1
|
Liu P, Lin T, Fischer H, Feifel D, Ebner NC. Effects of four-week intranasal oxytocin administration on large-scale brain networks in older adults. Neuropharmacology 2024; 260:110130. [PMID: 39182569 DOI: 10.1016/j.neuropharm.2024.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Oxytocin (OT) is a crucial modulator of social cognition and behavior. Previous work primarily examined effects of acute intranasal oxytocin administration (IN-OT) in younger males on isolated brain regions. Not well understood are (i) chronic IN-OT effects, (ii) in older adults, (iii) on large-scale brain networks, representative of OT's wider-ranging brain mechanisms. To address these research gaps, 60 generally healthy older adults (mean age = 70.12 years, range = 55-83) were randomly assigned to self-administer either IN-OT or placebo twice daily via nasal spray over four weeks. Chronic IN-OT reduced resting-state functional connectivity (rs-FC) of both the right insula and the left middle cingulate cortex with the salience network but enhanced rs-FC of the left medial prefrontal cortex with the default mode network as well as the left thalamus with the basal ganglia-thalamus network. No significant chronic IN-OT effects were observed for between-network rs-FC. However, chronic IN-OT increased selective rs-FC of the basal ganglia-thalamus network with the salience network and the default mode network, indicative of more specialized, efficient communication between these networks. Directly comparing chronic vs. acute IN-OT, reduced rs-FC of the right insula with the salience network and between the default mode network and the basal ganglia-thalamus network, and greater selective rs-FC of the salience network with the default mode network and the basal ganglia-thalamus network, were more pronounced after chronic than acute IN-OT. Our results delineate the modulatory role of IN-OT on large-scale brain networks among older adults.
Collapse
Affiliation(s)
- Peiwei Liu
- Department of Psychology, University of Florida, Gainesville, FL, 32611, USA.
| | - Tian Lin
- Department of Psychology, University of Florida, Gainesville, FL, 32611, USA
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, SE-106 91, Sweden; Stockholm University Brain Imaging Centre (SUBIC), Stockholm University, Stockholm, SE-106 91, Sweden; Aging Research Centre, Karolinska Institute, Stockholm, SE-171 77, Stockholm, Sweden
| | - David Feifel
- Department of Psychiatry, University of California, San Diego, CA, 92093, USA
| | - Natalie C Ebner
- Department of Psychology, University of Florida, Gainesville, FL, 32611, USA; Institute on Aging, University of Florida, Gainesville, FL, 32611, USA; Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
2
|
Dafni-Merom A, Monsa R, Benbaji M, Klein A, Arzy S. Travelling beyond time: shared brain system for self-projection in the temporal, political and moral domains. Philos Trans R Soc Lond B Biol Sci 2024; 379:rstb20230414. [PMID: 39278258 PMCID: PMC11449160 DOI: 10.1098/rstb.2023.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/07/2024] [Accepted: 07/19/2024] [Indexed: 09/18/2024] Open
Abstract
Mental time travel (MTT), a cornerstone of human cognition, enables individuals to mentally project themselves into their past or future. It was shown that this self-projection may extend beyond the temporal domain to the spatial and social domains. What about higher cognitive domains? Twenty-eight participants underwent functional magnetic resonance imaging (fMRI) while self-projecting to different political, moral and temporal perspectives. For each domain, participants were asked to judge their relationship to various people (politicians, moral figures, personal acquaintances) from their actual or projected self-location. Findings showed slower, less accurate responses during self-projection across all domains. fMRI analysis revealed self-projection elicited brain activity at the precuneus, medial and dorsolateral prefrontal cortex, temporoparietal junction and anterior insula, bilaterally and right lateral temporal cortex. Notably, 23.5% of active voxels responded to all three domains and 27% to two domains, suggesting a shared brain system for self-projection. For ordinality judgement (self-reference), 52.5% of active voxels corresponded to the temporal domain specifically. Self-projection activity overlapped mostly with the frontoparietal control network, followed by the default mode network, while self-reference showed a reversed pattern, demonstrating MTT's implication in spontaneous brain activity. MTT may thus be regarded as a 'mental-experiential travel', with self-projection as a domain-general construct and self-reference related mostly to time. This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- Amnon Dafni-Merom
- Neuropsychiatry Laboratory, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9190501, Israel
| | - Rotem Monsa
- Neuropsychiatry Laboratory, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9190501, Israel
| | - Meitar Benbaji
- Neuropsychiatry Laboratory, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9190501, Israel
| | - Adi Klein
- Neuropsychiatry Laboratory, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9190501, Israel
| | - Shahar Arzy
- Neuropsychiatry Laboratory, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem9190501, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem, Israel
- Department of Cognitive and Brain Sciences, Hebrew University of Jerusalem, Jerusalem9190501, Israel
| |
Collapse
|
3
|
Zhou J, Chen Y, Jin X, Mao W, Xiao Z, Zhang S, Zhang T, Liu T, Kendrick K, Jiang X. Fusing multi-scale functional connectivity patterns via Multi-Branch Vision Transformer (MB-ViT) for macaque brain age prediction. Neural Netw 2024; 179:106592. [PMID: 39168070 DOI: 10.1016/j.neunet.2024.106592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Brain age (BA) is defined as a measure of brain maturity and could help characterize both the typical brain development and neuropsychiatric disorders in mammals. Various biological phenotypes have been successfully applied to predict BA of human using chronological age (CA) as label. However, whether the BA of macaque, one of the most important animal models, can also be reliably predicted is largely unknown. To address this question, we propose a novel deep learning model called Multi-Branch Vision Transformer (MB-ViT) to fuse multi-scale (i.e., from coarse-grained to fine-grained) brain functional connectivity (FC) patterns derived from resting state functional magnetic resonance imaging (rs-fMRI) data to predict BA of macaques. The discriminative functional connections and the related brain regions contributing to the prediction are further identified based on Gradient-weighted Class Activation Mapping (Grad-CAM) method. Our proposed model successfully predicts BA of 450 normal rhesus macaques from the publicly available PRIMatE Data Exchange (PRIME-DE) dataset with lower mean absolute error (MAE) and mean square error (MSE) as well as higher Pearson's correlation coefficient (PCC) and coefficient of determination (R2) compared to other baseline models. The correlation between the predicted BA and CA reaches as high as 0.82 of our proposed method. Furthermore, our analysis reveals that the functional connections predominantly contributing to the prediction results are situated in the primary motor cortex (M1), visual cortex, area v23 in the posterior cingulate cortex, and dysgranular temporal pole. In summary, our proposed deep learning model provides an effective tool to accurately predict BA of primates (macaque in this study), and lays a solid foundation for future studies of age-related brain diseases in those animal models.
Collapse
Affiliation(s)
- Jingchao Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuzhong Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuewei Jin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Mao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenxiang Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Songyao Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Tianming Liu
- School of Computing, University of Georgia, Athens, USA
| | - Keith Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
4
|
Demeter DV, Greene DJ. The promise of precision functional mapping for neuroimaging in psychiatry. Neuropsychopharmacology 2024; 50:16-28. [PMID: 39085426 DOI: 10.1038/s41386-024-01941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Precision functional mapping (PFM) is a neuroimaging approach to reliably estimate metrics of brain function from individual people via the collection of large amounts of fMRI data (hours per person). This method has revealed much about the inter-individual variation of functional brain networks. While standard group-level studies, in which we average brain measures across groups of people, are important in understanding the generalizable neural underpinnings of neuropsychiatric disorders, many disorders are heterogeneous in nature. This heterogeneity often complicates clinical care, leading to patient uncertainty when considering prognosis or treatment options. We posit that PFM methods may help streamline clinical care in the future, fast-tracking the choice of personalized treatment that is most compatible with the individual. In this review, we provide a history of PFM studies, foundational results highlighting the benefits of PFM methods in the pursuit of an advanced understanding of individual differences in functional network organization, and possible avenues where PFM can contribute to clinical translation of neuroimaging research results in the way of personalized treatment in psychiatry.
Collapse
Affiliation(s)
- Damion V Demeter
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA.
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Carbone GA, Lo Presti A, Farina B, Adenzato M, Ardito RB, Imperatori C. Resting-state EEG microstates predict mentalizing ability as assessed by the Reading the Mind in the Eyes test. Int J Psychophysiol 2024; 205:112440. [PMID: 39278571 DOI: 10.1016/j.ijpsycho.2024.112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Microstates analysis of electroencephalography (EEG) has gained increasing attention among researchers and clinicians as a valid tool for investigating temporal dynamics of large-scale brain networks with a millisecond time resolution. Although microstates analysis has been widely applied to elucidate the neurophysiological basis of various cognitive functions in both clinical and non-clinical samples, its application in relation to socio-affective processing has been relatively under-researched. Therefore, the main aim of the current study was to investigate the relationship between EEG microstates and mentalizing (i.e., the ability to understand the mental states of others). Eighty-two participants (thirty-six men; mean age: 24.28 ± 7.35 years; mean years of education: 15.82 ± 1.77) underwent a resting-state EEG recording and performed the Reading the Mind in the Eyes Test (RMET). The parameters of the microstates were then calculated using Cartool v. 4.09 software. Our results showed that the occurrence of microstate map C was independently and positively associated with the RMET total score and contributed to the prediction of mentalizing performance, even when controlling for potential confounding variables (i.e., age, sex, education level, tobacco and alcohol use). Since microstate C is involved in self-related processes, our findings may reflect the link between self-awareness of one's own thoughts/feelings and the enhanced ability to recognize the mental states of others at the neurophysiological level. This finding extends the functions traditionally attributed to microstate C, i.e. mind-wandering, self-related thoughts, prosociality, and emotional and interoceptive processing, to include mentalizing ability.
Collapse
Affiliation(s)
| | | | - Benedetto Farina
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| | - Mauro Adenzato
- Department of Psychology, University of Turin, Turin, Italy
| | - Rita B Ardito
- Department of Psychology, University of Turin, Turin, Italy.
| | - Claudio Imperatori
- Experimental and Applied Psychology Laboratory, Department of Human Sciences, European University of Rome, Rome, Italy
| |
Collapse
|
6
|
Thye M, Hoffman P, Mirman D. "All the Stars Will Be Wells with a Rusty Pulley": Neural Processing of the Social and Pragmatic Content in a Narrative. J Cogn Neurosci 2024; 36:2495-2517. [PMID: 39106161 DOI: 10.1162/jocn_a_02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Making sense of natural language and narratives requires building and manipulating a situation model by adding incoming information to the model and using the context stored in the model to comprehend subsequent details and events. Situation model maintenance is supported by the default mode network (DMN), but comprehension of the individual moments in the narrative relies on access to the conceptual store within the semantic system. The present study examined how these systems are engaged by different narrative content to investigate whether highly informative, or semantic, content is a particularly strong driver of semantic system activation compared with contextually driven content that requires using the situation model, which might instead engage DMN regions. The study further investigated which subregions of the graded semantic hub in the left anterior temporal lobe (ATL) were engaged by the type of narrative content. To do this, we quantified the semantic, pragmatic, social, ambiguous, and emotional content for each sentence in a complete narrative, the English translation of The Little Prince. Increased activation in the transmodal hub in the ventral ATL was only observed for high semantic (i.e., informative) relative to low semantic sentences. Activation in the dorsolateral and ventrolateral ATL subregions was observed for both high relative to low semantic and social content sentences, but the ventrolateral ATL effects were more extensive in the social condition. There was high correspondence between the social and pragmatic content results, particularly in the ventrolateral ATL. We argue that the ventrolateral ATL may be particularly engaged by internal, or endogenous, processing demands, aided by functional connections between the anterior middle temporal gyrus and the DMN. Pragmatic and social content may have driven endogenous processing given the pervasive and plot-progressing nature of this content in the narrative. We put forward a revised account of how the semantic system is engaged in naturalistic contexts, a critical step toward better understanding real-world semantic and social processing.
Collapse
|
7
|
Zhang 菁菁张 J, Feng 秋阳冯 Q, Qiu 江邱 J. Frequent absent mindedness and the neural mechanism trapped by mobile phone addiction. Neuroscience 2024:S0306-4522(24)00559-1. [PMID: 39454714 DOI: 10.1016/j.neuroscience.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION With the increased availability and sophistication of digital devices in the last decade, young people have become mainstream mobile phone users. Heavy mobile phone dependence causes affective problems (depression, anxiety) and loss of attention on current activities, leading to more cluttered thoughts. Problematic mobile phone use has been found to increase the occurrence of mind wandering, but the neural mechanism underlying this relationship remains unclear. METHOD The current study aimed to investigate the neural mechanism between mobile phone use and mind wandering. 459 university students (averaged age, 19.26 years) from datasets (ongoing research project named Gene-Brain-Behavior project, GBB) completed psychological assessments of mobile phone addiction and mind wandering and underwent resting-state functional connectivity (FC) scanning. FC matrix was constructed to further conduct correlation and mediation analyses. RESULTS Students with high mobile phone addiction scores were more likely to have high mind wandering scores. Functional connectivity among the default mode, motor, frontoparietal, basal ganglia, limbic, medial frontal, visual association, and cerebellar networks formed the neural basis of mind wandering. Functional connectivity between the frontoparietal and motor networks, between the default mode network and cerebellar network, and within the cerebellar network mediated the relationship between mobile phone addiction and mind wandering. CONCLUSION The findings of this study confirm that mobile phone addiction is a risk factor for increased mind wandering and reveal that FC in several brain networks underlies this relationship. They contribute to research on behavioral addiction, education, and mental health among young adults.
Collapse
Affiliation(s)
| | - Qiuyang Feng 秋阳冯
- Department of Psychology, Southwest University, Chongqing, China.
| | - Jiang Qiu 江邱
- Department of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
8
|
Song Z, Wang Q, Wang Y, Ran Y, Tang X, Li H, Jiang Z. Developmental dynamics of brain network modularity and temporal co-occurrence diversity in childhood. J Affect Disord 2024; 369:928-944. [PMID: 39442705 DOI: 10.1016/j.jad.2024.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Brain development during childhood involves significant structural, functional, and connectivity changes, reflecting the interplay between modularity, information interaction, and functional segregation. This study aims to understand the dynamic properties of brain connectivity and their impact on cognitive development, focusing on temporal co-occurrence diversity patterns. METHODS We recruited 481 children aged 6 to 12 years from the Healthy Brain Network database. Functional MRI data were used to construct dynamic functional connectivity matrices with a sliding window approach. Modular structures were identified using multilayer network community detection, and the Dagum Gini coefficient decomposition technique, which uniquely allows for multi-faceted exploration of modular temporal co-occurrence diversities, quantified these diversities. Mediation analysis assessed the impact on small-world properties. RESULTS Temporal co-occurrence diversity in brain networks increased with age, especially in the default mode, frontoparietal, and salience networks. These changes were driven by disparities within and between communities. The small-world coefficient increased with age, indicating improved information processing efficiency. To validate the impact of changes in spatiotemporal interaction disparities during childhood on information transmission within brain networks, we used mediation analysis to verify its effect on alterations in small-world properties. CONCLUSION This study highlights the critical developmental changes in brain modularity and spatiotemporal interaction patterns during childhood, emphasizing their role in cognitive maturation. These insights into neural mechanisms can inform the diagnosis and intervention of developmental disorders.
Collapse
Affiliation(s)
- Zeyu Song
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Qiushi Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yifei Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yuchen Ran
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Hanjun Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhenqi Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
9
|
Pamplona GSP, Giussani A, Salzmann L, Staempfli P, Schneller S, Gassert R, Ionta S. Neuro-cognitive effects of degraded visibility on illusory body ownership. Neuroimage 2024; 300:120870. [PMID: 39349148 DOI: 10.1016/j.neuroimage.2024.120870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024] Open
Abstract
Based on visuo-tactile stimulation, the rubber hand illusion induces a sense of ownership for a dummy hand. Manipulating the visibility of the dummy hand during the stimulation influences cognitive aspects of the illusion, suggesting that the related brain activity may be influenced too. To test this, we analyzed brain activity (fMRI), subjective ratings, and skin conductance from 45 neurotypical participants undergoing a modified rubber hand illusion protocol where we manipulated the visibility (high, medium, and low) of a virtual hand, not the brush (virtual hand illusion; VHI). To further investigate the impact of visibility manipulations on VHI-related secondary effects (i.e. vicarious somatosensation), we recorded brain activity and skin conductance during a vicarious pain protocol (observation of painful stimulations of the virtual hand) that occurred after the VHI procedure. Results showed that, during both the VHI and vicarious pain periods, the activity of distinct visual, somatosensory, and motor brain regions was modulated by (i) visibility manipulations, (ii) coherence between visual and tactile stimulation, and (iii) time of visuo-tactile stimulation. Accordingly, embodiment-related subjective ratings of the perceived illusion were specifically influenced by visibility manipulations. These findings suggest that visibility modifications can impact the neural and cognitive effects of illusory body ownership, in that when visibility decreases the illusion is perceived as weaker and the brain activity in visual, motor, and somatosensory regions is overall lower. We interpret this evidence as a sign of the weight of vision on embodiment processes, in that the cortical and subjective aspects of illusory body ownership are weakened by a degradation of visual input during the induction of the illusion.
Collapse
Affiliation(s)
- Gustavo S P Pamplona
- Sensory-Motor Laboratory (SeMoLa), Jules-Gonin Eye Hospital/Fondation Asile des Aveugles, Department of Ophthalmology/University of Lausanne, Lausanne, Switzerland; Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Amedeo Giussani
- Sensory-Motor Laboratory (SeMoLa), Jules-Gonin Eye Hospital/Fondation Asile des Aveugles, Department of Ophthalmology/University of Lausanne, Lausanne, Switzerland
| | - Lena Salzmann
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Philipp Staempfli
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Stefan Schneller
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Silvio Ionta
- Sensory-Motor Laboratory (SeMoLa), Jules-Gonin Eye Hospital/Fondation Asile des Aveugles, Department of Ophthalmology/University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Liu C, Zhuang K, Zeitlen DC, Chen Q, Wang X, Feng Q, Beaty RE, Qiu J. Neural, genetic, and cognitive signatures of creativity. Commun Biol 2024; 7:1324. [PMID: 39402209 PMCID: PMC11473644 DOI: 10.1038/s42003-024-07007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Creativity is typically operationalized as divergent thinking (DT) ability, a form of higher-order cognition which relies on memory, attention, and other component processes. Despite recent advances, creativity neuroscience lacks a unified framework to model its complexity across neural, genetic, and cognitive scales. Using task-based fMRI from two independent samples and MVPA, we identified a neural pattern that predicts DT, validated through cognitive decoding, genetic data, and large-scale resting-state fMRI. Our findings reveal that DT neural patterns span brain regions associated with diverse cognitive functions, with positive weights in the default mode and frontoparietal control networks and negative weights in the visual network. The high correlation with the primary gradient of functional connectivity suggests that DT involves extensive integration from concrete sensory information to abstract, higher-level cognition, distinguishing it from other advanced cognitive functions. Moreover, neurobiological analyses show that the DT pattern is positively correlated with dopamine-related neurotransmitters and genes influencing neurotransmitter release, advancing the neurobiological understanding of creativity.
Collapse
Affiliation(s)
- Cheng Liu
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Kaixiang Zhuang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Daniel C Zeitlen
- Department of Psychology, Pennsylvania State University, Pennsylvania, USA
| | - Qunlin Chen
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Qiuyang Feng
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Roger E Beaty
- Department of Psychology, Pennsylvania State University, Pennsylvania, USA
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
11
|
Hwang ZA, Hsu AL, Li CW, Wu CW, Chen CH, Chan WP, Huang MC. The distinct functional brain network and its association with psychotic symptom severity in men with methamphetamine-associated psychosis. BMC Psychiatry 2024; 24:671. [PMID: 39390430 PMCID: PMC11468263 DOI: 10.1186/s12888-024-06112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Individuals using methamphetamine (METH) may experience psychosis, which usually requires aggressive treatment. Studies of the neural correlates of METH-associated psychosis (MAP) have focused predominantly on the default mode network (DMN) and cognitive control networks. We hypothesize that METH use alters global functional connections in resting-state brain networks and that certain cross-network connections could be associated with psychosis. METHODS We recruited 24 healthy controls (CRL) and 54 men with METH use disorder (MUD) who were then divided into 25 without psychosis (MNP) and 29 with MAP. Psychotic symptom severity was assessed using the Positive and Negative Syndrome Scale (PANSS), evaluating (1) large-scale alterations in regional-wise resting-state functional connectivity (rsFC) across 11 brain networks and (2) associations between rsFC and psychotic symptom severity. RESULTS The MUD group exhibited greater rsFC between the salience network (SN)-DMN, and subcortical network (SCN)-DMN compared to the CRL group. The MAP group exhibited decreased rsFC in the sensory/somatomotor network (SMN)-dorsal attention network (DAN), SMN-ventral attention network (VAN), SMN-SN, and SMN-auditory network (AN), whereas the MNP group exhibited increased rsFC in the SMN-DMN and the frontoparietal network (FPN)-DMN compared to CRL. Additionally, the MAP group exhibited decreased rsFC strength between the SMN-DMN, SMN-AN, SMN-FPN, and DMN-VAN compared to the MNP group. Furthermore, across the entire MUD group, the PANSS-Positive subscale was negatively correlated with the DMN-FPN and FPN-SMN, while the PANSS-Negative subscale was negatively correlated with the DMN-AN and SMN-SMN. CONCLUSION MUD is associated with altered global functional connectivity. In addition, the MAP group exhibits a different brain functional network compared to the MNP group.
Collapse
Affiliation(s)
- Zhen-An Hwang
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ai-Ling Hsu
- Department of Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Wei Li
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wing P Chan
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan.
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Chyi Huang
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Addiction Sciences, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
Roseman-Shalem M, Dunbar RIM, Arzy S. Processing of social closeness in the human brain. Commun Biol 2024; 7:1293. [PMID: 39390210 PMCID: PMC11467261 DOI: 10.1038/s42003-024-06934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
Healthy social life requires relationships in different levels of personal closeness. Based on ethological, sociological, and psychological evidence, social networks have been divided into five layers, gradually increasing in size and decreasing in personal closeness. Is this division also reflected in brain processing of social networks? During functional MRI, 21 participants compared their personal closeness to different individuals. We examined the brain volume showing differential activation for varying layers of closeness and found that a disproportionately large portion of this volume (80%) exhibited preference for individuals closest to participants, while separate brain regions showed preference for all other layers. Moreover, this bipartition reflected cortical preference for different sizes of physical spaces, as well as distinct subsystems of the default mode network. Our results support a division of the neurocognitive processing of social networks into two patterns depending on personal closeness, reflecting the unique role intimately close individuals play in our social lives.
Collapse
Affiliation(s)
- Moshe Roseman-Shalem
- Computational Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Shahar Arzy
- Computational Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem, Israel
- Department of Brain and Cognitive Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
13
|
Ke M, Luo X, Guo Y, Zhang J, Ren X, Liu G. Alterations in spatiotemporal characteristics of dynamic networks in juvenile myoclonic epilepsy. Neurol Sci 2024; 45:4983-4996. [PMID: 38704479 DOI: 10.1007/s10072-024-07506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/27/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Juvenile myoclonic epilepsy (JME) is characterized by altered patterns of brain functional connectivity (FC). However, the nature and extent of alterations in the spatiotemporal characteristics of dynamic FC in JME patients remain elusive. Dynamic networks effectively encapsulate temporal variations in brain imaging data, offering insights into brain network abnormalities and contributing to our understanding of the seizure mechanisms and origins. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data were procured from 37 JME patients and 37 healthy counterparts. Forty-seven network nodes were identified by group-independent component analysis (ICA) to construct the dynamic network. Ultimately, patients' and controls' spatiotemporal characteristics, encompassing temporal clustering and variability, were contrasted at the whole-brain, large-scale network, and regional levels. RESULTS Our findings reveal a marked reduction in temporal clustering and an elevation in temporal variability in JME patients at the whole-brain echelon. Perturbations were notably pronounced in the default mode network (DMN) and visual network (VN) at the large-scale level. Nodes exhibiting anomalous were predominantly situated within the DMN and VN. Additionally, there was a significant correlation between the severity of JME symptoms and the temporal clustering of the VN. CONCLUSIONS Our findings suggest that excessive temporal changes in brain FC may affect the temporal structure of dynamic brain networks, leading to disturbances in brain function in patients with JME. The DMN and VN play an important role in the dynamics of brain networks in patients, and their abnormal spatiotemporal properties may underlie abnormal brain function in patients with JME in the early stages of the disease.
Collapse
Affiliation(s)
- Ming Ke
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Xiaofei Luo
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yi Guo
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Juli Zhang
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xupeng Ren
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Guangyao Liu
- Department of Nuclear Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
14
|
Kucyi A, Anderson N, Bounyarith T, Braun D, Shareef-Trudeau L, Treves I, Braga RM, Hsieh PJ, Hung SM. Individual variability in neural representations of mind-wandering. Netw Neurosci 2024; 8:808-836. [PMID: 39355438 PMCID: PMC11349032 DOI: 10.1162/netn_a_00387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 10/03/2024] Open
Abstract
Mind-wandering is a frequent, daily mental activity, experienced in unique ways in each person. Yet neuroimaging evidence relating mind-wandering to brain activity, for example in the default mode network (DMN), has relied on population- rather than individual-based inferences owing to limited within-person sampling. Here, three densely sampled individuals each reported hundreds of mind-wandering episodes while undergoing multi-session functional magnetic resonance imaging. We found reliable associations between mind-wandering and DMN activation when estimating brain networks within individuals using precision functional mapping. However, the timing of spontaneous DMN activity relative to subjective reports, and the networks beyond DMN that were activated and deactivated during mind-wandering, were distinct across individuals. Connectome-based predictive modeling further revealed idiosyncratic, whole-brain functional connectivity patterns that consistently predicted mind-wandering within individuals but did not fully generalize across individuals. Predictive models of mind-wandering and attention that were derived from larger-scale neuroimaging datasets largely failed when applied to densely sampled individuals, further highlighting the need for personalized models. Our work offers novel evidence for both conserved and variable neural representations of self-reported mind-wandering in different individuals. The previously unrecognized interindividual variations reported here underscore the broader scientific value and potential clinical utility of idiographic approaches to brain-experience associations.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Tiara Bounyarith
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - David Braun
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Lotus Shareef-Trudeau
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Isaac Treves
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Po-Jang Hsieh
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Shao-Min Hung
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| |
Collapse
|
15
|
Girn M, Setton R, Turner GR, Spreng RN. The "limbic network," comprising orbitofrontal and anterior temporal cortex, is part of an extended default network: Evidence from multi-echo fMRI. Netw Neurosci 2024; 8:860-882. [PMID: 39355434 PMCID: PMC11398723 DOI: 10.1162/netn_a_00385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/23/2024] [Indexed: 10/03/2024] Open
Abstract
Resting-state functional magnetic resonance imaging (fMRI) investigations have provided a view of the default network (DN) as composed of a specific set of frontal, parietal, and temporal cortical regions. This spatial topography is typically defined with reference to an influential network parcellation scheme that designated the DN as one of seven large-scale networks (Yeo et al., 2011). However, the precise functional organization of the DN is still under debate, with studies arguing for varying subnetwork configurations and the inclusion of subcortical regions. In this vein, the so-called limbic network-defined as a distinct large-scale network comprising the bilateral temporal poles, ventral anterior temporal lobes, and orbitofrontal cortex-is of particular interest. A large multi-modal and multi-species literature on the anatomical, functional, and cognitive properties of these regions suggests a close relationship to the DN. Notably, these regions have poor signal quality with conventional fMRI acquisition, likely obscuring their network affiliation in most studies. Here, we leverage a multi-echo fMRI dataset with high temporal signal-to-noise and whole-brain coverage, including orbitofrontal and anterior temporal regions, to examine the large-scale network resting-state functional connectivity of these regions and assess their associations with the DN. Consistent with our hypotheses, our results support the inclusion of the majority of the orbitofrontal and anterior temporal cortex as part of the DN and reveal significant heterogeneity in their functional connectivity. We observed that left-lateralized regions within the temporal poles and ventral anterior temporal lobes, as well as medial orbitofrontal regions, exhibited the greatest resting-state functional connectivity with the DN, with heterogeneity across DN subnetworks. Overall, our findings suggest that, rather than being a functionally distinct network, the orbitofrontal and anterior temporal regions comprise part of a larger, extended default network.
Collapse
Affiliation(s)
- Manesh Girn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | | | - R. Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Qiu H, Zhang L, Gao Y, Zhou Z, Li H, Cao L, Wang Y, Hu X, Liang K, Tang M, Kuang W, Huang X, Gong Q. Functional connectivity of the default mode network in first-episode drug-naïve patients with major depressive disorder. J Affect Disord 2024; 361:489-496. [PMID: 38901692 DOI: 10.1016/j.jad.2024.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Alterations in the default mode network (DMN) have been reported in major depressive disorder (MDD), well-replicated robust alterations of functional connectivity (FC) of DMN remain to be established. Investigating the functional connections of DMN at the overall and subsystem level in early MDD patients has the potential to advance our understanding of the physiopathology of this disorder. METHODS We recruited 115 first-episode drug-naïve patients with MDD and 137 demographic-matched healthy controls (HCs). We first compared FC within the DMN, within/between the DMN subsystems, and from DMN subsystems to the whole brain between groups. Subsequently, we explored correlations between clinical features and identified alterations in FC. RESULTS First-episode drug-naïve patients with MDD showed significantly increased FC within the DMN, dorsal DMN and medial DMN. Each subsystem showed a distinct FC pattern with other brain networks. Increased FC between the subsystems (core DMN, dorsal DMN) and other networks was associated with more severe depressive symptoms, while medial DMN-related connectivity correlated with memory performance. LIMITATIONS The relatively large "pure" MDD sample could only be generalized to a limited population. And, atypical asymmetric FCs in the DMN related to MDD might be missed for only left-lateralized ROIs were used to avoid strong correlations between mirrored (right/left) seed regions. CONCLUSION These findings suggest patients with early MDD showed distinct patterns of FC alterations throughout DMN and its subsystems, which were related to illness severity and illness-associated cognitive impairment, highlighting their clinical significance.
Collapse
Affiliation(s)
- Hui Qiu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Department of Radiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Zilin Zhou
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Lingxiao Cao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yingying Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyue Hu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Kaili Liang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Mengyue Tang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
17
|
Hammer J, Kajsova M, Kalina A, Krysl D, Fabera P, Kudr M, Jezdik P, Janca R, Krsek P, Marusic P. Antagonistic behavior of brain networks mediated by low-frequency oscillations: electrophysiological dynamics during internal-external attention switching. Commun Biol 2024; 7:1105. [PMID: 39251869 PMCID: PMC11385230 DOI: 10.1038/s42003-024-06732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Antagonistic activity of brain networks likely plays a fundamental role in how the brain optimizes its performance by efficient allocation of computational resources. A prominent example involves externally/internally oriented attention tasks, implicating two anticorrelated, intrinsic brain networks: the default mode network (DMN) and the dorsal attention network (DAN). To elucidate electrophysiological underpinnings and causal interplay during attention switching, we recorded intracranial EEG (iEEG) from 25 epilepsy patients with electrode contacts localized in the DMN and DAN. We show antagonistic network dynamics of activation-related changes in high-frequency (> 50 Hz) and low-frequency (< 30 Hz) power. The temporal profile of information flow between the networks estimated by functional connectivity suggests that the activated network inhibits the other one, gating its activity by increasing the amplitude of the low-frequency oscillations. Insights about inter-network communication may have profound implications for various brain disorders in which these dynamics are compromised.
Collapse
Affiliation(s)
- Jiri Hammer
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.
| | - Michaela Kajsova
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Adam Kalina
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - David Krysl
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Petr Fabera
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Martin Kudr
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Petr Jezdik
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Radek Janca
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Pavel Krsek
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Petr Marusic
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.
| |
Collapse
|
18
|
Fenerci C, Setton R, Baracchini G, Snytte J, Spreng RN, Sheldon S. Lifespan differences in hippocampal subregion connectivity patterns during movie watching. Neurobiol Aging 2024; 141:182-193. [PMID: 38968875 DOI: 10.1016/j.neurobiolaging.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/17/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Age-related episodic memory decline is attributed to functional alternations in the hippocampus. Less clear is how aging affects the functional connections of the hippocampus to the rest of the brain during episodic memory processing. We examined fMRI data from the CamCAN dataset, in which a large cohort of participants watched a movie (N = 643; 18-88 years), a proxy for naturalistic episodic memory encoding. We examined connectivity profiles across the lifespan both within the hippocampus (anterior, posterior), and between the hippocampal subregions and cortical networks. Aging was associated with reductions in contralateral (left, right) but not ipsilateral (anterior, posterior) hippocampal subregion connectivity. Aging was primarily associated with increased coupling between the anterior hippocampus and regions affiliated with Control, Dorsal Attention and Default Mode networks, yet decreased coupling between the posterior hippocampus and a selection of these regions. Differences in age-related hippocampal-cortical, but not within-hippocampus circuitry selectively predicted worse memory performance. Our findings comprehensively characterize hippocampal functional topography in relation to cognition in older age, suggesting that shifts in cortico-hippocampal connectivity may be sensitive markers of age-related episodic memory decline.
Collapse
Affiliation(s)
- Can Fenerci
- Department of Psychology, McGill University, Montreal, QC, Canada.
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jamie Snytte
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - R Nathan Spreng
- Department of Psychology, McGill University, Montreal, QC, Canada; Department of Psychology, Harvard University, Cambridge, MA, USA; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
19
|
Wang Z, Diedrichsen J, Saltoun K, Steele C, Arnold-Anteraper SR, Yeo BTT, Schmahmann JD, Bzdok D. Structural covariation between cerebellum and neocortex intrinsic structural covariation links cerebellum subregions to the cerebral cortex. J Neurophysiol 2024; 132:849-869. [PMID: 39052236 PMCID: PMC11427046 DOI: 10.1152/jn.00164.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The human cerebellum is increasingly recognized to be involved in nonmotor and higher-order cognitive functions. Yet, its ties with the entire cerebral cortex have not been holistically studied in a whole brain exploration with a unified analytical framework. Here, we characterized dissociable cortical-cerebellar structural covariation patterns based on regional gray matter volume (GMV) across the brain in n = 38,527 UK Biobank participants. Our results invigorate previous observations in that important shares of cortical-cerebellar structural covariation are described as 1) a dissociation between the higher-level cognitive system and lower-level sensorimotor system and 2) an anticorrelation between the visual-attention system and advanced associative networks within the cerebellum. We also discovered a novel pattern of ipsilateral, rather than contralateral, cerebral-cerebellar associations. Furthermore, phenome-wide association assays revealed key phenotypes, including cognitive phenotypes, lifestyle, physical properties, and blood assays, associated with each decomposed covariation pattern, helping to understand their real-world implications. This systems neuroscience view paves the way for future studies to explore the implications of these structural covariations, potentially illuminating new pathways in our understanding of neurological and cognitive disorders.NEW & NOTEWORTHY Cerebellum's association with the entire cerebral cortex has not been holistically studied in a unified way. Here, we conjointly characterize the population-level cortical-cerebellar structural covariation patterns leveraging ∼40,000 UK Biobank participants whole brain structural scans and ∼1,000 phenotypes. We revitalize the previous hypothesis of an anticorrelation between the visual-attention system and advanced associative networks within the cerebellum. We also discovered a novel ipsilateral cerebral-cerebellar associations. Phenome-wide association (PheWAS) revealed real-world implications of the structural covariation patterns.
Collapse
Affiliation(s)
- Zilong Wang
- McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, The Neuro-Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Jörn Diedrichsen
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Department of Computer Science, Western University, London, Ontario, Canada
- Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
| | - Karin Saltoun
- McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, The Neuro-Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Christopher Steele
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sheeba Rani Arnold-Anteraper
- Advanced Imaging Research Center, UTSW, Dallas, Texas, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - B T Thomas Yeo
- Department of Electrical & Computer Engineering, Centre for Translational MR Research, Centre for Sleep & Cognition, N.1 Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Jeremy D Schmahmann
- Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Department of Biomedical Engineering, Faculty of Medicine, School of Computer Science, The Neuro-Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Dimitriadis SI. ℛSCZ: A Riemannian schizophrenia diagnosis framework based on the multiplexity of EEG-based dynamic functional connectivity patterns. Comput Biol Med 2024; 180:108862. [PMID: 39068901 DOI: 10.1016/j.compbiomed.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/30/2024]
Abstract
Abnormal electrophysiological (EEG) activity has been largely reported in schizophrenia (SCZ). In the last decade, research has focused to the automatic diagnosis of SCZ via the investigation of an EEG aberrant activity and connectivity linked to this mental disorder. These studies followed various preprocessing steps of EEG activity focusing on frequency-dependent functional connectivity brain network (FCBN) construction disregarding the topological dependency among edges. FCBN belongs to a family of symmetric positive definite (SPD) matrices forming the Riemannian manifold. Due to its unique geometric properties, the whole analysis of FCBN can be performed on the Riemannian geometry of the SPD space. The advantage of the analysis of FCBN on the SPD space is that it takes into account all the pairwise interdependencies as a whole. However, only a few studies have adopted a FCBN analysis on the SPD manifold, while no study exists on the analysis of dynamic FCBN (dFCBN) tailored to SCZ. In the present study, I analyzed two open EEG-SCZ datasets under a Riemannian geometry of SPD matrices for the dFCBN analysis proposing also a multiplexity index that quantifies the associations of multi-frequency brainwave patterns. I adopted a machine learning procedure employing a leave-one-subject-out cross-validation (LOSO-CV) using snapshots of dFCBN from (N-1) subjects to train a battery of classifiers. Each classifier operated in the inter-subject dFCBN distances of sample covariance matrices (SCMs) following a rhythm-dependent decision and a multiplex-dependent one. The proposed ℛSCZ decoder supported both the Riemannian geometry of SPD and the multiplexity index DC reaching an absolute accuracy (100 %) in both datasets in the virtual default mode network (DMN) source space.
Collapse
Affiliation(s)
- Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall D'Hebron 171, 08035, Barcelona, Spain; Institut de Neurociencies, University of Barcelona, Municipality of Horta-Guinardó, 08035, Barcelona, Spain; Integrative Neuroimaging Lab, Thessaloniki, 55133, Makedonia, Greece; Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Rd, CF24 4HQ, Cardiff, Wales, United Kingdom.
| |
Collapse
|
21
|
Ronde M, van der Zee EA, Kas MJH. Default mode network dynamics: An integrated neurocircuitry perspective on social dysfunction in human brain disorders. Neurosci Biobehav Rev 2024; 164:105839. [PMID: 39097251 DOI: 10.1016/j.neubiorev.2024.105839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Our intricate social brain is implicated in a range of brain disorders, where social dysfunction emerges as a common neuropsychiatric feature cutting across diagnostic boundaries. Understanding the neurocircuitry underlying social dysfunction and exploring avenues for its restoration could present a transformative and transdiagnostic approach to overcoming therapeutic challenges in these disorders. The brain's default mode network (DMN) plays a crucial role in social functioning and is implicated in various neuropsychiatric conditions. By thoroughly examining the current understanding of DMN functionality, we propose that the DMN integrates diverse social processes, and disruptions in brain communication at regional and network levels due to disease hinder the seamless integration of these social functionalities. Consequently, this leads to an altered balance between self-referential and attentional processes, alongside a compromised ability to adapt to social contexts and anticipate future social interactions. Looking ahead, we explore how adopting an integrated neurocircuitry perspective on social dysfunction could pave the way for innovative therapeutic approaches to address brain disorders.
Collapse
Affiliation(s)
- Mirthe Ronde
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Eddy A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
22
|
Zhang L, Wang W, Ruan Y, Li Z, Yanjun, Ji GJ, Tian Y, Wang K. Hyperactivity and altered functional connectivity of the ventral striatum in schizophrenia compared with bipolar disorder: A resting state fMRI study. Psychiatry Res Neuroimaging 2024; 345:111881. [PMID: 39278197 DOI: 10.1016/j.pscychresns.2024.111881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Schizophrenia patients frequently present with structural and functional abnormalities of the ventral striatum (VS). METHODS we examined basal activation state and functional connectivity (FC) in four subregions of the bilateral ventral striatum: left inferior ventral striatum (VSi_L), left superior ventral striatum(VSs_L), right inferior ventral striatum(VSi_R), and right superior ventral striatum(VSs_R). Resting-state functional magnetic resonance images were obtained from 62 schizophrenia patients (SCH), 57 bipolar disorder (BD) patients, and 26 healthy controls (HCs). RESULTS The schizophrenia group exhibited greater fALFF in bilateral VS subregions compared to BD and HC groups as well as greater FC between the bilateral VSi and multiple brain regions, including the thalamus, putamen, posterior cingulate gyrus (PCC), frontal cortex and caudate. Moreover, the fALFF values of the bilateral ventral striatum were positively correlated with the severity of positive symptoms. We also found the functional connectivity between the bilateral inferior ventral striatum and some brain regions aforementioned were positively correlated with the severity of negative symptoms. CONCLUSION These findings confirm a crucial contribution of ventral striatum dysfunction, especially of the bilateral VSi in schizophrenia. Functionally dissociated regions of the ventral striatum are differentially disturbed in schizophrenia.
Collapse
Affiliation(s)
- Li Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China; Laboratory of Neuromodulation, Anhui Mental Health Center, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China.
| | - Wenli Wang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yuan Ruan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhiyong Li
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Yanjun
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China; School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, China
| | - Gong-Jun Ji
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China
| | - Yanghua Tian
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China.
| | - Kai Wang
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China; Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230022, China.
| |
Collapse
|
23
|
Lu F, Zhang J, Zhong Y, Hong L, Wang J, Du H, Fang J, Fan Y, Wang X, Yang Y, He Z, Jia C, Wang W, Lv X. Neural signatures of default mode network subsystems in first-episode, drug-naive patients with major depressive disorder after 6-week thought induction psychotherapy treatment. Brain Commun 2024; 6:fcae263. [PMID: 39171204 PMCID: PMC11337011 DOI: 10.1093/braincomms/fcae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Evidence indicates that the default mode network (DMN) plays a crucial role in the neuropathology of major depressive disorder (MDD). However, the neural signatures of DMN subsystems in MDD after low resistance Thought Induction Psychotherapy (TIP) remain incompletely understood. We collected functional magnetic resonance imaging data from 20 first-episode, drug-naive MDD and 20 healthy controls (HCs). The DMN was segmented into three subsystems and seed-based functional connectivity (FC) was computed. After 6-week treatment, the significantly reduced FCs with the medial temporal lobe memory subsystem in MDD at baseline were enhanced and were comparable to that in HCs. Changed Hamilton Depression Rating Scale scores were significantly related with changed FC between the posterior cingulate cortex (PCC) and the right precuneus (PCUN). Further, changed serotonin 5-hydroxytryptamine levels were significantly correlated with changed FCs between the PCC and the left PCUN, between the posterior inferior parietal lobule and the left inferior temporal gyrus, and between the retrosplenial cortex and the right inferior frontal gyrus, opercular part. Finally, the support vector machine obtained an accuracy of 67.5% to distinguish between MDD at baseline and HCs. These findings may deepen our understanding of the neural basis of the effects of TIP on DMN subsystems in MDD.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jinhua Zhang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yihua Zhong
- Teaching Department, The Open University of Chengdu, Chengdu 610213, China
| | - Lan Hong
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jian Wang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hui Du
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jiliang Fang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yangyang Fan
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaoling Wang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Yang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chen Jia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Weidong Wang
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xueyu Lv
- Psychology Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
24
|
Hughes C, Setton R, Mwilambwe-Tshilobo L, Baracchini G, Turner GR, Spreng RN. Precision mapping of the default network reveals common and distinct (inter) activity for autobiographical memory and theory of mind. J Neurophysiol 2024; 132:375-388. [PMID: 38958281 PMCID: PMC11427040 DOI: 10.1152/jn.00427.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
The default network is widely implicated as a common neural substrate for self-generated thought, such as remembering one's past (autobiographical memory) and imagining the thoughts and feelings of others (theory of mind). Findings that the default network comprises subnetworks of regions, some commonly and some distinctly involved across processes, suggest that one's own experiences inform their understanding of others. With the advent of precision functional MRI (fMRI) methods, however, it is unclear if this shared substrate is observed instead due to traditional group analysis methods. We investigated this possibility using a novel combination of methodological strategies. Twenty-three participants underwent multi-echo resting-state and task fMRI. We used their resting-state scans to conduct cortical parcellation sensitive to individual variation while preserving our ability to conduct group analysis. Using multivariate analyses, we assessed the functional activation and connectivity profiles of default network regions while participants engaged in autobiographical memory, theory of mind, or a sensorimotor control condition. Across the default network, we observed stronger activity associated with both autobiographical memory and theory of mind compared to the control condition. Nonetheless, we also observed that some regions showed preferential activity to either experimental condition, in line with past work. The connectivity results similarly indicated shared and distinct functional profiles. Our results support that autobiographical memory and theory of mind, two theoretically important and widely studied domains of social cognition, evoke common and distinct aspects of the default network even when ensuring high fidelity to individual-specific characteristics.NEW & NOTEWORTHY We used cutting-edge precision functional MRI (fMRI) methods such as multi-echo fMRI acquisition and denoising, a robust experimental paradigm, and individualized cortical parcellation across 23 participants to provide evidence that remembering one's past experiences and imagining the thoughts and feelings of others share a common neural substrate. Evidence from activation and connectivity analyses indicate overlapping and distinct functional profiles of these widely studied episodic and social processes.
Collapse
Affiliation(s)
- Colleen Hughes
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Roni Setton
- Psychology Department, Harvard University, Cambridge, Massachusetts, United States
| | - Laetitia Mwilambwe-Tshilobo
- Psychology Department, Princeton University, Princeton, New Jersey, United States
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Luo Y, Wang L, Yang Y, Jiang X, Zheng K, Xi Y, Wang M, Wang L, Xu Y, Li J, Xie Y, Wang Y. Exploration of resting-state brain functional connectivity as preclinical markers for arousal prediction in prolonged disorders of consciousness: A pilot study based on functional near-infrared spectroscopy. Brain Behav 2024; 14:e70002. [PMID: 39183500 PMCID: PMC11345494 DOI: 10.1002/brb3.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND There is no diagnostic assessment procedure with moderate or strong evidence of use, and evidence for current means of treating prolonged disorders of consciousness (pDOC) is sparse. This may be related to the fact that the mechanisms of pDOC have not been studied deeply enough and are not clear enough. Therefore, the aim of this study was to explore the mechanism of pDOC using functional near-infrared spectroscopy (fNIRS) to provide a basis for the treatment of pDOC, as well as to explore preclinical markers for determining the arousal of pDOC patients. METHODS Five minutes resting-state data were collected from 10 pDOC patients and 13healthy adults using fNIRS. Based on the concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) in the time series, the resting-state cortical brain functional connectivity strengths of the two groups were calculated, and the functional connectivity strengths of homologous and heterologous brain networks were compared at the sensorimotor network (SEN), dorsal attention network (DAN), ventral attention network (VAN), default mode network (DMN), frontoparietal network (FPN), and visual network (VIS) levels. Univariate binary logistic regression analyses were performed on brain networks with statistically significant differences to identify brain networks associated with arousal in pDOC patients. The receiver operating characteristic (ROC) curves were further analyzed to determine the cut-off value of the relevant brain networks to provide clinical biomarkers for the prediction of arousal in pDOC patients. RESULTS The results showed that the functional connectivity strengths of oxyhemoglobin (HbO)-based SEN∼SEN, VIS∼VIS, DAN∼DAN, DMN∼DMN, SEN∼VIS, SEN∼FPN, SEN∼DAN, SEN∼DMN, VIS∼FPN, VIS∼DAN, VIS∼DMN, HbR-based SEN∼SEN, and SEN∼DAN were significantly reduced in the pDOC group and were factors that could reflect the participants' state of consciousness. The cut-off value of resting-state functional connectivity strength calculated by ROC curve analysis can be used as a potential preclinical marker for predicting the arousal state of subjects. CONCLUSION Resting-state functional connectivity strength of cortical networks is significantly reduced in pDOC patients. The cut-off values of resting-state functional connectivity strength are potential preclinical markers for predicting arousal in pDOC patients.
Collapse
Affiliation(s)
- Yaomin Luo
- Department of Rehabilitation MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Lingling Wang
- Department of Rehabilitation MedicineWest China Second Hospital of Sichuan UniversityChenduChina
| | - Yuxuan Yang
- Department of Rehabilitation MedicineWest China Second Hospital of Sichuan UniversityChenduChina
| | - Xin Jiang
- Department of Respiratory MedicineGaoping District People's HospitalNanchongChina
| | - Kaiyuan Zheng
- Department of Rehabilitation MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Yu Xi
- Department of Operating RoomNanchong Hospital of Traditional Chinese MedicineNanchongChina
| | - Min Wang
- Department of Paediatric SurgeryNanchong Central Hospital, The Second Clinical College, North Sichuan Medical CollegeNanchongChina
| | - Li Wang
- Department of Rehabilitation MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Yanlin Xu
- Sports Rehabilitation, North Sichuan Medical CollegeNanchongChina
| | - Jun Li
- Sports Rehabilitation, North Sichuan Medical CollegeNanchongChina
| | - Yulei Xie
- Department of Rehabilitation MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
- School of RehabilitationCapital Medical UniversityBeijingChina
| | - Yinxu Wang
- Department of Rehabilitation MedicineAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| |
Collapse
|
26
|
Romeo Z, Spironelli C. Theta oscillations underlie the interplay between emotional processing and empathy. Heliyon 2024; 10:e34581. [PMID: 39148968 PMCID: PMC11325776 DOI: 10.1016/j.heliyon.2024.e34581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Emotional reactions to salient stimuli are well documented in psychophysiological research. However, some individual variables that can influence how people process emotions (i.e., empathy traits) have received little consideration. The present study investigated the relationship between emotions and empathy. Forty participants completed the Interpersonal Reactivity Index, a questionnaire that measure general and specific empathy dimensions. Then, emotional (erotic and mutilation) and non-emotional pictures were presented, during electroencephalographic recording. Valence and arousal were evaluated for each stimulus. Behavioral results revealed a positive correlation between the arousal induced by mutilation pictures and personal distress (i.e., feeling discomfort in emergency situations). At the electrophysiological level, theta activity elicited by positive and negative emotion processing in the superior frontal gyrus was associated with personal distress. Moreover, erotic-related theta in the middle frontal gyrus was associated with subjective judgement of erotic stimulus valence. Overall, theta activity modulated the interplay between emotions and empathy.
Collapse
Affiliation(s)
- Zaira Romeo
- Department of General Psychology, University of Padova, Padova, Italy
- Neuroscience Institute, National Research Council (CNR), Padova, Italy
| | - Chiara Spironelli
- Department of General Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
27
|
Balgova E, Diveica V, Jackson RL, Binney RJ. Overlapping neural correlates underpin theory of mind and semantic cognition: Evidence from a meta-analysis of 344 functional neuroimaging studies. Neuropsychologia 2024; 200:108904. [PMID: 38759780 DOI: 10.1016/j.neuropsychologia.2024.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/21/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Key unanswered questions for cognitive neuroscience include whether social cognition is underpinned by specialised brain regions and to what extent it simultaneously depends on more domain-general systems. Until we glean a better understanding of the full set of contributions made by various systems, theories of social cognition will remain fundamentally limited. In the present study, we evaluate a recent proposal that semantic cognition plays a crucial role in supporting social cognition. While previous brain-based investigations have focused on dissociating these two systems, our primary aim was to assess the degree to which the neural correlates are overlapping, particularly within two key regions, the anterior temporal lobe (ATL) and the temporoparietal junction (TPJ). We focus on activation associated with theory of mind (ToM) and adopt a meta-analytic activation likelihood approach to synthesise a large set of functional neuroimaging studies and compare their results with studies of semantic cognition. As a key consideration, we sought to account for methodological differences across the two sets of studies, including the fact that ToM studies tend to use nonverbal stimuli while the semantics literature is dominated by language-based tasks. Overall, we observed consistent overlap between the two sets of brain regions, especially in the ATL and TPJ. This supports the claim that tasks involving ToM draw upon more general semantic retrieval processes. We also identified activation specific to ToM in the right TPJ, bilateral anterior mPFC, and right precuneus. This is consistent with the view that, nested amongst more domain-general systems, there is specialised circuitry that is tuned to social processes.
Collapse
Affiliation(s)
- Eva Balgova
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK; Department of Psychology, Aberystwyth University, Ceredigion, Wales, UK
| | - Veronica Diveica
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, Heslington, York, UK
| | - Richard J Binney
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd, Wales, UK.
| |
Collapse
|
28
|
Allen TA, Hallquist MN, Dombrovski AY. Callousness, exploitativeness, and tracking of cooperation incentives in the human default network. Proc Natl Acad Sci U S A 2024; 121:e2307221121. [PMID: 38980906 PMCID: PMC11260090 DOI: 10.1073/pnas.2307221121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/12/2024] [Indexed: 07/11/2024] Open
Abstract
Human cognitive capacities that enable flexible cooperation may have evolved in parallel with the expansion of frontoparietal cortical networks, particularly the default network. Conversely, human antisocial behavior and trait antagonism are broadly associated with reduced activity, impaired connectivity, and altered structure of the default network. Yet, behaviors like interpersonal manipulation and exploitation may require intact or even superior social cognition. Using a reinforcement learning model of decision-making on a modified trust game, we examined how individuals adjusted their cooperation rate based on a counterpart's cooperation and social reputation. We observed that learning signals in the default network updated the predicted utility of cooperation or defection and scaled with reciprocal cooperation. These signals were weaker in callous (vs. compassionate) individuals but stronger in those who were more exploitative (vs. honest and humble). Further, they accounted for associations between exploitativeness, callousness, and reciprocal cooperation. Separately, behavioral sensitivity to prior reputation was reduced in callous but not exploitative individuals and selectively scaled with responses of the medial temporal subsystem of the default network. Overall, callousness was characterized by blunted behavioral and default network sensitivity to cooperation incentives. Exploitativeness predicted heightened sensitivity to others' cooperation but not social reputation. We speculate that both compassion and exploitativeness may reflect cognitive adaptations to social living, enabled by expansion of the default network in anthropogenesis.
Collapse
Affiliation(s)
- Timothy A. Allen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA15213
| | - Michael N. Hallquist
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | | |
Collapse
|
29
|
Guthrie TD, Chavez RS. Normativity vs. uniqueness: effects of social relationship strength on neural representations of others. Soc Cogn Affect Neurosci 2024; 19:nsae045. [PMID: 38915187 PMCID: PMC11232616 DOI: 10.1093/scan/nsae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024] Open
Abstract
Understanding others involves inferring traits and intentions, a process complicated by our reliance on stereotypes and generalized information when we lack personal information. Yet, as relationships are formed, we shift toward nuanced and individualized perceptions of others. This study addresses how relationship strength influences the creation of unique or normative representations of others in key regions known to be involved in social cognition. Employing a round-robin interpersonal perception paradigm (N = 111, 20 groups of five to six people), we used functional magnetic resonance imaging to examine whether the strength of social relationships modulated the degree to which multivoxel patterns of activity that represented a specific other were similar to a normative average of all others in the study. Behaviorally, stronger social relationships were associated with more normative trait endorsements. Neural findings reveal that closer relationships lead to more unique representations in the medial prefrontal cortex and anterior insula, areas associated with mentalizing and person perception. Conversely, more generalized representations emerge in posterior regions like the posterior cingulate cortex, indicating a complex interplay between individuated and generalized processing of social information in the brain. These findings suggest that cortical regions typically associated with social cognition may compute different kinds of information when representing the distinctiveness of others.
Collapse
Affiliation(s)
- Taylor D Guthrie
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Robert S Chavez
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| |
Collapse
|
30
|
Alonso-Sánchez MF, Hinzen W, He R, Gati J, Palaniyappan L. Perplexity of utterances in untreated first-episode psychosis: an ultra-high field MRI dynamic causal modelling study of the semantic network. J Psychiatry Neurosci 2024; 49:E252-E262. [PMID: 39122409 PMCID: PMC11318974 DOI: 10.1503/jpn.240031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Psychosis involves a distortion of thought content, which is partly reflected in anomalous ways in which words are semantically connected into utterances in speech. We sought to explore how these linguistic anomalies are realized through putative circuit-level abnormalities in the brain's semantic network. METHODS Using a computational large-language model, Bidirectional Encoder Representations from Transformers (BERT), we quantified the contextual expectedness of a given word sequence (perplexity) across 180 samples obtained from descriptions of 3 pictures by patients with first-episode schizophrenia (FES) and controls matched for age, parental social status, and sex, scanned with 7 T ultra-high field functional magnetic resonance imaging (fMRI). Subsequently, perplexity was used to parametrize a spectral dynamic causal model (DCM) of the effective connectivity within (intrinsic) and between (extrinsic) 4 key regions of the semantic network at rest, namely the anterior temporal lobe, the inferior frontal gyrus (IFG), the posterior middle temporal gyrus (MTG), and the angular gyrus. RESULTS We included 60 participants, including 30 patients with FES and 30 controls. We observed higher perplexity in the FES group, indicating that speech was less predictable by the preceding context among patients. Results of Bayesian model comparisons showed that a DCM including the group by perplexity interaction best explained the underlying patterns of neural activity. We observed an increase of self-inhibitory effective connectivity within the IFG, as well as reduced self-inhibitory tone within the pMTG, in the FES group. An increase in self-inhibitory tone in the IFG correlated strongly and positively with inter-regional excitation between the IFG and posterior MTG, while self-inhibition of the posterior MTG was negatively correlated with this interregional excitation. LIMITATION Our design did not address connectivity in the semantic network during tasks that selectively activated the semantic network, which could corroborate findings from this resting-state fMRI study. Furthermore, we do not present a replication study, which would ideally use speech in a different language. CONCLUSION As an explanation for peculiar speech in psychosis, these results index a shift in the excitatory-inhibitory balance regulating information flow across the semantic network, confined to 2 regions that were previously linked specifically to the executive control of meaning. Based on our approach of combining a large language model with causal connectivity estimates, we propose loss in semantic control as a potential neurocognitive mechanism contributing to disorganization in psychosis.
Collapse
Affiliation(s)
- Maria Francisca Alonso-Sánchez
- From CIDCL, Escuela de Fonoaudiología, Universidad de Valparaíso, Valparaíso, Chile (Alonso-Sánchez); the Department of Translation & Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain (Hinzen, He); the Intitut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Hinzen); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Gati, Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Gati, Palaniyappan); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que (Palaniyappan)
| | - Wolfram Hinzen
- From CIDCL, Escuela de Fonoaudiología, Universidad de Valparaíso, Valparaíso, Chile (Alonso-Sánchez); the Department of Translation & Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain (Hinzen, He); the Intitut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Hinzen); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Gati, Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Gati, Palaniyappan); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que (Palaniyappan)
| | - Rui He
- From CIDCL, Escuela de Fonoaudiología, Universidad de Valparaíso, Valparaíso, Chile (Alonso-Sánchez); the Department of Translation & Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain (Hinzen, He); the Intitut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Hinzen); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Gati, Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Gati, Palaniyappan); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que (Palaniyappan)
| | - Joseph Gati
- From CIDCL, Escuela de Fonoaudiología, Universidad de Valparaíso, Valparaíso, Chile (Alonso-Sánchez); the Department of Translation & Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain (Hinzen, He); the Intitut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Hinzen); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Gati, Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Gati, Palaniyappan); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que (Palaniyappan)
| | - Lena Palaniyappan
- From CIDCL, Escuela de Fonoaudiología, Universidad de Valparaíso, Valparaíso, Chile (Alonso-Sánchez); the Department of Translation & Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain (Hinzen, He); the Intitut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain (Hinzen); the Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Gati, Palaniyappan); the Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ont. (Gati, Palaniyappan); the Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Que (Palaniyappan)
| |
Collapse
|
31
|
Dauvermann MR, Moreno-Lopéz L, Vai B, González-García N, Orellana S, Jones PB, Bullmore E, Goodyer IM, van Harmelen AL. Early adolescent perceived friendship quality aids affective and neural responses to social inclusion and exclusion in young adults with and without adverse childhood experiences. Soc Cogn Affect Neurosci 2024; 19:nsae044. [PMID: 38902943 PMCID: PMC11219303 DOI: 10.1093/scan/nsae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/17/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
Friendships increase mental wellbeing and resilient functioning in young people with childhood adversity (CA). However, the mechanisms of this relationship are unknown. We examined the relationship between perceived friendship quality at age 14 after the experience of CA and reduced affective and neural responses to social exclusion at age 24. Resilient functioning was quantified as psychosocial functioning relative to the degree of CA severity in 310 participants at age 24. From this cohort, 62 young people with and without CA underwent functional Magnetic Resonance Imaging to assess brain responses to social inclusion and exclusion. We observed that good friendship quality was significantly associated with better resilient functioning. Both friendship quality and resilient functioning were related to increased affective responses to social inclusion. We also found that friendship quality, but not resilient functioning, was associated with increased dorsomedial prefrontal cortex responses to peer exclusion. Our findings suggest that friendship quality in early adolescence may contribute to the evaluation of social inclusion by increasing affective sensitivity to positive social experiences and increased brain activity in regions involved in emotion regulation to negative social experiences. Future research is needed to clarify this relationship with resilient functioning in early adulthood.
Collapse
Affiliation(s)
- Maria R Dauvermann
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
- Institute for Mental Health, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Laura Moreno-Lopéz
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, 20127, Italy
| | - Nadia González-García
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico
| | - Sofia Orellana
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
| | - Ed Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
- Department of Research and Development, Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, United Kingdom
| | - Ian M Goodyer
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
| | - Anne-Laura van Harmelen
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom
- Institute of Education and Child Studies, Leiden University, Leiden, AK 2333, The Netherlands
| |
Collapse
|
32
|
Stoliker D, Novelli L, Vollenweider FX, Egan GF, Preller KH, Razi A. Neural Mechanisms of Resting-State Networks and the Amygdala Underlying the Cognitive and Emotional Effects of Psilocybin. Biol Psychiatry 2024; 96:57-66. [PMID: 38185235 DOI: 10.1016/j.biopsych.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND Serotonergic psychedelics, such as psilocybin, alter perceptual and cognitive systems that are functionally integrated with the amygdala. These changes can alter cognition and emotions that are hypothesized to contribute to their therapeutic utility. However, the neural mechanisms of cognitive and subcortical systems altered by psychedelics are not well understood. METHODS We used resting-state functional magnetic resonance images collected during a randomized, double-blind, placebo-controlled clinical trial of 24 healthy adults under 0.2 mg/kg psilocybin to estimate the directed (i.e., effective) changes between the amygdala and 3 large-scale resting-state networks involved in cognition. These networks are the default mode network, the salience network, and the central executive network. RESULTS We found a pattern of decreased top-down effective connectivity from these resting-state networks to the amygdala. Effective connectivity decreased within the default mode network and salience network but increased within the central executive network. These changes in effective connectivity were statistically associated with behavioral measures of altered cognition and emotion under the influence of psilocybin. CONCLUSIONS Our findings suggest that temporary amygdala signal attenuation is associated with mechanistic changes to resting-state network connectivity. These changes are significant for altered cognition and perception and suggest targets for research investigating the efficacy of psychedelic therapy for internalizing psychiatric disorders. More broadly, our study suggests the value of quantifying the brain's hierarchical organization using effective connectivity to identify important mechanisms for basic cognitive function and how they are integrated to give rise to subjective experiences.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Leonardo Novelli
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Franz X Vollenweider
- Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Gary F Egan
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Katrin H Preller
- Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Haihambo N, Li M, Ma Q, Baeken C, Deroost N, Baetens K, Van Overwalle F. Exciting the social butterfly: Anodal cerebellar transcranial direct current stimulation modulates neural activation during predictive social mentalizing. Int J Clin Health Psychol 2024; 24:100480. [PMID: 39055855 PMCID: PMC11269293 DOI: 10.1016/j.ijchp.2024.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) has emerged as a promising tool for enhancing social cognition. The posterior cerebellum, which is part of the mentalizing network, has been implicated in social processes. In our combined tDCS-fMRI study, we investigated the effects of offline anodal cerebellar tDCS on activation in the cerebellum during social action prediction. Forty-one participants were randomly assigned to receive either anodal (2 mA) or sham (0 mA) stimulation over the midline of the posterior cerebellum for 20 min. Twenty minutes post stimulation, participants underwent a functional MRI scan to complete a social action prediction task, during which they had to correctly order randomly presented sentences that described either actions of social agents (based on their personality traits) or events of objects (based on their characteristics). As hypothesized, our results revealed that participants who received anodal cerebellar tDCS exhibited increased activation in the posterior cerebellar Crus 2 and lobule IX, and in key cerebral mentalizing areas, including the medial prefrontal cortex, temporo-parietal junction, and precuneus. Contrary to our hypotheses, participants who received anodal stimulation demonstrated faster responses to non-social objects compared to social agents, while sham participants showed no significant differences. We did not find a significant relationship between electric field magnitude, neural activation and behavioral outcomes. These findings suggest that tDCS targeting the posterior cerebellum selectively enhances activation in social mentalizing areas, while only facilitating behavioral performance of non-social material, perhaps because of a ceiling effect due to familiarity with social processing.
Collapse
Affiliation(s)
- Naem Haihambo
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
- Centre for Human Brain Health, University of Birmingham, Bochum, Germany
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany
| | - Meijia Li
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
- Language Pathology and Brain Science MEG Lab, School of Communication Sciences, Beijing Language and Culture University, Beijing, China
| | - Qianying Ma
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent Experimental, Ghent University, Ghent 9000, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel, Brussels 1090, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Chris Baeken
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Natacha Deroost
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Kris Baetens
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
34
|
Jiang YJ, Lai PH, Huang X. Interhemispheric functional in age-related macular degeneration patient: a resting-state functional MRI study. Neuroreport 2024; 35:621-626. [PMID: 38813903 DOI: 10.1097/wnr.0000000000002045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Age-related macular degeneration (AMD) is a prevalent disease leading to severe visual impairment in the elderly population. Despite this, the pathogenesis of AMD remains largely unexplored. The application of resting-state functional MRI (rs-fMRI) allows for the detection of coherent intrinsic brain activities along with the interactions taking place between the two hemispheres. In the frame of our study, we utilize voxel-mirrored homotopic connectivity (VMHC) as an rs-fMRI method to carry out a comparative analysis of functional homotopy between the two hemispheres with the aim of further understanding the pathogenesis of AMD patients. In our study, we utilized the VMHC method to explore levels of brain activity in individuals diagnosed with AMD, planning to investigate potential links with their clinical characteristics. We extended our invitation to 20 AMD patients and 20 healthy controls from Jiangxi Provincial People's Hospital to participate in this research. rs-fMRIs were captured for each participant, and associated neural activity levels were examined using the VMHC method. Remarkably, our comparative examination with the healthy control group revealed significantly reduced VMHC in the cuneus, superior occipital lobe, precentral gyrus, and superior parietal lobule in the patient cohort. Utilizing the VMHC method allows us to identify discrepancies in the visual pathways of AMD patients compared with standard controls, potentially explaining the common challenges among AMD patients with object recognition, face recognition, and reading.
Collapse
Affiliation(s)
| | - Ping-Hong Lai
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
35
|
Wang S, Luo X, Zang X, Ma Y, Yang J. Impact of social reward on stress circuit function and regulation: Path differences between value affirmation and emotional support. Int J Clin Health Psychol 2024; 24:100499. [PMID: 39308781 PMCID: PMC11414685 DOI: 10.1016/j.ijchp.2024.100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Background As two typical types of social rewards, both value affirmation and emotional support could alleviate acute stress response, but it is not clear whether they can impact stress circuit function and regulation through different neural pathways. Method Sixty-two participants were randomly assigned to the value affirmation, emotional support, and non-reward conditions, then administered an adapted version of the ScanSTRESS paradigm. Participants' subjective reports of uncontrollability and social evaluative threat were measured to explore the mitigation of stress by social rewards at the behavioral level. Meanwhile, their acute salivary cortisol response to stress was compared among different social reward conditions. Furthermore, we computed linear contrasts for performance (vs relaxation) and reward (vs non-reward) and used psychophysiological interaction (PPI) analysis to explore the impact of social reward on stress circuit function and regulation. Results Both value affirmation and emotional support conditions reduced subjective reports of uncontrollability and social evaluation threat, but not cortisol response to stress. Furthermore, value affirmation reduced uncontrollability by enhancing putamen activation, whereas emotional support reduced social evaluation threat by enhancing putamen activation. More importantly, during stress, value affirmation enhanced the functional connectivity of the putamen-hippocampus and putamen-angular gyrus (AG), whereas emotional support enhanced the functional connectivity of the putamen-ventrolateral prefrontal cortex (vlPFC) and putamen-temporal pole mid, compared to the non-reward condition. Conclusion Value affirmation and emotional support alleviated acute stress response in different neural pathways. These findings suggested a precise categorization of social reward in intervention of a range of adverse psychological and physiological responses caused by stress.
Collapse
Affiliation(s)
- Shuai Wang
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Xiao Luo
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Xinlei Zang
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yiqing Ma
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Juan Yang
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| |
Collapse
|
36
|
Hempel M, Barnhofer T, Domke AK, Hartling C, Stippl A, Carstens L, Gärtner M, Grimm S. Aberrant associations between neuronal resting-state fluctuations and working memory-induced activity in major depressive disorder. Mol Psychiatry 2024:10.1038/s41380-024-02647-w. [PMID: 38951625 DOI: 10.1038/s41380-024-02647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Previous investigations have revealed performance deficits and altered neural processes during working-memory (WM) tasks in major depressive disorder (MDD). While most of these studies used task-based functional magnetic resonance imaging (fMRI), there is an increasing interest in resting-state fMRI to characterize aberrant network dynamics involved in this and other MDD-associated symptoms. It has been proposed that activity during the resting-state represents characteristics of brain-wide functional organization, which could be highly relevant for the efficient execution of cognitive tasks. However, the dynamics linking resting-state properties and task-evoked activity remain poorly understood. Therefore, the present study investigated the association between spontaneous activity as indicated by the amplitude of low frequency fluctuations (ALFF) at rest and activity during an emotional n-back task. 60 patients diagnosed with an acute MDD episode, and 52 healthy controls underwent the fMRI scanning procedure. Within both groups, positive correlations between spontaneous activity at rest and task-activation were found in core regions of the central-executive network (CEN), whereas spontaneous activity correlated negatively with task-deactivation in regions of the default mode network (DMN). Compared to healthy controls, patients showed a decreased rest-task correlation in the left prefrontal cortex (CEN) and an increased negative correlation in the precuneus/posterior cingulate cortex (DMN). Interestingly, no significant group-differences within those regions were found solely at rest or during the task. The results underpin the potential value and importance of resting-state markers for the understanding of dysfunctional network dynamics and neural substrates of cognitive processing.
Collapse
Affiliation(s)
- Moritz Hempel
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany.
| | - Thorsten Barnhofer
- School of Psychology, University of Surrey, GU2 7XH, Guildford, United Kingdom
| | - Ann-Kathrin Domke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Corinna Hartling
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Anna Stippl
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Luisa Carstens
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Matti Gärtner
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Simone Grimm
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland
| |
Collapse
|
37
|
Bresser T, Blanken TF, de Lange SC, Leerssen J, Foster-Dingley JC, Lakbila-Kamal O, Wassing R, Ramautar JR, Stoffers D, van den Heuvel MP, Van Someren EJW. Insomnia Subtypes Have Differentiating Deviations in Brain Structural Connectivity. Biol Psychiatry 2024:S0006-3223(24)01418-5. [PMID: 38944140 DOI: 10.1016/j.biopsych.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Insomnia disorder is the most common sleep disorder. A better understanding of insomnia-related deviations in the brain could inspire better treatment. Insufficiently recognized heterogeneity within the insomnia population could obscure detection of involved brain circuits. In the current study, we investigated whether structural brain connectivity deviations differed between recently discovered and validated insomnia subtypes. METHODS Structural and diffusion-weighted 3T magnetic resonance imaging data from 4 independent studies were harmonized. The sample consisted of 73 control participants without sleep complaints and 204 participants with insomnia who were grouped into 5 insomnia subtypes based on their fingerprint of mood and personality traits assessed with the Insomnia Type Questionnaire. Linear regression correcting for age and sex was used to evaluate group differences in structural connectivity strength, indicated by fractional anisotropy, streamline volume density, and mean diffusivity and evaluated within 3 different atlases. RESULTS Insomnia subtypes showed differentiating profiles of deviating structural connectivity that were concentrated in different functional networks. Permutation testing against randomly drawn heterogeneous subsamples indicated significant specificity of deviation profiles in 4 of the 5 subtypes: highly distressed, moderately distressed reward sensitive, slightly distressed low reactive, and slightly distressed high reactive. Connectivity deviation profile significance ranged from p = .001 to p = .049 for different resolutions of brain parcellation and connectivity weight. CONCLUSIONS Our results provide an initial indication that different insomnia subtypes exhibit distinct profiles of deviations in structural brain connectivity. Subtyping insomnia may be essential for a better understanding of brain mechanisms that contribute to insomnia vulnerability.
Collapse
Affiliation(s)
- Tom Bresser
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Tessa F Blanken
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; Department of Psychological Methods, University of Amsterdam, Amsterdam, the Netherlands
| | - Siemon C de Lange
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jeanne Leerssen
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands
| | - Jessica C Foster-Dingley
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands
| | - Oti Lakbila-Kamal
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Psychiatry, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rick Wassing
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; Woolcock Institute and School of Psychological Science, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia; Sydney Local Health District, Sydney, New South Wales, Australia
| | - Jennifer R Ramautar
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; N=You Neurodevelopmental Precision Center, Amsterdam Neuroscience, Amsterdam Reproduction and Development, Amsterdam UMC, Amsterdam, the Netherlands; Child and Adolescent Psychiatry and Psychosocial Care, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Diederick Stoffers
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Eus J W Van Someren
- Netherlands Institute for Neuroscience, Department of Sleep and Cognition, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Psychiatry, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
38
|
Nick Q, Gale DJ, Areshenkoff C, De Brouwer A, Nashed J, Wammes J, Zhu T, Flanagan R, Smallwood J, Gallivan J. Reconfigurations of cortical manifold structure during reward-based motor learning. eLife 2024; 12:RP91928. [PMID: 38916598 PMCID: PMC11198988 DOI: 10.7554/elife.91928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Adaptive motor behavior depends on the coordinated activity of multiple neural systems distributed across the brain. While the role of sensorimotor cortex in motor learning has been well established, how higher-order brain systems interact with sensorimotor cortex to guide learning is less well understood. Using functional MRI, we examined human brain activity during a reward-based motor task where subjects learned to shape their hand trajectories through reinforcement feedback. We projected patterns of cortical and striatal functional connectivity onto a low-dimensional manifold space and examined how regions expanded and contracted along the manifold during learning. During early learning, we found that several sensorimotor areas in the dorsal attention network exhibited increased covariance with areas of the salience/ventral attention network and reduced covariance with areas of the default mode network (DMN). During late learning, these effects reversed, with sensorimotor areas now exhibiting increased covariance with DMN areas. However, areas in posteromedial cortex showed the opposite pattern across learning phases, with its connectivity suggesting a role in coordinating activity across different networks over time. Our results establish the neural changes that support reward-based motor learning and identify distinct transitions in the functional coupling of sensorimotor to transmodal cortex when adapting behavior.
Collapse
Affiliation(s)
- Qasem Nick
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
| | - Corson Areshenkoff
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Anouk De Brouwer
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
| | - Joseph Nashed
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Medicine, Queen's UniversityKingstonCanada
| | - Jeffrey Wammes
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Tianyao Zhu
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
| | - Randy Flanagan
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Jonny Smallwood
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Jason Gallivan
- Centre for Neuroscience Studies, Queen’s UniversityKingstonCanada
- Department of Psychology, Queen’s UniversityKingstonCanada
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| |
Collapse
|
39
|
Daood M, Magal N, Peled-Avron L, Nevat M, Ben-Hayun R, Aharon-Peretz J, Tomer R, Admon R. Graph analysis uncovers an opposing impact of methylphenidate on connectivity patterns within default mode network sub-divisions. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:15. [PMID: 38902791 PMCID: PMC11191242 DOI: 10.1186/s12993-024-00242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The Default Mode Network (DMN) is a central neural network, with recent evidence indicating that it is composed of functionally distinct sub-networks. Methylphenidate (MPH) administration has been shown before to modulate impulsive behavior, though it is not yet clear whether these effects relate to MPH-induced changes in DMN connectivity. To address this gap, we assessed the impact of MPH administration on functional connectivity patterns within and between distinct DMN sub-networks and tested putative relations to variability in sub-scales of impulsivity. METHODS Fifty-five right-handed healthy adults underwent two resting-state functional MRI (rs-fMRI) scans, following acute administration of either MPH (20 mg) or placebo, via a randomized double-blind placebo-controlled design. Graph modularity analysis was implemented to fractionate the DMN into distinct sub-networks based on the impact of MPH (vs. placebo) on DMN connectivity patterns with other neural networks. RESULTS MPH administration led to an overall decreased DMN connectivity, particularly with the auditory, cinguloopercular, and somatomotor networks, and increased connectivity with the parietomedial network. Graph analysis revealed that the DMN could be fractionated into two distinct sub-networks, with one exhibiting MPH-induced increased connectivity and the other decreased connectivity. Decreased connectivity of the DMN sub-network with the cinguloopercular network following MPH administration was associated with elevated impulsivity and non-planning impulsiveness. CONCLUSION Current findings highlight the intricate effects of MPH administration on DMN rs-fMRI connectivity, uncovering its opposing impact on distinct DMN sub-divisions. MPH-induced dynamics in DMN connectivity patterns with other neural networks may account for some of the effects of MPH administration on impulsive behavior.
Collapse
Affiliation(s)
- Maryana Daood
- School of Psychological Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 31905, Israel
- Sakhnin College of Education, Sakhnin, Israel
| | - Noa Magal
- School of Psychological Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 31905, Israel
| | - Leehe Peled-Avron
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel
| | - Michael Nevat
- School of Psychological Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 31905, Israel
| | - Rachel Ben-Hayun
- Stroke and Cognition Institute, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Judith Aharon-Peretz
- Stroke and Cognition Institute, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rachel Tomer
- School of Psychological Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 31905, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 31905, Israel.
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
40
|
Pasculli G, Busan P, Jackson ES, Alm PA, De Gregorio D, Maguire GA, Goodwin GM, Gobbi G, Erritzoe D, Carhart-Harris RL. Psychedelics in developmental stuttering to modulate brain functioning: a new therapeutic perspective? Front Hum Neurosci 2024; 18:1402549. [PMID: 38962146 PMCID: PMC11221540 DOI: 10.3389/fnhum.2024.1402549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Developmental stuttering (DS) is a neurodevelopmental speech-motor disorder characterized by symptoms such as blocks, repetitions, and prolongations. Persistent DS often has a significant negative impact on quality of life, and interventions for it have limited efficacy. Herein, we briefly review existing research on the neurophysiological underpinnings of DS -specifically, brain metabolic and default mode/social-cognitive networks (DMN/SCN) anomalies- arguing that psychedelic compounds might be considered and investigated (e.g., in randomized clinical trials) for treatment of DS. The neural background of DS is likely to be heterogeneous, and some contribution from genetically determinants of metabolic deficiencies in the basal ganglia and speech-motor cortical regions are thought to play a role in appearance of DS symptoms, which possibly results in a cascade of events contributing to impairments in speech-motor execution. In persistent DS, the difficulties of speech are often linked to a series of associated aspects such as social anxiety and social avoidance. In this context, the SCN and DMN (also influencing a series of fronto-parietal, somato-motor, and attentional networks) may have a role in worsening dysfluencies. Interestingly, brain metabolism and SCN/DMN connectivity can be modified by psychedelics, which have been shown to improve clinical evidence of some psychiatric conditions (e.g., depression, post-traumatic stress disorder, etc.) associated with psychological constructs such as rumination and social anxiety, which also tend to be present in persistent DS. To date, while there have been no controlled trials on the effects of psychedelics in DS, anecdotal evidence suggests that these agents may have beneficial effects on stuttering and its associated characteristics. We suggest that psychedelics warrant investigation in DS.
Collapse
Affiliation(s)
- Giuseppe Pasculli
- Department of Computer, Control, and Management Engineering (DIAG), La Sapienza University, Rome, Italy
- Italian Society of Psychedelic Medicine (Società Italiana di Medicina Psichedelica–SIMePsi), Bari, Italy
| | | | - Eric S. Jackson
- Department of Communicative Sciences and Disorders, New York University, New York, NY, United States
| | - Per A. Alm
- Department of Communicative Sciences and Disorders, New York University, New York, NY, United States
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Danilo De Gregorio
- IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Gerald A. Maguire
- School of Medicine, American University of Health Sciences, Signal Hill, CA, United States
- CenExel CIT Research, Riverside, CA, United States
| | - Guy M. Goodwin
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - David Erritzoe
- Department of Medicine, Centre for Psychedelic Research, Imperial College London, London, United Kingdom
| | - Robin L. Carhart-Harris
- Department of Medicine, Centre for Psychedelic Research, Imperial College London, London, United Kingdom
- Psychedelics Division, Neuroscape, University of California, San Francisco, CA, United States
| |
Collapse
|
41
|
Averill CL, Averill LA, Akiki TJ, Fouda S, Krystal JH, Abdallah CG. Findings of PTSD-specific deficits in default mode network strength following a mild experimental stressor. NPP-DIGITAL PSYCHIATRY AND NEUROSCIENCE 2024; 2:9. [PMID: 38919723 PMCID: PMC11197271 DOI: 10.1038/s44277-024-00011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
Reductions in default mode (DMN) connectivity strength have been reported in posttraumatic stress disorder (PTSD). However, the specificity of DMN connectivity deficits in PTSD compared to major depressive disorder (MDD), and the sensitivity of these alterations to acute stressors are not yet known. 52 participants with a primary diagnosis of PTSD (n = 28) or MDD (n = 24) completed resting-state functional magnetic resonance imaging immediately before and after a mild affective stressor. A 2 × 2 design was conducted to determine the effects of group, stress, and group*stress on DMN connectivity strength. Exploratory analyses were completed to identify the brain region(s) underlying the DMN alterations. There was significant group*stress interaction (p = 0.03), reflecting stress-induced reduction in DMN strength in PTSD (p = 0.02), but not MDD (p = 0.50). Nodal exploration of connectivity strength in the DMN identified regions of the ventromedial prefrontal cortex and the precuneus potentially contributing to DMN connectivity deficits. The findings indicate the possibility of distinct, disease-specific, patterns of connectivity strength reduction in the DMN in PTSD, especially following an experimental stressor. The identified dynamic shift in functional connectivity, which was perhaps induced by the stressor task, underscores the potential utility of the DMN connectivity and raises the question whether these disruptions may be inversely affected by antidepressants known to treat both MDD and PTSD psychopathology.
Collapse
Affiliation(s)
- Christopher L. Averill
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
- Michael E. DeBakey VA Medical Center, Houston, TX USA
- National Center for PTSD – Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
- Core for Advanced Magnetic Resonance Imaging (CAMRI), Baylor College of Medicine, Houston, TX USA
| | - Lynnette A. Averill
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
- Michael E. DeBakey VA Medical Center, Houston, TX USA
- National Center for PTSD – Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Teddy J. Akiki
- National Center for PTSD – Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
- Department of Psychiatry, Stanford University, Stanford, CA USA
| | - Samar Fouda
- National Center for PTSD – Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
- Department of Psychiatry, Duke University School of Medicine, Durham, NC USA
| | - John H. Krystal
- National Center for PTSD – Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Chadi G. Abdallah
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
- Michael E. DeBakey VA Medical Center, Houston, TX USA
- National Center for PTSD – Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
- Core for Advanced Magnetic Resonance Imaging (CAMRI), Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
42
|
Kim S, Jang KI, Lee HS, Shim SH, Kim JS. Differentiation between suicide attempt and suicidal ideation in patients with major depressive disorder using cortical functional network. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110965. [PMID: 38354896 DOI: 10.1016/j.pnpbp.2024.110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Studies exploring the neurophysiology of suicide are scarce and the neuropathology of related disorders is poorly understood. This study investigated source-level cortical functional networks using resting-state electroencephalography (EEG) in drug-naïve depressed patients with suicide attempt (SA) and suicidal ideation (SI). EEG was recorded in 55 patients with SA and in 54 patients with SI. Particularly, all patients with SA were evaluated using EEG immediately after their SA (within 7 days). Graph-theory-based source-level weighted functional networks were assessed using strength, clustering coefficient (CC), and path length (PL) in seven frequency bands. Finally, we applied machine learning to differentiate between the two groups using source-level network features. At the global level, patients with SA showed lower strength and CC and higher PL in the high alpha band than those with SI. At the nodal level, compared with patients with SI, patients with SA showed lower high alpha band nodal CCs in most brain regions. The best classification performances for SA and SI showed an accuracy of 73.39%, a sensitivity of 76.36%, and a specificity of 70.37% based on high alpha band network features. Our findings suggest that abnormal high alpha band functional network may reflect the pathophysiological characteristics of suicide and serve as a clinical biomarker for suicide.
Collapse
Affiliation(s)
- Sungkean Kim
- Department of Human-Computer Interaction, Hanyang University, Ansan, Republic of Korea
| | - Kuk-In Jang
- Cognitive Science Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Ho Sung Lee
- Department of Pulmonology and Allergy, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Se-Hoon Shim
- Department of Psychiatry, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea.
| | - Ji Sun Kim
- Department of Psychiatry, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea.
| |
Collapse
|
43
|
Lord B, Sanguinetti JL, Ruiz L, Miskovic V, Segre J, Young S, Fini ME, Allen JJB. Transcranial focused ultrasound to the posterior cingulate cortex modulates default mode network and subjective experience: an fMRI pilot study. Front Hum Neurosci 2024; 18:1392199. [PMID: 38895168 PMCID: PMC11184145 DOI: 10.3389/fnhum.2024.1392199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Background Transcranial focused ultrasound (TFUS) is an emerging neuromodulation tool for temporarily altering brain activity and probing network functioning. The effects of TFUS on the default mode network (DMN) are unknown. Objective The study examined the effects of transcranial focused ultrasound (TFUS) on the functional connectivity of the default mode network (DMN), specifically by targeting the posterior cingulate cortex (PCC). Additionally, we investigated the subjective effects of TFUS on mood, mindfulness, and self-related processing. Methods The study employed a randomized, single-blind design involving 30 healthy subjects. Participants were randomly assigned to either the active TFUS group or the sham TFUS group. Resting-state functional magnetic resonance imaging (rs-fMRI) scans were conducted before and after the TFUS application. To measure subjective effects, the Toronto Mindfulness Scale, the Visual Analog Mood Scale, and the Amsterdam Resting State Questionnaire were administered at baseline and 30 min after sonication. The Self Scale and an unstructured interview were also administered 30 min after sonication. Results The active TFUS group exhibited significant reductions in functional connectivity along the midline of the DMN, while the sham TFUS group showed no changes. The active TFUS group demonstrated increased state mindfulness, reduced Global Vigor, and temporary alterations in the sense of ego, sense of time, and recollection of memories. The sham TFUS group showed an increase in state mindfulness, too, with no other subjective effects. Conclusions TFUS targeted at the PCC can alter DMN connectivity and cause changes in subjective experience. These findings support the potential of TFUS to serve both as a research tool and as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Brian Lord
- SEMA Lab, Psychology Department, Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States
| | - Joseph L. Sanguinetti
- SEMA Lab, Psychology Department, Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States
- Sanmai Technologies, PBC, Sunnyvale, CA, United States
| | - Lisannette Ruiz
- SEMA Lab, Psychology Department, Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States
- Sanmai Technologies, PBC, Sunnyvale, CA, United States
| | | | - Joel Segre
- X, the Moonshot Factory, Mountain View, CA, United States
| | - Shinzen Young
- SEMA Lab, Psychology Department, Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States
| | - Maria E. Fini
- SEMA Lab, Psychology Department, Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States
| | - John J. B. Allen
- SEMA Lab, Psychology Department, Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
44
|
Katsumi A, Iwata S, Tsukiura T. Roles of the Default Mode Network in Different Aspects of Self-representation When Remembering Social Autobiographical Memories. J Cogn Neurosci 2024; 36:1021-1036. [PMID: 38527069 DOI: 10.1162/jocn_a_02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Autobiographical memory (AM) is episodic memory for personally experienced events, in which self-representation is more important than that in laboratory-based memory. Theoretically, self-representation in a social context is categorized as the interpersonal self (IS) referred to in a social interaction with a person or the social-valued self (SS) based on the reputation of the self in the surrounding society. Although functional neuroimaging studies have demonstrated the involvement of the default mode network (DMN) in self-representation, little is known about how the DMN subsystems contribute differentially to IS-related and SS-related AMs. To elucidate this issue, we used fMRI to scan healthy young adults during the recollection of AMs. We performed multivariate pattern analysis (MVPA) and assessed functional connectivity in the DMN subsystems: the midline core, medial temporal lobe (MTL), and dorsomedial pFC (dmPFC) subsystems. The study yielded two main sets of findings. First, MVPA revealed that all DMN subsystems showed significant classification accuracy between IS-related and nonsocial-self-related AMs, and IS-related functional connectivity of the midline core regions with the retrosplenial cortex of the MTL subsystem and the dmPFC of the dmPFC subsystem was significant. Second, MVPA significantly distinguished between SS-related and nonsocial-self-related AMs in the midline core and dmPFC subsystems but not in the MTL subsystem, and SS-related functional connectivity with the midline core regions was significant in the temporal pole and TPJ of the dmPFC subsystem. Thus, dissociable neural mechanisms in the DMN could contribute to different aspects of self-representation in social AMs.
Collapse
Affiliation(s)
| | - Saeko Iwata
- Kyoto University
- Japan Society for the Promotion of Science
| | | |
Collapse
|
45
|
Spencer C, Mill RD, Bhanji JP, Delgado MR, Cole MW, Tricomi E. Acute psychosocial stress modulates neural and behavioral substrates of cognitive control. Hum Brain Mapp 2024; 45:e26716. [PMID: 38798117 PMCID: PMC11128779 DOI: 10.1002/hbm.26716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/12/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Acute psychosocial stress affects learning, memory, and attention, but the evidence for the influence of stress on the neural processes supporting cognitive control remains mixed. We investigated how acute psychosocial stress influences performance and neural processing during the Go/NoGo task-an established cognitive control task. The experimental group underwent the Trier Social Stress Test (TSST) acute stress induction, whereas the control group completed personality questionnaires. Then, participants completed a functional magnetic resonance imaging (fMRI) Go/NoGo task, with self-report, blood pressure and salivary cortisol measurements of induced stress taken intermittently throughout the experimental session. The TSST was successful in eliciting a stress response, as indicated by significant Stress > Control between-group differences in subjective stress ratings and systolic blood pressure. We did not identify significant differences in cortisol levels, however. The stress induction also impacted subsequent Go/NoGo task performance, with participants who underwent the TSST making fewer commission errors on trials requiring the most inhibitory control (NoGo Green) relative to the control group, suggesting increased vigilance. Univariate analysis of fMRI task-evoked brain activity revealed no differences between stress and control groups for any region. However, using multivariate pattern analysis, stress and control groups were reliably differentiated by activation patterns contrasting the most demanding NoGo trials (i.e., NoGo Green trials) versus baseline in the medial intraparietal area (mIPA, affiliated with the dorsal attention network) and subregions of the cerebellum (affiliated with the default mode network). These results align with prior reports linking the mIPA and the cerebellum to visuomotor coordination, a function central to cognitive control processes underlying goal-directed behavior. This suggests that stressor-induced hypervigilance may produce a facilitative effect on response inhibition which is represented neurally by the activation patterns of cognitive control regions.
Collapse
Affiliation(s)
- Chrystal Spencer
- Department of PsychologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ravi D. Mill
- Center for Molecular and Behavioral NeuroscienceRutgers UniversityNewarkNew JerseyUSA
| | - Jamil P. Bhanji
- Department of PsychologyRutgers UniversityNewarkNew JerseyUSA
| | - Mauricio R. Delgado
- Center for Molecular and Behavioral NeuroscienceRutgers UniversityNewarkNew JerseyUSA
- Department of PsychologyRutgers UniversityNewarkNew JerseyUSA
| | - Michael W. Cole
- Center for Molecular and Behavioral NeuroscienceRutgers UniversityNewarkNew JerseyUSA
| | | |
Collapse
|
46
|
Van Overwalle F, Ma Q, Haihambo N, Bylemans T, Catoira B, Firouzi M, Li M, Pu M, Heleven E, Baeken C, Baetens K, Deroost N. A Functional Atlas of the Cerebellum Based on NeuroSynth Task Coordinates. CEREBELLUM (LONDON, ENGLAND) 2024; 23:993-1012. [PMID: 37608227 PMCID: PMC11102394 DOI: 10.1007/s12311-023-01596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
Although the human cerebellum has a surface that is about 80% of that of the cerebral cortex and has about four times as many neurons, its functional organization is still very much uncharted. Despite recent attempts to provide resting-state and task-based parcellations of the cerebellum, these two approaches lead to large discrepancies. This article describes a comprehensive task-based functional parcellation of the human cerebellum based on a large-scale functional database, NeuroSynth, involving an unprecedented diversity of tasks, which were reliably associated with ontological key terms referring to psychological functions. Involving over 44,500 participants from this database, we present a parcellation that exhibits replicability with earlier resting-state parcellations across cerebellar and neocortical structures. The functional parcellation of the cerebellum confirms the major networks revealed in prior work, including sensorimotor, directed (dorsal) attention, divided (ventral) attention, executive control, mentalizing (default mode) networks, tiny patches of a limbic network, and also a unilateral language network (but not the visual network), and the association of these networks with underlying ontological key terms confirms their major functionality. The networks are revealed at locations that are roughly similar to prior resting-state cerebellar parcellations, although they are less symmetric and more fragmented across the two hemispheres. This functional parcellation of the human cerebellum and associated key terms can provide a useful guide in designing studies to test specific functional hypotheses and provide a reference for interpreting the results.
Collapse
Affiliation(s)
- Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Qianying Ma
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Tom Bylemans
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Beatriz Catoira
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Mahyar Firouzi
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Min Pu
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Elien Heleven
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Chris Baeken
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Department of Psychiatry, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Department of Psychiatry, Ghent Experimental Psychiatry Lab, Ghent University, Ghent, Belgium
| | - Kris Baetens
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Natacha Deroost
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
47
|
Islam MA, Sehar U, Sultana OF, Mukherjee U, Brownell M, Kshirsagar S, Reddy PH. SuperAgers and centenarians, dynamics of healthy ageing with cognitive resilience. Mech Ageing Dev 2024; 219:111936. [PMID: 38657874 DOI: 10.1016/j.mad.2024.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Graceful healthy ageing and extended longevity is the most desired goal for human race. The process of ageing is inevitable and has a profound impact on the gradual deterioration of our physiology and health since it triggers the onset of many chronic conditions like dementia, osteoporosis, diabetes, arthritis, cancer, and cardiovascular disease. However, some people who lived/live more than 100 years called 'Centenarians" and how do they achieve their extended lifespans are not completely understood. Studying these unknown factors of longevity is important not only to establish a longer human lifespan but also to manage and treat people with shortened lifespans suffering from age-related morbidities. Furthermore, older adults who maintain strong cognitive function are referred to as "SuperAgers" and may be resistant to risk factors linked to cognitive decline. Investigating the mechanisms underlying their cognitive resilience may contribute to the development of therapeutic strategies that support the preservation of cognitive function as people age. The key to a long, physically, and cognitively healthy life has been a mystery to scientists for ages. Developments in the medical sciences helps us to a better understanding of human physiological function and greater access to medical care has led us to an increase in life expectancy. Moreover, inheriting favorable genetic traits and adopting a healthy lifestyle play pivotal roles in promoting longer and healthier lives. Engaging in regular physical activity, maintaining a balanced diet, and avoiding harmful habits such as smoking contribute to overall well-being. The synergy between positive lifestyle choices, access to education, socio-economic factors, environmental determinants and genetic supremacy enhances the potential for a longer and healthier life. Our article aims to examine the factors associated with healthy ageing, particularly focusing on cognitive health in centenarians. We will also be discussing different aspects of ageing including genomic instability, metabolic burden, oxidative stress and inflammation, mitochondrial dysfunction, cellular senescence, immunosenescence, and sarcopenia.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Upasana Mukherjee
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Malcolm Brownell
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| |
Collapse
|
48
|
Lasch A, Schweikert T, Dora E, Kolb T, Schurig HL, Walther A. [Psilocybin-Assisted Treatment of Depression, Anxiety and Substance use Disorders: Neurobiological Basis and Clinical Application]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2024; 92:230-245. [PMID: 37207669 DOI: 10.1055/a-2046-5202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Successful therapy of mental disorders is very important in view of the high level of suffering of those affected. Since established pharmaceutical and psychotherapeutic approaches do not lead to the desired improvement in all cases, complementary or alternative treatment methods are intensively researched. Psilocybin-assisted psychotherapy seems particularly promising, and has been approved in the USA for larger clinical trials. Psilocybin belongs to the group of psychedelics and influences psychological experiences. In assisted therapy, psilocybin is administered in controlled doses under medical supervision to patients with different mental disorders. In the studies conducted so far, longer-term positive effects could be shown after just one or a few doses. In order to provide a better understanding of the potential therapeutic mechanisms, this article will first describe neurobiological and psychological effects of psilocybin. To better assess the potential of psilocybin-assisted psychotherapy for various disorders, clinical studies conducted so far with patients administered psilocybin are reviewed.
Collapse
Affiliation(s)
- Anna Lasch
- Biopsychologie, Technische Universität Dresden, Dresden, Germany
| | - Timo Schweikert
- Psychotherapie und Systemneurowissenschaften, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Eva Dora
- Biopsychologie, Technische Universität Dresden, Dresden, Germany
| | - Theresa Kolb
- Universitätsklinikum Carl Gustav Carus Dresden, Division Psychological and Social Medicine and Developmental Neuroscience, Dresden, Germany
| | - Hanne Lilian Schurig
- Universitätsklinikum Carl Gustav Carus Dresden, Division Psychological and Social Medicine and Developmental Neuroscience, Dresden, Germany
| | - Andreas Walther
- Klinische Psychologie und Psychotherapie, Universität Zürich Psychologisches Institut, Zurich, Switzerland
| |
Collapse
|
49
|
Gurguryan L, Fenerci C, Ngo N, Sheldon S. The Neural Corelates of Constructing Conceptual and Perceptual Representations of Autobiographical Memories. J Cogn Neurosci 2024; 36:1350-1373. [PMID: 38683700 DOI: 10.1162/jocn_a_02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Contemporary neurocognitive frameworks propose that conceptual and perceptual content of autobiographical memories-personal past experiences-are processed by dissociable neural systems. Other work has proposed a central role of the anterior hippocampus in initially constructing autobiographical memories, regardless of the content. Here, we report on an fMRI study that utilized a repeated retrieval paradigm to test these ideas. In an MRI scanner, participants retrieved autobiographical memories at three timepoints. During the third retrieval, participants either shifted their focus to the conceptual content of the memory, the perceptual content of the memory, or retrieved the memory as they had done so on previous trials. We observed stronger anterior hippocampal activity for the first retrieval compared with later retrievals, regardless of whether there was a shift in content in those later trials. We also found evidence for separate cortical systems when constructing autobiographical memories with a focus on conceptual or perceptual content. Finally, we found that there was common engagement between later retrievals that required a shift toward conceptual content and the initial retrieval of a memory. This final finding was explored further with a behavioral experiment that provided evidence that focusing on conceptual content of a memory guides memory construction, whereas perceptual content adds precision to a memory. Together, these findings suggest there are distinct content-oriented cortical systems that work with the anterior hippocampus to construct representations of autobiographical memories.
Collapse
Affiliation(s)
| | | | - Nguyet Ngo
- McGill University, Montréal, Quebec, Canada
| | | |
Collapse
|
50
|
Sanda P, Hlinka J, van den Berg M, Skoch A, Bazhenov M, Keliris GA, Krishnan GP. Cholinergic modulation supports dynamic switching of resting state networks through selective DMN suppression. PLoS Comput Biol 2024; 20:e1012099. [PMID: 38843298 PMCID: PMC11185486 DOI: 10.1371/journal.pcbi.1012099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 06/18/2024] [Accepted: 04/23/2024] [Indexed: 06/19/2024] Open
Abstract
Brain activity during the resting state is widely used to examine brain organization, cognition and alterations in disease states. While it is known that neuromodulation and the state of alertness impact resting-state activity, neural mechanisms behind such modulation of resting-state activity are unknown. In this work, we used a computational model to demonstrate that change in excitability and recurrent connections, due to cholinergic modulation, impacts resting-state activity. The results of such modulation in the model match closely with experimental work on direct cholinergic modulation of Default Mode Network (DMN) in rodents. We further extended our study to the human connectome derived from diffusion-weighted MRI. In human resting-state simulations, an increase in cholinergic input resulted in a brain-wide reduction of functional connectivity. Furthermore, selective cholinergic modulation of DMN closely captured experimentally observed transitions between the baseline resting state and states with suppressed DMN fluctuations associated with attention to external tasks. Our study thus provides insight into potential neural mechanisms for the effects of cholinergic neuromodulation on resting-state activity and its dynamics.
Collapse
Affiliation(s)
- Pavel Sanda
- Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Hlinka
- Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Monica van den Berg
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Antonin Skoch
- National Institute of Mental Health, Klecany, Czech Republic
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Maxim Bazhenov
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Georgios A. Keliris
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Giri P. Krishnan
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|