1
|
Li R, Wang J, Fu X, Li Z, Chen Y, Ye M, Guo H. Qualitative and quantitative analysis of major components of Qiye Shen'an tablet by UPLC Q-TOF/MS and UPLC-TQS-MS/MS. J Pharm Biomed Anal 2024; 246:116216. [PMID: 38772204 DOI: 10.1016/j.jpba.2024.116216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
The Qiye Shen'an tablet is formulated using total saponins extracted from Notoginseng stems and leaves. At present, the study on its chemical composition remains scarce and the quality control indicators are limited, which seriously hindering the effective quality control and clinical research. Hence, this study aims to comprehensively identify and characterize the Qiye Shen'an tablet while controlling its main component contents. To achieve a comprehensive understanding of this tablet, an ultra-high performance liquid coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) method was employed for its separation and characterization. Through the analysis of 99 batches of Qiye Shen'an tablet produced by 9 enterprises, the characteristic quantitative components were further obtained. A total of 113 compounds were characterized and identified, among which 17 representative compounds were selected, and the ultra-high performance liquid-triple quadrupole tandem mass spectrometry (UPLC-TQS-MS/MS) method was established for further quantitative determination. It has been successfully applied to the content determination of 99 batches of Qiye Shen'an tablet, and a new quality control method is being formed. This study provides a new method for chemical spectrum analysis and determination of labeled compounds of Qiye Shen'an tablet, and lays a solid foundation for further study of potential active ingredients and comprehensive quality evaluation.
Collapse
Affiliation(s)
- Ruiyun Li
- School of Pharmaceutical Sciences, Peking University, Beijing, China; NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing, China
| | - Jinghui Wang
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing, China
| | - Xintong Fu
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing, China
| | - Zheng Li
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing, China
| | - Yougen Chen
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing, China
| | - Min Ye
- School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Hongzhu Guo
- NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing Institute for Drug Control, Beijing, China.
| |
Collapse
|
2
|
Zhuang ZJ, Li FJ, Lv D, Duan HQ, Chen LY, Chen P, Shen ZQ, He B. Regulation of Autophagy Signaling Pathways by Ginseng Saponins: A Review. Chem Biodivers 2024; 21:e202400934. [PMID: 38898600 DOI: 10.1002/cbdv.202400934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Ginseng saponins (ginsenosides), bioactive compounds derived from ginseng, are widely used natural products with potent therapeutic properties in the management of various ailments, particularly tumors, cardiovascular and cerebrovascular diseases, and immune system disorders. Autophagy, a highly regulated and multistep process involving the breakdown of impaired organelles and macromolecules by autophagolysosomes and autophagy-related genes (ATGs), has gained increasing attention as a potential target for ginsenoside-mediated disease treatment. This review aims to provide a comprehensive overview of recent research advances in the understanding of autophagy-related signaling pathways and the role of ginsenoside-mediated autophagy regulation. By delving into the intricate autophagy signaling pathways underpinning the pharmacological properties of ginsenosides, we highlight their therapeutic potential in addressing various conditions. Our findings serve as a comprehensive reference for further investigation into the medicinal properties of ginseng or ginseng-related products.
Collapse
Affiliation(s)
- Zhu-Jun Zhuang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Fa-Jing Li
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
- The First People's Hospital of Liangshan Prefecture, Sichuan, 615000, People's Republic of China
| | - Di Lv
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Heng-Qian Duan
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Lin-Yi Chen
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Peng Chen
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Zhi-Qiang Shen
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Bo He
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| |
Collapse
|
3
|
Abd El-Aal SA, El-Sayyad SM, El-Gazar AA, Salaheldin Abdelhamid Ibrahim S, Essa MA, Abostate HM, Ragab GM. Boswellic acid and apigenin alleviate methotrexate-provoked renal and hippocampal alterations in rats: Targeting autophagy, NOD-2/NF-κB/NLRP3, and connexin-43. Int Immunopharmacol 2024; 134:112147. [PMID: 38718656 DOI: 10.1016/j.intimp.2024.112147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 06/03/2024]
Abstract
The neuronal and renal deteriorations observed in patients exposed to methotrexate (MTX) therapy highlight the need for medical interventions to counteract these complications. Boswellic acid (BA) and apigenin (APG) are natural phytochemicals with prominent neuronal and renal protective impacts in various ailments. However, their impacts on MTX-provoked renal and hippocampal toxicity have not been reported. Thus, the present work is tailored to clarify the ability of BA and APG to counteract MTX-provoked hippocampal and renal toxicity. BA (250 mg/kg) or APG (20 mg/kg) were administered orally in rats once a day for 10 days, while MTX (20 mg/kg, i.p.) was administered once on the sixth day of the study. At the histopathological level, BA and APG attenuated MTX-provoked renal and hippocampal aberrations. They also inhibited astrocyte activation, as proven by the inhibition of glial fibrillary acidic protein (GFAP). These impacts were partially mediated via the activation of autophagy flux, as proven by the increased expression of beclin1, LC3-II, and the curbing of p62 protein, alongside the regulation of the p-AMPK/mTOR nexus. In addition, BA and APG displayed anti-inflammatory features as verified by the damping of NOD-2 and p-NF-κB p65 to reduce TNF-α, IL-6, and NLRP3/IL-1β cue. These promising effects were accompanied with a notable reduction in one of the gap junction proteins, connexin-43 (Conx-43). These positive impacts endorse BA and APG as adjuvant modulators to control MTX-driven hippocampal and nephrotoxicity.
Collapse
Affiliation(s)
- Sarah A Abd El-Aal
- Department of Pharmacy, Kut University College, Al Kut, Wasit 52001, Iraq.
| | - Shorouk M El-Sayyad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | | | - Marwa A Essa
- Department of Biochemistry, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Heba M Abostate
- Department of Microbiology and Immunology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11562, Egypt
| | - Ghada M Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12585, Egypt
| |
Collapse
|
4
|
Miao L, Zhou Y, Tan D, Zhou C, Ruan CC, Wang S, Wang Y, Vong CT, Cheang WS. Ginsenoside Rk1 improves endothelial function in diabetes through activating peroxisome proliferator-activated receptors. Food Funct 2024; 15:5485-5495. [PMID: 38690748 DOI: 10.1039/d3fo05222b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Ginsenoside Rk1, one kind of ginsenoside, is a minor ginsenoside found in Panax ginseng and used as traditional Chinese medicine for centuries. It exhibits anti-tumor and anti-aggregation effects. However, little research has been done on its effect on endothelial function. This study investigated whether ginsenoside Rk1 improved endothelial dysfunction in diabetes and the underlying mechanisms in vivo and in vitro. Male C57BL/6 mice were fed with a 12 week high-fat diet (60% kcal % fat), whereas treatment groups were orally administered with ginsenoside Rk1 (10 and 20 mg per kg per day) in the last 4 weeks. Aortas isolated from C57BL/6 mice were induced by high glucose (HG; 30 mM) and co-treated with or without ginsenoside Rk1 (1 and 10 μM) for 48 h ex vivo. Moreover, primary rat aortic endothelial cells (RAECs) were cultured and stimulated by HG (44 mM) to mimic hyperglycemia, with or without the co-treatment of ginsenoside Rk1 (10 μM) for 48 h. Endothelium-dependent relaxations of mouse aortas were damaged with elevated oxidative stress and downregulation of three isoforms of peroxisome proliferator-activated receptors (PPARs), PPAR-α, PPAR-β/δ, and PPAR-γ, as well as endothelial nitric oxide synthase (eNOS) phosphorylation due to HG or high-fat diet stimulation, which also existed in RAECs. However, after the treatment with ginsenoside Rk1, these impairments were all ameliorated significantly. Moreover, the vaso-protective and anti-oxidative effects of ginsenoside Rk1 were abolished by PPAR antagonists (GSK0660, GW9662 or GW6471). In conclusion, this study reveals that ginsenoside Rk1 ameliorates endothelial dysfunction and suppresses oxidative stress in diabetic vasculature through activating the PPAR/eNOS pathway.
Collapse
Affiliation(s)
- Lingchao Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Yan Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Dechao Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau SAR, China
| | - Chunxiu Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau SAR, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
5
|
Wang W, Wang Z, Meng Z, Jiang S, Liu Z, Zhu HY, Li XD, Zhang JT, Li W. Platycodin D Ameliorates Type 2 Diabetes-Induced Myocardial Injury by Activating the AMPK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10339-10354. [PMID: 38682702 DOI: 10.1021/acs.jafc.3c07311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The current study aimed to assess the effectiveness of pharmacological intervention with Platycodin D (PD), a critically active compound isolated from the roots of Platycodon grandiflorum, in mitigating cardiotoxicity in a murine model of type 2 diabetes-induced cardiac injury and in H9c2 cells in vitro. Following oral administration for 4 weeks, PD (2.5 mg/kg) significantly suppressed the elevation of fasting blood glucose (FBG) levels, improved dyslipidemia, and effectively inhibited the rise of the cardiac injury markers creatine kinase isoenzyme MB (CK-MB) and cardiac troponin T (cTnT). PD treatment could ameliorate energy metabolism disorders induced by impaired glucose uptake by activating AMPK protein expression in the DCM mouse model, thereby promoting the GLUT4 transporter and further activating autophagy-related proteins. Furthermore, in vitro experiments demonstrated that PD exerted a concentration-dependent increase in cell viability while also inhibiting palmitic acid and glucose (HG-PA)-stimulated H9c2 cytotoxicity and activating AMPK protein expression. Notably, the AMPK activator AICAR (1 mM) was observed to upregulate the expression of AMPK in H9c2 cells after high-glucose and -fat exposure. Meanwhile, we used AMPK inhibitor Compound C (20 μM) to investigate the effect of PD activation of AMPK on cells. In addition, the molecular docking approach was employed to dock PD with AMPK, revealing a binding energy of -8.2 kcal/mol and indicating a tight interaction between the components and the target. PD could reduce the expression of autophagy-related protein p62, reduce the accumulation of autophagy products, promote the flow of autophagy, and improve myocardial cell injury. In conclusion, it has been demonstrated that PD effectively inhibits cardiac injury-induced type 2 diabetes in mice and enhances energy metabolism in HG-PA-stimulated H9c2 cells by activating the AMPK signaling pathway. These findings collectively unveil the potential cardioprotective effects of PD via modulation of the AMPK signaling pathway.
Collapse
Affiliation(s)
- Wenting Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhaojie Meng
- Guangzhou Medical University, Guangzhou 130021, China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hong-Yan Zhu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xin-Dian Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing Tian Zhang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
6
|
Li K, Li J, Li Z, Men L, Zuo H, Gong X. Cisplatin-based combination therapies: Their efficacy with a focus on ginsenosides co-administration. Pharmacol Res 2024; 203:107175. [PMID: 38582357 DOI: 10.1016/j.phrs.2024.107175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Cisplatin, a frequently prescribed chemotherapeutic agent, serves as a clinically therapeutic strategy for a broad range of malignancies. Its primary mode of action centers around interference with DNA replication and RNA transcription, thereby inducing apoptosis in cancer cells. Nevertheless, the clinical utility of cisplatin is constrained by its severe adverse effects and the burgeoning problem of drug resistance. Ginsenosides, potent bioactive constituents derived from ginseng, possess an array of biological activities. Recent scientific investigations underscore the substantial amplification of cisplatin's anticancer potency and the mitigation of its harmful side effects when administered concomitantly with ginsenosides. This review aims to explore the underlying mechanisms at play in this combination therapy. Initially, we provide a concise introduction to the cisplatin. Then, we pivot towards illuminating how ginsenosides bolster the anticancer efficacy of cisplatin and counteract cisplatin resistance, culminating in enhanced therapeutic outcomes. Furthermore, we provide an extensive discussion on the reduction of cisplatin-induced toxicity in the kidneys, liver, gastrointestinal tract, nervous system, and ear, accompanied by immune-fortification with ginsenosides. The existing clinical combined use of cisplatin and ginsenosides is also discussed. We propose several recommendations to propel additional research into the mechanisms governing the synergistic use of ginsenosides and cisplatin, thereby furnishing invaluable insights and fostering advancement in combined modality therapy.
Collapse
Affiliation(s)
- Keke Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiwen Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zhongyu Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Lei Men
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Haibin Zuo
- School of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Xiaojie Gong
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Sun J, Zhang Y, Zheng Z, Ding X, Sun M, Ding G. Potential mechanism of ginseng in the treatment of periodontitis based on network pharmacology and molecular docking. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:181-191. [PMID: 38597078 PMCID: PMC11034411 DOI: 10.7518/hxkq.2024.2023285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/17/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVES To explore the mechanism of ginseng in the treatment of periodontitis based on network pharmacology and molecular docking technology. METHODS Potential targets of ginseng and periodontitis were obtained through various databases. The intersection targets of ginseng and periodontitis were obtained by using VENNY, the protein-protein interaction network relationship diagram was formed on the STRING platform, the core target diagram was formed by Cytoscape software, and the ginseng-active ingredient-target network diagram was constructed. The selected targets were screened for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. The core targets of ginseng's active ingredients in treating periodontitis were analyzed by molecular docking technique. RESULTS The 22 ginseng's active ingredients, 591 potential targets of ginseng's active ingredients, 2 249 periodontitis gene targets, and 145 ginseng-periodontitis intersection targets were analyzed. Ginseng had strong binding activity on core targets such as vascular endothelial growth factor A and epidermal growth factor receptor, as well as hypoxia induced-factor 1 (HIF-1) signaling pathway and phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt) signaling pathway. CONCLUSIONS Ginseng and its active components can regulate several signaling pathways such as HIF-1 and PI3K-Akt, thereby indicating that ginseng may play a role in treating periodontitis through multiple pathways.
Collapse
Affiliation(s)
- Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Weifang 261053, China
| | - Ying Zhang
- School of Stomatology, Shandong Second Medical University, Weifang 261053, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Weifang 261053, China
| | - Xiaoling Ding
- Clinical Competency Training Center, Shandong Second Medical University, Weifang 261053, China
| | - Minmin Sun
- School of Stomatology, Shandong Second Medical University, Weifang 261053, China
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang 261053, China
| |
Collapse
|
8
|
Vijayakumar A, Kim JH. Ginseng and ginsenosides on cardiovascular and pulmonary diseases; Pharmacological potentials for the coronavirus (COVID-19). J Ginseng Res 2024; 48:113-121. [PMID: 38465214 PMCID: PMC10920003 DOI: 10.1016/j.jgr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 03/12/2024] Open
Abstract
Since its outbreak in late 2019, the Coronavirus disease 2019 (COVID-19) pandemic has profoundly caused global morbidity and deaths. The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has major complications in cardiovascular and pulmonary system. The increased rate of mortality is due to delayed detection of certain biomarkers that are crucial in the development of disease. Furthermore, certain proteins and enzymes in cellular signaling pathways play an important role in replication of SARS-CoV-2. Most cases are mild to moderate symptoms, however severe cases of COVID-19 leads to death. Detecting the level of biomarkers such as C-reactive protein, cardiac troponin, creatine kinase, creatine kinase-MB, procalcitonin and Matrix metalloproteinases helps in early detection of the severity of disease. Similarly, through downregulating Renin-angiotensin system, interleukin, Mitogen-activated protein kinases and Phosphoinositide 3-kinases pathways, COVID-19 can be effectively controlled and mortality could be prevented. Ginseng and ginsenosides possess therapeutic potential in cardiac and pulmonary complications, there are several studies performed in which they have suppressed these biomarkers and downregulated the pathways, thereby inhibiting the further spread of disease. Supplementation with ginseng or ginsenoside could act on multiple pathways to reduce the level of biomarkers significantly and alleviate cardiac and pulmonary damage. Therefore, this review summarizes the potential of ginseng extract and ginsenosides in controlling the cardiovascular and pulmonary diseases by COVID-19.
Collapse
Affiliation(s)
- Ajay Vijayakumar
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Republic of Korea
| |
Collapse
|
9
|
Khairnar SI, Kulkarni YA, Singh K. Mitigation of cisplatin-induced nephrotoxicity by chelidonic acid in Wistar rats. J Trace Elem Med Biol 2024; 81:127321. [PMID: 37918276 DOI: 10.1016/j.jtemb.2023.127321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Cisplatin, an anti-cancer drug is used to treat a wide range of solid tumors. Nevertheless, nephrotoxicity is the major adverse effect that restricts its clinical application. The present study focuses on the effect of chelidonic acid in cisplatin-induced nephrotoxicity. METHODS Wistar rats were injected with cisplatin (5 mg/kg, intraperitoneally (i.p.), once in a week for 4 weeks) and chelidonic acid (10, 20, and 40 mg/kg, per oral (p.o.) for 4 weeks). Body weight, urine, biochemical, and oxidative stress parameters were performed to evaluate the effect of chelidonic acid in cisplatin-induced nephrotoxicity in rats. Pro-inflammatory cytokines and nuclear factor erythroid 2-related factor 2 (Nrf2) concentrations were determined. Expression of phospho-AMP activated protein kinase (phospho-AMP) and hypoxia-inducible factor 1-alpha (HIF-1α) was studied with western blot. Haematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome staining were used to study kidney tissues. RESULTS Relative kidney weight and urine output were significantly increased in cisplatin-administered rats. Whereas, albumin, and creatinine concentration were decreased, and treatment with chelidonic acid reverses these deleterious effects of cisplatin significantly. Kidney functions were improved by chelidonic acid treatment with a reduction in tumor necrosis factor-alpha (TNF-α), Interleukin-6 (IL-6), and transforming growth factor-beta (TGF-β1) concentration. The oxidative stress was decreased as compared to the cisplatin group. Furthermore, Nrf2 was significantly increased by chelidonic acid treatment. Chelidonic acid treatment significantly increased the expression of phospho-AMPK and HIF-1α in kidney tissue. Histopathological studies revealed that chelidonic acid reduced kidney damage. CONCLUSION The findings showed that chelidonic acid increases phospho-AMPK and HIF-1α in the kidney tissue and significantly lowers the inflammatory cytokines, thus it is an effective molecule for providing protection against cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Shraddha I Khairnar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
10
|
Xia D, Wang S, Wu K, Li N, Fan W. Ginsenosides and Tumors: A Comprehensive and Visualized Analysis of Research Hotspots and Antitumor Mechanisms. J Cancer 2024; 15:671-684. [PMID: 38213735 PMCID: PMC10777040 DOI: 10.7150/jca.88783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/25/2023] [Indexed: 01/13/2024] Open
Abstract
Background: Ginsenoside, the main active constituent of traditional Chinese medicine Ginseng, has been shown to play an important role in the prevention and treatment of cancer. However, the literature as well as the antitumor mechanisms of ginsenosides has not yet been systematically studied. Methods: We screened all relevant literature on ginsenosides and tumors from Web of Science during 2001-2021 and analyzed the extracted terms of these publications by VOSviewer and CiteSpace. DAVID online tool was used to perform Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathways analysis of ginsenoside-related genes. Cytoscape and String software were used to construct the interaction networks of ginsenoside-related genes and corresponding proteins. Results: A total of 919 publications were included in the study. A total of 122 identified keywords were mainly divided into 3 clusters: "pharmacological function research", "functional validation in animal models" and "anti-tumor efficacy and mechanism". The keywords of "oxidative stress" had the strongest citation burst in the past 5 years. A total of 50 genes were identified as ginsenoside-related genes in tumors. They have the function of regulating gene expression and apoptosis, and they are closely related to signaling pathways in cancers. Ginsenoside-related genes form a complex interactional network, in which TP53 and IL-6 are centrally located. Conclusions: We explored and revealed research hotspots related to the ginsenosides and tumors. More precise anti-tumor mechanism research will be promising in the future. TP53 and IL-6 may be the key points to comprehending the anti-tumor mechanism of ginsenosides.
Collapse
Affiliation(s)
- Demeng Xia
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
- Department of Clinical Medicine, Hainan Health Vocational College, Hainan 572000, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Shuo Wang
- Department of Clinical Laboratory. Naval Hospital of Eastern Theater of PLA, Zhoushan, Zhejiang Province 316000, China
| | - Kaiwen Wu
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| |
Collapse
|
11
|
Jin C, Cao Y, Li Y. Bone Mesenchymal Stem Cells Origin Exosomes are Effective Against Sepsis-Induced Acute Kidney Injury in Rat Model. Int J Nanomedicine 2023; 18:7745-7758. [PMID: 38144514 PMCID: PMC10743757 DOI: 10.2147/ijn.s417627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction The incidence and mortality rates of sepsis-induced acute kidney injury (SAKI) remain high, posing a substantial healthcare burden. Studies have implicated a connection between the development of SAKI and inflammation response, apoptosis, and autophagy. Moreover, evidence suggests that manipulating autophagy could potentially influence the prognosis of this condition. Notably, exosomes derived from bone mesenchymal stem cells (BMSCs-Exo) have exhibited promise in mitigating cellular damage by modulating pathways associated with inflammation, apoptosis, and autophagy. Thus, this study aims to investigate the influence of BMSCs-Exo on SAKI and the potential mechanisms that drive this impact. Methods The SAKI model was induced in HK-2 cells using lipopolysaccharide (LPS), while rats underwent cecal ligation and puncture (CLP) to simulate the condition. Cell viability was assessed using the CCK-8 kit, and kidney damage was evaluated through HE staining, blood urea nitrogen (BUN), and serum creatinine (SCr) measurements. Inflammatory-related RNAs and proteins were quantified via qPCR and ELISA, respectively. Apoptosis was determined through apoptosis-related protein levels, flow cytometry, and TUNEL staining. Western blot analysis was utilized to measure associated protein expressions. Results In vivo, BMSCs-Exo ameliorated kidney injury in CLP-induced SAKI rats, reducing inflammatory cytokine production and apoptosis levels. Fluorescence microscope observed the absorption of BMSCs-Exo by renal cells following injection via tail vein. In the SAKI rat kidney tissue, there was an upregulation of LC3-II/LC3-I, p62, and phosphorylated AMP-activated protein kinase (p-AMPK) expressions, indicating blocked autophagic flux, while phosphorylated mammalian target of rapamycin (p-mTOR) expression was downregulated. However, BMSCs-Exo enhanced LC3-II/LC3-I and p-AMPK expression, concurrently reducing p62 and p-mTOR levels. In vitro, BMSCs-Exo enhanced cell viability in LPS-treated HK-2 cells, and exerted anti-inflammation and anti-apoptosis effects which were consistent with the results in vivo. Similarly, rapamycin (Rapa) exhibited a protective effect comparable to BMSCs-Exo, albeit partially abrogated by 3-methyladenine (3-MA). Conclusion BMSCs-Exo mitigate inflammation and apoptosis through autophagy in SAKI, offering a promising avenue for SAKI treatment.
Collapse
Affiliation(s)
- Cui Jin
- Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Yongmei Cao
- Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Yingchuan Li
- Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| |
Collapse
|
12
|
Yuan W, Kou S, Ma Y, Qian Y, Li X, Chai Y, Jiang Z, Zhang L, Sun L, Huang X. Hyperoside ameliorates cisplatin-induced acute kidney injury by regulating the expression and function of Oat1. Xenobiotica 2023; 53:559-571. [PMID: 37885225 DOI: 10.1080/00498254.2023.2270046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Cisplatin is a widely used chemotherapeutic agent to treat solid tumours in clinics. However, cisplatin-induced acute kidney injury (AKI) limits its clinical application. This study investigated the effect of hyperoside (a flavonol glycoside compound) on regulating AKI.The model of cisplatin-induced AKI was established, and hyperoside was preadministered to investigate its effect on improving kidney injury.Hyperoside ameliorated renal pathological damage, reduced the accumulation of SCr, BUN, Kim-1 and indoxyl sulphate in vivo, increased the excretion of indoxyl sulphate into the urine, and upregulated the expression of renal organic anion transporter 1 (Oat1). Moreover, evaluation of rat kidney slices demonstrated that hyperoside promoted the uptake of PAH (p-aminohippurate, the Oat1 substrate), which was confirmed by transient over-expression of OAT1 in HEK-293T cells. Additionally, hyperoside upregulated the mRNA expression of Oat1 upstream regulators hepatocyte nuclear factor-1α (HNF-1α) and pregnane X receptor (PXR).These findings indicated hyperoside could protect against cisplatin-induced AKI by promoting indoxyl sulphate excretion through regulating the expression and function of Oat1, suggesting hyperoside may offer a potential tactic for cisplatin-induced AKI treatment.
Collapse
Affiliation(s)
- Wenjing Yuan
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Shanshan Kou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Ying Ma
- Foreign Language Teaching Department, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yusi Qian
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Xinyu Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Yuanyuan Chai
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Zhenzhou Jiang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Lixin Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| | - Xin Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
13
|
Jin X, He R, Lin Y, Liu J, Wang Y, Li Z, Liao Y, Yang S. Shenshuaifu Granule Attenuates Acute Kidney Injury by Inhibiting Ferroptosis Mediated by p53/SLC7A11/GPX4 Pathway. Drug Des Devel Ther 2023; 17:3363-3383. [PMID: 38024532 PMCID: PMC10656853 DOI: 10.2147/dddt.s433994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Acute kidney injury (AKI) is a common clinical condition resulting in a rapid decline in renal function, and requires improvement in effective preventive measures. Ferroptosis, a novel form of cell death, is closely related to AKI. Shenshuaifu granule (SSF) has been demonstrated to prevent AKI through suppressing inflammation and apoptosis. Objective This study aimed to explore whether SSF can inhibit ferroptosis in AKI. Methods Active ingredients in SSF were detected through HPLC-MS/MS, and their binding abilities with ferroptosis were evaluated by molecular docking. Then, male C57/BL/6J mice were randomly divided into control, cisplatin, and cisplatin+SSF groups. In the latter two groups, mice were intraperitoneally injected with 20 mg/kg of cisplatin. For five consecutive days prior to cisplatin injection, mice in the cisplatin+SSF group were gavaged with 5.2 g/kg of SSF per day.72 h after cisplatin injection, the mice were sacrificed. Serum creatinine (SCr) and blood urea nitrogen (BUN) were measured to evaluate renal function. H&E and PAS staining were used to observe pathological damage of kidney. Cell death was observed by TUNEL staining, and iron accumulation in kidneys of mice was detected by Prussian blue staining. Western blotting, immunohistochemistry, and immunofluorescence were used to investigate the presence of inflammation, oxidative stress, mitochondrial dysfunction, iron deposition, and lipid peroxidation in mouse kidneys. Results Active ingredients in SSF had strong affinities with ferroptosis. SSF reduced SCr (p<0.01) and BUN (p<0.0001) levels, pathological damage (p<0.0001), dead cells in the tubular epithelium (p<0.0001) and iron deposition (p<0.01) in mice with cisplatin induced AKI. And SSF downregulated macrophage infiltration (p<0.01), the expressions of high mobility group box 1 (HMGB1, p<0.05) and interleukin (IL)-17 (p<0.05), upregulated superoxide dismutase (SOD) 1 and 2 (p<0.01), and catalase (CAT, p<0.05), and alleviated mitochondrial dysfunction (p<0.05). More importantly, SSF regulated iron transport and intracellular iron overload and reduced the expression of ferritin (p<0.05). Moreover, it downregulated the expressions of cyclo-oxygenase-2 (Cox-2, p<0.001), acid CoA ligase 4 (ACSL4, p<0.05), and solute carrier family 7, member 11 (SLC7A11, p<001), upregulated glutathione peroxidase 4 (GPX4, p<0.01) and p53 (p<0.01), and decreased 4-hydroxynonenal (4-HNE) level (p<0.001). Conclusion SSF attenuates AKI by inhibiting ferroptosis mediated by p53/SLC7A11/GPX4 pathway.
Collapse
Affiliation(s)
- Xiaoming Jin
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Riming He
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Yunxin Lin
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Jiahui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Yuzhi Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Zhongtang Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Yijiao Liao
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| | - Shudong Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, People’s Republic of China
| |
Collapse
|
14
|
Sun M, Ji Y, Zhou S, Chen R, Yao H, Du M. Ginsenoside Rb3 inhibits osteoclastogenesis via ERK/NF-κB signaling pathway in vitro and in vivo. Oral Dis 2023; 29:3460-3471. [PMID: 35976062 DOI: 10.1111/odi.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The objective of the study was to determine the anti-osteoclastogenic potential of ginsenoside Rb3 for the treatment of periodontitis. METHODS The anti-osteoclastogenic effect was determined using RANKL-induced RAW264.7 cells and murine bone marrow-derived macrophages followed by TRAP and phalloidin staining. Expression of osteoclastogenesis-related genes and proteins were examined by qPCR and WB. Activation of signaling pathways was detected by WB and IHC techniques. Experimental periodontitis rat model was built up by gingival injections of P. gingivalis LPS. After 21 days of Rb3 treatment, rats were sacrificed for micro-CT, IHC, H&E, and TRAP staining analyses. RESULTS Rb3 dramatically inhibits RANKL-induced osteoclastogenesis. Nfatc1, Mmp9, Ctsk, Acp5 mRNA, and MMP9, CTSK proteins were dose-dependently downregulated by Rb3 pretreatment. WB results revealed that Rb3 suppressed activations of p38 MAPK, ERK, and p65 NF-κB, and the inhibition of ERK was most pronounced. Consistently, IHC analysis revealed that p-ERK was highly expressed in alveolar bone surface, blood vessels, odontoblasts, and gingival epithelia, which were notably suppressed by Rb3 treatment. H&E staining and micro-CT analyses showed that Rb3 significantly attenuated gingivitis and alveolar bone resorption in rats. CONCLUSION Rb3 inhibits RANKL-induced osteoclastogenesis and attenuates P. gingivalis LPS-induced gingivitis and alveolar bone resorption in rats via ERK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Minmin Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuhui Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rourong Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hantao Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Ren Q, Lin J, Wang H, Huang M, Tan X, Huang W, Xu Y. Effects of ginseng consumption on the biomarkers of oxidative stress: A systematic review and meta-analysis. Phytother Res 2023; 37:3262-3274. [PMID: 37216939 DOI: 10.1002/ptr.7893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Oxidative stress (OS) is a key factor involved in the initiation and development of chronic diseases. Despite its widespread acceptance as an antioxidant, the effects of ginseng on OS in human clinical trials have not been comprehensively analyzed. Therefore, this study aimed to synthesize the results of previous randomized clinical trials (RCTs) examining the impact of ginseng consumption on OS indicators. PubMed, Web of Science, Scopus, and Cochrane databases were searched for articles on the effects of ginseng consumption on oxidative stress markers up to March 20, 2023. Standardized mean difference (SMD) and 95% confidence intervals (CIs) were used to assess effect sizes. Twelve RCTs with 15 effect sizes revealed that the effects of ginseng lowered serum malondialdehyde (MDA) levels (SMD = 0.45, 95% CI: -0.87, -0.08; p = 0.03) and significantly increased the serum total antioxidant capacity (TAC) (SMD = 0.23, 95% CI: 0.01, 0.45; p = 0.04), oxidative dismutase (SOD) (SMD = 0.39, 95% CI: 0.21, 0.57; p < 0.0001), glutathione (GSH) (SMD = 0.36; 95% CI: 0.11, 0.61; p = 0.005), and glutathione reductase (GR) (SMD = 0.56; 95% CI: 0.31, 0.81; p < 0.0001) levels compared to the effects of placebo. However, the effects on serum glutathione peroxidase (GPx) and catalase (CAT) were not significant. Moreover, subgroup analysis based on intervention duration showed that ginseng consumption increased GPx (SMD = 0.91, 95% CI: 0.05, 1.78; p = 0.039) and CAT (SMD = 0.74, 95% CI: 0.27, 1.21; p = 0.002) levels after more than 4 weeks of intervention. According to the results of this meta-analysis, ginseng supplementation dramatically reduced MDA levels and increased TAC, SOD, GSH, and GR levels. Our results open up a new line of defense against oxidative stress-induced diseases.
Collapse
Affiliation(s)
- Qian Ren
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Jie Lin
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Hongya Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Mengting Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Xiaozhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| |
Collapse
|
16
|
Ozdemir A, Tumkaya L, Mercantepe T, Celik Samanci T, Uyan M, Kalcan S, Demiral G, Pergel A, Yilmaz Kutlu E, Kilic Yilmaz H. The protective effects of ginseng on x-irradiation-induced intestinal damage in rats. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023:10.1007/s00411-023-01039-y. [PMID: 37410120 DOI: 10.1007/s00411-023-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Although radiotherapy is widely employed in the treatment of various malignancies in oncology patients, its use is limited by the toxic effects it causes in surrounding tissues, including the gastrointestinal system. Korean Red Ginseng (KRG) is a traditional drug reported to possess antioxidant and restorative properties in various studies. The purpose of the present study was to investigate the protective effects of KRG against radiation-associated small intestinal damage. Twenty-four male Sprague Dawley rats were randomly assigned into three groups. No procedure was performed on Group 1 (control) during the experiment, while Group 2 (x-irradiation) was exposed to radiation only. Group 3 (x-irradiation + ginseng) received ginseng via the intraperitoneal route for a week prior to x-irradiation. The rats were killed 24 h after radiation. Small intestinal tissues were evaluated using histochemical and biochemical methods. An increase in malondialdehyde (MDA) levels and a decrease in glutathione (GSH) were observed in the x-irradiation group compared to the control group. KRG caused a decrease in MDA and caspase-3 activity and an increase in GSH. Our findings show that it can prevent damage and apoptotic cell death caused by x-irradiation in intestinal tissue and can therefore play a protective role against intestinal injury in patients receiving radiotherapy.
Collapse
Affiliation(s)
- Ali Ozdemir
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Merkez, Box: 53020, Rize, Turkey.
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53010, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53010, Rize, Turkey
| | - Tugba Celik Samanci
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53010, Rize, Turkey
| | - Mikail Uyan
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Merkez, Box: 53020, Rize, Turkey
| | - Suleyman Kalcan
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Merkez, Box: 53020, Rize, Turkey
| | - Gokhan Demiral
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Merkez, Box: 53020, Rize, Turkey
| | - Ahmet Pergel
- Department of General Surgery, Faculty of Medicine, Recep Tayyip Erdogan University, Merkez, Box: 53020, Rize, Turkey
| | - Eda Yilmaz Kutlu
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53010, Rize, Turkey
| | - Hülya Kilic Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53010, Rize, Turkey
| |
Collapse
|
17
|
Luo X, Xie D, Chen Z, Ji Q. Protective effects of ginsenosides in cisplatin-induced kidney injury: A systematic review, meta-analysis. Indian J Pharmacol 2023; 55:243-250. [PMID: 37737077 PMCID: PMC10657623 DOI: 10.4103/ijp.ijp_251_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Although evidence suggests ginsenosides, the primary active and distinctive components of ginseng, have beneficial effects in cisplatin-induced nephrotoxicity, their efficacy and protective mechanisms remain unclear. The aim of the current meta-analysis is to study the effectiveness and mechanisms of ginsenosides in a model of nephrotoxicity induced by cisplatin. Preclinical investigations were conducted in the search of various databases including Medline, Web of Science, Google, CNKI, Embase, and the Wanfang database. 12 studies with 216 animals were included in this review. Stata 15.0 and RevMan 5.3 were used for statistical analyses. The pooled results showed that ginsenosides significantly improved kidney function, and inhibited histological damage. The protective mechanism of ginsenosides is associated with its antioxidative stress, anti-inflammation, anti-apoptosis, and anti-autophagy. The results of our study indicate that ginsenosides have the potential to mitigate nephrotoxicity induced by cisplatin through the modulation of various targets and pathways. Consequently, ginsenosides hold promise as therapeutic agents for the clinical management and prevention of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xinyi Luo
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Dengpiao Xie
- Department of Kidney, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ziwei Chen
- Department of Kidney, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Qing Ji
- Department of Kidney, Chengdu First People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Wang JQ, Liu XX, Zhang JJ, Shuai-Zhang, Jiang C, Zheng SW, Wang Z, Li DY, Li W, Shi DF. Amelioration of Cisplatin-Induced kidney injury by Arabinogalactan based on network pharmacology and molecular docking. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
19
|
Jin X, He R, Liu J, Wang Y, Li Z, Jiang B, Lu J, Yang S. An herbal formulation "Shenshuaifu Granule" alleviates cisplatin-induced nephrotoxicity by suppressing inflammation and apoptosis through inhibition of the TLR4/MyD88/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116168. [PMID: 36646160 DOI: 10.1016/j.jep.2023.116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenshuaifu Granule (SSF) is an in-hospital preparation approved by the Guangdong Food and Drug Administration of China. It has been clinically used against kidney diseases for more than 20 years with a definite curative effect. AIM OF THE STUDY Cisplatin (CDDP) is a first-line chemotherapeutic drug in clinical practice, primarily excreted by the kidney with nephrotoxicity as a common side effect. Approximately 5-20% of cancer patients develop acute kidney injury (AKI) after chemotherapy; however, prevention and control strategies are currently unavailable. Therefore, it is important to identify safe and effective drugs that can prevent the nephrotoxicity of CDDP. SSF is an herbal formulation with 8 herbs, and has been used to protect the kidney in China. Nonetheless, its mechanism in relieving CDDP nephrotoxicity remains unclear. Therefore, this work attempt to prove that SSF can alleviate CDDP nephrotoxicity. We also explore its mechanism. MATERIALS AND METHODS First, Thin Layer Chromatography (TLC) of a few herbs in SSF were performed for quality control. Several open-access databases were used to identify the active ingredients of SSF, their corresponding targets, and CDDP-induced nephrotoxicity targets. We performed Protein-Protein Interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Next, the results of network pharmacology were validated using CDDP-induced nephrotoxicity mouse models. Renal function in the mice was assessed by analyzing the levels of serum creatinine (Scr) and blood urea nitrogen (BUN). On the other hand, renal damage was assessed by determining the level of tubular injury and apoptotic cells using Periodic acid-Schiff (PAS) staining and Terminal Dutp Nick End-Labeling (TUNEL) staining, respectively. The expression of inflammatory and apoptotic-related targets including IL-1β, IL-6, TNF-α, Cox-2, Bax, Bcl-2, Cleaved-caspase 3, and Cleaved-caspase 9 was determined using Western Blot (WB) and Immunohistochemistry (IHC). Furthermore, WB was used to analyze the expression of proteins associated with the TLR4/MyD88/NF-κB pathway in the kidneys of mice with CDDP-induced nephrotoxicity. Finally, molecular docking simulations were performed to evaluate the binding abilities between major active ingredients of SSF and core targets. RESULT Through network pharmacology, we identified 127 active ingredients of SSF and their corresponding 134 targets. Additional screening identified 14 active ingredients and 17 targets for further analysis. In biological process (BP), the targets were enriched in inflammation and apoptosis, among others. In KEGG terms, they were enriched in apoptosis and NF-κB pathways. Animal experiments revealed that SSF significantly reduced the levels of Scr and BUN and prevented renal tubular damage in mice treated with CDDP. In addition, SSF inhibited inflammation and apoptosis by targeting the TLR4/MyD88/NF-κB pathway. Molecular docking revealed good binding capacities of active ingredients and core targets. CONCLUSION In summary, the experimental findings were consistent with the network pharmacological predictions. SSF can inhibit inflammation and apoptosis by targeting the TLR4/MyD88/NF-κB pathway. Taken together, our data suggest that SSF is an alternative agent for the treatment of CDDP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xiaoming Jin
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Riming He
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Jiahui Liu
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Yuzhi Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Zhongtang Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Beibei Jiang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, Shenzhen, 518033, China.
| | - Shudong Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, China.
| |
Collapse
|
20
|
Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress. Life Sci 2023; 318:121466. [PMID: 36773693 DOI: 10.1016/j.lfs.2023.121466] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
AIMS Nephrotoxicity is the hallmark of anti-neoplastic drug metabolism that causes oxidative stress. External chemical agents and prescription drugs release copious amounts of free radicals originating from molecular oxidation and unless sustainably scavenged, they stimulate membrane lipid peroxidation and disruption of the host antioxidant mechanisms. This review aims to provide a comprehensive collection of potential cytoprotective remedies in surmounting the most difficult aspect of cancer therapy as well as preventing renal oxidative stress by other means. MATERIALS AND METHODS Over 400 published research and review articles spanning several decades were scrutinised to obtain the relevant data which is presented in 3 categories; sources, mechanisms, and mitigation of renal oxidative stress. KEY-FINDINGS Drug and chemical-induced nephrotoxicity commonly manifests as chronic or acute kidney disease, nephritis, nephrotic syndrome, and nephrosis. Renal replacement therapy requirements and mortalities from end-stage renal disease are set to rapidly increase in the next decade for which 43 different cytoprotective compounds which have the capability to suppress experimental nephrotoxicity are described. SIGNIFICANCE The renal system performs essential homeostatic functions that play a significant role in eliminating toxicants, and its accumulation and recurrence in nephric tissues results in tubular degeneration and subsequent renal impairment. Global statistics of the latest chronic kidney disease prevalence is 13.4 % while the end-stage kidney disease requiring renal replacement therapy is 4-7 million per annum. The remedial compounds discussed herein had proven efficacy against nephrotoxicity manifested consequent to impaired antioxidant mechanisms in preclinical models produced by renal oxidative stress activators.
Collapse
|
21
|
Zhou Q, Quirk JD, Hu Y, Yan H, Gaut JP, Pham CTN, Wickline SA, Pan H. Rapamycin Perfluorocarbon Nanoparticle Mitigates Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci 2023; 24:6086. [PMID: 37047059 PMCID: PMC10093942 DOI: 10.3390/ijms24076086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
For nearly five decades, cisplatin has played an important role as a standard chemotherapeutic agent and been prescribed to 10-20% of all cancer patients. Although nephrotoxicity associated with platinum-based agents is well recognized, treatment of cisplatin-induced acute kidney injury is mainly supportive and no specific mechanism-based prophylactic approach is available to date. Here, we postulated that systemically delivered rapamycin perfluorocarbon nanoparticles (PFC NP) could reach the injured kidneys at sufficient and sustained concentrations to mitigate cisplatin-induced acute kidney injury and preserve renal function. Using fluorescence microscopic imaging and fluorine magnetic resonance imaging/spectroscopy, we illustrated that rapamycin-loaded PFC NP permeated and were retained in injured kidneys. Histologic evaluation and blood urea nitrogen (BUN) confirmed that renal structure and function were preserved 48 h after cisplatin injury. Similarly, weight loss was slowed down. Using western blotting and immunofluorescence staining, mechanistic studies revealed that rapamycin PFC NP significantly enhanced autophagy in the kidney, reduced the expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), as well as decreased the expression of the apoptotic protein Bax, all of which contributed to the suppression of apoptosis that was confirmed with TUNEL staining. In summary, the delivery of an approved agent such as rapamycin in a PFC NP format enhances local delivery and offers a novel mechanism-based prophylactic therapy for cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Qingyu Zhou
- Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA
| | - James D. Quirk
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ying Hu
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Huimin Yan
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph P. Gaut
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christine T. N. Pham
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel A. Wickline
- Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Hua Pan
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
22
|
Flavonoids of Haloxylon salicornicum (Rimth) prevent cisplatin-induced acute kidney injury by modulating oxidative stress, inflammation, Nrf2, and SIRT1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49197-49214. [PMID: 36773264 DOI: 10.1007/s11356-023-25694-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Cisplatin (CIS) is an effective chemotherapeutic drug used for the treatment of many types of cancers, but its use is associated with adverse effects. Nephrotoxicity is a serious side effect of CIS and limits its therapeutic utility. Haloxylon salicornicum is a desert shrub used traditionally in the treatment of inflammatory disorders, but neither its flavonoid content nor its protective efficacy against CIS nephrotoxicity has been investigated. In this study, seven flavonoids were isolated from H. salicornicum methanolic extract (HSE) and showed in silico binding affinity with NF-κB, Keap1, and SIRT1. The protective effect of HSE against CIS nephrotoxicity was investigated. Rats received HSE (100, 200, and 400 mg/kg) for 14 days followed by a single injection of CIS. The drug increased Kim-1, BUN, and creatinine and caused multiple histopathological changes. CIS-administered rats showed an increase in renal ROS, MDA, NO, TNF-α, IL-1β, and NF-κB p65. HSE prevented tissue injury, and diminished ROS, NF-κB, and inflammatory mediators. HSE enhanced antioxidants and Bcl-2 and downregulated pro-apoptosis markers. These effects were associated with downregulation of Keap1 and microRNA-34a, and upregulation of SIRT1 and Nrf2/HO-1 signaling. In conclusion, H. salicornicum is rich in flavonoids, and its extract prevented oxidative stress, inflammation, and kidney injury, and modulated Nrf2/HO-1 and SIRT1 signaling in CIS-treated rats.
Collapse
|
23
|
Fan M, Lan X, Wang Q, Shan M, Fang X, Zhang Y, Wu D, Luo H, Gao W, Zhu D. Renal function protection and the mechanism of ginsenosides: Current progress and future perspectives. Front Pharmacol 2023; 14:1070738. [PMID: 36814491 PMCID: PMC9939702 DOI: 10.3389/fphar.2023.1070738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Nephropathy is a general term for kidney diseases, which refers to changes in the structure and function of the kidney caused by various factors, resulting in pathological damage to the kidney, abnormal blood or urine components, and other diseases. The main manifestations of kidney disease include hematuria, albuminuria, edema, hypertension, anemia, lower back pain, oliguria, and other symptoms. Early detection, diagnosis, and active treatment are required to prevent chronic renal failure. The concept of nephropathy encompasses a wide range of conditions, including acute renal injury, chronic kidney disease, nephritis, renal fibrosis, and diabetic nephropathy. Some of these kidney-related diseases are interrelated and may lead to serious complications without effective control. In serious cases, it can also develop into chronic renal dysfunction and eventually end-stage renal disease. As a result, it seriously affects the quality of life of patients and places a great economic burden on society and families. Ginsenoside is one of the main active components of ginseng, with anti-inflammatory, anti-tumor, antioxidant, and other pharmacological activities. A variety of monomers in ginsenosides can play protective roles in multiple organs. According to the difference of core structure, ginsenosides can be divided into protopanaxadiol-type (including Rb1, Rb3, Rg3, Rh2, Rd and CK, etc.), and protopanaxatriol (protopanaxatriol)- type (including Rg1, Rg2 and Rh1, etc.), and other types (including Rg5, Rh4, Rh3, Rk1, and Rk3, etc.). All of these ginsenosides showed significant renal function protection, which can reduce renal damage in renal injury, nephritis, renal fibrosis, and diabetic nephropathy models. This review summarizes reports on renal function protection and the mechanisms of action of these ginsenosides in various renal injury models.
Collapse
Affiliation(s)
- Meiling Fan
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Qunling Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mengyao Shan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Wenyi Gao, ; Difu Zhu,
| | - Difu Zhu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,*Correspondence: Wenyi Gao, ; Difu Zhu,
| |
Collapse
|
24
|
How ginseng regulates autophagy: Insights from multistep process. Biomed Pharmacother 2023; 158:114139. [PMID: 36580724 DOI: 10.1016/j.biopha.2022.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Although autophagy is a recognized contributor to the pathogenesis of human diseases, chloroquine and hydroxychloroquine are the only two FDA-approved autophagy inhibitors to date. Emerging evidence has revealed the potential therapeutic benefits of various extracts and active compounds isolated from ginseng, especially ginsenosides and their derivatives, by mediating autophagy. Mechanistically, active components from ginseng mediate key regulators in the multistep processes of autophagy, namely, initiation, autophagosome biogenesis and cargo degradation. AIM OF REVIEW To date, a review that systematically described the relationship between ginseng and autophagy is still lacking. Breakthroughs in finding the key players in ginseng-autophagy regulation will be a promising research area, and will provide positive insights into the development of new drugs based on ginseng and autophagy. KEY SCIENTIFIC CONCEPTS OF REVIEW Here, we comprehensively summarized the critical roles of ginseng-regulated autophagy in treating diseases, including cancers, neurological disorders, cardiovascular diseases, inflammation, and neurotoxicity. The dual effects of the autophagy response in certain diseases are worthy of note; thus, we highlight the complex impacts of both ginseng-induced and ginseng-inhibited autophagy. Moreover, autophagy and apoptosis are controlled by multiple common upstream signals, cross-regulate each other and affect certain diseases, especially cancers. Therefore, this review also discusses the cross-signal transduction pathways underlying the molecular mechanisms and interaction between ginseng-regulated autophagy and apoptosis.
Collapse
|
25
|
Hu JN, Wang YM, Zhang H, Li HP, Wang Z, Han M, Ren S, Tang S, Jiang S, Li W. Schisandra B, a representative lignan from Schisandra chinensis, improves cisplatin-induced toxicity: An in vitro study. Phytother Res 2023; 37:658-671. [PMID: 36223243 DOI: 10.1002/ptr.7644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
Schisandrin B (Scheme B) is the most abundant and active lignan monomer isolated from Schisandra chinensis. At present, most reports focus on its cardioprotective and hepatoprotective effects, however, the related reports on gastrointestinal protective effects are still limited. The study aims to evaluate the protective effect of Scheme B on cisplatin-induced rat intestinal crypt epithelial (IEC-6) cell injury and the possible molecular mechanisms. The results showed that Scheme B at 2.5, 5 and 10 μM could inhibit dose-dependently the reduction of cell activity induced by cisplatin exposure at 1 μM, decrease the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while increasing glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) to alleviate oxidative stress injury in IEC-6 cell lines. Meanwhile, Scheme B could relieve cisplatin-induced apoptosis by regulating PI3K/AKT and the downstream caspase signaling pathway. The results from flow cytometry analysis and mitochondrial membrane potential (MMP) staining also demonstrated the anti-apoptosis effect of Scheme B. Furthermore, Scheme B was found to reduce the inflammation associated with cell damage by evaluating the protein expressions of the nuclear factor-kappa B (NF-κB) signaling pathway. Importantly, Wnt/β-catenin, as a functional signaling pathway that drives intestinal self-recovery, was also in part regulated by Scheme B. In conclusion, Scheme B might alleviate cisplatin-induced IEC-6 cell damage by inhibiting oxidative stress, apoptosis, inflammation, and repairing intestinal barrier function. The present research provides a strong evidence that Scheme B may be a useful modulator in cisplatin-induced intestinal toxicity.
Collapse
Affiliation(s)
- Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yi-Ming Wang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Hao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Hui-Ping Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Mei Han
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shan Tang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| |
Collapse
|
26
|
Zhang YZ, Fan ML, Zhang WZ, Liu W, Li HP, Ren S, Jiang S, Song MJ, Wang Z, Li W. Schisandrin ameliorates diabetic nephropathy via regulating of PI3K/Akt/NF-κB-mediated inflammation and TGF-β1-induced fibrosis in HFD/STZ-induced C57BL/6J mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
27
|
Liang Z, Liu K, Li R, Ma B, Zheng W, Yang S, Zhang G, Zhao Y, Chen J, Zhao M. An instant beverage rich in nutrients and secondary metabolites manufactured from stems and leaves of Panax notoginseng. Front Nutr 2022; 9:1058639. [PMID: 36570153 PMCID: PMC9767984 DOI: 10.3389/fnut.2022.1058639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Radix Notoginseng, one of the most famous Chinese traditional medicines, is the dried root of Panax notoginseng (Araliaceae). Stems and leaves of P. notoginseng (SLPN) are rich in secondary metabolites and nutrients, and authorized as a food resource, however, its utilization needs further research. Methods A SLPN-instant beverage was manufactured from SLPN through optimization by response surface design with 21-fold of 48.50% ethanol for 39 h, and this extraction was repeated twice; the extraction solution was concentrated to 1/3 volume using a vacuum rotatory evaporator at 45°C, and then spray dried at 110°C. Nutritional components including 14 amino acids, ten mineral elements, 15 vitamins were detected in the SLPN-instant beverage; forty-three triterpenoid saponins, e.g., ginsenoside La, ginsenoside Rb3, notoginsenoside R1, and two flavonoid glycosides, as well as dencichine were identified by UPLC-MS. Results The extraction rate of SLPN-instant beverage was 37.89 ± 0.02%. The majority nutrients were Gly (2.10 ± 0.63 mg/g), His (1.23 ± 0.07 mg/g), α-VE (18.89 ± 1.87 μg/g), β-VE (17.53 ± 1.98 μg/g), potassium (49.26 ± 2.70 mg/g), calcium (6.73 ± 0.27 mg/g). The total saponin of the SLPN-instant beverage was 403.05 ± 34.98 mg/g, majority was notoginsenoside Fd and with contents of 227 ± 2.02 mg/g. In addition, catechin and γ-aminobutyric acid were detected with levels of 24.57 ± 0.21 mg/g and 7.50 ± 1.85 mg/g, respectively. The SLPN-instant beverage showed good antioxidant activities with half maximal inhibitory concentration (IC50) for scavenging hydroxyl (OH-) radicals, superoxide anion (O2-) radicals, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS+) radicals were 0.1954, 0.2314, 0.4083, and 0.3874 mg/mL, respectively. Conclusion We optimized an analytical method for in depth analysis of the newly authorized food resource SLPN. Together, an instant beverage with antioxidant activity, rich in nutrients and secondary metabolites, was manufactured from SLPN, which may improve the utilization of SLPN.
Collapse
Affiliation(s)
- Zhengwei Liang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China,Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China,The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern, Kunming, Yunnan, China
| | - Kunyi Liu
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China,The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern, Kunming, Yunnan, China,College of Wuliangye Technology and Food Engineering, Yibin Vocational and Technical College, Yibin, Sichuan, China
| | - Ruoyu Li
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China,The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern, Kunming, Yunnan, China,College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Baiping Ma
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei Zheng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shengchao Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China,Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China,The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern, Kunming, Yunnan, China
| | - Guanghui Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China,Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China,The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern, Kunming, Yunnan, China
| | - Yinhe Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junwen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China,Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China,The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern, Kunming, Yunnan, China,*Correspondence: Junwen Chen,
| | - Ming Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China,The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern, Kunming, Yunnan, China,College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China,Ming Zhao,
| |
Collapse
|
28
|
7-hydroxycoumarin modulates Nrf2/HO-1 and microRNA-34a/SIRT1 signaling and prevents cisplatin-induced oxidative stress, inflammation, and kidney injury in rats. Life Sci 2022; 310:121104. [PMID: 36270424 DOI: 10.1016/j.lfs.2022.121104] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022]
Abstract
The kidneys are vulnerable to toxicity and acute kidney injury (AKI) is the main adverse effect associated with the clinical use of the chemotherapeutic agent cisplatin (CIS). Oxidative stress and inflammation are implicated in CIS nephrotoxicity. In this study, the effect of the antioxidant 7-hydroxycoumarin (7-HC) against CIS-induced renal intoxication was evaluated. Rats received 7-HC (25, 50, and 100 mg/kg) orally for 14 days and CIS (7 mg/kg) at day 15, and samples were collected 3 days after CIS administration. CIS increased serum urea, creatinine and kidney injury molecule (Kim)-1, caused multiple histopathological changes and increased renal reactive oxygen species (ROS), malondialdehyde (MDA), nitric oxide (NO), NF-κB p65, iNOS, and pro-inflammatory cytokines. 7-HC dose-dependently prevented kidney dysfunction and tissue injury and suppressed ROS and inflammatory mediators. 7-HC boosted renal antioxidants and Bcl-2 while decreased Bax and caspase-3 expression in CIS-administered rats. In addition, 7-HC downregulated Keap-1 and microRNA-34a and upregulated Nrf2, NQO-1, HO-1, and SIRT1. Molecular docking revealed the binding affinity of 7-HC towards NF-κB, Keap-1, and SIRT1. In Conclusion, 7-HC prevented CIS nephrotoxicity by attenuating tissue injury, oxidative stress, inflammation, and apoptotic cell death. The protective efficacy of 7-HC was associated with inhibiting NF-κB and Keap-1, and modulating Nrf2/HO-1 and microRNA34a/Sirt1 signaling.
Collapse
|
29
|
A Hydrodistillate of Gynostemma pentaphyllum and Damulin B Prevent Cisplatin-Induced Nephrotoxicity In Vitro and In Vivo via Regulation of AMPKα1 Transcription. Nutrients 2022; 14:nu14234997. [PMID: 36501027 PMCID: PMC9737728 DOI: 10.3390/nu14234997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
The clinical application of cisplatin, one of the most effective chemotherapeutic agents used to treat various cancers, has been limited by the risk of adverse effects, notably nephrotoxicity. Despite intensive research for decades, there are no effective approaches for alleviating cisplatin nephrotoxicity. This study aimed to investigate the protective effects and potential mechanisms of a Gynostemma pentaphyllum leaves hydrodistillate (GPHD) and its major component, damulin B, against cisplatin-induced nephrotoxicity in vitro and in vivo. A hydro-distillation method can extract large amounts of components within a short period of time using non-toxic, environmentally friendly solvent. We found that the levels of AMP-activated protein kinase α1 (AMPKα1), reactive oxygen species (ROS), and apoptosis were tightly associated with each other in HEK293 cells treated with cisplatin. We demonstrated that AMPKα1 acted as an anti-oxidant factor and that ROS generated by cisplatin suppressed the expression of AMPKα1 at the transcriptional level, thereby resulting in induction of apoptosis. Treatment with GPHD or damulin B effectively prevented cisplatin-induced apoptosis of HEK293 cells and cisplatin-induced acute kidney injury in mice by suppressing oxidative stress and maintaining AMPKα1 levels. Therefore, our study suggests that GPHD and damulin B may serve as prospective adjuvant agents against cisplatin-induced nephrotoxicity.
Collapse
|
30
|
Hao M, Ding C, Peng X, Chen H, Dong L, Zhang Y, Chen X, Liu W, Luo Y. Ginseng under forest exerts stronger anti-aging effects compared to garden ginseng probably via regulating PI3K/AKT/mTOR pathway, SIRT1/NF-κB pathway and intestinal flora. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154365. [PMID: 35930860 DOI: 10.1016/j.phymed.2022.154365] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ginseng is deemed to be an effective anti-aging therapy. Evidence for differences in representative active ingredients and anti-aging effects between garden ginseng (GG) and ginseng under forest (FG) is insufficient. PURPOSE The study was designed to systematically analyze the differences in the mechanistic protective effects of GG and FG on aging mice based on their compositional differences. METHODS The chemical ingredients in GG and FG were first determined. In vivo, D-galactose-induced aging mice were orally administered GG or FG (400 mg/kg/day) for 6 weeks. Behavioral parameters of mice were measured by the radial 8-arm maze, and the changes in body weight and organ indices were recorded. Blood, brain tissue, and feces were collected for biochemical analysis, histopathological staining, Western blotting, and 16S rDNA intestinal flora sequencing, respectively. RESULTS The absolute contents of total ginsenosides, polyphenols, crude polysaccharides, starch, and protein in GG were 0.71, 0.68, 1.15, 2.27, and 1.08 folds higher than those in FG, respectively; while FG exhibited a higher relative abundance of representative active ingredients (total ginsenosides, polyphenols, crude polysaccharides, and protein) but lower relative content of starch than GG. GG and FG improved hippocampal lesions and poor weight gain, organ indices, and behavioral indices, and prevented excessive oxidative stress and acetylcholinesterase activity in aging mice. What's more, GG and FG treatment ameliorated excessive apoptosis and inflammatory reaction in the aging brain by modulating apoptosis-related proteins, PI3K/AKT/mTOR pathway, and SIRT1/NF-κB pathway. GG and FG also restored the diversity and structure of gut microbiota, up-regulated the relative abundance of beneficial bacteria (e.g., Lactobacillus), and tended to exert key anti-aging effects via the microbiota-gut-brain axis. Notably, in vivo experiments confirmed that FG had a stronger anti-aging activity than GG. CONCLUSION FG exerts a more powerful anti-aging effect than GG by regulating oxidative stress, apoptosis, inflammation, and the microbe-gut-brain axis, possibly relying on the higher relative abundance of representative active ingredients (total ginsenosides, polyphenols, crude polysaccharides, and protein) in FG.
Collapse
Affiliation(s)
- Mingqian Hao
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China; School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China.
| | - Xiaojuan Peng
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Huiying Chen
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ling Dong
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yue Zhang
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xueyan Chen
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Wencong Liu
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China; College of Resources and Environment Sciences, Jilin Agricultural University, Changchun, China.
| | - Yunqing Luo
- College of Resources and Environment Sciences, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
31
|
Ginsenosides Restore Lipid and Redox Homeostasis in Mice with Intrahepatic Cholestasis through SIRT1/AMPK Pathways. Nutrients 2022; 14:nu14193938. [PMID: 36235592 PMCID: PMC9571347 DOI: 10.3390/nu14193938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Intrahepatic cholestasis (IC) occurs when the liver and systemic circulation accumulate bile components, which can then lead to lipid metabolism disorders and oxidative damage. Ginsenosides (GS) are pharmacologically active plant products derived from ginseng that possesses lipid-regulation and antioxidation activities. The purpose of this study was to evaluate the possible protective effects of ginsenosides (GS) on lipid homeostasis disorder and oxidative stress in mice with alpha-naphthylisothiocyanate (ANIT)-induced IC and to investigate the underlying mechanisms. A comprehensive strategy via incorporating pharmacodynamics and molecular biology technology was adopted to investigate the therapeutic mechanisms of GS in ANIT-induced mice liver injury. The effects of GS on cholestasis were studied in mice that had been exposed to ANIT-induced cholestasis. The human HepG2 cell line was then used in vitro to investigate the molecular mechanisms by which GS might improve IC. The gene silencing experiment and liver-specific sirtuin-1 (SIRT1) knockout (SIRT1LKO) mice were used to further elucidate the mechanisms. The general physical indicators were assessed, and biological samples were collected for serum biochemical indexes, lipid metabolism, and oxidative stress-related indicators. Quantitative PCR and H&E staining were used for molecular and pathological analysis. The altered expression levels of key pathway proteins (Sirt1, p-AMPK, Nrf2) were validated by Western blotting. By modulating the AMPK protein expression, GS decreased hepatic lipogenesis, and increased fatty acid β-oxidation and lipoprotein lipolysis, thereby improving lipid homeostasis in IC mice. Furthermore, GS reduced ANIT-triggered oxidative damage by enhancing Nrf2 and its downstream target levels. Notably, the protective results of GS were eliminated by SIRT1 shRNA in vitro and SIRT1LKO mice in vivo. GS can restore the balance of the lipid metabolism and redox in the livers of ANIT-induced IC models via the SIRT1/AMPK signaling pathway, thus exerting a protective effect against ANIT-induced cholestatic liver injury.
Collapse
|
32
|
Wang X, Wang R, Qiao Y, Li Y. Progress on the efficacy and mechanism of action of panax ginseng monomer saponins treat toxicity. Front Pharmacol 2022; 13:1022266. [PMID: 36199681 PMCID: PMC9527293 DOI: 10.3389/fphar.2022.1022266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/05/2022] [Indexed: 12/06/2022] Open
Abstract
As a traditional Chinese herbal medicine, Panax ginseng C. A. Meyer (PG) has preventive and therapeutic effects on various diseases. Ginsenosides are main active ingredients of PG and have good pharmacological effects. Due to the diversity of chemical structures and physicochemical properties of ginsenosides, Currently, related studies on PG monomer saponins are mainly focused on the cardiovascular system, nervous system, antidiabetic, and antitumor. There are few types of research on the toxin treatment, predominantly exogenous toxicity. PG and its monomer ginsenosides are undoubtedly a practical option for treating exogenous toxicity for drug-induced or metal-induced side effects such as nephrotoxicity, hepatotoxicity, cardiotoxicity, metal toxicity and other exogenous toxicity caused by drugs or metals. The mechanism focuses on antioxidant, anti-inflammatory, and anti-apoptotic, as well as modulation of signaling pathways. It summarized the therapeutic effects of ginseng monomer saponins on exogenous toxicity and demonstrated that ginsenosides could be used as potential drugs to treat exogenous toxicity and reduce drug toxicities.
Collapse
Affiliation(s)
- Xinyi Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rongcan Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongfei Qiao
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yali Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- Jilin Provincial Key Laboratory of Traditional Chinese Medicinal Materials Cultivation and Propagation, Changchun, China
- *Correspondence: Yali Li,
| |
Collapse
|
33
|
Feng YL, Yang Y, Chen H. Small molecules as a source for acute kidney injury therapy. Pharmacol Ther 2022; 237:108169. [DOI: 10.1016/j.pharmthera.2022.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
34
|
Xia J, Hu JN, Zhang RB, Liu W, Zhang H, Wang Z, Jiang S, Wang YP, Li W. Icariin exhibits protective effects on cisplatin-induced cardiotoxicity via ROS-mediated oxidative stress injury in vivo and in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154331. [PMID: 35878553 DOI: 10.1016/j.phymed.2022.154331] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/22/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cisplatin-induced cardiotoxicity severely limits its clinical application as an antitumor drug and increases the risk of cardiovascular disease. Icariin (ICA), the main flavonoid isolated from Epimedii Folium, has been demonstrated to have various beneficial effects on cardiovascular disease. However, the protective effect of ICA against cisplatin-induced cardiotoxicity remains unclear. PURPOSE In present study, we explored the protective action of ICA against cisplatin-induced cardiotoxicity and its possible molecular mechanisms in vitro and in vivo. METHODS Mice were intraperitoneally injected with cisplatin 4 mg/kg every other day for 7 times to establish myocardial injury model. ICA (15, 30 mg/kg) was administered to mice by gavage for 21 days. H9c2 cells were treated with ICA (3, 6, 12 µM) in the presence or absence of cisplatin (40 µM), and then cell viability, oxidative stress, apoptosis, and mitochondrial function were evaluated. RESULTS Biochemical index detection and histopathological staining analysis showed that ICA had a good protective effect on cisplatin-induced cardiotoxicity. Cellular experiments showed that ICA inhibited cisplatin-induced oxidative stress in a dose-dependent manner by regulating the levels of glutathione peroxidase (GSH-Px), catalase (CAT), superoxide dismutase (SOD) and malondialdehyde (MDA). ICA could inhibit the expression of NF-κB and the secretion of inflammatory factors, thereby alleviating the inflammatory injury caused by cisplatin. In addition, ICA could alleviate cisplatin-induced myocardial injury by activating SIRT1 and PI3K/Akt signaling pathways and inhibiting MAPKs signaling pathway. CONCLUSION These results suggest that ICA could attenuate cisplatin-induced cardiac injury by inhibiting oxidative stress, inflammation and apoptosis, laying a foundation for ICA to reduce chemotherapy-induced cardiotoxicity in clinical practice.
Collapse
Affiliation(s)
- Juan Xia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ruo-Bing Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Wei Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Hao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China.
| |
Collapse
|
35
|
Synaptic Secretion and Beyond: Targeting Synapse and Neurotransmitters to Treat Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9176923. [PMID: 35923862 PMCID: PMC9343216 DOI: 10.1155/2022/9176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
Abstract
The nervous system is important, because it regulates the physiological function of the body. Neurons are the most basic structural and functional unit of the nervous system. The synapse is an asymmetric structure that is important for neuronal function. The chemical transmission mode of the synapse is realized through neurotransmitters and electrical processes. Based on vesicle transport, the abnormal information transmission process in the synapse can lead to a series of neurorelated diseases. Numerous proteins and complexes that regulate the process of vesicle transport, such as SNARE proteins, Munc18-1, and Synaptotagmin-1, have been identified. Their regulation of synaptic vesicle secretion is complicated and delicate, and their defects can lead to a series of neurodegenerative diseases. This review will discuss the structure and functions of vesicle-based synapses and their roles in neurons. Furthermore, we will analyze neurotransmitter and synaptic functions in neurodegenerative diseases and discuss the potential of using related drugs in their treatment.
Collapse
|
36
|
Fu Z, Wu X, Zheng F, Zhang Y. Activation of the AMPK-ULK1 pathway mediated protective autophagy by sevoflurane anesthesia restrains LPS-induced acute lung injury (ALI). Int Immunopharmacol 2022; 108:108869. [DOI: 10.1016/j.intimp.2022.108869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022]
|
37
|
Zhang JJ, Wang S, Gao XF, Hou YY, Hu JN, Zhang JT, Hou JG, Wang Z, Li X, Li W. Arabinogalactan derived from Larix gmelinii (Rupr.) Kuzen. Alleviates cisplatin-induced acute intestinal injury in vitro and in vivo through IRE1α/JNK axis mediated apoptotic signaling pathways. Int J Biol Macromol 2022; 209:871-884. [PMID: 35439476 DOI: 10.1016/j.ijbiomac.2022.04.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 11/20/2022]
Abstract
Many dietary polysaccharides have been shown to protect against various harmful external stimuli by protecting the integrity of the intestinal barrier. Arabinogalactan (AG) is a high molecular weight polysaccharide composed of arabinose and galactose, which has good immunomodulatory, antioxidant and intestinal conditioning activities. Gastrointestinal injury caused by cisplatin (CP) is an inevitable damage during CP chemotherapy. This research explored the ameliorative effect of AG on cisplatin-induced intestinal toxicity and its possible molecular targets and mechanisms. The results showed that AG (200, 400 mg/kg) could significantly reverse the intestinal histopathological changes and oxidative stress injury caused by CP. Meantime, AG could target the IRE1α/JNK axis to inhibit the expression of apoptosis-related proteins and block the apoptotic cascade, thus reducing intestinal damage. In vitro, AG (10, 20, and 40 μg/mL) could regulate the IRE1α/JNK axis, inhibit apoptosis, and restore the antioxidant defense system damaged by CP to play a protective role in the intestine. In addition, 4-phenylbutyrate (4-PBA), a specific inhibitor of endoplasmic reticulum stress, was used to verify that AG also affected protein expression levels by regulating the IRE1α/JNK pathway-mediated endoplasmic reticulum stress signaling pathway, thereby alleviating CP-induced gastrointestinal dysfunction. Therefore, AG may be a potential drug to prevent CP-induced intestinal damage.
Collapse
Affiliation(s)
- Jun-Jie Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xu-Fei Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yun-Yi Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing-Tian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jin-Gang Hou
- Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
38
|
Xie LY, Yang Z, Wang Y, Hu JN, Lu YW, Zhang H, Jiang S, Li W. 1- O-Actylbritannilactone Ameliorates Alcohol-Induced Hepatotoxicity through Regulation of ROS/Akt/NF-κB-Mediated Apoptosis and Inflammation. ACS OMEGA 2022; 7:18122-18130. [PMID: 35664604 PMCID: PMC9161245 DOI: 10.1021/acsomega.2c01681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/04/2022] [Indexed: 05/20/2023]
Abstract
1-O-Acetylbritannilactone (ABL) is a marker component of Inula britannica L. and is reported to exhibit multiple pharmacological activities, including antiaging, anti-inflammatory, and antidiabetic properties. Although the protective effect of Inula britannica L. on animal models of liver injury has been widely reported, the effect of ABL on alcohol-induced liver damage has not been confirmed. The present study was designed to investigate the protective effect of ABL against alcohol-induced LO2 human normal liver cell injury and to further clarify the underlying mechanism. Our results revealed that ABL at concentrations of 0.5, 1, and 2 μM could remarkably suppress the decreased viability of LO2 cells stimulated by alcohol. In addition, ABL pretreatment improved alcohol-induced oxidative damage by decreasing the level of reactive oxygen species (ROS) and the excessive consumption of glutathione peroxidase (GSH-Px), while increasing the level of catalase (CAT) in LO2 cells. Moreover, Western blotting analysis showed that ABL pretreatment activated protein kinase B (Akt) phosphorylation, increased downstream antiapoptotic protein Bcl-2 expression, and decreased the phosphorylation level of the caspase family including caspase 9 and caspase 3 proteins, thereby attenuating LO2 cell apoptosis. Importantly, we also found that ABL significantly inhibits the activation of the nuclear factor-kappa B (NF-κB) signaling pathway by reducing the secretion of proinflammatory factors including tumor necrosis factor-α (TNF-α) and interleukin (IL-1β). In conclusion, the current research clearly suggests that the protective effect of ABL on alcohol-induced hepatotoxicity may be achieved in part through regulation of the ROS/Akt/NF-κB signaling pathway to inhibit inflammation and apoptosis in LO2 cells. (The article path map has not been seen.).
Collapse
Affiliation(s)
- Li-ya Xie
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Zhen Yang
- Jilin
Academy of Chinese Medicine Sciences, Changchun 130012, China
| | - Ying Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Jun-nan Hu
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Ya-wei Lu
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Hao Zhang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Shuang Jiang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- E-mail: . Phone/Fax: +86-431-84533304
| | - Wei Li
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- E-mail: . Phone/Fax: +86-431-84533304
| |
Collapse
|
39
|
Liu C, Zhou S, Bai W, Shi L, Li X. Protective effect of food derived nutrients on cisplatin nephrotoxicity and its mechanism. Food Funct 2022; 13:4839-4860. [PMID: 35416186 DOI: 10.1039/d1fo04391a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platinum-based metal complexes, especially cisplatin (cis-diamminedichloroplatinum II, CDDP), possess strong anticancer properties and a broad anticancer spectrum. However, the clinical application of CDDP has been limited by its side effects including nephrotoxicity, ototoxicity, and neurotoxicity. Furthermore, the therapeutic effects of current clinical protocols are imperfect. Accordingly, it is essential to identify key targets and effective clinical protocols to restrict CDDP-induced nephrotoxicity. Herein, we first analyzed the relevant molecular mechanisms during the process of CDDP-induced nephrotoxicity including oxidative stress, apoptosis, and inflammation. Evidence from current studies was collected and potential targets and clinical protocols are summarized. The evidence indicates an efficacious role of nutrition-based substances in CDDP-induced renal injury.
Collapse
Affiliation(s)
- Chaofan Liu
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Sajin Zhou
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Weibin Bai
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
40
|
Ning Z, Lan J, Jiang X, Zhong G, Zhang H, Wan F, Wu S, Tang Z, Bilal RM, Hu L, Huang R. Arsenic trioxide-induced autophagy affected the antioxidant capacity and apoptosis rate of chicken hepatocytes. Chem Biol Interact 2022; 354:109821. [PMID: 35051378 DOI: 10.1016/j.cbi.2022.109821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 12/20/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Arsenic has recently received widespread attention due to its high toxicological effects on multiple animals; however, the mechanism underlying this toxicity is unclear. We investigated the damaging effects of arsenic trioxide (ATO) on hepatocytes and the effects of regulating autophagy on the hepatocyte damage induced by ATO exposure. First, we investigated the effects of ATO exposure (0, 0.6, 1.2, 2.4, and 4.8 μM) on the biochemical function and autophagy of chicken hepatocytes. The findings showed that as the concentration of ATO increased, the lactate dehydrogenase (LDH) concentration increased, more autophagosomes were observed via transmission electron microscopy (TEM), and the gene and protein expression levels of P62, LC3Ⅱ, and Beclin1 increased. Adding N-acetyl-l-cystine (NAC, 1 mM) attenuated autophagy and the hepatocyte damage induced by ATO. Then, we used rapamycin (Rapa) and 3-methylpurine (3-MA) to regulate the autophagy induced by exposure to 4.8 μM ATO and observed changes in the antioxidant capacity and apoptosis rate of chicken hepatocytes. Induction of autophagy reduced ATO-induced hepatocyte apoptosis but caused no significant effect on oxidative stress in chicken hepatocytes. Inhibition of autophagy exacerbated ATO-induced hepatocyte oxidative stress and apoptosis. These findings demonstrate that autophagy plays an important role in ATO-induced cell damage.
Collapse
Affiliation(s)
- Zhijun Ning
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Juan Lan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Xuanxuan Jiang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Fang Wan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaofeng Wu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Rana Muhammad Bilal
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Lianmei Hu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
41
|
Natural products: potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol Sin 2021; 42:1951-1969. [PMID: 33750909 PMCID: PMC8633358 DOI: 10.1038/s41401-021-00620-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is a clinically advanced and highly effective anticancer drug used in the treatment of a wide variety of malignancies, such as head and neck, lung, testis, ovary, breast cancer, etc. However, it has only a limited use in clinical practice due to its severe adverse effects, particularly nephrotoxicity; 20%–35% of patients develop acute kidney injury (AKI) after cisplatin administration. The nephrotoxic effect of cisplatin is cumulative and dose dependent and often necessitates dose reduction or withdrawal. Recurrent episodes of AKI result in impaired renal tubular function and acute renal failure, chronic kidney disease, uremia, and hypertensive nephropathy. The pathophysiology of cisplatin-induced AKI involves proximal tubular injury, apoptosis, oxidative stress, inflammation, and vascular injury in the kidneys. At present, there are no effective drugs or methods for cisplatin-induced kidney injury. Recent in vitro and in vivo studies show that numerous natural products (flavonoids, saponins, alkaloids, polysaccharide, phenylpropanoids, etc.) have specific antioxidant, anti-inflammatory, and anti-apoptotic properties that regulate the pathways associated with cisplatin-induced kidney damage. In this review we describe the molecular mechanisms of cisplatin-induced nephrotoxicity and summarize recent findings in the field of natural products that undermine these mechanisms to protect against cisplatin-induced kidney damage and provide potential strategies for AKI treatment.
Collapse
|
42
|
Xie X, Ding F, Xiao H. Knockdown of hsa_circ_0000729 Inhibits the Tumorigenesis of Non-Small Cell Lung Cancer Through Mediation of miR-1281/FOXO3 Axis. Cancer Manag Res 2021; 13:8445-8455. [PMID: 34785952 PMCID: PMC8590964 DOI: 10.2147/cmar.s318980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a subtype of lung cancer which seriously threatens the health of people. Circular RNAs (CircRNAs) are endogenous RNAs which have stable closed structure; they are known to be involved in tumorigenesis of NSCLC. Meanwhile, hsa_circ_0000729 was reported to be upregulated in NSCLC. Nevertheless, the function of hsa_circ_0000729 in NSCLC remains unclear. Methods Western blot and RT-qPCR were performed to investigate protein and mRNA levels, respectively. CCK-8 assay was performed to test the cell viability and cell death was investigated by flow cytometry. NSCLC cell pyroptosis was observed by electron microscope. In addition, the migration and invasion of NSCLC cells were detected by wound healing and transwell assay. The relation among hsa_circ_0000729, miR-1281 and FOXO3 was explored by dual luciferase reporter assay and RNA pull-down. Results Hsa_circ_0000729 was found to be upregulated in NSCLC cells, and hsa_circ_0000729 knockdown obviously suppressed the proliferation of NSCLC cells through inducing pyroptosis. In addition, silencing of hsa_circ_0000729 notably inhibited the invasion and migration of NSCLC cells. Meanwhile, hsa_circ_0000729 could bind with miR-1281, and FOXO3 was directly targeted by miR-1281. Moreover, the anti-tumor effect of hsa_circ_0000729 siRNAs on NSCLC was markedly reversed by miR-1281 antagomir. Furthermore, silencing of hsa_circ_0000729 inhibited the tumor growth of NSCLC in vivo. Conclusion Knockdown of hsa_circ_0000729 inhibits the tumorigenesis of NSCLC through mediation of miR-1281/FOXO3 axis. Thus, hsa_circ_0000729 might be served as a crucial mediator in NSCLC.
Collapse
Affiliation(s)
- Xiao Xie
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| |
Collapse
|
43
|
Hu X, Ma Z, Wen L, Li S, Dong Z. Autophagy in Cisplatin Nephrotoxicity during Cancer Therapy. Cancers (Basel) 2021; 13:5618. [PMID: 34830772 PMCID: PMC8616020 DOI: 10.3390/cancers13225618] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is a widely used chemotherapeutic agent but its clinical use is often limited by nephrotoxicity. Autophagy is a lysosomal degradation pathway that removes protein aggregates and damaged or dysfunctional cellular organelles for maintaining cell homeostasis. Upon cisplatin exposure, autophagy is rapidly activated in renal tubule cells to protect against acute cisplatin nephrotoxicity. Mechanistically, the protective effect is mainly related to the clearance of damaged mitochondria via mitophagy. The role and regulation of autophagy in chronic kidney problems after cisplatin treatment are currently unclear, despite the significance of research in this area. In cancers, autophagy may prevent tumorigenesis, but autophagy may reduce the efficacy of chemotherapy by protecting cancer cells. Future research should focus on developing drugs that enhance the anti-tumor effects of cisplatin while protecting kidneys during cisplatin chemotherapy.
Collapse
Affiliation(s)
- Xiaoru Hu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Zhengwei Ma
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Lu Wen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Siyao Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Zheng Dong
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (X.H.); (L.W.); (S.L.)
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| |
Collapse
|
44
|
Wan Y, Wang J, Xu JF, Tang F, Chen L, Tan YZ, Rao CL, Ao H, Peng C. Panax ginseng and its ginsenosides: potential candidates for the prevention and treatment of chemotherapy-induced side effects. J Ginseng Res 2021; 45:617-630. [PMID: 34764717 PMCID: PMC8569258 DOI: 10.1016/j.jgr.2021.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy-induced side effects affect the quality of life and efficacy of treatment of cancer patients. Current approaches for treating the side effects of chemotherapy are poorly effective and may cause numerous harmful side effects. Therefore, developing new and effective drugs derived from natural non-toxic compounds for the treatment of chemotherapy-induced side effects is necessary. Experiments in vivo and in vitro indicate that Panax ginseng (PG) and its ginsenosides are undoubtedly non-toxic and effective options for the treatment of chemotherapy-induced side effects, such as nephrotoxicity, hepatotoxicity, cardiotoxicity, immunotoxicity, and hematopoietic inhibition. The mechanism focus on anti-oxidation, anti-inflammation, and anti-apoptosis, as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), P62/keap1/Nrf2, c-jun N-terminal kinase (JNK)/P53/caspase 3, mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinases (ERK), AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinase 4 (MKK4)/JNK, and phosphatidylinositol 3-kinase (PI3K)/AKT. Since a systemic review of the effect and mechanism of PG and its ginsenosides on chemotherapy-induced side effects has not yet been published, we provide a comprehensive summarization with this aim and shed light on the future research of PG.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- ADM, Adriamycin
- ALT, alanine aminotransferase
- AMO, Atractylodes macrocephala volatile oil
- AMPK, AMP-activated protein kinase
- ARE, antioxidant response element
- AST, aspartate aminotransferase
- BMNC, bone marrow nucleated cells
- CIA, chemotherapy-induced hair loss
- CK, compound K
- CP, cisplatin
- CY, cyclophosphamide
- CYP2E1, Cytochrome P450 E1
- Chemotherapy
- DAC, doses of docetaxel, doxorubicin as well as cyclophosphamide
- ERG, enzyme-treated eRG
- ERK, extracellular signal-regulated kinases
- FBG, fermented black ginseng
- FRG, probiotic-fermented eRG
- FRGE, fermented red ginseng extract
- GM-CSF, granulocyte macrophage colony-stimulating factor
- Ginsenosides
- HEI-OC1, House Ear Institute-Organ of Corti 1
- HO-1, heme oxygenase-1
- HSPCS, haematopoietic stem and progenitor cells
- IL, interleukin
- JNK, c-jun N-terminal kinase
- KG-KH, the mixture of ginsenosides Rk3 and Rh4
- LLC-PK1, porcine renal proximal epithelial tubular
- LSK, Lin−Sca-1+c-kit+
- MAPK, mitogen-activated protein kinase
- MDA, malonaldehyde
- MEK, mitogen activated protein kinase
- MKK4, mitogen activated protein kinase kinase 4
- Mechanism
- NF-κB, nuclear factor-kappa B p65
- NQO, NAD (P) H quinone oxidoreductase
- Nrf2, nuclear factor erythroid related factor 2
- PG
- PG, Panax ginseng
- PGFR, PG flower
- PGLF, PG leaf
- PGRT, PG root
- PGS, PG total saponins
- PGSD, PG seeds
- PGSM, PG stem
- PI3K, phosphatidylinositol 3-kinase
- PPD, protopanaxadiol
- PPT, protopanaxatriol
- Pharmacological effects
- RG, red ginseng
- RGE, red ginseng extract
- ROS, reactive oxygen species
- SREBP-1, sterol regulatory element binding protein 1
- Side effects
- TNF-α, tumor necrosis factor-α
- eRG, 50% ethanol-extracted RG
- mTOR, mammalian target of rapamycin
- wRG, water-extracted RG
Collapse
Affiliation(s)
- Yan Wan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-feng Xu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-zhu Tan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao-long Rao
- College of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
45
|
Nephrotoxicity induced by cisplatin is primarily due to the activation of the 5-hydroxytryptamine degradation system in proximal renal tubules. Chem Biol Interact 2021; 349:109662. [PMID: 34560070 DOI: 10.1016/j.cbi.2021.109662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/16/2021] [Accepted: 09/16/2021] [Indexed: 01/07/2023]
Abstract
As a widely used anticancer drug in the clinic, cisplatin has obvious side effects, especially nephrotoxicity. Previous studies have suggested that the accumulation of intracellular reactive oxygen species (ROS) is a hallmark of cisplatin-induced acute kidney injury. This study aimed to investigate the relationship between ROS accumulation induced by cisplatin and 5-HT degradation. In vivo, by HE and TUNEL staining, we found that cisplatin-induced renal lesions and apoptotic regions, which were located in proximal tubular epithelial cells, were also the regions in which tryptophan hydroxylase 1 (Tph1), aromatic l-amino acid decarboxylase (AADC), 5-HT2A receptor (5-HT2AR) and monoamine oxidase A (MAO-A) were overexpressed, as determined by immunohistochemistry. Notably, the 5-HT2AR antagonist sarpogrelate hydrochloride (SH) and the AADC inhibitor carbidopa (CDP) significantly attenuated cisplatin-induced increases in serum creatinine and blood urea nitrogen levels, renal ROS levels, oxidative stress (SOD activity and MDA), proinflammatory cytokine levels (NF-κB, TNF-α and IL-1β), proapoptotic factor levels (Bax, Bcl-2, C-caspase 3 and C-caspase 9) and the phosphorylation of p38 and STAT3, as well as renal lesions and apoptosis. The combination of SH and CDP could almost abolish the effects of cisplatin challenge. In vitro, the effects of cisplatin challenge and the inhibitory effects of SH and CDP were also observed in HK-2 cells. Additionally, similar to the combination of SH and CDP, the MAO-A inhibitor clorgyline could also abolish the effects of cisplatin challenge. More importantly, by western blotting, we detected that the upregulation of Tph1, AADC and MAO-A expression induced by cisplatin both in vivo and in vitro could be obviously suppressed by SH to decrease 5-HT synthesis and mitochondrial 5-HT degradation. Altogether, these findings suggested that cisplatin-induced nephrotoxicity is due to the activation of the 5-HT degradation system in proximal tubular epithelial cells, including 5-HT2AR and 5-HT synthesis and degradation. 5-HT2AR plays a role by mediating the expression of MAO-A and the 5-HT synthases Tph1 and AADC.
Collapse
|
46
|
Up-regulation of SIRT1 induced by 17beta-estradiol promotes autophagy and inhibits apoptosis in osteoblasts. Aging (Albany NY) 2021; 13:23652-23671. [PMID: 34711685 PMCID: PMC8580331 DOI: 10.18632/aging.203639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022]
Abstract
Osteoporosis is a common systemic skeletal metabolism disorder resulting in bone fragility and increased fracture risk. Silent information regulator factor 2 homolog 1 (SIRT1) is crucial in the regulation of several biological processes, including bone metabolism, autophagy, apoptosis, and aging. This study aimed to assess whether the up-regulation of SIRT1 induced by 17beta-estradiol (17β-E2) could promote autophagy and inhibit apoptosis in osteoblasts via the AMPK-mTOR and FOXO3a pathways, respectively. The study found that 17β-E2 (10-6 M) administration induced the up-regulation of SIRT1 in osteoblasts. Up-regulation of SIRT1 induced by 17β-E2 increased the expression level of LC3, Beclin-1, Bcl-2, p-AMPK, FOXO3a but decreased caspase-3 and p-mTOR expression, and then promoted autophagy and inhibited apoptosis. More autophagosomes were observed under a transmission electron microscope (TEM) in 17β-E2 and SRT1720 (a selective SIRT1 activator) co-treated group. When Ex527 (a SIRT1-specific inhibitor) was pretreated, the reversed changes were observed. Taken together, our findings demonstrated that the up-regulation of SIRT1 induced by 17β-E2 could promote autophagy via the AMPK-mTOR pathway and inhibit apoptosis via the FOXO3a activation in osteoblasts, and SIRT1 might become a more significant target in osteoporosis treatment.
Collapse
|
47
|
Zhou S, Zhou Y, Yu J, Jiang L, Xiang Y, Wang J, Du Y, Cui X, Ge F. A neutral polysaccharide from Ophiocordyceps lanpingensis restrains cisplatin-induced nephrotoxicity. Food Sci Nutr 2021; 9:3602-3616. [PMID: 34262721 PMCID: PMC8269674 DOI: 10.1002/fsn3.2317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/18/2021] [Indexed: 12/11/2022] Open
Abstract
Ophiocordyceps lanpingensis is an edible mushroom distributed over the south-eastern part of the Tibet Plateau, which is also recognized as an effective ethnomedicine to alleviate diseases. This study explored the effects of a kind of Ophiocordyceps lanpingensis neutral polysaccharide (ONP) on RAW264.7 macrophages and cisplatin-induced nephrotoxicity. The results showed that ONP relieved the inflammatory response of RAW264.7 macrophages by increasing the expression level of anti-inflammatory factor IL-10. Furthermore, ONP treatment significantly prolonged the survival of the mice treated by cisplatin through decelerating pathological progress and alleviating damaged functions of the kidneys. Compared with the cisplatin group, ONP reduced the oxidative stress of the renal cells and the expression levels of pro-inflammatory factors. Apoptosis of renal cells was also weakened in the ONP treatment group. These findings indicated that ONP alleviated cisplatin nephrotoxicity mainly by inhibiting oxidative stress, inflammation, and apoptosis in the kidneys, underscoring the potential of ONP supplementation to alleviate the side effects of cisplatin chemotherapy.
Collapse
Affiliation(s)
- Shubo Zhou
- Yunnan Provincial Key Laboratory of Panax notoginsengFaculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
| | - Yongchun Zhou
- Yunnan Cancer Center Molecular Diagnostics CenterYunnan Cancer Hospital & the Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Jiaji Yu
- Department of Microbiology, Immunology & Molecular GeneticsUniversity of CaliforniaLos AngelesCAUSA
| | - Li Jiang
- Yunnan Provincial Key Laboratory of Panax notoginsengFaculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
| | - Yingying Xiang
- Department of StomatologyYan’an Hospital Affiliated to Kunming Medical UniversityKunmingChina
| | - Juan Wang
- Yunnan Provincial Key Laboratory of Panax notoginsengFaculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
| | - Yaxi Du
- Yunnan Cancer Center Molecular Diagnostics CenterYunnan Cancer Hospital & the Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Xiuming Cui
- Yunnan Provincial Key Laboratory of Panax notoginsengFaculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
| | - Feng Ge
- Yunnan Provincial Key Laboratory of Panax notoginsengFaculty of Life Science and TechnologyKunming University of Science and TechnologyKunmingChina
| |
Collapse
|
48
|
Li C, Li Z, Song L, Meng L, Xu G, Zhang H, Hu J, Li F, Liu C. GEFT Inhibits Autophagy and Apoptosis in Rhabdomyosarcoma via Activation of the Rac1/Cdc42-mTOR Signaling Pathway. Front Oncol 2021; 11:656608. [PMID: 34221974 PMCID: PMC8252888 DOI: 10.3389/fonc.2021.656608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy and apoptosis are dynamic processes that determine the fate of cells, and regulating these processes can treat cancer. GEFT is highly expressed in rhabdomyosarcoma (RMS), which accelerates the tumorigenicity and metastasis of RMS by activating Rac1/Cdc42 signaling, but the regulatory mechanisms of autophagy and apoptosis are unclear. In our study, we found that the RMS tissues had high Rac1, Cdc42, mTOR, and Bcl-2 expression levels and low Beclin1, LC3, and Bax expression levels compared with the normal striated muscle tissues (P < 0.05). In addition, multivariate analysis has proven that Rac1 is an independent prognostic factor (P < 0.05), and the high expression level of the Beclin1 protein was closely associated with the tumor diameter of the RMS patients (P = 0.044), whereas the high expression level of the LC3 protein was associated with the clinical stage of the RMS patients (P = 0.027). Furthermore, GEFT overexpression could inhibit autophagy and apoptosis in RMS. A Rac1/Cdc42 inhibitor was added, and the inhibition of autophagy and apoptosis decreased. Rac1 and Cdc42 could regulate mTOR to inhibit autophagy and apoptosis in RMS. Overall, these studies demonstrated that the GEFT–Rac1/Cdc42–mTOR pathway can inhibit autophagy and apoptosis in RMS and provide evidence for innovative treatments.
Collapse
Affiliation(s)
- Chunsen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Zhenzhen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Lingxie Song
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lian Meng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Guixuan Xu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Haijun Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Jianming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
49
|
Zhang Y, Ji H, Qiao O, Li Z, Pecoraro L, Zhang X, Han X, Wang W, Zhang X, Man S, Wang J, Li X, Liu C, Huang L, Gao W. Nanoparticle conjugation of ginsenoside Rb3 inhibits myocardial fibrosis by regulating PPARα pathway. Biomed Pharmacother 2021; 139:111630. [PMID: 33945912 DOI: 10.1016/j.biopha.2021.111630] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cardiac fibrosis occurs in ischemic and non-ischemic heart failure, hereditary cardiomyopathy, diabetes and aging. Energy metabolism, which serves a crucial function in the course and treatment of cardiovascular diseases, might have therapeutic benefits for myocardial fibrosis. Ginsenoside Rb3 (G-Rb3) is one of the main components of Ginseng and exhibits poor oral bioavailability but still exerts regulate energy metabolism effects in some diseases. Therefore, the study investigated the effect of chitosan (CS) @ sodium tripolyphosphate (TPP) nanoparticles conjugation with ginsenoside Rb3 (NpRb3) on myocardial fibrosis and studied its possible mechanisms. The results showed that NpRb3 directly participates in the remodeling of myocardial energy metabolism and the regulation of perixisome proliferation-activated receptor alpha (PPARα), thereby improving the degree of myocardial fibrosis. The study also verifies the protective effect of NpRb3 on energy metabolism and mitochondrial function by targeting the PPARα pathway. Therefore, the prepared nanodrug carrier may be a potential solution for the delivery of G-Rb3, which is a promising platform for oral treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Yi Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Haixia Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Ou Qiao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Zhi Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Xueqian Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Xiaoying Han
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Wenzhe Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Xinyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Shuli Man
- Tianjin University of Science and Technology, Tianjin, PR China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Changxiao Liu
- Tianjin Pharmaceutical Research Institute, Tianjin, PR China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, PR China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China.
| |
Collapse
|
50
|
Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:137-160. [PMID: 33861443 DOI: 10.1007/978-3-030-64872-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Programmed cell death processes such as apoptosis and autophagy strongly contribute to the onset and progression of cancer. Along with these lines, modulation of cell death mechanisms to combat cancer cells and elimination of resistance to apoptosis is of great interest. It appears that modulation of autophagy and endoplasmic reticulum (ER) stress with specific agents would be beneficial in the treatment of several disorders. Interestingly, it has been suggested that herbal natural products may be suitable candidates for the modulation of these processes due to few side effects and significant therapeutic potential. Ginsenosides are derivatives of ginseng and exert modulatory effects on the molecular mechanisms associated with autophagy and ER stress. Ginsenosides act as smart phytochemicals that confer their effects by up-regulating ATG proteins and converting LC3-I to -II, which results in maturation of autophagosomes. Not only do ginsenosides promote autophagy but they also possess protective and therapeutic properties due to their capacity to modulate ER stress and up- and down-regulate and/or dephosphorylate UPR transducers such as IRE1, PERK, and ATF6. Thus, it would appear that ginsenosides are promising agents to potentially restore tissue malfunction and possibly eliminate cancer.
Collapse
|