1
|
Lu Y, Liang K, Zhan X. Structure of a step II catalytically activated spliceosome from Chlamydomonas reinhardtii. EMBO J 2024:10.1038/s44318-024-00274-3. [PMID: 39415054 DOI: 10.1038/s44318-024-00274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Pre-mRNA splicing, a fundamental step in eukaryotic gene expression, is executed by the spliceosomes. While there is extensive knowledge of the composition and structure of spliceosomes in yeasts and humans, the structural diversity of spliceosomes in non-canonical organisms remains unclear. Here, we present a cryo-EM structure of a step II catalytically activated spliceosome (C* complex) derived from the unicellular green alga Chlamydomonas reinhardtii at 2.6 Å resolution. This Chlamydomonas C* complex comprises 29 proteins and four RNA elements, creating a dynamic assembly that shares a similar overall architecture with yeast and human counterparts but also has unique features of its own. Distinctive structural characteristics include variations in protein compositions as well as some noteworthy RNA features. The splicing factor Prp17, with four fragments and a WD40 domain, is engaged in intricate interactions with multiple protein and RNA components. The structural elucidation of Chlamydomonas C* complex provides insights into the molecular mechanism of RNA splicing in plants and understanding splicing evolution in eukaryotes.
Collapse
Affiliation(s)
- Yichen Lu
- College of Life Sciences, Fudan University, Shanghai, 200433, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Ke Liang
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
2
|
Kasteel M, Rajamuthu TP, Sprakel J, Ketelaar T, Govers F. Phytophthora zoospores display klinokinetic behaviour in response to a chemoattractant. PLoS Pathog 2024; 20:e1012577. [PMID: 39348406 DOI: 10.1371/journal.ppat.1012577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Microswimmers are single-celled bodies powered by flagella. Typical examples are zoospores, dispersal agents of oomycete plant pathogens that are used to track down hosts and infect. Being motile, zoospores presumably identify infection sites using chemical cues such as sugars, alcohols and amino acids. With high-speed cameras we traced swimming trajectories of Phytophthora zoospores over time and quantified key trajectory parameters to investigate chemotactic responses. Zoospores adapt their native run-and-tumble swimming patterns in response to the amino acid glutamic acid by increasing the rate at which they turn. Simulations predict that tuneable tumble frequencies are sufficient to explain zoospore aggregation, implying positive klinokinesis. Zoospores thus exploit a retention strategy to remain at the plant surface once arriving there. Interference of G-protein mediated signalling affects swimming behaviour. Zoospores of a Phytophthora infestans G⍺-deficient mutant show higher tumbling frequencies but still respond and adapt to glutamic acid, suggesting chemoreception to be intact.
Collapse
Affiliation(s)
- Michiel Kasteel
- Laboratory of Cell and Developmental Biology, Wageningen University & Research, Wageningen, the Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, the Netherlands
| | - Tharun P Rajamuthu
- Laboratory of Cell and Developmental Biology, Wageningen University & Research, Wageningen, the Netherlands
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, the Netherlands
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell and Developmental Biology, Wageningen University & Research, Wageningen, the Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
3
|
Muzzeddu PL, Gambassi A, Sommer JU, Sharma A. Migration and Separation of Polymers in Nonuniform Active Baths. PHYSICAL REVIEW LETTERS 2024; 133:118102. [PMID: 39331988 DOI: 10.1103/physrevlett.133.118102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/29/2024]
Abstract
Polymerlike structures are ubiquitous in nature and synthetic materials. Their configurational and migration properties are often affected by crowded environments leading to nonthermal fluctuations. Here, we study an ideal Rouse chain in contact with a nonhomogeneous active bath, characterized by the presence of active self-propelled agents which exert time-correlated forces on the chain. By means of a coarse-graining procedure, we derive an effective evolution for the center of mass of the chain and show its tendency to migrate toward and preferentially localize in regions of high and low bath activity depending on the model parameters. In particular, we demonstrate that an active bath with nonuniform activity can be used to separate efficiently polymeric species with different lengths and/or connectivity.
Collapse
|
4
|
Xia Y, Hu Z, Wei D, Chen K, Peng Y, Yang M. Biomimetic Synchronization in Biciliated Robots. PHYSICAL REVIEW LETTERS 2024; 133:048302. [PMID: 39121428 DOI: 10.1103/physrevlett.133.048302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/15/2024] [Accepted: 06/10/2024] [Indexed: 08/11/2024]
Abstract
Direct mechanical coupling is known to be critical for establishing synchronization among cilia. However, the actual role of the connections is still elusive-partly because controlled experiments in living samples are challenging. Here, we employ an artificial ciliary system to address this issue. Two cilia are formed by chains of self-propelling robots and anchored to a shared base so that they are purely mechanically coupled. The system mimics biological ciliary beating but allows fine control over the beating dynamics. With different schemes of mechanical coupling, artificial cilia exhibit rich motility patterns. Particularly, their synchronous beating display two distinct modes-analogous to those observed in C. reinhardtii, the biciliated model organism for studying synchronization. Close examination suggests that the system evolves towards the most dissipative mode. Using this guideline in both simulations and experiments, we are able to direct the system into a desired state by altering the modes' respective dissipation. Our results have significant implications in understanding the synchronization of cilia.
Collapse
Affiliation(s)
| | | | - Da Wei
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | | | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
5
|
Dey S, Massiera G, Pitard E. Role of cilia activity and surrounding viscous fluid in properties of metachronal waves. Phys Rev E 2024; 110:014409. [PMID: 39160939 DOI: 10.1103/physreve.110.014409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/27/2024] [Indexed: 08/21/2024]
Abstract
Large groups of active cilia collectively beat in a fluid medium as metachronal waves, essential for some microorganisms motility and for flow generation in mucociliary clearance. Several models can predict the emergence of metachronal waves, but what controls the properties of metachronal waves is still unclear. Here, we numerically investigate the respective impacts of active beating and viscous dissipation on the properties of metachronal waves in a collection of oscillators, using a simple model for cilia in the presence of noise on regular lattices in one and two dimensions. We characterize the wave using spatial correlation and the frequency of collective beating. Our results clearly show that the viscosity of the fluid medium does not affect the wavelength; the activity of the cilia does. These numerical results are supported by a dimensional analysis, which shows that the result of wavelength invariance is robust against the model taken for sustained beating and the structure of hydrodynamic coupling. Interestingly, the enhancement of cilia activity increases the wavelength and decreases the beating frequency, keeping the wave velocity almost unchanged. These results might have significance in understanding paramecium locomotion and mucociliary clearance diseases.
Collapse
|
6
|
Wei D, Quaranta G, Aubin-Tam ME, Tam DSW. The younger flagellum sets the beat for Chlamydomonas reinhardtii. eLife 2024; 13:e86102. [PMID: 38752724 PMCID: PMC11098555 DOI: 10.7554/elife.86102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Eukaryotes swim with coordinated flagellar (ciliary) beating and steer by fine-tuning the coordination. The model organism for studying flagellate motility, Chlamydomonas reinhardtii, employs synchronous, breaststroke-like flagellar beating to swim, and it modulates the beating amplitudes differentially to steer. This strategy hinges on both inherent flagellar asymmetries (e.g. different response to chemical messengers) and such asymmetries being effectively coordinated in the synchronous beating. In C. reinhardtii, the synchrony of beating is known to be supported by a mechanical connection between flagella; however, how flagellar asymmetries persist in the synchrony remains elusive. For example, it has been speculated for decades that one flagellum leads the beating, as its dynamic properties (i.e. frequency, waveform, etc.) appear to be copied by the other one. In this study, we combine experiments, computations, and modeling efforts to elucidate the roles played by each flagellum in synchronous beating. With a non-invasive technique to selectively load each flagellum, we show that the coordinated beating essentially only responds to load exerted on the cis flagellum; and that such asymmetry in response derives from a unilateral coupling between the two flagella. Our results highlight a distinct role for each flagellum in coordination and have implication for biflagellates' tactic behaviors.
Collapse
Affiliation(s)
- Da Wei
- Department of Bionanoscience, Delft University of TechnologyDelftNetherlands
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of SciencesBeijingChina
| | - Greta Quaranta
- Laboratory for Aero and Hydrodynamics, Delft University of TechnologyDelftNetherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Delft University of TechnologyDelftNetherlands
| | - Daniel SW Tam
- Laboratory for Aero and Hydrodynamics, Delft University of TechnologyDelftNetherlands
| |
Collapse
|
7
|
von Kenne A, Bär M, Niedermayer T. Hydrodynamic synchronization of elastic cilia: How surface effects determine the characteristics of metachronal waves. Phys Rev E 2024; 109:054407. [PMID: 38907471 DOI: 10.1103/physreve.109.054407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 06/24/2024]
Abstract
Cilia are hairlike microactuators whose cyclic motion is specialized to propel extracellular fluids at low Reynolds numbers. Clusters of these organelles can form synchronized beating patterns, called metachronal waves, which presumably arise from hydrodynamic interactions. We model hydrodynamically interacting cilia by microspheres elastically bound to circular orbits, whose inclinations with respect to a no-slip wall model the ciliary power and recovery stroke, resulting in an anisotropy of the viscous flow. We derive a coupled phase-oscillator description by reducing the microsphere dynamics to the slow timescale of synchronization and determine analytical metachronal wave solutions and their stability in a periodic chain setting. In this framework, a simple intuition for the hydrodynamic coupling between phase oscillators is established by relating the geometry of flow near the surface of a cell or tissue to the directionality of the hydrodynamic coupling functions. This intuition naturally explains the properties of the linear stability of metachronal waves. The flow near the surface stabilizes metachronal waves with long wavelengths propagating in the direction of the power stroke and, moreover, metachronal waves with short wavelengths propagating perpendicularly to the power stroke. Performing simulations of phase-oscillator chains with periodic boundary conditions, we indeed find that both wave types emerge with a variety of linearly stable wave numbers. In open chains of phase oscillators, the dynamics of metachronal waves is fundamentally different. Here the elasticity of the model cilia controls the wave direction and selects a particular wave number: At large elasticity, waves traveling in the direction of the power stroke are stable, whereas at smaller elasticity waves in the opposite direction are stable. For intermediate elasticity both wave directions coexist. In this regime, waves propagating towards both ends of the chain form, but only one wave direction prevails, depending on the elasticity and initial conditions.
Collapse
Affiliation(s)
- Albert von Kenne
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt, Berlin 10587, Germany
| | - Markus Bär
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt, Berlin 10587, Germany
| | - Thomas Niedermayer
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt, Berlin 10587, Germany
| |
Collapse
|
8
|
Laeverenz-Schlogelhofer H, Wan KY. Bioelectric control of locomotor gaits in the walking ciliate Euplotes. Curr Biol 2024; 34:697-709.e6. [PMID: 38237598 DOI: 10.1016/j.cub.2023.12.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 02/29/2024]
Abstract
Diverse animal species exhibit highly stereotyped behavioral actions and locomotor sequences as they explore their natural environments. In many such cases, the neural basis of behavior is well established, where dedicated neural circuitry contributes to the initiation and regulation of certain response sequences. At the microscopic scale, single-celled eukaryotes (protists) also exhibit remarkably complex behaviors and yet are completely devoid of nervous systems. Here, to address the question of how single cells control behavior, we study locomotor patterning in the exemplary hypotrich ciliate Euplotes, a highly polarized cell, which actuates a large number of leg-like appendages called cirri (each a bundle of ∼25-50 cilia) to swim in fluids or walk on surfaces. As it navigates its surroundings, a walking Euplotes cell is routinely observed to perform side-stepping reactions, one of the most sophisticated maneuvers ever observed in a single-celled organism. These are spontaneous and stereotyped reorientation events involving a transient and fast backward motion followed by a turn. Combining high-speed imaging with simultaneous time-resolved electrophysiological recordings, we show that this complex coordinated motion sequence is tightly regulated by rapid membrane depolarization events, which orchestrate the activity of different cirri on the cell. Using machine learning and computer vision methods, we map detailed measurements of cirri dynamics to the cell's membrane bioelectrical activity, revealing a differential response in the front and back cirri. We integrate these measurements with a minimal model to understand how Euplotes-a unicellular organism-manipulates its membrane potential to achieve real-time control over its motor apparatus.
Collapse
Affiliation(s)
| | - Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
9
|
Zhou T, Wan X, Huang DZ, Li Z, Peng Z, Anandkumar A, Brady JF, Sternberg PW, Daraio C. AI-aided geometric design of anti-infection catheters. SCIENCE ADVANCES 2024; 10:eadj1741. [PMID: 38170782 PMCID: PMC10776022 DOI: 10.1126/sciadv.adj1741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Bacteria can swim upstream in a narrow tube and pose a clinical threat of urinary tract infection to patients implanted with catheters. Coatings and structured surfaces have been proposed to repel bacteria, but no such approach thoroughly addresses the contamination problem in catheters. Here, on the basis of the physical mechanism of upstream swimming, we propose a novel geometric design, optimized by an artificial intelligence model. Using Escherichia coli, we demonstrate the anti-infection mechanism in microfluidic experiments and evaluate the effectiveness of the design in three-dimensionally printed prototype catheters under clinical flow rates. Our catheter design shows that one to two orders of magnitude improved suppression of bacterial contamination at the upstream end, potentially prolonging the in-dwelling time for catheter use and reducing the overall risk of catheter-associated urinary tract infection.
Collapse
Affiliation(s)
- Tingtao Zhou
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xuan Wan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Daniel Zhengyu Huang
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China
| | - Zongyi Li
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhiwei Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anima Anandkumar
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - John F. Brady
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chiara Daraio
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
- Meta Platforms Inc., Reality Labs, 322 Airport Blvd., Burlingame, CA 94010, USA
| |
Collapse
|
10
|
Zhang F, Li Z, Chen C, Luan H, Fang RH, Zhang L, Wang J. Biohybrid Microalgae Robots: Design, Fabrication, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303714. [PMID: 37471001 PMCID: PMC10799182 DOI: 10.1002/adma.202303714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
The integration of microorganisms and engineered artificial components has shown considerable promise for creating biohybrid microrobots. The unique features of microalgae make them attractive candidates as natural actuation materials for the design of biohybrid microrobotic systems. In this review, microalgae-based biohybrid microrobots are introduced for diverse biomedical and environmental applications. The distinct propulsion and phototaxis behaviors of green microalgae, as well as important properties from other photosynthetic microalga systems (blue-green algae and diatom) that are crucial to constructing powerful biohybrid microrobots, will be described first. Then the focus is on chemical and physical routes for functionalizing the algae surface with diverse reactive materials toward the fabrication of advanced biohybrid microalgae robots. Finally, representative applications of such algae-driven microrobots are presented, including drug delivery, imaging, and water decontamination, highlighting the distinct advantages of these active biohybrid robots, along with future prospects and challenges.
Collapse
Affiliation(s)
- Fangyu Zhang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Zhengxing Li
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Chuanrui Chen
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Hao Luan
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Zhao Y, Kurzthaler C, Zhou N, Schwarz-Linek J, Devailly C, Arlt J, Huang JD, Poon WCK, Franosch T, Martinez VA, Tailleur J. Quantitative characterization of run-and-tumble statistics in bulk bacterial suspensions. Phys Rev E 2024; 109:014612. [PMID: 38366485 DOI: 10.1103/physreve.109.014612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/04/2023] [Indexed: 02/18/2024]
Abstract
We introduce a numerical method to extract the parameters of run-and-tumble dynamics from experimental measurements of the intermediate scattering function. We show that proceeding in Laplace space is unpractical and employ instead renewal processes to work directly in real time. We first validate our approach against data produced using agent-based simulations. This allows us to identify the length and time scales required for an accurate measurement of the motility parameters, including tumbling frequency and swim speed. We compare different models for the run-and-tumble dynamics by accounting for speed variability at the single-cell and population level, respectively. Finally, we apply our approach to experimental data on wild-type Escherichia coli obtained using differential dynamic microscopy.
Collapse
Affiliation(s)
- Yongfeng Zhao
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong, People's Republic of China
- Université de Paris, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Christina Kurzthaler
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Nan Zhou
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Jana Schwarz-Linek
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Clemence Devailly
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Jochen Arlt
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong, People's Republic of China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wilson C K Poon
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Vincent A Martinez
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Julien Tailleur
- Université de Paris, MSC, UMR 7057 CNRS, 75205 Paris, France
| |
Collapse
|
12
|
Larson BT. Perspectives on Principles of Cellular Behavior from the Biophysics of Protists. Integr Comp Biol 2023; 63:1405-1421. [PMID: 37496203 PMCID: PMC10755178 DOI: 10.1093/icb/icad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Cells are the fundamental unit of biological organization. Although it may be easy to think of them as little more than the simple building blocks of complex organisms such as animals, single cells are capable of behaviors of remarkable apparent sophistication. This is abundantly clear when considering the diversity of form and function among the microbial eukaryotes, the protists. How might we navigate this diversity in the search for general principles of cellular behavior? Here, we review cases in which the intensive study of protists from the perspective of cellular biophysics has driven insight into broad biological questions of morphogenesis, navigation and motility, and decision making. We argue that applying such approaches to questions of evolutionary cell biology presents rich, emerging opportunities. Integrating and expanding biophysical studies across protist diversity, exploiting the unique characteristics of each organism, will enrich our understanding of general underlying principles.
Collapse
Affiliation(s)
- Ben T Larson
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
13
|
Bondoc-Naumovitz KG, Laeverenz-Schlogelhofer H, Poon RN, Boggon AK, Bentley SA, Cortese D, Wan KY. Methods and Measures for Investigating Microscale Motility. Integr Comp Biol 2023; 63:1485-1508. [PMID: 37336589 PMCID: PMC10755196 DOI: 10.1093/icb/icad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
Motility is an essential factor for an organism's survival and diversification. With the advent of novel single-cell technologies, analytical frameworks, and theoretical methods, we can begin to probe the complex lives of microscopic motile organisms and answer the intertwining biological and physical questions of how these diverse lifeforms navigate their surroundings. Herein, we summarize the main mechanisms of microscale motility and give an overview of different experimental, analytical, and mathematical methods used to study them across different scales encompassing the molecular-, individual-, to population-level. We identify transferable techniques, pressing challenges, and future directions in the field. This review can serve as a starting point for researchers who are interested in exploring and quantifying the movements of organisms in the microscale world.
Collapse
Affiliation(s)
| | | | - Rebecca N Poon
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Alexander K Boggon
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Samuel A Bentley
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Dario Cortese
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| | - Kirsty Y Wan
- Living Systems Institute, University of Exeter, Stocker Road, EX4 4QD, Exeter, UK
| |
Collapse
|
14
|
Sharan P, Daddi-Moussa-Ider A, Agudo-Canalejo J, Golestanian R, Simmchen J. Pair Interaction between Two Catalytically Active Colloids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300817. [PMID: 37165719 DOI: 10.1002/smll.202300817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Indexed: 05/12/2023]
Abstract
Due to the intrinsically complex non-equilibrium behavior of the constituents of active matter systems, a comprehensive understanding of their collective properties is a challenge that requires systematic bottom-up characterization of the individual components and their interactions. For self-propelled particles, intrinsic complexity stems from the fact that the polar nature of the colloids necessitates that the interactions depend on positions and orientations of the particles, leading to a 2d - 1 dimensional configuration space for each particle, in d dimensions. Moreover, the interactions between such non-equilibrium colloids are generically non-reciprocal, which makes the characterization even more complex. Therefore, derivation of generic rules that enable us to predict the outcomes of individual encounters as well as the ensuing collective behavior will be an important step forward. While significant advances have been made on the theoretical front, such systematic experimental characterizations using simple artificial systems with measurable parameters are scarce. Here, two different contrasting types of colloidal microswimmers are studied, which move in opposite directions and show distinctly different interactions. To facilitate the extraction of parameters, an experimental platform is introduced in which these parameters are confined on a 1D track. Furthermore, a theoretical model for interparticle interactions near a substrate is developed, including both phoretic and hydrodynamic effects, which reproduces their behavior. For subsequent validation, the degrees of freedom are increased to 2D motion and resulting trajectories are predicted, finding remarkable agreement. These results may prove useful in characterizing the overall alignment behavior of interacting self-propelling active swimmer and may find direct applications in guiding the design of active-matter systems involving phoretic and hydrodynamic interactions.
Collapse
Affiliation(s)
- Priyanka Sharan
- Chair of Physical Chemistry, TU Dresden, 01062, Dresden, Germany
| | | | - Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077, Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077, Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01062, Dresden, Germany
- Pure and applied chemistry, University of Strathclyde, G11XL, Glasgow
| |
Collapse
|
15
|
Alonso A, Kirkegaard JB. Fast detection of slender bodies in high density microscopy data. Commun Biol 2023; 6:754. [PMID: 37468539 PMCID: PMC10356847 DOI: 10.1038/s42003-023-05098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
Computer-aided analysis of biological microscopy data has seen a massive improvement with the utilization of general-purpose deep learning techniques. Yet, in microscopy studies of multi-organism systems, the problem of collision and overlap remains challenging. This is particularly true for systems composed of slender bodies such as swimming nematodes, swimming spermatozoa, or the beating of eukaryotic or prokaryotic flagella. Here, we develop a end-to-end deep learning approach to extract precise shape trajectories of generally motile and overlapping slender bodies. Our method works in low resolution settings where feature keypoints are hard to define and detect. Detection is fast and we demonstrate the ability to track thousands of overlapping organisms simultaneously. While our approach is agnostic to area of application, we present it in the setting of and exemplify its usability on dense experiments of swimming Caenorhabditis elegans. The model training is achieved purely on synthetic data, utilizing a physics-based model for nematode motility, and we demonstrate the model's ability to generalize from simulations to experimental videos.
Collapse
Affiliation(s)
- Albert Alonso
- Niels Bohr Institute & Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Julius B Kirkegaard
- Niels Bohr Institute & Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Gengel E, Kuplik Z, Angel D, Heifetz E. A physics-based model of swarming jellyfish. PLoS One 2023; 18:e0288378. [PMID: 37428796 DOI: 10.1371/journal.pone.0288378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
We propose a model for the structure formation of jellyfish swimming based on active Brownian particles. We address the phenomena of counter-current swimming, avoidance of turbulent flow regions and foraging. We motivate corresponding mechanisms from observations of jellyfish swarming reported in the literature and incorporate them into the generic modelling framework. The model characteristics is tested in three paradigmatic flow environments.
Collapse
Affiliation(s)
- Erik Gengel
- Department of Geophysics, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Zafrir Kuplik
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
- The Leon Recanati Institute for Maritime Studies, University of Haifa, Mount Carmel, Haifa, Israel
| | - Dror Angel
- The Leon Recanati Institute for Maritime Studies, University of Haifa, Mount Carmel, Haifa, Israel
| | - Eyal Heifetz
- Department of Geophysics, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Nelson G, Strain A, Isu A, Rahnama A, Wakabayashi KI, Melvin AT, Kato N. Cells collectively migrate during ammonium chemotaxis in Chlamydomonas reinhardtii. Sci Rep 2023; 13:10781. [PMID: 37402785 DOI: 10.1038/s41598-023-36818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/10/2023] [Indexed: 07/06/2023] Open
Abstract
The mechanisms governing chemotaxis in Chlamydomonas reinhardtii are largely unknown compared to those regulating phototaxis despite equal importance on the migratory response in the ciliated microalga. To study chemotaxis, we made a simple modification to a conventional Petri dish assay. Using the assay, a novel mechanism governing Chlamydomonas ammonium chemotaxis was revealed. First, we found that light exposure enhances the chemotactic response of wild-type Chlamydomonas strains, yet phototaxis-incompetent mutant strains, eye3-2 and ptx1, exhibit normal chemotaxis. This suggests that Chlamydomonas transduces the light signal pathway in chemotaxis differently from that in phototaxis. Second, we found that Chlamydomonas collectively migrate during chemotaxis but not phototaxis. Collective migration during chemotaxis is not clearly observed when the assay is conducted in the dark. Third, the Chlamydomonas strain CC-124 carrying agg1-, the AGGREGATE1 gene (AGG1) null mutation, exhibited a more robust collective migratory response than strains carrying the wild-type AGG1 gene. The expression of a recombinant AGG1 protein in the CC-124 strain suppressed this collective migration during chemotaxis. Altogether, these findings suggest a unique mechanism; ammonium chemotaxis in Chlamydomonas is mainly driven by collective cell migration. Furthermore, it is proposed that collective migration is enhanced by light and suppressed by the AGG1 protein.
Collapse
Affiliation(s)
- Gabela Nelson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Alexis Strain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Atsuko Isu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Alireza Rahnama
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
18
|
Cheung G, Lin YC, Papadopoulos V. Translocator protein in the rise and fall of central nervous system neurons. Front Cell Neurosci 2023; 17:1210205. [PMID: 37416505 PMCID: PMC10322222 DOI: 10.3389/fncel.2023.1210205] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Translocator protein (TSPO), a 18 kDa protein found in the outer mitochondrial membrane, has historically been associated with the transport of cholesterol in highly steroidogenic tissues though it is found in all cells throughout the mammalian body. TSPO has also been associated with molecular transport, oxidative stress, apoptosis, and energy metabolism. TSPO levels are typically low in the central nervous system (CNS), but a significant upregulation is observed in activated microglia during neuroinflammation. However, there are also a few specific regions that have been reported to have higher TSPO levels than the rest of the brain under normal conditions. These include the dentate gyrus of the hippocampus, the olfactory bulb, the subventricular zone, the choroid plexus, and the cerebellum. These areas are also all associated with adult neurogenesis, yet there is no explanation of TSPO's function in these cells. Current studies have investigated the role of TSPO in microglia during neuron degeneration, but TSPO's role in the rest of the neuron lifecycle remains to be elucidated. This review aims to discuss the known functions of TSPO and its potential role in the lifecycle of neurons within the CNS.
Collapse
|
19
|
Mauleon-Amieva A, Allen MP, Liverpool TB, Royall CP. Dynamics and interactions of Quincke roller clusters: From orbits and flips to excited states. SCIENCE ADVANCES 2023; 9:eadf5144. [PMID: 37196094 PMCID: PMC10191443 DOI: 10.1126/sciadv.adf5144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
Active matter systems may be characterized by the conversion of energy into active motion, e.g., the self-propulsion of microorganisms. Artificial active colloids form models that exhibit essential properties of more complex biological systems but are amenable to laboratory experiments. While most experimental models consist of spheres, active particles of different shapes are less understood. Furthermore, interactions between these anisotropic active colloids are even less explored. Here, we investigate the motion of active colloidal clusters and the interactions between them. We focus on self-assembled dumbbells and trimers powered by an external dc electric field. For dumbbells, we observe an activity-dependent behavior of spinning, circular, and orbital motions. Moreover, collisions between dumbbells lead to the hierarchical self-assembly of tetramers and hexamers, both of which form rotational excited states. On the other hand, trimers exhibit flipping motion that leads to trajectories reminiscent of a honeycomb lattice.
Collapse
Affiliation(s)
- Abraham Mauleon-Amieva
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, UK
- Bristol Centre for Functional Nanomaterials, Tyndall Avenue, Bristol BS8 1FD, UK
| | - Michael P. Allen
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Tanniemola B. Liverpool
- School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG UK
| | - C. Patrick Royall
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, UK
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| |
Collapse
|
20
|
Mo C, Fedosov DA. Hydrodynamic clustering of two finite-length flagellated swimmers in viscoelastic fluids. J R Soc Interface 2023; 20:20220667. [PMID: 36751932 PMCID: PMC9905986 DOI: 10.1098/rsif.2022.0667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Clustering of flagellated microswimmers such as sperm is often mediated by hydrodynamic interactions between them. To better understand the interaction of microswimmers in viscoelastic fluids, we perform two-dimensional simulations of two swimming sheets, using a viscoelastic version of the smoothed dissipative particle dynamics method that implements the Oldroyd-B fluid model. Elasticity of sheets (stiff versus soft) defines two qualitatively different regimes of clustering, where stiff sheets exhibit a much more robust clustering than soft sheets. A formed doublet of soft sheets generally swims faster than a single swimmer, while a pair of two stiff sheets normally shows no speed enhancement after clustering. A pair of two identical swimmers is stable for most conditions, while differences in the beating amplitudes and/or frequencies between the two sheets can destroy the doublet stability. Clustering of two distinct swimmers is most stable at Deborah numbers of De = τω ≈ 1 (τ is the relaxation time of a viscoelastic fluid and ω is the beating frequency), in agreement with experimental observations. Therefore, the clustering of two swimmers depends non-monotonically on De. Our results suggest that the cluster stability is likely a dominant factor which determines the cluster size of collectively moving flagellated swimmers.
Collapse
Affiliation(s)
- Chaojie Mo
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
- Aircraft and Propulsion Laboratory, Ningbo Institute of Technology, Beihang University, Ningbo 315100, People’s Republic of China
| | - Dmitry A. Fedosov
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
21
|
Ringers C, Bialonski S, Ege M, Solovev A, Hansen JN, Jeong I, Friedrich BM, Jurisch-Yaksi N. Novel analytical tools reveal that local synchronization of cilia coincides with tissue-scale metachronal waves in zebrafish multiciliated epithelia. eLife 2023; 12:77701. [PMID: 36700548 PMCID: PMC9940908 DOI: 10.7554/elife.77701] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023] Open
Abstract
Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right noses, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, i.e., cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.
Collapse
Affiliation(s)
- Christa Ringers
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Stephan Bialonski
- Institute for Data-Driven Technologies, Aachen University of Applied SciencesJülichGermany
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
| | - Mert Ege
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
| | - Anton Solovev
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
- Cluster of Excellence 'Physics of Life', Technical University DresdenDresdenGermany
| | - Jan Niklas Hansen
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
| | - Benjamin M Friedrich
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
- Cluster of Excellence 'Physics of Life', Technical University DresdenDresdenGermany
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
22
|
Catalan RE, Fragkopoulos AA, von Trott N, Kelterborn S, Baidukova O, Hegemann P, Bäumchen O. Light-regulated adsorption and desorption of Chlamydomonas cells at surfaces. SOFT MATTER 2023; 19:306-314. [PMID: 36520090 DOI: 10.1039/d2sm01039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microbial colonization of surfaces represents the first step towards biofilm formation, which is a recurring phenomenon in nature with beneficial and detrimental implications in technological and medical settings. Consequently, there is interest in elucidating the fundamental aspects of the initial stages of biofilm formation of microorganisms on solid surfaces. While most of the research is oriented to understand bacterial surface colonization, the fundamental principles of surface colonization of motile, photosynthetic microbes remain largely unexplored so far. Recent single-cell studies showed that the flagellar adhesion of Chlamydomonas reinhardtii is switched on in blue light and switched off under red light [Kreis et al., Nat. Phys., 2018, 14, 45-49]. Here, we study this light-switchable surface association on the population level and measure the kinetics of adsorption and desorption of suspensions of motile C. reinhardtii cells on glass surfaces using bright-field optical microscopy. We observe that both processes exhibit a response lag relative to the time at which the blue- and red-light conditions are set and model this feature using time-delayed Langmuir-type kinetics. We find that cell adsorption occurs significantly faster than desorption, which we attribute to the protein-mediated molecular adhesion mechanism of the cells. Adsorption experiments using phototactically blind C. reinhardtii mutants demonstrate that phototaxis does not affect the cell adsorption kinetics. Hence, this framework can be used as an assay for characterizing the dynamics of the surface colonization of microbial species exhibiting light-regulated surface adhesion under precisely controlled environmental conditions.
Collapse
Affiliation(s)
- Rodrigo E Catalan
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
- Experimental Physics V, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Alexandros A Fragkopoulos
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
- Experimental Physics V, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Nicolas von Trott
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - Simon Kelterborn
- Institute of Biology, Experimental Biophysics, Humboldt-Universität, Invalidenstraße 42, 10115 Berlin, Germany
- Institute of Translational Physiology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Olga Baidukova
- Institute of Biology, Experimental Biophysics, Humboldt-Universität, Invalidenstraße 42, 10115 Berlin, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität, Invalidenstraße 42, 10115 Berlin, Germany
| | - Oliver Bäumchen
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
- Experimental Physics V, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| |
Collapse
|
23
|
Leptos KC, Chioccioli M, Furlan S, Pesci AI, Goldstein RE. Phototaxis of Chlamydomonas arises from a tuned adaptive photoresponse shared with multicellular Volvocine green algae. Phys Rev E 2023; 107:014404. [PMID: 36797913 PMCID: PMC7616094 DOI: 10.1103/physreve.107.014404] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
A fundamental issue in biology is the nature of evolutionary transitions from unicellular to multicellular organisms. Volvocine algae are models for this transition, as they span from the unicellular biflagellate Chlamydomonas to multicellular species of Volvox with up to 50,000 Chlamydomonas-like cells on the surface of a spherical extracellular matrix. The mechanism of phototaxis in these species is of particular interest since they lack a nervous system and intercellular connections; steering is a consequence of the response of individual cells to light. Studies of Volvox and Gonium, a 16-cell organism with a plate-like structure, have shown that the flagellar response to changing illumination of the cellular photosensor is adaptive, with a recovery time tuned to the rotation period of the colony around its primary axis. Here, combining high-resolution studies of the flagellar photoresponse of micropipette-held Chlamydomonas with 3D tracking of freely swimming cells, we show that such tuning also underlies its phototaxis. A mathematical model is developed based on the rotations around an axis perpendicular to the flagellar beat plane that occur through the adaptive response to oscillating light levels as the organism spins. Exploiting a separation of timescales between the flagellar photoresponse and phototurning, we develop an equation of motion that accurately describes the observed photoalignment. In showing that the adaptive timescales in Volvocine algae are tuned to the organisms' rotational periods across three orders of magnitude in cell number, our results suggest a unified picture of phototaxis in green algae in which the asymmetry in torques that produce phototurns arise from the individual flagella of Chlamydomonas, the flagellated edges of Gonium, and the flagellated hemispheres of Volvox.
Collapse
Affiliation(s)
- Kyriacos C. Leptos
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Bentley SA, Laeverenz-Schlogelhofer H, Anagnostidis V, Cammann J, Mazza MG, Gielen F, Wan KY. Phenotyping single-cell motility in microfluidic confinement. eLife 2022; 11:e76519. [PMID: 36416411 PMCID: PMC9683786 DOI: 10.7554/elife.76519] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
The movement trajectories of organisms serve as dynamic read-outs of their behaviour and physiology. For microorganisms this can be difficult to resolve due to their small size and fast movement. Here, we devise a novel droplet microfluidics assay to encapsulate single micron-sized algae inside closed arenas, enabling ultralong high-speed tracking of the same cell. Comparing two model species - Chlamydomonas reinhardtii (freshwater, 2 cilia), and Pyramimonas octopus (marine, 8 cilia), we detail their highly-stereotyped yet contrasting swimming behaviours and environmental interactions. By measuring the rates and probabilities with which cells transition between a trio of motility states (smooth-forward swimming, quiescence, tumbling or excitable backward swimming), we reconstruct the control network that underlies this gait switching dynamics. A simplified model of cell-roaming in circular confinement reproduces the observed long-term behaviours and spatial fluxes, including novel boundary circulation behaviour. Finally, we establish an assay in which pairs of droplets are fused on demand, one containing a trapped cell with another containing a chemical that perturbs cellular excitability, to reveal how aneural microorganisms adapt their locomotor patterns in real-time.
Collapse
Affiliation(s)
- Samuel A Bentley
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Mathematics and Statistics, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Hannah Laeverenz-Schlogelhofer
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Mathematics and Statistics, University of ExeterExeterUnited Kingdom
| | - Vasileios Anagnostidis
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
- Physics and Astronomy, University of ExeterExeterUnited Kingdom
| | - Jan Cammann
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough UniversityLoughboroughUnited Kingdom
| | - Marco G Mazza
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough UniversityLoughboroughUnited Kingdom
- Max Planck Institute for Dynamics and Self-Organization (MPIDS)GöttingenGermany
| | - Fabrice Gielen
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Physics and Astronomy, University of ExeterExeterUnited Kingdom
| | - Kirsty Y Wan
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Mathematics and Statistics, University of ExeterExeterUnited Kingdom
| |
Collapse
|
25
|
Collective motion of active particles exhibiting non-reciprocal orientational interactions. Sci Rep 2022; 12:19437. [PMID: 36376336 PMCID: PMC9663567 DOI: 10.1038/s41598-022-23597-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
We present a Brownian dynamics study of a 2D bath of active particles interacting among each other through usual steric interactions and, additionally, via non-reciprocal avoidant orientational interactions. We motivate them by the fact that the two flagella of the alga Chlamydomonas interact sterically with nearby surfaces such that a torque acts on the alga. As expected, in most cases such interactions disrupt the motility-induced particle clustering in active baths. Surprisingly, however, we find that the active particles can self-organize into collectively moving flocks if the range of non-reciprocal interactions is close to that of steric interactions. We observe that the flocking motion can manifest itself through a variety of structural forms, spanning from single dense bands to multiple moderately-dense stripes, which are highly dynamic. The flocking order parameter is found to be only weakly dependent on the underlying flock structure. Together with the variance of the local-density distribution, one can clearly group the flocking motion into the two separate band and dynamic-stripes states.
Collapse
|
26
|
Breoni D, Schwarzendahl FJ, Blossey R, Löwen H. A one-dimensional three-state run-and-tumble model with a 'cell cycle'. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:83. [PMID: 36258055 PMCID: PMC9579107 DOI: 10.1140/epje/s10189-022-00238-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
We study a one-dimensional three-state run-and-tumble model motivated by the bacterium Caulobacter crescentus which displays a cell cycle between two non-proliferating mobile phases and a proliferating sedentary phase. Our model implements kinetic transitions between the two mobile and one sedentary states described in terms of their number densities, where mobility is allowed with different running speeds in forward and backward direction. We start by analyzing the stationary states of the system and compute the mean and squared-displacements for the distribution of all cells, as well as for the number density of settled cells. The latter displays a surprising super-ballistic scaling [Formula: see text] at early times. Including repulsive and attractive interactions between the mobile cell populations and the settled cells, we explore the stability of the system and employ numerical methods to study structure formation in the fully nonlinear system. We find traveling waves of bacteria, whose occurrence is quantified in a non-equilibrium state diagram.
Collapse
Affiliation(s)
- Davide Breoni
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| | - Fabian Jan Schwarzendahl
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ralf Blossey
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), CNRS UMR8576, University of Lille, 59000, Lille, France
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
27
|
Sharp turns and gyrotaxis modulate surface accumulation of microorganisms. Proc Natl Acad Sci U S A 2022; 119:e2206738119. [PMID: 36219692 PMCID: PMC9586295 DOI: 10.1073/pnas.2206738119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Populations of swimming microorganisms are ubiquitous in aqueous environments from blood vessels to oceans and from biofilms to biotechnological industries, where they routinely encounter solid boundaries. This paper explores experimentally how the presence of boundaries influences the behavior of a marine alga (Heterosigma akashiwo), whose normal trajectories exhibit both random sharp turns and gravitational reorientation (gyrotaxis). Proximity to a plane boundary strongly increases the probability of sharp turns and thereby influences the distributions of swimming speed, angular velocity and, unexpectedly, rotational diffusivity as functions of distance from the boundary and of swimming orientation. These variations all contribute to enhancing accumulation beneath an upper boundary much more than gyrotaxis alone. The accumulation of swimming microorganisms at surfaces is an essential feature of various physical, chemical, and biological processes in confined spaces. To date, this accumulation is mainly assumed to depend on the change of swimming speed and angular velocity caused by cell-wall contact and hydrodynamic interaction. Here, we measured the swimming trajectories of Heterosigma akashiwo (a biflagellate marine alga) near vertical and horizontal rigid boundaries. We observed that the probability of sharp turns is greatly increased near a vertical wall, resulting in significant changes in the distributions of average swimming speed, angular velocity, and rotational diffusivity near the wall (a quantity that has not previously been investigated) as functions of both distance from the wall and swimming orientation. These cannot be satisfactorily explained by standard hydrodynamic models. Detailed examination of an individual cell trajectory shows that wall contact by the leading flagellum triggers complex changes in the behavior of both flagella that cannot be incorporated in a mechanistic model. Our individual-based model for predicting cell concentration using the measured distributions of swimming speed, angular velocity, and rotational diffusivity agrees well with the experiment. The experiments and model are repeated for a cell suspension in a vertical plane, bounded above by a horizontal wall. The cell accumulation beneath the wall, expected from gyrotaxis, is considerably amplified by cell-wall interaction. These findings may shed light on the prediction and control of cell distribution mediated by gyrotaxis and cell-wall contact.
Collapse
|
28
|
van Roon DM, Volpe G, Telo da Gama MM, Araújo NAM. The role of disorder in the motion of chiral active particles in the presence of obstacles. SOFT MATTER 2022; 18:6899-6906. [PMID: 36043894 DOI: 10.1039/d2sm00694d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The presence of obstacles is intuitively expected to hinder the diffusive transport of active particles. However, for chiral active particles, a low density of obstacles near a surface can enhance their diffusive behavior. Here, we study numerically the role that disorder plays in determining the transport dynamics of chiral active particles on surfaces with obstacles. We consider different densities of regularly spaced obstacles and distinct types of disorder: noise in the dynamics of the particle, quenched noise in the positions of the obstacles as well as obstacle size polydispersity. We show that, depending on the type and strength of the disorder, the presence of obstacles can either enhance or hinder transport, and discuss implications for the control of active transport in disordered media.
Collapse
Affiliation(s)
- Danne M van Roon
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P1-1749-016, Lisboa, Portugal.
| | - Giorgio Volpe
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Margarida M Telo da Gama
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P1-1749-016, Lisboa, Portugal.
| | - Nuno A M Araújo
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P1-1749-016, Lisboa, Portugal.
| |
Collapse
|
29
|
Chu G, Sohrabi F, Timonen JVI, Rojas OJ. Dispersing swimming microalgae in self-assembled nanocellulose suspension: Unveiling living colloid dynamics in cholesteric liquid crystals. J Colloid Interface Sci 2022; 622:978-985. [PMID: 35569411 DOI: 10.1016/j.jcis.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
Abstract
Active matter comprises individual energy-consuming components that convert locally stored energy into mechanical motion. Among these, liquid crystal dispersed self-propelled colloids have displayed fascinating dynamic effects and nonequilibrium behaviors. In this work, we introduce a new type of active soft matter based on swimming microalgae and lyotropic nanocellulose liquid crystal. Cellulose is a kind of biocompatible polysaccharide that nontoxic to living biological colloids. In contrast to microalgae locomotion in isotropic and low viscosity media, we demonstrate that the propulsion force of swimming microalgae can overcome the stabilizing elastic force in cholesteric nanocellulose liquid crystal, with the displacement dynamics (gait, direction, frequency, and speed) be altered by the surrounding medium. Simultaneously, the active stress and shear flow exerted by swimming microalgae can introduce local perturbation in surrounding liquid crystal orientation order. The latter effect yields hydrodynamic fluctuations in bulk phase as well as layer undulations, helicoidal axis splay deformation and director bending in the cholesteric assembly, which finally followed by a recovery according to the inherent viscoelasticity of liquid crystal matrix. Our results point to an unorthodox design concept to generate a new type of hybrid soft matter that combines nontoxic cholesteric liquid crystal and active particles, which are expected to open opportunities in biosensing and biomechanical applications.
Collapse
Affiliation(s)
- Guang Chu
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Vuorimiehentie 1, 02510 Espoo, Finland.
| | - Fereshteh Sohrabi
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 02150 Espoo, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, 02150 Espoo, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Vuorimiehentie 1, 02510 Espoo, Finland; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
30
|
Partridge B, Gonzalez Anton S, Khorshed R, Adams G, Pospori C, Lo Celso C, Lee CF. Heterogeneous run-and-tumble motion accounts for transient non-Gaussian super-diffusion in haematopoietic multi-potent progenitor cells. PLoS One 2022; 17:e0272587. [PMID: 36099240 PMCID: PMC9469981 DOI: 10.1371/journal.pone.0272587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Multi-potent progenitor (MPP) cells act as a key intermediary step between haematopoietic stem cells and the entirety of the mature blood cell system. Their eventual fate determination is thought to be achieved through migration in and out of spatially distinct niches. Here we first analyze statistically MPP cell trajectory data obtained from a series of long time-course 3D in vivo imaging experiments on irradiated mouse calvaria, and report that MPPs display transient super-diffusion with apparent non-Gaussian displacement distributions. Second, we explain these experimental findings using a run-and-tumble model of cell motion which incorporates the observed dynamical heterogeneity of the MPPs. Third, we use our model to extrapolate the dynamics to time-periods currently inaccessible experimentally, which enables us to quantitatively estimate the time and length scales at which super-diffusion transitions to Fickian diffusion. Our work sheds light on the potential importance of motility in early haematopoietic progenitor function.
Collapse
Affiliation(s)
- Benjamin Partridge
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Sara Gonzalez Anton
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
- Sir Francis Crick Institute, London, United Kingdom
| | - Reema Khorshed
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - George Adams
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
- Sir Francis Crick Institute, London, United Kingdom
| | - Constandina Pospori
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
- Sir Francis Crick Institute, London, United Kingdom
| | - Cristina Lo Celso
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
- Sir Francis Crick Institute, London, United Kingdom
- * E-mail: (CLC); (CFL)
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
- * E-mail: (CLC); (CFL)
| |
Collapse
|
31
|
Larson BT, Garbus J, Pollack JB, Marshall WF. A unicellular walker controlled by a microtubule-based finite-state machine. Curr Biol 2022; 32:3745-3757.e7. [PMID: 35963241 PMCID: PMC9474717 DOI: 10.1016/j.cub.2022.07.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/20/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022]
Abstract
Cells are complex biochemical systems whose behaviors emerge from interactions among myriad molecular components. Computation is often invoked as a general framework for navigating this cellular complexity. However, it is unclear how cells might embody computational processes such that the theories of computation, including finite-state machine models, could be productively applied. Here, we demonstrate finite-state-machine-like processing embodied in cells using the walking behavior of Euplotes eurystomus, a ciliate that walks across surfaces using fourteen motile appendages (cirri). We found that cellular walking entails regulated transitions among a discrete set of gait states. The set of observed transitions decomposes into a small group of high-probability, temporally irreversible transitions and a large group of low-probability, time-symmetric transitions, thus revealing stereotypy in the sequential patterns of state transitions. Simulations and experiments suggest that the sequential logic of the gait is functionally important. Taken together, these findings implicate a finite-state-machine-like process. Cirri are connected by microtubule bundles (fibers), and we found that the dynamics of cirri involved in different state transitions are associated with the structure of the fiber system. Perturbative experiments revealed that the fibers mediate gait coordination, suggesting a mechanical basis of gait control.
Collapse
Affiliation(s)
- Ben T Larson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Jack Garbus
- Computer Science Department, Brandeis University, Waltham, MA 02453, USA
| | - Jordan B Pollack
- Computer Science Department, Brandeis University, Waltham, MA 02453, USA
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
32
|
Feng L, Astumian RD, Stoddart JF. Controlling dynamics in extended molecular frameworks. Nat Rev Chem 2022; 6:705-725. [PMID: 37117491 DOI: 10.1038/s41570-022-00412-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/09/2022]
Abstract
Molecular machines are essential dynamic components for fuel production, cargo delivery, information storage and processing in living systems. Scientists have demonstrated that they can design and synthesize artificial molecular machines that operate efficiently in isolation - for example, at high dilution in solution - fuelled by chemicals, electricity or light. To organize the spatial arrangement and motion of these machines within close proximity to one another in solid frameworks, such that useful macroscopic work can be performed, remains a challenge in both chemical and materials science. In this Review, we summarize the progress that has been made during the past decade in organizing dynamic molecular entities in such solid frameworks. Emerging applications of these dynamic smart materials in the contexts of molecular recognition, optoelectronics, drug delivery, photodynamic therapy and water desalination are highlighted. Finally, we review recent work on a new non-equilibrium adsorption phenomenon for which we have coined the term mechanisorption. The ability to use external energy to drive directional processes in mechanized extended frameworks augurs well for the future development of artificial molecular factories.
Collapse
|
33
|
Wu R, Zhu Y, Cai X, Wu S, Xu L, Yu T. Recent Process in Microrobots: From Propulsion to Swarming for Biomedical Applications. MICROMACHINES 2022; 13:1473. [PMID: 36144096 PMCID: PMC9503943 DOI: 10.3390/mi13091473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Recently, robots have assisted and contributed to the biomedical field. Scaling down the size of robots to micro/nanoscale can increase the accuracy of targeted medications and decrease the danger of invasive operations in human surgery. Inspired by the motion pattern and collective behaviors of the tiny biological motors in nature, various kinds of sophisticated and programmable microrobots are fabricated with the ability for cargo delivery, bio-imaging, precise operation, etc. In this review, four types of propulsion-magnetically, acoustically, chemically/optically and hybrid driven-and their corresponding features have been outlined and categorized. In particular, the locomotion of these micro/nanorobots, as well as the requirement of biocompatibility, transportation efficiency, and controllable motion for applications in the complex human body environment should be considered. We discuss applications of different propulsion mechanisms in the biomedical field, list their individual benefits, and suggest their potential growth paths.
Collapse
|
34
|
Zantop AW, Stark H. Emergent collective dynamics of pusher and puller squirmer rods: swarming, clustering, and turbulence. SOFT MATTER 2022; 18:6179-6191. [PMID: 35822601 DOI: 10.1039/d2sm00449f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We study the interplay of steric and hydrodynamic interactions in suspensions of elongated microswimmers by simulating the full hydrodynamics of squirmer rods in the quasi two-dimensional geometry of a Hele-Shaw cell. To create pusher or puller-type squirmer rods, we concentrate the surface slip-velocity field more to the back or to the front of the rod and thereby are able to tune the rod's force-dipole strength. We study a wide range of aspect ratios and area fractions and provide corresponding state diagrams. The flow field of pusher-type squirmer rods destabilizes ordered structures and favors the disordered state at small area fractions and aspect ratios. Only when steric interactions become relevant, we observe a turbulent and dynamic cluster state, while for large aspect ratios a single swarm and jammed cluster occurs. The power spectrum of the turbulent state shows two distinct energy cascades at small and large wave numbers with power-law scaling and non-universal exponents. Pullers show a strong tendency to form swarms instead of the disordered state found for neutral and pusher rods. At large area fractions a dynamic cluster is observed and at larger aspect ratio a single swarm or jammed cluster occurs.
Collapse
Affiliation(s)
- Arne W Zantop
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| |
Collapse
|
35
|
Karin O, Alon U. The dopamine circuit as a reward-taxis navigation system. PLoS Comput Biol 2022; 18:e1010340. [PMID: 35877694 PMCID: PMC9352198 DOI: 10.1371/journal.pcbi.1010340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/04/2022] [Accepted: 06/29/2022] [Indexed: 01/29/2023] Open
Abstract
Studying the brain circuits that control behavior is challenging, since in addition to their structural complexity there are continuous feedback interactions between actions and sensed inputs from the environment. It is therefore important to identify mathematical principles that can be used to develop testable hypotheses. In this study, we use ideas and concepts from systems biology to study the dopamine system, which controls learning, motivation, and movement. Using data from neuronal recordings in behavioral experiments, we developed a mathematical model for dopamine responses and the effect of dopamine on movement. We show that the dopamine system shares core functional analogies with bacterial chemotaxis. Just as chemotaxis robustly climbs chemical attractant gradients, the dopamine circuit performs ‘reward-taxis’ where the attractant is the expected value of reward. The reward-taxis mechanism provides a simple explanation for scale-invariant dopaminergic responses and for matching in free operant settings, and makes testable quantitative predictions. We propose that reward-taxis is a simple and robust navigation strategy that complements other, more goal-directed navigation mechanisms.
Collapse
Affiliation(s)
- Omer Karin
- Dept. of Molecular Cell Biology, Weizmann Institute of Science, Rehovot Israel
- Dept. of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (OK); (UA)
| | - Uri Alon
- Dept. of Molecular Cell Biology, Weizmann Institute of Science, Rehovot Israel
- * E-mail: (OK); (UA)
| |
Collapse
|
36
|
Ramamonjy A, Dervaux J, Brunet P. Nonlinear Phototaxis and Instabilities in Suspensions of Light-Seeking Algae. PHYSICAL REVIEW LETTERS 2022; 128:258101. [PMID: 35802423 DOI: 10.1103/physrevlett.128.258101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
The mechanism by which living organisms seek optimal light conditions-phototaxis-is a fundamental process for motile photosynthetic microbes. It is involved in a broad array of natural processes and applications from bloom formation to the production of high-value chemicals in photobioreactors. Here, we show that a population of the model alga Chlamydomonas reinhardtii exhibits a highly sensitive nonlinear response to light and demonstrate that the self-organization of cells in a heterogeneous environment becomes unstable as the result of a coupling between bioconvective flows and phototaxis.
Collapse
Affiliation(s)
- Aina Ramamonjy
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS and Université de Paris, 75013 Paris, France
| | - Julien Dervaux
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS and Université de Paris, 75013 Paris, France
| | - Philippe Brunet
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS and Université de Paris, 75013 Paris, France
| |
Collapse
|
37
|
Tran QD, Galiana E, Thomen P, Cohen C, Orange F, Peruani F, Noblin X. Coordination of two opposite flagella allows high-speed swimming and active turning of individual zoospores. eLife 2022; 11:e71227. [PMID: 35343437 PMCID: PMC9068220 DOI: 10.7554/elife.71227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Phytophthora species cause diseases in a large variety of plants and represent a serious agricultural threat, leading, every year, to multibillion dollar losses. Infection occurs when their biflagellated zoospores move across the soil at their characteristic high speed and reach the roots of a host plant. Despite the relevance of zoospore spreading in the epidemics of plant diseases, individual swimming of zoospores have not been fully investigated. It remains unknown about the characteristics of two opposite beating flagella during translation and turning, and the roles of each flagellum on zoospore swimming. Here, combining experiments and modeling, we show how these two flagella contribute to generate thrust when beating together, and identify the mastigonemes-attached anterior flagellum as the main source of thrust. Furthermore, we find that turning involves a complex active process, in which the posterior flagellum temporarily stops, while the anterior flagellum keeps on beating and changes its gait from sinusoidal waves to power and recovery strokes, similar to Chlamydomonas's breaststroke, to reorient its body to a new direction. Our study is a fundamental step toward a better understanding of the spreading of plant pathogens' motile forms, and shows that the motility pattern of these biflagellated zoospores represents a distinct eukaryotic version of the celebrated 'run-and-tumble' motility class exhibited by peritrichous bacteria.
Collapse
Affiliation(s)
- Quang D Tran
- Université Côte d’Azur, CNRS UMR 7010, Institut de Physique de Nice (INPHYNI)NiceFrance
| | - Eric Galiana
- Université Côte d’Azur, INRAE UMR 1355, CNRS UMR 7254, Institut Sophia Agrobiotech (ISA)Sophia AntipolisFrance
| | - Philippe Thomen
- Université Côte d’Azur, CNRS UMR 7010, Institut de Physique de Nice (INPHYNI)NiceFrance
| | - Céline Cohen
- Université Côte d’Azur, CNRS UMR 7010, Institut de Physique de Nice (INPHYNI)NiceFrance
| | - François Orange
- Université Côte d’Azur, Centre Commun de Microscopie Appliquée (CCMA)NiceFrance
| | - Fernando Peruani
- Université Côte d’Azur, CNRS UMR 7351, Laboratoire J.A. Dieudonné (LJAD)NiceFrance
- CY Cergy Paris Université, CNRS UMR 8089, Laboratoire de Physique Théorique et ModélisationCergy-PontoiseFrance
| | - Xavier Noblin
- Université Côte d’Azur, CNRS UMR 7010, Institut de Physique de Nice (INPHYNI)NiceFrance
| |
Collapse
|
38
|
Bayati P, Nourhani A. Memory effects in spiral diffusion of rotary self-propellers. Phys Rev E 2022; 105:024606. [PMID: 35291178 DOI: 10.1103/physreve.105.024606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The coupling of deterministic rotary motion and stochastic orientational diffusion of a self-propeller leads to a spiral trajectory of the expected displacement. We extend our former analysis of spiral diffusion [Phys. Rev. E 94, 030601(R) (2016)10.1103/PhysRevE.94.030601] in the white-noise limit to a more realistic scenario of stochastic noise with Gaussian memory and orientational fluctuations driven by an Ornstein-Uhlenbeck process. A variety of dynamical regimes including crossovers from ballistic to diffusive to ballistic in the angular dynamics are determined by the inertial timescale, orientational diffusivity, and angular speed.
Collapse
Affiliation(s)
- Parvin Bayati
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
- Université Paris-Saclay, CNRS, Le Laboratoire de Physique Théorique et Modèles Statistiques, 91405 Orsay, France
| | - Amir Nourhani
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
- Biomimicry Research and Innovation Center, University of Akron, Akron, Ohio 44325, USA
- Departments of Biology, Mathematics, and Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
39
|
Solovev A, Friedrich BM. Synchronization in cilia carpets and the Kuramoto model with local coupling: Breakup of global synchronization in the presence of noise. CHAOS (WOODBURY, N.Y.) 2022; 32:013124. [PMID: 35105113 DOI: 10.1063/5.0075095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Carpets of beating cilia represent a paradigmatic example of self-organized synchronization of noisy biological oscillators, characterized by traveling waves of cilia phase. We present a multi-scale model of a cilia carpet that comprises realistic hydrodynamic interactions between cilia computed for a chiral cilia beat pattern from unicellular Paramecium and active noise of the cilia beat. We demonstrate an abrupt loss of global synchronization beyond a characteristic noise strength. We characterize stochastic transitions between synchronized and disordered dynamics, which generalize the notion of phase slips in pairs of coupled noisy phase oscillators. Our theoretical work establishes a link between the two-dimensional Kuramoto model of phase oscillators with mirror-symmetric oscillator coupling and detailed models of biological oscillators with asymmetric, chiral interactions.
Collapse
|
40
|
Kurzthaler C, Mandal S, Bhattacharjee T, Löwen H, Datta SS, Stone HA. A geometric criterion for the optimal spreading of active polymers in porous media. Nat Commun 2021; 12:7088. [PMID: 34873164 PMCID: PMC8648790 DOI: 10.1038/s41467-021-26942-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
Efficient navigation through disordered, porous environments poses a major challenge for swimming microorganisms and future synthetic cargo-carriers. We perform Brownian dynamics simulations of active stiff polymers undergoing run-reverse dynamics, and so mimic bacterial swimming, in porous media. In accord with experiments of Escherichia coli, the polymer dynamics are characterized by trapping phases interrupted by directed hopping motion through the pores. Our findings show that the spreading of active agents in porous media can be optimized by tuning their run lengths, which we rationalize using a coarse-grained model. More significantly, we discover a geometric criterion for the optimal spreading, which emerges when their run lengths are comparable to the longest straight path available in the porous medium. Our criterion unifies results for porous media with disparate pore sizes and shapes and for run-and-tumble polymers. It thus provides a fundamental principle for optimal transport of active agents in densely-packed biological and environmental settings.
Collapse
Affiliation(s)
- Christina Kurzthaler
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA.
| | - Suvendu Mandal
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany.
- Institut für Physik der kondensierten Materie, Technische Universität Darmstadt, 64289, Darmstadt, Germany.
| | - Tapomoy Bhattacharjee
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
41
|
Fragkopoulos AA, Vachier J, Frey J, Le Menn FM, Mazza MG, Wilczek M, Zwicker D, Bäumchen O. Self-generated oxygen gradients control collective aggregation of photosynthetic microbes. J R Soc Interface 2021; 18:20210553. [PMID: 34847792 PMCID: PMC8633776 DOI: 10.1098/rsif.2021.0553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
For billions of years, photosynthetic microbes have evolved under the variable exposure to sunlight in diverse ecosystems and microhabitats all over our planet. Their abilities to dynamically respond to alterations of the luminous intensity, including phototaxis, surface association and diurnal cell cycles, are pivotal for their survival. If these strategies fail in the absence of light, the microbes can still sustain essential metabolic functionalities and motility by switching their energy production from photosynthesis to oxygen respiration. For suspensions of motile C. reinhardtii cells above a critical density, we demonstrate that this switch reversibly controls collective microbial aggregation. Aerobic respiration dominates over photosynthesis in conditions of low light, which causes the microbial motility to sensitively depend on the local availability of oxygen. For dense microbial populations in self-generated oxygen gradients, microfluidic experiments and continuum theory based on a reaction–diffusion mechanism show that oxygen-regulated motility enables the collective emergence of highly localized regions of high and low cell densities.
Collapse
Affiliation(s)
- Alexandros A Fragkopoulos
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - Jérémy Vachier
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany.,Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 106 91 Stockholm, Sweden
| | - Johannes Frey
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - Flora-Maud Le Menn
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - Marco G Mazza
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany.,Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Michael Wilczek
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany
| | - Oliver Bäumchen
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany.,Experimental Physics V, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| |
Collapse
|
42
|
Mondal D, Prabhune AG, Ramaswamy S, Sharma P. Strong confinement of active microalgae leads to inversion of vortex flow and enhanced mixing. eLife 2021; 10:e67663. [PMID: 34806977 PMCID: PMC8758135 DOI: 10.7554/elife.67663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms swimming through viscous fluids imprint their propulsion mechanisms in the flow fields they generate. Extreme confinement of these swimmers between rigid boundaries often arises in natural and technological contexts, yet measurements of their mechanics in this regime are absent. Here, we show that strongly confining the microalga Chlamydomonas between two parallel plates not only inhibits its motility through contact friction with the walls but also leads, for purely mechanical reasons, to inversion of the surrounding vortex flows. Insights from the experiment lead to a simplified theoretical description of flow fields based on a quasi-2D Brinkman approximation to the Stokes equation rather than the usual method of images. We argue that this vortex flow inversion provides the advantage of enhanced fluid mixing despite higher friction. Overall, our results offer a comprehensive framework for analyzing the collective flows of strongly confined swimmers.
Collapse
Affiliation(s)
- Debasmita Mondal
- Department of Physics, Indian Institute of ScienceBangaloreIndia
| | - Ameya G Prabhune
- Department of Physics, Indian Institute of ScienceBangaloreIndia
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of ScienceBangaloreIndia
| | - Prerna Sharma
- Department of Physics, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
43
|
Skinner DJ, Dunkel J. Estimating Entropy Production from Waiting Time Distributions. PHYSICAL REVIEW LETTERS 2021; 127:198101. [PMID: 34797138 DOI: 10.1103/physrevlett.127.198101] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Living systems operate far from thermal equilibrium by converting the chemical potential of ATP into mechanical work to achieve growth, replication, or locomotion. Given time series observations of intra-, inter-, or multicellular processes, a key challenge is to detect nonequilibrium behavior and quantify the rate of free energy consumption. Obtaining reliable bounds on energy consumption and entropy production directly from experimental data remains difficult in practice, as many degrees of freedom typically are hidden to the observer, so that the accessible coarse-grained dynamics may not obviously violate detailed balance. Here, we introduce a novel method for bounding the entropy production of physical and living systems which uses only the waiting time statistics of hidden Markov processes and, hence, can be directly applied to experimental data. By determining a universal limiting curve, we infer entropy production bounds from experimental data for gene regulatory networks, mammalian behavioral dynamics, and numerous other biological processes. Further considering the asymptotic limit of increasingly precise biological timers, we estimate the necessary entropic cost of heartbeat regulation in humans, dogs, and mice.
Collapse
Affiliation(s)
- Dominic J Skinner
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
44
|
Cai K, Zhao Y, Zhao L, Phan N, Hou Y, Cheng X, Witman GB, Nicastro D. Structural organization of the C1b projection within the ciliary central apparatus. J Cell Sci 2021; 134:272503. [PMID: 34651179 DOI: 10.1242/jcs.254227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
Motile cilia have a '9+2' structure containing nine doublet microtubules and a central apparatus (CA) composed of two singlet microtubules with associated projections. The CA plays crucial roles in regulating ciliary motility. Defects in CA assembly or function usually result in motility-impaired or paralyzed cilia, which in humans causes disease. Despite their importance, the protein composition and functions of most CA projections remain largely unknown. Here, we combined genetic, proteomic and cryo-electron tomographic approaches to compare the CA of wild-type Chlamydomonas reinhardtii with those of three CA mutants. Our results show that two proteins, FAP42 and FAP246, are localized to the L-shaped C1b projection of the CA, where they interact with the candidate CA protein FAP413. FAP42 is a large protein that forms the peripheral 'beam' of the C1b projection, and the FAP246-FAP413 subcomplex serves as the 'bracket' between the beam (FAP42) and the C1b 'pillar' that attaches the projection to the C1 microtubule. The FAP246-FAP413-FAP42 complex is essential for stable assembly of the C1b, C1f and C2b projections, and loss of these proteins leads to ciliary motility defects.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| | - Yanhe Zhao
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| | - Lei Zhao
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nhan Phan
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Xi Cheng
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| |
Collapse
|
45
|
Gomes Pereira S, Sousa AL, Nabais C, Paixão T, Holmes AJ, Schorb M, Goshima G, Tranfield EM, Becker JD, Bettencourt-Dias M. The 3D architecture and molecular foundations of de novo centriole assembly via bicentrioles. Curr Biol 2021; 31:4340-4353.e7. [PMID: 34433076 DOI: 10.1101/2020.12.21.423647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 05/19/2023]
Abstract
Centrioles are structurally conserved organelles, composing both centrosomes and cilia. In animal cycling cells, centrioles often form through a highly characterized process termed canonical duplication. However, a large diversity of eukaryotes assemble centrioles de novo through uncharacterized pathways. This unexplored diversity is key to understanding centriole assembly mechanisms and how they evolved to assist specific cellular functions. Here, we show that, during spermatogenesis of the bryophyte Physcomitrium patens, centrioles are born as a co-axially oriented centriole pair united by a cartwheel. Interestingly, we observe that these centrioles are twisted in opposite orientations. Microtubules emanate from the bicentrioles, which localize to the spindle poles during cell division. After their separation, the two resulting sister centrioles mature asymmetrically, elongating specific microtubule triplets and a naked cartwheel. Subsequently, two motile cilia are assembled that appear to alternate between different motility patterns. We further show that centriolar components SAS6, Bld10, and POC1, which are conserved across eukaryotes, are expressed during spermatogenesis and required for this de novo biogenesis pathway. Our work supports a scenario where centriole biogenesis, while driven by conserved molecular modules, is more diverse than previously thought.
Collapse
Affiliation(s)
- Sónia Gomes Pereira
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Ana Laura Sousa
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Catarina Nabais
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Tiago Paixão
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Alexander J Holmes
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, 429-63, Toba 517-0004, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Erin M Tranfield
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | | |
Collapse
|
46
|
Gomes Pereira S, Sousa AL, Nabais C, Paixão T, Holmes AJ, Schorb M, Goshima G, Tranfield EM, Becker JD, Bettencourt-Dias M. The 3D architecture and molecular foundations of de novo centriole assembly via bicentrioles. Curr Biol 2021; 31:4340-4353.e7. [PMID: 34433076 DOI: 10.1016/j.cub.2021.07.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Centrioles are structurally conserved organelles, composing both centrosomes and cilia. In animal cycling cells, centrioles often form through a highly characterized process termed canonical duplication. However, a large diversity of eukaryotes assemble centrioles de novo through uncharacterized pathways. This unexplored diversity is key to understanding centriole assembly mechanisms and how they evolved to assist specific cellular functions. Here, we show that, during spermatogenesis of the bryophyte Physcomitrium patens, centrioles are born as a co-axially oriented centriole pair united by a cartwheel. Interestingly, we observe that these centrioles are twisted in opposite orientations. Microtubules emanate from the bicentrioles, which localize to the spindle poles during cell division. After their separation, the two resulting sister centrioles mature asymmetrically, elongating specific microtubule triplets and a naked cartwheel. Subsequently, two motile cilia are assembled that appear to alternate between different motility patterns. We further show that centriolar components SAS6, Bld10, and POC1, which are conserved across eukaryotes, are expressed during spermatogenesis and required for this de novo biogenesis pathway. Our work supports a scenario where centriole biogenesis, while driven by conserved molecular modules, is more diverse than previously thought.
Collapse
Affiliation(s)
- Sónia Gomes Pereira
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Ana Laura Sousa
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Catarina Nabais
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Tiago Paixão
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Alexander J Holmes
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, 429-63, Toba 517-0004, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Erin M Tranfield
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência (IGC), Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | | |
Collapse
|
47
|
Abstract
When the motion of a motile cell is observed closely, it appears erratic, and yet the combination of nonequilibrium forces and surfaces can produce striking examples of organization in microbial systems. While most of our current understanding is based on bulk systems or idealized geometries, it remains elusive how and at which length scale self-organization emerges in complex geometries. Here, using experiments and analytical and numerical calculations, we study the motion of motile cells under controlled microfluidic conditions and demonstrate that probability flux loops organize active motion, even at the level of a single cell exploring an isolated compartment of nontrivial geometry. By accounting for the interplay of activity and interfacial forces, we find that the boundary's curvature determines the nonequilibrium probability fluxes of the motion. We theoretically predict a universal relation between fluxes and global geometric properties that is directly confirmed by experiments. Our findings open the possibility to decipher the most probable trajectories of motile cells and may enable the design of geometries guiding their time-averaged motion.
Collapse
|
48
|
Teng XJ, Ng WM, Chong WH, Chan DJC, Mohamud R, Ooi BS, Guo C, Liu C, Lim J. The Transport Behavior of a Biflagellated Microswimmer before and after Cargo Loading. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9192-9201. [PMID: 34255525 DOI: 10.1021/acs.langmuir.1c01345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The changes in the transport behavior of a microswimmer before and after cargo loading are crucial to understanding and control of the motion of a biohybrid microbot. In this work, we show the change in swimming behavior of biflagellated microalgae Chlamydomonas reinhardtii picking up a 4.5 μm polystyrene microbead upon collision. The microswimmer changed from linear forward motion into helical motion upon the attachment of the cargo and swam with a decreased swimming velocity. We revealed the helical motion of the microswimmer upon cargo loading due to suppression of flagella by image analysis of magnified time-lapse images of C. reinhardtii with one microbead attached at the anterior end (between the flagella). Furthered suppression on the flagellum imposed by the loading of the second cargo has led to increased oscillation per displacement traveled and decreased swimming velocity. Moreover, the microswimmer with a microbead attached at the posterior end swam with swimming velocity close to free swimming microalgae and did not exhibit helical swimming behavior. The experimental results and analysis showed that the loading location of the cargo has a great influence over the swimming behavior of the microswimmer. Furthermore, the work balance calculation and mathematical analysis based on Lighthill's model are well consistent with our experimental findings.
Collapse
Affiliation(s)
- Xiau Jeong Teng
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300 Penang, Malaysia
| | - Wei Ming Ng
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300 Penang, Malaysia
| | - Wai Hong Chong
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300 Penang, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300 Penang, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| | - Boon Seng Ooi
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300 Penang, Malaysia
| | - Chen Guo
- State Key Laboratory of Biochemical Engineering & Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Chunzhao Liu
- State Key Laboratory of Biochemical Engineering & Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering, Affiliated Qingdao Central Hospital, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P.R. China
| | - JitKang Lim
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300 Penang, Malaysia
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, Unites States
| |
Collapse
|
49
|
Karin O, Alon U. Temporal fluctuations in chemotaxis gain implement a simulated-tempering strategy for efficient navigation in complex environments. iScience 2021; 24:102796. [PMID: 34345809 PMCID: PMC8319753 DOI: 10.1016/j.isci.2021.102796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 06/24/2021] [Indexed: 12/01/2022] Open
Abstract
Bacterial chemotaxis is a major testing ground for systems biology, including the role of fluctuations and individual variation. Individual bacteria vary in their tumbling frequency and adaptation time. Recently, large cell-cell variation was also discovered in chemotaxis gain, which determines the sensitivity of the tumbling rate to attractant gradients. Variation in gain is puzzling, because low gain impairs chemotactic velocity. Here, we provide a functional explanation for gain variation by establishing a formal analogy between chemotaxis and algorithms for sampling probability distributions. We show that temporal fluctuations in gain implement simulated tempering, which allows sampling of attractant distributions with many local peaks. Periods of high gain allow bacteria to detect and climb gradients quickly, and periods of low gain allow them to move to new peaks. Gain fluctuations thus allow bacteria to thrive in complex environments, and more generally they may play an important functional role for organism navigation.
Collapse
Affiliation(s)
- Omer Karin
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Wellcome Trust–Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Uri Alon
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
50
|
Findlay RC, Osman M, Spence KA, Kaye PM, Walrad PB, Wilson LG. High-speed, three-dimensional imaging reveals chemotactic behaviour specific to human-infective Leishmania parasites. eLife 2021; 10:65051. [PMID: 34180835 PMCID: PMC8238501 DOI: 10.7554/elife.65051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/08/2021] [Indexed: 12/04/2022] Open
Abstract
Cellular motility is an ancient eukaryotic trait, ubiquitous across phyla with roles in predator avoidance, resource access, and competition. Flagellar motility is seen in various parasitic protozoans, and morphological changes in flagella during the parasite life cycle have been observed. We studied the impact of these changes on motility across life cycle stages, and how such changes might serve to facilitate human infection. We used holographic microscopy to image swimming cells of different Leishmania mexicana life cycle stages in three dimensions. We find that the human-infective (metacyclic promastigote) forms display ‘run and tumble’ behaviour in the absence of stimulus, reminiscent of bacterial motion, and that they specifically modify swimming direction and speed to target host immune cells in response to a macrophage-derived stimulus. Non-infective (procyclic promastigote) cells swim more slowly, along meandering helical paths. These findings demonstrate adaptation of swimming phenotype and chemotaxis towards human cells.
Collapse
Affiliation(s)
- Rachel C Findlay
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom.,Department of Physics, University of York, York, United Kingdom
| | - Mohamed Osman
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Kirstin A Spence
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Pegine B Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | | |
Collapse
|