1
|
Wang X, Li T, Hu X, Zhang Y, Zhang D, Zhang H, Xu H, Sun Y, Gu X, Luo J, Gao B. Reclaiming selenium from water using aluminum-modified biochar: Adsorption behaviors, mechanisms, and effects on growth of wheat seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124835. [PMID: 39209052 DOI: 10.1016/j.envpol.2024.124835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Although selenium is an essential nutrient, its contamination in water poses serious risks to human health and ecosystems. In this study, aluminum-modified bamboo biochar (Al-BC) was developed to reclaim Se(VI) from water. Compared to pristine biochar (BC), Al-BC had a larger specific surface area (176 m2/g) and pore volume (0.180 cm³/g). The modification, achieved by loading AlOOH and Al2O3 particles onto the surface, enabled Al-BC to achieve a maximum adsorption capacity of 37.6 mg/g for Se(VI) within 2 h and remove 99.6% of Se(VI) across a pH range of 3-10. The main adsorption mechanism of Se(VI) involved electrostatic attraction, forming outer-sphere complexes between Se(VI) and AlOOH sites on the biochar. The bioavailability of Se sorbed on the spent biochar (Al-BC-Se) was thus evaluated. It was discovered that Al-BC-Se successfully released Se(VI), which impacted the growth of wheat seedlings. The Se content reached 134 μg/g dry weight (DW) in wheat shoots and 638 μg/g DW in roots, significantly exceeding normal selenium content (<40 μg/g DW). By successfully applying the modified biochar to capture selenium from water through adsorption and then reusing it as an essential nutrient in soil, this study suggests the promising feasibility of the "removal-collection-reuse" approach for the circular economy of selenium in wastewater.
Collapse
Affiliation(s)
- Xiuyan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Tianxiao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Centre of Materials Analysis and School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| | - Yuxuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Dunhan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Hanshuo Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, PR China
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, PR China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
2
|
Moulick D, Mukherjee A, Das A, Roy A, Majumdar A, Dhar A, Pattanaik BK, Chowardhara B, Ghosh D, Upadhyay MK, Yadav P, Hazra S, Sarkar S, Mahanta S, Santra SC, Choudhury S, Maitra S, Mishra UN, Bhutia KL, Skalicky M, Obročník O, Bárek V, Brestic M, Hossain A. Selenium - An environmentally friendly micronutrient in agroecosystem in the modern era: An overview of 50-year findings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115832. [PMID: 38141336 DOI: 10.1016/j.ecoenv.2023.115832] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Agricultural productivity is constantly being forced to maintain yield stability to feed the enormously growing world population. However, shrinking arable and nutrient-deprived soil and abiotic and biotic stressor (s) in different magnitudes put additional challenges to achieving global food security. Though well-defined, the concept of macro, micronutrients, and beneficial elements is from a plant nutritional perspective. Among various micronutrients, selenium (Se) is essential in small amounts for the life cycle of organisms, including crops. Selenium has the potential to improve soil health, leading to the improvement of productivity and crop quality. However, Se possesses an immense encouraging phenomenon when supplied within the threshold limit, also having wide variations. The supplementation of Se has exhibited promising outcomes in lessening biotic and abiotic stress in various crops. Besides, bulk form, nano-Se, and biogenic-Se also revealed some merits and limitations. Literature suggests that the possibilities of biogenic-Se in stress alleviation and fortifying foods are encouraging. In this article, apart from adopting a combination of a conventional extensive review of the literature and bibliometric analysis, the authors have assessed the journey of Se in the "soil to spoon" perspective in a diverse agroecosystem to highlight the research gap area. There is no doubt that the time has come to seriously consider the tag of beneficial elements associated with Se, especially in the drastic global climate change era.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India; Plant Stress Biology and Metabolomics Laboratory, Department of Life Science & Bioinformatics, H.G. Khorana School of Life Sciences, Assam University, Silchar 788011, India.
| | - Arkabanee Mukherjee
- Indian Institute of Tropical Meteorology, Dr Homi Bhabha Rd, Panchawati, Pashan, Pune, Maharashtra 411008, India.
| | - Anupam Das
- Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, India.
| | - Anirban Roy
- School of Agriculture and Rural Development, Faculty Centre for IRDM, Ramakrishna Mission Vi-Vekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India.
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Anannya Dhar
- School of Agriculture and Rural Development, Faculty Centre for IRDM, Ramakrishna Mission Vi-Vekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India.
| | - Binaya Kumar Pattanaik
- Institute of Environment Education and Research, Bharati Vidyapeeth (Deemed to be University), Pune 411043, India.
| | - Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies NH-52, Knowledge City, District- Namsai, Arunachal Pradesh 792103, India.
| | - Dibakar Ghosh
- Division of Agronomy, ICAR-Indian Institute of Water Management, Bhubaneswar 751023, Odisha, India.
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India.
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India.
| | - Swati Hazra
- School of Agricultural Sciences, Sharda University, Greater Noida, UP 201310, India.
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Faculty Centre for IRDM, Ramakrishna Mission Vi-Vekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India.
| | - Subrata Mahanta
- Department of Chemistry, National Institute of Technology Jamshedpur, Adityapur, Jamshedpur, Jharkhand 831014, India.
| | - S C Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory, Department of Life Science & Bioinformatics, H.G. Khorana School of Life Sciences, Assam University, Silchar 788011, India.
| | - Sagar Maitra
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Odisha 761211, India.
| | - Udit Nandan Mishra
- Department of Crop Physiology & Biochemistry, Faculty of Agriculture, Sri Sri University, Sri Sri Vihar, Bidyadharpur Arilo, Ward No-03, Cuttack, Odisha 754006, India.
| | - Karma L Bhutia
- Department of Agricultural Biotechnology & Molecular Biology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agricultural University, Pusa (Samastipur), Bihar 848 125, India.
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czechia.
| | - Oliver Obročník
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia.
| | - Viliam Bárek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia.
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czechia; Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovak.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| |
Collapse
|
3
|
van der Ent A, Salinitro M, Brueckner D, Spiers KM, Montanari S, Tassoni A, Schiavon M. Differences and similarities in selenium biopathways in Astragalus, Neptunia (Fabaceae) and Stanleya (Brassicaceae) hyperaccumulators. ANNALS OF BOTANY 2023; 132:349-361. [PMID: 37602676 PMCID: PMC10583200 DOI: 10.1093/aob/mcad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND AND AIMS Selenium hyperaccumulator species are of primary interest for studying the evolution of hyperaccumulation and for use in biofortification because selenium is an essential element in human nutrition. In this study, we aimed to determine whether the distributions of selenium in the three most studied hyperaccumulating taxa (Astragalus bisulcatus, Stanleya pinnata and Neptunia amplexicaulis) are similar or contrasting, in order to infer the underlying physiological mechanisms. METHODS This study used synchrotron-based micro-X-ray fluorescence (µXRF) techniques to visualize the distribution of selenium and other elements in fresh hydrated plant tissues of A. racemosus, S. pinnata and N. amplexicaulis. KEY RESULTS Selenium distribution differed widely in the three species: in the leaves of A. racemosus and N. amplexicaulis selenium was mainly concentrated in the pulvini, whereas in S. pinnata it was primarilylocalized in the leaf margins. In the roots and stems of all three species, selenium was absent in xylem cells, whereas it was particularly concentrated in the pith rays of S. pinnata and in the phloem cells of A. racemosus and N. amplexicaulis. CONCLUSIONS This study shows that Astragalus, Stanleya and Neptunia have different selenium-handling physiologies, with different mechanisms for translocation and storage of excess selenium. Important dissimilarities among the three analysed species suggest that selenium hyperaccumulation has probably evolved multiple times over under similar environmental pressures in the US and Australia.
Collapse
Affiliation(s)
- Antony van der Ent
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, Australia
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France
| | - Mirko Salinitro
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | | | - Sofia Montanari
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Tassoni
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Turin, Italy
| |
Collapse
|
4
|
Shiriaev A, Brizzolara S, Sorce C, Meoni G, Vergata C, Martinelli F, Maza E, Djari A, Pirrello J, Pezzarossa B, Malorgio F, Tonutti P. Selenium Biofortification Impacts the Tomato Fruit Metabolome and Transcriptional Profile at Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13554-13565. [PMID: 37638888 PMCID: PMC10510400 DOI: 10.1021/acs.jafc.3c02031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
In the present work, the effects of enriching tomatoes with selenium were studied in terms of physiological, metabolic, and molecular processes in the last stages of fruit development, particularly during ripening. A selenium concentration of 10 mg L-1 with sodium selenate and selenium nanoparticles was used in the spray treatments on the whole plants. No significant effects of selenium enrichment were detected in terms of ethylene production or color changes in the ripening fruit. However, selenium enrichment had an influence on both the primary and secondary metabolic processes and thus the biochemical composition of ripe tomatoes. Selenium decreased the amount of β-carotene, increased the accumulation of naringenin and chlorogenic acid, and decreased the coumaric acid level. Selenium also affected the volatile organic compound profile, with changes in the level of specific apocarotenoid compounds, such as β-ionone. These metabolomic changes may, to some extent, be due to the impact of selenium treatment on the transcription of genes involved in the metabolism of these compounds. RNA-seq analysis showed that the selenium application mostly impacted the expression of the genes involved in hormonal signaling, secondary metabolism, flavonoid biosynthesis, and glycosaminoglycan degradation.
Collapse
Affiliation(s)
- Anton Shiriaev
- Crop
Science Research Center, Sant’Anna
School of Advanced Studies, 56127 Pisa, Italy
- Research
Institute on Terrestrial Ecosystems, CNR, 56124 Pisa, Italy
| | - Stefano Brizzolara
- Crop
Science Research Center, Sant’Anna
School of Advanced Studies, 56127 Pisa, Italy
| | - Carlo Sorce
- Department
of Biology, University of Pisa, 56126 Pisa, Italy
| | - Gaia Meoni
- Magnetic
Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Chiara Vergata
- Department
of Biology, University of Florence, 50122 Florence, Italy
| | | | - Elie Maza
- Laboratoire
de Recherche en Sciences Végétales-Génomique
et Biotechnologie des Fruits − UMR 5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, 31062 Toulouse, France
| | - Anis Djari
- Laboratoire
de Recherche en Sciences Végétales-Génomique
et Biotechnologie des Fruits − UMR 5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, 31062 Toulouse, France
| | - Julien Pirrello
- Laboratoire
de Recherche en Sciences Végétales-Génomique
et Biotechnologie des Fruits − UMR 5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, 31062 Toulouse, France
| | | | - Fernando Malorgio
- Department
of Agriculture, Food and Environment, University
of Pisa, 56124 Pisa, Italy
| | - Pietro Tonutti
- Crop
Science Research Center, Sant’Anna
School of Advanced Studies, 56127 Pisa, Italy
| |
Collapse
|
5
|
Li J, Huang C, Lai L, Wang L, Li M, Tan Y, Zhang T. Selenium hyperaccumulator plant Cardamine enshiensis: from discovery to application. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5515-5529. [PMID: 37355493 DOI: 10.1007/s10653-023-01595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 06/26/2023]
Abstract
Selenium (Se) is an essential trace element for animals and humans. Se biofortification and Se functional agriculture are emerging strategies to satisfy the needs of people who are deficient in Se. With 200 km2 of Se-excess area, Enshi is known as the "world capital of Se." Cardamine enshiensis (C. enshiensis) is a Se hyperaccumulation plant discovered in the Se mine drainage area of Enshi. It is edible and has been approved by National Health Commission of the People's Republic of China as a new source of food, and the annual output value of the Se-rich industry in Enshi City exceeds 60 billion RMB. This review will mainly focus on the discovery and mechanism underlying Se tolerance and Se hyperaccumulation in C. enshiensis and highlight its potential utilization in Se biofortification agriculture, graziery, and human health.
Collapse
Affiliation(s)
- Jiao Li
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuying Huang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China.
| | - Lin Lai
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li Wang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Minglong Li
- Second Geological Brigade of Hubei Geological Bureau, Enshi, 445000, Hubei, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Tao Zhang
- Cancer Center, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Montanari S, Salinitro M, Simoni A, Ciavatta C, Tassoni A. Foraging for selenium: a comparison between hyperaccumulator and non-accumulator plant species. Sci Rep 2023; 13:10661. [PMID: 37391494 PMCID: PMC10313833 DOI: 10.1038/s41598-023-37249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Selenium (Se) hyperaccumulators are a unique group of plants that can accumulate this element in their aerial parts at concentrations exceeding 100 mg kgDW-1. These plants actively search for Se in the soil, a phenomenon known as root foraging, reported to date only by few studies. In this study, the effect of localized Se enrichment, in the form of selenite and selenate, was investigated on the root architecture of two Se-hyperaccumulators (Stanleya pinnata and Astragalus bisulcatus) and two non-accumulators (Brassica juncea and Medicago sativa). Rhizoboxes were divided into two halves: one half was filled with control soil while the other with selenate or selenite (30 mg kgDW-1) spiked soil. Seedling were transferred into the interface of the two soils and allowed to grow for three weeks under controlled light and temperature conditions. Staneya pinnata exhibited equal root density in both halves of the rhizobox when grown in control/control and selenite/control soil treatments. However, in the presence of selenate, S. pinnata developed 76% of the roots towards the selenate-enriched half, indicating an active root foraging. In contrast, A. bisulcatus and the non-accumulators B. juncea and M. sativa did not show any preferential distribution of roots. This study revealed that only S. pinnata showed the ability to detect and forage for Se when provided as selenate. Non-accumulators did not show any morphological or Se-accumulation difference associated with the presence of Se in soil in either form.
Collapse
Affiliation(s)
- Sofia Montanari
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Mirko Salinitro
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Andrea Simoni
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 40, 40127, Bologna, Italy
| | - Claudio Ciavatta
- Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 40, 40127, Bologna, Italy
- Centro Interdipartimentale di Ricerca Industriale sull'Agroalimentare, University of Bologna, Via Quinto Bucci 336, 47521, Cesena, Italy
| | - Annalisa Tassoni
- Department of Biological Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Centro Interdipartimentale di Ricerca Industriale sull'Agroalimentare, University of Bologna, Via Quinto Bucci 336, 47521, Cesena, Italy
| |
Collapse
|
7
|
Qu L, Xu J, Dai Z, Elyamine AM, Huang W, Han D, Dang B, Xu Z, Jia W. Selenium in soil-plant system: Transport, detoxification and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131272. [PMID: 37003006 DOI: 10.1016/j.jhazmat.2023.131272] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans and a beneficial element for plants. However, high Se doses always exhibit hazardous effects. Recently, Se toxicity in plant-soil system has received increasing attention. This review will summarize (1) Se concentration in soils and its sources, (2) Se bioavailability in soils and influencing factors, (3) mechanisms on Se uptake and translocation in plants, (4) toxicity and detoxification of Se in plants and (5) strategies to remediate Se pollution. High Se concentration mainly results from wastewater discharge and industrial waste dumping. Selenate (Se [VI]) and selenite (Se [IV]) are the two primary forms absorbed by plants. Soil conditions such as pH, redox potential, organic matter and microorganisms will influence Se bioavailability. In plants, excessive Se will interfere with element uptake, depress photosynthetic pigment biosynthesis, generate oxidative damages and cause genotoxicity. Plants employ a series of strategies to detoxify Se, such as activating antioxidant defense systems and sequestrating excessive Se in the vacuole. In order to alleviate Se toxicity to plants, some strategies can be applied, including phytoremediation, OM remediation, microbial remediation, adsorption technique, chemical reduction technology and exogenous substances (such as Methyl jasmonate, Nitric oxide and Melatonin). This review is expected to expand the knowledge of Se toxicity/detoxicity in soil-plant system and offer valuable insights into soils Se pollution remediation strategies.
Collapse
Affiliation(s)
- Lili Qu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhihua Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Liaskos M, Fark N, Ferrario P, Engelbert AK, Merz B, Hartmann B, Watzl B. First review on the selenium status in Germany covering the last 50 years and on the selenium content of selected food items. Eur J Nutr 2023; 62:71-82. [PMID: 36083522 PMCID: PMC9899741 DOI: 10.1007/s00394-022-02990-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 08/24/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Selenium is important for human health. However, the selenium status and selenium intake of the German population has not been recorded in a representative study so far. MATERIAL AND METHODS Thus, literature from the last 50 years was screened in a systematic way and the results of various studies were pulled together to shed light on the selenium status of the German population. Moreover, the selenium content of selected food items that were either found on the German market or grown in Germany was researched and evaluated. RESULTS Of 3542 articles identified, 37 studies met the inclusion criteria. These 37 studies comprised a total of 8,010 healthy adults living in Germany with a weighted arithmetic mean of 82 μg/l selenium in plasma or serum. The results will form a basis for interpreting upcoming results from national food consumption surveys. Furthermore, 363 selenium values for 199 food items were identified out of 20 data sources-published or analysed between 2002 and 2019. An estimation of the selenium intake of the German population will be possible with this data in future nutrition surveys.
Collapse
Affiliation(s)
- Marina Liaskos
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany.
| | - Nicole Fark
- Department of Nutritional Behaviour, Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Paola Ferrario
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Ann Katrin Engelbert
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Benedikt Merz
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Bernd Hartmann
- Department of Nutritional Behaviour, Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| |
Collapse
|
9
|
Pinto Irish K, Harvey MA, Harris HH, Aarts MGM, Chan CX, Erskine PD, van der Ent A. Micro-analytical and molecular approaches for understanding the distribution, biochemistry, and molecular biology of selenium in (hyperaccumulator) plants. PLANTA 2022; 257:2. [PMID: 36416988 PMCID: PMC9684236 DOI: 10.1007/s00425-022-04017-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Micro-analytical techniques to untangle Se distribution and chemical speciation in plants coupled with molecular biology analysis enable the deciphering of metabolic pathways responsible for Se tolerance and accumulation. Selenium (Se) is not essential for plants and is toxic at high concentrations. However, Se hyperaccumulator plants have evolved strategies to both tolerate and accumulate > 1000 µg Se g-1 DW in their living above-ground tissues. Given the complexity of the biochemistry of Se, various approaches have been adopted to study Se metabolism in plants. These include X-ray-based techniques for assessing distribution and chemical speciation of Se, and molecular biology techniques to identify genes implicated in Se uptake, transport, and assimilation. This review presents these techniques, synthesises the current state of knowledge on Se metabolism in plants, and highlights future directions for research into Se (hyper)accumulation and tolerance. We conclude that powerful insights may be gained from coupling information on the distribution and chemical speciation of Se to genome-scale studies to identify gene functions and molecular mechanisms that underpin Se tolerance and accumulation in these ecologically and biotechnologically important plants species. The study of Se metabolism is challenging and is a useful testbed for developing novel analytical approaches that are potentially more widely applicable to the study of the regulation of a wide range of metal(loid)s in hyperaccumulator plants.
Collapse
Affiliation(s)
- Katherine Pinto Irish
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia
| | - Maggie-Anne Harvey
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, SA, Australia
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Cheong Xin Chan
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, QLD, 4072, Australia
| | - Peter D Erskine
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia
| | - Antony van der Ent
- The University of Queensland, Sustainable Minerals Institute, Centre for Mined Land Rehabilitation, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
10
|
Ramakrishnan M, Arivalagan J, Satish L, Mohan M, Samuel Selvan Christyraj JR, Chandran SA, Ju HJ, John L A, Ramesh T, Ignacimuthu S, Kalishwaralal K. Selenium: a potent regulator of ferroptosis and biomass production. CHEMOSPHERE 2022; 306:135531. [PMID: 35780987 DOI: 10.1016/j.chemosphere.2022.135531] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Emerging evidence supports the notion that selenium (Se) plays a beneficial role in plant development for modern crop production and is considered an essential micronutrient and the predominant source of plants. However, the essential role of selenium in plant metabolism remains unclear. When used in moderate concentrations, selenium promotes plant physiological processes such as enhancing plant growth, increasing antioxidant capacity, reducing reactive oxygen species and lipid peroxidation and offering stress resistance by preventing ferroptosis cell death. Ferroptosis, a recently discovered mechanism of regulated cell death (RCD) with unique features such as iron-dependant accumulation of lipid peroxides, is distinctly different from other known forms of cell death. Glutathione peroxidase (GPX) activity plays a significant role in scavenging the toxic by-products of lipid peroxidation in plants. A low level of GPX activity in plants causes high oxidative stress, which leads to ferroptosis. An integrated view of ferroptosis and selenium in plants and the selenium-mediated nanofertilizers (SeNPs) have been discussed in more recent studies. For instance, selenium supplementation enhanced GPX4 expression and increased TFH cell (Follicular helper T) numbers and the gene transcriptional program, which prevent lipid peroxidase and protect cells from ferroptosis. However, though ferroptosis in plants is similar to that in animals, only few studies have focused on plant-specific ferroptosis; the research on ferroptosis in plants is still in its infancy. Understanding the implication of selenium with relevance to ferroptosis is indispensable for plant bioresource technology. In this review, we hypothesize that blocking ferroptosis cell death improves plant immunity and protects plants from abiotic and biotic stresses. We also examine how SeNPs can be the basis for emerging unconventional and advanced technologies for algae/bamboo biomass production. For instance, algae treated with SeNPs accumulate high lipid profile in algal cells that could thence be used for biodiesel production. We also suggest that further studies in the field of SeNPs are essential for the successful application of this technology for the large-scale production of plant biomass.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Jaison Arivalagan
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Lakkakula Satish
- Department of Biotechnology Engineering, & The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR - Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India
| | - Manikandan Mohan
- College of Pharmacy, University of Georgia, Athens, GA, USA; VAXIGEN International Research Center Private Limited, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamilnadu, India
| | - Sam Aldrin Chandran
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401 India
| | - Ho-Jong Ju
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Anoopa John L
- The Dale View College of Pharmacy and Research Centre, Thiruvananthapuram, Kerala, India
| | - Thiyagarajan Ramesh
- Deapartment of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University,P.O.Box:173, AI-Kharaj 11942,Saudi Arabia
| | | | - Kalimuthu Kalishwaralal
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
11
|
Chen H, Cheng Q, Chen Q, Ye X, Qu Y, Song W, Fahad S, Gao J, Saud S, Xu Y, Shen Y. Effects of Selenium on Growth and Selenium Content Distribution of Virus-Free Sweet Potato Seedlings in Water Culture. FRONTIERS IN PLANT SCIENCE 2022; 13:965649. [PMID: 35874011 PMCID: PMC9298572 DOI: 10.3389/fpls.2022.965649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Understanding the selenium tolerance of different sweet potato [Dioscorea esculenta (Lour.) Burkill] is essential for simultaneously for breeding of new selenium-tolerant varieties and improving the selenium content in sweet potato. Therefore, a greenhouse experiment was conducted from February to April 2022 to evaluate the effect of sweet potato cultivars and selenium (Na2SeO3) concentrations (0-40 mg/L) on plant growth, physiological activities and plant selenium content distribution. The results showed that when the selenium concentration was more than 3 mg/L, the plant growth was significantly affected and the plant height and root length were significantly different compared to the control. While the selenium concentration was 20 and 40 mg/L had the greatest effect on plant growth when the number of internodes and leaves of the plant decreased, the root system stopped growing and the number of internodes of the plant, the number of leaves and the dry-to-fresh weight ratio of the plant a very significant level compared to reached control. The relative amount of chlorophyll in leaves under treatment with a selenium concentration of 1 mg/L was increased, and the relative amount of chlorophyll in 3 mg/L leaves gradually increased with the increase in the selenium concentration. The values of the maximum photochemical efficiency PSII (fv/fm) and the potential activity of PSII (fv/fo) compared to the control under treatment with 40 mg/L selenium concentration and photosynthesis of plants was inhibited. The selenium content in root, stem and leaf increased with the increase in selenium concentration, and the distribution of selenium content in the plant was leaf <stem <root, and the selenium content in root was significantly higher than that in stem and leaf. In summary, the appropriate concentration of selenium tolerance has been determined to be 3 mg/L. The aquatic culture identification method of selenium tolerance of sweet potatoes and growth indices of various selenium tolerant varieties (lines) established in this study will provide a technical basis for selenium tolerant cultivation and mechanism research.
Collapse
Affiliation(s)
- Huoyun Chen
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
- Enshi Comprehensive Test Station of Sweet Potato Industry Technology System, Enshi, China
| | - Qun Cheng
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
- Enshi Comprehensive Test Station of Sweet Potato Industry Technology System, Enshi, China
| | - Qiaoling Chen
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
- Enshi Comprehensive Test Station of Sweet Potato Industry Technology System, Enshi, China
| | - Xingzhi Ye
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
- Enshi Comprehensive Test Station of Sweet Potato Industry Technology System, Enshi, China
| | - Yong Qu
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Enshi Comprehensive Test Station of Sweet Potato Industry Technology System, Enshi, China
| | - Weiwu Song
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Department of Agronomy, Faculty of Agricultural Sciences, The University of Haripur, Haripur, Pakistan
| | - Jianhua Gao
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
| | - Shah Saud
- College of Life Science, Linyi University, Linyi, China
| | - Yi Xu
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
- Enshi Comprehensive Test Station of Sweet Potato Industry Technology System, Enshi, China
| | - Yanfen Shen
- Academy of Agricultural Sciences, Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Enshi South China Potato Research Center, Enshi, China
| |
Collapse
|
12
|
Lyu C, Chen J, Li L, Zhao Z, Liu X. Characteristics of Se in water-soil-plant system and threshold of soil Se in seleniferous areas in Enshi, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154372. [PMID: 35259387 DOI: 10.1016/j.scitotenv.2022.154372] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Se-enrichment characteristics in water-soil-plant system and dietary Se status of local residents in seleniferous areas were investigated. Results showed that Se in well water might mainly derived from Se-enriched shales and coals, and Se mobility in seleniferous soils was relatively low with less than 6.7% bioavailable forms in high-Se areas. Soil Se with irrigation, precipitation and fertilization sources contributed more to soil Se than Se-enriched shales and coals in low-Se areas, resulting in slightly higher mobility of Se in low-Se soils. Se concentration in edible parts of main crops ranged from 0.005 mg kg-1 to 4.17 mg kg-1, and cereal plants had a higher Se-enrichment ability than tuber plants. The probable dietary Se intake (PDI) in high-Se areas was decreased to 959.3 μg d-1 in recent years, which might be attributed to tap water as drinking water in recent year rather than well water-dependent and changes in dietary structure, but still far above the permissible value of 400 μg d-1. Reducing cereal-derived dietary Se intake is an important strategy to better Se nutrition status in high-Se areas. After synthesis considerations on soil Se bioavailability and PDI of Se, the soil total Se of 4 mg kg-1 and the soil available Se content of 0.32 mg kg-1 were proposed to be the reference threshold values of soil Se excess in high-Se areas in Enshi, respectively.
Collapse
Affiliation(s)
- Chenhao Lyu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Jiawei Chen
- Agriculture and Rural Bureau of Jianshi County, Jianshi 445300, Hubei, China
| | - Lei Li
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Zhuqing Zhao
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Xinwei Liu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China.
| |
Collapse
|
13
|
Antioxidant potential and essential oil properties of Hypericum perforatum L. assessed by application of selenite and nano-selenium. Sci Rep 2022; 12:6156. [PMID: 35418599 PMCID: PMC9007960 DOI: 10.1038/s41598-022-10109-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/25/2022] [Indexed: 01/24/2023] Open
Abstract
It is necessary to develop a simple way to achieve food quality quantitatively. Nanotechnology is a key advanced technology enabling contribution, development, and sustainable impact on food, medicine, and agriculture. In terms of medicinal and therapeutic properties, Hypericumperforatum is an important species. For this study, a randomized complete block design with three replications was used in each experimental unit. The foliar application of selenite and nano-selenium (6, 8, 10, and 12 mg/l), control (distilled water), at the rosette stage and harvesting at 50% flowering stage has been applied as an alleviation strategy subjected to producing essential oils and antioxidant activity. Experimental results revealed that the selenite and nano selenium fertilizers had a significant effect on traits such as total weight of biomass, essential oil percentage, the content of hypericin and hyperforin, the selenium accumulation in the plant, relative leaf water content, chlorophylls, phenolic content, proline, catalase, peroxidase, malondialdehyde, and DPPH. The highest essential oil content was obtained from the control treatment when the accumulation of selenium was achieved with 12 mg/l nano-selenium. The maximum rate of hypericin was seen in the foliar application of 8 mg/l selenite whereas the maximum hyperforin was gained at 10 mg/l selenium. Conceding that the goal is to produce high hypericin/ hyperforin, and also the accumulation of selenium in the plant, treatments of 6 and 8 mg/l of selenite and nano-selenium could be applied. Consequently, an easy detection technique proposed herein can be successfully used in different ranges, including biology, medicine, and the food industry.
Collapse
|
14
|
Lima LW, Castleberry M, Wangeline AL, Aguirre B, Dall’Acqua S, Pilon-Smits EAH, Schiavon M. Hyperaccumulator Stanleya pinnata: In Situ Fitness in Relation to Tissue Selenium Concentration. PLANTS (BASEL, SWITZERLAND) 2022; 11:690. [PMID: 35270160 PMCID: PMC8912631 DOI: 10.3390/plants11050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Earlier studies have shown that Stanleya pinnata benefits from selenium hyperaccumulation through ecological benefits and enhanced growth. However, no investigation has assayed the effects of Se hyperaccumulation on plant fitness in the field. This research aimed to analyze how variation in Se accumulation affects S. pinnata fitness, judged from physiological and biochemical performance parameters and herbivory while growing naturally on two seleniferous sites. Natural variation in Se concentration in vegetative and reproductive tissues was determined, and correlations were explored between Se levels with fitness parameters, herbivory damage, and plant defense compounds. Leaf Se concentration varied between 13- and 55-fold in the two populations, averaging 868 and 2482 mg kg−1 dry weight (DW). Furthermore, 83% and 31% of plants from the two populations showed Se hyperaccumulator levels in leaves (>1000 mg kg−1 DW). In seeds, the Se levels varied 3−4-fold and averaged 3372 and 2267 mg kg−1 DW, well above the hyperaccumulator threshold. Plant size and reproductive parameters were not correlated with Se concentration. There was significant herbivory pressure even on the highest-Se plants, likely from Se-resistant herbivores. We conclude that the variation in Se hyperaccumulation did not appear to enhance or compromise S. pinnata fitness in seleniferous habitats within the observed Se range.
Collapse
Affiliation(s)
- Leonardo Warzea Lima
- Biology Department, Colorado State University, Fort Collins, CO 80523, USA; (L.W.L.); (M.C.); (E.A.H.P.-S.)
| | - McKenna Castleberry
- Biology Department, Colorado State University, Fort Collins, CO 80523, USA; (L.W.L.); (M.C.); (E.A.H.P.-S.)
| | - Ami L. Wangeline
- Biology Department, Laramie County Community College, Cheyenne, WY 82007, USA; (A.L.W.); (B.A.)
| | - Bernadette Aguirre
- Biology Department, Laramie County Community College, Cheyenne, WY 82007, USA; (A.L.W.); (B.A.)
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| | | | - Michela Schiavon
- Biology Department, Colorado State University, Fort Collins, CO 80523, USA; (L.W.L.); (M.C.); (E.A.H.P.-S.)
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
15
|
Yang H, Yang X, Ning Z, Kwon SY, Li ML, Tack FMG, Kwon EE, Rinklebe J, Yin R. The beneficial and hazardous effects of selenium on the health of the soil-plant-human system: An overview. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126876. [PMID: 34416699 DOI: 10.1016/j.jhazmat.2021.126876] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/25/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se), which can be both hazardous and beneficial to plants, animals and humans, plays a pivotal role in regulating soil-plant-human ecosystem functions. The biogeochemical behavior of Se and its environmental impact on the soil-plant-human system has received broad attention in the last decades. This review provides a comprehensive understanding of Se biogeochemistry in the soil-plant-human system. The speciation, transformation, bioavailability as well as the beneficial and hazardous effects of Se in the soil-plant-human system are summarized. Several important aspects in Se in the soil-plant-human system are detailed mentioned, including (1) strategies for biofortification in Se-deficient areas and phytoremediation of soil Se in seleniferous areas; (2) factors affecting Se uptake and transport by plants; (3) metabolic pathways of Se in the human body; (4) the interactions between Se and other trace elements in plant and animals, in particular, the detoxification of heavy metals by Se. Important research hotspots of Se biogeochemistry are outlined, including (1) the coupling of soil microbial activity and the Se biogeochemical cycle; (2) the molecular mechanism of Se metabolic in plants and animals; and (3) the application of Se isotopes as a biogeochemical tracer in research. This review provides up-to-date knowledge and guidelines on Se biogeochemistry research.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Guizhou Academy of Tobacco Science, 550081 Guiyang, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Sae Yun Kwon
- Division of Environmental Science & Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam Gu, Pohang 37673, South Korea
| | - Mi-Ling Li
- School of Marine Science and Policy, University of Delaware, Newark, DE 19716 USA
| | - Filip M G Tack
- Ghent University, Department of Green Chemistry and Technology, Ghent, Belgium
| | - Eilhann E Kwon
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Jörg Rinklebe
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
16
|
Zhang H, Hao X, Zhang J, Wang L, Wang Y, Li N, Guo L, Ren H, Zeng J. Genome-wide identification of SULTR genes in tea plant and analysis of their expression in response to sulfur and selenium. PROTOPLASMA 2022; 259:127-140. [PMID: 33884505 DOI: 10.1007/s00709-021-01643-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Sulfur (S) is an essential macronutrient required by plants. Plants absorb and transport S through sulfate transporters (SULTRs). In this study, we cloned 8 SULTR genes (CsSULTR1;1/1;2/2;1/3;1/3;2/3;3/3;5/4;1) from tea plant (Camellia sinensis), all of which contain a typical sulfate transporter and antisigma factor antagonist (STAS) conserved domain. Phylogenetic tree analysis further divided the CsSULTRs into four main groups. Many cis-acting elements related to hormones and environmental stresses were found within the promoter sequence of CsSULTRs. Subcellular localization results showed that CsSULTR4;1 localized in the vacuolar membrane and that other CsSULTRs localized to the cellular membrane. The tissue-specific expression of the 8 CsSULTR genes showed different expression patterns during the active growing period and dormancy period. In particular, the expression of CsSULTR1;1 was highest in the roots, but that of CsSULTR1;2 was lowest in the dormancy period. The expression of CsSULTR1;1/1;2/2;1/3;2 was stimulated under different concentrations of selenium (Se) and S; moreover, CsSULTR1;2/2;1/3;3/3;5 was upregulated in response to different valences of Se.
Collapse
Affiliation(s)
- Haojie Zhang
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
- Huaiyin Institute of Agricultural Sciences of Xuhuai District in Jiangsu, Huai'an, 223001, China
| | - Xinyuan Hao
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Jingjing Zhang
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Lu Wang
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Yuchun Wang
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Nana Li
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Lina Guo
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Hengze Ren
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Jianming Zeng
- National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| |
Collapse
|
17
|
Rizwan M, Ali S, Rehman MZU, Rinklebe J, Tsang DCW, Tack FMG, Abbasi GH, Hussain A, Igalavithana AD, Lee BC, Ok YS. Effects of selenium on the uptake of toxic trace elements by crop plants: A review. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2021. [PMID: 0 DOI: 10.1080/10643389.2020.1796566] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Muhammad Zia ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, Soil- and Groundwater-Management, Wuppertal, Germany
- Department of Environment, Energy and Geoinformatics, University of Sejong, Seoul, South Korea
| | - Daniel C. W. Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Filip M. G. Tack
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Ghulam Hasan Abbasi
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Afzal Hussain
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- Department of Soil Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Byung Cheon Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Rai GK, Bhat BA, Mushtaq M, Tariq L, Rai PK, Basu U, Dar AA, Islam ST, Dar TUH, Bhat JA. Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies. PHYSIOLOGIA PLANTARUM 2021; 173:287-304. [PMID: 33864701 DOI: 10.1111/ppl.13433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
In the current era of rapid industrialization, the foremost challenge is the management of industrial wastes. Activities such as mining and industrialization spill over a large quantity of toxic waste that pollutes soil, water, and air. This poses a major environmental and health challenge. The toxic heavy metals present in the soil and water are entering the food chain, which in turn causes severe health hazards. Environmental clean-up and reclamation of heavy metal contaminated soil and water are very important, and it necessitates efforts of environmentalists, industrialists, scientists, and policymakers. Phytoremediation is a plant-based approach to remediate heavy metal/organic pollutant contaminated soil and water in an eco-friendly, cost-effective, and permanent way. This review covers the effect of heavy metal toxicity on plant growth and physiological process, the concept of heavy metal accumulation, detoxification, and the mechanisms of tolerance in plants. Based on plants' ability to uptake heavy metals and metabolize them within tissues, phytoremediation techniques have been classified into six types: phytoextraction, phytoimmobilization, phytovolatilization, phytodegradation, rhizofiltration, and rhizodegradation. The development of research in this area led to the identification of metal hyper-accumulators, which could be utilized for reclamation of contaminated soil through phytomining. Concurrently, breeding and biotechnological approaches can enhance the remediation efficiency. Phytoremediation technology, combined with other reclamation technologies/practices, can provide clean soil and water to the ecosystem.
Collapse
Affiliation(s)
- Gyanendra K Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Basharat A Bhat
- Department of Bioresources, University of Kashmir, Jammu and Kashmir, India
| | - Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Lubna Tariq
- Department of Biotechnology, BGSB University, Jammu and Kashmir, India
| | - Pradeep K Rai
- Advance Center for Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Umer Basu
- Division of Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Aejaz A Dar
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Sheikh T Islam
- Department of Bioresources, University of Kashmir, Jammu and Kashmir, India
| | - Tanvir U H Dar
- Department of Biotechnology, BGSB University, Jammu and Kashmir, India
| | - Javaid A Bhat
- Ministry of Agriculture (MOA) Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
|
20
|
Raina M, Sharma A, Nazir M, Kumari P, Rustagi A, Hami A, Bhau BS, Zargar SM, Kumar D. Exploring the new dimensions of selenium research to understand the underlying mechanism of its uptake, translocation, and accumulation. PHYSIOLOGIA PLANTARUM 2021; 171:882-895. [PMID: 33179766 DOI: 10.1111/ppl.13275] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Selenium (Se) is a vital mineral for both plants and animals. It is widely distributed on the earth's crust and is taken up by the plants as selenite or selenate. Plants substantially vary in their physiological response to Se. The amount of Se in edible plants is genetically controlled. Its availability can be determined by measuring its phytoavailability in soil. The low concentration of Se in plants can help them in combating stress, whereas higher concentrations can be detrimental to plant health and in most cases it is toxic. Thus, solving the double-edged sword problem of nutritional Se deficiency and its elevated concentrations in environment requires a better understanding of Se uptake and metabolism in plants. The studies on Se uptake and metabolism can help in genetic biofortification of Se in plants and also assist in phytoremediation. Moreover, Se uptake and transport, especially biochemical pathways of assimilation and incorporation into proteins, offers striking mechanisms of toxicity and tolerance. These developments have led to a revival of Se research in higher plants with significant break throughs being made in the previous years. This review explores the new dimensions of Se research with major emphasis on key research events related to Se undertaken in last few years. Further, we also discussed future possibilities in Se research for crop improvement.
Collapse
Affiliation(s)
- Meenakshi Raina
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Akanksha Sharma
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Muslima Nazir
- Center of Research for Development (CORD), University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Punam Kumari
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, India
| | - Anjana Rustagi
- Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Brijmohan Singh Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
21
|
|
22
|
Favorito JE, Grossl PR, Davis TZ, Eick MJ, Hankes N. Soil-plant-animal relationships and geochemistry of selenium in the Western Phosphate Resource Area (United States): A review. CHEMOSPHERE 2021; 266:128959. [PMID: 33279237 DOI: 10.1016/j.chemosphere.2020.128959] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
While naturally found in trace quantities, several regions throughout the world have been designated as "seleniferous" or containing an overabundance of the trace element, selenium (Se), in soil. In particular, portions of the Western Phosphate Resource Area (WPRA) of the United States are considered seleniferous, notably due to past phosphate mining reclamation practices that have promoted Se release and accumulation in soil from weathering overburden waste rock. Concern over Se soil contamination in this region has been attributed to its high levels (ranging from 2.7 to 435 mg Se kg-1 soil), bioavailability, and subsequent hyperaccumulation in vegetation at toxic concentrations (exceeding 10,000 mg Se kg-1 plant tissue). The Se hyperaccumulator, western aster (Symphyotrichum ascendens (Lindl.)), is responsible for the vast majority of acute selenium livestock poisonings and fatalities throughout the region. This inherent bioavailability is largely controlled by soil redox chemistry and sorptive processes. The purpose of this review is to integrate information related to the unique site history of the WPRA from onset mining to current Se problems. This review will provide current details and connection of WPRA mining geology, soil Se geochemistry, plant hyperaccumulation, and related livestock fatalities. Soil remediation strategies will also be discussed along with their applicability and viability in this particular anthropogenically-influenced seleniferous region.
Collapse
Affiliation(s)
- Jessica E Favorito
- Environmental Science Program, 101 Vera King Farris Dr., Stockton University, Galloway, NJ, 08205, USA.
| | - Paul R Grossl
- Department of Plants, Soils, and Climate, 4820 Old Main Hill, Utah State University, Logan, UT, 84322, USA.
| | - Thomas Zane Davis
- USDA-ARS Poisonous Plant Research, 1150 East 1400 North, Logan, UT, 84341, USA.
| | - Matthew J Eick
- Department of Crop and Soil Environmental Sciences, 185 Ag Quad Ln, 237 Smyth Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Nathan Hankes
- Department of Plants, Soils, and Climate, 4820 Old Main Hill, Utah State University, Logan, UT, 84322, USA.
| |
Collapse
|
23
|
Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules 2021; 26:molecules26040881. [PMID: 33562416 PMCID: PMC7914768 DOI: 10.3390/molecules26040881] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
The trace element selenium (Se) is a crucial element for many living organisms, including soil microorganisms, plants and animals, including humans. Generally, in Nature Se is taken up in the living cells of microorganisms, plants, animals and humans in several inorganic forms such as selenate, selenite, elemental Se and selenide. These forms are converted to organic forms by biological process, mostly as the two selenoamino acids selenocysteine (SeCys) and selenomethionine (SeMet). The biological systems of plants, animals and humans can fix these amino acids into Se-containing proteins by a modest replacement of methionine with SeMet. While the form SeCys is usually present in the active site of enzymes, which is essential for catalytic activity. Within human cells, organic forms of Se are significant for the accurate functioning of the immune and reproductive systems, the thyroid and the brain, and to enzyme activity within cells. Humans ingest Se through plant and animal foods rich in the element. The concentration of Se in foodstuffs depends on the presence of available forms of Se in soils and its uptake and accumulation by plants and herbivorous animals. Therefore, improving the availability of Se to plants is, therefore, a potential pathway to overcoming human Se deficiencies. Among these prospective pathways, the Se-biofortification of plants has already been established as a pioneering approach for producing Se-enriched agricultural products. To achieve this desirable aim of Se-biofortification, molecular breeding and genetic engineering in combination with novel agronomic and edaphic management approaches should be combined. This current review summarizes the roles, responses, prospects and mechanisms of Se in human nutrition. It also elaborates how biofortification is a plausible approach to resolving Se-deficiency in humans and other animals.
Collapse
|
24
|
Ligowe IS, Bailey EH, Young SD, Ander EL, Kabambe V, Chilimba AD, Lark RM, Nalivata PC. Agronomic iodine biofortification of leafy vegetables grown in Vertisols, Oxisols and Alfisols. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:361-374. [PMID: 32965604 DOI: 10.1016/j.geoderma.2019.114106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 08/31/2020] [Indexed: 05/19/2023]
Abstract
Iodine deficiency disorders (IDD) in sub-Saharan African countries are related to low dietary I intake and generally combatted through salt iodisation. Agronomic biofortification of food crops may be an alternative approach. This study assessed the effectiveness of I biofortification of green vegetables (Brassica napus L and Amaranthus retroflexus L.) grown in tropical soils with contrasting chemistry and fertility. Application rates of 0, 5 and 10 kg ha-1 I applied to foliage or soil were assessed. Leaves were harvested fortnightly for ~ 2 months after I application before a second crop was grown to assess the availability of residual soil I. A separate experiment was used to investigate storage of I within the plants. Iodine concentration and uptake in sequential harvests showed a sharp drop within 28 days of I application in all soil types for all I application levels and methods. This rapid decline likely reflects I fixation in the soil. Iodine biofortification increased I uptake and concentration in the vegetables to a level useful for increasing dietary I intake and could be a feasible way to reduce IDD in tropical regions. However, biofortification of green vegetables which are subject to multiple harvests requires repeated I applications.
Collapse
Affiliation(s)
- Ivy Sichinga Ligowe
- Lilongwe University of Agriculture and Natural Resources, Bunda Campus, P.O. Box 219, Lilongwe, Malawi
- Department of Agricultural Research Services, P.O. Box 30779, Lilongwe 3, Malawi
| | - E H Bailey
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - S D Young
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - E L Ander
- Centre for Environmental Geochemistry, British Geological Survey, Nottingham, NG12 5GG, UK
| | - V Kabambe
- Lilongwe University of Agriculture and Natural Resources, Bunda Campus, P.O. Box 219, Lilongwe, Malawi
| | - A D Chilimba
- Department of Agricultural Research Services, P.O. Box 30779, Lilongwe 3, Malawi
| | - R M Lark
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - P C Nalivata
- Lilongwe University of Agriculture and Natural Resources, Bunda Campus, P.O. Box 219, Lilongwe, Malawi
| |
Collapse
|
25
|
Abdalla MA, Sulieman S, Mühling KH. Regulation of Selenium/Sulfur Interactions to Enhance Chemopreventive Effects: Lessons to Learn from Brassicaceae. Molecules 2020; 25:molecules25245846. [PMID: 33322081 PMCID: PMC7763292 DOI: 10.3390/molecules25245846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
Selenium (Se) is an essential trace element, which represents an integral part of glutathione peroxidase and other selenoproteins involved in the protection of cells against oxidative damage. Selenomethionine (SeMet), selenocysteine (SeCys), and methylselenocysteine (MeSeCys) are the forms of Se that occur in living systems. Se-containing compounds have been found to reduce carcinogenesis of animal models, and dietary supplemental Se might decrease cancer risk. Se is mainly taken up by plant roots in the form of selenate via high-affinity sulfate transporters. Consequently, owing to the chemical similarity between Se and sulfur (S), the availability of S plays a key role in Se accumulation owing to competition effects in absorption, translocation, and assimilation. Moreover, naturally occurring S-containing compounds have proven to exhibit anticancer potential, in addition to other bioactivities. Therefore, it is important to understand the interaction between Se and S, which depends on Se/S ratio in the plant or/and in the growth medium. Brassicaceae (also known as cabbage or mustard family) is an important family of flowering plants that are grown worldwide and have a vital role in agriculture and populations’ health. In this review we discuss the distribution and further interactions between S and Se in Brassicaceae and provide several examples of Se or Se/S biofortifications’ experiments in brassica vegetables that induced the chemopreventive effects of these crops by enhancing the production of Se- or/and S-containing natural compounds. Extensive further research is required to understand Se/S uptake, translocation, and assimilation and to investigate their potential role in producing anticancer drugs.
Collapse
|
26
|
Sarwar N, Akhtar M, Kamran MA, Imran M, Riaz MA, Kamran K, Hussain S. Selenium biofortification in food crops: Key mechanisms and future perspectives. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103615] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Reynolds RJB, Jones RR, Heiner J, Crane KM, Pilon-Smits EAH. Effects of selenium hyperaccumulators on soil selenium distribution and vegetation properties. AMERICAN JOURNAL OF BOTANY 2020; 107:970-982. [PMID: 32573770 DOI: 10.1002/ajb2.1500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/20/2020] [Indexed: 05/28/2023]
Abstract
PREMISE The ecological implications of hyperaccumulation have been investigated at the organismal level, but are poorly understood at the plant community level. Questions addressed here were: Does the presence of selenium (Se) hyperaccumulators affect Se distribution and concentration in their native soil, and do hyperaccumulators affect overall vegetation properties and species composition? METHODS Plant survey and soil Se mapping were performed at three seleniferous sites in Colorado. In season one, plots with and without hyperaccumulators were compared for (1) bare ground, canopy cover, and species richness; (2) relative species abundance; (3) soil Se distribution and concentration. In season two, a smaller-scale design was implemented, focusing on areas 3 m in diameter around hyperaccumulators versus nonhyperaccumulators in 44 paired plots on one site. RESULTS Plots with hyperaccumulators generally showed more bare ground, less canopy cover, higher species richness, and 2-3-fold higher soil Se levels. These patterns were not consistently significant across all sites; the effects of hyperaccumulators may have been diluted by their low abundance and the relatively large area of survey. In the smaller-scale study, highly significant results were obtained, showing more bare ground, less canopy cover, and higher species richness in plots with hyperaccumulators; soil Se concentration was also higher in plots with hyperaccumulators. CONCLUSIONS Hyperaccumulators may significantly affect local soil Se concentration and vegetation over at least a 3 m diameter area, or 4× their canopy. These differences may result from the combined positive and negative allelopathic effects observed earlier at the organismal level.
Collapse
Affiliation(s)
- R Jason B Reynolds
- Biology Department, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Rachel R Jones
- Biology Department, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Jake Heiner
- Biology Department, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Kelsey M Crane
- Biology Department, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | | |
Collapse
|
28
|
Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C. Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 2020; 11:255-277. [PMID: 30632600 DOI: 10.1039/c8mt00247a] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cd is the third major contaminant of greatest hazard to the environment after mercury and lead and is considered as the only metal that poses health risks to both humans and animals at plant tissue concentrations that are generally not phytotoxic. Cd accumulation in plant shoots depends on Cd entry through the roots, sequestration within root vacuoles, translocation in the xylem and phloem, and Cd dilution within the plant shoot throughout its growth. Several metal transporters, processes, and channels are involved from the first step of Cd reaching the root cells and until its final accumulation in the edible parts of the plant. It is hard to demonstrate one step as the pivotal factor to decide the Cd tolerance or accumulation ability of plants since the role of a specific transporter/process varies among plant species and even cultivars. In this review, we discuss the sources of Cd pollutants, Cd toxicity to plants, and mechanisms of Cd uptake and redistribution in plant tissues. The metal transporters involved in Cd transport within plant tissues are also discussed and how their manipulation can control Cd uptake and/or translocation. Finally, we discuss the beneficial effects of Se on plants under Cd stress, and how it can minimize or mitigate Cd toxicity in plants.
Collapse
Affiliation(s)
- Marwa A Ismael
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | | | | | | | |
Collapse
|
29
|
Harvey MA, Erskine PD, Harris HH, Brown GK, Pilon-Smits EAH, Casey LW, Echevarria G, van der Ent A. Distribution and chemical form of selenium in Neptunia amplexicaulis from Central Queensland, Australia. Metallomics 2020; 12:514-527. [PMID: 32055807 DOI: 10.1039/c9mt00244h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenium (Se), a trace element essential for human and animal biological processes, is deficient in many agricultural soils. Some extremely rare plants can naturally accumulate extraordinarily high concentrations of Se. The native legume Neptunia amplexicaulis, endemic to a small area near Richmond and Hughenden in Central Queensland, Australia, is one of the strongest Se hyperaccumulators known on Earth, with foliar concentrations in excess of 4000 μg Se g-1 previously recorded. Here, we report on the Se distribution at a whole plant level using laboratory micro X-ray Fluorescence Microscopy (μXRF) and scanning electron microscopy (SEM-EDS), as well as on chemical forms of Se in various tissues using liquid chromatography-mass spectrometry (LC-MS) and synchrotron X-ray absorption spectroscopy (XAS). The results show that Se occurs in the forms of methyl-selenocysteine and seleno-methionine in the foliar tissues, with up to 13 600 μg Se g-1 total in young leaves. Selenium was found to accumulate primarily in the young leaves, flowers, pods and taproot, with lower concentrations present in the fine-roots and stem and the lowest present in the oldest leaves. Trichomes were not found to accumulate Se. We postulate that Se is (re)distributed in this plant via the phloem from older leaves to newer leaves, using the taproot as the main storage organ. High concentrations of Se in the nodes (pulvini) indicate this structure may play an important a role in Se (re)distribution. The overall pattern of Se distribution was similar in a non-Se tolerant closely related species (Neptunia gracilis), although the prevailing Se concentrations were substantially lower than in N. amplexicaulis.
Collapse
Affiliation(s)
- Maggie-Anne Harvey
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Xiao K, Tang J, Chen H, Li D, Liu Y. Impact of land use/land cover change on the topsoil selenium concentration and its potential bioavailability in a karst area of southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135201. [PMID: 31796274 DOI: 10.1016/j.scitotenv.2019.135201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is an essential micronutrient for human health, and its abundance and potential bioavailability in the soil are of increasing concern worldwide. To date, how total soil Se and its bioavailability would respond to human disturbance or future environmental change is not yet clear, and associated controlling factors remain incompletely understood. Here, we collected soil samples (0-15 cm) from different land use/land cover types, including active cropland, grassland, shrubland, and secondary forest, in a Se-enriched area of Guangxi, southwest China. Total Se concentration and its potential bioavailability, as estimated by phosphate extractability, were investigated. Total soil Se concentration (Setotal) for all samples ranged from 220 to 1820 μg kg-1, with an arithmetic average value of 676 ± 24 μg kg-1 (Mean ± SE, the same below). The concentration of phosphate extractable Se (Sephosphate) varied between 1 and 257 μg kg-1, with an arithmetic mean value of 79 ± 5 μg kg-1, accounting for on average 13 ± 1% of the Setotal. Among the four land use/land cover types, Setotal and Sephosphate were generally more enriched in the secondary forest than those in the grassland and cropland. The content of soil organic carbon (SOC) was the overriding edaphic factor controlling the abundance and potential bioavailability of Se in topsoils. In addition, climatic variables such as mean annual precipitation and mean annual temperature were also key factors affecting the abundance and potential bioavailability of soil Se. Our results suggest that changes in land use/land cover types may deeply influence Se biogeochemistry likely via alterations in soil properties, particularly SOC content.
Collapse
Affiliation(s)
- Kongcao Xiao
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystem, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Junjie Tang
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystem, Chinese Academy of Sciences, Huanjiang 547100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Chen
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystem, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Dejun Li
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystem, Chinese Academy of Sciences, Huanjiang 547100, China.
| | - Yongxian Liu
- Institute of Agricultural Resources and Environment, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
31
|
Costa LC, Luz LM, Nascimento VL, Araujo FF, Santos MNS, França CDFM, Silva TP, Fugate KK, Finger FL. Selenium-Ethylene Interplay in Postharvest Life of Cut Flowers. FRONTIERS IN PLANT SCIENCE 2020; 11:584698. [PMID: 33391299 PMCID: PMC7773724 DOI: 10.3389/fpls.2020.584698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/26/2020] [Indexed: 05/18/2023]
Abstract
Selenium (Se) is considered a beneficial element in higher plants when provided at low concentrations. Recently, studies have unveiled the interactions between Se and ethylene metabolism throughout plant growth and development. However, despite the evidence that Se may provide longer shelf life in ethylene-sensitive flowers, its primary action on ethylene biosynthesis and cause-effect responses are still understated. In the present review, we discuss the likely action of Se on ethylene biosynthesis and its consequence on postharvest physiology of cut flowers. By combining Se chemical properties with a dissection of ethylene metabolism, we further highlighted both the potential use of Se solutions and their downstream responses. We believe that this report will provide the foundation for the hypothesis that Se plays a key role in the postharvest longevity of ethylene-sensitive flowers.
Collapse
Affiliation(s)
- Lucas C. Costa
- Departamento de Fitotecnia, Universidade Federal de Viçosa, Viçosa, Brazil
- *Correspondence: Lucas C. Costa,
| | - Luana M. Luz
- Laboratório de Genética e Biotecnologia – Campus Capanema, Universidade Federal Rural da Amazônia, Capanema, Brazil
| | - Vitor L. Nascimento
- Setor de Fisiologia Vegetal – Departamento de Biologia, Universidade Federal de Lavras, Lavras, Brazil
| | - Fernanda F. Araujo
- Departamento de Fitotecnia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Christiane de F. M. França
- Departamento de Tecnologia Agroindustrial e Socioeconomia Rural, Universidade Federal de São Carlos, Araras, Brazil
| | - Tania P. Silva
- Instituto de Ciências Agrárias, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Unaí, Brazil
| | - Karen K. Fugate
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Fernando L. Finger
- Departamento de Fitotecnia, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
32
|
Reynolds RJB, Jones RR, Stonehouse GC, El Mehdawi AF, Lima LW, Fakra SC, Pilon-Smits EAH. Identification and physiological comparison of plant species that show positive or negative co-occurrence with selenium hyperaccumulators. Metallomics 2020; 12:133-143. [DOI: 10.1039/c9mt00217k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reynolds and coworkers investigated effects of selenium hyperaccumulator plants on local vegetation. Shown is elemental distribution in Alyssum simplex.
Collapse
Affiliation(s)
| | | | | | | | | | - Sirine C. Fakra
- Advanced Light Source
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | | |
Collapse
|
33
|
Kamran M, Parveen A, Ahmar S, Malik Z, Hussain S, Chattha MS, Saleem MH, Adil M, Heidari P, Chen JT. An Overview of Hazardous Impacts of Soil Salinity in Crops, Tolerance Mechanisms, and Amelioration through Selenium Supplementation. Int J Mol Sci 2019; 21:E148. [PMID: 31878296 PMCID: PMC6981449 DOI: 10.3390/ijms21010148] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023] Open
Abstract
Soil salinization is one of the major environmental stressors hampering the growth and yield of crops all over the world. A wide spectrum of physiological and biochemical alterations of plants are induced by salinity, which causes lowered water potential in the soil solution, ionic disequilibrium, specific ion effects, and a higher accumulation of reactive oxygen species (ROS). For many years, numerous investigations have been made into salinity stresses and attempts to minimize the losses of plant productivity, including the effects of phytohormones, osmoprotectants, antioxidants, polyamines, and trace elements. One of the protectants, selenium (Se), has been found to be effective in improving growth and inducing tolerance against excessive soil salinity. However, the in-depth mechanisms of Se-induced salinity tolerance are still unclear. This review refines the knowledge involved in Se-mediated improvements of plant growth when subjected to salinity and suggests future perspectives as well as several research limitations in this field.
Collapse
Affiliation(s)
- Muhammad Kamran
- Key Laboratory of Arable Land Conservation, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China;
| | - Aasma Parveen
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (A.P.); (Z.M.)
| | - Sunny Ahmar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.S.C.); (M.H.S.)
| | - Zaffar Malik
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (A.P.); (Z.M.)
| | - Sajid Hussain
- Stat Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
| | - Muhammad Sohaib Chattha
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.S.C.); (M.H.S.)
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.S.C.); (M.H.S.)
| | - Muhammad Adil
- College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China;
| | - Parviz Heidari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran;
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| |
Collapse
|
34
|
Antioxidant Activity and Selenium and Polyphenols Content from Selected Medicinal Plants Natives from Various Areas Abundant in Selenium (Poland, Lithuania, and Western Ukraine). Processes (Basel) 2019. [DOI: 10.3390/pr7120878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The study was performed on Centaurea cyanus, Chamomilla recutita, Majorana hortensis, Ocimum basilicum, Plantago lanceolata, Sinapis alba, and Valeriana officinalis harvested in Lithuania, Poland, and Ukraine. Our aim was to determine the differences in selenium concentrations, total polyphenols, and the antioxidant activity in same-species samples from different regions. Another goal was to assess the correlations between these variables within the species. We found variations in most species, but not in all regions of harvesting. In four of the six species from Ukraine, we observed the highest concentration of Se. The selenium concentrations ranged from 15–182 µg/kg DW, and the greatest variation between the regions occurred in S. alba. The level of polyphenols was 5.52–53.25 mg TAE/100 g DW, and the largest differences between the sampling regions occurred in P. lanceolata and O. basilicum. ABTS radicals scavenging ability ranged from 5.20–59.79 μM AAE/100 g DW, while the FRAP potential was 13.56–409.14 μM FeE/100 g DW. The largest differences in antioxidant activity were found in O. basilicum and M. hortensis. Pearson’s correlation coefficients indicate that polyphenols may be responsible for antioxidant activity in Ch. recutita, O. basilicum, and V. officinalis, and selenium is responsible for antioxidant activity in M. hortensis. However, both polyphenols and selenium play a role in the antioxidant properties of C. cyanus and P. lanceolata. Also, selenium in C. cyanus and Ch. recutita may affect the level of total polyphenols. The examined species may supplement the human diet with exogenous antioxidants.
Collapse
|
35
|
Chen M, Zeng L, Luo X, Mehboob MZ, Ao T, Lang M. Identification and functional characterization of a novel selenocysteine methyltransferase from Brassica juncea L. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6401-6416. [PMID: 31504785 DOI: 10.1093/jxb/erz390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/09/2019] [Indexed: 05/13/2023]
Abstract
Organic selenium (Se), specifically Se-methylselenocysteine (MeSeCys), has demonstrated potential effects in human disease prevention including cancer and the emerging ameliorating effect on Alzheimer's disease. In plants, selenocysteine methyltransferase (SMT) is the key enzyme responsible for MeSeCys formation. In this study, we first isolated a novel SMT gene, designated as BjSMT, from the genome of a known Se accumulator, Brassica juncea L. BjSMT shows high sequence (amino acid) similarity with its orthologues from Brassica napus and Brassica oleracea var. oleracea, which can use homocysteine (HoCys) and selenocysteine (SeCys) as substrates. Similar to its closest homologues, BjSMT also possesses a conserved Thr187 which is involved in transferring a methyl group to HoCys by donating a hydrogen bond, suggesting that BjSMT can methylate both HoCys and SeCys substrates. Using quantitative real-time PCR (qRT-PCR) technology and BjSMT-transformed tobacco (Nicotiana tabacum) plants, we observed how BjSMT responds to selenite [Se(IV)] and selenate [Se(VI)] stress in B. juncea, and how the phenotypes of BjSMT-overexpressing tobacco cultured under selenite stress are affected. BjSMT expression was nearly undetectable in the B. juncea plant without Se exposure, but in the plant leaves it can be rapidly and significantly up-regulated upon a low level of selenite stress, and enormously up-regulated upon selenate treatment. Overexpression of BjSMT in tobacco substantially enhanced tolerance to selenite stress manifested as significantly higher fresh weight, plant height, and chlorophyll content than control plants. In addition, transgenic plants exhibited low glutathione peroxidase activity in response to a lower dose of selenite stress (with a higher dose of selenite stress resulting in a high activity response) compared with the controls. Importantly, the BjSMT-transformed tobacco plants accumulated a high level of Se upon selenite stress, and the plants also had significantly increased MeSeCys production potential in their leaves. This first study of B. juncea SMT demonstrates its potential applications in crop MeSeCys biofortification and phytoremediation of Se pollution.
Collapse
Affiliation(s)
- Meng Chen
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Liu Zeng
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Xiangguang Luo
- College of Life Science, Hebei Agricultural University, Baoding, China
| | | | - Tegenbaiyin Ao
- College of Life Science, Hebei Agricultural University, Baoding, China
| | - Minglin Lang
- College of Life Science, Hebei Agricultural University, Baoding, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Lima LW, Stonehouse GC, Walters C, Mehdawi AFE, Fakra SC, Pilon-Smits EAH. Selenium Accumulation, Speciation and Localization in Brazil Nuts ( Bertholletia excelsa H.B.K.). PLANTS 2019; 8:plants8080289. [PMID: 31426292 PMCID: PMC6724122 DOI: 10.3390/plants8080289] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022]
Abstract
More than a billion people worldwide may be selenium (Se) deficient, and supplementation with Se-rich Brazil nuts may be a good strategy to prevent deficiency. Since different forms of Se have different nutritional value, and Se is toxic at elevated levels, careful seed characterization is important. Variation in Se concentration and correlations of this element with other nutrients were found in two batches of commercially available nuts. Selenium tissue localization and speciation were further determined. Mean Se levels were between 28 and 49 mg kg−1, with up to 8-fold seed-to-seed variation (n = 13) within batches. Brazil nut Se was mainly in organic form. While present throughout the seed, Se was most concentrated in a ring 1 to 2 mm below the surface. While healthy, Brazil nuts should be consumed in moderation. Consumption of one seed (5 g) from a high-Se area meets its recommended daily allowance; the recommended serving size of 30 g may exceed the allowable daily intake (400 μg) or even its toxicity threshold (1200 μg). Based on these findings, the recommended serving size may be re-evaluated, consumers should be warned not to exceed the serving size and the seed may be sold as part of mixed nuts, to avoid excess Se intake.
Collapse
Affiliation(s)
- Leonardo W Lima
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Gavin C Stonehouse
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Christina Walters
- National Laboratory for Genetic Resources Preservation, USDA-ARS, Fort Collins, CO 80521, USA
| | - Ali F El Mehdawi
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
37
|
Getting to the Root of Selenium Hyperaccumulation—Localization and Speciation of Root Selenium and Its Effects on Nematodes. SOIL SYSTEMS 2019. [DOI: 10.3390/soilsystems3030047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Elemental hyperaccumulation protects plants from many aboveground herbivores. Little is known about effects of hyperaccumulation on belowground herbivores or their ecological interactions. To examine effects of plant selenium (Se) hyperaccumulation on nematode root herbivory, we investigated spatial distribution and speciation of Se in hyperaccumulator roots using X-ray microprobe analysis, and effects of root Se concentration on root-associated nematode communities. Perennial hyperaccumulators Stanleya pinnata and Astragalus bisulcatus, collected from a natural seleniferous grassland contained 100–1500 mg Se kg−1 root dry weight (DW). Selenium was concentrated in the cortex and epidermis of hyperaccumulator roots, with lower levels in the stele. The accumulated Se consisted of organic (C-Se-C) compounds, indistinguishable from methyl-selenocysteine. The field-collected roots yielded 5–400 nematodes g−1 DW in Baermann funnel extraction, with no correlation between root Se concentration and nematode densities. Even roots containing > 1000 mg Se kg−1 DW yielded herbivorous nematodes. However, greenhouse-grown S. pinnata plants treated with Se had fewer total nematodes than those without Se. Thus, while root Se hyperaccumulation may protect plants from non-specialist herbivorous nematodes, Se-resistant nematode taxa appear to associate with hyperaccumulators in seleniferous habitats, and may utilize high-Se hyperaccumulator roots as food source. These findings give new insight into the ecological implications of plant Se (hyper)accumulation.
Collapse
|
38
|
Plant selenium hyperaccumulation- Ecological effects and potential implications for selenium cycling and community structure. Biochim Biophys Acta Gen Subj 2018; 1862:2372-2382. [DOI: 10.1016/j.bbagen.2018.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/06/2018] [Accepted: 04/23/2018] [Indexed: 11/23/2022]
|
39
|
Lindblom SD, Wangeline AL, Valdez Barillas JR, Devilbiss B, Fakra SC, Pilon-Smits EAH. Fungal Endophyte Alternaria tenuissima Can Affect Growth and Selenium Accumulation in Its Hyperaccumulator Host Astragalus bisulcatus. FRONTIERS IN PLANT SCIENCE 2018; 9:1213. [PMID: 30177943 PMCID: PMC6109757 DOI: 10.3389/fpls.2018.01213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/27/2018] [Indexed: 05/13/2023]
Abstract
Endophytes can enhance plant stress tolerance by promoting growth and affecting elemental accumulation, which may be useful in phytoremediation. In earlier studies, up to 35% elemental selenium (Se0) was found in Se hyperaccumulator Astragalus bisulcatus. Since Se0 can be produced by microbes, the plant Se0 was hypothesized to be microbe-derived. Here we characterize a fungal endophyte of A. bisulcatus named A2. It is common in seeds from natural seleniferous habitat containing 1,000-10,000 mg kg-1 Se. We identified A2 as Alternaria tenuissima via 18S rRNA sequence analysis and morphological characterization. X-ray microprobe analysis of A. bisulcatus seeds that did or did not harbor Alternaria, showed that both contained >90% organic seleno-compounds with C-Se-C configuration, likely methylselenocysteine and glutamyl-methylselenocysteine. The seed Se was concentrated in the embryo, not the seed coat. X-ray microprobe analysis of A2 in pure culture showed the fungus produced Se0 when supplied with selenite, but accumulated mainly organic C-Se-C compounds when supplied with selenate. A2 was completely resistant to selenate up to 300 mg L-1, moderately resistant to selenite (50% inhibition at ∼50 mg Se L-1), but relatively sensitive to methylselenocysteine and to Se extracted from A. bisulcatus (50% inhibition at 25 mg Se L-1). Four-week old A. bisulcatus seedlings derived from surface-sterilized seeds containing endophytic Alternaria were up to threefold larger than seeds obtained from seeds not showing evidence of fungal colonization. When supplied with Se, the Alternaria-colonized seedlings had lower shoot Se and sulfur levels than seedlings from uncolonized seeds. In conclusion, A. tenuissima may contribute to the Se0 observed earlier in A. bisulcatus, and affect host growth and Se accumulation. A2 is sensitive to the Se levels found in its host's tissues, but may avoid Se toxicity by occupying low-Se areas (seed coat, apoplast) and converting plant Se to non-toxic Se0. These findings illustrate the potential for hyperaccumulator endophytes to affect plant properties relevant for phytoremediation. Facultative endophytes may also be applicable in bioremediation and biofortification, owing to their capacity to turn toxic inorganic forms of Se into non-toxic or even beneficial, organic forms with anticarcinogenic properties.
Collapse
Affiliation(s)
- Stormy D. Lindblom
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Ami L. Wangeline
- Department of Biology, Laramie County Community College, Cheyenne, WY, United States
| | - Jose R. Valdez Barillas
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- Department of Sciences and Mathematics, Texas A&M University-San Antonio, San Antonio, TX, United States
| | - Berthal Devilbiss
- Department of Biology, Laramie County Community College, Cheyenne, WY, United States
| | - Sirine C. Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | |
Collapse
|
40
|
Malerba M, Cerana R. Effect of Selenium on the Responses Induced by Heat Stress in Plant Cell Cultures. PLANTS (BASEL, SWITZERLAND) 2018; 7:E64. [PMID: 30103494 PMCID: PMC6160988 DOI: 10.3390/plants7030064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023]
Abstract
High temperatures are a significant stress factor for plants. In fact, many biochemical reactions involved in growth and development are sensitive to temperature. In particular, heat stress (HS) represents a severe issue for plant productivity and strategies to obtain high yields under this condition are important goals in agriculture. While selenium (Se) is a nutrient for humans and animals, its role as a plant micronutrient is still questioned. Se can prevent several abiotic stresses (drought, heat, UV, salinity, heavy metals), but the action mechanisms are poorly understood. Se seems to regulate reactive oxygen species (ROS) and to inhibit heavy metals transport. In addition, it has been demonstrated that Se is essential for a correct integrity of cell membranes and chloroplasts, especially the photosynthetic apparatus. Previous results showed that in tobacco (Nicotiana tabacum cv. Bright-Yellow 2) cultures HS (5 min at 50 °C) induced cell death with apoptotic features, accompanied by oxidative stress and changes in the levels of stress-related proteins. In this work we investigated the effect of Se on the responses induced by HS. The obtained results show that Se markedly reduces the effects of HS on cell vitality, cytoplasmic shrinkage, superoxide anion production, membrane lipids peroxidation, activity of caspase-3-like proteases, and the levels of some stress-related proteins (Hsp90, BiP, 14-3-3s, cytochrome c).
Collapse
Affiliation(s)
- Massimo Malerba
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy.
| | - Raffaella Cerana
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi di Milano-Bicocca, 20126 Milan, Italy.
| |
Collapse
|
41
|
Jaiswal SK, Prakash R, Prabhu KS, Tejo Prakash N. Bioaccessible selenium sourced from Se-rich mustard cake facilitates protection from TBHP induced cytotoxicity in melanoma cells. Food Funct 2018; 9:1998-2004. [PMID: 29644347 PMCID: PMC5918226 DOI: 10.1039/c7fo01644a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenium (Se) is an essential dietary supplement that resolves inflammatory responses and offers antioxidant cytoprotection. In this study, we present the data on the cytoprotective effect of Se-rich mustard protein isolated from mustard cultivated in seleniferous soils in Punjab, India. The concentrations of total Se in mustard seed, oil-free mustard cake, and mustard protein were 110.0 ± 3.04, 143.0 ± 5.18, and 582.3 ± 6.23 μg g-1, respectively. The cytoprotective effect of Se-rich mustard protein was studied on tert-butyl hydroperoxide (TBHP)-induced cytotoxicity in a mouse melanoma cell line (B16-F10). When compared with TBHP treated cells (where no viable cells were found), Se-rich protein made bioaccessible through simulated gastrointestinal digestion protected melanoma cells from cytotoxicity with decreased levels of oxidative stress resulting in 73% cell viability. Such an effect was associated with a significant increase in glutathione peroxidase activity as a function of bioaccessible Se and its response towards cytoprotection.
Collapse
Affiliation(s)
- Sumit K Jaiswal
- School of Energy and Environment, Thapar University, Patiala, India.
| | | | | | | |
Collapse
|
42
|
Lima LW, Pilon-Smits EAH, Schiavon M. Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues. Biochim Biophys Acta Gen Subj 2018; 1862:2343-2353. [PMID: 29626605 DOI: 10.1016/j.bbagen.2018.03.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 03/25/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND Selenium (Se) is a micronutrient required for many life forms, but toxic at higher concentration. Plants do not have a Se requirement, but can benefit from Se via enhanced antioxidant activity. Some plant species can accumulate Se to concentrations above 0.1% of dry weight and seem to possess mechanisms that distinguish Se from its analog sulfur (S). Research on these so-called Se hyperaccumulators aims to identify key genes for this remarkable trait and to understand ecological implications. SCOPE OF REVIEW This review gives a broad overview of the current knowledge about Se uptake and metabolism in plants, with a special emphasis on hypothesized mechanisms of Se hyperaccumulation. The role of Se in plant defense responses and the associated ecological implications are discussed. MAJOR CONCLUSIONS Hyperaccumulators have enhanced expression of S transport and assimilation genes, and may possess transporters with higher specificity for selenate over sulfate. Genes involved in antioxidant reactions and biotic stress resistance are also upregulated. Key regulators in these processes appear to be the growth regulators jasmonic acid, salicylic acid and ethylene. Hyperaccumulation may have evolved owing to associated ecological benefits, particularly protection against pathogens and herbivores, and as a form of elemental allelopathy. GENERAL SIGNIFICANCE Understanding plant Se uptake and metabolism in hyperaccumulators has broad relevance for the environment, agriculture and human and animal nutrition and may help generate crops with selenate-specific uptake and high capacity to convert selenate to less toxic, anticarcinogenic, organic Se compounds.
Collapse
Affiliation(s)
| | | | - Michela Schiavon
- DAFNAE, University of Padova, Agripolis, 35020 Legnaro, PD, Italy.
| |
Collapse
|
43
|
Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A. A global database for plants that hyperaccumulate metal and metalloid trace elements. THE NEW PHYTOLOGIST 2018; 218:407-411. [PMID: 29139134 DOI: 10.1111/nph.14907] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
| | - Alan J M Baker
- School of BioSciences, The University of Melbourne, Parkville, Victoria, 3052, Australia
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine-INRA, Vandoeuvre-lès-Nancy, France
| | - Tanguy Jaffré
- Herbarium NOU, UMR AMAP, IRD: Institut de Recherche pour le Développement, Nouméa, 98800, New Caledonia
| | - Peter D Erskine
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Guillaume Echevarria
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine-INRA, Vandoeuvre-lès-Nancy, France
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine-INRA, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
44
|
Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:915-934. [PMID: 29253832 DOI: 10.1016/j.envpol.2017.12.019] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 05/06/2023]
Abstract
Selenium (Se) is an essential trace element for humans and animals, although controversial for different plant species. There exists a narrow line between essential, beneficial and toxic levels of Se to living organisms which greatly varies with Se speciation, as well as the type of living organisms. Therefore, it is crucial to monitor its solid- and solution-phase speciation, exposure levels and pathways to living organisms. Consumption of Se-laced food (cereals, vegetables, legumes and pulses) is the prime source of Se exposure to humans. Thus, it is imperative to assess the biogeochemical behavior of Se in soil-plant system with respect to applied levels and speciation, which ultimately affect Se status in humans. Based on available relevant literature, this review traces a plausible link among (i) Se levels, sources, speciation, bioavailability, and effect of soil chemical properties on selenium bioavailability/speciation in soil; (ii) role of different protein transporters in soil-root-shoot transfer of Se; and (iii) speciation, metabolism, phytotoxicity and detoxification of Se inside plants. The toxic and beneficial effects of Se to plants have been discussed with respect to speciation and toxic/deficient concentration of Se. We highlight the significance of various enzymatic (catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, glutathione peroxidase) and non-enzymatic (phytochelatins and glutathione) antioxidants which help combat Se-induced overproduction of reactive oxygen species (ROS). The review also delineates Se accumulation in edible plant parts from soils containing low or high Se levels; elucidates associated health disorders or risks due to the consumption of Se-deficient or Se-rich foods; discusses the potential role of Se in different human disorders/diseases.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan.
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; MARUM and Department of Geosciences, University of Bremen, Bremen, D-28359, Germany; Southern Cross GeoScience, Southern Cross University, Lismore 2480, NSW, Australia.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; Southern Cross GeoScience, Southern Cross University, Lismore 2480, NSW, Australia
| | - Muhammad Imtiaz Rashid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari 61100, Pakistan; Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
45
|
El Mehdawi AF, Jiang Y, Guignardi ZS, Esmat A, Pilon M, Pilon-Smits EAH, Schiavon M. Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae. THE NEW PHYTOLOGIST 2018; 217:194-205. [PMID: 29034966 DOI: 10.1111/nph.14838] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/08/2017] [Indexed: 05/21/2023]
Abstract
Stanleya pinnata not only hyperaccumulates selenium (Se) to 0.5% of its dry weight, but also exhibits higher tissue Se-to-sulfur (S) ratios than other species and its surroundings. To investigate the mechanisms underlying this Se enrichment, we compared S. pinnata with the nonhyperaccumulators S. elata and Brassica juncea for selenate uptake in long- (9 d) and short-term (1 h) assays, using different concentrations of selenate and competitor sulfate. Different sulfate pre-treatments (0, 0.5, 5 mM, 3 d) were also tested for effects on selenate uptake and sulfate transporters' expression. Relative to nonhyperaccumulators, S. pinnata showed higher rates of root and shoot Se accumulation and less competitive inhibition by sulfate or by high-S pretreatment. The selenate uptake rate for S. pinnata (1 h) was three- to four-fold higher than for nonhyperaccumulators, and not significantly affected by 100-fold excess sulfate, which reduced selenate uptake by 100% in S. elata and 40% in B. juncea. Real-time reverse transcription PCR indicated constitutive upregulation in S. pinnata of sulfate transporters SULTR1;2 (root influx) and SULTR2;1 (translocation), but reduced SULTR1;1 expression (root influx). In S. pinnata, selenate uptake and translocation rates are constitutively elevated and relatively sulfate-independent. Underlying mechanisms likely include overexpression of SULTR1;2 and SULTR2;1, which may additionally have evolved enhanced specificity for selenate over sulfate.
Collapse
Affiliation(s)
- Ali F El Mehdawi
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ying Jiang
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zack S Guignardi
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ahmad Esmat
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - Marinus Pilon
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | | | - Michela Schiavon
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
- DAFNAE, University of Padova, Agripolis, 35020, Legnaro, Padua, Italy
| |
Collapse
|
46
|
Garousi F. The essentiality of selenium for humans, animals, and plants, and the role of selenium in plant metabolism and physiology. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/ausal-2017-0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
After its discovery, selenium was most noted for its harmful effects. Selenium was the first element identified to occur in native vegetation at levels toxic to animals. Poisoning of animals can occur through consumption of plants containing toxic levels of selenium. Livestock consuming excessive amounts of selenized forages are afflicted with “alkali disease” and “blind staggers”. Typical symptoms of these diseases include loss of hair, deformed hooves, blindness, colic, diarrhoea, lethargy, increased heart and respiration rates, and eventually death. On the other hand, selenium deficiency in animal feeds can cause “white muscle disease”, a degenerative disease of the cardiac and skeletal muscles. In this regard, this review paper attempts to summarize the essentiality of selenium for humans, animals, and plants and the role of selenium in plant metabolism and physiology.
Collapse
Affiliation(s)
- F. Garousi
- University of Debrecen , Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology , HU-4032 Debrecen , Böszörményi út 138., Hungary
| |
Collapse
|
47
|
Schiavon M, Ertani A, Parrasia S, Vecchia FD. Selenium accumulation and metabolism in algae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:1-8. [PMID: 28554051 DOI: 10.1016/j.aquatox.2017.05.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/21/2017] [Accepted: 05/23/2017] [Indexed: 05/03/2023]
Abstract
Selenium (Se) is an intriguing element because it is metabolically required by a variety of organisms, but it may induce toxicity at high doses. Algae primarily absorb selenium in the form of selenate or selenite using mechanisms similar to those reported in plants. However, while Se is needed by several species of microalgae, the essentiality of this element for plants has not been established yet. The study of Se uptake and accumulation strategies in micro- and macro-algae is of pivotal importance, as they represent potential vectors for Se movement in aquatic environments and Se at high levels may affect their growth causing a reduction in primary production. Some microalgae exhibit the capacity of efficiently converting Se to less harmful volatile compounds as a strategy to cope with Se toxicity. Therefore, they play a crucial role in Se-cycling through the ecosystem. On the other side, micro- or macro-algae enriched in Se may be used in Se biofortification programs aimed to improve Se content in human diet via supplementation of valuable food. Indeed, some organic forms of selenium (selenomethionine and methylselenocysteine) are known to act as anticarcinogenic compounds and exert a broad spectrum of beneficial effects in humans and other mammals. Here, we want to give an overview of the developments in the current understanding of Se uptake, accumulation and metabolism in algae, discussing potential ecotoxicological implications and nutritional aspects.
Collapse
Affiliation(s)
- Michela Schiavon
- Biology Department, Colorado State University, Fort Collins, CO 80523-1878, USA.
| | - Andrea Ertani
- DAFNAE, University of Padova, Agripolis, 35020 Legnaro PD, Italy
| | - Sofia Parrasia
- Department of Pharmaceutical and Pharmacological Sciences (DSF), University of Padova, Padova, 35131, Italy
| | | |
Collapse
|
48
|
Schiavon M, Pilon-Smits EAH. The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology. THE NEW PHYTOLOGIST 2017; 213:1582-1596. [PMID: 27991670 DOI: 10.1111/nph.14378] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/31/2016] [Indexed: 05/20/2023]
Abstract
Contents 1582 I. 1582 II. 1583 III. 1588 IV. 1590 V. 1592 1592 References 1592 SUMMARY: The importance of selenium (Se) for medicine, industry and the environment is increasingly apparent. Se is essential for many species, including humans, but toxic at elevated concentrations. Plant Se accumulation and volatilization may be applied in crop biofortification and phytoremediation. Topics covered here include beneficial and toxic effects of Se on plants, mechanisms of Se accumulation and tolerance in plants and algae, Se hyperaccumulation, and ecological and evolutionary aspects of these processes. Plant species differ in the concentration and forms of Se accumulated, Se partitioning at the whole-plant and tissue levels, and the capacity to distinguish Se from sulfur. Mechanisms of Se hyperaccumulation and its adaptive significance appear to involve constitutive up-regulation of sulfate/selenate uptake and assimilation, associated with elevated concentrations of defense-related hormones. Hyperaccumulation has evolved independently in at least three plant families, probably as an elemental defense mechanism and perhaps mediating elemental allelopathy. Elevated plant Se protects plants from generalist herbivores and pathogens, but also gives rise to the evolution of Se-resistant specialists. Plant Se accumulation affects ecological interactions with herbivores, pollinators, neighboring plants, and microbes. Hyperaccumulation tends to negatively affect Se-sensitive ecological partners while facilitating Se-resistant partners, potentially affecting species composition and Se cycling in seleniferous ecosystems.
Collapse
Affiliation(s)
- Michela Schiavon
- Biology Department, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | | |
Collapse
|
49
|
Gupta M, Gupta S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. FRONTIERS IN PLANT SCIENCE 2017; 7:2074. [PMID: 28123395 PMCID: PMC5225104 DOI: 10.3389/fpls.2016.02074] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/29/2016] [Indexed: 05/18/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans and animals, but lead to toxicity when taken in excessive amounts. Plants are the main source of dietary Se, but essentiality of Se for plants is still controversial. However, Se at low doses protects the plants from variety of abiotic stresses such as cold, drought, desiccation, and metal stress. In animals, Se acts as an antioxidant and helps in reproduction, immune responses, thyroid hormone metabolism. Selenium is chemically similar to sulfur, hence taken up inside the plants via sulfur transporters present inside root plasma membrane, metabolized via sulfur assimilatory pathway, and volatilized into atmosphere. Selenium induced oxidative stress, distorted protein structure and function, are the main causes of Se toxicity in plants at high doses. Plants can play vital role in overcoming Se deficiency and Se toxicity in different regions of the world, hence, detailed mechanism of Se metabolism inside the plants is necessary for designing effective Se phytoremediation and biofortification strategies.
Collapse
Affiliation(s)
- Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia IslamiaNew Delhi, India
| | | |
Collapse
|
50
|
Schiavon M, Pilon-Smits EAH. Selenium Biofortification and Phytoremediation Phytotechnologies: A Review. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:10-19. [PMID: 28177413 DOI: 10.2134/jeq2016.09.0342] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The element selenium (Se) is both essential and toxic for most life forms, with a narrow margin between deficiency and toxicity. Phytotechnologies using plants and their associated microbes can address both of these problems. To prevent Se toxicity due to excess environmental Se, plants may be used to phytoremediate Se from soil or water. To alleviate Se deficiency in humans or livestock, crops may be biofortified with Se. These two technologies may also be combined: Se-enriched plant material from phytoremediation could be used as green fertilizer or as fortified food. Plants may also be used to "mine" Se from seleniferous soils. The efficiency of Se phytoremediation and biofortification may be further optimized. Research in the past decades has provided a wealth of knowledge regarding the mechanisms by which plants take up, metabolize, accumulate, and volatilize Se and the role plant-associated microbes play in these processes. Furthermore, ecological studies have revealed important effects of plant Se on interactions with herbivores, detrivores, pollinators, neighboring vegetation, and the plant microbiome. All this knowledge can be exploited in phytotechnology programs to optimize plant Se accumulation, transformation, volatilization, and/or tolerance via plant breeding, genetic engineering, and tailored agronomic practices.
Collapse
|