1
|
Kim SQ, Spann RA, Khan MSH, Berthoud HR, Münzberg H, Albaugh VL, He Y, McDougal DH, Soto P, Yu S, Morrison CD. FGF21 as a mediator of adaptive changes in food intake and macronutrient preference in response to protein restriction. Neuropharmacology 2024; 255:110010. [PMID: 38797244 PMCID: PMC11156534 DOI: 10.1016/j.neuropharm.2024.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Free-feeding animals navigate complex nutritional landscapes in which food availability, cost, and nutritional value can vary markedly. Animals have thus developed neural mechanisms that enable the detection of nutrient restriction, and these mechanisms engage adaptive physiological and behavioral responses that limit or reverse this nutrient restriction. This review focuses specifically on dietary protein as an essential and independently defended nutrient. Adequate protein intake is required for life, and ample evidence exists to support an active defense of protein that involves behavioral changes in food intake, food preference, and food motivation, likely mediated by neural changes that increase the reward value of protein foods. Available evidence also suggests that the circulating hormone fibroblast growth factor 21 (FGF21) acts in the brain to coordinate these adaptive changes in food intake, making it a unique endocrine signal that drives changes in macronutrient preference in the context of protein restriction. This article is part of the Special Issue on "Food intake and feeding states".
Collapse
Affiliation(s)
- Sora Q Kim
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Redin A Spann
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | | | - Heike Münzberg
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Vance L Albaugh
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA; Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - David H McDougal
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Paul Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA, 70810, USA
| | - Sangho Yu
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | |
Collapse
|
2
|
Ross RC, He Y, Townsend RL, Schauer PR, Berthoud HR, Morrison CD, Albaugh VL. The Vagus Nerve Mediates Gut-Brain Response to Duodenal Nutrient Administration. Am Surg 2023:31348231161680. [PMID: 36867071 DOI: 10.1177/00031348231161680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND Obesity contributes significant disease burden worldwide, including diabetes, cardiovascular disease, and cancer. While bariatric surgery is the most effective and durable obesity treatment, the mechanisms underlying its effects remain unknown. Although neuro-hormonal mechanisms have been suspected to mediate at least some of the gut-brain axis changes following bariatric surgery, studies examining the intestine and its regionally specific post-gastric alterations to these signals remain unclear. MATERIALS AND METHODS Vagus nerve recording was performed following the implantation of duodenal feeding tubes in mice. Testing conditions and measurements were made under anesthesia during baseline, nutrient or vehicle solution delivery, and post-delivery. Solutions tested included water, glucose, glucose with an inhibitor of glucose absorption (phlorizin), and a hydrolyzed protein solution. RESULTS Vagus nerve signaling was detectable from the duodenum and exhibited stable baseline activity without responding to osmotic pressure gradients. Duodenal-delivered glucose and protein robustly increased vagus nerve signaling, but increased signaling was abolished during the co-administration of glucose and phlorizin. DISCUSSION Gut-brain communication via the vagus nerve emanating from the duodenum is nutrient sensitive and easily measurable in mice. Examination of these signaling pathways may help elucidate how the nutrient signals from the intestine are altered when applied to obesity and bariatric surgery mouse models. Future studies will address quantifying the changes in neuroendocrine nutrient signals in health and obesity, with specific emphasis on identifying the changes associated with bariatric surgery and other gastrointestinal surgery.
Collapse
Affiliation(s)
- Robert C Ross
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Yanlin He
- Neurobiology of Nutrition & Metabolism Department, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - R Leigh Townsend
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Philip R Schauer
- Metamor Institute, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Hans-Rudolph Berthoud
- Neurobiology of Nutrition & Metabolism Department, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Vance L Albaugh
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA.,Metamor Institute, 14464Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
3
|
Forstenpointner J, Maallo AMS, Elman I, Holmes S, Freeman R, Baron R, Borsook D. The Solitary Nucleus Connectivity to Key Autonomic Regions in Humans MRI and Literature based Considerations. Eur J Neurosci 2022; 56:3938-3966. [PMID: 35545280 DOI: 10.1111/ejn.15691] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
The nucleus tractus solitarius (NTS), is a key brainstem structure relaying interoceptive peripheral information to the interrelated brain centers for eliciting rapid autonomic responses and for shaping longer-term neuroendocrine and motor patterns. Structural and functional NTS' connectivity has been extensively investigated in laboratory animals. But there is limited information about NTS' connectome in humans. Using MRI, we examined diffusion and resting state data from 20 healthy participants in the Human Connectome Project. The regions within the brainstem (n=8), subcortical (n=6), cerebellar (n=2) and cortical (n=5) parts of the brain were selected via a systematic review of the literature and their white matter NTS connections were evaluated via probabilistic tractography along with functional and directional (i.e., Granger-causality) analyses. The underlying study confirms previous results from animal models and provides novel aspects on NTS integration in humans. Two key findings can be summarized: (i) the NTS predominantly processes afferent input and (ii) a lateralization towards a predominantly left-sided NTS processing. Our results lay the foundations for future investigations into the NTS' tripartite role comprised of interoreceptors' input integration, the resultant neurochemical outflow and cognitive/affective processing. The implications of these data add to the understanding of NTS' role in specific aspects of autonomic functions.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anne Margarette S Maallo
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Igor Elman
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Scott Holmes
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.,Department of Radiology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Colon-Perez L, Montesinos J, Monsivais M. The Future of Neuroimaging and Gut-Brain Axis Research for Substance Use Disorders. Brain Res 2022; 1781:147835. [DOI: 10.1016/j.brainres.2022.147835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
|
5
|
Khan MS, Spann RA, Münzberg H, Yu S, Albaugh VL, He Y, Berthoud HR, Morrison CD. Protein Appetite at the Interface between Nutrient Sensing and Physiological Homeostasis. Nutrients 2021; 13:4103. [PMID: 34836357 PMCID: PMC8620426 DOI: 10.3390/nu13114103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Feeding behavior is guided by multiple competing physiological needs, as animals must sense their internal nutritional state and then identify and consume foods that meet nutritional needs. Dietary protein intake is necessary to provide essential amino acids and represents a specific, distinct nutritional need. Consistent with this importance, there is a relatively strong body of literature indicating that protein intake is defended, such that animals sense the restriction of protein and adaptively alter feeding behavior to increase protein intake. Here, we argue that this matching of food consumption with physiological need requires at least two concurrent mechanisms: the first being the detection of internal nutritional need (a protein need state) and the second being the discrimination between foods with differing nutritional compositions. In this review, we outline various mechanisms that could mediate the sensing of need state and the discrimination between protein-rich and protein-poor foods. Finally, we briefly describe how the interaction of these mechanisms might allow an animal to self-select between a complex array of foods to meet nutritional needs and adaptively respond to changes in either the external environment or internal physiological state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Christopher D. Morrison
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.S.K.); (R.A.S.); (H.M.); (S.Y.); (V.L.A.); (Y.H.); (H.-R.B.)
| |
Collapse
|
6
|
Berthoud HR, Morrison CD, Ackroff K, Sclafani A. Learning of food preferences: mechanisms and implications for obesity & metabolic diseases. Int J Obes (Lond) 2021; 45:2156-2168. [PMID: 34230576 PMCID: PMC8455326 DOI: 10.1038/s41366-021-00894-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Omnivores, including rodents and humans, compose their diets from a wide variety of potential foods. Beyond the guidance of a few basic orosensory biases such as attraction to sweet and avoidance of bitter, they have limited innate dietary knowledge and must learn to prefer foods based on their flavors and postoral effects. This review focuses on postoral nutrient sensing and signaling as an essential part of the reward system that shapes preferences for the associated flavors of foods. We discuss the extensive array of sensors in the gastrointestinal system and the vagal pathways conveying information about ingested nutrients to the brain. Earlier studies of vagal contributions were limited by nonselective methods that could not easily distinguish the contributions of subsets of vagal afferents. Recent advances in technique have generated substantial new details on sugar- and fat-responsive signaling pathways. We explain methods for conditioning flavor preferences and their use in evaluating gut-brain communication. The SGLT1 intestinal sugar sensor is important in sugar conditioning; the critical sensors for fat are less certain, though GPR40 and 120 fatty acid sensors have been implicated. Ongoing work points to particular vagal pathways to brain reward areas. An implication for obesity treatment is that bariatric surgery may alter vagal function.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Christopher D Morrison
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Karen Ackroff
- Psychology Department, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - Anthony Sclafani
- Psychology Department, Brooklyn College of the City University of New York, Brooklyn, NY, USA.
| |
Collapse
|
7
|
Gutierrez R, Fonseca E, Simon SA. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell Mol Life Sci 2020; 77:3469-3502. [PMID: 32006052 PMCID: PMC11105013 DOI: 10.1007/s00018-020-03458-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Throughout the animal kingdom sucrose is one of the most palatable and preferred tastants. From an evolutionary perspective, this is not surprising as it is a primary source of energy. However, its overconsumption can result in obesity and an associated cornucopia of maladies, including type 2 diabetes and cardiovascular disease. Here we describe three physiological levels of processing sucrose that are involved in the decision to ingest it: the tongue, gut, and brain. The first section describes the peripheral cellular and molecular mechanisms of sweet taste identification that project to higher brain centers. We argue that stimulation of the tongue with sucrose triggers the formation of three distinct pathways that convey sensory attributes about its quality, palatability, and intensity that results in a perception of sweet taste. We also discuss the coding of sucrose throughout the gustatory pathway. The second section reviews how sucrose, and other palatable foods, interact with the gut-brain axis either through the hepatoportal system and/or vagal pathways in a manner that encodes both the rewarding and of nutritional value of foods. The third section reviews the homeostatic, hedonic, and aversive brain circuits involved in the control of food intake. Finally, we discuss evidence that overconsumption of sugars (or high fat diets) blunts taste perception, the post-ingestive nutritional reward value, and the circuits that control feeding in a manner that can lead to the development of obesity.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico.
| | - Esmeralda Fonseca
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
8
|
Sclafani A, Ackroff K. Capsaicin-induced visceral deafferentation does not attenuate flavor conditioning by intragastric fat infusions in mice. Physiol Behav 2019; 208:112586. [PMID: 31228498 PMCID: PMC6620128 DOI: 10.1016/j.physbeh.2019.112586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 11/26/2022]
Abstract
The postoral actions of sugar and fat can rapidly stimulate the intake of and preference for flavors associated with these nutrients via a process known as appetition. Prior findings revealed that postoral glucose appetition is not attenuated following capsaicin-induced visceral deafferentation. The present experiment determined if capsaicin treatment altered fat appetition in C57BL/6 mice. Following capsaicin (Cap) or control (Con) treatment, mice were fitted with chronic intragastric (IG) catheters. They were then given 1-h sessions with a flavored saccharin solution (CS-) paired with IG water infusion or a different flavor (CS+) paired with IG 6.4% fat infusion. IG fat stimulated CS+ intakes in both Cap and Con mice, and the groups displayed similar preferences for CS+ over CS- in two-choice tests. These results confirm prior reports of normal fat conditioning in rats exposed to capsaicin or vagal deafferentation surgery. In contrast, other recent findings indicate that total or selective vagotomy alters the preference of mice for dilute vs. concentrated fat sources.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA.
| | - Karen Ackroff
- Department of Psychology, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA
| |
Collapse
|
9
|
Van Diest I. Interoception, conditioning, and fear: The panic threesome. Psychophysiology 2019; 56:e13421. [DOI: 10.1111/psyp.13421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Ilse Van Diest
- Health, Behavior & Psychopathology, Faculty of Psychology & Educational Sciences; University of Leuven; Leuven Belgium
| |
Collapse
|
10
|
Qu T, Han W, Niu J, Tong J, de Araujo IE. On the roles of the Duodenum and the Vagus nerve in learned nutrient preferences. Appetite 2019; 139:145-151. [PMID: 31029689 DOI: 10.1016/j.appet.2019.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND AIM In most species, including humans, food preference is primarily controlled by nutrient value. However, the gut-brain pathways involved in preference learning remain elusive. The aim of the present study, performed in C57BL6/J mice, was to characterize the roles in nutrient preference of two critical elements of gut-brain pathways, i.e. the duodenum and vagal gut innervation. METHODS Adult wild-type C57BL6/J mice from a normal-weight cohort sustained one of the following three procedures: duodenal-jejunal bypass intestinal rerouting (DJB), total subdiaphragmatic vagotomy (SDV), or sham surgery. Mice were assessed in short-term two-bottle preference tests before and after 24 h s exposures to solutions containing one of glutamate, lipids, sodium, or glucose. RESULTS DJB and SDV interfered in preference formation in a nutrient-specific manner: whereas normal preference learning for lipids and glutamate was disrupted by both DJB and SDV, these interventions did not alter the formation of preferences for glucose. Interestingly, sodium preferences were abrogated by DJB but not by SDV. CONCLUSIONS Different macronutrients make use of distinct gut-brain pathways to influence food preferences, thereby mirroring nutrient-specific processes of food digestion. Specifically, whereas both vagal innervation and duodenal sensing appear critical for generating responses to fats and protein, glucose preferences recruit post-duodenal, vagal-independent pathways in pair with the control of glucose homeostasis. Overall, our data suggest that the physiological processes involved in digesting and absorbing fats, amino acids, and glucose overlap with those mediating learned preferences for each of these nutrients.
Collapse
Affiliation(s)
- Taoran Qu
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, China; The John B Pierce Laboratory, New Haven, CT, USA
| | - Wenfei Han
- The John B Pierce Laboratory, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jingjing Niu
- The John B Pierce Laboratory, New Haven, CT, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jenny Tong
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ivan E de Araujo
- The John B Pierce Laboratory, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Physiology, Yale University School of Arts and Sciences, New Haven, CT, USA.
| |
Collapse
|
11
|
Luan H, Wang X, Cai Z. Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders. MASS SPECTROMETRY REVIEWS 2019; 38:22-33. [PMID: 29130504 DOI: 10.1002/mas.21553] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/12/2017] [Indexed: 05/10/2023]
Abstract
Metabolomics seeks to take a "snapshot" in a time of the levels, activities, regulation and interactions of all small molecule metabolites in response to a biological system with genetic or environmental changes. The emerging development in mass spectrometry technologies has shown promise in the discovery and quantitation of neuroactive small molecule metabolites associated with gut microbiota and brain. Significant progress has been made recently in the characterization of intermediate role of small molecule metabolites linked to neural development and neurodegenerative disorder, showing its potential in understanding the crosstalk between gut microbiota and the host brain. More evidence reveals that small molecule metabolites may play a critical role in mediating microbial effects on neurotransmission and disease development. Mass spectrometry-based metabolomics is uniquely suitable for obtaining the metabolic signals in bidirectional communication between gut microbiota and brain. In this review, we summarized major mass spectrometry technologies including liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and imaging mass spectrometry for metabolomics studies of neurodegenerative disorders. We also reviewed the recent advances in the identification of new metabolites by mass spectrometry and metabolic pathways involved in the connection of intestinal microbiota and brain. These metabolic pathways allowed the microbiota to impact the regular function of the brain, which can in turn affect the composition of microbiota via the neurotransmitter substances. The dysfunctional interaction of this crosstalk connects neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Huntington's disease. The mass spectrometry-based metabolomics analysis provides information for targeting dysfunctional pathways of small molecule metabolites in the development of the neurodegenerative diseases, which may be valuable for the investigation of underlying mechanism of therapeutic strategies.
Collapse
Affiliation(s)
- Hemi Luan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Zongwei Cai
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
12
|
Onaolapo A, Onaolapo O. Food additives, food and the concept of ‘food addiction’: Is stimulation of the brain reward circuit by food sufficient to trigger addiction? PATHOPHYSIOLOGY 2018; 25:263-276. [DOI: 10.1016/j.pathophys.2018.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/26/2018] [Accepted: 04/07/2018] [Indexed: 02/08/2023] Open
|
13
|
Drummen M, Dorenbos E, Vreugdenhil ACE, Stratton G, Raben A, Westerterp-Plantenga MS, Adam TC. Associations of Brain Reactivity to Food Cues with Weight Loss, Protein Intake and Dietary Restraint during the PREVIEW Intervention. Nutrients 2018; 10:E1771. [PMID: 30445718 PMCID: PMC6266251 DOI: 10.3390/nu10111771] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022] Open
Abstract
The objective was to assess the effects of a weight loss and subsequent weight maintenance period comprising two diets differing in protein intake, on brain reward reactivity to visual food cues. Brain reward reactivity was assessed with functional magnetic resonance imaging in 27 overweight/obese individuals with impaired fasting glucose and/or impaired glucose tolerance (HOMA-IR: 3.7 ± 1.7; BMI: 31.8 ± 3.2 kg/m²; fasting glucose: 6.4 ± 0.6 mmol/L) before and after an 8-week low energy diet followed by a 2-year weight maintenance period, with either high protein (HP) or medium protein (MP) dietary guidelines. Brain reactivity and possible relationships with protein intake, anthropometrics, insulin resistance and eating behaviour were assessed. Brain reactivity, BMI, HOMA-IR and protein intake did not change differently between the groups during the intervention. In the whole group, protein intake during weight maintenance was negatively related to changes in high calorie images>low calorie images (H > L) brain activation in the superior/middle frontal gyrus and the inferior temporal gyrus (p < 0.005, corrected for multiple comparisons). H > L brain activation was positively associated with changes in body weight and body-fat percentage and inversely associated with changes in dietary restraint in multiple reward, gustatory and processing regions (p < 0.005, corrected for multiple comparisons). In conclusion, changes in food reward-related brain activation were inversely associated with protein intake and dietary restraint during weight maintenance after weight loss and positively associated with changes in body weight and body-fat percentage.
Collapse
Affiliation(s)
- Mathijs Drummen
- Department of Nutrition and Movement Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Elke Dorenbos
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.
- Centre for Overweight Adolescent and Children's Health Care (COACH), Department of Paediatrics, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
| | - Anita C E Vreugdenhil
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.
- Centre for Overweight Adolescent and Children's Health Care (COACH), Department of Paediatrics, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
| | - Gareth Stratton
- Research Centre in Applied Sports, Technology Exercise and Medicine, College of Engineering, Swansea University, Swansea, SA1 8EN Wales, UK.
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-1017 Copenhagen, Denmark.
| | - Margriet S Westerterp-Plantenga
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Tanja C Adam
- Department of Nutrition and Movement Sciences, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
14
|
Abstract
AIM This study was undertaken to investigate the extent of variation in meals, radiopharmaceuticals and methodology used for gastric emptying studies in the UK. MATERIALS AND METHODS Overall, 178 nuclear medicine departments across the UK were contacted by telephone and the gastric emptying protocol was requested. In all, 128 (72%) performed routine gastric emptying studies; 83 protocols were received. RESULTS Liquid meal gastric emptying: 15 departments performed liquid gastric emptying either as a dual isotope technique (27%) or as a separate test using Tc-diethylenetriamine pentacetic acid (53%) or Tc-colloid (20%). The radiopharmaceutical was administered in a variety of liquid mediums including water, orange juice/squash or milk. Although dynamic acquisition was most often used for liquid gastric emptying (60%), significant number of departments used static images (40%). Solid meal gastric emptying: Tc was the radioisotope most predominantly used for solid meals (98%). Tc-colloid was the most commonly used radiopharmaceutical (38%), followed by macroaggregated albumin (25%) and diethylenetriamine pentacetic acid (23%). Egg-based meals are most popular (59%) followed by porridge (27%) that was also used as an alternative to egg in some departments. Alternative meals (cooked meals, ready meals, All-Bran, Weetabix, etc.) were used in 22% of the surveyed departments. Patient preparation and positioning: There was a wide range in patient preparation and methodology used. Patients fasted between 2 and 12 h for the test. Overall, 55% departments acquire images with patient sitting or standing. Although 45% of the departments acquired images supine, most allowed patients to stand or walk in between the images, and only 22% performed the entire test with patient supine. Acquisition parameters: 58% of departments used intermittent static images with intervals ranging from 5 to 15 min, followed by hourly static images of up to 4 h. Twenty-five per cent of departments used dynamic acquisition images. Seventeen per cent of departments used a combination with early dynamic study followed by static images. Normal ranges: There was a wide variation in the normal ranges used for reporting. Most departments used 50% emptying time to assess gastric function. The maximum normal range values for solid gastric emptying ranged from 60 to 120 min, with four departments relying on the percentage of activity remaining at 4 h (normal<10%). Liquid gastric emptying also had a wide range of values for the normal range. The most commonly used range for liquid gastric emptying was 40-60 min. CONCLUSION There is a wide variation in radiopharmaceuticals, meals and the methodology used for gastric emptying studies. Solid meal gastric emptying is performed universally by all the departments, while relatively few performed liquid meal gastric emptying. Our survey shows that egg-based meals are most prevalent, followed by a porridge meal. Intermittent static imaging is also the most popular method of imaging. In view of this audit, it would be prudent to establish a protocol for solid meal gastric emptying on the basis of the most commonly used meals and methods that may then be universally acceptable. We propose to undertake a study to establish normal ranges for these meals (egg meal and porridge), using the most accepted imaging methodology in an attempt to establish a standardized normal range and acquisition method for solid gastric emptying studies in the UK.
Collapse
|
15
|
Sclafani A. From appetite setpoint to appetition: 50years of ingestive behavior research. Physiol Behav 2018; 192:210-217. [PMID: 29305256 PMCID: PMC6019132 DOI: 10.1016/j.physbeh.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
I review the main themes of my 50-year research career in ingestive behavior as a graduate student at the University of Chicago and a professor at the City University of New York. A seminar course with my Ph.D. mentor, S. P. Grossman, sparked my interest in the hypothalamic obesity syndrome. I developed a wire knife to dissect the neuropathways and the functional disorder responsible for the syndrome. An elevated appetite setpoint that permitted the overconsumption of palatable foods appeared central to the hypothalamic syndrome. In brain-intact rats, providing an assortment of highly palatable foods (the cafeteria diet) stimulated diet-induced obesity that mimicked elements of hypothalamic obesity. Studies of the determinants of food palatability led to the discovery of a "new" carbohydrate taste (maltodextrin taste) and the confirmation of a fatty taste. In addition to oral taste receptors, gut nutrient sensors stimulated the intake/preference for carbohydrate- and fat-rich foods via an appetition process that stimulates brain reward systems. My research career greatly benefited from many diligent and creative students, collaborators and technicians and research support from my university and the National Institutes of Health.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College and the Graduate Center of the City University of New York, 2900 Bedford Ave, Brooklyn, NY 11210, USA.
| |
Collapse
|
16
|
Nishigaki R, Yokoyama Y, Shimizu Y, Marumoto R, Misumi S, Ueda Y, Ishida A, Shibuya Y, Hida H. Monosodium glutamate ingestion during the development period reduces aggression mediated by the vagus nerve in a rat model of attention deficit-hyperactivity disorder. Brain Res 2018; 1690:40-50. [DOI: 10.1016/j.brainres.2018.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/15/2018] [Accepted: 04/04/2018] [Indexed: 01/29/2023]
|
17
|
Tanaka M, Yasuoka A, Yoshinuma H, Saito Y, Asakura T, Tanabe S. Seasoning ingredients in a medium-fat diet regulate lipid metabolism in peripheral tissues via the hypothalamic-pituitary axis in growing rats. Biosci Biotechnol Biochem 2018; 82:497-506. [PMID: 29370734 DOI: 10.1080/09168451.2018.1427551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We fed rats noodle (N) -diet containing 30 wt.% instant noodle with a 26% fat-to-energy ratio for 30 days (N-group). Compared with rats that were fed the same amount of nutrients (C-group), the N-group showed lower liver triacylglycerol levels and higher fecal cholesterol levels. We then analyzed transcriptome of the hypothalamic-pituitary (HP), the liver and the white adipose tissue (WAT). Thyroid stimulating hormone (Tshb), and its partner, glycoprotein hormone genes were up-regulated in the HP of N-group. Sterol regulatory element binding transcription factors were activated in the liver of N-group, while an up-regulation of the angiogenic signal occurred in the WAT of N-group. N-group showed higher urine noradrenaline (NA) level suggesting that these tissue signals are regulated by NA and Tshb. The N-diet contains 0.326 wt.% glutamate, 0.00236 wt.% 6-shogaol and Maillard reaction products. Our results suggest that these ingredients may affect lipid homeostasis via the HP axis.
Collapse
Key Words
- AM: adrenal medulla
- ANGPT 2: angiopoietin 2
- CNS: central nervous system
- Cga: glycoprotein hormones alpha polypeptide
- DEGs: differentially expressed genes
- DHBA: 3,4-dihydroxybenzylamine
- FDR: false discovery rate
- HP: hypothalamic-pituitary
- HPLC: High Performance Liquid Chromatography
- IPA: Ingenuity Pathway Analysis
- NA: noradrenaline
- NCBI: National Center of Biotechnology Information
- SN: sympathetic nerve
- SREBF: sterol regulatory element binding transcription factor
- TG: triacylglycerol
- TH: thyroid hormone
- TRPs: transient receptor potential channels
- The designation of following abbreviations, Acsm5, Avp, Ch25h, CREB, Cyp51a1, Dhcr7, ERBB4, F2R, Gpd1, Hdc, Hmgcs, Maob, NEDD9, NFkB, SMARCB1, SPDEF, SPI1, STAT4, TGFBR1, Vip, WNT3A, and XBP1, are shown in Table 5 and 6.
- Trh: Thyrotropin releasing hormone
- Tshb: thyroid stimulating hormone B
- WAT: white adipose tissue
- hypothalamus
- instant noodle
- lipid metabolism
- noradrenaline
- seasoning ingredients
Collapse
Affiliation(s)
- Mitsuru Tanaka
- a Nissin Global Innovation Center , Nissin Foods Holdings , Hachioji , Japan
| | - Akihito Yasuoka
- b Project on Health and Anti-Aging, Kanagawa Academy of Science and Technology , Kawasaki , Japan
| | - Haruka Yoshinuma
- a Nissin Global Innovation Center , Nissin Foods Holdings , Hachioji , Japan
| | - Yoshikazu Saito
- c Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan
| | - Tomiko Asakura
- c Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Tokyo , Japan
| | - Soichi Tanabe
- a Nissin Global Innovation Center , Nissin Foods Holdings , Hachioji , Japan
| |
Collapse
|
18
|
Mediavilla C, Martin-Signes M, Risco S. Role of anterior piriform cortex in the acquisition of conditioned flavour preference. Sci Rep 2016; 6:33365. [PMID: 27624896 PMCID: PMC5022059 DOI: 10.1038/srep33365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/25/2016] [Indexed: 11/09/2022] Open
Abstract
Flavour aversion learning (FAL) and conditioned flavour preference (CFP) facilitate animal survival and play a major role in food selection, but the neurobiological mechanisms involved are not completely understood. Neuroanatomical bases of CFP were examined by using Fos immunohistochemistry to record neuronal activity. Rats were trained over eight alternating one-bottle sessions to acquire a CFP induced by pairing a flavour with saccharin (grape was CS+ in Group 1; cherry in Group 2; in Group 3, grape/cherry in half of animals; Group 4, grape/cherry in water). Animals were offered the grape flavour on the day immediately after the training and their brains were processed for c-Fos. Neurons evidencing Fos-like immunoreactivity were counted in the infralimbic cortex, nucleus accumbens core, and anterior piriform cortex (aPC). Analysis showed a significantly larger number of activated cells after learning in the aPC alone, suggesting that the learning process might have produced a change in this cortical region. Ibotenic lesions in the aPC blocked flavour-taste preference but did not interrupt flavour-toxin FAL by LiCl. These data suggest that aPC cells may be involved in the formation of flavour preferences and that the integrity of this region may be specifically necessary for the acquisition of a CFP.
Collapse
Affiliation(s)
- Cristina Mediavilla
- Department of Psychobiology, Cognitive and Behavioural Neuroscience Programme, and Mind, Brain, and Behaviour Research Centre (CIMCYC), University of Granada, Spain
| | - Mar Martin-Signes
- Department of Experimental Psychology and Mind, Brain, and Behaviour Research Centre (CIMCYC), University of Granada, Spain
| | - Severiano Risco
- Department of Pharmacology, and Centro de Investigación Biomédica (CIBM), University of Granada, Spain
| |
Collapse
|
19
|
Filpa V, Moro E, Protasoni M, Crema F, Frigo G, Giaroni C. Role of glutamatergic neurotransmission in the enteric nervous system and brain-gut axis in health and disease. Neuropharmacology 2016; 111:14-33. [PMID: 27561972 DOI: 10.1016/j.neuropharm.2016.08.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/18/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023]
Abstract
Several studies have been carried out in the last 30 years in the attempt to clarify the possible role of glutamate as a neurotransmitter/neuromodulator in the gastrointestinal tract. Such effort has provided immunohistochemical, biomolecular and functional data suggesting that the entire glutamatergic neurotransmitter machinery is present in the complex circuitries of the enteric nervous system (ENS), which participates to the local coordination of gastrointestinal functions. Glutamate is also involved in the regulation of the brain-gut axis, a bi-directional connection pathway between the central nervous system (CNS) and the gut. The neurotransmitter contributes to convey information, via afferent fibers, from the gut to the brain, and to send appropriate signals, via efferent fibers, from the brain to control gut secretion and motility. In analogy with the CNS, an increasing number of studies suggest that dysregulation of the enteric glutamatergic neurotransmitter machinery may lead to gastrointestinal dysfunctions. On the whole, this research field has opened the possibility to find new potential targets for development of drugs for the treatment of gastrointestinal diseases. The present review analyzes the more recent literature on enteric glutamatergic neurotransmission both in physiological and pathological conditions, such as gastroesophageal reflux, gastric acid hypersecretory diseases, inflammatory bowel disease, irritable bowel syndrome and intestinal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Viviana Filpa
- Department of Clinical and Experimental Medicine, University of Insubria, via H. Dunant 5, I-21100 Varese, Italy
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, via Ferrata 9, I-27100 Pavia, Italy
| | - Marina Protasoni
- Department of Surgical and Morphological Sciences, University of Insubria, via F. Guicciardini 9, I-21100 Varese, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, via Ferrata 9, I-27100 Pavia, Italy
| | - Gianmario Frigo
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, via Ferrata 9, I-27100 Pavia, Italy
| | - Cristina Giaroni
- Department of Clinical and Experimental Medicine, University of Insubria, via H. Dunant 5, I-21100 Varese, Italy
| |
Collapse
|
20
|
Abstract
Our understanding of the molecular basis of umami taste and its appetitive qualities has been greatly aided by studies in laboratory rodents. This review describes methods for testing responses to the prototypical umami substance monosodium glutamate (MSG) in rodents. Two techniques, forced exposure to MSG and 2-bottle choice tests with ascending concentrations, were used to evaluate the responses to the taste of umami itself, and 2 other methods used oral or postoral MSG to modify the responses to other flavors. Intake and preference for MSG are enhanced in mice by experience with MSG and with other nutrients with positive postoral effects. In addition, flavor preferences are enhanced in mice and rats by gastric or intestinal MSG infusions via an associative learning process. Even mice with an impaired or absent ability to taste MSG can learn to prefer a flavor added to an MSG solution, supporting the notion that glutamate acts postorally. The more complex flavor of dashi seasoning, which includes umami substances (inosinate, glutamate), is attractive to rodents, but dashi does not condition flavor preferences. Details of the postoral glutamate detection process and the nature of the signal involved in learned preferences are still uncertain but probably involve gastric or intestinal sensors or both and vagal transmission. Some findings suggest that postoral glutamate effects may enhance food preferences in humans, but this requires further study.
Collapse
Affiliation(s)
- Karen Ackroff
- Brooklyn College of the City University of New York, Brooklyn, NY
| | | |
Collapse
|
21
|
Bachmanov AA, Bosak NP, Glendinning JI, Inoue M, Li X, Manita S, McCaughey SA, Murata Y, Reed DR, Tordoff MG, Beauchamp GK. Genetics of Amino Acid Taste and Appetite. Adv Nutr 2016; 7:806S-22S. [PMID: 27422518 PMCID: PMC4942865 DOI: 10.3945/an.115.011270] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite.
Collapse
Affiliation(s)
| | | | - John I Glendinning
- Department of Biology, Barnard College, Columbia University, New York, NY
| | - Masashi Inoue
- Monell Chemical Senses Center, Philadelphia, PA; Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Xia Li
- Monell Chemical Senses Center, Philadelphia, PA
| | - Satoshi Manita
- Monell Chemical Senses Center, Philadelphia, PA; Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | | | - Yuko Murata
- Monell Chemical Senses Center, Philadelphia, PA; National Research Institute of Fisheries Science, Yokohama, Japan; and
| | | | | | - Gary K Beauchamp
- Monell Chemical Senses Center, Philadelphia, PA; Department of Psychology and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Parent MB. Cognitive control of meal onset and meal size: Role of dorsal hippocampal-dependent episodic memory. Physiol Behav 2016; 162:112-9. [PMID: 27083124 DOI: 10.1016/j.physbeh.2016.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/17/2022]
Abstract
There is a large gap in our understanding of how top-down cognitive processes, such as memory, influence energy intake. Similarly, there is limited knowledge regarding how the brain controls the timing of meals and meal frequency. Understanding how cognition influences ingestive behavior and how the brain controls meal frequency will provide a more complete explanation of the neural mechanisms that regulate energy intake and may also increase our knowledge of the factors that contribute to diet-induced obesity. We hypothesize that dorsal hippocampal neurons, which are critical for memory of personal experiences (i.e., episodic memory), form a memory of a meal, inhibit meal onset during the period following a meal, and limit the amount ingested at the next meal. In support, we describe evidence from human research suggesting that episodic memory of a meal inhibits intake and review data from human and non-human animals showing that impaired hippocampal function is associated with increased intake. We then describe evidence from our laboratory showing that inactivation of dorsal hippocampal neurons decreases the interval between sucrose meals and increases intake at the next meal. We also describe our evidence suggesting that sweet orosensation is sufficient to induce synaptic plasticity in dorsal hippocampal neurons and raise the possibility that impaired dorsal hippocampal function and episodic memory deficits contribute to the development and/or maintenance of diet-induced obesity. Finally, we raise some critical questions that need to be addressed in future research.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute, Department of Psychology, Georgia State University, PO Box 5030, Atlanta, GA 30303-5030, United States.
| |
Collapse
|
23
|
Davaasuren M, Matsumoto J, Chinzorig C, Nakamura T, Takamura Y, Patrono E, Kondoh T, Ono T, Nishijo H. The effects of intragastric infusion of umami solutions on amygdalar and lateral hypothalamic neurons in rats. Physiol Rep 2015; 3:3/10/e12545. [PMID: 26438732 PMCID: PMC4632945 DOI: 10.14814/phy2.12545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous behavioral studies have suggested that l-glutamate, an umami substance, is detected in the gut, and that this information regarding glutamate is conveyed from the gut to the amygdala and the lateral hypothalamus (LH) through the vagus nerve to establish glutamate preference. In this study, we investigated the roles of the amygdala and LH in the information processing of gut glutamate. We recorded the activity of amygdalar and LH neurons during the intragastric administration of five test solutions (monosodium l-glutamate [MSG, 60 mmol/L]; inosine monophosphate [IMP, 60 mmol/L]; a mixture of MSG and IMP; NaCl [60 mmol/L]; or physiological saline) in intact and subdiaphragmatic vagotomized awake rats. In intact rats, 349 and 189 neurons were recorded from the amygdala and LH, respectively, while in vagotomized rats, 104 and 90 neurons were recorded from the amygdala and LH, respectively. In intact rats, similar percentages of neurons (30–60%) in the amygdala and LH responded to the intragastric infusion of the solutions. Vagotomy significantly altered responses to the MSG and NaCl solutions. In particular, vagotomy suppressed the inhibitory responses to the NaCl solution. Furthermore, vagotomy increased the response similarity between the MSG and NaCl solutions, suggesting that vagotomy impaired the coding of the postingestive consequences of the MSG solution in the amygdala and LH, which are unique for glutamate. The present results provide the first neurophysiological evidence that amygdalar and LH neurons process glutamate signals from the gut.
Collapse
Affiliation(s)
- Munkhzul Davaasuren
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Choijiljav Chinzorig
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tomoya Nakamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Enrico Patrono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takashi Kondoh
- Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
24
|
Sasaki T, Kinoshita Y, Matsui S, Kakuta S, Yokota-Hashimoto H, Kinoshita K, Iwasaki Y, Kinoshita T, Yada T, Amano N, Kitamura T. N-methyl-d-aspartate receptor coagonist d-serine suppresses intake of high-preference food. Am J Physiol Regul Integr Comp Physiol 2015; 309:R561-75. [PMID: 26157056 DOI: 10.1152/ajpregu.00083.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
d-Serine is abundant in the forebrain and physiologically important for modulating excitatory glutamatergic neurotransmission as a coagonist of synaptic N-methyl-d-aspartate (NMDA) receptor. NMDA signaling has been implicated in the control of food intake. However, the role of d-serine on appetite regulation is unknown. To clarify the effects of d-serine on appetite, we investigated the effect of oral d-serine ingestion on food intake in three different feeding paradigms (one-food access, two-food choice, and refeeding after 24-h fasting) using three different strains of male mice (C57Bl/6J, BKS, and ICR). The effect of d-serine was also tested in leptin signaling-deficient db/db mice and sensory-deafferented (capsaicin-treated) mice. The expression of orexigenic neuropeptides [neuropeptide Y (Npy) and agouti-related protein (Agrp)] in the hypothalamus was compared in fast/refed experiments. Conditioned taste aversion for high-fat diet (HFD) was tested in the d-serine-treated mice. Under the one-food-access paradigm, some of the d-serine-treated mice showed starvation, but not when fed normal chow. HFD feeding with d-serine ingestion did not cause aversion. Under the two-food-choice paradigm, d-serine suppressed the intake of high-preference food but not normal chow. d-Serine also effectively suppressed HFD intake but not normal chow in db/db mice and sensory-deafferented mice. In addition, d-serine suppressed normal chow intake after 24-h fasting despite higher orexigenic gene expression in the hypothalamus. d-Serine failed to suppress HFD intake in the presence of L-701,324, the selective and full antagonist at the glycine-binding site of the NMDA receptor. Therefore, d-serine suppresses the intake of high-preference food through coagonism toward NMDA receptors.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan;
| | - Yoshihiro Kinoshita
- Department of Psychiatry, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Sho Matsui
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Shigeru Kakuta
- Research Center for Human and Environmental Sciences, Shinshu University, Matsumoto, Nagano, Japan
| | - Hiromi Yokota-Hashimoto
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Kuni Kinoshita
- Department of Psychiatry, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Yusaku Iwasaki
- Division of Integrated Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan; and
| | - Toshio Kinoshita
- Department of Analytical Chemistry, School of Pharmacy, Kitasato University, Tokyo, Tokyo, Japan
| | - Toshihiko Yada
- Division of Integrated Physiology, Department of Physiology, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan; and
| | - Naoji Amano
- Department of Psychiatry, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Tadahiro Kitamura
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
25
|
Greene JG. Causes and consequences of degeneration of the dorsal motor nucleus of the vagus nerve in Parkinson's disease. Antioxid Redox Signal 2014; 21:649-67. [PMID: 24597973 DOI: 10.1089/ars.2014.5859] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Parkinson's disease (PD) is no longer considered merely a movement disorder caused by degeneration of dopamine neurons in the midbrain. It is now recognized as a widespread neuropathological syndrome accompanied by a variety of motor and nonmotor clinical symptoms. As such, any hypothesis concerning PD pathogenesis and pathophysiology must account for the entire spectrum of disease and not solely focus on the dopamine system. RECENT ADVANCES Based on its anatomy and the intrinsic properties of its neurons, the dorsal motor nucleus of the vagus nerve (DMV) is uniquely vulnerable to damage from PD. Fibers in the vagus nerve course throughout the gastrointestinal (GI) tract to and from the brainstem forming a close link between the peripheral and central nervous systems and a point of proximal contact between the environment and areas where PD pathology is believed to start. In addition, DMV neurons are under high levels of oxidative stress due to their high level of α-synuclein expression, fragile axons, and specific neuronal physiology. Moreover, several consequences of DMV damage, namely, GI dysfunction and unrestrained inflammation, may propagate a vicious cycle of injury affecting vulnerable brain regions. CRITICAL ISSUES Current evidence to suggest the vagal system plays a pivotal role in PD pathogenesis is circumstantial, but given the current state of the field, the time is ripe to obtain direct experimental evidence to better delineate it. FUTURE DIRECTIONS Better understanding of the DMV and vagus nerve may provide insight into PD pathogenesis and a neural highway with direct brain access that could be harnessed for novel therapeutic interventions.
Collapse
Affiliation(s)
- James G Greene
- Department of Neurology, Emory University , Atlanta, Georgia
| |
Collapse
|
26
|
Uematsu A, Kitamura A, Iwatsuki K, Uneyama H, Tsurugizawa T. Correlation Between Activation of the Prelimbic Cortex, Basolateral Amygdala, and Agranular Insular Cortex During Taste Memory Formation. Cereb Cortex 2014; 25:2719-28. [PMID: 24735672 DOI: 10.1093/cercor/bhu069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Conditioned taste aversion (CTA) is a well-established learning paradigm, whereby animals associate tastes with subsequent visceral illness. The prelimbic cortex (PL) has been shown to be involved in the association of events separated by time. However, the nature of PL activity and its functional network in the whole brain during CTA learning remain unknown. Here, using awake functional magnetic resonance imaging and fiber tracking, we analyzed functional brain connectivity during the association of tastes and visceral illness. The blood oxygen level-dependent (BOLD) signal significantly increased in the PL after tastant and lithium chloride (LiCl) infusions. The BOLD signal in the PL significantly correlated with those in the amygdala and agranular insular cortex (IC), which we found were also structurally connected to the PL by fiber tracking. To precisely examine these data, we then performed double immunofluorescence with a neuronal activity marker (c-Fos) and an inhibitory neuron marker (GAD67) combined with a fluorescent retrograde tracer in the PL. During CTA learning, we found an increase in the activity of excitatory neurons in the basolateral amygdala (BLA) or agranular IC that project to the PL. Taken together, these findings clearly identify a role of synchronized PL, agranular IC, and BLA activity in CTA learning.
Collapse
Affiliation(s)
- Akira Uematsu
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan Current address: Laboratory for Neural Circuitry of Memory, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Akihiko Kitamura
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | - Ken Iwatsuki
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan Current address: Department of Nutritional Science and Food Safety, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hisayuki Uneyama
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| | - Tomokazu Tsurugizawa
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan
| |
Collapse
|
27
|
Ackroff K, Kondoh T, Sclafani A. Dried Bonito Dashi: A Preferred Fish Broth Without Postoral Reward Actions in Mice. Chem Senses 2013; 39:159-66. [DOI: 10.1093/chemse/bjt065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
28
|
Nakamura E, Uneyama H, Torii K. Gastrointestinal nutrient chemosensing and the gut-brain axis: significance of glutamate signaling for normal digestion. J Gastroenterol Hepatol 2013; 28 Suppl 4:2-8. [PMID: 24251696 DOI: 10.1111/jgh.12408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Eiji Nakamura
- Institute for Innovation, Ajinomoto Co., Inc., Kanagawa, Japan
| | | | | |
Collapse
|
29
|
Ackroff K, Sclafani A. Flavor Preferences Conditioned by Oral Monosodium Glutamate in Mice. Chem Senses 2013; 38:745-58. [DOI: 10.1093/chemse/bjt049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Ackroff K, Sclafani A. Flavor preferences conditioned by intragastric monosodium glutamate in mice. Chem Senses 2013; 38:759-67. [PMID: 24122318 DOI: 10.1093/chemse/bjt042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The consumption of monosodium glutamate (MSG) solutions has been shown to reinforce preferences for MSG and for MSG-paired flavors in mice. These effects appear to have a strong postoral component, such that MSG detected in the gut is associated with concurrently consumed flavors. Two experiments investigated postoral MSG reward by infusing 400mM MSG intragastrically (IG) to C57BL/6 mice as they consumed a conditioned stimulus (CS+) flavor. An alternate CS- flavor was paired with IG water. In Experiment 1, the grape and cherry CS flavors were unsweetened, and intakes and preferences for the CS+ flavor were modest. Experiment 2 attempted to generate stronger preferences by adding 0.05% saccharin to the CS flavors. Sweet taste did enhance intakes during training and testing but did not significantly increase percent CS+ intake or persistence of the preference. However, only conditioning with the sweet CS+ resulted in the mice expressing a preference for oral MSG in an initial choice test with water. These findings extend recent studies demonstrating postoral MSG conditioning in rats.
Collapse
Affiliation(s)
- Karen Ackroff
- Department of Psychology, Brooklyn College of CUNY, 2900 Bedford Avenue, Brooklyn, NY 11210, USA.
| | | |
Collapse
|
31
|
Datta K, Kumar D, Mallick HN. Intragastric administration of glutamate increases REM sleep in rats. Physiol Behav 2013; 122:178-81. [PMID: 24055576 DOI: 10.1016/j.physbeh.2013.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/07/2013] [Indexed: 01/19/2023]
Abstract
Monosodium glutamate, a umami taste substance is commonly used flavor enhancer. The effect of intragastric administration of 1.5 ml of 0.12M monosodium glutamate on sleep-wake was studied in 10 adult male Wistar rats. Sleep-wake parameters were recorded through chronically implanted electroencephalogram, electrooculogram and electromyogram electrodes using a digital recording system (BIOPAC system Inc. BSL PRO 36, USA). The sleep-wake was recorded for 6h after the intragastric administration of either glutamate or saline. Sleep-wake stages were analyzed as wake, slow wave sleep and REM sleep. Compared to saline, intragastric administration of glutamate significantly increased REM sleep duration and episode frequency. REM sleep duration was increased in all the three 2h bins, 10:00-12:00 h (p=0.037), 12:00-14:00 h (p=0.037) and 14:00-16:00 h (p=0.007). The slow wave sleep and total sleep time were not affected. It is concluded that intragastric glutamate administration increases REM sleep.
Collapse
Affiliation(s)
- Karuna Datta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | |
Collapse
|
32
|
Bannai M, Torii K. DIGESTIVE PHYSIOLOGY OF THE PIG SYMPOSIUM: Detection of dietary glutamate via gut–brain axis12. J Anim Sci 2013; 91:1974-81. [DOI: 10.2527/jas.2012-6021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- M. Bannai
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, Japan 210-8681
| | - K. Torii
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa, Japan 210-8681
| |
Collapse
|
33
|
Torii K, Uneyama H, Nakamura E. Physiological roles of dietary glutamate signaling via gut-brain axis due to efficient digestion and absorption. J Gastroenterol 2013; 48:442-51. [PMID: 23463402 PMCID: PMC3698427 DOI: 10.1007/s00535-013-0778-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 02/04/2023]
Abstract
Dietary glutamate (Glu) stimulates to evoke the umami taste, one of the five basic tastes, enhancing food palatability. But it is also the main gut energy source for the absorption and metabolism for each nutrient, thus, only a trace amount of Glu reaches the general circulation. Recently, we demonstrated a unique gut sensing system for free Glu (glutamate signaling). Glu is the only nutrient among amino acids, sugars and electrolytes that activates rat gastric vagal afferents from the luminal side specifically via metabotropic Glu receptors type 1 on mucosal cells releasing mucin and nitrite mono-oxide (NO), then NO stimulates serotonin (5HT) release at the enterochromaffin cell. Finally released 5HT stimulates 5HT3 receptor at the nerve end of the vagal afferent fiber. Functional magnetic resonance imaging (f-MRI, 4.7 T) analysis revealed that luminal sensing with 1 % (w/v) monosodium L-glutamate (MSG) in rat stomach activates both the medial preoptic area (body temperature controller) and the dorsomedial hypothalamus (basic metabolic regulator), resulting in diet-induced thermogenesis during mealing without changes of appetite for food. Interestingly, rats were forced to eat a high fat and high sugar diet with free access to 1 % (w/w) MSG and water in a choice paradigm and showed the strong preference for the MSG solution and subsequently, they displayed lower fat deposition, weight gain and blood leptin. On the other hand, these brain functional changes by the f-MRI signal after 60 mM MSG intubation into the stomach was abolished in the case of total vagotomized rats, suggesting that luminal glutamate signaling contributes to control digestion and thermogenesis without obesity.
Collapse
Affiliation(s)
- Kunio Torii
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681 Japan ,Torii Nutrient-Stasis Institute, Inc., Miyuki Building, 5-6-12 Ginza, Chuo-ku, Tokyo, 104-0061 Japan
| | - Hisayuki Uneyama
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681 Japan
| | - Eiji Nakamura
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681 Japan
| |
Collapse
|
34
|
Suzuki H, Sumiyoshi A, Kawashima R, Shimokawa H. Different brain activation under left and right ventricular stimulation: an fMRI study in anesthetized rats. PLoS One 2013; 8:e56990. [PMID: 23451129 PMCID: PMC3579932 DOI: 10.1371/journal.pone.0056990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/16/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. METHODOLOGY/PRINCIPAL FINDINGS An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. CONCLUSION/SIGNIFICANCE This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.
Collapse
Affiliation(s)
- Hideaki Suzuki
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | |
Collapse
|
35
|
Oral biosciences: The annual review 2012. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Torii K. Brain activation by the umami taste substance monosodium L-glutamate via gustatory and visceral signaling pathways, and its physiological significance due to homeostasis after a meal. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Reversible brain response to an intragastric load of l-lysine under l-lysine depletion in conscious rats. Br J Nutr 2012; 109:1323-9. [DOI: 10.1017/s0007114512003078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
l-Lysine (Lys) is an essential amino acid and plays an important role in anxiogenic behaviour in both human subjects and rodents. Previous studies have shown the existence of neural plasticity between the Lys-deficient state and the normal state. Lys deficiency causes an increase in noradrenaline release from the hypothalamus and serotonin release from the amygdala in rats. However, no studies have used functional MRI (fMRI) to compare the brain response to ingested Lys in normal, Lys-deficient and Lys-recovered states. Therefore, in the present study, using acclimation training, we performed fMRI on conscious rats to investigate the brain response to an intragastric load of Lys. The brain responses to intragastric administration of Lys (3 mmol/kg body weight) were investigated in six rats intermittently in three states: normal, Lys-deficient and recovered state. First, in the normal state, an intragastric load of Lys activated several brain regions, including the raphe pallidus nucleus, prelimbic cortex and the ventral/lateral orbital cortex. Then, after 6 d of Lys deprivation from the normal state, an intragastric load of Lys activated the ventral tegmental area, raphe pallidus nucleus and hippocampus, as well as several hypothalamic areas. After recovering from the Lys-deficient state, brain activation was similar to that in the normal state. These results indicate that neural plasticity in the prefrontal cortex, hypothalamic area and limbic system is related to the internal Lys state and that this plasticity could have important roles in the control of Lys intake.
Collapse
|
38
|
Ackroff K, Weintraub R, Sclafani A. MSG intake and preference in mice are influenced by prior testing experience. Physiol Behav 2012; 107:207-17. [PMID: 22776625 DOI: 10.1016/j.physbeh.2012.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/04/2012] [Accepted: 06/30/2012] [Indexed: 12/28/2022]
Abstract
Monosodium glutamate (MSG), the prototypical umami substance, is used as a flavor enhancer in many foods, but when presented alone is often only weakly attractive. Yet with experience mice will develop strong preferences for MSG solution over water. The present experiments explored the conditions that change indifference to preference for MSG. C57BL/6J mice were given a series of 2-day two-bottle tests with water vs. an ascending series of MSG concentrations (0.1-450 mM) to assess preference and intake. Naive mice were indifferent to all concentrations, but following forced one-bottle exposure to 300 mM MSG they preferred most concentrations and consumed more MSG. Exposure to 100mM MSG also increased subsequent MSG preference but not intake. Experience with other nutritive solutions (8% sucrose, 8% Polycose, 8% casein hydrolysate, and isocaloric 3.5% soybean oil emulsion) also enhanced subsequent MSG preference and intake. Polycose and sucrose experience were almost as effective as MSG experience. However, not all sapid solutions were effective; 0.8% sucralose and 10mM MSG exposure did not alter subsequent MSG preference. The generality of the preexposure effect was tested by offering an ascending series (0.1-100 mM) of inosine monophosphate (IMP), another umami substance; initial indifference was converted to preference after forced exposure to 300 mM MSG. Together these results suggest that a combination of oral and post-oral effects may be responsible for the experience effect, with MSG itself the most potent stimulus. A final experiment revealed that MSG preference in naïve mice is enhanced by presenting the MSG and water drinking spouts far apart rather than side by side. Thus the preferences for umami solutions in mice are subject to influence from prior tastant experience as well spout position, which should be taken into account when studying acceptance of taste solutions in mice.
Collapse
Affiliation(s)
- Karen Ackroff
- Brooklyn College and the Graduate School, City University of New York, Brooklyn, New York 11210, USA.
| | | | | |
Collapse
|
39
|
Sclafani A. Gut-brain nutrient signaling. Appetition vs. satiation. Appetite 2012; 71:454-8. [PMID: 22664300 DOI: 10.1016/j.appet.2012.05.024] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/12/2012] [Accepted: 05/17/2012] [Indexed: 01/09/2023]
Abstract
Multiple hormonal and neural signals are generated by ingested nutrients that limit meal size and suppress postmeal eating. However, the availability of sugar-rich and fat-rich foods can override these satiation/satiety signals and lead to overeating and obesity. The palatable flavor of these foods is one factor that promotes overeating, but sugar and fat also have postoral actions that can stimulate eating and increase food preferences. This is revealed in conditioning studies in which rodents consume flavored solutions paired with intragastric sugar or fat infusions. The significant flavor preferences and increased intake produced by the nutrient infusions appear to involve stimulatory gut-brain signals, referred to here as appetition signals, that are distinct from the satiation signals that suppress feeding. Newly developed rapid conditioning protocols may facilitate the study of postoral appetition processes.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College and the Graduate School, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA.
| |
Collapse
|
40
|
Sclafani A, Ackroff K. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1119-33. [PMID: 22442194 PMCID: PMC3362145 DOI: 10.1152/ajpregu.00038.2012] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 03/14/2012] [Indexed: 12/17/2022]
Abstract
The discovery of taste and nutrient receptors (chemosensors) in the gut has led to intensive research on their functions. Whereas oral sugar, fat, and umami taste receptors stimulate nutrient appetite, these and other chemosensors in the gut have been linked to digestive, metabolic, and satiating effects that influence nutrient utilization and inhibit appetite. Gut chemosensors may have an additional function as well: to provide positive feedback signals that condition food preferences and stimulate appetite. The postoral stimulatory actions of nutrients are documented by flavor preference conditioning and appetite stimulation produced by gastric and intestinal infusions of carbohydrate, fat, and protein. Recent findings suggest an upper intestinal site of action, although postabsorptive nutrient actions may contribute to flavor preference learning. The gut chemosensors that generate nutrient conditioning signals remain to be identified; some have been excluded, including sweet (T1R3) and fatty acid (CD36) sensors. The gut-brain signaling pathways (neural, hormonal) are incompletely understood, although vagal afferents are implicated in glutamate conditioning but not carbohydrate or fat conditioning. Brain dopamine reward systems are involved in postoral carbohydrate and fat conditioning but less is known about the reward systems mediating protein/glutamate conditioning. Continued research on the postoral stimulatory actions of nutrients may enhance our understanding of human food preference learning.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA.
| | | |
Collapse
|
41
|
Uneyama H. Nutritional and physiological significance of luminal glutamate-sensing in the gastrointestinal functions. YAKUGAKU ZASSHI 2012; 131:1699-709. [PMID: 22129863 DOI: 10.1248/yakushi.131.1699] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence indicates that free amino acids are nutrients as well as acting as chemical transmitters within the gastrointestinal tract. Gut glutamate research is the most advanced among 20 amino acids. Free glutamate carries the umami taste sensation on the tongue and a visceral sensation in the gut, especially the stomach. In the field of taste physiology, the physiological meaning of the glutamate-derived chemical sense, the umami taste, has been proposed to be a marker of protein intake. Experimental evidence in gut glutamate physiology strongly supports this hypothesis. Free glutamate is sensed by the abdominal vagus and regulates gastrointestinal functions such as secretion and emptying to accelerate protein digestion. Clinical application of glutamate has also just begun to treat gastrointestinal disorders such as dyspepsia, ulcer, dry mouth and functional dyspepsia. In this review, we introduce recent advances in gut glutamate research and consider the possible contribution of glutamate to health.
Collapse
Affiliation(s)
- Hisayuki Uneyama
- Umami Wellness Research Group, Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Japan.
| |
Collapse
|
42
|
Kitamura A, Tsurugizawa T, Uematsu A, Torii K, Uneyama H. New therapeutic strategy for amino acid medicine: effects of dietary glutamate on gut and brain function. J Pharmacol Sci 2012; 118:138-44. [PMID: 22293294 DOI: 10.1254/jphs.11r06fm] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The gustatory and visceral stimulation from food regulates digestion and nutrient utilization, and free glutamate (Glu) release from food is responsible for the umami taste perception that increases food palatability. The results of recent studies reveal a variety of physiological roles for Glu. For example, luminal applications of Glu into the mouth, stomach, and intestine increase the afferent nerve activities of the glossopharyngeal nerve, the gastric branch of the vagus nerve, and the celiac branch of the vagus nerve, respectively. Additionally, luminal Glu evokes efferent nerve activation of each branch of the abdominal vagus nerve. The intragastric administration of Glu activates several brain areas (e.g., insular cortex, limbic system, and hypothalamus) and has been shown to induce flavor-preference learning in rats. Functional magnetic resonance imaging of rats has shown that the intragastric administration of Glu activates the nucleus tractus solitarius, amygdala, and lateral hypothalamus. In addition, Glu may increase flavor preference as a result of its postingestive effect. Considering these results, we propose that dietary Glu functions as a signal for the regulation of the gastrointestinal tract via the gut-brain axis and contributes to the maintenance of a healthy life.
Collapse
|
43
|
Abstract
Recent advances in molecular biology have led to the investigation of the molecular mechanism by which chemicals such as odors and tastants are perceived by specific chemosensory organs. For example, G protein-coupled receptors expressed within the nasal epithelium and taste receptors in the oral cavity have been identified as odorant and taste receptors, respectively. However, there is much evidence to indicate that these chemosensory receptors are not restricted to primary chemosensory cells; they are also expressed and have function in other cells such as those in the airways and gastrointestinal (GI) tract. This short review describes the possible mechanisms by which taste signal transduction occurs in the oral cavity and tastants/nutrients are sensed in the GI tract by taste-like cells, mainly enteroendocrine and brush cells. Furthermore, it discusses the future perspectives of chemosensory studies.
Collapse
Affiliation(s)
- Ken Iwatsuki
- Institute for Innovation, Ajinomoto Co., Inc., Japan.
| | | |
Collapse
|
44
|
Torii K, Uematsu A, Tsurugizawa T. Brain Response to the Luminal Nutrient Stimulation. CHEMOSENS PERCEPT 2012. [DOI: 10.1007/s12078-011-9113-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Central representation of postingestive chemosensory cues in mice that lack the ability to taste. J Neurosci 2011; 31:9101-10. [PMID: 21697361 DOI: 10.1523/jneurosci.0404-11.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The gustatory nerves of mice lacking P2X2 and P2X3 purinergic receptor subunits (P2X-dblKO) are unresponsive to taste stimulation (Finger et al., 2005). Surprisingly, P2X-dblKO mice show residual behavioral responses to concentrated tastants, presumably via postingestive detection. Therefore, the current study tested whether postingestive signaling is functional in P2X-dblKO mice and if so, whether it activates the primary viscerosensory nucleus of the medulla, the nucleus of the solitary tract (nTS). Like WT animals, P2X-dblKO mice learned to prefer a flavor paired with 150 mm monosodium glutamate (MSG) over a flavor paired with water. This preference shows that, even in the absence of taste sensory input, postingestive cues are detected and associated with a flavor in P2X-dblKO mice. MSG-evoked neuronal activation in the nTS was measured by expression of the immediate early gene c-Fos [c-Fos-like immunoreactivity (Fos-LI)]. In rostral, gustatory nTS, P2X-dblKO animals, unlike WT animals, showed no taste quality-specific labeling of neurons. Furthermore, MSG-evoked Fos-LI was significantly less in P2X-dblKO mice compared with WT animals. In contrast, in more posterior, viscerosensory nTS, MSG-induced Fos-LI was similar in WT and P2X-dblKO mice. Together, these results suggest that P2X-dblKO mice can form preferences based on postingestive cues and that postingestive detection of MSG does not rely on the same purinergic signaling that is crucial for taste.
Collapse
|
46
|
Peuhkuri K, Sihvola N, Korpela R. Dietary proteins and food-related reward signals. Food Nutr Res 2011; 55:5955. [PMID: 21909291 PMCID: PMC3168366 DOI: 10.3402/fnr.v55i0.5955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/14/2011] [Accepted: 05/10/2011] [Indexed: 11/16/2022] Open
Abstract
Proteins play a crucial role in almost all biological processes. Dietary proteins are generally considered as energy yielding nutrients and as a source of amino acids for various purposes. In addition, they may have a role in food-related reward signals. The purpose of this review was to give an overview of the role of dietary proteins in food-related reward and possible mechanisms behind such effects. Dietary proteins may elicit food-related reward by several different postprandial mechanisms, including neural and humoral signals from the gastrointestinal tract to the brain. In order to exert rewarding effects, protein have to be absorbed from the intestine and reach the target cells in sufficient concentrations, or act via receptors ad cell signalling in the gut without absorption. Complex interactions between different possible mechanisms make it very difficult to gain a clear view on the role and intesity of each mechanism. It is concluded that, in principle, dietary proteins may have a role in food-related reward. However, the evidence is based mostly on experiments with animal models and one should be careful in drawing conclusions of clinical relevance.
Collapse
Affiliation(s)
- Katri Peuhkuri
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
47
|
Flavor preferences conditioned by post-oral infusion of monosodium glutamate in rats. Physiol Behav 2011; 104:488-94. [PMID: 21605576 DOI: 10.1016/j.physbeh.2011.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/20/2011] [Accepted: 05/09/2011] [Indexed: 11/21/2022]
Abstract
Monosodium glutamate (MSG), the prototypical umami source, can enhance preference for associated flavors in humans and rodents. Although MSG flavor preference has been attributed to its taste, vagally-mediated post-oral detection has also been demonstrated. Recent studies showed that water-restricted rats acquired a preference for a flavor paired with intragastric (IG) infusion of 60 mM MSG in rats. The present study extends this work by comparing MSG-based flavor conditioning in water- and food-restricted rats and testing the persistence of flavor preferences. Rats with IG catheters drank flavored solutions paired with volume-matched infusions of 60 mM MSG or water in daily 30-min sessions. Two training/test cycles were conducted, each with eight one-bottle training sessions followed by two two-bottle preference tests without infusions. Food- and water-restricted groups displayed similar preferences for the MSG-paired flavor. When non-reinforced testing was continued after the second cycle, the food-restricted group sustained its preference across three 2-day tests, but water-restricted rats lost their preference. Other food-restricted rats learned to prefer a flavor paired with intraduodenal infusion, indicating that gastric stimulation by MSG is not required. A third experiment showed that adding 2 mM of the nucleotide inosine monophosphate to the IG infusion of MSG did not significantly enhance flavor conditioning. Because MSG-based flavor preferences can be obtained with infusions that bypass the stomach, the site for detecting MSG reinforcement may be intestinal.
Collapse
|
48
|
Evaluation of the ‘liking’ and ‘wanting’ properties of umami compound in rats. Physiol Behav 2011; 102:553-8. [DOI: 10.1016/j.physbeh.2011.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 01/13/2023]
|
49
|
Mediavilla C, Cabello V, Risco S. SB-334867-A, a selective orexin-1 receptor antagonist, enhances taste aversion learning and blocks taste preference learning in rats. Pharmacol Biochem Behav 2011; 98:385-91. [PMID: 21295056 DOI: 10.1016/j.pbb.2011.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/20/2011] [Accepted: 01/26/2011] [Indexed: 11/29/2022]
Abstract
Lateral hypothalamus (LH) has been proposed as a possible center for the anatomical convergence of gustatory and postingestive information relevant to taste aversion learning (TAL) and conditioned flavor preference (CFP). Orexin, a neuropeptide that mainly originates in neurons in lateral hypothalamic areas, was recently related to learning and memory processes. The present study was designed to analyze a possible relationship between the orexinergic system and taste learning. We studied the effect of intracerebroventricular administration of three doses (3, 6, and 12 μg/1 μl) of the selective orexin-1 receptor antagonist SB-334867-A on the acquisition of TAL induced by a single administration of LiCl. Infusion of SB-334867-A did not block this learning and appeared to enhance TAL in a two-bottle test. However, SB-334867-A (6 μg/1 μl) blocked taste preference learning when a flavor associated with saccharin (CS+) was offered on alternate days against a different flavor without saccharin (CS-), during three acquisition sessions. These results offer evidence of a relationship between the orexinergic system and taste learning; they tentatively suggest the possibility that endogenous orexin and gustatory and postingestive (visceral and oral) signals converge in brain areas relevant to the acquisition of taste learning.
Collapse
Affiliation(s)
- Cristina Mediavilla
- Área de Psicobiología, Departamento de Psicología Experimental y Fisiología del Comportamiento, Facultad de Psicología, Campus de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain.
| | | | | |
Collapse
|
50
|
Tsurugizawa T, Uematsu A, Uneyama H, Torii K. Different BOLD responses to intragastric load of L-glutamate and inosine monophosphate in conscious rats. Chem Senses 2010; 36:169-76. [PMID: 20956735 DOI: 10.1093/chemse/bjq107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we compared the blood oxygen level-dependent (BOLD) signal changes between intragastric load of monosodium L-glutamate (MSG) and inosine monophosphate (IMP), which elicit the umami taste. An intragastric load of 30 mM IMP or 60 mM MSG induced a BOLD signal increase in several brain regions, including the nucleus of the solitary tract (NTS), lateral hypothalamus (LH), and insular cortex. Only MSG increased the BOLD signal in the amygdala (AMG). The time course of the BOLD signal changes in the NTS and the LH in the IMP group was different from that of the MSG group. We further compared the brain regions correlated with the BOLD signal change in the NTS between MSG and IMP groups. The BOLD responses in the hippocampus and the orbital cortex were associated with activation of the NTS in both MSG and IMP groups, but the association in the AMG and the pyriform was only in MSG group. These results indicate that gut stimulation with MSG and IMP evoked BOLD responses in distinct regions with different temporal patterns and that the mechanism of perception of L-glutamate and IMP in the gastrointestinal tract differed from that in the taste-sensing system.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Institute of Life Sciences, Ajinomoto Co., Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki 210-8601, Japan
| | | | | | | |
Collapse
|