correlations with Th2 cells, ILC2 and eosinophils. In contrast, CD11b+ M2b macrophages were significantly increased by A. lwoffii treatment and showed strong positive correlations with ILC1 and ILC3. In vitro, A. lwoffii down-regulated the expression of M2 markers related but up-regulated those related to M2b macrophages. CONCLUSIONS AND CLINICAL RELEVANCE Intranasal A. lwoffii exposure suppresses asthma development by suppressing the type 2 response via modulating lung macrophage activation, shifting M2a and M2c macrophages to M2b macrophages.
Collapse
Affiliation(s)
- Hanbit Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Young Bang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yosep Mo
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Woo Shin
- Department of Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Boram Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Hou F, Xiao K, Tang L, Xie L. Diversity of Macrophages in Lung Homeostasis and Diseases. Front Immunol 2021; 12:753940. [PMID: 34630433 PMCID: PMC8500393 DOI: 10.3389/fimmu.2021.753940] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 01/14/2023] Open
Abstract
Lung macrophages play important roles in the maintenance of homeostasis, pathogen clearance and immune regulation. The different types of pulmonary macrophages and their roles in lung diseases have attracted attention in recent years. Alveolar macrophages (AMs), including tissue-resident alveolar macrophages (TR-AMs) and monocyte-derived alveolar macrophages (Mo-AMs), as well as interstitial macrophages (IMs) are the major macrophage populations in the lung and have unique characteristics in both steady-state conditions and disease states. The different characteristics of these three types of macrophages determine the different roles they play in the development of disease. Therefore, it is important to fully understand the similarities and differences among these three types of macrophages for the study of lung diseases. In this review, we will discuss the physiological characteristics and unique functions of these three types of macrophages in acute and chronic lung diseases. We will also discuss possible methods to target macrophages in lung diseases.
Collapse
Affiliation(s)
- Fei Hou
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Kun Xiao
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Li Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences·Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Ross EA, Devitt A, Johnson JR. Macrophages: The Good, the Bad, and the Gluttony. Front Immunol 2021; 12:708186. [PMID: 34456917 PMCID: PMC8397413 DOI: 10.3389/fimmu.2021.708186] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Macrophages are dynamic cells that play critical roles in the induction and resolution of sterile inflammation. In this review, we will compile and interpret recent findings on the plasticity of macrophages and how these cells contribute to the development of non-infectious inflammatory diseases, with a particular focus on allergic and autoimmune disorders. The critical roles of macrophages in the resolution of inflammation will then be examined, emphasizing the ability of macrophages to clear apoptotic immune cells. Rheumatoid arthritis (RA) is a chronic autoimmune-driven spectrum of diseases where persistent inflammation results in synovial hyperplasia and excessive immune cell accumulation, leading to remodeling and reduced function in affected joints. Macrophages are central to the pathophysiology of RA, driving episodic cycles of chronic inflammation and tissue destruction. RA patients have increased numbers of active M1 polarized pro-inflammatory macrophages and few or inactive M2 type cells. This imbalance in macrophage homeostasis is a main contributor to pro-inflammatory mediators in RA, resulting in continual activation of immune and stromal populations and accelerated tissue remodeling. Modulation of macrophage phenotype and function remains a key therapeutic goal for the treatment of this disease. Intriguingly, therapeutic intervention with glucocorticoids or other DMARDs promotes the re-polarization of M1 macrophages to an anti-inflammatory M2 phenotype; this reprogramming is dependent on metabolic changes to promote phenotypic switching. Allergic asthma is associated with Th2-polarised airway inflammation, structural remodeling of the large airways, and airway hyperresponsiveness. Macrophage polarization has a profound impact on asthma pathogenesis, as the response to allergen exposure is regulated by an intricate interplay between local immune factors including cytokines, chemokines and danger signals from neighboring cells. In the Th2-polarized environment characteristic of allergic asthma, high levels of IL-4 produced by locally infiltrating innate lymphoid cells and helper T cells promote the acquisition of an alternatively activated M2a phenotype in macrophages, with myriad effects on the local immune response and airway structure. Targeting regulators of macrophage plasticity is currently being pursued in the treatment of allergic asthma and other allergic diseases. Macrophages promote the re-balancing of pro-inflammatory responses towards pro-resolution responses and are thus central to the success of an inflammatory response. It has long been established that apoptosis supports monocyte and macrophage recruitment to sites of inflammation, facilitating subsequent corpse clearance. This drives resolution responses and mediates a phenotypic switch in the polarity of macrophages. However, the role of apoptotic cell-derived extracellular vesicles (ACdEV) in the recruitment and control of macrophage phenotype has received remarkably little attention. ACdEV are powerful mediators of intercellular communication, carrying a wealth of lipid and protein mediators that may modulate macrophage phenotype, including a cargo of active immune-modulating enzymes. The impact of such interactions may result in repair or disease in different contexts. In this review, we will discuss the origin, characterization, and activity of macrophages in sterile inflammatory diseases and the underlying mechanisms of macrophage polarization via ACdEV and apoptotic cell clearance, in order to provide new insights into therapeutic strategies that could exploit the capabilities of these agile and responsive cells.
Collapse
Affiliation(s)
- Ewan A Ross
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Andrew Devitt
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Jill R Johnson
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
18
|
Zissler UM, Jakwerth CA, Guerth F, Lewitan L, Rothkirch S, Davidovic M, Ulrich M, Oelsner M, Garn H, Schmidt‐Weber CB, Chaker AM. Allergen-specific immunotherapy induces the suppressive secretoglobin 1A1 in cells of the lower airways. Allergy 2021; 76:2461-2474. [PMID: 33528894 DOI: 10.1111/all.14756] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND While several systemic immunomodulatory effects of allergen-specific immunotherapy (AIT) have been discovered, local anti-inflammatory mechanisms in the respiratory tract are largely unknown. We sought to elucidate local and epithelial mechanisms underlying allergen-specific immunotherapy in a genome-wide approach. METHODS We induced sputum in hay fever patients and healthy controls during the pollen peak season and stratified patients by effective allergen immunotherapy or as untreated. Sputum was directly processed after induction and subjected to whole transcriptome RNA microarray analysis. Nasal secretions were analyzed for Secretoglobin1A1 (SCGB1A1) and IL-24 protein levels in an additional validation cohort at three defined time points during the 3-year course of AIT. Subsequently, RNA was extracted and subjected to an array-based whole transcriptome analysis. RESULTS Allergen-specific immunotherapy inhibited pro-inflammatory CXCL8, IL24, and CCL26mRNA expression, while SCGB1A1, IL7, CCL5, CCL23, and WNT5BmRNAs were induced independently of the asthma status and allergen season. In our validation cohort, local increase of SCGB1A1 occurred concomitantly with the reduction of local IL-24 in upper airways during the course of AIT. Additionally, SCGB1A1 was identified as a suppressor of epithelial gene expression. CONCLUSIONS Allergen-specific immunotherapy induces a yet unknown local gene expression footprint in the lower airways that on one hand appears to be a result of multiple regulatory pathways and on the other hand reveals SCGB1A1 as novel anti-inflammatory mediator of long-term allergen-specific therapeutic intervention in the local environment.
Collapse
Affiliation(s)
- Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Member of the Helmholtz I&I Initiative Munich Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
| | - Larissa Lewitan
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Sandra Rothkirch
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Miodrag Davidovic
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Moritz Ulrich
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Madlen Oelsner
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry Philipps University MarburgMedical FacultyMember of the German Center of Lung Research Marburg Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Member of the Helmholtz I&I Initiative Munich Germany
| | - Adam M. Chaker
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| |
Collapse
|
19
|
Yang J, Scicluna BP, Engelen TSR, Bonta PI, Majoor CJ, Veer C, Vos AF, Bel EH, Poll T. Transcriptional changes in alveolar macrophages from adults with asthma after allergen challenge. Allergy 2021; 76:2218-2222. [PMID: 33368438 PMCID: PMC8359176 DOI: 10.1111/all.14719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Jack Yang
- Center of Experimental and Molecular Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Brendon P. Scicluna
- Center of Experimental and Molecular Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Tjitske S. R. Engelen
- Center of Experimental and Molecular Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Peter I. Bonta
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Christof J. Majoor
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Cornelis Veer
- Center of Experimental and Molecular Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Alex F. Vos
- Center of Experimental and Molecular Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Elisabeth H. Bel
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Tom Poll
- Center of Experimental and Molecular Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
- Division of Infectious Disease Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
20
|
de Los Reyes Jiménez M, Lechner A, Alessandrini F, Bohnacker S, Schindela S, Trompette A, Haimerl P, Thomas D, Henkel F, Mourão A, Geerlof A, da Costa CP, Chaker AM, Brüne B, Nüsing R, Jakobsson PJ, Nockher WA, Feige MJ, Haslbeck M, Ohnmacht C, Marsland BJ, Voehringer D, Harris NL, Schmidt-Weber CB, Esser-von Bieren J. An anti-inflammatory eicosanoid switch mediates the suppression of type-2 inflammation by helminth larval products. Sci Transl Med 2021; 12:12/540/eaay0605. [PMID: 32321863 DOI: 10.1126/scitranslmed.aay0605] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
Eicosanoids are key mediators of type-2 inflammation, e.g., in allergy and asthma. Helminth products have been suggested as remedies against inflammatory diseases, but their effects on eicosanoids are unknown. Here, we show that larval products of the helminth Heligmosomoides polygyrus bakeri (HpbE), known to modulate type-2 responses, trigger a broad anti-inflammatory eicosanoid shift by suppressing the 5-lipoxygenase pathway, but inducing the cyclooxygenase (COX) pathway. In human macrophages and granulocytes, the HpbE-driven induction of the COX pathway resulted in the production of anti-inflammatory mediators [e.g., prostaglandin E2 (PGE2) and IL-10] and suppressed chemotaxis. HpbE also abrogated the chemotaxis of granulocytes from patients suffering from aspirin-exacerbated respiratory disease (AERD), a severe type-2 inflammatory condition. Intranasal treatment with HpbE extract attenuated allergic airway inflammation in mice, and intranasal transfer of HpbE-conditioned macrophages led to reduced airway eosinophilia in a COX/PGE2-dependent fashion. The induction of regulatory mediators in macrophages depended on p38 mitogen-activated protein kinase (MAPK), hypoxia-inducible factor-1α (HIF-1α), and Hpb glutamate dehydrogenase (GDH), which we identify as a major immunoregulatory protein in HpbE Hpb GDH activity was required for anti-inflammatory effects of HpbE in macrophages, and local administration of recombinant Hpb GDH to the airways abrogated allergic airway inflammation in mice. Thus, a metabolic enzyme present in helminth larvae can suppress type-2 inflammation by inducing an anti-inflammatory eicosanoid switch, which has important implications for the therapy of allergy and asthma.
Collapse
Affiliation(s)
- Marta de Los Reyes Jiménez
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Sonja Schindela
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Aurélien Trompette
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois, 1066 Epalinges, Switzerland
| | - Pascal Haimerl
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Fiona Henkel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - André Mourão
- Protein Expression and Purification Facility (PEPF), Institute of Structural Biology, Helmholtz Center Munich, Germany
| | - Arie Geerlof
- Protein Expression and Purification Facility (PEPF), Institute of Structural Biology, Helmholtz Center Munich, Germany
| | - Clarissa Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany
| | - Adam M Chaker
- Department of Otolaryngology, Allergy Section, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Rolf Nüsing
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Karolinska Institute Stockholm, 171 76 Stockholm, Sweden
| | - Wolfgang A Nockher
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-University Marburg, 35043 Marburg, Germany
| | - Matthias J Feige
- Center for Integrated Protein Science Munich at the Department of Chemistry and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | - Martin Haslbeck
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC 3004, Australia
| | - David Voehringer
- Department of Infection Biology, University Hospital Center, Friedrich-Alexander University, Erlangen-Nuremberg, Germany
| | - Nicola L Harris
- Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, VIC 3004, Australia
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany.,Member of the German Center of Lung Research (DZL)
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802 Munich, Germany.
| |
Collapse
|
21
|
The interplay between airway epithelium and the immune system - A primer for the respiratory clinician. Paediatr Respir Rev 2021; 38:2-8. [PMID: 33812796 PMCID: PMC8178232 DOI: 10.1016/j.prrv.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
The respiratory epithelium is one of the primary interfaces between the body's immune system and the external environment. This review discusses the innate and adaptive immunomodulatory effects of the respiratory epithelium, highlighting the physiologic immune responses associated with health and the disease-causing sequelae when these physiologic responses go awry. Airway macrophages, dendritic cells, and innate lymphoid cells are discussed as orchestrators of physiological and pathological innate immune responses and T cells, B cells, mast cells, and granulocytes (eosinophils and neutrophils) as orchestrators of physiologic and pathologic adaptive immune responses. The interplay between the airway epithelium and the varied immune cells as well as the interplay between these immune cells is discussed, highlighting the importance of the dose of noxious stimuli and pathogens in immune programming and the timing of their interaction with the immune cells that determine the pattern of immune responses. Although each cell type has been researched individually, this review highlights the need for simultaneous temporal investigation of immune responses from these varied cells to noxious stimuli and pathogens.
Collapse
|
22
|
Min B, Kim D, Feige MJ. IL-30 † (IL-27A): a familiar stranger in immunity, inflammation, and cancer. Exp Mol Med 2021; 53:823-834. [PMID: 34045653 PMCID: PMC8178335 DOI: 10.1038/s12276-021-00630-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
Over the years, interleukin (IL)-27 has received much attention because of its highly divergent, sometimes even opposing, functions in immunity. IL-30, the p28 subunit that forms IL-27 together with Ebi3 and is also known as IL-27p28 or IL-27A, has been considered a surrogate to represent IL-27. However, it was later discovered that IL-30 can form complexes with other protein subunits, potentially leading to overlapping or discrete functions. Furthermore, there is emerging evidence that IL-30 itself may perform immunomodulatory functions independent of Ebi3 or other binding partners and that IL-30 production is strongly associated with certain cancers in humans. In this review, we will discuss the biology of IL-30 and other IL-30-associated cytokines and their functions in inflammation and cancer. Studying the ways that interleukin IL-30 regulates immune responses may provide novel insights into tumor development and inflammatory conditions. Interleukins are a diverse family of proteins involved in intercellular communications and immunity, where they can exert divergent and even opposing functions. Booki Min at Northwestern University in Chicago, USA, and co-workers reviewed the current understanding of IL-30 and its links to inflammation and cancer. IL-30 forms the IL-27 complex with the Ebi3 protein and was thought to be a surrogate for IL-27 in terms of activity. However, recent insights suggest that IL-30 may perform discrete immune modulation functions. Elevated IL-30 secretion is linked to prostate and breast cancer development. Extensive research is needed into the formation of IL-30, its associated protein interactions, and the development of a suitable animal model.
Collapse
Affiliation(s)
- Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Dongkyun Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Matthias J Feige
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
23
|
de Braganca L, Ferguson GJ, Luis Santos J, Derrick JP. Adverse immunological responses against non-viral nanoparticle (NP) delivery systems in the lung. J Immunotoxicol 2021; 18:61-73. [PMID: 33956565 PMCID: PMC8788408 DOI: 10.1080/1547691x.2021.1902432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is a large, unmet medical need to treat chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and other respiratory diseases. New modalities are being developed, including gene therapy which treats the disease at the DNA/RNA level. Despite recent innovations in non-viral gene therapy delivery for chronic respiratory diseases, unwanted or adverse interactions with immune cells, particularly macrophages, can limit drug efficacy. This review will examine the relationship between the design and fabrication of non-viral nucleic acid nanoparticle (NP) delivery systems and their ability to trigger unwanted immunogenic responses in lung tissues. NP formulated with peptides, lipids, synthetic and natural polymers provide a robust means of delivering the genetic cargos to the desired cells. However NP, or their components, may trigger local responses such as cell damage, edema, inflammation, and complement activation. These effects may be acute short-term reactions or chronic long-term effects like fibrosis, increased susceptibility to diseases, autoimmune disorders, and even cancer. This review examines the relationship between physicochemical properties, i.e. shape, charge, hydrophobicity, composition and stiffness, and interactions of NP with pulmonary immune cells. Inhalation is the ideal route of administration for direct delivery but inhaled NP encounter innate immune cells, such as alveolar macrophages (AM) and dendritic cells (DC), that perceive them as harmful foreign material, interfere with gene delivery to target cells, and can induce undesirable side effects. Recommendations for fabrication and formulation of gene therapies to avoid adverse immunological responses are given. These include fine tuning physicochemical properties, functionalization of the surface of NP to actively target diseased pulmonary cells and employing biomimetics to increase immunotolerance.
Collapse
Affiliation(s)
- Leonor de Braganca
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - G John Ferguson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jose Luis Santos
- Dosage Form Design Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Branchett WJ, Cook J, Oliver RA, Bruno N, Walker SA, Stölting H, Mack M, O'Garra A, Saglani S, Lloyd CM. Airway macrophage-intrinsic TGF-β1 regulates pulmonary immunity during early-life allergen exposure. J Allergy Clin Immunol 2021; 147:1892-1906. [PMID: 33571538 PMCID: PMC8098862 DOI: 10.1016/j.jaci.2021.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Early life represents a major risk window for asthma development. However, the mechanisms controlling the threshold for establishment of allergic airway inflammation in early life are incompletely understood. Airway macrophages (AMs) regulate pulmonary allergic responses and undergo TGF-β-dependent postnatal development, but the role of AM maturation factors such as TGF-β in controlling the threshold for pathogenic immune responses to inhaled allergens remains unclear. OBJECTIVE Our aim was to test the hypothesis that AM-derived TGF-β1 regulates pathogenic immunity to inhaled allergen in early life. METHODS Conditional knockout (Tgfb1ΔCD11c) mice, with TGF-β1 deficiency in AMs and other CD11c+ cells, were analyzed throughout early life and following neonatal house dust mite (HDM) inhalation. The roles of specific chemokine receptors were determined by using in vivo blocking antibodies. RESULTS AM-intrinsic TGF-β1 was redundant for initial population of the neonatal lung with AMs, but AMs from Tgfb1ΔCD11c mice failed to adopt a mature homeostatic AM phenotype in the first weeks of life. Evidence of constitutive TGF-β1 signaling was also observed in pediatric human AMs. TGF-β1-deficient AMs expressed enhanced levels of monocyte-attractant chemokines, and accordingly, Tgfb1ΔCD11c mice exposed to HDM throughout early life accumulated CCR2-dependent inflammatory CD11c+ mononuclear phagocytes into the airway niche that expressed the proallergic chemokine CCL8. Tgfb1ΔCD11c mice displayed augmented TH2, group 2 innate lymphoid cell, and airway remodeling responses to HDM, which were ameliorated by blockade of the CCL8 receptor CCR8. CONCLUSION Our results highlight a causal relationship between AM maturity, chemokines, and pathogenic immunity to environmental stimuli in early life and identify TGF-β1 as a key regulator of this.
Collapse
Affiliation(s)
- William J Branchett
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - James Cook
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Robert A Oliver
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nicoletta Bruno
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Simone A Walker
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Helen Stölting
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthias Mack
- Department of Internal Medicine II- Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Anne O'Garra
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom; Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, United Kingdom
| | - Sejal Saglani
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Clare M Lloyd
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
25
|
Inhibition of miR-99a-5p prevents allergen-driven airway exacerbations without compromising type-2 memory responses in the intestine following helminth infection. Mucosal Immunol 2021; 14:912-922. [PMID: 33846533 PMCID: PMC8222002 DOI: 10.1038/s41385-021-00401-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/16/2021] [Accepted: 03/14/2021] [Indexed: 02/04/2023]
Abstract
Acute exacerbations (AE) of asthma, remain one of the biggest concerns for patients living with asthma. As such, identifying the causes, the molecular mechanisms involved and new therapeutic interventions to prevent AE is a high priority. Immunity to intestinal helminths involves the reactivation of type-2 immune responses leading to smooth muscle contraction and mucus hypersecretion-physiological processes very similar to acute exacerbations in the airways following allergen exposure. In this study, we employed a murine model of intestinal helminth infection, using Heligmosomoides polygyrus, to identify miRNAs during active expulsion, as a system for the identification of miRNAs that may contribute to AE in the airways. Concomitant with type-2 immunity and expulsion of H. polygyrus, we identified miR-99a-5p, miR-148a-3p and miR-155-5p that were differentially regulated. Systemic inhibition of these miRNAs, alone or in combination, had minimal impact on expulsion of H. polygyrus, but inhibition of miR-99a-5p or miR-155-5p significantly reduced house dust mite (HDM)-driven acute inflammation, modelling human acute exacerbations. Immunological, pathological and transcriptional analysis identified that miR-155-5p or miR-99a-5p contribute significantly to HDM-driven AE and that transient inhibition of these miRNAs may provide relief from allergen-driven AE, without compromising anti-helminth immunity in the gut.
Collapse
|
26
|
Sansonetti M, Waleczek FJG, Jung M, Thum T, Perbellini F. Resident cardiac macrophages: crucial modulators of cardiac (patho)physiology. Basic Res Cardiol 2020; 115:77. [PMID: 33284387 PMCID: PMC7720787 DOI: 10.1007/s00395-020-00836-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Resident cardiac macrophages (rcMacs) are integral components of the myocardium where they have key roles for tissue homeostasis and in response to inflammation, tissue injury and remodelling. In this review, we summarize the current knowledge and limitations associated with the rcMacs studies. We describe their specific role and contribution in various processes such as electrical conduction, efferocytosis, inflammation, tissue development, remodelling and regeneration in both the healthy and the disease state. We also outline research challenges and technical complications associated with rcMac research. Recent technological developments and contemporary immunological techniques are now offering new opportunities to investigate the separate contribution of rcMac in respect to recruited monocytes and other cardiac cells. Finally, we discuss new therapeutic strategies, such as drugs or non-coding RNAs, which can influence rcMac phenotype and their response to inflammation. These novel approaches will allow for a deeper understanding of this cardiac endogenous cell type and might lead to the development of more specific and effective therapeutic strategies to boost the heart's intrinsic reparative capacity.
Collapse
Affiliation(s)
- M Sansonetti
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
| | - F J G Waleczek
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
| | - M Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany
| | - T Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
| | - F Perbellini
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hanover, Germany.
| |
Collapse
|
27
|
Jung S, Park J, Park J, Jo H, Seo CS, Jeon WY, Lee MY, Kwon BI. Sojadodamgangki-tang attenuates allergic lung inflammation by inhibiting T helper 2 cells and Augmenting alveolar macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113152. [PMID: 32755652 DOI: 10.1016/j.jep.2020.113152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sojadodamgangki-tang (SDG) is a traditional East-Asian herbal medicine mainly composed of Pinellia ternate (Thunb.) Makino, Perilla frutescens (L.) Britt and 10 kinds of medicinal herbs. It has been used to treat asthma and mucus secretion including lung and bronchi. AIM OF THE STUDY The aim of this study was to investigate the anti-inflammatory effects of Sojadodamgangki-tang (SDG) on allergic lung inflammation in vitro and in vivo as well as the underlying mechanisms. MATERIALS AND METHODS We used an ovalbumin (OVA)-induced murine allergic airway inflammation model. Five groups of 8-week-old female BALB/C mice were divided into the following groups: saline control group, the vehicle (allergic) group that received OVA only, groups that received OVA and SDG (200 mg/kg or 400 mg/kg), and a positive control group that received OVA and Dexamethasone (5 mg/kg). In vitro experiments include T helper 2 (TH2) polarization system, murine macrophage cell culture, and human bronchial epithelial cell line (BEAS-2B) culture. RESULTS SDG administration reduced allergic airway inflammatory cell infiltration, especially of eosinophils, mucus production, Th2 cell activation, OVA-specific immunoglobulin E (IgE), and total IgE production. Moreover, the activation of alveolar macrophages, which leads to immune tolerance in the steady state, was promoted by SDG treatment. Interestingly, SDG treatment also reduced the production of alarmin cytokines by the human bronchial epithelial cell line BEAS-2B stimulated with urban particulate matter. CONCLUSION Our findings indicate that SDG has potential as a therapeutic drug to inhibit Th2 cell activation and promote alveolar macrophage activation.
Collapse
Affiliation(s)
- Seyoung Jung
- Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| | - Junkyu Park
- Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| | - Jiwon Park
- Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea; Kyunghee University Medical Center, Kyunghee University, Seoul, 02447, Republic of Korea.
| | - Hanna Jo
- Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| | - Chang-Seob Seo
- Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Woo-Young Jeon
- Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Mee-Young Lee
- Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Bo-In Kwon
- Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea; Research Institute of Korean Medicine, Sangji University, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| |
Collapse
|
28
|
Woo YD, Koh J, Ko JS, Kim S, Jung KC, Jeon YK, Kim HY, Lee H, Lee CW, Chung DH. Ssu72 regulates alveolar macrophage development and allergic airway inflammation by fine-tuning of GM-CSF receptor signaling. J Allergy Clin Immunol 2020; 147:1242-1260. [PMID: 32910932 DOI: 10.1016/j.jaci.2020.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Fine-tuning of immune receptor signaling is critical for the development and functioning of immune cells. Moreover, GM-CSF receptor (GM-CSFR) signaling plays an essential role in the development of certain myeloid lineage cells, including alveolar macrophages (AMs). However, the significance of fine-tuning of GM-CSFR signaling in AMs and its relevance in allergic inflammation have not been reported. OBJECTIVE Our aim was to explore whether phosphatase Ssu72, originally identified as a regulator of RNA polymerase II activity, regulates AM development and allergic airway inflammation by regulating GM-CSF signaling. METHODS To address these issues, we generated LysM-CreSsu72fl/fl and Cd11c-CreSsu72fl/fl mice and used ovalbumin- or house dust mite-induced allergic asthma models. RESULTS Following GM-CSF stimulation, Ssu72 directly bound to the GM-CSFR β-chain in AMs, preventing phosphorylation. Consistently, mature Ssu72-deficient AMs showed higher phosphorylation of the GM-CSFR β-chain and downstream molecules, which resulted in greater dysregulation of cell cycle, cell death, cell turnover, mitochondria-related metabolism, and LPS responsiveness in AMs than in mature wild-type AMs. The dysregulation was restored by using a Janus kinase 2 inhibitor, which reduced GM-CSFR β-chain phosphorylation. LysM-CreSsu72fl/fl mice exhibited deficits in development and maturation of AMs, which were also seen postnatally in Cd11c-CreSsu72fl/fl mice. Furthermore, LysM-CreSsu72fl/fl mice were less responsive to ovalbumin- or house dust mite-induced allergic asthma models than the control mice were; however, their responsiveness was restored by adoptive transfer of JAK2 inhibitor-pretreated mature Ssu72-deficient AMs. CONCLUSION Our results demonstrate that Ssu72 fine-tunes GM-CSFR signaling by both binding to and reducing phosphorylation of GM-CSFR β-chain, thereby regulating the development, maturation, and mitochondrial functions of AMs and allergic airway inflammation.
Collapse
Affiliation(s)
- Yeon Duk Woo
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Sung Ko
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sehui Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang, Korea
| | - Chang Woo Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
29
|
Pai S, Muruganandah V, Kupz A. What lies beneath the airway mucosal barrier? Throwing the spotlight on antigen-presenting cell function in the lower respiratory tract. Clin Transl Immunology 2020; 9:e1158. [PMID: 32714552 PMCID: PMC7376394 DOI: 10.1002/cti2.1158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
The global prevalence of respiratory infectious and inflammatory diseases remains a major public health concern. Prevention and management strategies have not kept pace with the increasing incidence of these diseases. The airway mucosa is the most common portal of entry for infectious and inflammatory agents. Therefore, significant benefits would be derived from a detailed understanding of how immune responses regulate the filigree of the airways. Here, the role of different antigen‐presenting cells (APC) in the lower airways and the mechanisms used by pathogens to modulate APC function during infectious disease is reviewed. Features of APC that are unique to the airways and the influence they have on uptake and presentation of antigen to T cells directly in the airways are discussed. Current information on the crucial role that airway APC play in regulating respiratory infection is summarised. We examine the clinical implications of APC dysregulation in the airways on asthma and tuberculosis, two chronic diseases that are the major cause of illness and death in the developed and developing world. A brief overview of emerging therapies that specifically target APC function in the airways is provided.
Collapse
Affiliation(s)
- Saparna Pai
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| | - Visai Muruganandah
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia
| |
Collapse
|
30
|
Lucas A, Yasa J, Lucas M. Regeneration and repair in the healing lung. Clin Transl Immunology 2020; 9:e1152. [PMID: 32665845 PMCID: PMC7338595 DOI: 10.1002/cti2.1152] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
The lung achieves an efficient gas exchange between a complex non‐sterile atmosphere and the body via a delicate and extensive epithelial surface, with high efficiency because of elastic deformation allowing for an increase and decrease in volume during the process of breathing and because of an extensive vasculature which aids rapid gas diffusion. The lungs’ large surface area exposes the organ to a continual risk of damage from pathogens, toxins or irritants; however, lung damage can be rapidly healed via regenerative processes that restore its structure and function. In response to sustained and extensive damage, the lung is healed via a non‐regenerative process resulting in scar tissue which locally stiffens its structure, which over time leads to a serious loss of lung function and to increasing morbidities. This review discusses what is known about the factors which influence whether a lung is healed by regeneration or repair and what potential new therapeutic approaches may positively influence lung healing.
Collapse
Affiliation(s)
- Andrew Lucas
- School of Biomedical Sciences The University of Western Australia (UWA) Perth WA Australia
| | - Joe Yasa
- Centre for Cell Therapy and Regenerative Medicine School of Medicine and Pharmacology The University of Western Australia (UWA) Perth WA Australia
| | - Michaela Lucas
- School of Biomedical Sciences The University of Western Australia (UWA) Perth WA Australia.,School of Medicine and Pharmacology The University of Western Australia (UWA) Perth WA Australia
| |
Collapse
|
31
|
Branchett WJ, O'Garra A, Lloyd CM. Transcriptomic analysis reveals diverse gene expression changes in airway macrophages during experimental allergic airway disease. Wellcome Open Res 2020; 5:101. [PMID: 32587903 PMCID: PMC7309452 DOI: 10.12688/wellcomeopenres.15875.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/26/2022] Open
Abstract
Background: Airway macrophages (AMs) are the most abundant leukocytes in the healthy airway lumen and have a highly specialised but plastic phenotype that is governed by signals in the local microenvironment. AMs are thought to maintain immunological homeostasis in the steady state, but have also been implicated in the pathogenesis of allergic airway disease (AAD). In this study, we aimed to better understand these potentially contrasting AM functions using transcriptomic analysis. Methods: Bulk RNA sequencing was performed on AMs (CD11c + Siglec F + CD64 + CD45 + SSC hi) flow cytometry sorted from C57BL/6 mice during experimental AAD driven by repeated house dust mite inhalation (AMs HDM), compared to control AMs from non-allergic mice. Differentially expressed genes were further analysed by hierarchical clustering and biological pathway analysis. Results: AMs HDM showed increased expression of genes associated with antigen presentation, inflammatory cell recruitment and tissue repair, including several chemokine and matrix metalloproteinase genes. This was accompanied by increased expression of mitochondrial electron transport chain subunit genes and the retinoic acid biosynthetic enzyme gene Raldh2. Conversely, AMs HDM displayed decreased expression of a number of cell cycle genes, genes related to cytoskeletal functions and a subset of genes implicated in antimicrobial innate immunity, such as Tlr5, Il18 and Tnf. Differential gene expression in AMs HDM was consistent with upstream effects of the cytokines IL-4 and IFN-γ, both of which were present at increased concentrations in lung tissue after HDM treatment. Conclusions: These data highlight diverse gene expression changes in the total AM population in a clinically relevant mouse model of AAD, collectively suggestive of contributions to inflammation and tissue repair/remodelling, but with decreases in certain steady state cellular and immunological functions.
Collapse
Affiliation(s)
- William J. Branchett
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| | - Anne O'Garra
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, NW1 1AT, UK
| | - Clare M. Lloyd
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| |
Collapse
|
32
|
Fang SB, Zhang HY, Meng XC, Wang C, He BX, Peng YQ, Xu ZB, Fan XL, Wu ZJ, Wu ZC, Zheng SG, Fu QL. Small extracellular vesicles derived from human MSCs prevent allergic airway inflammation via immunomodulation on pulmonary macrophages. Cell Death Dis 2020; 11:409. [PMID: 32483121 PMCID: PMC7264182 DOI: 10.1038/s41419-020-2606-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Allergic airway inflammation is a major public health disease that affects up to 300 million people in the world. However, its management remains largely unsatisfactory. The dysfunction of pulmonary macrophages contributes greatly to the development of allergic airway inflammation. It has been reported that small extracellular vesicles derived from mesenchymal stromal cells (MSC-sEV) were able to display extensive therapeutic effects in some immune diseases. This study aimed to investigate the effects of MSC-sEV on allergic airway inflammation, and the role of macrophages involved in it. We successfully isolated MSC-sEV by using anion exchange chromatography, which were morphologically intact and positive for the specific EV markers. MSC-sEV significantly reduced infiltration of inflammatory cells and number of epithelial goblet cells in lung tissues of mice with allergic airway inflammation. Levels of inflammatory cells and cytokines in bronchoalveolar lavage fluid were also significantly decreased. Importantly, levels of monocytes-derived alveolar macrophages and M2 macrophages were significantly reduced by MSC-sEV. MSC-sEV were excreted through spleen and liver at 24 h post-administration in mice, and were able to be taken in by macrophages both in vivo and in vitro. In addition, proteomics analysis of MSC-sEV revealed that the indicated three types of MSC-sEV contained different quantities of proteins and shared 312 common proteins, which may be involved in the therapeutic effects of MSC-sEV. In total, our study demonstrated that MSC-sEV isolated by anion exchange chromatography were able to ameliorate Th2-dominant allergic airway inflammation through immunoregulation on pulmonary macrophages, suggesting that MSC-sEV were promising alternative therapy for allergic airway inflammation in the future.
Collapse
Affiliation(s)
- Shu-Bin Fang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Hong-Yu Zhang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Xiang-Ci Meng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Cong Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Bi-Xin He
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Ya-Qi Peng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Zhi-Bin Xu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Xing-Liang Fan
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Zhang-Jin Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Zi-Cong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China
| | - Song-Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, China.
| |
Collapse
|
33
|
Branchett WJ, O'Garra A, Lloyd CM. Transcriptomic analysis reveals diverse gene expression changes in airway macrophages during experimental allergic airway disease. Wellcome Open Res 2020; 5:101. [PMID: 32587903 PMCID: PMC7309452 DOI: 10.12688/wellcomeopenres.15875.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 02/12/2024] Open
Abstract
Background: Airway macrophages (AMs) are the most abundant leukocytes in the healthy airway lumen and have a highly specialised but plastic phenotype that is governed by signals in the local microenvironment. AMs are thought to maintain immunological homeostasis in the steady state, but have also been implicated in the pathogenesis of allergic airway disease (AAD). In this study, we aimed to better understand these potentially contrasting AM functions using transcriptomic analysis. Methods: Bulk RNA sequencing was performed on AMs flow cytometry sorted from C57BL/6 mice during experimental AAD driven by repeated house dust mite inhalation (AMs HDM), compared to control AMs from non-allergic mice. Differentially expressed genes were further analysed by hierarchical clustering and biological pathway analysis. Results: AMs HDM showed increased expression of genes associated with antigen presentation, inflammatory cell recruitment and tissue repair, including several chemokine and matrix metalloproteinase genes. This was accompanied by increased expression of mitochondrial electron transport chain subunit genes and the retinoic acid biosynthetic enzyme gene Raldh2. Conversely, AMs HDM displayed decreased expression of a number of cell cycle genes, genes related to cytoskeletal functions and a subset of genes implicated in antimicrobial innate immunity, such as Tlr5, Il18 and Tnf. Differential gene expression in AMs HDM was consistent with upstream effects of the cytokines IL-4 and IFN-γ, both of which were present at increased concentrations in lung tissue after HDM treatment. Conclusions: These data highlight diverse gene expression changes in the total AM population in a clinically relevant mouse model of AAD, collectively suggestive of contributions to inflammation and tissue repair/remodelling, but with decreases in certain steady state cellular and immunological functions.
Collapse
Affiliation(s)
- William J. Branchett
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| | - Anne O'Garra
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, NW1 1AT, UK
| | - Clare M. Lloyd
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, W2 1NY, UK
| |
Collapse
|
34
|
Chung S, Lee YG, Karpurapu M, Englert JA, Ballinger MN, Davis IC, Park GY, Christman JW. Depletion of microRNA-451 in response to allergen exposure accentuates asthmatic inflammation by regulating Sirtuin2. Am J Physiol Lung Cell Mol Physiol 2020; 318:L921-L930. [PMID: 32159972 PMCID: PMC7272736 DOI: 10.1152/ajplung.00457.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 01/13/2023] Open
Abstract
The incidence of asthma has increased from 5.5% to near 8% of the population, which is a major health concern. The hallmarks of asthma include eosinophilic airway inflammation that is associated with chronic airway remodeling. Allergic airway inflammation is characterized by a complex interplay of resident and inflammatory cells. MicroRNAs (miRNAs) are small noncoding RNAs that function as posttranscriptional modulators of gene expression. However, the role of miRNAs, specifically miR-451, in the regulation of allergic airway inflammation is unexplored. Our previous findings showed that oxidant stress regulates miR-451 gene expression in macrophages during an inflammatory process. In this paper, we examined the role of miR-451 in regulating macrophage phenotype using an experimental poly-allergenic murine model of allergic airway inflammation. We found that miR-451 contributes to the allergic induction of CCL17 in the lung and plays a key role in proasthmatic macrophage activation. Remarkably, administration of a Sirtuin 2 (Sirt2) inhibitor diminished alternate macrophage activation and markedly abrogated triple-allergen [dust mite, ragweed, Aspergillus fumigatus (DRA)]-induced lung inflammation. These data demonstrate a role for miR-451 in modulating allergic inflammation by influencing allergen-mediated macrophages phenotype.
Collapse
Affiliation(s)
- Sangwoon Chung
- Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio
| | - Yong Gyu Lee
- Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio
| | - Manjula Karpurapu
- Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio
| | - Joshua A Englert
- Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio
| | - Megan N Ballinger
- Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio
| | - Ian C Davis
- College of Veterinary Medicine, the Ohio State University, Columbus, Ohio
| | - Gye Young Park
- Department of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - John W Christman
- Pulmonary, Critical Care, and Sleep Medicine, the Ohio State University, Davis Heart and Lung Research Institute, Columbus, Ohio
| |
Collapse
|
35
|
GTS-21 Reduces Inflammation in Acute Lung Injury by Regulating M1 Polarization and Function of Alveolar Macrophages. Shock 2020; 51:389-400. [PMID: 29608552 DOI: 10.1097/shk.0000000000001144] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acute lung injury (ALI) is a severe outcome of sepsis. Alveolar macrophages (AMs) play key roles in defense, resolution in ALI. The polarization of AMs is dependent on micro environmental stimuli and might influence the progression of ALI. Gainesville Tokushima scientists (GTS)-21, a selective α7 nicotinic acetylcholine receptor agonist of the cholinergic anti-inflammatory pathway (CAP), has recently been established to be promising in the treatment of ALI. However, the molecular mechanism underlying the GTS-21-mediated suppression of inflammatory responses has been explored only partially. In this study, we examined the relation between GTS-21 and AM polarization in ALI. METHODS The adoptive transfer of M1 (classically activated) and M2 (alternatively activated)-polarized AMs was performed to AM-depleted ALI mice, along with the administration of GTS-21 in a murine model of lipopolysaccharide (LPS)-induced ALI and in isolated AMs that had been stimulated by LPS in vitro. RESULTS The adoptive transfer of M1-polarized AMs aggravated the inflammatory response in the lung in contrast to the adoptive transfer of M2-polarized AMs. GTS-21 protected the lung from the effect of LPS, preventing injury and decreasing the number of AMs, AM-related pro-inflammatory cytokine levels, high mobility group box 1 expression levels in AMs. In addition, GTS-21 significantly diminished the number of M1-polarized AM and increased the number of M2-polarized AM, by flow cytometry, RT-PCR, enzyme-linked immunosorbent assay, and the Arg1 and iNOS activity assays. CONCLUSION The GTS-21 substantially ameliorates LPS-induced ALI. This protection is predominantly associated with the inhibition of pulmonary AM M1 polarization and alteration in AM function.
Collapse
|
36
|
Li R, Shang Y, Yu Y, Zhou T, Xiong W, Zou X. High-mobility group box 1 protein participates in acute lung injury by activating protein kinase R and inducing M1 polarization. Life Sci 2020; 246:117415. [PMID: 32035932 DOI: 10.1016/j.lfs.2020.117415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 11/19/2022]
Abstract
High-mobility group box 1 protein (HMGB1) is a crucial proinflammatory cytokine that contributes to acute lung injury (ALI). Macrophages are known to express the primary receptors (Toll-like receptor [TLR] 2, and TLR4) of HMGB1 for transmitting intracellular signals. Studies have revealed that double-stranded RNA activated protein kinase R (PKR), which is expressed in macrophages, participates in ALI by regulating macrophage polarization and proinflammatory cytokine release, and that PKR is normally activated by a subset of TLRs. The present study investigated whether HMGB1 engages in ALI by activating PKR in macrophages and inducing classically activated macrophage (M1) polarization via TLR2- and TLR4-mediated nuclear factor (NF)-κB signaling pathways. In an vivo mouse model of lipopolysaccharide (LPS)-induced ALI, anti-HMGB1, rHMGB1, LPS-RS (TLR2 and TLR4 antagonist), or C16 (PKR inhibitor) was administered to mice 2 h after LPS challenge or 1 h before LPS challenge. In vitro, bone marrow-derived macrophages from mice primed with LPS were stimulated with or without anti-HMGB1, rHMGB1, LPS-RS, or C16. Our studies revealed that rHMGB1 stimulation induced M1 polarization in ALI, and that anti-HMGB1 and C16 treatments had the opposite effect. Anti-HMGB1 and LPS-RS significantly inhibited LPS-induced PKR expression in macrophages; however, rHMGB1 administration increased PKR expression. These results indicate that HMGB1 participates in the pathogenesis of ALI by activating PKR in macrophages and inducing M1 polarization through TLR2- and TLR4-mediated NF-κB signaling pathways.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Wei Xiong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China.
| |
Collapse
|
37
|
McEntee CP, Gunaltay S, Travis MA. Regulation of barrier immunity and homeostasis by integrin-mediated transforming growth factor β activation. Immunology 2019; 160:139-148. [PMID: 31792952 PMCID: PMC7218408 DOI: 10.1111/imm.13162] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor β (TGF‐β) is a multifunctional cytokine that regulates cell growth, differentiation, adhesion, migration and death dependent on cell type, developmental stage, or tissue conditions. Various cell types secrete TGF‐β, but always as an inactive complex. Hence, for TGF‐β to function, this latent complex must somehow be activated. Work in recent years has highlighted a critical role for members of the αv integrin family, including αvβ1, αvβ3, αvβ5, αvβ6 and αvβ8 that are involved in TGF‐β activation in various contexts, particularly at barrier sites such as the gut, lung and skin. The integrins facilitating this context‐ and location‐specific regulation can be dysregulated in certain diseases, so are potential therapeutic targets in a number of disorders. In this review, we discuss the role of TGF‐β at these barrier sites with a focus on how integrin‐mediated TGF‐β activation regulates tissue and immune homeostasis, and how this is altered in disease.
Collapse
Affiliation(s)
- Craig P McEntee
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Sezin Gunaltay
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Mark A Travis
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research (MCCIR), Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
38
|
He W, Kapate N, Shields CW, Mitragotri S. Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv Drug Deliv Rev 2019; 165-166:15-40. [PMID: 31816357 DOI: 10.1016/j.addr.2019.12.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Macrophages play a key role in defending against foreign pathogens, healing wounds, and regulating tissue homeostasis. Driving this versatility is their phenotypic plasticity, which enables macrophages to respond to subtle cues in tightly coordinated ways. However, when this coordination is disrupted, macrophages can aid the progression of numerous diseases, including cancer, cardiovascular disease, and autoimmune disease. The central link between these disorders is aberrant macrophage polarization, which misguides their functional programs, secretory products, and regulation of the surrounding tissue microenvironment. As a result of their important and deterministic roles in both health and disease, macrophages have gained considerable attention as targets for drug delivery. Here, we discuss the role of macrophages in the initiation and progression of various inflammatory diseases, summarize the leading drugs used to regulate macrophages, and review drug delivery systems designed to target macrophages. We emphasize strategies that are approved for clinical use or are poised for clinical investigation. Finally, we provide a prospectus of the future of macrophage-targeted drug delivery systems.
Collapse
Affiliation(s)
- Wei He
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Wang J, Li R, Peng Z, Hu B, Rao X, Li J. HMGB1 participates in LPS‑induced acute lung injury by activating the AIM2 inflammasome in macrophages and inducing polarization of M1 macrophages via TLR2, TLR4, and RAGE/NF‑κB signaling pathways. Int J Mol Med 2019; 45:61-80. [PMID: 31746367 PMCID: PMC6889921 DOI: 10.3892/ijmm.2019.4402] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
High mobility group box 1 (HMGB1), a crucial proinflammatory cytokine, was reported to activate the absent in melanoma 2 (AIM2) inflammasome, which are both essential in acute lung injury (ALI). However, their interaction mechanism has remained elusive. Macrophages are known to express the AIM2 inflammasome and the main receptors [receptor for advanced glycation end products (RAGE), Toll‑like receptor 2/4 (TLR‑2/TLR‑4)] of HMGB1 to transmit intracellular signals. The present study aimed to indicate whether HMGB1 participates in the process of lipopolysaccharides (LPS)‑induced ALI through activating the AIM2 inflammasome in macrophages, as well as inducing polarization of M1 macrophages via TLR2, TLR4 and RAGE/ nuclear factor‑κB (NF‑κB) signaling pathways. In an in vivo mouse model of LPS‑induced ALI, anti‑HMGB1, recombinant (r)HMGB1, LPS from Rhodobacter sphaeroides (LPS‑RS, TLR2/4 antagonist) or FPS‑ZM1 (RAGE antagonist) were administrated. In in vitro studies, bone marrow‑derived macrophages from mice primed with LPS were stimulated with or without anti‑HMGB1, rHMGB1, LPS‑RS, or FPS‑ZM1. The findings revealed that anti‑HMGB1, LPS‑RS and FPS‑ZM1 significantly decreased infiltration of inflammatory cells, wet‑to‑dry ratio, myeloperoxidase activity in the lung, the levels of cytokines, as well as macrophages and neutrophil infiltration in the bronchoalveolar lavage fluid. However, rHMGB1 aggravated the inflammatory response in ALI. Mechanistically, anti‑HMGB1, LPS‑RS and FPS‑ZM1 attenuated activation of TLR2, TLR4, and RAGE/NF‑κB signaling pathways and expression of the AIM2 inflammasome in macrophages. However, rHMGB1 enhanced their expression levels and induced polarization of M1 macrophages. These results indicated that HMGB1 could participate in the pathogenesis of ALI by activating the AIM2 inflammasome in macrophages, as well as inducing polarization of M1 macrophages through TLR2, TLR4 and RAGE/NF‑κB signaling pathways.
Collapse
Affiliation(s)
- Jing Wang
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ruiting Li
- Department of Intensive Care Unit, Wuhan Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Zhiyong Peng
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Bo Hu
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xin Rao
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jianguo Li
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
40
|
Li R, Shang Y, Hu X, Yu Y, Zhou T, Xiong W, Zou X. ATP/P2X7r axis mediates the pathological process of allergic asthma by inducing M2 polarization of alveolar macrophages. Exp Cell Res 2019; 386:111708. [PMID: 31682811 DOI: 10.1016/j.yexcr.2019.111708] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022]
Abstract
Recent studies revealed that macrophages are polarized towards the M2 phenotype in an ovalbumin (OVA)-induced asthmatic model. Alveolar macrophages (AMs) are immune barriers in alveoli to various pathogens in the respiratory tract; AMs suppress Th2 cell proliferation, inhibit interleukin (IL)-4, IL-5, and IL-13 secretion, and protect against airway hyperresponsiveness in allergic asthma. However, the polarization status and effects of different types of AMs in the pathogenesis of asthma are not known. ATP/P2X7r, expressed mainly on macrophages and dendritic cells, is associated with acute and chronic asthmatic airway inflammation and Th2 immune responses in mice and humans and functions by activating the NLRP3 inflammasome complex and inducing proinflammatory cytokine release (IL-1β and IL-18). Therefore, we evaluated the association between the ATP/P2X7r axis and different types of AMs in the pathology of allergic asthma. A murine AM-depleted asthma model was established by administration of clodronate-encapsulated liposomes, and M1-or M2-AMs were adoptively transferred to confirm the effects of different AMs in allergic asthma. Brilliant Blue G and BzATP were administered to OVA/HDM-induced mice in vivo. Lipopolysaccharide + OVA, ATP, Brilliant Blue G, and BzATP were used to stimulate AMs isolated from control and asthmatic mice. We found that selective depletion of AMs aggravated lung inflammation in asthmatic mice. Further, M2-type AMs may play a key role in mediating asthmatic inflammatory responses via the adoptive transfer of M2-type AMs to AM-depleted asthmatic mice, and the phenotype of AMs differentiated to M2 type in asthma. P2X7r expression in M2-type AMs was higher than that in M1-type AMs. Activating P2X7r induced polarization of M2-type AMs and inhibited polarization of M1-type AMs, while blockage of P2X7r had the opposite effect. The ATP/P2X7r axis may participate in the pathogenesis of asthma by mediating the M2-type AM polarization.
Collapse
Affiliation(s)
- Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Xuemei Hu
- Department of Nephrology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Wei Xiong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China.
| |
Collapse
|
41
|
White SJW, Ranson WA, Cho B, Cheung ZB, Ye I, Carrillo O, Kim JS, Cho SK. The Effects of Preoperative Steroid Therapy on Perioperative Morbidity and Mortality After Adult Spinal Deformity Surgery. Spine Deform 2019; 7:779-787. [PMID: 31495479 DOI: 10.1016/j.jspd.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/09/2018] [Accepted: 12/26/2018] [Indexed: 12/28/2022]
Abstract
STUDY DESIGN Retrospective cohort analysis. OBJECTIVES To identify the effects of preoperative steroid therapy on 30-day perioperative complications after adult spinal deformity (ASD) surgery. SUMMARY OF BACKGROUND DATA Chronic steroid therapy has demonstrated therapeutic effects in the treatment of various medical conditions but is also known to be associated with surgical complications. There remains a gap in the literature regarding the impact of chronic steroid therapy in predisposing patients to perioperative complications after elective surgery for ASD. METHODS We performed a retrospective analysis of data from the 2008-2015 American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database. Patients were divided into two groups based on preoperative steroid therapy. Differences in baseline patient characteristics, comorbidities, and operative variables were assessed. Univariate analysis was performed to compare the incidence of perioperative complications. Multivariate stepwise logistic regression models were then used to adjust for baseline patient and operative variables in order to identify perioperative complications that were associated with preoperative steroid therapy. RESULTS We identified 7,936 patients who underwent surgery for ASD, of which 418 (5.3%) were on preoperative steroid therapy. Preoperative steroid therapy was an independent risk factor for four perioperative complications, including mortality (odds ratio [OR] 2.42, 95% confidence interval [CI] 1.30, 4.51; p = .005), wound dehiscence (OR 3.12, 95% CI 1.45, 6.70; p = .004), deep vein thrombosis (DVT) (OR 2.10, 95% CI 1.24, 3.55; p = .006), and blood transfusion (OR 1.34, 95% CI 1.08, 1.66; p < .007). CONCLUSIONS Patients on preoperative steroid therapy are at increased risk of 30-day mortality, wound dehiscence, DVT, and blood transfusion after surgery for ASD. An interdisciplinary approach to the perioperative management of steroid regimens is critical. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Samuel J W White
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - William A Ranson
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brian Cho
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zoe B Cheung
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ivan Ye
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Oscar Carrillo
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jun S Kim
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Samuel K Cho
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
42
|
The Effects of Preoperative Steroid Therapy on Perioperative Complications After Elective Anterior Lumbar Fusion. World Neurosurg 2019; 126:e314-e322. [DOI: 10.1016/j.wneu.2019.02.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/10/2023]
|
43
|
Saini Y, Lewis BW, Yu D, Dang H, Livraghi-Butrico A, Del Piero F, O'Neal WK, Boucher RC. Effect of LysM+ macrophage depletion on lung pathology in mice with chronic bronchitis. Physiol Rep 2019; 6:e13677. [PMID: 29667749 PMCID: PMC5904692 DOI: 10.14814/phy2.13677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/04/2018] [Accepted: 03/10/2018] [Indexed: 11/24/2022] Open
Abstract
Macrophages (MΦ) are key sentinels of respiratory exposure to inhaled environmental stimuli. In normal “healthy” tissues, MΦ are believed to be a dormant cell type that, upon exposure to stress‐causing stimuli, may get activated to exhibit pro‐ or anti‐inflammatory roles. To test whether stress present in chronic bronchitic (CB) airways triggers MΦ to manifest protective or detrimental responses, the DTA+ (LysM‐regulated Diphtheria Toxin A expressing) strain with partial MΦ‐deficiency was crossed with the Scnn1b‐Tg mouse model of CB and the progenies were studied at 4–5 weeks of age. Compared with DTA− littermates, the DTA+ mice had ~50% reduction in bronchoalveolar lavage (BAL) MΦ, and the recovered MΦ were immature, phenotypically distinct, and functionally defective. DTA+/Scnn1b‐Tg mice exhibited a similar depletion of LysM+ MΦ offset by a significant increase in LysM‐ MΦ in the BAL. In DTA+/Scnn1b‐Tg mice, lung disease was more severe than in DTA−/Scnn1b‐Tg littermates, as indicated by an increased incidence of mucus plugging, mucous cells, airway inflammation, higher levels of cytokines/chemokines (KC, TNF‐α, MIP‐2, M‐CSF, IL‐5, and IL‐17), and worsened alveolar airspace enlargement. DTA+/Scnn1b‐Tg mice exhibited increased occurrence of lymphoid nodules, which was concomitant with elevated levels of immunoglobulins in BAL. Collectively, these data indicate that numerical deficiency of MΦ in stressed airspaces is responded via compensatory increase in the recruitment of immature MΦ and altered non‐MΦ effector cell‐centered responses, for example, mucus production and adaptive immune defense. Overall, these data identify dynamic roles of MΦ in moderating, rather than exacerbating, the severity of lung disease in a model of CB.
Collapse
Affiliation(s)
- Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Brandon W Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Dongfang Yu
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Fabio Del Piero
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Wanda K O'Neal
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute/Cystic Fibrosis Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
44
|
Venosa A, Katzen J, Tomer Y, Kopp M, Jamil S, Russo SJ, Mulugeta S, Beers MF. Epithelial Expression of an Interstitial Lung Disease-Associated Mutation in Surfactant Protein-C Modulates Recruitment and Activation of Key Myeloid Cell Populations in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 202:2760-2771. [PMID: 30910861 DOI: 10.4049/jimmunol.1900039] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/04/2019] [Indexed: 12/24/2022]
Abstract
Patients with idiopathic pulmonary fibrosis (IPF) often experience precipitous deteriorations, termed "acute exacerbations" (AE), marked by diffuse alveolitis and altered gas exchange, resulting in a significant loss of lung function or mortality. The missense isoleucine to threonine substitution at position 73 (I73T) in the alveolar type 2 cell-restricted surfactant protein-C (SP-C) gene (SFTPC) has been linked to clinical IPF. To better understand the sequence of events that impact AE-IPF, we leveraged a murine model of inducible SP-CI73T (SP-CI73T/I73TFlp+/- ) expression. Following administration of tamoxifen to 8-12-wk-old mice, an upregulation of SftpcI73T initiated a diffuse lung injury marked by increases in bronchoalveolar lavage fluid (BALF) protein and histochemical evidence of CD45+ and CD11b+ cell infiltrates. Flow cytometry of collagenase-digested lung cells revealed a transient, early reduction in SiglecFhiCD11blowCD64hiCD11chi macrophages, countered by the sequential accumulation of SiglecFloCD11b+CD64-CD11c-CCR2+Ly6C+ immature macrophages (3 d), Ly6G+ neutrophils (7 d), and SiglecFhiCD11bhiCD11clo eosinophils (2 wk). By mRNA analysis, BALF cells demonstrated a time-dependent phenotypic shift from a proinflammatory (3 d) to an anti-inflammatory/profibrotic activation state, along with serial elaboration of monocyte and eosinophil recruitment factors. The i.v. administration of clodronate effectively reduced total BALF cell numbers, CCR2+ immature macrophages, and eosinophil influx while improving survival. In contrast, resident macrophage depletion from the intratracheal delivery of clodronate liposomes enhanced SftpcI73T -induced mortality. These results using SftpcI73T mice provide a detailed ontogeny for AE-IPF driven by alveolar epithelial dysfunction that induces a polycellular inflammation initiated by the early influx of proinflammatory CCR2+Ly6Chi immature macrophages.
Collapse
Affiliation(s)
- Alessandro Venosa
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Jeremy Katzen
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Yaniv Tomer
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Meghan Kopp
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Sarita Jamil
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Scott J Russo
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Surafel Mulugeta
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and.,Penn Center for Pulmonary Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104
| | - Michael F Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and .,Penn Center for Pulmonary Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
45
|
Puttur F, Gregory LG, Lloyd CM. Airway macrophages as the guardians of tissue repair in the lung. Immunol Cell Biol 2019; 97:246-257. [PMID: 30768869 DOI: 10.1111/imcb.12235] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Abstract
The lungs present a challenging immunological dilemma for the host. Anatomically positioned at the environmental interface, they are constantly exposed to antigens, pollutants and microbes, while simultaneously facilitating vital gas exchange. Remarkably, the lungs maintain a functionally healthy state, ignoring harmless inhaled proteins, adapting to toxic environmental insults and limiting immune responses to allergens and pathogenic microbes. This functional strategy of environmental adaptation maintains immune defense, reduces tissue damage, and promotes and sustains lung immune tolerance. At steady state, airway macrophages produce low levels of cytokines, and suppress the induction of innate and adaptive immunity. These cells are primary initiators of lung innate immunity and possess high phagocytic activity to clear particulate antigens and apoptotic cell debris from the airways to regulate the response to infection and inflammation. In response to epithelial injury, resident and recruited macrophages drive tissue repair. In this review, we will focus on the functional importance of macrophages in tissue homeostasis and inflammation in the lung and highlight how environmental cues alter the plasticity and function of lung airway macrophages. We will also discuss mechanisms employed by pulmonary macrophages to promote resolution of tissue inflammation, and how and when this balance is perturbed, they contribute to pathological remodeling in acute and chronic infections and diseases such as asthma, idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Franz Puttur
- Inflammation, Repair & Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Lisa G Gregory
- Inflammation, Repair & Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Clare M Lloyd
- Inflammation, Repair & Development, National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
46
|
Nguyen QT, Jang E, Le HT, Kim S, Kim D, Dvorina N, Aronica MA, Baldwin WM, Asosingh K, Comhair S, Min B. IL-27 targets Foxp3+ Tregs to mediate antiinflammatory functions during experimental allergic airway inflammation. JCI Insight 2019; 4:123216. [PMID: 30674714 DOI: 10.1172/jci.insight.123216] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
Foxp3+ CD4 Tregs are central regulators of inflammation, including allergic inflammation in the lung. There is increasing evidence that inflammatory factors undermine adequate Treg functions and homeostasis, resulting in prolonged and exacerbated inflammation. Therefore, identifying the factors is of the utmost important. IL-27 is an antiinflammatory cytokine implicated in immune regulation and tolerance. However, the cellular mechanisms underlying IL-27-mediated immune regulation in vivo remain largely unknown. Utilizing a cockroach antigen-induced allergic inflammation model in mice, we sought to test the roles of Tregs during IL-27-mediated regulation of allergic inflammation. Intranasally delivered IL-27 significantly reduced the development of airway inflammation. Unexpectedly, the IL-27-induced reduction occurred only in the presence of Tregs. Il27ra-/- and Treg-specific Il27ra-/- mice developed severe airway inflammation, and IL-27 treatment had little impact on diminishing the inflammatory responses. IL-27-induced treatment was restored following transfer of WT Tregs but not of Tregs deficient in Lag3, a molecule induced by IL-27 in Tregs. Finally, Tregs from asthmatic patients exhibited blunted STAT1 phosphorylation following IL-27 stimulation. Taken together, our results uncover that Tregs are the primary target cells of IL-27 in vivo to mediate its antiinflammatory functions, suggesting that altered IL-27 responsiveness in Tregs may underlie inadequate Treg functions and perpetuation of inflammation.
Collapse
|
47
|
Regulatory cytokine function in the respiratory tract. Mucosal Immunol 2019; 12:589-600. [PMID: 30874596 PMCID: PMC7051906 DOI: 10.1038/s41385-019-0158-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 02/04/2023]
Abstract
The respiratory tract is an important site of immune regulation; required to allow protective immunity against pathogens, while minimizing tissue damage and avoiding aberrant inflammatory responses to inhaled allergens. Several cell types work in concert to control pulmonary immune responses and maintain tolerance in the respiratory tract, including regulatory and effector T cells, airway and interstitial macrophages, dendritic cells and the airway epithelium. The cytokines transforming growth factor β, interleukin (IL-) 10, IL-27, and IL-35 are key coordinators of immune regulation in tissues such as the lung. Here, we discuss the role of these cytokines during respiratory infection and allergic airway disease, highlighting the critical importance of cellular source and immunological context for the effects of these cytokines in vivo.
Collapse
|
48
|
Lloyd CM, Snelgrove RJ. Type 2 immunity: Expanding our view. Sci Immunol 2018; 3:eaat1604. [PMID: 29980619 DOI: 10.1126/sciimmunol.aat1604] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Abstract
The classical vision of type 2 immune reactions is that they are characterized by a distinct cellular and cytokine repertoire that is critical for host resistance against helminthic worm infections but, when dysregulated, may cause atopic reactions that result in conditions such as asthma, rhinitis, dermatitis, and anaphylaxis. In this traditional view, the type 2 response is categorized as an adaptive immune response with differentiated T helper cells taking center stage, driving eosinophil recruitment and immunoglobulin production via the secretion of a distinct repertoire of cytokines that include interleukin-4 (IL-4), IL-5, and IL-13. The recent discovery of a group of innate cells that has the capacity to secrete copious amounts of type 2 cytokines, potentially in the absence of adaptive immunity, has reignited interest in type 2 biology. The discovery that these innate lymphoid cells and type 2 cytokines are involved in diverse biological processes-including wound healing, control of metabolic homeostasis, and temperature-has considerably changed our view of type 2 responses and the cytokines, chemokines, and receptors that regulate these responses.
Collapse
Affiliation(s)
- Clare M Lloyd
- Imperial College London, Sir Alexander Fleming Building, South Kensington NHLI, Campus, London SW7 2AZ, UK.
| | - Robert J Snelgrove
- Imperial College London, Sir Alexander Fleming Building, South Kensington NHLI, Campus, London SW7 2AZ, UK
| |
Collapse
|
49
|
Host response to pulmonary fungal infections: A highlight on cell-driven immunity to Cryptococcus species and Aspergillus fumigatus. ACTA ACUST UNITED AC 2018; 3:335-345. [PMID: 29430385 DOI: 10.1007/s40495-017-0111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Villaseñor A, Rosace D, Obeso D, Pérez-Gordo M, Chivato T, Barbas C, Barber D, Escribese MM. Allergic asthma: an overview of metabolomic strategies leading to the identification of biomarkers in the field. Clin Exp Allergy 2017; 47:442-456. [PMID: 28160515 DOI: 10.1111/cea.12902] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergic asthma is a prominent disease especially during childhood. Indoor allergens, in general, and particularly house dust mites (HDM) are the most prevalent sensitizers associated with allergic asthma. Available data show that 65-130 million people are mite-sensitized world-wide and as many as 50% of these are asthmatic. In fact, sensitization to HDM in the first years of life can produce devastating effects on pulmonary function leading to asthmatic syndromes that can be fatal. To date, there has been considerable research into the pathological pathways and structural changes associated with allergic asthma. However, limitations related to the disease heterogeneity and a lack of knowledge into its pathophysiology have impeded the generation of valuable data needed to appropriately phenotype patients and, subsequently, treat this disease. Here, we report a systematic and integral analysis of the disease, from airway remodelling to the immune response taking place throughout the disease stages. We present an overview of metabolomics, the management of complex multifactorial diseases through the analysis of all possible metabolites in a biological sample, obtaining a global interpretation of biological systems. Special interest is placed on the challenges to obtain biological samples and the methodological aspects to acquire relevant information, focusing on the identification of novel biomarkers associated with specific phenotypes of allergic asthma. We also present an overview of the metabolites cited in the literature, which have been related to inflammation and immune response in asthma and other allergy-related diseases.
Collapse
Affiliation(s)
- A Villaseñor
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Rosace
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Obeso
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - M Pérez-Gordo
- Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - T Chivato
- Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - C Barbas
- Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Barber
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - M M Escribese
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| |
Collapse
|